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Abstract

We propose Color Shift GAN (CSGAN), a method that
allows learning to segment an object class without the need
for pixel-wise annotations. We exploit a single textual an-
notation of the basic object color per image to learn the
semantics of an object class. By using only a textual basic
color annotation of each object, we are able to drastically
reduce labeling efforts. We created a dataset of 29,910 im-
ages of cars and annotated the basic color of their body
works. Our model reaches 61.4% IoU on our test data.
CSGAN trained with additional 128 pixel-wise annotations
reaches 62.0%. By adding 45,150 unlabeled images to the
training of CSGAN we are able to increase IoU to 65.0%
without using a single pixel-wise annotation. This verifies
that our weak objective is sufficient for learning segmenta-
tion.

1 Introduction

Training supervised deep segmentation models requires
lots of data that is annotated at the pixel level. Creat-
ing such annotations is very time-consuming. We propose
Color Shift GAN (CSGAN), a method that can be used to
weakly supervise a deep segmentation model by exploit-
ing only a single textual annotation of the basic color of
each object instance. By this, we are able to massively re-
duce labeling efforts as no pixel annotations are needed. We
created a dataset of cars by downloading image search re-
sults from various online image search services. Removing
wrong search results and annotating object color in 29.910
images took a single person only about 6 days (8h per day).
That is more than 10 annotated images per minute.

Color Shift GAN (CSGAN) is a DNN architecture for
translating the color of objects of a given object class in im-
ages. We define color translation as the task of changing
the color of objects of a given class in an image to a spe-
cific target color. Our intuition is that a deep model, that
is able to translate the color of an object, at some point
internally needs to infer the location of the object at the

pixel level. CSGAN is designed to expose this information.
Our CSGAN approach models an image-to-image transla-
tion task that changes object colors from any source color
to any given target object color. By learning with an ad-
versarial objective, we do not need pairwise data that shows
the same object in the same scene with different colors. We
propose to separate color translation into the prediction of
locations and a separate estimate of the change in color. Be-
cause of that, we are able to distill the location information.
Our main contributions are:

• We propose a generative model that is in major parts a
discriminative model, which we train for segmentation
by using only textual information on the color of object
instances.

• We present cars30k, a dataset consisting of 29, 910
images of cars that are annotated with their respec-
tive manufacturer, the car model and the basic color of
the car’s body works. The cars30k dataset is publicly
available1.

2 Related Work

Color based segmentation of images has been studied for
decades [2]. However, most algorithms lack the semantic
component of our proposed system. Others [15, 18] use ad-
ditional semantic labels to weakly supervise segmentation
models. Mirza et al.[13] introduced Conditional GANs, that
allow to use class annotations to explicitly control the out-
put of generative models learned with an adversarial loss.
We condition our model on object colors. This allows to ex-
plicitly control the target object color. We are able to learn
our model without pre-training on any larger database of
class annotated images like Imagenet[3] or MSCOCO[10].
Unlike others[17], we also do not learn from pixel-wise
masks but use image level color information instead. At
test time, the learned model behaves just like any other fully
convolutional segmentation network.

1http://bit.ly/cars30k

http://bit.ly/cars30k
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Figure 1. The proposed generator architecture. We extract features by a stack of 10 residual blocks.
The CDN (top) uses the features and a given target color to estimate the color change from source
color (left, yellow) to target color (right, red). We fuse the estimated intensities and the color vector
to create a mask of pixel-wise color changes. Adding these changes to the input image yields a new
image with different object color (right). +/∗ mean pixel-wise addition and multiplication.

3 Color Shift GAN
Segmentation is the task of labeling each pixel accord-

ing to the class it belongs to. In a binary setting, that is
separating pixels that belong to a specific object class from
background pixels. Our intuition is that translating the basic
color of an object cannot be done without prior segmenting
the image into object and no object. However, learning to
translate object colors in a classic supervised setting would
require us to have identical target images for all training ex-
amples in which only the color of the object of interest is
altered. Gathering such a dataset of real images seems im-
practical or even impossible. One way to avoid the need for
pairwise data is adversarial learning. Due to their formula-
tion, generative adversarial networks (GANs) allow to learn
color translation in a weakly supervised manner, in which
the generator learns to transfer object color from an input
color to a target color without the necessity of pairwise data.

