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Abstract

Inspired by the properties of the refinement development of the Mondex Electronic Purse, we view
an atomic action as a family of transitions with a common before-state, and different after-states
corresponding to different possible outcomes when the action is attempted. We view a protocol
for an atomic action as a computation tree, each branch of which achieves in several steps, one of
the outcomes of the atomic action. We show that in this picture, the protocol can be viewed as a
relational refinement of the atomic action in a number of ways. Firstly, it yields a ‘big diagram’
simulation à la ASM. Secondly, it yields a ‘small diagram’ simulation, in which the atomic action is
synchronised with an individual step along each path through the protocol, and all the other steps
of the path simulate skip. We show that provided each path through the protocol contains one step
synchronised with the atomic action, the choice of synchronisation point can be made freely. We
describe the relationship between such synchronisations and forward and backward simulations.
We relate this theory to serialisations of system runs containing multiple transactions, and show
how existing Mondex refinements embody the ideas developed.

Keywords: Atomic Actions, Protocols, Synchronisation, Forward and Backward Simulation,
Refinement, Mondex.

1 Introduction

The Mondex Electronic Purse was developed formally in the mid-1990s using
Z refinement. It was one of the first developments to achieve an ITSEC E6
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security rating [7]. 3 Rather unusually for a commercial product, a sanitised
version of the core of the formal development was made publicly available [26].
Since then it has been a fertile ground for formal methods researchers — the
original, human-built proofs of the security properties have been subjected to
re-examination by contemporary techniques, and have stood up extremely well
to the fiercest tool-based scrutiny achievable today, the first such mechanical
verification being [24].

The Mondex formal development featured a refinement proof from an
atomic abstract model to a multi-step protocol at the concrete level. The
principal component of this refinement proof was a backward simulation from
abstract to concrete. At the time of the original development, the develop-
ment team did try to construct a forward simulation, but were not successful.
For a long time it was believed that a forward simulation refinement was im-
possible. It is by now known that a forward simulation is entirely possible,
and more than one has been constructed [3,22,12].

In this paper we explore the wider question regarding possible kinds of sim-
ulation for the refinement of an atomic action into a multi-step protocol, in
order to settle the matter in the general case. We do this in the simplest pos-
sible relational framework in order to avoid complications that would distract
from the main point.

In Mondex, the original refinement was done in a (1, 1) manner, i.e. single
concrete steps were made to refine single abstract ones. Consequently, since
overall, there are more concrete steps than abstract ones, many concrete steps
had to refine skip. Of course, one advantage of the (1, 1) strategy is that, in
the face of malevolent users or an unpredictable environment, the concrete
protocol can be proved to refine the abstract atomic action, no matter how
such a user might interrupt the intended playing out of the protocol — since
every possible sequence of concrete steps that can be executed, corresponds
to some abstract execution, even if it is one consisting entirely of skips.

In this, the original framework, the backward simulation correlated with
an early synchronisation, i.e. the single non-trivial abstract step was (1, 1)
matched with a step that occurred early in protocol runs. By contrast, the
more recently discovered forward simulations correlate with a late synchronisa-
tion, namely, the various possible non-trivial abstract steps are (1, 1) matched
with steps that occur late in protocol runs.

Given the past uncertainty regarding forward and backward simulations in
such contexts, our aim in this paper is to give a general treatment. In Section

3 Nowadays, national standards like ITSEC have been superseded by the ISO Common
Criteria standard [13]. The highest ITSEC level, E6, corresponds to the highest Common
Criteria level, EAL7.
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2 we outline the operation of our motivating example, the Mondex Purse. In
Section 3 we develop a theory of the refinement of a non-deterministic atomic
action to a multi-step protocol. This explores the way that the single atomic
action can be synchronised with an individual step of the protocol in a (1, 1)
refinement, and we see that there are a large number of possibilities for this
which we call synchronisation assignments (SAs). We see that SAs are related
to the possible choices of forward or backward simulations, according to the
manner in which abstract outcomes are related to the details of the SA. In
Section 4 we relate the preceding theory of an isolated protocol run to the more
global picture needed to embed protocol runs into system runs, and we explore
serialisability and the 2-phase property. In the following Section 5 we apply
the theory developed to the various refinements of Mondex available today.
The final section concludes, and outlines extensions of the work needed to deal
with not only some of the more obscure possibilities that Mondex allows, but
also more general scenarios where the ‘protocol’ mental picture is appealing.

2 Mondex: A Motivating Example

Fundamentally, Mondex is a smartcard purse. Since it is a purse, it contains
real money, and since it is a smartcard, it contains the money in digital form.
This money is designed to be transferable from purse to purse. As for real
money, the intention is that such transfers are normally performed in exchange
for some desired purpose such as the purchase of goods or services, but equally
—just as for real money— it is not the responsibility of the money itself to
ensure that the transfer in which it engages is of a genuine nature. The only
concern of money in general and of Mondex money in particular, is that it
should be unforgeable.

The major objective of the original Mondex development was to develop
a protocol for money transfer that ensured that:

(i) Mondex money was unforgeable, even in the face of incomplete execution
of the protocol or of malicious behaviour of the environment;

(ii) any full or partial run of the protocol is equivalent to either a success-
ful money transfer, or a traceably (and thus recoverably) lost-in-transit
money transfer, or a null action.

These two properties are what make Mondex credible in the face of customer
requirements: the first property, unforgeability, gives confidence in the value
of Mondex money; while the second property, atomicity, gives comprehensibil-
ity when compared with the behaviour of conventional financial transactions.
Fig. 1 shows the atomic abstraction that the Mondex protocol ensures, reflect-
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ing the three possibilities given in (ii) above. In Fig. 1 the nodes are states,
and the arrows are the different atomic actions that the concrete protocol
refines.

•

•

•

•

AbTransferOK

AbTransferLost

AbIgnore

Fig. 1. The Mondex atomic actions.

The essence of the Mondex concrete protocol is illustrated in Fig. 2 in activity
diagram style. The source purse is the From purse while the destination purse
is the To purse. The protocol begins with the two Start events (initiated
from the environment as a result of the purses’ owners typing in appropriate
instructions at the interface device (the wallet) into which the two purses
have been inserted). These are the StartTo event, performed by the To purse,
and StartFrom event, performed by the From purse, both of which take their
respective purse from the idle state to a ‘busy’ state: the epr state (expecting
payment request) for the From purse, and the epv state (expecting payment
value) for the To purse. The StartTo event sends a req message to the From

purse. Upon arrival of the req message, the From purse performs a Req event
and dispatches the money in a val message to the To purse, itself passing into
the epa (expecting payment acknowledgement) state. Upon arrival of the val
message, the To purse performs a Val event and sends an ack message to the
From purse, itself passing back into the idle state. Receipt of the ack message
in the Ack event by the From purse completes the protocol, and the From

purse too passes back into the idle state. Note that in Fig. 2, the nodes are
now events, edges are states, and arrows are messages.

To purse

From purse

StartTo

StartFrom

idle

idle
epr

epv

epa

idle

idleReq Ack

Val

req val ack

Fig. 2. The Mondex concrete protocol.

The preceding described the workings of a successful run of the protocol. Be-
yond that, all events after the Start events can be replaced by Abort events,
corresponding to runs of the protocol that are unsuccessful for whatever rea-
son. The fact that despite Abort events, the protocol still enjoys the unforge-
ability and atomicity properties, is what makes Mondex non-trivial theoreti-
cally. However, the details of how this comes about do not concern us in this
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paper.

