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Summary

The ontext of this work is the appliation of formal methods in software engineering. It is based

on the spei�ation language of abstrat state mahines (ASMs) de�ned in [Gur95℄.

In this work we develop tool support for ASMs, for their spei�ation as well as for the

veri�ation of re�nements. We want to make possible the development of orret software from a

�rst abstrat requirements spei�ation to an implementation that is got by stepwise re�nement.

Our work onsists of four parts.

� Embedding of ASM spei�ations in a logi: We de�ne a 1:1 mapping of ASM spei�ations

into Dynami Logi (DL). This makes formal veri�ation of ASM properties possible.

� Modularization of orretness proofs for re�nements: Two re�nement notions known from

literature are formalized in DL. Generi modularization theorems for proving the orretness

of re�nements are developed, that generalize the theorems known from literature.

� Implementation of the results in the KIV system: The KIV system is a spei�ation and

veri�ation tool, that supports algebrai spei�ations and DL. A number of extensions and

improvements were neessary to support ASMs and ASM re�nements.

� Demonstration of the pratial appliability of the developed onepts in a large ase study:

The hosen ase study from ompiler onstrution treats the translation of Prolog programs

into ode of the Warren Abstrat Mahine (WAM). An informal presentation, that trans-

forms a Prolog interpreter in 12 systemati re�nements to the WAM was given in [BR95℄.

The formal spei�ation and veri�ation of 8 of the 12 re�nements was a major part of

this work. A omparison with two other ase studies on the same topi showed, that the

neessary veri�ation e�ort was muh smaller due to developed theory for ASM re�nement.
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Chapter 1

Introdution

The ontext of this work is the appliation of formal methods in Software Engineering. The goal

is the development of orret software for safety ritial appliations.

Appliation of formal methods presupposes a suitable spei�ation language whih abstratly

and unambigously desribes the requirements for the software to be developed. This makes them

aessible to a mathematial analysis. Validation by theorem proving e.g. by verifying safety

properties beomes possible already in the early phases of software development, where no imple-

mentation is available. Systemati transformation of abstrat requirements to implemented ode

then requires a suitable notion of re�nement.

Proofs for the validation of spei�ations and for the orretness of re�nements are possible in

various levels of detail, from informal proof skethes to fully formal proofs in a mahine-supported

alulus.

The goal of this work is to make the spei�ation language of Abstrat State Mahines (in the

following abbreviated as ASMs, [Gur95℄) available in the spei�ation and veri�ation tool KIV.

The hoie of the spei�ation language is based on the fat, that there are two main families:

The �rst are algebrai spei�ation languages [Wir90℄, [Gau92℄, [CoF97℄ and their generalization

to proess algebras [Mil89℄, [Bae90℄. These view a software system as a generalized data stru-

ture, with suitable funtions and relations for modi�ation. Mathematially a software system is

modeled as an Algebra, a spei�ation desribes a lass of algebras as possible implementations. A

speial ase of algebrai spei�ations are model based spei�ations, in whih a software system

is built up from standard data types from set theory (like tuples, funtions, power sets).

The seond family of spei�ation languages are state based languages, whih model a system

by a set of states, by possible state transitions and thereby resulting traes. Examples e.g. Z

[Spi88℄, VDM [Jon90℄ and RAISE [JC94℄. Abstrat State Mahines also belong to this family.

To desribe the omponents of a state state based spei�ation languages are usually based on

algebrai ones. In a sense state based spei�ation languages an even be viewed as a speial

ase of algebrai ones, sine state transitions an be modeled as funtions or relations on states.

Therefore many veri�ation tools support algebrai spei�ation only. The disadvantage of this

approah is, that the basi onepts of state based systems have to be modeled in an algebrai

setting �rst.

Traditionally the KIV system supported the algebrai approah to software development. KIV

allows to de�ne strutured algebrai spei�ations and o�ers appropriate proof support [RSSB98℄.

An elaborated re�nement onept is available, whih allows the strutured, modular re�nement

of spei�ations by software modules [Rei95℄.

This work is a ontribution to the realization of support for state based spei�ations in KIV.

The hoie of ASMs as the spei�ation language was mainly due to the fat, that ASMs o�er a

oneptually simple, but very exible approah to the spei�ation of state based systems, that

allows a wide variety of ase studies. ASMs were already used suessfully in a number of ase

studies, that dealt with suh di�erent topis as the semantis of programming languages (e.g.

Prolog [BR94℄, C [GH93℄ and Java [BS98b℄), ommuniation protools (e.g. Bakery algorithm

3



4 CHAPTER 1. INTRODUCTION

[BGR95℄), ompiler orretness (e.g. Oam [BD96℄, Prolog [BR95℄ and Java [BS98a℄, [Sh99℄),

distributed systems (e.g. PVM [BG95℄) and hardware arhitetures (e.g. DLX [BM96℄). An

overview over a large number of appliations an be found in [BH98℄ and also in the internet

under the URLs http://www.ees.umih.edu/gasm/ and http://www.uni-paderborn.de/s/asm/.

In most ase studies the orretness proofs were done as mathematial proofs, they were not

supported by a veri�ation system.

To support the formalism of ASMs desribed in Chap. 2, we �rst had to de�ne an embedding in

the spei�ation language of KIV. Here, ompared to purely algebrai spei�ation systems, KIV

has the advantage, that abstrat programs over algebrai data types (whih have state transitions

as semantis) are already available. Therefore a �rst result of this work is the de�nition of a 1:1

translation of ASM rules to abstrat programs. Chapter 3 desribes the spei�ation language and

the logi used in KIV, and the extensions, whih were done in the ontext of this work. Chapter

4 de�nes the translation.

Besides formal spei�ation of ASM properties the embedding in KIV also o�ers the possibility

to do formal, mahine supported proofs in Dynami Logi, the program logi KIV is based on. To

omplete the systemati support for ASMs, a re�nement notion is de�ned in Chap. 5. It is shown,

that orretness of re�nements is expressible in DL.

The kernel of this work is the development of proof support for the modular veri�ation of

the orretness of re�nements in Chap. 6. A general modularization theorem is developed �rst

in its simplest form for the re�nement of deterministi ASMs. Then several generalizations for

indeterministi ASMs and for iterated re�nement are given. We also give referenes to other

orretness notions for re�nements. The main result is a generalization of the known theory

of re�nements: Instead of using abstration funtions we use arbitrary relations, and instead of

ommuting diagrams with one rule of eah ASM, we onsider m:n diagrams with an arbitrary

numbers m and n.

As an appliation of the theory, Chap. 7 shows that orretness of peephole optimizations an

be derived as a orollary of the modularization theorem.

The theory de�ned in Chap. 6 has not been derived by theoretial onsiderations, how to gen-

eralize existing re�nement notions. We believe, that there already exist too many onepts for the

veri�ation of software, that have nie theoretial properties, but no useful pratial appliations.

Instead the exibility of the modularization theorem and the quality of the proof support should

be evaluated by its usefulness in pratial appliations. Therefore the theory was developed based

on a realisti, large ase study.

The hosen ase study is the translation of Prolog to assembler ode of the Warren Abstrat

Mahine (WAM). There was already a mathematial analysis available [BR95℄, on whih we ould

base our work. The ase study showed a variety of problems in working with ASM re�nements,

espeially in the appliation domain of ompiler orretness. With 9 man months of work the ase

study belongs to the big and hallenging works in this area. In the seond part of this work we

give a detailed presentation of the ase study, in whih we veri�ed 8 of the 12 re�nements given

by [BR95℄.

The main result of the ase study was the demonstration of the produtiveness of the theory.

This beomes lear when one onsiders two other ase studies with other systems on the same

topi, whih needed substantially more e�ort to ahieve smaller veri�ation results. Currently the

theory is also used in [Sh99℄ in the veri�ation of a Java ompiler.

The ase study also shows what is gained by a mahine heked proof in omparison to a

mathematial analysis. We think, that the analysis in [BR95℄ is already a very areful and detailed

one, and does not ontain any oneptual errors. Nevertheless we were able to unover numerous

of small problems, that would have lead to an inorret ompiler. Therefore this work shows

that it is worthwhile to invest the high ost of a formal, systemati veri�ation if the appliation

requires absolutely error free software (in this ase an error free ompiler).



Chapter 2

Abstrat State Mahines

Abstrat State Mahines (short ASMs) are a spei�ation language to desribe software and hard-

ware systems. The basi idea of ASMs is the stepwise transformation of a state by exeuting

rules. Therefore they belong to the family of spei�ation languages, whose semantis is a state

based system. State based systems are de�ned in the �rst setion. Set. 2.2 then gives the basi

de�nition of sequential ASMs. A variant of this de�nition, whih is used in the Prolog-WAM

ase study is explained in Set. 2.2. Finally, Set. 2.4 de�nes distributed ASMs, whih are used

to model distributed systems. A omprehensive presentation of ASMs, whih gives additional

onepts besides the basi ones de�ned here, an be found in [Gur95℄.

2.1 State Based Systems

The basi idea of a state based system is the transformation of states by rules. More formally a

state based system ZS = (S; I; �) onsists of a set S of possible states, a set I � S of initial states

and a transition relation � : S � S. (st,st

0

) 2 � means, that st

0

is a possible suessor state of st.

A set F of �nal states an be �xed as the set of those states whih have no suessor state. State

based systems are often hosen as a natural formalization of software systems, sine the typial

omputation of a omputer with a von-Neumann-arhiteture involves the state of a memory, that

is modi�ed by a proessor (whih de�nes the state transition relation). Other examples are �nite

automata (the set of states the is the set of all strings over an alphabet), Rewrite systems (where

a state is a term), ommuniation protools and interpreters of programming languages. Even

mathematial onepts like the derivation notion of logial aluli an be desribed as state based

systems.

An speial ase of state based systems that is often used are sequential (or deterministi)

systems, in whih every state st has at most one suessor state st

0

with (st,st

0

) 2 �. For this ase

a state transition funtion � an be de�ned on all non-�nal states (S nF ) by �(st) = st

0

i� (st,st

0

)

2 �.

For a state based system the set of possible traes an be de�ned as the set of all �nite (st

0

,

. . . , st

n

) and in�nite sequenes (st

0

, st

1

, . . . ) of states with (st

i

,st

i+1

) 2 � for every i. A trae is

required to start in an initial state st

0

2 I and, when �nite to end in a �nal state st

n

2 F .

2.2 Sequential ASMs

ASMs ([Gur95℄) are a formalism to de�ne state based systems. The set of all possible states is

given as the lass of all possible algebras Alg(SIG) over a (one-sorted) signature SIG. To allow the

de�nition of boolean expressions and partiality, it is assumed that the signature always ontains

the usual boolean operations (tt, �, ^, _, et.) as well as a onstant undef.

The set of initial algebras I is usually given by a set-theoreti desription of algebras or an

algebrai spei�ation. The transition relation is given by a rule R. For sequential ASMs of this

5



6 CHAPTER 2. ABSTRACT STATE MACHINES

setion rules are de�ned indutively as follows:

1. f(t) := t

0

is a rule, for every n-ary funtion symbol f (n � 0), and ground terms t

and t

0

. The rule modi�es the value of f at the arguments t to be t

0

.

2. If R

1

, . . . , R

n

are rules, then so is their parallel exeution (R

1

, . . . , R

n

)

3. If R

1

, . . . , R

n

are rules, and "

1

, . . . "

n

, are boolean expressions, then so is the

onditional rule

(if "

1

then R

1

else if "

2

then R

2

else . . . if "

n

then R

n

)

The semantis of a rule R is a transition funtion, that given an algebraA delivers a new algebra

B. B is de�ned with the help of a �nite set of updates Upd(R;A) = f(f

1

,a

1

,b

1

), . . . (f

n

,a

n

,b

n

)g,

whih is are omputed from the rule R and the algebra A.

Eah update (f; a; b) onsists of an n-ary funtion symbol f , and values a; b 2 A

n+1

over the

arrier (the universe) A of the algebraA. Corresponding to the struture of rules the set of updates

is de�ned by

1. Upd(f(t) := t

0

;A) = f(f; t

A

; t

0

A

)g

2. Upd((R

1

; : : : ; R

n

);A) = Upd(R

1

) [ : : : [ Upd(R

n

)

3. Upd(if "

1

then R

1

else . . .else if "

n

then R

n

) = Upd(R

k

),

where k is minimal with A j= "

k

. If for all k = 1;. . . ; n A 6j= "

k

holds, then Upd(if . . . ) = ;.

The set Upd(R;A) is inonsistent, if it ontains several elements (f; a; b) with the same funtion

f and vetor a. In this ase the transition funtion is identity, i.e. �(A) = A. If Upd(R;A) = ;,

then A is a �nal state

1

. If Upd(R;A) is onsistent and nonempty, B has the same arrier as A

and the semantis of its funtions is de�ned by

f

B

(a) =

�

b if (f,a,b) 2 Upd(R,A)

f

A

(a) otherwise.

For every ASM operations an be partitioned into two disjoint sets: A set of dynami funtions,

whih our on the left hand side of an assignment in a rule, and the omplementary set of stati

funtions, whih are never hanged during the run of the ASM.

Stati funtions are used, to model operations on data strutures (like + on natural numbers,

or append on lists). Of ourse it is required, that the boolean operations are stati.

0-ary dynami operations (for obvious reasons, we do not all them `onstants') are used

as \program variables". Dynami funtions with arguments are often used to model memory.

Appliation of a dynami funtion at a results in the ontent f(a) of memory f at address (or

loation) a. Modi�ation of the funtion f at address a means to overwrite the memory loation.

A dynami funtion with �nite domain G an also be viewed as an abstrat form of an array with

indexes in G.

Sorts are modeled in ASMs as unary prediates. To have an addition operation whih adds

a new element to the arrier of a sort, often the following extension is used: It is assumed, that

there is a prede�ned sort reserve (i.e. a unary prediate) that has an in�nite arrier (\reserve

elements") in every initial state. The new rule onstrut

import x in R endimport

then allows to remove an element from reserve, to bind it to the variable x and to exeute rule R

with this binding. Addition of an element to a sort S then an be ahieved with

import x in S(x) := tt; R endimport

1

[Gur95℄ does not de�ne �nal states for sequential ASMs. We add the de�nition here, sine we need �nal states

for the de�nition of ASM re�nements.
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This is abbreviated as

extend S with x in R endextend

We do not give a preise de�nition of this extension, sine it has some pitfalls and auses a lot

of tehnial overhead (rules an now use the loal variable R, nested imports must return new

elements sequentially). A preise de�nition an be found in [Gur95℄.

2.3 Sequential ASMs in the WAM

The ASMs of the Prolog-WAM ase study in [BR95℄ use a variant of the de�nition of sequential

ASMs. In this variant rules must have the simpler form

if " then (f

1

(t

1

) := t

0

1

, f

2

(t

2

) := t

0

2

, . . . , f

n

(t

n

) := t

0

n

)

Instead of one rule every ASM now has a set of suh simpler rules. A state transition onsists

in the indeterministi hoie of a rule, whih has a test (often alled guard) " that is true, and

the exeution of its updates. If all rule tests mutually exlude eah other, then suh a rule set is

obviously equivalent to a nested onditional rule of the previous setion (with an arbitrary order

of the rules). For the Prolog-WAM ase study the mutual exlusion of rule tests was intended

(for a ase, where the intention was not met, see Set. 12.2), so we do not need to onsider the

problem of indeterminism here.

2.4 Distributed ASMs

The basi idea of a distributed ASM also is the modi�ation of a state by rules

2

. But instead

of a single rule a distributed ASM has a �nite set A of (ative) agents, where eah of the agents

has one rule of a �nite set of rules R attahed (the attahed rule is the program, that the agent

urrently runs). One state transition then onsists in the seletion of one agent a 2 A, and the

exeution of the rule attahed to it. Rules in distributed, indeterministi ASMs an hange the

set of the ative agents as well as the rule attahed to eah agent.

To formally de�ne these onepts a distributed ASM ontains a set N of rule names, i.e. stati

onstants �, whih denote rules. For a rule name �, R

�

is the orresponding rule. The signature

also ontains a (dynami) funtion Rule, whih maps agents to rule names. The set of ative

agents is given impliitly as the set of elements, for whih Rule(a) 2 N holds.

The set of possible states of a distributed ASM is restrited to suh algebras, in whih rule

names denote di�erent onstants, and in whih the set of agents is �nite.

Finally, ompared to the de�nition of rules for sequential ASMs, there is one extension: all

rules may use the symbol Self for the atually hosen agent. If a rule R is exeuted by an agent

a, then in the omputation of Upd(R;A) the symbol Self is interpreted as a. In this way rules

an be parameterized with the agent exeuting them. If an agent e.g. exeutes the assignment

Rule(Self) := undef

then it terminates its omputation. A distributed ASM reahes a �nal state when the set of

agents beomes empty.

2

we assume the semantis de�ned as that of `Sequential Runs'. [Gur95℄ gives other possible de�nitions.
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Chapter 3

Dynami Logi and Algebrai

Spei�ations

3.1 Dynami Logi

Dynami Logi (DL) is an extension of �rst-order logi by program formulas of the form h�i '

and [�℄ '. Here, � is an imperative program and ' is again a formula of DL. Programs ontain

the usual onstruts like parallel assignment x := t, sequential omposition �;�, onditional if "

then � else �, while loop while " do � and proedure all p(t;x) with value Parameters t and

referene parameters x. For theoreti reasons we also have the program skip, that does nothing,

the never terminating program abort, i-fold iteration loop � times i, random assignment x :=?

and a proedure all probound i in p(t;x) with a bound i on the reursion depth (if the bound

is exeeded the all does not terminate).

The semantis of programs [[�℄℄ is de�ned as a binary relation on states, i.e. valuations in the

usual sense of �rst-order logi. For a deterministi program the relation is a partial funtion, i.e.

for every valuation z there is at most one z

0

, suh that z[[�℄℄z

0

holds. The only indeterministi

program onstrut is random assignment: z[[x :=?℄℄z

0

holds for all z

0

= z[x  a℄, whih result

from a modi�ation of the value of x by an arbitrary a.