If we consider a model that converts objects in images
from one color to another, this model, at some point, needs
to identify the location of the object at the pixel level. Oth-
erwise, it could change color in other regions, too. How-
ever, in deep models, this information about the location of
objects is encoded somewhere in the deep features. By de-
sign, CSGAN explicitly predicts object location via a color
intensity map. With uniformly colored objects, color trans-
lation can be separated into the location at which the color
should be changed as well as the actual change in color. We
propose a model that explicitly separates these predictions
of location and color. At test time we simply strip the color
prediction part of the learned model and retrieve the object
locations as segmentation masks.

3.1 Generator Architecture
The input of our generator is an image depicting a col-

ored object. The first three convolutional layers perform
downsampling with a combined stride of s = 4. They are

followed by a stack of ten residual blocks[6]. The resulting
features are then used as input to a mask prediction head.
This mask is then combined with a color change vector that
is estimated in the Color Difference Network (CDN). The
CDN is a small convolutional network which combines im-
age features with a target color prior.

3.1.1 Color Difference Network
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Figure 2. In the CDN, we combine image fea-
tures with a given target color prior to esti-
mate the color change from source color to
target color. Multiple inputs means channel-
wise concatenation.

In Figure 2, we depict the Color Difference Net-
work (CDN). Its task is to estimate the desired change in
object color ∆rgb. Estimating ∆rgb correctly involves con-
sidering the original object color as well as the target color
and connecting them in RGB-space. The CDN embeds fea-
tures obtained by the backbone feature extractor into a vec-
tor via a small encoder network consisting of three convolu-
tion layers each followed by max pooling with stride s = 2.



We reduce the remaining spatial information to a single vec-
tor of features by global average pooling. We add a target
color prior by stacking a one-hot encoded color vector. The
resulting vector is a representation of the source and target
color. During training, we use this representation to esti-
mate ∆rgb for any possible target color via three dense lay-
ers.

3.1.2 Mask Prediction Head

To obtain semantic masks that match the spatial dimensions
of the input image, we upsample features from the fea-
ture extractor by two consecutive deconvolution layers with
stride s = 2. We use a single convolution layer to predict
a single channel output based on this features. We call this
arrangement of layers the mask prediction head. We obtain
segmentation masks by thresholding the output of the mask
prediction head. Figure 1 shows the mask prediction head
in parallel to the CDN. The output of the mask prediction
head represents the intensity of the color change for each
pixel of the input image. We multiply it’s output with the
output of the CDN element-wise to obtain a residual image
in RGB-space. Pixel-wise addition of the original image
and the residual image yields a new image in which only
the color of the object of interest is altered. Note, that the
mask prediction head has no knowledge of the target color
which is only fed to the CDN. This is why we neither need
the CDN nor any color label at test time. To obtain multiple
result images with different object colors during training,
we only calculate the output of the mask prediction head
once, and multiply it with different color vectors obtained
from the CDN. This allows us to create images in all possi-
ble target colors with only a single forward pass through the
feature extractor and the mask prediction head. Outputs x
of the last layer in the mask prediction head are activated by
a custom activation function. The output y of this function
is calculated as:

y =

{
|x| −1 ≤ x ≤ 1

1 + (|x| − 1) · 0.1 else
(1)

Our custom activation function forces segmentation masks
to be positive and slows learning when activations exceed a
value of 1.0. Keeping values positive has two effects. First,
we require intensities to be positive. Second, the resulting
activations represent positive pixel-wise scaling factors for
the color change vector ∆rgb estimated by the CDN. This
way, we explicitly assign the task of predicting the direc-
tion in color space to the CDN, i.e., the CDN also needs to
predict the correct sign of each individual component of the
color change vector ∆rgb. Note, that other activation func-
tions are also suitable here. However, performance of our
models consistently degraded when using sigmoid or ReLU
functions instead of our customized activation function. We

s 8 8 8 8 4 4 4 4 4 2 2 2
it(×10k) 0 6 12 18 24 30 36 42 48 54 60 66

Table 1. The discriminator growing schedule.
Scale s is the ratio between the spatial ex-
tent of the input image and the spatial extent
of the deep features. We start with images
down-sampled by a factor of 8 and increase
image resolution over time. New blocks are
added every 60,000 iterations (it). The number
of filters that are learned in each convolution
layer is s× 64.