A further issue is that the Mondex protocol is isolated, i.e. once the protocol
has commenced, the two purses take note only of the arrival of the next
message expected in the playout of the protocol, and of calls to Abort, ignoring
all other messages or calls from the environment and reserving the option of
responding to such unexpected events by performing a self-initiated Abort
whenever appropriate.

In this paper, rather than being concerned with proving that the atomicity
and isolatedness properties are enjoyed by the protocol, we take properties
such as these for granted, and instead, take an interest in simulation-theoretic
properties —in a general sense, and for their own sake— of the refinement of an
atomic action to a protocol with characteristics such as Mondex’s. The isolated
property makes these simulation-theoretic properties particularly convenient
to study.

3 Isolated Atomic Actions and their Protocols

For both protocols and atomic actions, we will specify the transitions involved
using a relational approach. The following statements summarise the assump-
tions we make about this setup.

Assumptions 3.1

(i) Relations are represented by predicates whose variables take values in suit-
able types.

(ii) Each relation used is deterministic, i.e. for each collection of values for
the domain variables of the predicate representing the relation, there is
a unique collection of values for the codomain variables that makes the
relation true.

(iii) For each relation, for all values of domain and codomain variables that
make the relation true, the domain values are reachable from an initial
state.

(iv) Where nondeterminism (whether at the atomic or the protocol level) is
needed, it is handled by having different relations for different outcomes.
We assume nondeterminism is always finite.

(v) Both protocols and atomic actions are represented by computation trees,
in which each edge of the computation tree graph corresponds to a (pred-
icate representing a) unique relation. All computation trees are assumed
finite.

(vi) For both protocol and atomic action computation trees, the predicate-
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labelled trees are interpreted within structures which are themselves
forests. A choice of initial state for the first step of an atomic or protocol
computation tree, picks out a unique tree of the interpreting forest, called
the valid subtree.

Thus an atomic action will be specified by a finite collection of deterministic
predicates Atk(u, i, o, u′) k = 1 . . ., in which u and u′ are (variables denot-
ing) the before- and after- states of the atomic action, i and o are the input
and output of the action (these may in fact denote sequences (or more com-
plex structures) of input and output values corresponding to the finer grained
events in the protocol, if convenient), and the index k distinguishes the dif-
ferent deterministic outcomes for the same starting conditions. All together,
the complete atomic specification of the protocol becomes:

Atomic(u, i, o, u′) ≡ At1(u, i, o, u′) ∨ At2(u, i, o, u′) ∨ . . . where
(1)

(∀u, i • Atk(u, i, o1, u
′
1) ∧ Atk(u, i, o2, u

′
2) ⇒ o1 = o2 ∧ u′

1 = u′
2) (2)

At the protocol level, the individual steps are described by a collection of
deterministic predicates Stρ(v, j, p, v′) where v and v′ are the before- and after-
states of the step, j and p are the input and output of the step, and ρ is
an identifier which uniquely identifies an edge in the graph of the protocol
computation.

N.B. While the decision to represent atomic actions via shallow trees is a
natural one, the decision to represent even multistep protocols via deeper trees
has consequences that deserve to be spelled out. Protocols can often arrive at
‘essentially the same’ state via different paths, obtained eg. via interchanges
of causally independent steps somewhere in the interior of the protocol. In our
formulation, such ‘essentially the same’ states have to be regarded as different.
So our protocol states can be understood as incorporating the full history of
the protocol up to the given point. (Such history information is not only
convenient here, but is in any case often needed in reasoning about protocols,
since protocol properties frequently depend not only on knowing that the
protocol has arrived at a certain point, but that certain other things must have
necessarily happened prior to that point. Such facts can be trivially extracted
from the full history, so our formulation may be regarded as a multipurpose
canonical description, useful for things other than just the concerns of this
paper. In the next section, we get the opportunity to project out such aspects
of the protocol state as deserve to be regarded as unrealistic.)

Another aspect that should be discussed is I/O. At the atomic level, the
I/O for the single step that takes place must inevitably concern the environ-
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ment, since there is no internal structure to engage in internal communication.
At the protocol level however, I/O can either be between the environment and
the protocol, or be purely internal to the protocol. In the latter case, the only
restriction is that messages must be produced before they can be consumed.
There is of course the option of representing messages in flight within a suit-
able state component —such a state component can model properties of the
communication medium, eg. unreliablity— however we do not need to insist
on this for the theory here.

(Forward) paths through the computation tree are described by compound
predicates:

FPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt, vt) ≡

Stα(vI , j1, p1, v1) ∧ Stβ(v1, j2, p2, v2) ∧ . . . ∧ Stγ(vt−1, jt, pt, vt) (3)

in which vI is a possible initial state of the protocol, α labels a possible first
step of the protocol, β labels a possible successor step of the α step of the
protocol, and so on. As (3) indicates, if a step has a successor, the before-
state of the successor must match the after-state of its predecessor. The length
of the sequence of labels in the subscript of FPath〈α,β,...,γ〉 must match both
the number of inputs and outputs, and be one less than the number of states,
in the argument list.

Maximal paths arise in the obvious way:

MPath〈α,β,...,γ〉(. . .) ≡ FPath〈α,β,...,γ〉(. . .)

∧ (〈α, β, . . . , γ〉 has no proper extension in the computation tree) (4)

From maximal and non-maximal paths, we can implicitly define a predicate
BPath (backward paths) that describes extensions of non-maximal forward
paths:

MPath〈α,β,...,γ,δ,ε...,ζ〉(vI , j1, p1, v1, . . . , jt, pt, vt, jt+1, pt+1, vt+1 . . . , vF ) ≡

FPath〈α,β,...,γ〉(vI , j1, p1, v1, . . . , jt, pt, vt)

∧ BPath〈δ,ε...,ζ〉(vt, jt+1, pt+1, vt+1 . . . , vF ) (5)

In (5), vF is a possible final state of the protocol.

Finally, maximal paths give rise to the predicate Protocol(vI , js, ps, vF ),
where vF is a possible final state of the protocol, 4 given by taking the disjunc-
tion over all maximal paths, existentially quantifying all intermediate states,
and repackaging the inputs and outputs into sequences:

4 Initial and final states of the protocol coincide exactly with the root and leaf states of
the protocol computation tree.
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Protocol(vI , js, ps, vF ) ≡

∨
n

maximal
〈α,β,...,γ〉

o

⎛
⎜⎜⎜⎝

(∃ j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt •

MPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt, vF )

∧ js = 〈j1, j2, . . . , jt〉 ∧ ps = 〈p1, p2, . . . , pt〉)

⎞
⎟⎟⎟⎠

The fact that the protocol implements the atomic action is captured by having
a retrieve relation R(u, v) (which is required to be a function from protocol
states v to atomic states u), and input and output relations Input(i, js) and
Output(o, ps), such that the following ASM-style [6] ‘big-step’ proof obligation
holds:

Protocol(vI , js, ps, vF ) ⇒

(∃ uI , i, o, uF •

R(uI , vI) ∧ Input(i, js) ∧ Atomic(uI , i, o, uF ) ∧ Output(o, ps)∧ R(uF , vF ))

We further require that the ‘big-step’ retrieve relation R(u, v) is ‘not too big,’
i.e. it concerns just the ‘states of interest’ for the overall protocol, i.e. the
initial and terminal states:

R(u, v) ⇒ (∃ js, ps, ṽ • Protocol(v, js, ps, ṽ) ∨ Protocol(ṽ, js, ps, v))
(6)

Conditions (4) and (6) ensure that the hypotheses and conclusions of the
big-step PO are valid exactly when the simulation predicate Σ:

Σ(uI , i, o, uF , vI , js, ps, vF ) ≡

Atomic(uI , i, o, uF ) ∧ Protocol(vI , js, ps, vF )

∧ R(uI , vI) ∧ Input(i, js) ∧ Output(o, ps) ∧ R(uF , vF ) (7)

is true in the given types.