The program formula h�i ' holds in a state z, if there is a state z

0

with z[[�℄℄z

0

and ' holds

in z

0

. Dual to this de�nition [�℄ ' holds in a state if in every state z

0

with z[[�℄℄z

0

the formula '

holds.

The program formula h�i ' therefore means, that there is a terminating run of �, suh

that afterwards ' holds. [�℄ ' holds, if ' holds after every terminating run of �. ' ! [�℄  

resp. ' ! h�i  express partial resp. total orretness with respet to preondition ' and post-

ondition  .

Syntax and semantis of DL are preisely de�ned in appendix B. Note, that a many-sorted

logi is used, that de�nes expressions only and does not distinguish between formulas and terms.

Formulas are identi�ed with expressions of sort bool. This has the advantage, that by adding

lambda expressions the logi an easily be extended to a higher-order logi. A tehnial advantage

is that a general if{then{else Operator (' � t

1

; t

2

) is available (' a formula, t

1

; t

2

two arbitrary

expressions of the same sort). The expression is equal to t

1

, if ' is true, and equal to t

2

otherwise.

3.2 Algebrai Spei�ations

We will use algebrai speii�ations with the struturing operations union (+), enrihment, renam-

ing, parameterization (generi spei�ations), and atualization. For freely generated data types

we will use datatype delarations (see e.g. lists as de�ned in appendix E), whih automatially

generate apropriate axioms. The syntax should be self-explanatory, the semantis of the strutur-

9
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ing operations is de�ned as usual. It is e.g. almost idential to the de�nition of the semantis of

the standard spei�ation language CASL [CoF97℄.

In basi spei�ations we will allow as axioms not only �rst-order formulas, but also arbitrary

DL formulas, generation priniples and proedure delarations. The semantis of basi spei�a-

tions is the lass of all models of the axioms (loose semantis). A preise de�nition is given at the

end of appendix B.

3.3 KIV

KIV is a system for the development of orret software. The spei�ation language supported by

KIV are strutured, algebrai �rst-order spei�ations. The software development methodology

used until now was based on strutured, modular re�nement of suh spei�ations by program

modules. Their orretness an be expressed by proof obligations in DL. This methodology is

omprehensively presented in [Rei95℄. The veri�ation of program modules is disussed in [RSS95℄.

Dedution support in KIV is based on a sequent alulus for Dynami Logi. An overview of

the support for dedution over algebrai spei�ation is given in [RSSB98℄.

3.4 Improvement of Proof Strategies

In the ontext of this work the KIV system was improved in a number of ways, partiularly in the

dedution omponent. These improvements were important for the eÆient veri�ation of ASM

re�nements, espeially in the Prolog-WAM ase study (see also the statistis in setion 19). This

setion gives a short listing of the items improved:

� extension of the spei�ation language from strutured �rst-order to strutured DL spei�-

ations with global proedure delarations (instead of loal ones). Global proedure dela-

rations make the global de�nition of ASMs possible.

� Removal of the distintion between terms and formulas, thereby identifying formulas with

boolean terms. This modi�ation allows to use boolean dynami funtions (boolean predi-

ates) like all other dynami funtions. This modi�ation also allows (independent of this

work) to easily extend DL with higher-order funtions by adding �-terms.

� The proof strategy for programs now an handle parallel assignments. These were supported

by the logi, but not by the prover.

� Addition of an indution priniple over the reursion depth for proedures. This proof

priniple simpli�es the previously de�ned proof priniple (Indution over environments, see

[Ste85℄) for reursively de�ned proedures. The new proof priniple was a key onept to

verify properties of the CHAIN# proedure in the Prolog-WAM ase study (see Set. 15.2).

It also simpi�es the de�nition of the semantis and the ompleteness proof for DL.

� Extension of the tatis and heuristis for while loops, and the loop onstrut, whih both

play a entral role in the proofs of the proof obligations for the orretness of ASM re�ne-

ments.

� Extensions of several other heuristis, e.g. the heuristis for unfolding proedures and for

quanti�er instantiation.

� Implementation of an eÆient simpli�ation strategy (see [RSSB98℄). The urrent imple-

mentation an deal with the 2000 simpli�ation rules, whih ourred in the Prolog-WAM

ase study.

� Several other eÆieny improvements, that beame neessary simply by the size of the goals

that were to prove. In some ase sequents in the Prolog-WAM ase study reahed the size

of 5 sreen pages, and proof trees had up to 1000 nodes.



Chapter 4

Formalization of ASMs in DL

This hapter starts with the de�nition of a translation of ASMs to algebrai spei�ations and

Dynami Logi (DL). The translation will be essentially one to one, sine the basi onstruts

of both ASMs and DL are assignments. Sine there is no need to formalize the semantis of

ASMs, i.e. to enode ASM rules as relations over states, DL is a good starting point for the

veri�ation of ASM properties. The translation onsists of three steps: In the �rst step (Set. 4.1)

we will show, that algebras, whih are used as ASM states an be transformed into valuations

over a suitable algebrai spei�ation. The seond step (Set. 4.2) then translates ASM rules to

imperative programs, using the valuations of step one as intermediate states of the program.

Setions 4.3 and 4.4 then onsider the third step, the translation of sequential resp. distributed

ASMs into an imperative program.

The main proof priniple for ASMs is indution over the number of exeuted rules. Setion 4.5

shows, how this proof priniple is formalized in DL.

In Set. 4.6 we �nally disuss alternatives to our approah of translating ASMs to DL.

4.1 Translation of Spei�ations

To translate the abstrat data types of an ASMs to algebrai spei�ation, we �rst have to partition

the signature into a stati and a dynami part. The dynami part ontains those sorts and

operations, whih are modi�ed by assignments of the ASM. The stati part typially ontains

data types like list, number with suitable operations. For this part no translation is neessary; it

simply has to be spei�ed algebraially.

The main idea for the translation of the dynami part is, to enode the semantis of dynami

funtions as values of (usual �rst-order) variables. Assignments of the ASM thereby beome

assignments in DL.

0-ary funtions are simply translated to �rst-order variables. The ase of a funtion with

several arguments an be redued to the ase with one argument by adding a suitable tuple sort.

For funtions with one argument we have to enode the (seond-order) data type of a funtion

into a �rst-order data type, to make values of the datatype available as the values of variables.

This an be aomplished with the datatype shown in Fig. 4.1, whih spei�es funtions from a

domain dom to a odomain odom:

The data type de�nes a onstant funtion f(z) for every element z of the odomain. Applia-

tion of this funtion to any element x of the domain always gives z, as stated by the �rst axiom.

The (binary) operation \funtion appliation of f to x" is written (using mix�x-notation) as f [x℄

(note that now f is a variable of sort dynfun, not a funtion symbol!). With a suitable onstant

z of the odomain onstant funtions are typially used as initial values for dynami funtions.

An assignment f(x) := t of the ASM formalism is translated to the algebrai setting as an

assignment f := f [x  t℄ to the variable f. The new funtion value, whih is the old modi�ed at x

11
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Dynfun =

generi spei�ation

parameter sorts dom, odom;

target sorts dynfun;

funtions f : odom ! dynfun;

. [ . ℄ : dynfun � dom ! odom;

. [ .  . ℄ : dynfun � dom � odom ! dynfun;

variables f : dynfun; x, y : dom; z : odom;

axioms f(z) [x℄ = z,

f [x  z℄ [x℄ = z,

x 6= y ! f [x  z℄ [y℄ = f[y℄

end generi spei�ation

Figure 4.1 Spei�ation of Dynami Funtions

by t we again use the mix�x-notation f [x  t℄ (instead of \modify(f,x,t)"). The last two axioms

desribe its behavior.

It should be noted, that (in ontrast to the usual methodology used in KIV when speifying

non-free datatypes) it was not neessary to de�ne an extensionality axiom

f = g $ 8 x. f[x℄ = g[x℄

in the spei�ation of dynami funtions. Suh an axiom would have allowed to dedue equations

between funtions like f = f [x  f [x℄℄. Sine suh equations are not part of the ASM formalism,

they are not needed for the translation either. For the same reason we ould avoid to de�ne an

indution priniple for dynami funtions (e.g. strutural indution over f and modify).

It is easy to see, that the set of all funtions from dom to odom is a model of the spei�ation

given above. For this model we have the 1:1 orrespondene between dynami funtions and

valuations of the orresponding variables in the translation.

The basi form of the translation gives an algebrai spei�ation, in whih neither the possi-

bilities to use underspei�ation nor the existene of sorts (exept to de�ne tuple and funtion

sorts) has been exploited. This an be improved by using sorts instead of sort prediates wherever

possible in the algebrai translation. Underspei�ation an be used to avoid the use of an expliit

error element undef.

An important role in the translation of sorts is played by the prediate reserve in the ASMs,

whih de�nes an in�nite set of \reserve elements". Of ourse it is possible to treat the reserve

prediate like all other dynami funtions, and to translate it into a boolean dynami funtion.

For the import onstrut ([Gur95℄, Set. 3.2) then a funtion some(reserve) has to be de�ned,

whih given the urrent value of reserve delivers an element x with reserve[x℄ = tt. But typially

elements of the reserve arrier are used only to dynamially add them to the arrier of some other

sort (e.g. to inrease the set of nodes of a searh tree or to alloate a new address in memory). In

this ase, whih uses the abbreviation

extend s with x in R endextend,

to move one element from the reserve arrier to the one for sort s, there is a muh simpler

translation, whih avoids to use \reserve elements" ompletely. To de�ne it, we will enode the

urrent elements of sort s as the valuation of a variable se of sort set (with elements of sort s).

To speify suh sets usually the spei�ation of �nite sets from Fig. 4.2 an be used, sine in

most ases the used arrier sets will be �nite (if the initial arrier set of an ASM is in�nite, a

suitable onstant has to be added). The arrier set of s now ontains the in�nitely many potential
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elements, that an be inserted into the dynami set se. Funtion new(se) gives a new element

relative to se. The sort update above therefore an be expressed in the translation as

var x = new(se) in begin se := se [ fxg; R end

Set =

generi spei�ation

parameter S;

target

sorts set;

onstants ; : set;

funtions

f . g : s ! set;

. [ . : set � set ! set;

new : set ! s;

prediates

. 2 . : s � set;

variables se, se

1

, se

2

: set; x, y :s;

axioms

set generated by ;, f . g, [;

: x 2 ;, x 2 fyg $ x = y,

x 2 se

1

[ se

2

$ x 2 se

1

_ x 2 se

2

,

se

1

= se

2

$ (8 x. x 2 se

1

$ x 2 se

2

),

: new(se) 2 se

end generi spei�ation

Figure 4.2 Algebrai Spei�ation of Sets

4.2 Translation of ASM Rules

In this setion we will de�ne the translation of ASM rules into (at) DL programs. It is suÆient

to translate ondition rule, whose bodies are sequenes of update instrutions,

if "

1

then U

1

else

if "

2

then U

2

else

.

.

.

if "

n

then U

n

sine iterated appliation of the transformation

(R, if " then R

0

else R

00

) ) if " then (R,R

0

) else (R,R

00

)

will bring every rule into this form.

The onditional is unhanged by the translation

1

, the translation of a single assignment f(t) :=

t

0

to f := f [t  t

0

℄ was already disussed in the previous setion. For parallel assignments with

several updates of the same funtion, we must take the possibility of inonsistent updates into

aount. This is done using additional heks. As an example, f(x) := t; f(x

0

) := t

0

must be

1

note, that in DL if "

n

then U

n

is an abbreviation for if "

n

then U

n

else skip
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translated to if x = x

0

^ t 6= t

0

then skip else f := f [x  t℄[x

0

 t

0

℄ (in most ases the

inonsisteny heks an be simpli�ed using the preonditions of the ase under onsideration,

often they an be ompletely dropped). With the additional heks inonsisteny leads to no state

hange, as required by the de�nition of ASM semantis. To improve readability we will write

f [x℄ := t instead of f := f [x  t℄ in DL programs.

4.3 Translation of Sequential ASMs

To simplify the presentation, we will assume in the rest of this work, that the test, if any ASM rule

is appliable an be deided using a prediate �nal (�nal is simply the onjuntion of all negated

rule tests). Then the result of the translation is the following proedure:

ASM(var x)

begin

while : �nal(x) do RULE(;x)

end

The allowed initial states of the ASM are given by suitable initial valuations of the variables

x. The variables x are used as input and output. They store the valuations of all dynami

funtions. Iterated appliation of rules is done with a while loop. proedure RULE ontains

the translated ode of the ASM rule (the semiolon before the variables x in the all indiates

referene parameters). A separate proedure was de�ned simply to have a suitable abbreviation

in the following.

The equivalene of the while program to the de�nition of the ASM semantis is given by

onsidering the sequenes of states, through whih the program runs at the beginning of the while

loop. The possible sequenes are (modulo the translation of algebras to valuations) exatly the

same as in the ASM. A restrition of the expressiveness of DL is only, that we are not able to

talk diretly about these sequenes of states and their properties. This would require either the

introdution of operators similar to temporal logi, or the de�nition of a data type of streams to

enode the sequenes. In main topi of this work, ASM re�nements, the expliit representation of

traes will be mostly suÆient. In partiular, traes of states will not our in the proof obligations

for re�nement orretness. Only for ASMs with unbounded indeterminism (Set. 6.4) we will need

the temporal logi operator AF, and in the de�nition of trae orretness in Set. 6.3 we will make

use of a formalization of streams as (dynami) funtions from natural numbers to states.

4.4 Translation of Distributed ASMs

The main problem in the translation of distributed ASMs is the indeterministi hoie of an agent

a from a �nite set A of andidates. Although the �nite set A an be desribed using the datatype

of �nite sets from Set. 4.1, it is not possible to use an additional funtion some, sine for a set s

suh a funtion would always deliver the same element some(s). Nevertheless a solution in DL is

easy: One uses a proedure SOME, that has the urrent set of ative agents as input and returns

the agent Self, whih should exeute a rule. Self is now a program variable. For the proedure

SOME only the axioms

a 2 A ! hSOME(A;Self)i Self = a (4.1)

and

[SOME(A;Self)℄ Self 2 A
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are needed. They say, that the input/output relation of SOME is in all models of the spei�ation

equal to the element relation (the �rst axioms says superset, the seond subset). This means,that

every time eah hoie of an agent from the set is possible, orresponding to the de�nition of the

ASM semantis. An implementation of the proedure SOME would be a sheduler for agents.

Suh an implementation will usually have a strategy for hoosing the next agent and therefore

not be fully indeterministi. It will often also depend on other state omponents. Therefore, to

support arbitrary shedulers, SOME an be alled with the omplete state x of the ASM and the

axiom (4.1) an be replaed by the weaker totality axiom

A 6= ; ! hSOME(x;Self)i true

Then, the input/output relation of a sheduler is only required to be a total subrelation of the

element relation. This makes it possible to relate di�erent shedulers in ASM re�nements (see

Chap. 5), e.g. by stating that every hoie of a onrete sheduler should be possible by the abstrat

one too). It should be noted, that restritions suh as fairness onstraints will probably make it

neessary to talk about the sequene of seleted Self values. To do this will require extensions

of Dynami Logi or the expliit use of streams (see also the translation of linear temporal logi

(LTL) disussed in [Vog97℄).

Using the SOME proedure the distributed ASM is translated to

ASM(var x)

begin

while A 6= ; do

begin

SOME(x;Self);

if Rule(Self) = �

1

then RULE

1

(;x) else

if Rule(Self) = �

2

then RULE

2

(;x) else

.

.

.

if Rule(Self) = �

n

then RULE

n

(;x)

end

end

where the rules RULE

1

, RULE

2

, . . . , RULE

n

are translated as for sequential ASMs. Note, that

the urrently seleted agent Self, the set of ative agents A and the dynami funtion Rule, whih

gives the rule name for an agent are all part of the vetor of program variables. The rule names

are spei�ed as an enumeration type with values �

1

, . . . �

n

.

Like in the sequential ase the possible sequenes of states at the beginning of the while loop

oinide with the possible traes of the ASM (modulo enoding algebras as valuations). To have a

uniform notation for sequential and distributed ASMs, we will also write RULE (;x) for the body

of the while loop, and we will use the general test �nal(x) instead of the speial A 6= ; used here.

4.5 Rule Indution in DL

The main proof priniple to reason about ASMs that we will use in the following is indution over

the number of exeuted rules (\rule indution"). In this setion we give the formal orresponding

proof priniple in DL, indution on the number of while loop iterations. Indution on this number

is possible using the Omega-Axiom of Dynami Logi:

hwhile " do �i ' $ 9 i. hloop if " then � times ii (' ^ : ") (4.2)
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In this axiom i is a natural number (whih an be used for indution) that ounts the number

of loop iterations. The loop program loop � times i exeutes its body � i times. Axiom (4.2)

therefore states, that a formula ' holds after the exeution of a while loop, if and only if there is a

number i hosen suÆiently large, suh that after iterating if " then � this often ' holds and the

test " of the while loop is false. Note that for some �xed initial state the value of i need not be

hosen as the exat number of times the while loop will be iterated when starting from this state.

Any number greater than this number will also be suÆient, sine exeuting if " then � when "

is already false has no e�et. This gives some extra degree of freedom in proofs where only some

properties of the initial state are known (replaing if " then � in the body of the loop onstrut

by if " then � else abort gives the more restritive variant, where i must be the exat number

of iterations).

The loop onstrut is de�ned in DL reursively by the two axioms:

hloop � times 0i ' $ '

hloop � times i +1i ' $ hloop � times ii h�i '

(4.3)

4.6 Alternatives to our Formalization

The translation of ASMs to DL is not the only alternative to realize dedution support for ASMs.