attribute this to the fact that the gradient of our activation
function equals one for all input values between [−1, 1] and
the fact that we allow some gradients to flow for input val-
ues outside of this range. In contrast, ReLU stops gradient
flow for negative feature values and the sigmoid activation
function produces fading gradients when close to its limits.

3.2 Discriminator Architecture
We use a deep markovian discriminator (PatchGAN[7]),

which consists of stacked residual blocks[6], i.e., we cal-
culate the error of the discriminator as the average error on
an output map instead of the error of a single output neu-
ron. We grow residual blocks progressively as shown in [8]
by increasing the depth of the discriminator as training pro-
gresses. This allows growing the learned object model from
low frequency coarse contents in images in the beginning
to fine grained high frequency details towards the end of
learning. During the growing phase, we slowly fade in
new residual blocks and increase the image resolution. The
growing schedule is given in Table 1. We add a new block
every 60,000 iterations and slowly fade it in over a period
of 30,000 iterations. Note that unlike [8] we do not grow
the generator because it largely operates on a constant reso-
lution at a quarter of the original image size anyways.

3.3 Experimental Framework
Optimization We use the Adam Optimizer [9] with β1 =
0.5 and β2 = 0.9 and learning rate η = 0.0001. We
trained and tested all models on a single NVIDIA Tesla
V100. Training time for 2 million iterations is ≈ 9 days
when using images scaled to 128 pixels on the long side.
We use a standard GAN objective as proposed by Goodfel-
low et al.[5] with additional discriminator regularization as
proposed by Roth et al.[16]. Each training step consists of
generator update and discriminator update. The generator
network is trained with a batch size of 1. The discriminator
sees a single real image and all differently colored images
that were created by the generator. Note that our discrim-
inator has an output map for each color instead of just a
single output neuron.



src CSGAN VOC white silver gray black blue red brown green yellow orange purple

Figure 3. [Best viewed in color] Predicted segmentation masks and the resulting color augmented
objects. On the left is the source image. The CSGAN column shows the semantic masks predicted
by our generator. The VOC column shows the masks predicted by the additional output layer of the
combined (w/s) variant. The columns labeled with colors, show the color translated results using
the color vector predicted by the CDN. Note, that although not all colors are translated correctly, the
masks predicted by CSGAN are very clear and precise.

Color Supervision We use the information about the basic
color of our objects to supervise the discriminator, i.e., we
define separate output neurons for each color. Thus, we ask
multiple questions: “Does the image show a real red object
or a fake red object?”, “Does the image show a real blue ob-
ject or a fake blue object?”... and so on. Color supervision
requires us to provide learning feedback only for the rele-
vant output neurons, i.e., we only propagate errors for the
output map that represents the current color label. That is
because the question “does this image show a real blue ob-
ject or a fake blue object?” does not make any sense if we
look at a red object. Note, that the generator network is al-
ways conditioned on the target color by feeding the one-hot
encoded target color to the CDN.
Dataset To the best of our knowledge, there is no public
dataset with annotated object color. Thus, we cannot com-
pare our model on any public benchmark data. We do, how-
ever, train a variant of CSGAN using our weak objective
and additional strong supervision. We report intersection
over union scores of this combined model on the Pascal
VOC2012 segmentation validation set in section 4. We cre-
ated a dataset of 29,910 images of cars from the internet. All
images were annotated with one of 18 different car manu-
facturers and 67 specific models as well as the dominant
color of their bodywork. We distinguish 11 different colors.
All images show at least one car very prominently. During
training we re-balance our dataset such that all colors are
equally likely. For testing we labeled the colored regions of