Now that we have connected together the atomic and finegrained descrip-
tions of the protocol, our aim is to develop a general way of seeing how some
individual step of a maximal path may be viewed as refining the atomic ac-
tion, and the consequences of such a view. First we develop some technical
machinery in the shape of past and future oriented retrieve relations. Then we
introduce synchronisation assignments, which delimit exactly how the choices
of individual step within the protocol computation tree may be made. Finally
we explore the consequences of these choices for proving the refinement via
forward and backward simulation.
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From these ingredients we get the ‘past oriented’ retrieve relation RP :

RP (uI , vt) ≡ (∃ vI , j1, p1, v1, . . . , jt, pt, 〈α, β, . . . , γ〉 •

R(uI , vI) ∧ FPath〈α,β,...,γ〉(vI , j1, p1, . . . , jt, pt, vt)) (8)

and the ‘future oriented’ retrieve relation RF :

RF (uF , vt) ≡ (∃ jt+1, pt+1, vt+1 . . . , vF , 〈δ, ε . . . , ζ〉 •

BPath〈δ,ε...,ζ〉(vt, jt+1, pt+1, vt+1 . . . , vF ) ∧ R(uF , vF )) (9)

It is easy to show the following:

Proposition 3.2

RP (uI , vt) ∧ RF (uF , vt) ⇒ (∃ i, o • Atomic(uI , i, o, uF )) (10)

RP (uI , vt) ⇒ (∃ i, o, uF • Atomic(uI , i, o, uF ) ∧ RF (uF , vt)) (11)

RF (uF , vt) ⇒ (∃ uI , i, o • RP (uI , vt) ∧ Atomic(uI , i, o, uF )) (12)

The proofs are similar to the proofs of the more interesting following result:

Theorem 3.3

RP (uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ∧ RF (uF , vt) ⇒ (∃ i, o, jsP , jsF , psP , psF

• Input(i, jsP ::〈jt〉::js
F ) ∧ Atomic(uI , i, o, uF )

∧ Output(o, psP::〈pt〉::ps
F )) (13)

RP (uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ⇒ (∃ i, o, uF , jsP , jsF , psP , psF

• RF (uF , vt) ∧ Input(i, jsP ::〈jt〉::js
F ) ∧ Atomic(uI , i, o, uF )

∧ Output(o, psP::〈pt〉::ps
F )) (14)

Stρ(vt−1, jt, pt, vt) ∧ RF (uF , vt) ⇒ (∃ uI , i, o, js
P , jsF , psP , psF

• RP (uI , vt) ∧ Input(i, jsP ::〈jt〉::js
F ) ∧ Atomic(uI , i, o, uF )

∧ Output(o, psP::〈pt〉::ps
F )) (15)

Proof. For (13), from RP (uI , vt−1) we know that there is a path through
the computation tree from an initial vI to vt−1, satisfying (3), and such
that R(uI , vI) holds. Evidently Stρ(vt−1, jt, pt, vt) extends that path. From
RF (uF , vt) we know that there is a completion of this path to a maximal
path from vI to some final vF . This maximal path enables us to derive
R(uF , vF ), and provides the witnessing jsP , jsF , psP , psF so that with jt, pt

we can assemble js = jsP ::〈jt〉::js
F and ps = psP ::〈pt〉::ps

F , and then assert
Protocol(vI , js, ps, vF ).
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Since we have Protocol(vI , js, ps, vF ), we can apply (4). The conclusions
of (4) yield R(ũ, vI) for some ũ; and since R is functional, we must have
uI = ũ. The conclusions of (4) also yield Atomic(uI , i, o, ũ

′) and R(ũ′, vF )
for some ũ′. Again, since R is functional, we must have uF = ũ′. From
Protocol(vI , js, ps, vF ) we can also deduce Input(i, js) and Output(o, ps).

For (14), the argument is similar except that we do not have to use the
functional nature of R to argue uF = ũ′, since uF is existentially quantified in
the conclusion.

For (15), we note first that by Assumptions 3.1.(iii), vt is reachable from
some initial vI . We use this to assert a uI such that RP (uI , vt) holds, after
which we argue as for case (13). We are done. �

Proposition 3.3 is a crucial observation, since it enables an arbitrary protocol
step Stρ(vt−1, jt, pt, vt) to be singled out and made to correspond with a suit-
able abstract one Atomic(uI , i, o, uF ). For such a Stρ(vt−1, jt, pt, vt) step, let
Outcomes(Stρ, uI) (with vt−1, jt, pt, vt understood) be given by:

Outcomes(Stρ, uI) =

{uF | (∃ vF • RP (uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ∧ RF (uF , vt))} (16)

and OD(Stρ, uI) (outcome determinism of Stρ, given uI) be given by:

OD(Stρ, uI) = | Outcomes(Stρ, uI) | (17)

If OD(Stρ, uI) = 1 we say that Stρ is outcome deterministic at uI (Stρ is OD at
uI), whereas if OD(Stρ, uI) > 1 we say that Stρ is outcome nondeterministic
at uI (Stρ is ON at uI).

Definition 3.4 Given an initial vI , a synchronisation assignment (SA(vI))
for the relevant valid subtree of a protocol computation tree is a subset of
its steps, such that for each maximal path through the valid subtree from vI ,
exactly one of its steps is in SA(vI). Steps in SA(vI) are called SA steps.

Fig. 3 shows a synchronisation assignment. The many-level computation tree
at the bottom has thickened arrows which are the elements of the SA. The
atomic action is at the top and plays no specific part in the SA itself. Dashed
arrows show the functional big-step retrieve relation R, while the dotted lines
show some pieces from the RP and RF relations, for convenience below.

Definition 3.5 Given a protocol computation tree, an intial state vI for the
protocol, the atomic intial state uI such that R(uI , vI) holds, and a synchro-
nisation assignment for the valid subtree determined by vI , the steps of the
valid subtree are classified as follows:

R. Banach, G. Schellhorn / Electronic Notes in Theoretical Computer Science 201 (2008) 3–3012
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•

•
•

•

• •
•

• •
•
•

•

…

R
R

RRP F

Fig. 3. A synchronisation assignment for a computation tree. The elements of the synchronisation
assignment are shown bold.

(i) If a step is in the SA and is OD at uI , it is said to be an outcome
deterministic forward synchronisation (ODFS) step.

(ii) If a step is in the SA and is ON at uI , it is said to be an outcome
nondeterministic forward synchronisation (ONFS) step.

(iii) If a step is an immediate or later successor of an ONFS step, it is a
backward skip (BS) step.