Several others are possible:

1. Embedding ASMs in a higher-order variant of Dynami Logi.

2. De�nition of an \ASM logi": Suh a logi must support the modi�ation of algebras by

programs. A suitable andidate would be MLCM (modal logi if reation and modi�ation

[GdL94℄,[GR95℄). [Sh95℄ is an attempt, to implement a variant of MLCM in the KIV

system.

3. Instead of formalizing ASMs, their semantis, i.e. state based systems an be formalized

algebraially. This is possible with �rst-order logi and was done for the Prolog-WAM

ase study in Isabelle [Pus96℄ (the formalization used higher-order logi, but this was not

ompulsory). ASM rules are replaed with an expliit desription of the state transition

relation, and an indutive de�nition of the relation between input and output states.

4. Embedding ASMs in temporal logi

The �rst solution is a variant of our solution, whih replaes the datatype `dynami funtion'

by seond-order funtions. The solution requires to extend DL with higher-order expressions

(suh an extension is urrently planned). The solution would have the advantage, that the speial

`apply' operation ould be replaed with the usual funtion appliation. An argument for the

urrent solution is, that it does not mix dynami funtions with general higher-order funtions.

The �rst are usually used as global registers and an be destrutively overwritten while the other

usually may not be modi�ed destrutively. Separation of the two ases ould therefore ease eÆient

implementation.

The seond solution is also similar to our solution. From our viewpoint it has the disadvantage,

that the de�nition of a new logi requires muh more e�ort: In addition to the implementation

of new tatis and the de�nition of a new semantis also a orretness and ompleteness proofs

for the new logi has to be done. Note also, that the orretness proofs for ASM re�nements

sometimes make it neessary to quantify over dynami funtions (for an example see Set. 11.2),

whih is impossible in MLCM.

The third solution is muh more di�erent from ours, sine it requires to develop a general

theory of indutive relations (or an even more general �xpoint theory as it was done in PVS

[BDvH

+

96℄), to make indution over the number of exeuted rules possible. Suh a theory was
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de�ned e.g. in Isabelle ([Pau94℄). In our approah suh a theory is already present in the axioms

for while loops (ompare to the previous Set. 4.5).

For pratial appliations the solution has the disadvantage that every modi�ation of the state

must refer to the whole state (this is known as the \frame problem"). An assignment

x

i

:= f(y)

to a single omponent x

i

of the state must be replaed by a relation ) (written in�x)

(x

1

; : : : ; x

i

; : : : x

n

) ) (x

1

; : : : ; f(y); : : : x

n

)

in whih the whole state (x

1

; : : : ; x

n

) is mentioned, ausing notational overhead. Also adding a

new omponent to the state will require to hange all existing proofs, even if they do not onsider

the new omponent.

For the generi de�nition and the proof of the modularization theorem for ASM re�nements,

that will be done in Chap. 6, the frame problem is irrelevant, sine in the theorem states will be

onsidered as an unspei�ed, monolithi parameter sort. We will therefore have a short look on

the �rst-order formalization of the theorem in Set. 6.2.5.

An advantage of using indutive relations against ASMs is that they (like DL programs) allow

arbitrary reursion. Arbitrary reursion for ASMs requires to extend the basi formalism (see

[GS97℄).

The fourth solution, embedding ASMs in a temporal logi (like CTL*) is a good alternative,

when properties of single ASMs are onsidered. But relations between ASMs (like re�nement)

require to onsider several state transition relations at one, whih make an enoding more diÆult

(or require the use of a multimodal temporal logi).

Finally it should be noted, that instead of transforming the rules of an ASMs to a normal form

(Set. 4.1) a general operator for parallel exeution of programs ould be added. The transforma-

tion to normal form then an be desribed by rules in the logi. [Sh95℄ shows, how this possibility

an be realized for MLCM. We urrently prefer the transformation, sine it is more eÆient and

we urrently see no way to avoid it: inonsisteny of a rule an be deteted easily only, when the

rule is in normal form.



18 CHAPTER 4. FORMALIZATION OF ASMS IN DL



Chapter 5

Re�nement of ASMs and

Formalization in DL

A re�nement of one ASM = (S; I; �) to another ASM

0

= (S

0

; I

0

; �

0

) is given by a relation IN : I�I

0

on initial states and a relation OUT : F �F

0

on the �nal states F and F

0

. Often speial ases are

onsidered, where funtions instead of general relations IN and OUT are given.

De�nition 1 orretness and ompleteness of re�nements

A re�nement of ASM to ASM' is orret, if for every �nite trae (st

0

0

,. . . , st

0

n

) of ASM

0

(with

st

0

n

2 F

0

) and every st

0

of ASM with IN(st

0

,st

0

0

) there exists a trae �nite trae (st

0

,. . . , st

m

) of

ASM with st

m

2 F and OUT(st

m

,st

0

n

). We will write ASM

.

ASM

0

for a orret re�nement. A

re�nement from ASM to ASM

0

is omplete, short ASM

/

ASM

0

, i� the re�nement from ASM

0

to

ASM is orret

Corretness and ompleteness of a re�nement is often expressed as the ommutativity of the

diagram in Fig. 5.1:

st

0

//
OO

IN

��

st

1

//
: : :

//
st

m aa
OUT

!!D
DD

DD
DD

D

st

0

0

//
st

0

1

//
: : :

//
st

0

n

Figure 5.1 : Diagrammati Visualization of an ASM Re�nement

Corretness and ompleteness an be de�ned relative to one algebra, or relative to all models

of the ommon spei�ations of both ASMs. The proof obligations, that we will derive in the

following hapter will imply the orretness resp. ompleteness in every single model of the ommon

spei�ation (this is stronger than \if the proof obligations hold in every model, then we have

orretness resp. ompleteness"), therefore the distintion is unimportant in the following.

The notions of `orretness' and `ompleteness' are drawn from ASM terminology ([BR95℄).

In the literature several other terms are used: In the Veri�x projet ([GDG

+

96℄) they are alled

`preservation of partial orretness' and `preservation of total orretness'. A orret and om-

plete re�nement is sometimes alled a `Bisimulation'. In ase studies with the NQTHM system

([BHMY89℄) the notion `interpreter equivalene' is used.

Our orretness notion ompares the input/output behavior of the ASMs. It is adequate for

ASMs, whose purpose is the \omputation of a result". If an ASM desribes a reative system,

there is another orretness notion, whih ompares traes of both ASMs. We will postpone the

de�nition of suh a notion (\trae orretness") until Set. 6.3 where we will show that the proof

obligations for both orretness notions di�er only marginally.

19
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5.1 Compiler Veri�ation

A typial example where ASM re�nements are used is ompilation of programming languages. Two

ASMs are onsidered, where the �rst is an interpreter for the soure language and the other is an

interpreter for the target language. Initial states store the soure and target ode of the program

that should be exeuted. The IN relation between the initial states is given by a funtion ompile

whih does the ompilation:

IN(st,st

0

) $ program

0

(st

0

) = ompile(program(st)) ^ I(st) ^ I

0

(st

0

).

Usually an initial states is �xed uniquely by a given program that should be interpreted. Some-

times the weaker ondition, that for every initial ASM

0

state st

0

there is an ASM state st with

IN(st,st

0

), is required.

For the output relation OUT it is usually required, that it should be possible to reover the

(abstrat) result of the soure ode interpreter by applying an abstration funtion to the result

of the target ode interpreter.

OUT(st,st

0

) $ result(st) = abstrat(result

0

(st

0

)).

5.2 Formalization of Corretness in DL

The Corretness of a re�nement from ASM to ASM

0

an be expressed in DL as

ASM

.

ASM

0

�

IN(x,x

0

) ^ hASM

0

(;x

0

)ix

0

= x

0

0

! hASM(;x)i OUT(x,x

0

0

)

(5.1)

In the formula x and x

0

are two disjoint vetors of variables that result from the translation

of dynami funtions from both ASMs. The formula states that IN (x; x

0

) and the existene of a

terminating run of ASM

0

with result x

0

0

imply the existene of a terminating run of ASM, suh

that relation OUT holds for x

0

0

and its result (note that the x in IN (x; x

0

) denotes an arbitrary

initial value of the variables, while the x in OUT(x; x

0

0

) denotes the valuation of the variable after

the exeution of ASM).

For the formalization of ompleteness simply the roles of ASM and ASM

0

are swithed:

ASM

/

ASM

0

�

IN(x,x

0

) ^ hASM(;x)ix = x

0

! hASM

0

(;x

0

)i OUT(x

0

,x

0

)

(5.2)

The equivalene of ASM and ASM

0

then is the onjuntion of (5.1) and (5.2). If the state vetors

of both ASMs have the same types, and if OUT (x; x

0

) is de�ned as x = x

0

, this onjuntion an

be simpli�ed to the program equivalene

ASM

./

ASM

0

�

IN(x,x

0

) ! (hASM(;x)ix = x

0

$ hASM

0

(;x

0

)ix

0

= x

0

)



Chapter 6

A Generi Proof Method for ASM

Re�nements

This hapter is the kernel of the theoretial work. It is shown, that the orretness and om-

pleteness proofs for a re�nement from ASM to ASM

0

an be modularized. The proof obligations

that guarantee the orretness of the modularization were formulated in Dynami Logi, and were

veri�ed with the KIV system.

The �rst two setions onsider sequential, deterministi ASMs. For introdution, Set. 6.1

disusses the speial ase of \data re�nement" known from literature. In this ase one rule appli-

ation of ASM orresponds to one rule appliation of ASM

0

and an abstration funtion is given,

that maps states of ASM

0

to states of ASM.

Setion 6.2 then onsiders the general ase, in whih the orrespondene between states is

given by an arbitrary relation, that we all a \oupling invariant". The restrition, that one rule

appliation of ASM must orrespond to one of ASM

0

is dropped. Instead it is only required that

the diagram shown in Fig. 5.1 an be deomposed into smaller diagrams, suh that the oupling

invariant holds at all partitioning points. The main result of this setion is the theorem, that

under this ondition the ommutativity proof of the whole diagram an be split to ommutativity

proofs for the subdiagrams. It is shown, that it is suÆient to prove one proof obligation for eah

subdiagram in order to show orretness and ompleteness.

Setion 6.3 onsiders an alternative to the de�nition of re�nement orretness we gave in Set. 5.

The new orretness notion is alled \trae orretness", sine it does not rely on input/output

behavior, but ompares traes of the ASMs. Trae orretness is stronger than orretness. For

deterministi ASMs orretness and ompleteness imply trae orretness. We will give an ex-

ample, that shows, that this is not the ase for indeterministi ASMs. Therefore we will, before

we onsider indeterministi ASMs, de�ne trae orretness formally. Like for the deterministi

ase we will generalize the approah from literature whih uses abstration funtions to the use of

arbitrary oupling invariants. We will show, that the proof obligations for orretness and trae

orretness di�er only marginally.

Setion 6.4 treats re�nements of indeterministi ASMs. We will show, whih modi�ations are

neessary, to apply the modularization theorem for indeterministi ASMs. As the main di�erene

we will have two separate proof obligations for orretness and ompleteness. Also the ompliation

must be onsidered, that the size of subdiagrams resulting from the modularization may now

depend on indeterministially hosen rules.

Setion 6.5 gives optimizations of the theorem, that are possible for an iterated re�nement

from ASM �rst to ASM

0

and then to ASM

00

.

Setion 6.6 �nally disusses some related work. Corretness in the sense, that both ASMs make

the same outputs during runs (\behavioral orretness") is is identi�ed as a speial ase of trae

orretness.

21
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6.1 Data Re�nement

6.1.1 De�nition

The simplest ase of a re�nement of a sequential ASM is \data re�nement" ([Hoa72℄). The idea is

to transform an \abstrat" set of states S in ASM to a more \onrete" state set S

0

in ASM

0

(this

idea is also the basis of many purely algebrai re�nement notions). If a state from S e.g. stores a

set of elements, then the state in S

0

that represents it ould store a list of the same elements. In

data re�nement the onnetion between states is usually given by an abstration funtion

abstr : S

0

! S

that maps onrete states to abstrat ones. The funtion may be partial, sine not every onrete

state must represent an abstrat one (e.g. only dupliate-free lists ould be used as representations

of sets). The funtion also does not need to be injetive, sine several onrete states may represent

the same abstrat one (in the example [1,2℄ and [2,1℄ would represent the same set). The state

transition funtion �

0

of ASM

0

has to be hosen in this kind of re�nement, suh that it ahieves

the same e�et on onrete states as � of ASM on abstrat ones. This an be formalized as

abstr(x

0

) = x ^ : �nal(x) ^ : �nal

0

(x

0

)

! hRULE(;x)i hRULE

0

(;x

0

)i abstr(x

0

) = x

(6.1)

in DL (where x and x

0

are two disjoint vetors of program variables, that result from the translation

of dynami funtions from the two ASMs). Informally the equivalene of rule appliations an be

desribed as the ommutativity of the diagram in Fig. 6.1.

x

1

� //
OO

abstr

x

2OO

abstr

x

0

1

�

0

//
x

0

2

�

Figure 6.1 : Commuting 1:1 Diagram

Sine one rule appliation of ASM is equivalent to one of ASM

0

, both systems work synhronously.

The fat, that (6.1) is the main riterion suÆient for the equivalene of ASM and ASM

0

is shown

by indution on the number of exeuted steps. Informally ommuting diagrams are put together

as shown in Fig. 6.2:

x

0

� //
OO

abstr

x

1OO

abstr

� //
: : :

� //
x

k�1

� //
OO

abstr

x

kOO

abstr

x

0

0

�

0

//
x

0

1

�

0

//
: : :

�

0

//
x

0

k�1

�

0

//
x

0

k

Figure 6.2 : Commuting 1:1 Diagrams

For the indution base it is required, that initial states are onneted by the abstration

funtion:

IN(x,x

0

) ! abstr(x

0

) = x (6.2)
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Normally this is guaranteed by simply de�ning IN (x; x

0

) as abstr(x

0

) = x. Finally it is needed,

that two �nal states deliver the same output

abstr(x

0

) = x ^ �nal

0

(x

0

) ^ �nal(x) ! OUT(x,x

0

) (6.3)

and that both ASMs reah their �nal states simultaneously:

abstr(x

0

) = x ! (�nal(x) $ �nal

0

(x

0

)) (6.4)

Putting everything together we get the theorem

Theorem 1 orretness and ompleteness for data re�nement

The validity of the four proof obligations (6.1), (6.2), (6.3) and (6.4) implies the orretness and

ompleteness of the re�nement from ASM to ASM

0

(6.1) ^ (6.2) ^ (6.3) ^ (6.4) ) ASM

./

ASM

0

6.2 The Modularization Theorem

6.2.1 Informal Desription

In this setion we give a generi theorem for the modularization of equivalene proofs for re�ne-

ments of sequential ASMs. We will �rst give an informal orretness proof. Then we will sketh its

formalization in KIV. Finally we will also show a proof for the �rst-order formalization of ASMs.

This will assure, that the theorem is independent of the formalization of ASMs.

The basi idea of the theorem is shown most easily by looking at the ommuting diagram, that

desribes the equivalene of two ASMs. To modularize the proof, we deompose the diagram into

subdiagrams, as it is shown in Fig. 6.3. Edges onneting states represent an (arbitrary!) relation

INV, that we all the oupling invariant. The basi assumption, underlying a modularization of

// // // // // // // aa
OUT

!!C
CC

CC
CCC

//��
IN

OO

// // // //
�

// // //

// //cc

INV

##G
GGGGGGGG cc

##G
GGGGGGGG // //;;

{{wwwwwwwww ;;

INV

{{wwwwwwwww
//cc

##G
GGGGGGGG cc
INV

##G
GGGGGGGG // //;;

INV

{{wwwwwwwww ;;

{{wwwwwwwwwcc
INV

##G
GGGGGGGG

//
�

��
INV

OO

// //
�

//
�

//
�

// //
�

//

Figure 6.3 : deomposition of the full diagram (above) in subdiagrams (below) using a oupling

invariant

this kind is, that the orrespondene between two omputations of the ASMs an be redued to

the orrespondene of suitable \subomputations" (i.e. �nite sequenes of rule appliations), that

both ASMs do in the same order. Corresponding \similar" states are haraterized by the ou-

pling invariant. This orrespondene automatially deomposes the full diagram into subdiagrams

(simply onnet orresponding states). For pratial ases it is helpful, to also name orresponding

sequenes of rule appliations. This helps to understand how the ommuting diagrams look, and
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we will of ourse do this in the Prolog-WAM-ase study. But for the formalization it is redundant

to give orresponding rule sequenes.

Sine we allow full freedom in the de�nition of the oupling invariant, a subomputation an

onsist of an arbitrary number of rule appliations. The number an even depend on the values of

ertain program variables. As an important speial ase some subomputation of one ASM may

be dropped in the other altogether. This ase results in triangular diagrams.

The basi assumption, that both ASMs run through orresponding subomputations, need not

always be ful�lled (ASM

0

ould be the result of an arbitrary program transformation on ASM,

e.g. ASM

0

ould do the omputation steps of ASM in reverse order). But for many ases the

assumption is valid, espeially in ompiler veri�ation, where orresponding subomputations are

a natural result of exeuting orresponding parts of the ompiled program.

The idea for the modularization theorem therefore is: Given a deomposition of the full diagram

into subdiagrams, then ommutation of all subdiagrams implies equivalene of both ASMs.

6.2.2 De�nition of the Theorem

To turn the idea into a theorem, we will now

1. formally speify how to deompose diagrams into subdiagrams in DL

2. give proof obligations for the ommutativity of subdiagrams

3. formally state and prove the modularization theorem

We assume, that we are given ASM and ASM

0

translated to DL as ASM(x) and ASM

0

(x

0

)

with two disjoint vetors x and x

0

of variables. A orrespondene between states will then be

given as a oupling invariant, i.e. a DL formula INV (x; x

0

) with free variables in x [ x

0

. De�ning

the edges of subdiagrams to be those pairs of states (x; x

0

) for whih INV holds already gives a

suitable deomposition of the diagram into subdiagrams. If there are no triangular diagrams, it is

suÆient to show, that for eah pair of non�nal states, a ommuting (sub-)diagram as shown in

Fig. 6.4 an be attahed.