the body work of cars in 67 images. We make the cars30k
dataset publicly available in order to support development
in fields in which cars and/or the colors of objects are im-
portant.
Data Augmentation and Preprocessing We apply differ-
ent augmentation techniques that target color values, scale
and location. Augmenting color values, in our setting has to
be done very carefully. A strong change in the color of an
object would counteract our proposed training procedure,
because the discriminator relies on getting the correct color
label. Thus, we only change image colors slightly by ran-
domizing image brightness, image contrast and color sat-
uration. We normalize RGB values to a range between -1
and 1. The default image size used during training is 128
pixels on the longer side of the image. We allow a random
deviation from that size of at max 30% in size. All images
are resized such that the original aspect ratio is preserved.
Augmentation in location is achieved by randomly flipping
images from left to right at a rate of 0.5. We do not pad the
images.

3.4 Additional Details

We use Leaky ReLU[12] activation functions and spec-
tral normalization[14] in all layers except for the output lay-
ers. All residual blocks are pre-activated. We do not use any
feature normalization method. Many feature normalization
techniques scale or shift feature values depending on the
values or statistics of other features. Due to these dependen-



cies on other features keeping color information is particu-
larly hard in feature normalized networks. We use reflection
padding to keep spatial dimensions of the activations con-
stant across all layers that operate on the same scale. In our
case, many objects are located somewhere in the center of
the images. Knowing image boundaries would make it easy
to identify the center of the image and probably result in a
location dependent bias of the network output. Reflection
padding makes finding the boundaries of an image harder
for the network.

4 Results
We conducted experiments on our dataset that consists

of images of cars. We show results in Table 2. The basic
CSGAN w is purely weakly supervised with color anno-
tations from the cars30k dataset. We compare to multiple
variants of CSGAN that are learned with additional pixel-
wise masks from different subsets of the Pascal VOC2012
segmentation set[4]. We show that a variant of CSGAN that
is learned using only weak supervision and additional unla-
beled images is superior to the variant that is trained with
masks from the VOC2012 data.

4.1 Can we do better with additional data?

We conduct two types of experiments to test the effects
of additional data on the performance of CSGAN. First, we
add strong supervision using annotations from the Pascal
VOC2012 segmentation training set. Second, we train a
weakly-supervised CSGAN with additional unlabeled data.

The object model of our weakly-supervised CSGAN dif-
fers from the object model defined by the VOC2012 seg-
mentation data. Due to the formulation of our model, we
are only able to segment object parts that are colored uni-
formly. For cars, that is usually the body works. The object
model for the class car in the VOC2012 segmentation data
is fundamentally different. Parts like windows and wheels
that are colored differently from the body works also belong
to the object. This means, we cannot use the same param-
eters to learn our weakly supervised object model and the
VOC2012 segmentation model. We use an additional output
layer in parallel to our mask prediction head. The conflict
between our object model and the VOC2012 object model
is also observable in the scores that we report in Table 2.
A weakly supervised CSGAN that is strongly supervised
with additional 128 masks of cars (w/s cars only) achieves
only 60.4% IoU on our test data while a model that is super-
vised with all VOC2012 classes (w/s all cls w/o cars) except
for the car class reaches 61.9%. We learn the VOC2012
segmentation data with a softmax activated cross-entropy
target. This way, both our mask prediction head and the
VOC2012 head utilize the same features, but predict differ-
ent outputs. During training, in each step, we feed a single
image from the VOC2012 dataset as well as a single image

Figure 4. Images from the MSCOCO dataset.
We expand masks from CSGAN to a convex
hull in order to make our object model more
compatible to the MSCOCO object model.

from our color labeled dataset. We report intersection over
union scores (IoU) on the subset of the VOC2012 segmenta-
tion dataset that shows cars as well as the IoU on our dataset
wherever applicable. We compare multiple models (w/s)
trained with our weakly supervised target and additional la-
bels from different subsets of the VOC2012 segmentation
data. Here, s means that we used pixel-wise masks from the
Pascal VOC2012 data for training. w means that we used
our weakly supervised objective. w/s means that we used
both weak and strong supervision. cars only means that we
only used images that show cars from the VOC2012 training
set. All cls means that we used masks of all 20 object classes
annotated in the VOC2012 data. all cls w/o cars means that
we used all VOC2012 masks except the car masks. Note,
that some images that show cars, also show other annotated
objects. In that case we did not remove the images but sim-
ply erased the car annotations. We also trained a purely
supervised model (s) using all of the 20 object classes an-
notated in the VOC2012 segmentation set. Using additional
pixel-wise annotations did not improve our results which
strongly reinforces our statement, that color is enough to
learn the semantics of certain objects.