(iv) Every step not covered by (i)-(iii) is a forward skip (FS) step.

This definition shows that every path through the protocol computation tree
can be described by the following regular expression:

FS∗ ; ( ODFS ; FS ∗ + ONFS ; BS∗ ) (18)

Our aim is to show that when given a big-diagram refinement of an atomic
action to a protocol of the kind we have described, if we wish to break the
big-diagram refinement down into a collection of small-diagram refinements
of zero or one atomic action steps to individual steps of the protocol, one can
always use forward simulation reasoning, except for the BS steps. In fact one
can use forward simulation reasoning for all steps except branching BS steps
(a term explained below), though it comes at a price. Likewise, we have the
option of using backward simulation reasoning for all steps if we so wish. We
discuss these points later.

Definition 3.6 Assume given an abstract operation AOp(u, i, o, u′), a con-
crete COp(v, j, p, v′), and retrieve, input and output relations, R1(u, v),
In1(i, j) and Out1(o, p). Then AOp forward simulates COp iff:

R1(u, v) ∧ COp(v, j, p, v′)

⇒ (∃ i, o, u′ • In1(i, j) ∧ AOp(u, i, o, u′) ∧ Out1(o, p) ∧ R1(u′, v′))
(19)
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And AOp backward simulates COp iff:

COp(v, j, p, v′) ∧ R1(u′, v′)

⇒ (∃ u, i, o • R1(u, v) ∧ In1(i, j) ∧ AOp(u, i, o, u′) ∧ Out1(o, p))
(20)

In both cases, In1(i, j) and/or Out1(o, p) can be omitted where there is no
input and/or output from AOp and/or COp, as applicable.

Theorem 3.7 Let there be a big-step refinement of an atomic action Atomic

to a protocol Protocol, given by a retrieve relation R and input and output
relations Input and Output, so that (4) holds. Let vI be a fixed initial state
such that R(uI , vI) holds, and let SA(vI) be a synchronisation assignment for
the valid subtree rooted at vI . Then the refinement of Atomic to Protocol can
be decomposed into single step simulations such that:

(i) If an FS step occurs before an SA step, it is forward simulated by the
identity operation on uI .

(ii) If an FS step occurs after an SA step, it is forward simulated by the
identity operation on uF , where uF is some outcome of Atomic.

(iii) If Stρ is an SA step, it is forward simulated by Atomic(uI , i, o, uF ) for
every uF in Outcomes(Stρ, uI).

(iv) Every BS step is backward simulated by the identity operation on some
uF .

Proof. We start by defining R1, which is:

R1(u, v)≡ (∃ a maximal path from some initial ṽI , and

((v precedes an SA step along this path, and RP (u, v) holds), ∨

(v follows an SA step along this path, and RF (u, v) holds)))

Also we must define the single step input and output relations In1 and Out1;
these however are only needed for the SA steps themselves.

In1(i, j) ≡ (∃ an SA step Stρ(vt−1, j, pt, vt), js
B, jsF •

Input(i, jsP ::〈j〉::jsF )) (21)

Out1(o, p) ≡ (∃ an SA step Stρ(vt−1, jt, p, vt), ps
B, psF •

Output(o, psP::〈p〉::psF )) (22)

Proving the simulation claims in (i)-(iv) is now rather simple. For (i), (ii) and
(iv), since either RP or RF (with the same atomic state) holds for both the
before and after states of the FS or BS step, and noting that there is no I/O
for these steps, the simulation condition (19) or (20) is readily seen to hold.
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For (iii), let Stρ(vt−1, jt, pt, vt) be an SA step. We know that RP (uI , vt−1)
holds for uI , vt−1, hence R1(uI , vt−1) is true, giving the hypotheses of (19).
So we must show that the conclusions of (19) hold. For any uF in
Outcomes(Stρ, uI), we know that Atomic(uI , i, o, uF ) holds. Also we know
that RF (uF , vt) holds, so R1(uF , vt) holds. Since Stρ(vt−1, jt, pt, vt) occurs on
a maximal path from vI to vF , the totality of inputs along the path, both
jsP before jt, and jsF after jt, will witness that Input(i, jsP ::〈jt〉::js

F ) holds,
giving In1(i, jt) as required. The reasoning for outputs is similar. So we have
all the conclusions of (19), thus completing the proof. �

Since at both abstract and protocol levels, the transpose of the step relation
is a partial function, backward simulation is always aligned with a decrease of
nondeterminism in both abstract and protocol transition functions. Therefore
we get the following (cf. [17]).

Corollary 3.8 Under the assumptions of Theorem 3.7, one can always use
single step backward simulations throughout.

We also have the following.

Corollary 3.9 Under the assumptions of Theorem 3.7, suppose there are no
BS steps (i.e. all SA steps are OD). Then single step forward simulations can
be used throughout.

Obviously, choosing the SA as the last step of each maximal path through the
protocol satisfies the hypotheses of Corollary 3.9.

Corollary 3.10 Let vF be a final state accessible from vI such that (4) holds
for this choice of vI , vF (and suitable other quantities). Let Stρ(vt−1, jt, pt, vt)
be the SA(vI) step along the (unique) path from vI to vF , MPath(vI , . . . , vF ).
Then the simulation of MPath(vI , . . . , vF ) by Atomic(uI , i, o, uF ) can be de-
composed as follows:

(i) If Stρ(vt−1, jt, pt, vt) is an ODFS step, the whole of the simulation of
MPath(vI , . . . , vF ) may be established by inductively forward simulating
each step of MPath(vI , . . . , vF ) from vI , such that:
(a) predecessors of Stρ(vt−1, jt, pt, vt) are forward simulated by the iden-

tity operation on uI ,
(b) Stρ(vt−1, jt, pt, vt) is forward simulated by Atomic(uI , i, o, uF ) where

uF is the unique element of Outcomes(Stρ, uI),
(c) successors of Stρ(vt−1, jt, pt, vt) are forward simulated by the identity

operation on uF .

(ii) If Stρ(vt−1, jt, pt, vt) is an ONFS step, the simulation of
MPath(vI , . . . , vF )) may be established by inductively forward sim-
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ulating the steps of FPath(vI , . . . , vt) from vI up to and including
Stρ(vt−1, jt, pt, vt), and inductively backward simulating the steps of
BPath(vt, . . . , vF ) from vF up to vt, such that:
(a) predecessors of Stρ(vt−1, jt, pt, vt) are forward simulated by the iden-

tity operation on uI ,
(b) Stρ(vt−1, jt, pt, vt) is forward simulated by Atomic(uI , i, o, uF ), for

each uF in Outcomes(Stρ, uI), establishing RF (uF , vt),
(c) successors of Stρ(vt−1, jt, pt, vt) are backward simulated from vF by

the identity operation on uF , establishing RF (uF , vt).

Why is the above theorem useful? We can give a couple of reasons.

Firstly, it is illuminative. One can be convinced of the correctness of a
protocol with respect to an atomic action, without having the details of a
refinement already worked out. In such a situation, it may not be clear how
to synchronise the atomic action with the lower level description. Theorem
3.7 shows that one can choose this synchronisation relatively freely, within the
parameters of allowable synchronisation assignments.