OO

INV

��

//
9 i

// \\

INV

��8
88

88
88

88

//
9 j

�

// //

Figure 6.4 : generi ommuting diagram

The size of the diagram need not be given expliitly, it is suÆient to show, that there are

positive numbers of rule appliations for both ASMs, suh that INV holds again in the resulting

states. Formalized as a DL formula this results in the following proof obligation (the preondition

ndt(x; x

0

) =mn an be ignored, it will be explained in the following):

INV(x, x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! 9 i > 0. hloop if : �nal(x) then RULE(;x) times ii

9 j > 0. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji

INV(x, x

0

)

(6.5)

An additional problem ours when triangular diagrams are present. Then it must be prohib-

ited that the whole diagram onsists solely of triangular ones as shown in Fig. 6.5 and 6.6. In the

�rst ase ASM

0

ould have an in�nite run, while ASM would not make a single step, whih would

violate ompleteness. Similarly, the seond ase would violate orretness.
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gg
INV

''OOOOOOOOOO

//vv

INV

66mmmmmmmmmmmmmmm //}}

==||||||||| //��

OO

//!!

. . .

aaBBBBBBBBB
: : :

Figure 6.5 : in�nite sequene of 0:n diagrams

//hh

INV

((QQQQQQQQQQQQQQQ //aa

!!B
BB

BB
BB

BB
//OO

��

//==

. . .

}}||
||

||
||

|
: : :

ww INV

77oooooooooo

Figure 6.6 : in�nite sequene of m:0 diagrams

Sine triangular diagrams often our in appliations as results of optimizations, we must

restrit the number of possible suessive triangular diagrams. To do this, we �rst have to deide

for every pair of states (x; x

0

), for whih INV holds, whih type of diagram follows:

� An m:n diagram, where both ASM and ASM

0

make a positive number of steps,

� An m:0 diagram, where only ASM makes a positive number of steps, or

� a 0:n diagram, where only ASM

0

makes a positive number of steps

For this purpose we introdue a funtion ndt ("`next diagram type"'), whih returns for every

pair of states (x; x

0

), for whih INV holds, an element from fmn,m0,0ng. To implement the

restrition on the number of suessive m:0 diagrams we use a funtion exem0. For (x; x

0

) with

INV (x; x

0

) and ndt(x; x

0

) =m0 the result of ndt(x; x

0

) should be a natural number that bounds

the number of suessive m:0 diagrams.

Proof obligation (6.5) now onsiders the ase of m:n diagrams and therefore gets the additional

preondition ndt(x; x

0

) =mn. For m:0 diagrams we have the following proof obligation:

INV(x, x

0

) ^ : �nal(x) ^ ndt(x, x

0

) = m0 ^ exem0(x, x

0

) = k

! 9 i > 0. hloop if : �nal(x) then RULE(;x) times ii

( INV(x, x

0

)

^ (: �nal(x) ^ ndt(x, x

0

) = m0 ! exem0(x, x

0

) < k))

(6.6)

It says, that a m:0 diagram must preserve the oupling invariant, and if another m:0 diagram

follows, then the value of of exem0 must have dereased (if exem0 (x; x

0

) = k, then at most k+1

suessive m:0 diagrams are possible). For 0:n diagrams we get the following dual proof obligation:

INV(x, x

0

) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ^ exe0n(x, x

0

) = k

! 9 j > 0. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji

( INV(x, x

0

)

^ (: �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ! exe0n(x, x

0

) < k))

(6.7)

Note that the proof obligation for m:0 diagrams does not assume, that ASM

0

is not in a �nal

state. It is possible (and indeed does our in the Prolog-WAM ase study, see Set. 13.2) that

ASM

0

has already terminated, while ASM is still doing \superuous" steps (suh a situation is

not possible in data re�nement). But in this ase it must be required that only m:0 diagrams are

possible:

INV(x, x

0

) ^ : �nal(x) ^ �nal

0

(x

0

) ! ndt(x, x

0

) = m0 (6.8)
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Dually it has to be shown for n:0 diagrams that

INV(x, x

0

) ^ �nal(x) ^ : �nal

0

(x

0

) ! ndt(x, x

0

) = 0n (6.9)

To onnet the oupling invariant to the input/output relation of the re�nement, we �nally have

to require

IN(x, x

0

) ! INV(x, x

0

) (6.10)

and

INV(x, x

0

) ^ �nal(x) ^ �nal

0

(x

0

) ! OUT(x, x

0

) (6.11)

similar to proof obligations (6.2) and (6.3) for data re�nement. With these proof obligations we

an now state the modularization theorem.

Theorem 2 Modularization Theorem for Sequential ASMs.

Given a re�nement from ASM to ASM

0

of deterministi ASMs, a prediate INV and funtions

ndt, exe0n, exem0, suh that the proof obligations (6.5), (6.6), (6.7), (6.8), (6.9), (6.10) and

(6.11) hold, then the re�nement is orret and omplete:

ASM deterministi ^ ASM

0

deterministi

^ (6.5) ^ (6.6) ^ (6.7) ^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

./

ASM

0

Before we disuss the proof of the theorem, here are some remarks on how it is applied:

� The theorem does not require to verify separate proof obligations for orretness and om-

pleteness.

� The main diÆulty in applying the theorem is to �nd a suitable oupling invariant. The

type of the following subdiagram usually follows simply from whih ase of the rules of ASM

and ASM

0

is exeuted in the pair (x; x

0

) of states. exem0 (and similarly exe0n) usually

is onstantly 0, i.e. an m:0 diagram is never followed by another. Otherwise the result of

exem0 often is the size of a datastruture (e.g. a stak) from the state of ASM, that is

urrently redued (e.g. to the empty stak).

� Data re�nement is the simple speial ase, in whih INV (x; x

0

) � abstr(x

0

) = x and ndt is

onstantly mn (no triangular diagrams). The proof obligation (6.1) from data re�nement is

then the ase of (6.5), where both i and j are instantiated by 1. (6.4) follows trivially from

(6.8) and (6.9).

� The subdiagrams resulting from the deomposition have the same form as the original dia-

gram. It is therefore possible to apply the modularization theorem reursively on the subdi-

agrams. This was done in the Prolog-WAM ase study for the re�nement 5/6 onsidered in

Set. 15.2.



6.2. THE MODULARIZATION THEOREM 27

6.2.3 The Proof of the Theorem

The proof of the modularization theorem onsists of two parts. In the �rst part it is shown, that

the proof obligations imply orretness, in the seond that they imply ompleteness. Both proofs

are dual (only the roles of ASM and ASM

0

are exhanged) therefore we only onsider the proof

for orretness.

The proof is done by reduing the orretness assertion to a property, that an be shown by

indution over the number of applied rules in ASM

0

. To state this properties easily, we denote by

x

i

the state of ASM that results from i rule appliations, when starting in x. In DL, x

i

an be

formally de�ned as

y = x ! hloop if : �nal(y) then RULE(;y) times iiy = x

i

(note, that for a �nal state x, we have x

i

= x). Now we de�ne a property PROP by

PROP(x, x

0

) $ 9 i, j. INV(x

i

, x

0

j

)

Informally, PROP says that (x; x

0

) is a pair of states, suh that there is a number i of rule

appliations of ASM and a number j of rule appliations of ASM

0

, suh that for the states x

i

and

x

j

reahed then the oupling invariant holds. For this property the following lemma holds:

Lemma 1 PROP is an invariant of ASM

0

: If x, x

0

are two states of ASM and ASM

0

with

INV (x; x

0

), then PROP(x; x

0

k

) will hold for all states x

0

k

, that are reahed during the run of

ASM

0

(starting from x

0

).

Proof of Lemma 1 The proof is by indution over the number k of applied rules. The base ase

(k = 0) is trivial. In the indution step we an assume two states x, x

0

with INV (x; x

0

) and two

values i and j suh that INV (x

i

; x

0

k+j

), and we have to �nd i

0

and j

0

, so that INV (x

i

0

; x

0

(k+1)+j

0

)

holds. The ase j 6= 0 is simple with i

0

:= i, j

0

:= j � 1 as well as the ase where x

0

k

is already

a �nal state. Otherwise we need Lemma 2 desribed below, to dedue from INV (x

i

; x

0

k

) that we

an onstrut an i

00

� 0 with INV (x

i+i

00

; x

0

k

) and either ndt(x

i+i

00

; x

0

k

) 6= m0 or �nal(x

i+i

00

; x

0

k

).

In the �rst ase assumptions (6.5) and (6.7) guarantee the existene of i

000

� 0 and j

000

> 0 suh

that INV (x

i+i

00

+i

000

; x

0

k+j

000

) holds. Therefore we an hoose i

0

:= i

00

+ i

000

, j

0

:= (j

000

� 1). In the

other ase beause of (6.9) a 0:n diagram follows and the proof follows with (6.7) as above. 2

The proof uses the following lemma, that says, that two orresponding states an be followed

by only �nitely many m:0 diagrams. The state thereby reahed by ASM is x

i

.

Lemma 2 For every two states x, x

0

with INV (x; x

0

) there is an i � 0, suh that INV (x

i

; x

0

) and

either ndt(x

i

; x

0

) 6= m0 or �nal(x

i

) hold.

Proof of Lemma 2 In the ase, that ndt(x; x

0

) is equal to m0 and we do not already have

�nal(x) (otherwise the theorem holds with i := 0), the proof is by (noetherian) indution on the

size of exem0(x; x

0

). (6.6) implies that there is an i

0

> 0, suh that INV (x

i

0

; x

0

) and either

exem0 (x

i

0

; x

0

) has beome smaller or ndt(x

i

0

; x

0

) 6= m0. In the �rst ase the statement follows

from the indution hypothesis, in the seond i := i

0

is suÆient. 2

Proof of Theorem 2 Using lemmas 1 and 2 the proof of the orretness of the re�nement is as

follows: Let (x

0

; x

0

1

; : : : x

0

k

) be an arbitrary terminating run of ASM

0

(so we have �nal

0

(x

0

k

)) and

x a state with IN(x; x

0

). Then (6.10) implies INV(x; x

0

). Now Lemma 1 implies, that there are i, j,

suh that INV (x

i

; x

0

k+j

) holds. Beause of de�nition we have x

0

k+j

= x

0

k

, therefore INV(x

i

; x

0

k

)

holds. With Lemma 2 we get an i

0

, suh that INV(x

i+i

0

; x

0

k

) and either ndt(x

i+i

0

; x

0

k

) 6= m0 or

�nal(x

i+i

0

). The �rst ase is impossible beause of (6.8), therefore x

i+i

0

is a �nal state too, and
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we have a terminating run of ASM. (6.11) �nally implies that at the end we have OUT(x

i+i

0

; x

0

k

).

2

From the proof of the modularization theorem we immediately get

Corollary 1 If it is possible, to verify a re�nement by deomposing it into m:n diagrams, then

there is also a possibility to verify it using 1:1, 0:1 and 1:0 diagrams.

As the new oupling invariant simply hoose PROP. Of ourse to really hoose the stronger

deomposition into smaller diagrams is not a good idea for pratial appliations, sine then part

of the generi proof has to be done when verifying the proof obligations. Proofs will get even

bigger, when one tries to avoid rule appliations (or equivalently DL programs) in PROP. This is

possible when all diagrams have a �xed size (that is independent of the size of data strutures in

the ASMs). Then a funtion nextij an be de�ned that omputes for two states the numbers i and

j of rule appliations, that are neessary to reah two states again, for whih INV holds. Instead

of using quanti�ation over all possible i and j, we an then formulate PROP as a onjuntion

over the formulas

nextij(x,x') = (i,j) ! INV(x

i

, x

0

j

)

where (i; j) runs through all onrete values, that are less than the maximal diagram size. Finally,

the rule appliations of ASM must be removed from the formulas x

i

(and similarly for the x

0

j

)

by symboli exeution (this is possible, sine i is now a onrete number in eah ase). The

result is a oupling invariant whih is suÆient to show re�nement orretness. But sine INV is

the onjunt for (i; j) = (0; 0), the omputed new oupling invariant is unneessary ompliated,

unless the original deomposition used no other than 1:1, 0:1 and 1:0 diagrams. In general it is

therefore a good idea in pratial appliations to make diagrams as large as possible, to have a

small oupling invariant. Two ases in the Prolog-WAM ase study that exemplify this fat are

the re�nements 2/3 and 3/4 (see the remarks at the end of Set. 13.2, and the omparison of e�ort

for the two re�nements in KIV vs. in Isabelle in Set. 20).

6.2.4 Formalization of the proof in DL

It is possible to formalize the proof of the modularization theorem given above in DL. Property

PROP is then de�ned as

PROP(x, x

0

) �

9 i, j. hloop if : �nal(x) then RULE(;x) times ii

hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji INV(x, x

0

)

(6.12)

The formal proof of the modularization theorem required 452 proof steps and 64 interations in

KIV. Half of these were neessary to show orretness, the other half to show ompleteness of the

re�nement. The numbers inlude proofs of elementary fats suh as (x

i

)

i

0

= x

i+i

0

. By instantiation

(atualization) the modularization theorem an be applied on every onrete ASM re�nement. The

full formal spei�ation and the proved theorems and lemmas are given in appendix C.2. Theorems

orr-step and �nite-0n from the appendix orrespond to the Lemma 1 and to the ase ndt(x; x

0

) =

0n of Lemma 2.

6.2.5 Formalization of the Proof in First-Order Logi

The proof of the modularization theorem an also be formalized in �rst-order logi. This �rst

requires to formalize state transition relations as a datatype (in higher-order logi this step an

be dropped). The simplest formalization uses the datatype of dynami funtions from Set. 4. A

relation is a dynami funtion r that assigns a boolean result to a pair st

1

� st

2

of states. r[st

1
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� st

2

℄ holds if and only st

2

is a possible suessor state of st

1

. The state transition relation � of

an ASM then is a onstant of this datatype. Sine we onsider sequential ASMs, � will ful�ll the

funtionality axiom

�[st

1

� st

2

℄ ^ �[st

1

� st

3

℄ ! st

2

= st

3

The prediate �nal, that haraterizes �nal states, is de�ned as

�nal(st) � : 9 st

0

. �[st � st

0

℄

To formalize the proof in �rst-order logi we must then formalize the semantis of the ASMs. To

de�ne i-fold rule appliation, a relation �

i

is de�ned by

�

0

[st

1

� st

2

℄ $ st

1

= st

2

�

i+1

[st

1

� st

2

℄ $ 9 st

0

. �

i

[st

1

� st

0

℄ ^ �[st

0

� st

2

℄

The relation �

i

orresponds to the semantis of

loop if : �nal(st) then RULE(st) else abort times i

in DL. Finally we an de�ne the input/output relation �

�

of the ASM as

�

�

[st

1

� st

2

℄ $ 9 i. �

i

[st

1

� st

2

℄ ^ �nal(st

2

)

Again this orresponds to the semantis of the while loop in DL. The proof obligations and the

�rst-order proofs then an be got from the DL version by simply replaing

9 i. hloop if : �nal(st) then RULE(st) times ii '(st)

with

9 i,st

0

. �

i

(st,st

0

) ^ '(st

0

)

(using a new variable st

0

). The e�ort for doing the proofs in �rst-order logi in KIV was with

98 interations somewhat higher than in DL. The main reason for this is, that DL automates the

omputation of the neessary iterations of a while loop with heuristis, while in the �rst-order

variant this number has to be given interatively by quanti�er instantiation. The number of proof

steps for the �rst-order variant is 247, whih is somewhat less than in DL, sine appliations of

tatis for DL programs are now replaed by appliations of rewrite rules, and one appliation of

the simpli�ation tati will often apply several rewrite rules in one step.

6.3 Trae Corretness

The de�nition of re�nement orretness given in Chap. 5 was based on a omparison of the in-

put/output behavior of the two ASMs. An alternative is to ompare the traes of the ASMs. In

the simplest ase there is an abstration funtion abstr (like in data re�nement, see Set. 6.1), suh

that for every run (x

0

0

; x

0

1

; : : :) of ASM

0

(abstr(x

0

0

); abstr(x

0

1

); . . . ) is a run of ASM. The main

di�erenes to our de�nition: Already the de�nition of re�nement orretness mentions an abstra-

tion funtion, and not only �nite but also in�nite runs are onsidered. In a orret re�nement it
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is no longer allowed to implement a terminating run by a nonterminating one. For deterministi

ASMs this restrition is not very important, sine in a omplete re�nement the implementation of

a terminating run by a nonterminating one is impossible. But for indeterministi (e.g. distributed)

ASMs whih will be onsidered in the next setion there is a major di�erene. The di�erene an

be exempli�ed by looking at the re�nement of the deterministi ASM de�ned by the rule

RULE(var init,b) �

if init then b := false, init := false

to the indeterministi ASM

0

de�ned by the rule (the DL statement b := ? \guesses" a boolean

value. It is equivalent to the hoose statement of ASMs as de�ned in Set. 4.2 in [Gur95℄)

RULE

0

(var init,b) �

if init then b := ?, init := false else if b then b := b

For an initial state with b = init = true ASM has exatly one trae, that applies RULE one,

setting b and init to false, and terminates (sine RULE is no longer appliable). The same run is

possible in ASM

0

too, if the �rst rule appliation hooses b = false. But ASM

0

has an additional

nonterminating run, when the hoie b = true is taken. In this run RULE

0

is applied in�nitely

often without hanging the state (b = true and init = false) any more.