In CSGAN, by design, the training of the generator
does not need any color annotations. Color labels are only
needed to train the discriminator. We train another CSGAN
using all images from the cars30k dataset and 45,150 ad-
ditional unlabeled images of cars from the internet. This
model is learned using only the weak objective of CSGAN.
It achieves 65.0% IoU on our test data which is consider-
ably higher than all other versions of CSGAN.

4.2 Discussion

CSGAN can segment all types of objects that commonly
exhibit one dominant color but occur in multiple different
colors. Examples are vehicles like bicycles, cars, airplanes,
boats and buses as well as animals like horses, dogs, sheep
and many others. Crafted objects like handbags, umbrel-
las, doors and laptops are also often uniformly colored.
We tested CSGAN not only with images of cars, but also
with images of alpacas and images of handbags. In both
cases, CSGAN produced reasonable results even though we



w w + unlabeled
data

w/s cars only w/s all cls w/s all cls w/o
cars

s all cls

#voc img 0 0 128 1,464 1,415 1,464
#car img 29,120 29,120 29,120 29,120 29,120 0

#unlabeled img 0 45,150 0 0 0 0
IoU(cars30k) 0.614 0.650 0.604 0.620 0.619 -

IoU(cars VOC) - - 0.438 0.409 - 0.437

Table 2. Results of our experiments of CSGAN trained with weak supervision w) and strong super-
vision (s). w/s describes the variants of CSGAN that are trained using weak and strong supervision.
Rows one to three give the number of images from the respective datasets that were used for training.

trained with datasets consisting of less than 500 images.
In Figure 3 we show qualitative results. The results of

the color translation look very realistic. The masks esti-
mated by CSGAN are very detailed with good alignment
at the borders of objects. Note, that this is due to the as-
sumption that objects of interest are uniformly colored to
a large extent. This is both an advantage as well as a dis-
advantage of CSGAN. The advantage is that when it can
be used the resulting masks are very accurate. The disad-
vantage is that not all types of real objects exhibit a domi-
nant color. Others, such as tires, only exist in one color. In
those cases, the proposed color translation is not possible.
Many objects can also be divided into parts that a CSGAN
can learn to segment. Examples include but are not limited
to houses (facade, roof tiles) and humans (shirt, trousers,
shoes, skin). Segmentations of individual parts of objects
would also provide richer information than segmentations
of the whole object. Note that, scores achieved on the Pas-
cal VOC2012 segmentation validation set are relatively low
in comparison to other methods on this dataset. We attribute
this to the very low image resolution that we used. In com-
parison, common methods[1, 11] use images scaled to 500
pixels or more on the longer side. CSGAN is learned using
the assumption that images show a single foreground ob-
ject. Thus, by default, it does not learn to segment multiple
objects in images as long as they do not share a common
color, but instead focuses on the largest object. We add an
additional object detection step before segmenting in order
to circumvent this restriction of CSGAN. Figure 4 shows re-
sults on images with multiple instances from the MSCOCO
dataset[10].

5 Conclusion
We proposed Color Shift GAN, a framework that allows

to train a segmentation model without the use of pixel-wise
annotations. CSGAN can be learned with image level tex-
tual color annotations. Thus, we are able to drastically re-
duce labeling efforts in comparison to the efforts needed to
create pixel-wise annotations. Due to the use of the pro-
posed Color Difference Networks we are able to separate

object location from object color. The adversarial setting
allows us to train the generative part of CSGAN without us-
ing any color labels at all. Thus, we are able to increase
dataset size easily at nearly zero cost. The learned segmen-
tations are very detailed especially at the borders of objects.
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