Secondly, once having chosen a synchronisation, it is much easier to write
down the ‘big-step’ retrieve relation and associated input and output relations,
than to discover the more finegrained single step ones. Theorem 3.7 shows
that with the big-step retrieve relation fixed, the single step ones, RP and
RF may simply be calculated. Their generic form needs to be instantiated
with the details of the protocol and big-step retrieve relation, and then one
must eliminate as many existential quantifiers as possible in order to arrive
at a closed form. Making clear that there is such a strategy to follow is a
considerable improvement over the hit-and-miss approach one would otherwise
need, especially when combined with uncertainty regarding synchronisation.

The theorem also provokes the following considerations.

One can replace some backward simulation by forward simulation. Given a
synchronisation assignment, a branching BS step is a BS step Stθ(vs, . . . , v

′
s,1)

for which there is another BS step Stφ(vs, . . . , v
′
s,2) (with v′

s,1 �= v′
s,2) such that

the abstract outcomes uF,1, uF,2 corresponding to the completions of the paths
from v′

s,1 and v′
s,2 are different, uF,1 �= uF,2.

5 In such a case, one cannot make
a forward simulation inference succeed.

To see this, suppose the first hypothesis of (19) is made true by R1(uF,1, vs),
and the second hypothesis is made true by Stφ(vs, . . . , v

′
s,2). Then the first

hypothesis demands that uF be chosen to be uF,1, while the second hypothesis
demands that uF be chosen to be uF,2, a contradiction. This is the standard

5 Since we speak of a BS step, there must be such uF,1 �= uF,2, as the nondeterminism in
Atomic(uI , i, o, uF ) has been resolved earlier than at this BS step.
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backward simulation counterexample.

In Fig. 3, the SA element along the upper thread of the computation tree
is an ONFS step, since it can reach two concrete final states that retrieve
to two different abstract outcomes. Accordingly, the two BS steps immedi-
ately following it (and the two following the topmost of them along the upper
thread) are branching BS steps, since they too can individually reach different
concrete final states that retrieve to the two different abstract outcomes. With
the dotted lines depicting RF , it is easy to see that these steps illustrate what
we have just discussed.

However, if a BS step is not branching, i.e. there is only one protocol
successor state v′

s to vs, then the preceding problem cannot arise since the
unique successor cannot force a distinction between the choices for uF . So for
nonbranching BS steps, a forward simulation inference will succeed. However,
it comes at a price. If a forward simulating BS step immediately follows a
backward simulating BS step, the R1(uF , v) value at the v state that they
share, occurs as a hypothesis in both the backward PO (20) and the forward
PO (19). It thus remains as an unproved assumption in the overall single-step
verification of the big-step refinement. As such it allows the verification to
succeed vacuously. For this reason we phrased Theorem 3.7.(ii) as two induc-
tive processes that meet in the middle, since it is much better to verify some
R1(uF , v) twice independently, than to leave some other R1(uF , v) unproved,
thus undermining the whole verification.

Lastly, Theorem 3.7 offers a different strategy for addressing global cor-
rectness (see the next section). Normally, to prove a protocol such as the
one we have been considering globally correct, one chooses either forward or
backward simulation, establishes that each protocol step refines some atomic
option or skip, and this then extends to an inductive proof for global execu-
tions as a whole. With Theorem 3.7, we can envisage a different approach.
We first study the ‘big-step’ refinement of atomic action to protocol, deter-
mining the protocol computation tree and the big-step retrieve relation. Next
we choose a suitable synchronisation assignment. Next we determine which
combination of forward and backward simulations are appropriate for the syn-
chronisation assignment. Next we calculate the necessary single step retrieve
relation, breaking down the big-step refinement into single step refinements.
Finally, we determine how runs of the protocol can interleave to make global
executions. This alternative approach separates concerns, and in cases where
a complex protocol is concerned, may offer some advantages. In any event,
the mere awareness of the possibility of such an approach may make the more
monlithic standard approach more tractable, since it can show that certain
subgoals of the standard approach are achievable in advance. It is to such
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matters that we now turn.

4 Interleaving Individual Protocol Runs

Thus far, although using language such as ‘protocol,’ in reality we have only
discussed some properties of computation trees. In genuine protocols, various
agents interact by performing events and sending/receiving messages etc. We
must connect our theory to this world.

The basic idea is that the previous section should be understood as de-
scribing (the various possibilities for) a single isolated protocol run, performed
by however many agents would be appropriate in practice, with the protocol
state recording the full history of the protocol so far (regardless of whether such
knowledge is obtainable in principle by the individual agents), and ignoring
the rest of the universe. The latter not only regarding other agents/activities
in the rest of the universe, but also regarding what the agents of the single pro-
tocol run might do both before and after the run itself. So the previous section
described an idealised pattern or template for what collections of agents might
do over some period of time towards the achievement of some goal described
in principle by the atomic action that the protocol implements.

Patterns or templates are normally made to correspond with what happens
in the real world by some process of matching, and that is the basis of our
approach too. Since we have remarked that our protocol states can include
unrealistically detailed history information, our matching process must include
a projection mechanism to allow the unrealistic parts to be forgotten. In such
a scenario, protocol states that were previously distinct can be matched to
the same system state, destroying the previously assumed tree property of the
valid subtrees that interpret the protocol. But this is OK. At the system level,
we do not need the backward reachability properties that trees guarantee.

Definition 4.1 A system consists of a number of agents, Aa, Ab, . . . each with
its agent state subspace Wa, Wb, . . .. The system state space is W = Wa ×
Wb×. . .. So agent Aa’s instantaneous state is some wa ∈ Wa, and the system’s
instantaneous state is w ≡ (wa, wb, . . .).

Each agent is a transition system, i.e. the agent can move between different
elements of its state space in discrete steps, leaving the state of every other
agent unaffected. The enabledness of any agent’s transitions is independent of
the state of any other agent. Each step can also consume input and produce
output, and the I/O policy described in the previous section applies again: i.e.
I/O may either be with the environment, or it may be internal to the system
and any internal message that is consumed must earlier have been produced.

The transitions are described by a predicate SyA similar to St in the pre-
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vious section, where the subscript ‘A’ refers to the agent performing the step.
The transitions of the system as a whole are the interleaved agent transitions
of the system’s agents.

Definition 4.2 Let S be a system with agents Aa, Ab, . . .. The sequence
T ≡ 〈wI , (k1, A1, q1), w1, (k2, A2, q2), w2, . . .〉 is a run of the system iff:

(i) wI is an initial state of the system,

(ii) A1 is the agent that performs the first step,

(iii) k1 is the input consumed by A1 during the first step,

(iv) q1 is the output produced by A1 during the first step,

(v) w1 is the result state of the first step,

(vi) the change of state wI → w1 involves change to the state space W1 of A1

only; the state spaces of agents other than A1 remain unchanged,

(vii) . . . and analogously for subsequent system transitions.

Definition 4.3 Let Protocol be a protocol in the sense of the previous sec-
tion. An agent decomposition for the protocol is a decomposition of the proto-
col state space V into a cartesian product of agent subspaces V = V1×V2×. . .,
such that each step of the protocol modifies at most one component in the
product, leaving the other components unaltered.

The decomposition into agent subspaces just described, represents the fact
that an instantiation of a protocol is normally executed by a number of agents
inside a real system. However a real agent in a real system can play many
roles during the running of the system, including acting out different roles
in different instances of the same protocol at different times. So we need to
distinguish the various agent roles in a protocol definition from the different
instantiations of these during system runs. The next definition introduces the
technical machinery for this.