The re�nement is orret and omplete in the sense of our de�nition (when both the IN and

OUT relation are hosen to be identity), sine for every �nite run of one of the ASMs there is a

suitable �nite run of the other. But the re�nement is not trae-orret, sine for the in�nite run

of ASM

0

there is no orresponding run in ASM.

Whether the re�nement is viewed as orret in an intuitive sense depends on whether the whole

run or only the result of an ASM an be observed. If only results are relevant, then the re�nement

is orret, sine ASM

0

does not deliver any other results than ASM. But if both ASMs are viewed

as reative systems, and an observer an view and ompare at least some of the intermediate

states, then the re�nement should not be onsidered to be orret.

Therefore we de�ne at this point the notion of \trae orretness", suh that it is general

enough to be usable for indeterministi ASMs. Instead of using abstration funtions, we again

use the more general notion of \orresponding states" de�ned by a oupling invariant. We require,

that for a trae-orret re�nement, that for every run of ASM

0

there exists a orresponding run

of ASM and intermediate (\observable") pairs of states, for whih the oupling invariant holds.

For a �nite run, we require the run of ASM and the number of orresponding states to be �nite.

Also the last pair of states should then be the two �nal states. For an in�nite run, we require an

in�nite run of ASM and an in�nite number of orresponding states. Formally this gives

De�nition 2 A re�nement of ASM to ASM

0

is trae-orret, in short ASM

�

ASM

0

, if there is a

oupling invariant INV (x; x

0

), suh that

� for every �nite run (x

0

0

; x

0

1

; : : : ; x

0

m

) of ASM

0

(with x

0

m

2 F

0

) and for every x

0

with

IN (x

0

; x

0

0

) there is a �nite run (x

0

; x

1

; : : : ; x

n

) of ASM (with x

n

2 F ) and two stritly

monotoni sequenes of natural numbers (i

0

; i

1

; : : : ; i

p

) and (j

0

; j

1

; : : : ; j

p

) of the same length,

suh that i

p

= m, j

p

= n and for all k � p INV (x

i

k

; x

0

j

k

) holds.

� for every in�nite run (x

0

0

; x

0

1

; : : :) of ASM

0

and every state x

0

suh that IN (x

0

; x

0

0

) there is

an in�nite run (x

0

; x

1

; : : :) of ASM and two in�nite, stritly monotoni sequenes of natural

numbers (i

0

; i

1

; : : :) and (j

0

; j

1

; : : :), suh that for all n INV (x

i

n

; x

0

j

n

) holds.

� (6.11) holds, i.e. for every pair of �nal states the oupling invariant implies OUT.

The pairs of states omparable with the oupling invariant are (x

i

0

; x

i

1

; : : :) and (x

j

0

; x

j

1

; : : :).

The de�nition immediately implies

Theorem 3 Relations between Corretness and Trae Corretness.

For every two abstrat state mahines ASM and ASM

0

:
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stream =

enrih Dynfun[nat,state℄ with

funtions ons : state � stream ! stream;

dr : stream ! stream;

variables st : state; s : stream;

axioms ons(st,s)[0℄ = st,

ons(st,s)[m +1℄ = s[m℄,

dr(s)[m℄ = s[m +1℄

end enrih

Figure 6.7 : Spei�ation of Streams

� ASM

�

ASM

0

) ASM

.

ASM

0

.

� ASM

0

deterministi ^ ASM

./

ASM

0

) ASM

�

ASM

0

To formalize the de�nition of trae orretness in DL, we �rst need a formal de�nition of the

traes of an ASM. For this purpose we use the enrihment of dynami funtions given in Fig. 6.7.

For an ASM rule RULE with state argument st a stream s is a trae of the ASM (with initial

state s[0℄), if the prediate Trae(s) de�ned by

Trae(s) �

8 m, st. st = s[m℄ ! hif : �nal(st) then RULE(;st)i st = s[m +1℄

holds. The de�nition depends on the hosen ASM rule RULE and is suh that a �nite trae (st

0

,

st

1

, . . . , st

m

) orresponds to a stream s with s[k℄ = st

k

for k � m and s[k℄ = st

m

for k > m

(beause of the test for : �nal(st)). With this de�nition, the requirement of trae orretness

relative to some INV an then be formalized as

8 s

0

. Trae

0

(s

0

)

! 9 s. Trae(s)

^ 8 m, k. 9 i, j. i � m ^ j � k ^ INV(s[i℄,s

0

[j℄)

^ (�nal(s[i℄) $ �nal

0

(s

0

[j℄))

(6.13)

In the formula Trae

0

is the prediate for RULE

0

of ASM

0

and Trae is the prediate forRULE of

ASM. Note that \INV holds in�nitely often" is formalized as \for every two positions m; k in both

traes, there are two larger ones, for whih INV holds" as it is usual in temporal logi (\in�nitely

often '" � 23'). The ase distintion over �nite and in�nite runs is unneessary beause of

our formalization of traes (that extends �nite to in�nite runs that repeat the �nal state). The

requirement �nal(s[i℄) $ �nal

0

(s

0

[j℄) is for the speial ase of �nite runs.

We will now show, that the di�erene between orretness and trae orretness is minimal,

sine the proof obligations for orretness already imply trae orretness for the oupling invariant.

Informally the reason for this is simply, that our deomposition of the whole ommuting diagram

in ommuting subdiagrams does not require �niteness of the traes. Also the deomposition does

neither allow n:1 diagrams nor in�nitely many suessive 0:n diagrams. If we analyze the proof

for the modularization theorem, we �nd that the ondition, that we must have only �nitely many

suessive 0:n diagrams (i.e. that the value of exe0n in proof obligation (6.7) dereases) is not

neessary for orretness, but for ompleteness as well as for trae orretness. Formally we have

the following theorem:

Theorem 4 Trae Corretness for sequential ASMs

If all proof obligations of theorem 2 hold, then the re�nement of ASM to ASM

0

is also trae-orret
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for the oupling invariant INV :

(6.5) ^ (6.6) ^ (6.7) ^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

�

ASM

0

To prove the theorem we de�ne

INV

0

(st,st

0

) � INV(st,st

0

) ^ (�nal(st) $ �nal(st

0

))

and show as a �rst lemma, that for every pair of states with INV two more an be reahed in the

further run of the ASMs with INV

0

:

Lemma 3 If the proof obligations of Theorem 2 hold, and if for a state st of ASM and a trae s

0

of ASM

0

INV(st; s

0

[0℄) holds, then there are a trae of ASM starting with s[0℄ = st and numbers

i; j � 0, suh that INV

0

(s[i℄; s

0

[j℄) holds.

Proof of Lemma 3 For the proof 4 ases have to be onsidered. The two ases in whih st and

s

0

[0℄ are either both �nal states or both non�nal states are trivial with i = j := 0. If st is a �nal

state, but not s

0

[0℄, then aording to Lemma 2 there is an i, suh that INV(s[i℄; s

0

[0℄) holds, and

we have either �nal(s[i℄) or ndt(s[i℄; s

0

[0℄) 6= m0. Sine the seond ase is impossible beause of

proof obligation (6.8), the proof is ompleted with j := 0 in the �rst ase. Finally we have the

fourth ase in whih s

0

[0℄ is a �nal state, but not st. This ase follows similarly with the dual

lemma of Lemma 2. 2

Using the lemma we are now able to prove, that whenever we have two states with INV

0

, we

an add a diagram with a positive number of steps for both ASMs, suh that INV

0

holds again

at the end.

Lemma 4 If the proof obligations for Theorem 2 hold, and if for a state st of ASM and a trae s

0

of ASM

0

INV

0

(st,s

0

[0℄) holds, then there are a trae s of ASM with s[0℄ = st and numbers i; j > 0,

suh that again INV

0

(s[i℄; s

0

[j℄) holds.

Proof of Lemma 4 If both �nal(st) and �nal

0

(s

0

[0℄) hold, then we have s

0

[1℄ = s

0

[0℄ and

s[1℄ = s[0℄ = st for an arbitrary trae s starting with st. Therefore i = j := 1 will be suÆient to

prove the goal. Otherwise both states are non�nal, and we have 3 ases:

� ndt(st,s

0

[0℄) = mn. Then (aording to proof obligation (6.5)) after i > 0 steps of ASM and

j > 0 steps of ASM

0

two states are reahed suh that INV(s[i℄; s

0

[j℄) holds, and the goal

follows with Lemma 3 above.

� ndt(st; s

0

[0℄) = m0. Lemma 2 give i > 0, suh that INV (s[i℄; s

0

[0℄) and ndt(s[i℄; s

0

[0℄) 6=

m0 hold. If now ndt(s[i℄; s

0

[0℄) = mn, the goal follows as in the previous ase. Otherwise

ndt(s[i℄; s

0

[0℄) = 0n, and the next 0:n diagram (aording to proof obligation (6.7)) gives

j > 0, suh that INV (s[i℄; s

0

[j℄) holds. Again the goal is now implied by Lemma 3.

� ndt(st; s

0

[0℄) = 0n. This ase is dual to the previous one.

2
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Figure 6.8 : ommuting diagrams in the proof of trae orretness

Proof of Theorem 4 The proof is done by indutively adding m:n diagrams with m;n > 0,

that keep INV

0

valid, using Lemma 4 in the indution step. Formally we onstrut in the k

th

step

a trae s

k

and two strit monotone sequenes (i

0

; : : : i

k

) and (i

0

; : : : i

k

) suh that for all p � k

INV

0

(s

k

[i

p

℄, s

0

[j

p

℄)

holds. The trae s

k

ontains k ommuting diagrams as shown in diagram 6.8.

The indution base follows from Lemma 3, sine in two initial states of the ASMs the oupling

invariant holds. The indution step follows from Lemma 4 using the axiom of hoie of higher-order

logi

(8 x. 9 y. p(x,y)) ! 9 f. 8 x. p(x,f(x))

The axiom is used, to turn the possibility of adding a ommuting diagram (in Appendix C.3

formalized as the prediate p) into a funtion, whih onstruts the next traes

k+1

, and the next

numbers i

k+1

and j

k+1

from the previous ones. Finally we de�ne the trae s that is needed in the

theorem by s[k℄ := s

k

[k℄. s agrees with every s

k

until position i

k

(� k). Choosing positions i and

j in the theorem to be i

max(m;n)

and j

max(m;n)

is suÆient to prove it, sine both are greater or

equal to m and n. 2

The indutive onstrution of tuples (onsisting of s

k

, i

k

and j

k

) makes the formal proof of

trae orretness in KIV somewhat more elaborate than the proof of orretness. Altogether the

proof for the most general ase (indeterministi ASMs with diagrams of indeterministi size, whih

we will onsider in the next setion) required 412 proof steps and 138 interations (not inluding

Lemma 2, on whih the proof was based). A full listing of the theorems and lemmas proved an

be found in appendix C.3.

For the speial ase, in whih all diagrams are 1:n or 0:n (i.e. the ase, in whih proof obligations

(6.5) and (6.6) are both provable with i := 1) all states of ASM are observable (i.e. all states of

ASM are onneted with INV to some state of ASM

0

). We an then de�ne a orollary for this ase

in whih the sequene (i

0

, i

1

, . . . ) is speialized to be (0,1, . . . ). A similar orollary is possible for

the dual ase of m:1 and m:0 diagrams. Sine data re�nement (1:1 diagrams) is in the intersetion

of both speial ases, the orollaries imply that for data re�nement INV (x

n

; x

0

n

) holds for every

n.

6.4 Extensions for Indeterministi ASMs

In this setion we will onsider arbitrary indeterministi ASMs instead of sequential ones. Dis-

tributed ASMs, that were desribed in Set. 4.4 are an important example for indeterminism. Also

the extension with a CHOOSE onstrut (as desribed in [Gur95℄, Set. 4.1) that orresponds to

the random assignment in DL results in ASMs that are indeterministi. In the next subsetion,

we will desribe how the modularization theorem of the previous setion an be adapted to inde-

terministi ASMs. The seond subsetion then gives an example of diagrams of indeterministi

size. The adaptions disussed to handle this ase are more omplex than the ones disussed in the
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�rst subsetion, sine there it is assumed that the size of a diagram an be omputed from the

knowledge about the initial states alone.

6.4.1 Adaption of the Modularization Theorem to Indeterministi ASMs

A �rst look at the basi ideas underlying the modularization theorem gives the impression, that

deomposing diagrams into smaller diagrams should be possible for indeterministi ASMs in the

same way as for deterministi ones.

But if one analyses the proof of the previous setion, it beomes lear that the determinism of

ASM was essential to express the ommutativity of a subdiagram as one proof obligation.

This an be shown by looking at proof obligation (6.5) for m:n diagrams: for an indeterministi

ASM the requirement only says that for two states x and x

0

with INV there exist numbers i, j,

suh that for one possible suessor state x

i

and x

0

j

of eah ASM INV holds again. But for

orretness, we must �nd for every possible suessor state x

0

j

a suitable state x

i

with INV. For

indeterministi ASMs proof obligation (6.5) must therefore be generalized to

INV(x,x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! 9 j > 0. [loop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times j℄

9 i > 0. hloop if : �nal(x) then RULE(;x) times ii

INV(x, x

0

)

(6.14)

The right hand side of the impliation now states that there is a j, suh that for every terminating

possibility to apply j rules of ASM

0

an i exists, suh that after i (suitable!) rule appliations of

ASM the invariant holds again. That this is the suitable generalization, follows from the fat,

that ASMs have no nonterminating rules. Therefore all possibilities to apply j rules terminate

(statements of the form \all runs of a program terminate" require an extension of DL, see the

disussion in [Gol82℄, p. 101).

The proof of ompleteness now requires dually the following proof obligation for m:n diagrams:

INV(x, x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! 9 i > 0. [loop if : �nal(x) then RULE(;x) times i℄

9 j > 0. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji

INV(x, x

0

)

(6.15)

For the ase in whih the next i rules appliable in ASM state x as well as the next j rules

appliable in ASM

0

state x

0

are deterministi, the three onditions (6.5), (6.14) and (6.15) are all

equivalent. If deterministi rules are re�ned by other deterministi rules, then we have to prove

only one obligation (6.5).

The generalization for m:n diagrams an analogously be done for m:0 and 0:n diagrams. But

instead of two proof obligations we only get one. For ompleteness we have to require

INV(x, x

0

) ^ : �nal(x) ^ ndt(x, x

0

) = m0

^ exem0(x, x

0

) = k

! 9 i > 0. [loop if : �nal(x) then RULE(;x) times i℄

( INV(x, x

0

)

^ (: �nal(x) ^ ndt(x, x

0

) = m0 ! exem0(x, x

0

) < k))

(6.16)

for m:0 diagrams. For orretness the weaker ondition (6.6) is still suÆient. Similarly the

orretness proof requires for 0:n diagrams
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INV(x, x

0

) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n

^ exe0n(x, x

0

) = k

! 9 j > 0. [loop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times j℄

( INV(x, x

0

)

^ (: �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ! exe0n(x, x

0

) < k))

(6.17)

whih implies the weaker ondition (6.7), whih is neessary for ompleteness. With the new proof

obligations we an now prove the modularization theorem for indeterministi ASMs:

Theorem 5 Modularization Theorem for Indeterministi ASMs

Given a re�nement of an indeterministi ASM to ASM

0

, a prediate INV and funtions ndt,

exe0n, exem0, suh that proof obligations (6.14), (6.15), (6.16), (6.17), (6.8), (6.9), (6.10), (6.11)

all hold, then the re�nement is orret and omplete.

(6.14) ^ (6.15) ^ (6.16) ^ (6.17)

^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

./

ASM

0

For orretness and trae-orretness it is suÆient to prove (6.14), (6.17), (6.8), (6.9), (6.10),

(6.11) and instead of (6.16) the weaker ondition (6.6):

(6.14) ^ (6.17) ^ (6.6)

^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

�

ASM

0

The proof of orretness and ompleteness of the re�nement is the same as in Set. 6.2.3. The

only di�erene is, that instead of one invariant PROP we now need two dually de�ned properties

KPROP and VPROP, one for the orretness, the other for the ompleteness proof:

KPROP(x, x

0

) �

9 j. [loop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times j℄

9 i. hloop if : �nal(x) then RULE(;x) times ii INV(x, x

0

)

(6.18)

VPROP(x, x

0

) �

9 i. [loop if : �nal(x) then RULE(;x) times i℄

9 j. hloop if : �nal

0

(x

0

) RULE

0

(;x

0

) times ji INV(x, x

0

)

(6.19)

It should be noted, that whenever the proof mentions x

0

k

, this state no longer denotes the

unique state that an be reahed from x

0

in k steps, but some arbitrary state whih an be

reahed in k steps.

6.4.2 Diagrams of Indeterministi Size

An analysis of the proof obligation (6.14) of the previous setion shows, that it does not apture the

most general form of a ommuting m:n diagram with m;n > 0 that is suÆient for the orretness

of a re�nement. The reason is that the proof obligation �xes the number j of rule appliations of

ASM

0

, suh that from all states x

0

j

a state x

i

must be reahable with INV, prior to the exeution

of ASM

0

.

Now it may happen, that the number j of steps neessary, does not only depend on the initial

state, but also on indeterministi \guessing" steps of ASM. To illustrate this phenomenon, let us

onsider the following two ASMs de�ned by RULE and RULE

0

.
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RULE(var x):

if x = 0 then x := 1

RULE

0

(var x):

if x = 0 then hoose y 2 nat in x := y +1 else

if x > 1 then x := x �1

Both are started in a state x = 0, and both terminate in a state with x = 1. In the �rst

step ASM

0

randomly hooses (\guesses") a natural number y, and sets x to this number plus one.

The positive value of x then is deremented by the following rule appliations until 1 is reahed.

Obviously this is equivalent to ASM, whih immediately sets x to 1. Nevertheless there is no

uniform number j of ASM

0

rule appliations, that reah the �nal state (i.e. a state equivalent to

the �nal state of ASM). The number of rule appliations is dependent on the number of x hosen

in the �rst rule appliation.

If one looks at more ompliated re�nements, then it may be the ase that not only one

indeterministi rule appliations at the beginning of a diagram determines its size, but that there

are several, whih inuene the size. Nevertheless it is suÆient for orretness that for eah trae

of ASM

0

eventually a state state is reahed, suh that INV holds again.

To formalize this in DL, we de�ne an Operator AF (�; ')

1

, whih says, that eah iterated

exeution of � will eventually lead to a state in whih ' holds.

Using streams, as they were de�ned in Set. 6.3 we an de�ne AF (�; ') as an abbreviation for

AF(�; ') � 8 s. (Trae(s) ^x = s[0℄ ! 9 m. '[x  s[m℄℄) (6.20)

In the formula, x are the variables modi�ed by �, s is a stream of values of this type, and Trae(s)

is de�ned by

Trae(s) �

8 m, x. x = s[m℄ ! h�ix = s[m +1℄

Instead of using streams, it is also possible to de�ne the operator AF (�; ') semantially:

De�nition 3 A; z j= AF (�,') i� for all sequenes of (z

0

; z

1

; . . . ) of states for whih z

0

= z and

z

i

[[�℄℄z

i+1

hold there is an n suh that A; z

n

j= ' holds.

To axiomatize the new operator we de�ne two properties AF

1

(M) and AF

2

(M; z

0

) for sets

of states M . Both properties presuppose a given algebra A, a �xed program � and a formula '.

The seond property also assumes a �xed (initial) state z

0

.

AF

1

(M) :, eah state z is in M , if A; z j= ' holds, or if all suessor states z

0

(for whih z[[�℄℄

A;z

0

holds) are in M

(6.21)

and

AF

2

(M; z

0

) :, eah state z is in M , if it is reahable from z

0

(i.e. it is on a trae

starting at z

0

) and if A; z j= ' holds or if all suessor states are in M

(6.22)

For the two properties we have the following theorem:

Theorem 6 Charaterisation of AF(�; ')

The set of states, for whih AF (�; ') holds, is equal to the intersetion of all sets M , that have

the property AF

1

(M). In a state z

0

AF (�; ') holds, if and only if it is in the intersetion of all

sets M with AF

2

(M; z

0

).

1

The term AF is from temporal logi, see e.g. [Eme90℄
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Proof of Theorem 6 In the proof let M

0

be the set of all states, for whih AF (�; ') holds,

M

1

:=

T

fM j AF

1

(M)g, andM

2

(z

0

) :=

T

fM j AF

2

(M ,z

0

)g. Then we obviously haveAF

1

(M

0

),

whih implies M

1

�M

0

. Also for eah hoie of z

0

we have that every set M with AF

1

(M) also

has the property AF

2

(M ,z

0

), sine (6.21) implies (6.22) for every z

0

. So eah M

2

(z

0

) is a subset

of M

1

. To omplete the proof, it is therefore suÆient to show, that eah z

0

0

2 M

0

is also in

M

2

(z

0

). If this were not the ase, i.e. z

0

0

62M

2

(z

0

) then we would have a set M with AF

2

(M ,z

0

)

that does not ontain z

0

0

. Now, (6.22) implies that ' does not hold in z

0

0

and that there is a

suessor state z

0

1

whih is not inM either. Continuing in this way, a sequene z

0

0

, z

0

1

, . . . of states

an be onstruted indutively, that are all not in M (but reahable from z

0

0

!), for whih ' does

not hold. But this is a ontradition to z

0

0

2 M

0

. 2

The semanti de�nition of AF (�,') now immediately implies the orretness of the axiom

AF(�,') $ ' _ [�℄AF(�,') (6.23)

The haraterization of AF as the intersetion of all sets M with AF

1

(M) implies that axiom

(8x. ((' _ [�℄ ) !  )) ! (AF(�,') !  ) (6.24)

is valid. The haraterization with AF

2

(M ,z) implies the validity of the stronger axiom

(8 i. [loop � times i℄((' _ [�℄ ) !  )) ! (AF(�,') !  ) (6.25)

This axiom allows, to restrit the states for whih (' _ [�℄ ) !  has to be shown to those,

whih are reahable from the initial state. Formulas (6.23) and (6.25) are suÆient to axiomatize

AF (�; ') to prove the following theorems, so we an avoid to refer to streams by using (6.20).

Using the AF operator we an now set up proof obligations for diagrams of indeterministi size

by shematially replaing formulas of the form \9 i: [loop � times i℄ '" with AF (�,'). This

results in the following formulas:

INV(x, x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! AF(if : �nal

0

(x

0

) then RULE

0

(;x

0

),

9 i > 0. hloop if : �nal(x) then RULE(;x) times ii

INV(x, x

0

))

(6.26)

INV(x, x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! AF(if : �nal(x) then RULE(;x),

9 j > 0. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji

INV(x, x

0

))

(6.27)

INV(x, x

0

) ^ : �nal(x) ^ ndt(x, x

0

) = m0 ^ exem0(x, x

0

) = k

! AF(if : �nal(x) then RULE(;x),

( INV(x, x

0

)

^ (: �nal(x) ^ ndt(x, x

0

) = m0 ! exem0(x, x

0

) < k)))

(6.28)
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INV(x, x

0

) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ^ exe0n(x, x

0

) = k

! AF(if : �nal

0

(x

0

) then RULE

0

(;x

0

),

( INV(x, x

0

)

^ (: �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ! exe0n(x, x

0

) < k)))

(6.29)

Theorem 7 Modularisation Theorem for Unbounded Indeterminism

Given a re�nement of ASM to ASM

0

, a prediate INV and funtions ndt, exe0n, exem0, suh

that all proof obligations (6.26), (6.27), (6.28), (6.29), (6.8), (6.9), (6.10), (6.11) an be shown,

then the re�nement is orret and omplete:

(6.26) ^ (6.27) ^ (6.28) ^ (6.29)

^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

./

ASM

0

To prove trae orretness it is suÆient to prove (6.26), (6.28), (6.8), (6.9), (6.10), (6.11) and

instead of (6.29) the weaker property (6.7). For orretness the ondition, that exe0n dereases,

an be dropped from ondition (6.7).

(6.26) ^ (6.28) ^ (6.7)

^ (6.8) ^ (6.9) ^ (6.10) ^,(6.11)

) ASM

�

ASM

0

The formal proofs in KIV do not hange, only the de�nition of KPROP and VPROP has to

be modi�ed:

KPROP(x, x

0

) �

AF(if : �nal

0

(x

0

) then RULE

0

(;x

0

),

9 i. hloop if : �nal(x) then RULE(;x) times ii INV(x, x

0

))

VPROP(x, x

0

) �

AF(if : �nal(x) then RULE(;x),

9 j. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji INV(x, x

0

))

Instead of the axioms (4.3) for loops the axioms (6.23) and (6.25) for the AF operator are used.

Sine the AF operator urrently is available in KIV only as an abbreviation, the proof of the

modularisation theorem requires some more e�ort as in the deterministi ase (466 proof steps

and 94 interations). The formal spei�ations and the proved theorems and lemmas an be found

in appendix C.3.

We want to �nish this setion with some further remarks on the de�nition of the AF operator;

AF an not be de�ned uniformly as an abbreviation in DL (the extension of DL with streams is

not uniform, sine the datatype of streams depends on the types of the variables modi�ed by �),

sine AF (�,') is equivalent to the statement: The program AF#, de�ned by (x are the variables

ouring in �)

AF#(;var x)

begin

if ' then

begin

�;

AF#(;x)

end

end
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always terminates. Now the fat, that an indeterministi program always terminates, annot be

expressed in DL in general (see [Gol82℄). But there is a speial ase, in whih this is possible

nevertheless:

Theorem 8 Bounded Indeterminism

If � is an always termitating program with only bounded indeterminism, i.e. if for every state z

there are only �nitly many suessor states z

0

with z[[�℄℄z

0

, then:

AF(�,') $ 9 j. [loop if : ' then � times j℄ '

Proof of Theorem 8 For the proof from left to right (the other diretion is trivial) one has to

onsider all traes from a �xed initial state z suh that for all states on the trae : ' holds. These

traes form a tree struture, that aording to the preondition has no in�nite paths. Sine � has

only bounded indeterminism, the tree is �nitely branhing. Now K�onig's Lemma from set theory

(see e.g. [Knu73℄, p. 381{383) implies that the tree is �nite. The length of eah path (trae) is

bounded by the depth d of the tree. Therefore j := d+1 is suÆient to prove the formula on the

right hand side of the equivalene.

Always terminating programs, that have only bounded indeterminism, result from the trans-

lation of distributed ASMs to DL. In ontrast to the ASM from the beginning of the setion,

whih ould hoose one of in�nitely many natural numbers, a distributed ASM has only bounded

indeterminism, sine it always hooses from �nitely many agents. Therefore we do not need the

AF operator in the ase of distributed ASMs.

For the proof obligations this means that we an keep the old proof obligations from the previ-

ous setion. Only the tests : �nal(x) resp. : �nal

0

(x

0

) of the Box-Formulas with loop onstruts

have to be replaed by the more omplex tests

: �nal(x) ^ : '

where ' is the post ondition of the loop. This exploits that we allow arbitrary formulas in the

tests of onditions.

As an example we onsider ASM from the beginning of the setion and ASM

0

with the rule:

RULE

0

(var x):

if x = 0 then hoose b in

if b then x := 3

else x:= 2

else if x > 1 then x := -1

ASM

0

now hooses the value of x indeterministially to be 2 or 3 | now there are �nitely many

hoies. Therefore it is suÆient to show

9 i. [loop if : x = 1

^ : 9 j. hloop if : x

0

= 1 then RULE

0

(; x

0

)i x = x

0

then RULE(; x)℄

9 j. hloop if : x

0

= 1 then RULE

0

(; x

0

)i x = x

0

for orretness. This is possible with i = 3 und j = 1.

6.5 Extensions for Iterated Re�nement

In this setion we are onerned with the problem, that the systemati translation of a program-

ming language to assembler ode often requires several re�nements, that introdue orthogonal

onepts. Now, in the veri�ation of two suessive re�nements ASM

.

ASM

0

.

ASM

00

we often

get oupling invariants INV and INV

0

whih have many ommon parts (we will see examples
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in the Prolog-WAM ase study in Set. 17.2 and 18). The ommon parts onsist of properties of

ASM

0

, whih are relevant for both equivalene proofs. If MINV

0

(x

0

) is a ommon part of INV and

INV

0

our urrent modularization theorem requires, that MINV

0

(x

0

) is shown in both re�nements

to be invariant in ASM

0

. In this setion we give a generi method, that allows us to avoid this

dupliation of proofs. We assume that the equivalene of ASM and ASM

0

has already been proven

with a oupling invariant INV. Then it is easy to see, that the formula

9x. INV(x, x

0

) (6.30)

holds in all states of ASM

0

, whih are at the \orners" of ommuting diagrams of the re�nement.

Now usually it is simple to haraterize these states by a prediateMINVNOW

0

(x

0

), whih onsists

of a disjuntion of ASM

0

rule tests. Then the formula MINV

0

de�ned as

MINVNOW

0

(x

0

) ! 9x. INV(x, x

0

) (6.31)

is an invariant of ASM

0

. Sine every weaker formula is also an invariant, one will usually hoose

a formula that is implied by (6.31) and that does not mention the variables x of ASM anymore.

To make sure, that MINVNOW

0

does indeed haraterize the orners of diagrams, we must

strengthen the onditions of the orretness proof of the re�nement from ASM to ASM

0

(the

ompleteness proof an be left unhanged). In the following we show, how this has to be done in

the indeterministi ase without diagrams of indeterministi size. The speial ase of deterministi

ASMs (Diamonds instead of Boxes) and the generalization to diagrams of indeterministi size (AF

operator instead of Boxes) are treated as in the previous setions.

The two neessary hange are to strengthen the rule tests of ASM

0

with the additional ondition

: MINVNOW

0

(x

0

), and to additionally require MINVNOW

0

(x

0

) in the post ondition. This

assures, that ASM rules are applied as long as :MINVNOW

0

(x

0

) holds. For m:n and 0:n diagrams

this hanges onditions (6.14) and (6.17) to

INV(x,x

0

) ^ : �nal(x) ^ MINVNOW

0

(x

0

) ^ : �nal

0

(x

0

)

^ ndt(x, x

0

) = mn

! [if : �nal

0

(x

0

) then RULE

0

(x

0

) ℄

9 j. [loop if : �nal

0

(x

0

) ^ : MINVNOW

0

(x

0

)

then RULE

0

(x

0

) times j℄

( MINVNOW

0

(x

0

)

^ 9 i > 0. hloop if : �nal(x) then RULE(x) times ii

INV(x, x

0

))

(6.32)

INV(x, x

0

) ^ : �nal

0

(x

0

) ^ MINVNOW

0

(x

0

) ^ ndt(x, x

0

) = 0n

^ exe0n(x, x

0

) = k

! [if : �nal

0

(x

0

) then RULE

0

(x

0

)℄

9 j > 0. [loop if : �nal

0

(x

0

) ^ : MINVNOW

0

(x

0

)

then RULE

0

(x

0

) times j℄

( MINVNOW

0

(x

0

) ^ INV(x, x

0

)

^ ( : �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n

! exe0n(x, x

0

) < k))

(6.33)

The proof obligation for m:0 diagrams (6.6) is unhanged. With the new proof obligations the

following theorem an be shown.



6.6. RELATED WORK 41

Theorem 9 Iterated Re�nement of ASMs.

The proof obligations (6.32), (6.33),(6.6) (6.8), (6.9), (6.10) and (6.11) imply in addition to the or-

retness and trae orretness of the re�nement from ASM to ASM

0

that every formulaMINV

0

(x

0

),

whih satis�es

(MINVNOW

0

(x

0

) ! 9x. INV(x, x

0

)) ! MINV

0

(x

0

)

is an invariant of ASM

0

. Formally it an be proved that

(9 st. IN(st, st'))

! 8 j. [loop if : �nal'(st') then RULE

0

(; st') times j℄ MINV

0

(x

0

)

holds

So, MINV

0

(x

0

) is true for all states during any run of ASM

0

, provided that the initial state

is related to some initial state of ASM with the IN relation (usually a trivial assumption). The

proof for re�nement orretness follows the same lines as before, only the de�nition of KPROP

has to be hanged to

KPROP(x, x

0

) �

9 j. [loop if : �nal

0

(x

0

) ^ : MINVNOW

0

(x

0

)

then RULE

0

(x

0

) times j℄

( MINVNOW

0

(x

0

)

^ 9 i. hloop if : �nal(x) then RULE(x) times ii

INV(x, x

0

))

(6.34)

The invariane of KPROP in ASM

0

immediately implies the invariane of

MINVNOW

0

(x

0

) ! 9x. INV(x, x

0

)

in ASM

0

. So the weaker formula MINV

0

is an invariant too.

MINV

0

an now be used in the proof obligations for the re�nement from ASM

0

to ASM

00

as an

additional preondition. Using invariants as additional preonditions an be iterated by de�ning

another prediate MINVNOW

00

for the re�nement from ASM

0

to ASM

00

. Then the re�nement

proof will give another invariant MINV

00

for ASM

00

, whih an be used in the next re�nement.

Appendix C.4 de�nes the proof obligations for re�nement orretness for the ase, that we

already have an invariant MINV (x) for ASM and want to onstrut an invariant MINV

0

(x) for

ASM

0

. The proof in KIV required 502 proof steps and 89 interations. The proof obligations

shown above are the speial ase, in whih no invariant for ASM is given (i.e. the ase in whih

MINV (x) is simply set to true).

6.6 Related Work

Most known work on equivalene proofs for ASMs is from the �eld of ompiler veri�ation. In

most ases, the interpreters are not de�ned using the ASM formalism, but some are equivalent.

In work on ompiler veri�ation, the ase of 1:1 diagrams is by far the most ommon ase. Often

several variants are disussed, where IN, OUT and INV are funtions in one diretion or the other

(e.g. in [BHMY89℄). As a generalization, often the ase of 1:n diagrams with n > 0 is onsidered.

This ase often ours, when one instrution of the soure language has to be implemented by

several instrutions of the target language. This generalization of data re�nement is only marginal,

sine the proof of re�nement orretness an still be done diretly by indution on the number of

exeuted ASM rules.

An example of a formal veri�ation of a ompiler, in whih 1:n diagrams our, is the veri�ation

of the ompilation if an imperative programming language (GYPSY), that was translated in
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several re�nements �rst to a high-level assembler language (Piton) and then in mahine ode of

the FM8502 proessor. The veri�ation whih was done with NQTHM is desribed in ([BM79℄,

[BM88℄). Sine NQTHM does not allow existential quanti�ation, the number n of steps of ASM

0

that is neessary to simulatem steps of ASM is omputed by a skolem funtion as n = lok(m; st

0

),

where st

0

is the initial state of ASM.

A similar skolem funtion (num non visible) is also used in [Cyr93℄. The orretness notion

used there is trae orretness for sequential ASMs with respet to an abstration funtion abstr.

All states of the abstrat ASM are required to be visible. This orresponds to a restrition of

1:n with n > 0 for the possible diagram forms. The paper skethes two proof tehniques. The

�rst (\speeding up the implementation mahine") orresponds to the diret veri�ation of the 1:n

diagrams with the oupling invariant

INV(x,x

0

) � visible(x

0

) ! abstr(x

0

) = x

The used funtion visible I, that enodes num non visible many steps of ASM

0

into one steps,

orresponds exatly to our

loop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times num non visible(x

0

)

The seond proof tehnique (\slowing down the Spei�ation Mahine") splits the 1:n dia-

grams into one 1:1 and n-1 1:0 diagrams (\stuttering steps"), that are veri�ed separately. The

\termination" ondition used there orresponds to our requirement, that the exe0n funtion must

derease. The approah skethed in the paper seems to require the expliit introdution of time in

the spei�ation. The outlook of [Cyr93℄ gives as desirable extensions indeterminism, stuttering of

both mahines (i.e. 0:n and n:0 diagrams in one re�nement), and iterated re�nement (\hierarhial

deomposition"), that we all have treated in this work.