Definition 4.4 Let Atomic, P rotocol, . . . (with all the attendant ma-
chinery) be a protocol implementing an atomic action in the sense
of the previous section. We say that system run T instanti-
ates Protocol iff there is a maximal path through the protocol
MPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vF−1, jF , pF , vF ) and there are two
maps: τA and τS such that:

(i) the signature of τA is τA : V → W , and τA decomposes into a carte-
sian product of disjoint maps τA,l : Vl → Wal

from each of the agent
components of V to distinct agent subspaces of W ,

(ii) τS is an injective map from the steps of the maximal path MPath〈α,β,...,γ〉
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to steps of T ,

(iii) τS is order preserving, i.e. if Stβ precedes Stγ in MPath〈α,β,...,γ〉, then
τS(Stβ) precedes τS(Stγ) in T ,

(iv) for each protocol step Stβ(vt−1, jt, pt, vt) in the domain of τS, if Vl is the
agent component of V modified during the step, then τA,l(Vl) is the agent
subspace modified during the step τS(Stβ(vt−1, jt, pt, vt)),

(v) for each protocol step Stβ(vt−1, jt, pt, vt) in the domain of τS , if
τS(Stβ(vt−1, jt, pt, vt)) = SyAl

(ws−1, ks, qs, ws), then τA,l(vt−1) = ws−1,
jt = ks, pt = qs, τA,l(vt) = ws.

(vi) if protocol step Stβ modifies Vl and protocol step Stγ is the next protocol
step along MPath〈α,β,...,γ〉 that modifies Vl, then no step of T between
τS(Stβ) and τS(Stγ) modifies τA(Vl).

When we want to emphasise the details, we say that system run T instan-
tiates Protocol via τ ≡ (τA, τS) at step τS(Stα(vI , j1, p1, v1)) of T , where
Stα(vI , j1, p1, v1) is the initial step in MPath〈α,β,...,γ〉.

•
•

•
•

• •
•

•
•

•

• •
•

• •
•
•

•
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M

Fig. 4. An atomic action, a protocol which implements it, and a system run containing an instance
of a maximal path through the protocol. The steps of the instance are shown bold.

In Fig. 4 we show how a particular maximal path, M say, through the protocol
illustrated in Fig. 3, might be mapped, via an instatiation function τ , to a
selection of steps in a system run. The system state in the run is now ‘real
world’ state, eschewing the maximal knowledge that the idealised protocol
formulation allows. In between the steps of τ(M), other protocols are being
instatiated by other agents, though without interfering with the state of τ(M),
by Definition 4.4.(iv).

Definition 4.5 Let MPath〈α,β,...,γ〉 be a maximal path in Protocol. Step

R. Banach, G. Schellhorn / Electronic Notes in Theoretical Computer Science 201 (2008) 3–3020



Stβ(vt−1, jt, pt, vt) of MPath〈α,β,...,γ〉 is a first use of agent subspace Vl iff:
it modifies Vl, and no earlier step of MPath〈α,β,...,γ〉 modifies Vl. Similarly
Stβ(vt−1, jt, pt, vt) is a last use of Vl iff: it modifies Vl, and no later step
of MPath〈α,β,...,γ〉 modifies Vl. We say that Protocol is 2-phase (2P) along
MPath〈α,β,...,γ〉 iff all first uses of all agent subspaces of Protocol precede any
last use of any agent subspace of Protocol along MPath〈α,β,...,γ〉.

Definition 4.6 Let SyA(ws−1, ks, qs, ws) and SyB(ws, ks+1, qs+1, ws+1) be two
successive steps of a run T of the system. We say that SyA(. . .) and
SyB(. . .) can be commuted iff there is a state w̃s such that SyA(w̃s, ks, qs, ws+1)
and SyB(ws−1, ks+1, qs+1, w̃s) are valid steps of the system, and the
pair SyA(ws−1, ks, qs, ws); SyB(ws, ks+1, qs+1, ws+1) can be replaced in T by
SyB(ws−1, ks+1, qs+1, w̃s); SyA(w̃s, ks, qs, ws+1), yielding T ′, where T ′ is a valid
run.

Lemma 4.7 If SyA(. . .) and SyB(. . .) as in Definition 4.6, are two successive
steps performed by two different agents, then, provided both inputs are available
in state ws−1, SyA(. . .) and SyB(. . .) can be commuted.

Proof. Since SyA(. . .) and SyB(. . .) are performed by different agents, the
two agent subspaces modified by these steps are disjoint, so the changes of
state can be swapped, easily yielding the state w̃s required by Definition 4.6.
If both inputs are available in state ws−1, then the SyB(. . .) is enabled in state
ws−1 and can be performed first. Since the input to SyA(. . .) is not removed
by doing SyB(. . .), SyA(. . .) can follow SyB(. . .). That this generates a valid
run is now straightforward. �

Since our formulation of a protocol does not consider the protocol’s context,
the only way that a protocol, as formulated in Section 3, can interact with the
rest of the universe is via I/O with the environment. In the system context,
this leads to a distinction within the internal system messages, between mes-
sages that are produced and consumed by the same protocol instance (which
should thus correspond to internal communications of the protocol itself),
and those which are produced and consumed by different protocol instances
(which should thus correspond to communications with the environment in
the protocol model). (System level communications with the environment
must of course also correspond with protocol communications with the en-
vironment.) Since inter-protocol communications must comply with normal
causality considerations, these communications must fit well with the 2-phase
property for protocol state components. The next definition introduces the
needed technicalities.

Definition 4.8 Suppose given a maximal path MPath〈α,β,...,γ〉 of a protocol,
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which is 2P. An external dependency definition (XDD) for them is, a pair
of sets (IDS, ODS) of (not necessarily disjoint) steps. IDS is the input
dependency set, and ODS is the output dependency set. A protocol is XDD-
normal iff:

(i) all IDS steps occur no later than any ODS step along MPath〈α,β,...,γ〉,

(ii) the producer of every input of every protocol step other than an IDS

step is some other step of the same protocol,

(iii) the consumer of every output of every protocol step other than an ODS

step is some other step of the same protocol,

(iv) each IDS step occurs no later than any last use of the state,

(v) each ODS step occurs no earlier than any first use of the state.

Definition 4.9 An instantiation of a 2P XDD-normal protocol is called a
transaction.

Theorem 4.10 Let T0 be a run of a system which consists entirely of the
steps of transactions of a family of protocols. 6 Then there is a serialisation
T∞ of T0, generated by commuting adjacent steps, in which each instantiation
occurs as a contiguous series of steps.

Proof. Consider the directed graph Dep0 whose nodes are the transactions
of T0, and whose edges are given by: τ1 → τ2 iff:

(i) an output of an ODS step of τ1 is an input of an IDS step of τ2,

(ii) an agent subspace Vl is used by both τ1 and τ2, but τ1’s modifications of
Vl occur earlier in T0 than τ2’s.

Claim 4.10.1 Dep0 is acyclic.

Proof of Claim. Let V be the state space of a transaction τ . Since the last first
use of V precedes the first last use of V in τ , and all all IDS steps precede
all ODS steps in τ , by Definition 4.8.(iv)-(v), we can deduce that there is a
step in τ (which we will call the pivot), that precedes neither the last first use
of V nor any IDS step, and simultaneously follows neither the first last use
of V nor any ODS step (there are four cases). We identify each transaction
in T0 with (some choice for) its pivot. Since steps are interleaved, there is a
total order on the transactions, inherited from that on their pivots.