Arbitrary m:n diagrams with m;n > 0 are roughly skethed in [MG72℄. The paper assumes

determinism and a oupling invariant INV (x; x

0

) that has the speial form f

1

(x) = f

2

(x

0

).

A formal treatment of m:n diagrams with m;n > 0 has been worked out in parallel to this

work in [Dol98℄. The paper generalizes the approah of [Cyr93℄ by using two num non visible

funtions (one for eah ASM). Indeterminism is onsidered, but only bounded indeterminism

(for unbounded indeterminism it is impossible to de�ne a funtion num non visible). Also still

abstration funtions are used.

Another new work on ASM re�nement in ompiler veri�ation is [ZG97℄. The orretness

notion given there is only de�ned semantially (there is no logi for formal veri�ation). As the

only approah known to us it uses a relation � instead of an abstration funtion between the

states of both ASMs. The relation orresponds to the semantis of our oupling invariant INV.

The orretness notion is based on equivalene (modulo an abstration funtion) of the output

that is made during two ASM runs. Output is de�ned impliitly as hanges of the values of ertain

output variables. To formalize this orretness notion in our setting, it is neessary to modify the

ASMs so that they ollet the outputs in a list outputlist (we introdue a \history variable" in the

sense of [AL91℄). Then the orretness notion of [ZG97℄ is equivalent to trae orretness with

IN(x,x

0

) � outputlist = outputlist

0

= [℄

OUT(x,x

0

) � map(abstr,outputlist

0

)= outputlist

(this orresponds to the onditions of Theorem 4 for the relation �). [ZG97℄ also gives a

modularization theorem (Theorem 5, \Horizontal Deomposition"). The idea is also to deompose

the whole diagram into subdiagrams. The deomposition requires, that eah subdiagram ontains

at most one rule that produes output. If one depits a rule appliation with output by a ontinuous

arrow, an arbitrary number of rule appliations with no output as a dotted arrow, then Fig. 6.9

gives a visualization of the proof obligations.
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Figure 6.9 : Modularization aording to [ZG97℄
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Figure 6.10 Inorret re�nement with unbounded indeterminism

But the theorem is not orret for several reasons: First, it is possible to verify inorret re�ne-

ments with in�nite sequenes of m:0 diagrams like in diagram 6.6 (see Set. 6.2.2). Seond, some

impliit assumptions are missing. Finally, the formalization (aidently) exludes 1:n diagrams

with n > 1.

The assumptions that are present in the examples, but not expliitly stated are, that external

funtions do not ause unbounded indeterminism and that the outputs are olleted in an output-

list as above. Without these assumptions the ounter examples shown in Fig. 6.10 and in Fig. 6.11

an be onstruted: the �gures present the ASMs as automata with two program variables. The

�rst stores the internal state, the seond stores the urrent output. Figure 6.11 shows the unpleas-

ant possibilities of unbounded indeterminism, that made the introdution of the AF operator in

Set. 6.4 neessary. Figure 6.10 exploits, that the possibility of a state transition from q

0

1

to q

0

2

with one output does not imply that there is one output on all paths from q

0

1

to q

0

2

.

m:n diagrams with n > 1 (espeially 1:n diagrams whih often show up in appliations) are

ruled out by the formalization, sine it is required that the diagrams shown in Fig. 6.9 ommute

for every q

0

2

(espeially for eah diret suessor of q

0

1

) and not only for some arbitrary suessor

on eah path starting at q

0

1

, as our theorem requires.

If one adds the impliit assumptions to the theorem and exludes in�nite sequenes of m:0

diagrams, then it an be shown that Theorem 5 from [ZG97℄ is a speial ase of Theorem 5, p.

35. The problem of in�nite sequenes of 0:n diagrams does not our, sine the theorem does

allow only 0:n diagrams that an be extended to a 1:n diagram: therefore we an always hoose

ndt(x; x

0

) 6= 0n.

(q

0

1

; 0)

//
(q

0

; 2)

//
(q

0

2

; 2) (q

0

1

; 0)

//
77

(q

0

; 2)

//
(q

0

2

; 2)

Figure 6.11 Inorret re�nement with no outputlist
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Chapter 7

Peephole Optimization

In this setion we will apply the modularization theorem for orretness proofs of ASM re�ne-

ments to \peephole optimization" of program ode (usually assembler ode). The idea of suh an

optimization is to walk with a window of �xed size (the \peephole") over a piee of program ode,

thereby replaing ineÆient sequenes of instrutions with more eÆient ones.

Set. 7.1 �rst gives a general approah for the ase, when the optimized instrutions do not

ontain any jump instrutions (but the whole ode may ontain jumps). It is shown, that the

onditions neessary for orretness an be de�ned simply by instantiating the modularization

theorem for ASM re�nements.

The idea of a general approah for the veri�ation of peephole optimizations was taken from

[DvHPR97℄, whih onsists of 2 parts. The �rst part formalizes peephole optimization and proves,

that ertain proof obligations are suÆient for orretness. The seond part then veri�es a number

of example optimizations, whih were taken from [TvS82℄.

Set. 7.2 shows, that our approah generalizes the one given in [DvHPR97℄. Although both

approahes are generi in the sense, that they do not �x a set of instrutions, [DvHPR97℄ requires

the program ode to be a list of instrutions whih are exeuted sequentially. This is not realisti,

sine real assembler ode always ontains jump instrutions. The restrition to linear ode without

jumps an not be removed easily sine the proof for orretness of peephole optimization essentially

depends on indution over the length of the instrution list.

In ontrast to the restrition to linear ode for the approah in [DvHPR97℄, we show that our

approah an also handle the examples with jump instrution from [TvS82℄ by just a minimal

hange to the oupling invariant. The reason is, that the examples all fall into the speial ase,

where only the last instrution of an optimized instrution sequene is a jump instrution. Finally

we disuss with a simple example, that optimizations of instrution sequenes with jumps in the

middle an also be veri�ed, by simply splitting the diagrams, whih are required to ommute, at

the jump instrutions.

7.1 Formalization of Peephole Optimization

We �rst need to formalize a general interpreter as an ASM. We assume, that the program ode is

stored in a memory db (we do not onsider self-modifying ode, therefore db is a onstant), and

that with ode(p,db) we an selet the instrution at an address stored in a program ounter p.

An ASM rule RULE exeutes a given instrution i = ode(p;db), and thereby modi�es a program

state st and the program ounter p. To allow erroneous exeution of instrutions (e.g. division

by zero, or an attempt to get the top element of an empty stak) we assume that a prediate

ok(p,st,db) is de�ned. The prediate should hold, i� exeution of the next instrution ode(p,db)

does not lead to an error. We assume that RULE is not appliable, when ok(p,st,db) does not

hold. Finally, we assume a speial instrution halt, whih indiates the end of the program.

Sine we want to onsider ode with jump instrutions, we do not require that eah instrution

45
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inrements p. Nevertheless suh instrutions, alled linear instrutions, are important in the

following. We de�ne the following auxiliary funtions and prediates for them:

instrs(p,db,n) = [ode(p,db), . . . , ode(p +n�1 ,db)℄

lin(i)

$ 8 p,p

0

,db,st. ode(p,db) = i ^ p = p

0

^ ok(p,st,db)

! hRULE#(db;p,st)i p = p

0

+1

linear(p,db,n) $ 8 k. 0 �k < n. lin(p + k,db)

instrs(p,db,n) omputes the list of n instrutions that follow p. lin(i) states, that the instrution i

is linear, i.e. that it will inrement p regardless of the state in whih it is exeuted. linear(p,db,n)

says, that all instrutions in instrs(p,db,n) are linear, and therefore will be exeuted in the inter-

preter in this order. Suh linear instrution sequenes will be replaed by more eÆient ones in

peephole optimization.

For the de�nition of peephole optimization we de�ne a prediate peephole(st

1

, p

1

,db

1

,k

1

, il

2

),

that should hold i� the instrutions instrs(db

1

,p

1

,k

1

) that are exeuted in state db

1

,st

1

,p

1

of the

ASM an be equivalently replaed by il

2

. If k

2

denotes the length of il

2

, then the requirement

orresponds intuitively to the ommutativity of the k

1

:k

2

diagram

db

1

; st

1

; p

1

//
OO

��

k

1

steps

//
st

1 ``

  B
BB

BB
BB

B

db

2

; st

1

; p

1

//
k

2

steps

// //
st

2

Formalized in Dynami Logi this is the requirement, that

I(db

1

,st

0

,p

0

)

^ 9 i. hloop RULE(db

1

;p

0

,st

0

) times ii (p

0

=p

1

^ st

0

=st

1

)

^ peephole(st

1

,p

1

,db

1

,k

1

,il

2

)

^ db

2

= repl(p

1

,db

1

,k

1

, il

2

)

^ p

1

= p

2

^ st

1

= st

2

! linear(instrs(p

1

,db

1

,k

1

))

^ linear(il

2

)

^ hloop RULE(db

1

;p

1

,st

1

) times k

1

i

hloop RULE(db

2

;p

2

,st

2

) times k

2

i st

1

= st

2

(7.1)

holds. The preondition

I(db

1

,st

0

,p

0

)

^ 9 i. hloop RULE(db

1

;p

0

,st

0

) times ii (p

0

= p

1

^ st

0

= st

1

)

in the formula states, that the state (p

1

,st

1

) is reahable from an initial state (st

0

,p

0

) spei�ed

with a prediate I . The preondition is often unneessary, sine usually the diagram ommutes

for all states (p

1

,st

1

).

The linearity onditions for instrs(p

1

,db

1

,k

1

) resp. il

2

make sure, that the instrutions are

really exeuted before resp. after the optimization. Funtion repl(p

1

,db

1

,k

1

,il

2

) atually replaes

the instrutions instrs(p

1

,db

1

,k

1

) by il

2

. We must have
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db

2

= repl(p

1

,db

1

,k

1

, il

2

)

! 8 k. k < k

2

! ode(p

1

+k,db

2

) = get(k,il

2

)

(7.2)

This de�nition says, that the new program stores the new instrutions at the addresses p, p

+1, . . . (p

1

+k

2

-1). But this is not suÆient. We must also make sure, that the resulting ode

has no gaps by moving ode by k

2

�k

1

. Also the addresses of jump instrutions must be updated.

Sine we do not want to go into details of jump instrutions, we simply require for the result of

repl, that eah moved instrution at p

0

= shift(p;p

1

; k

2

� k

1

) has the same e�et as the original

instrution at p:

db

2

= repl(p

1

,db

1

,k

1

, il

2

)

^ (p < p

1

_ p � p

1

+ k

1

)

^ p

0

= shift(p,p

1

,k

2

� k

1

) ^ st = st

0

! hRULE(db

1

;p,st)i hRULE(db

2

;p

0

,st

0

)i

(p

0

= shift(p,p

1

, k

2

� k

1

) ^ st = st

0

)

(7.3)

In the formula shift is de�ned as

shift(p; p

1

; n) =

�

p, when p < p

1

p + n, otherwise

For some peephole optimization to be appliable on db

1

, p

1

and il

2

we require that the pred-

iate peephole(st,p,db

1

,k

1

,il

2

) holds in every state st, the ASM an reah. Formally

IN(db

1

,p

0

,st

0

)

^ 9 i. hloop RULE(db;p

0

,st

0

) times ii (p

0

= p

1

^ st

0

= st

1

)

! peephole(st

1

,p

1

,db

1

,k

1

,il

2

))

(7.4)

(7.1) gives a ondition for the optimization of a sequene of instrutions. It is loal, sine

only the instrutions at the addresses between p

1

and p

1

+ k

1

are relevant. For program ode,

that does not ontain jump instrutions, this ondition is already suÆient to assure, that the

onsidered instrutions an be replaed by more eÆient ones in every program. But for programs

with jumps we need an additional ondition: No instrution in the surrounding program must

jump in the middle of the optimized ode. This an be formalized with a prediate notjumpedto:

notjumpedto(p

1

,k

1

,db)

$ 8 st, p. : p

1

� p < p

1

+ k

1

! hRULE(db;p,p)i : p

1

< p < p

1

+ k

1

(7.5)

Now we an prove the following theorem:

Theorem 10 Given a general interpreter formalized as an ASM (as above), a prediate peephole

and values db

1

, p

1

, k

1

, il

2

suh that (7.1), (7.4) and notjumpedto(p

1

; k

1

;db

1

) hold, then the

modi�ation of db

1

to repl(db

1

,p

1

,k

1

,il

2

) (where repl is spei�ed as in (7.2) and (7.3) is a orret

and omplete re�nement of ASM.

For the proof we deompose runs of both the original ASM with ode db

1

and of the optimized

ASM with ode db

2

= repl(db

1

,p

1

,k

1

,il

2

) into 1:1 diagrams as long as p 6= p

1

, and into a k

1

:k

2

diagram for the optimized Code. As the oupling invariant we use the onjuntion of the following

four formulas.
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9 p

0

,st

0

,i. I(db

0

,p

0

,st

0

)

^ hloop RULE(db

0

;p

0

,st

0

) times ii

(p

0

= p

1

^ st

0

= st

1

)

db

2

= repl(db

1

,p

1

,k

1

,il

2

)

: p

1

< p < p

1

+ k

1

p

0

= shift(p,p

1

,k

2

� k

1

) ^ st

0

= st

Aording to the proof obligations for the equivalene of ASMs from Chapter 6, we have to

show that all four formulas are invariant in the following k

1

:k

2

diagram, whenever p = p

1

, and

we have to show that they are invariant in the following 1:1 diagram otherwise.

For the �rst two formulas this is simple. The �rst is a trivial invariant of the original ASM,

whih says that eah intermediate state is reahable from the initial state.

The seond formula is the ompiler assumption between the program odes. It is obviously

invariant, sine it does mention values that are modi�ed by the ASM.

The third formula states, that p is not within the optimized piee of ode (p = p

1

is possible),

and the fourth gives the onnetion between the states (p,st) and (p

0

,st

0

) derof the two ASMs.

Their invariane follows from (7.1) for a k

1

:k

2

diagram, sine all preonditions are part of

the invariant, exept peephole(st,p

1

,db

1

,k

1

,il

2

), whih follows diretly from (7.4): linearity of the

instrutions implies that at the end of the diagram p = p

1

+ k

1

and p

0

= p

1

+ k

2

, so we have

indeed p

0

= shift(p,p

1

,k

2

� k

1

).

For a 1:1 diagram the third formula is invariant beause we required notjumpedto(p

1

; k

1

;db

1

)

(no jumps into the optimized ode), and the invariane of the fourth formula is due to assumption

(7.3) for the repl funtion.

Finally, to show all proof obligations de�ned in Chapter 6 for the equivalene of the ASMs,

we have to show that the oupling invariant holds in initial states. The only nontrivial formula

of the oupling invariant here is the third, so we just have the requirement that ASM does not

start exeution within the optimized ode. Note that m:0 or 0:n diagrams, whih our for k

1

= 0

or k

2

= 0, are no problem here, sine several suessive ones are impossible. Also note, that the

oupling invariant trivially implies that both ASMs �nish in a state with st = st

0

.

Summarizing, orretness of peephole optimization is a speial ase of the modularization

theorem for ASM re�nements, when the optimized ode does not ontain jump instrutions. Jumps

in the optimized ode will be onsidered in the setion after the next.

7.2 Comparison to the Formalization in PVS

In this setion we give a short omparison of our formalization to the one de�ned in [DvHPR97℄.

A main tehnial di�erene is that [DvHPR97℄ gives a formalization of the semantis of an in-

terpreter (funtion interprete) and the equivalene of interpreters (prediate �) that is speialized

for peephole optimization, while we have just instantiated the general notions of ASMs and ASM

re�nement.

A severe restrition of the formalization in [DvHPR97℄ is, that only program ode without

jump instrutions is onsidered. The restrition allows to avoid a program ounter p, and by

formalizing program ode as a list of instrutions, proofs by indution over the length of the list

are possible. Suh an indution is not possible when jump instrutions are present.

The neessary onditions for the orretness of peephole optimization are the same for both

formalizations, exept that our formalization has the two obvious additional requirements

� The program must not start in the middle of optimized ode.
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� There must not be jump instrutions that point into optimized ode.

that result from the generalization to ode with jumps.

Some tehnial points of our de�nition are less restritive (but also less onrete) than in

[DvHPR97℄. We have avoided to de�ne shemes for optimization rules by giving a more preise

de�nition of the peephole prediate. We therefore de�ne here, how to speialize our de�nitions to

the ones given in [DvHPR97℄:

A rule sheme from [DvHPR97℄, p. 4, Fig. 1 orresponds to a speialization of the ASM rule

to the form

if ode(p,db) = i

k

^ admissible(i

k

)(st)

then p,st := e�et(i

k

)(p +1,st)

for every instrution i

k

. So it is lear, that the globally de�ned funtions admissible and e�et

are de�ned only to enode the semantis of a deterministi rule appliation funtionally (our

formalization avoids this restrition to a deterministi ASM). The impliit restrition, that p

is inremented, is given expliitly in our ASM rule. Our prediate ok(p,st,db) orresponds to

admissible(ode(p,db),p,st).

The funtion interprete orresponds to the semantis of the ASM: if the result is the empty

set, then our formalization stops in a state st, where ok(p,st,db) does not holds. The de�nition of

the \==" in Fig. 4, p. 5 is idential to our de�nition of equivalene of ASMs, where IN and OUT

are identity on p (modulo shift) and st.

Our prediate peephole is very abstrat. [DvHPR97℄ gives a more onrete de�nition: It is

based on a list of rules [R

1

, . . .R

n

℄ with the form R

i

= (p

i

; r

i

; 

i

). Eah rule onsists of three

parts:

� A �rst list p

i

(\patterns") of instrutions, that should be replaed.