We show that Dep0 can be interpreted in the set of pivots, and that each
edge in the interpretation is oriented towards the future, yielding the acyclic-

6 So there is a set of maximal paths through a set of 2P XDD-normal protocols, and a
set of instantiations of them in T0, and the set of steps of T0 is the disjoint union of these
instantiations
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ity of Dep0 immediately. For a Dep0 edge of type (i), note that it is oriented
towards the future by straightforwards causality. So pretending that the req-
uisite message was sent during the producing transaction’s pivot step, and
pretending that it arrived during the consuming transaction’s pivot step can
increase its time of flight, but not change its orientation towards the future.
For a Dep0 edge of type (ii), since the pivot steps are contained within the
uses of transactions’ state, and these are oriented towards the future by (ii),
the orientation is preserved in the interpretation. We have our claim. � �

We serialise T0 stage by stage. At each stage there are serialised and un-
serialised transactions. We call the boundary between the serialised and un-
serialised transactions the horizon. So at the beginning there are no serialised
transactions, and the horizon lies just before the first step of T0. At the n’th
stage, which starts with Tn, whose unserialised transactions comprise Depn

(a subgraph of Dep0), we choose an unserialised transaction which is a root
of Depn, and we serialise it, whereupon its steps —in contiguous sequence—
are both appended to the serialised part, and removed from the unserialised
part of the partly serialised run, moving the horizon to just beyond the newly
serialised steps, and yielding Tn+1 and Depn+1. If T0 is infinite, then the se-
rialisation process continues forever, and every finite prefix of T0 has all its
steps eventually included in the serialised part. If T0 is finite, the process stops
when the last transaction of T0 has been serialised.

Stage n: A root transaction τn of Depn is chosen. By assumption, all
transactions on which τn is dependent, whether through the state space, or
via τn’s IDS messages, have been serialised, i.e. their steps lie beyond the
horizon. So any step of Tn that lies between the horizon and τn’s first step
neither uses any state used by τn’s first step, nor produces a message consumed
by τn’s first step. So there is no obstacle to commuting the first step of τn

towards the past until it it arrives immediately after the horizon. Similarly
the dependencies for the second step lie either beyond the horizon, or arise
from the first step, so the second step of τn can be commuted towards the
past until it arrives immediately after the first. The process continues until
the last step of τn has been commuted until it arrives immediately after its
predecessor. This yields Tn+1. Transaction τn is removed from Depn, yielding
Depn+1, and the horizon is moved to just after τn’s last step. End Stage n. �

The preceding amounts to a sketch of a relatively standard 2-phase serialisa-
tion proof process [4,10,5,28]. And once the run has been serialised, it is clear
that each transaction of the serialised run is a refinement of its corresponding
atomic action via a retrieve function that forgets the part of the system state
not relevant to the transaction.
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5 Mondex and its Refinements

In this section we reflect on the Mondex protocol, and the extent to which
its refinement possibilities correspond to the preceding theory. There are a
number of points to be borne in mind.

First of all, our theory has been couched in terms of single transitions
(which is less cluttered), whereas Mondex is couched in terms of Z operations
[25,8,14]. Thus when we say below that such and such an operation is syn-
chronised with such and such an atomic action, we are refering in bulk to all
the transitions of the operation being suitably synchronised with appropriate
instatiations of the atomic action.

Secondly, we will restrict our attention to runs of the protocol which com-
mence with the two Start operations, StartFrom and StartTo, in either order,
(returning to other possibilities at the end of this section). Refering to Fig. 2,
this means that after the two Start operations, the protocol, which is hence-
forth serial (as is obvious from the causal dependencies of the req, val and ack
messages), executes some prefix of the Req-Val -Ack sequence of operations. If
it does not complete that sequence, each purse that still has elements of the
Req-Val -Ack sequence left to do, performs an Abort operation (replacing the
first such unperformed Req-Val -Ack operation left on that purse’s agenda),
completing the protocol abnormally. Note however that unlike the Req-Val -
Ack operations which are causally constrained by the req, val, ack messages,
Abort operations are not causally constrained and can occur at any time. Ev-
ery variation in the order of performing the protocol’s operations when Abort
events are involved, causes a branching of the computation tree structure, and
leads overall, to quite a complex protocol computation tree.

5.1 The Original Mondex Refinement [26]

In [26], the refinement is constructed to synchronise with the atomic descrip-
tion as early as possible, given the assumptions above. Thus the atomic action
is synchronised with the Req operation, which refines both AbTransferOK and
AbTransferLost. Since the protocol still has plenty of opportunity to fail af-
ter the Req operation, the Req operation itself does not fix the outcome, so
the refinement, achieved on the basis of a global inductive proof, has to be
a backward one. We can visualise to some extent the substructure of Fig. 3
that forces a backward simulation (refered to at the end of Section 3), from
Fig. 2, if we add an edge from Req to an Abort, as an alternative to the mes-
sage towards Val, since the two abstract outcomes are already available at
the end of the Req operation. Furthermore, since for a failing transaction the
protocol has already angelically chosen to refine AbTransferLost, the Abort
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operation(s) which actually signal the failure at the protocol level all refine
AbIgnore (which is Mondex-speak for an abstract skip).

5.2 The Refinement of Banach et al. [3]

In [3], amongst other things, a synchronisation with the atomic description
that occured late was sought, in order to try to get a forward simulation. 7 The
natural operation to refine AbTransferOK to is Val, since that is the moment
that the money safely arrives at the recipient. However, if the refinement of
AbTransferOK is ‘obvious,’ then the refinement of AbTransferLost is less so.
The subtlety lies within the Abort operation. The deeper structure of the
Mondex protocol implies that if only one Abort occurs in a transaction, it is
harmless, and such an Abort can refine AbIgnore. Only if two Abort operations
occur for a transaction, each while its respective purse is in a critical state,
has the transaction failed non-trivially, whereupon the transaction needs to
refine AbTransferLost. This leads to the decomposition of the Abort operation
into cases, depending on the precise role of the operation in the transaction.
In the formalism of this paper, the Abort operation of Mondex corresponds to
a collection of events which occur at different places in the computation tree
of the protocol, and are thus distinguishable.

The case analysis is interesting. The distinction between benign and non-
benign instances of Abort is made on the basis of a purse’s local state (specif-
ically, on whether the purse is in state epv or epa (non-benign), or in some
other state (benign)). However, since two Aborts make one AbTransferLost,
we can only refine AbTransferLost to one of the pair — and it has to be the
second of the pair, since if only one Abort in a critical state happens, then it
turns out to be benign nonetheless. In [3] non-local state information is used
to distinguish the first non-benign Abort from the second, and the first is then
made to refine AbIgnore while the second refines AbTransferLost.

5.3 The Refinement of Schellhorn et al. [22]

[22] is the second mechanized verification of Mondex using the the KIV the-
orem prover [19]. While the first [24] used the original backward simulation
and data refinement, the second uses abstract state machines (ASMs, [11], [6])
together with ASM refinement and generalized forward simulations ([20]).

The refinement, like [3], synchronizes successful transfers by having Val

7 Looking forward to some extent to the specific results of this paper —which show that
the essentials of a protocol can be understood by discussing the protagonists in isolation—
the discussion in [3] was restricted to a world of just two purses, a single From purse and a
single To purse.
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implement AbTransferOK. But it chooses to synchronize failed transfers at
the earliest point possible. This gives two cases for the Req operation, which
is the point where the From purse sends money. In the first, the To purse
is still ready to receive the money, in which case Req implements AbIgnore.
But if the To purse has already aborted then the second case applies, and Req
implements AbTransferLost. 8 Instead of having two cases (as in [3]) in which
the Abort operation implements AbTransferLost, the design of [22] leaves only
one: the case where the To purse aborts in epv after money has been sent.

The different choices for the synchronisation points was one motivation
for us to study the general possibilities here. Another one was to provide a
general formalization of using past and future simulation relations (RP and
RF ). Instances of such relations with a schematic encoding into Dynamic
Logic are not only used in the case study [22] but also in earlier work. Future
simulation relations occur in the correctness proof of ASM refinement [20].
Past simulation relations are used in coupled refinement [9] as noted in [21].

5.4 The Refinements of Haxthausen, George et al. [12]

The two refinements of [12] use the RAISE specification language [27]. They
are another mechanized verification of Mondex using the theorem prover PVS
[18]. This case study is slightly out of scope of our theory, since it does
not start with atomic actions, but with a two step protocol: the first step
(called TransferLeft) is a send operation, which nondeterministically chooses
between a success and failure, and we call the two cases SendOK and SendFail.
After SendOK, there are again two possibilities: receiving may succeed or fail.
For symmetry, we call these operations ReceiveOK and ReceiveFail, [12] calls
them TransferRight and Abort. Already, the splitting of transactions at the
abstract level into send and receive, allows us to keep the balances of abstract
and concrete level in perfect synchrony, as is required by RAISE refinement.
The two refinements implement TransferLeft with Req and ReceiveOK with
Val.

To compare the synchronisation points with our proofs, we have to add
an additional refinement of the original abstract Mondex level to the abstract
RAISE level. The refinement would have to implement AbTransferOK by
the sequence SendOK ;ReceiveOK. AbTransferLost would be implemented by
both SendFail and SendOK ;ReceiveFail. Because SendOK is ON, a forward
simulation proof would have to synchronize with the last operation of every
sequence. Composing the resulting simulation relation with the existing re-

8 This differs from [3], where the Abort of the From purse that is bound to happen in this
situation implements AbTransferLost.
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finements, we find that the synchronization is the one used in [22].

5.5 The refinements of Butler and Yadav

These refinements develop a Mondex-like money transfer protocol using the
B4free tool [2]. They will be published as a contribution to [15]. In accordance
to the Event-B [1] methodology, the protocol is developed in many small, but
easily mechanically provable refinement steps, the simulations being forward
simulations. The strategy decomposes the abstract events to facilitate separate
refinement of distinct pieces to distinct protocol level operations. Aside from
that, it is similar to that of [3] in that failing transfers are refined by Aborts.

Note that with the exception of the original (backward) one, the preceding
refinements are all forward simulations when viewed at the individual proto-
col instance level (cf. Corollary 3.9). As such, and particularly when they are
based on (1, 1) refinements, they all readily extend to forward simulation re-
finements of full system runs — just as the original (1, 1) backward simulation
readily extended to a backward simulation refinement for full system runs.

5.6 Other Possibilities

Our general theory shows that even more possibilities than have been discussed
above are actually possible. For example, the refinement of [3] could have
chosen to refine AbTransferOK to Ack instead of Val, since Val occurs as
the last operation of a successful transaction. However, since in general there
is a possibility that a transaction succeeds but that the ack message is lost,
causing the Ack operation to be replaced by an Abort (which as it turns out
is harmless), we infer that in such a refinement there would be a case in which
AbTransferOK would have to be refined by Abort !

An alternative to the preceding is to synchronise right at the beginning,
with the first (or second) Start event — and there are plenty of hybrid cases,
combining aspects from several of the described or suggested refinements aris-
ing from the rich structure of the protocol computation tree. We leave the
curious reader to work out such scenarios for him- or her- self.

5.7 The Non-2-Phase Fragments

In discussing the preceding refinements, we have always assumed that the two
Start operations are performed first. But it could happen that one purse Starts
and immediately afterwards Aborts, before the second purse has Started. This
spoils the 2P property since the first purse has relinquished its use of its local
state before the second purse has claimed its first use. In such a case, either
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purse may engage in other transactions, changing the local state, after the
first purse’s Abort and before the second purse’s Start.

A remaining possibility is that only one purse Starts, and the other purse
merely Aborts, or does nothing. In such a case, even if the other purse’s Abort
happens after the (inevitable) Abort of the first purse, it is arguable that the
protocol is nevertheless 2P, since the other purse’s use of its state amounts to
no more than skip. Even if one does not accept this argument, it is evident
that the breakdown of the 2P property is rather mild.

Dealing formally with such situations requires an extension of our theory.
Note though, that even if these situations are not serialisable via the standard
2P technique, the fact that we have (1, 1) refinements of the protocol, guar-
antees nonetheless that these ‘rogue’ interleavings preserve atomic semantics.

6 Conclusions and Further Work

In the preceding sections we took the Mondex Electronic Purse —a prime
example of a protocol enacted between a number of parties that was designed
to achieve the effect of an atomic action— and we looked for a generalisation.
We developed a refinement framework based on seeing both the atomic action
and protocol as computation trees, and saw that we could choose the way that
the atomic action was synchronised with the protocol in a ‘small diagram’
refinement relatively freely. The properties of the choice, in particular how
potential abstract outcomes were related to synchronisation points, was closely
related to the prospects for forward and backward simulation at the small
diagram level.

We then embedded this formulation of an isolated protocol run in a frame-
work enabling different runs of perhaps different protocols to be interleaved
in a natural way. When combined with a fairly standard 2-phase property,
these system runs could be serialised, showing that the atomicity abstraction
survives.

We then confronted the theory with various refinements for Mondex that
have been created in the recent past, and showed that the flexibility regarding
synchronisation points was well borne out in these various refinements.

However, although the majority of ‘normal’ Mondex transactions (includ-
ing not only successful ones, but also ones that fail in a ‘normal’ kind of way)
are 2-phase —and the modification of the protocol suggested by Schellhorn
et al. in [22] in order to design out the possibility of a certain kind of denial
of service attack is 2-phase in its entirety— the original Mondex protocol has
some (in practice rare, but in theory interesting) non-2-phase parts. A more
sophisticated theory is required to handle those situations.
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Besides these issues, Mondex is what we called an isolated protocol. That
is to say, once the protocol has commenced, the parties engaging in it are fixed,
and no intrusion by other agents is contemplated. (In practice, the Mondex
purse’s local state determines how much notice is taken of which messages from
which agents.) Thus it is natural to ask how the theory develops for protocols
having state that is genuinely shared between a number of agents, including
cases where the number is not necessarily determined at the start of the proto-
col. Such extensions will also allow the direct modelling of more sophisticated
behaviour by the I/O environment than we have contemplated in this paper.
(To capture, using the techniques of this paper, I/O behaviour more subtle
than the simple delivery of messages injected into the environment, one would
have to regard the environment as an agent in its own right, participating in
an esential way in protocols.) These directions will be investigated in future
work.
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