� A seond list r

i

(\replaements") of instrutions, that will replae the p

i

.

� A prediate 

i

(\ondition"), that haraterizes the states, in whih the rule is appliable.

This orresponds in our formalization to a de�nition of n prediates peephole

1

, . . . , peephole

n

de�ned by

peephole

i

(st,p,db,k

1

,il

2

) : $ instrs(p,db,k

1

) = p

i

^ il

2

= r

i

^ 

i

(st)

The rules are applied sequentially to the initial program (the orretness of all optimizations is then

by transitivity of program equivalene). We thought the de�nition in [DvHPR97℄ to be too spei�,

sine there is no pattern mathing done between the patterns of a rule and the atual ode (it

seems that for every instane a new rule has to be given), and the prediates 

i

do not mention the

ode that is exeuted before p is reahed: whether the test for 

i

holds, and rule R

i

an be applied,

an be deided only by inspeting all reahable states, whih is pratially impossible. In ontrast,

our de�nition of a peephole prediate makes it possible to use arbitrary syntati onditions in the

appliability ondition. Also arbitrary patterns and pattern mathing are still possible. Sine the

onrete de�nition of pattern mathing as well as syntati appliability onditions depend on the

onrete program ode, we have left the de�nition of the prediate peephole abstrat.

7.3 Optimizations of Jump Instrutions

In this setion we onsider optimizations of instrutions with jumps. We will not give a generi

method for veri�ation, but the given examples should make it obvious, that jump instrutions

an be easily handled using the modularization theorem. Only the number of ommuting diagrams

that whih to be onsidered inreases with the number of jump instrutions.
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A speial ase are the onrete optimizations of a stak mahine given in [TvS82℄, that deal

with jump instrutions and therefore ould not be onsidered in [DvHPR97℄. The optimizations

only onsider instrution sequenes instrs(p

1

,db

1

,k

1

) and il

2

, where only the last instrution is a

jump. For this ase, it is suÆient to generalize orretness ondition (7.1) to

I(db

1

,st

0

,p

0

)

^ 9 i. hloop RULE(db

1

;p

0

,st

0

) times ii (p

0

= p

1

^ st

0

= st

1

)

^ peephole(st

1

,p

1

,db

1

,k

1

,il

2

) ^ db

2

= repl(p

1

,db

1

,k

1

, il

2

)

^ p

1

= p

2

^ p

1

= p ^ st

1

= st

2

! k

1

6= 0 ^ linear(instrs(p

1

,db

1

,k

1

�1))

^ il

2

6= [℄ ^ linear(butlast(il

2

))

^ hloop RULE(db

1

;p

1

,st

1

) times k

1

i

hloop RULE(db

2

;p

2

,st

2

) times k

2

i

(st

1

= st

2

^ p

2

= shift(p

1

,p,k

2

� k

1

))

(7.6)

(butlast removes the last element of a list). The new ondition is still suÆient to guarantee the

ommutativity of the k

1

:k

2

diagram with unhanged oupling invariant. The only new requirement

in the generalized ondition is, that the two last instrutions jump to the same address (modulo

shift). That the jump address is not within the optimized ode already follows from (7.5).

Finally let us give a simple example for peephole optimization, where not only the last in-

strution of the optimized sequene is a jump. The example should make it obvious, that we then

have to verify several ommuting diagrams, that result from deomposing the k

1

:k

2

diagram into

subdiagrams at every jump instrution.

For the example we assume that it is possible to selet an integer value from the state st

with get(l,st) (typially l is a loation in memory and get is memory aess). Three typial jump

instrutions would then be BZE(l; n), BNZ(l; n), and BRA(n) (branh on zero, branh on not

zero, branh unonditionally) with ASM rules de�ned by

if ode(p,db) = BZE(l,n)

then if get(l,st) = 0

then p := p + n

else p := p + 1

if ode(p,db) = BNZ(l,n)

then if get(l,st) = 0

then p := p + 1

else p := p + n

if ode(p,db) = BRA(n)

then p := p + n

An obvious peephole optimization then is to replae il

1

= [BZE(l; 2) BRA(n)℄ with il

2

=

[BNZ(l; n � 1)℄ whenever n > 0. If instr(p

1

,db

1

,2) = il

1

and neither the program start is at

p

1

+1 nor jumps to this address exist, then this is a orret optimization. For the veri�ation we

need the same oupling invariant as in the previous setion and the proof for the ase p 6= p

1

is unhanged. For the veri�ation of the optimized we now need two ommuting diagrams: A 1:1

diagram for the ase that get(l,st) = 0, and a 2:1 diagram for get(l,st) 6= 0. The formal proof, that

both diagrams ommutate, i.e. that

INV(db

1

,p,st,db

2

,p

0

,st

0

) ^ p = p

1

^ get(l,st) = 0

! hRULE(db

1

;p,st)i hRULE(db

2

;p

0

,st

0

)i

INV(db

1

,p,st,db

2

,p

0

,st

0

)

and



7.3. OPTIMIZATIONS OF JUMP INSTRUCTIONS 51

INV(db

1

,p,st,db

2

,p

0

,st

0

) ^ p = p

1

^ get(l,st) 6= 0

! hRULE(db

1

;p,st)i hRULE(db

1

;p,st)i hRULE(db

2

;p

0

,st

0

)i

INV(db

1

,p,st,db

2

,p

0

,st

0

).

hold, is easy.
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Chapter 8

Summary of Part I

The �rst part of this work was onsidered with the development of tool support for the spei�a-

tion language of ASMs and the de�nition of generi proof obligation for the orretness of ASM

re�nements. Three main results were ahieved:

First, we de�ned a natural embedding of the spei�ation language of ASMs into Dynami

Logi, that allows to formalize properties of ASMs, espeially the orretness of re�nements.

With this result, tool supported dedution for ASMs beomes possible.

Seond, we developed a theory for the modularization of orretness proofs for ASM re�ne-

ments. The veri�ed modularization theorems generalize the results known from literature. Data

re�nement and Peephole optimization from ompiler veri�ation are speial ases of the theorem.

Third, the results were integrated into the KIV system. The modularization theorems were

veri�ed in KIV and several extensions were made to the spei�ation language and the dedution

omponent, to get eÆient tool support for ASMs.
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Part II

The Prolog-WAM Case Study
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Chapter 9

Introdution and Overview

The subjet of the Prolog-WAM ase study is the orretness proof for the ompilation of Prolog

programs into byte ode of the Warren Abstrat Mahine (WAM). The WAM (and variants) today

is the basis of all popular Prolog implementations.

Our work is based on a systemati presentation of the ompilation as 12 ASM re�nements

in [BR95℄. The starting point is a Prolog interpreter, spei�ed as an ASM, that desribes the

operational semantis of the ore of Prolog (lauses with !, true and fail) as the onstrution of a

searh tree. For pure Prolog the semantis is idential to the tree onstruted by SLD resolution.

The extension of the ASM to full Prolog (in [BR94℄) has beome an ISO standard for the de�nition

of Prolog semantis.

The �rst Prolog interpreter, we will all ASM1 in the following, is then stepwise re�ned to an

interpreter ASM13 of byte ode of the WAM. In parallel to this transformation the Prolog program

is ompiled. On intermediate levels the ode onsists partially of not yet ompiled Prolog lauses,

partially already of WAM instrutions. Eah re�nement introdues mahine onepts like staks,

registers, pointer strutures et.. The re�nements are onstruted suh that they are orthogonal:

The ompilation of lause seletion, of single lauses and of literals are eah treated in separate

re�nement steps. Besides the pure ompilation steps there are also re�nements that optimize the

data representation. The byte ode instrutions used in the �nal ASM13 are very simple. They

onsist eah of a number of register transfers that an easily be translated into the assembler ode

of any proessor.

The main goals in the Prolog-WAM ase study were:

� The formal spei�ation of the ompilation steps and ompiler assumptions given in [BR95℄.

� The formalization of the orretness of re�nements.

� To de�ne a suitable proof methodology for the veri�ation of re�nement orretness.

� The development of suitable support in the KIV system, that allows the eÆient demonstra-

tion of the orretness of the re�nement steps.

� To formally prove the orretness arguments or to �nd errors and to remedy them.

Main parts of the theory in Chapters 4 and 6 were developed to ahieve the �rst two goals.

Development of suitable proof support required many improvements in KIV, that were summa-

rized in setion 3.3. The omparison with the ase study in Isabelle in Set. 20 shows, that the

proof support an ompete with other systems. Nevertheless the formal veri�ation of an ASM

re�nement still requires a man month on average. In this work 8 of the 12 re�nements have been

veri�ed.

A substantial result of the veri�ation was a on�rmation of the work done in [BR95℄. Until

now, no major hanges were neessary for the ASMs. Also the ideas for the orretness proofs

were orret for all re�nements.
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Nevertheless even the veri�ation of the �rst re�nement showed, that a formal veri�ation

of re�nement orretness requires to make expliit a large number of properties, that were only

impliitly assumed (ompare the �rst approah at the beginning of Set. 11.2 with the �nal oupling

invariant at the end). Although many of these properties are easy to �nd, we found that there is

a large gap between the mathematial argument for orretness and a fully formal proof.

Therefore it is not too surprising, that a large number of smaller problems were found in the

ASMs as well as in the ompiler assumptions, that did not show up in the informal analysis in

[BR95℄. The most important problems were:

� ASM3 and ASM4 ontain a not intended indeterminism, that must removed by a stronger

rule test (see 14.2)

� In the swithing instrutions the baktraking ase was missing (see 15.2)

� The unify instrution of ASM9 used the renaming index of the �rst instead of the seond

environment (see 17.1)

� The ompiler assumptions for several re�nements were desribed orretly in the text, but

the formalization had to be made more preise (see 14.2,15.2)

� ASM1 { ASM8 answer the query ?- p(q) positively, given the two lauses p(X) :- X. and

q.. But in the translation of lauses to ode (i.e. in the re�nement to ASM9) lause bodies

may no longer ontain variables or lists (see 17.2).

All problems were relatively easy to orret. Nevertheless the result demonstrates, that even

a very areful informal analysis should be omplemented by a formal orretness proof, if the goal

is a orret ompiler.

The following hapters disuss the orretness proofs in detail. They are organized as follows:

The next hapter desribes the Prolog interpreter from [BR95℄. The following hapters then

onsist of two setions: the �rst spei�es the re�nement of ASM of the previous hapter to a new

ASM. This setion largely follows [BR95℄. Where already the formalization required orretions

or deviations, they are explained in this setion. The seond setion then desribes the formal

veri�ation of the re�nement, the experienes learned thereby, and the orretions of ASMs and

ompiler assumptions that resulted from the veri�ation.

We always have tried, to explain the operations needed in eah re�nement and in the oupling

invariants immediately. If any notations should remain unlear, they an be looked up in the full

algebrai spei�ation in KIV given in Appendix E.

In the following we will denote with i=j the re�nement from ASMi to ASMj. In every setion

on the veri�ation of re�nement i=j we will also use the onvention to name state variables of

ASMi (to be preise: state variables that resulted from the translation of ASMi to DL) with x

and the state variables of ASMj with x

0

. We always assume the vetors to be disjoint. The rule

(in the sense of setion 2.2) of ASMi and ASMj will be named RULE and RULE

0

and always

have the form

RULE(var x) begin

if "

1

then RULE

1

(x) else

if "

2

then RULE

2

(x) else

.

.

.

if "

n

then RULE

n

(x) end

RULE

1

, RULE

2

, . . . , RULE

n

are rules in the sense of 2.3 and we will use the term \rule" in the

following only with this meaning.



Chapter 10

ASM1 : A Prolog Interpreter

The two most important data strutures needed to represent a Prolog omputation state are the

sequene of Prolog literals still to be exeuted and the urrent substitution. This state is modi�ed

by

1. unifying the �rst literal of the sequene, alled at (ativator), with the head of a lause

2. replaing at by the body of that lause

3. applying the unifying substitution to the resulting sequene and

4. omposing the unifying substitution with the `old' substitution.

If a uni�ation fails, alternative lauses have to be hosen by baktraking. Due to this the

interpreter has to keep a reord of the former omputation states and the orresponding lause

hoie alternatives. This history is usually represented as a searh tree, that is onstruted by the

operations above. Eah node represents a omputation state, and the hildren of a node are the

possible suessor states, that an be reahed by uni�ation with the di�erent lause heads.

In an ASM we represent a searh by a set of nodes, onneted from leaves to the root by a

funtion father. The root node is denoted by ?, father is unde�ned for this node. Information on

alternative lauses, whih may be tried at a node n, is stored as a list ands(n) of andidate nodes.

Eah node in this list refers via a funtion ll to a lause line in the Prolog program. Suitable

initial lists of andidates are onstruted with the help of a funtion prodef (for the spei�ation

of prodef see later on).

The urrent omputation state of the interpreter is stored in a program variable (i.e. a 0-ary

dynami funtion), the urrnode. The omputation state of a node n ould be represented as the

result of two funtions glseq [n℄ (goal sequent) and sub[n℄.

But to handle the ut instrution of Prolog, an extension of this state representation is required.

A ut updates the father of the urrent node to the father of that omputation state whose at

aused the introdution of the onsidered ut. For this we have to `remember' where a ut has

been introdued. An uniform solution is to attah the father of the (old) urrnode to eah lause

body being introdued to the literal sequene. This attahment divides the sequene of literals

into subsequents, alled goals, eah deorated by one node, alled the utpoint of the goal. The

resulting (deorated goal) sequene deglseq looks as follows

deglseq = [ h [

at

z}|{

g

1;1

; g

1;2

; : : : ; g

1;k

1

℄

| {z }

goal

;

tpt

z}|{

n

1

i ; : : : ; h [ g

m;1

; : : : ; g

m;k

m

℄ ; n

m

i ℄

ont = [ h [ g

1;2

; : : : ; g

1;k

1

℄ ; n

1

i ; : : : ; h [ g

m;1

; : : : ; g

m;k

m

℄ ; n

m

i ℄

The ontinuation ont, whih is the deglseq without at, will later on help to desribe the on-

strution of a new deglseq.
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To introdue the rules of ASM1 we will now onsider the evaluation of the query ?- p. on the

following Prolog program.

1 p :- fail. 3 q.

2 p :- q,!,true. 4 p.

whih is stored as the value of a onstant db (database) in the initial algebra of the ASM. Line

numbers are shown expliitly in the program for explanatory purposes. The query ?- p. is stored

as the deglseq of node A in the initial searh tree depited in Fig. 10.1.

76 5401 23
?

[h[p℄,?i℄

/. -,() *+�� ���� ��
a

OO

Figure 10.1

The two nodes labeled ? and A form the initial domain of a dynami sort node, whih is

extended by the rules of the ASM. Tree struture as stored in the funtion father : node ! node

is indiated by the arrow in Fig. 6, so we have father(A) = ?. Root node ? serves only as a

marker when to �nish searh and does not arry information in ASM1. The initial urrnode is

A, as indiated by the double irle. Computed substitutions (attahed to the nodes with the sub

funtion) are not shown in the �gures, sine they are always empty in the example.

The ASM run is ontrolled by two program variables (i.e. 0-ary dynami funtions) mode and

stop. The value of mode swithes between all and selet, while the value of stop remains run

until it �nally hanges to halt. This stops the evaluation,sine all rule guards ontain the onjunt

stop = run.

In all mode, whih is the initial mode, the andidate nodes are omputed (for a guard whih

involves at, heks for deglseq 6= [℄ and goal 6= [℄ are impliitly assumed, and we also omit the

obligatory onjunt stop = run).

all rule

if is user de�ned(at) ^ mode = all

then let[ll

1

,: : :,ll

n

℄ = prodef(at,db)

extend node

by tmp

1

,: : :,tmp

n

with father[tmp

i

℄ := urrnode

ll[tmp

i

℄ := ll

i

ands := [tmp

1

,: : :,tmp

n

℄

endextend

mode := selet

The rule uses the abbreviation ands for ands[urrnode℄, i.e. the andidate nodes of urrnode. In

the following we will also use the analogous abbreviations father, deglseq and sub.

The extend onstrut, by expanding the universe node, alloates one node for every lause

whose head `may unify' with the literal at. This list of lause lines is omputed by prodef(at,db)

and is assumed to ontain at least those lauses, whose heads unify with the ativator, and at

most those with the same leading prediate symbol as at. The use of extend with an arbitrary

number of alloated nodes is a slight extension of [Gur95℄. In DL the extension is realized with

a proedure, that traverses the list prodef(at,db). The result of the appliation of all rule is

depited in Fig. 10.2.

The ands list of node A is indiated by a dashed arrow to its �rst element and brakets around

the elements. The lause lines orresponding to the andidates are attahed to the new nodes via

the funtion ll, as shown by numbers below the nodes. The hange of the mode variable ativates

the selet rule.
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Figure 10.2

selet rule

if is user de�ned(at) ^ mode = selet

then if ands = [℄

then baktrak

else let lau = rename(lause(ll[ar(ands)℄,db),vireg)

let mgu = unify(at,head(lau))

if mgu = failure

then ands := dr(ands)

else urrnode := ar(ands)

deglseq(ar(ands)) := mgu ^

d

[hbody(lau), fatheri j ont℄

sub[ar(ands)℄ := sub Æ mgu

ands := dr(ands)

vireg := vireg +1

mode := all

where

baktrak �

if father = ?

then stop := halt

subst := failure

else urrnode := father

mode := selet

This rule auses baktraking if there are no (more) alternatives to selet. Otherwise, by

repeated appliation, it removes all andidates whose heads do not unify with at. When the

�rst andidate is reahed, for whih a most general uni�er mgu exists (funtion lause selets

the lause at a lause line

1

, and variable index vireg is used to rename the impliitly universal

quanti�ed lause variables to new instanes), this node beomes the new urrnode. A new deglseq

is omputed by replaing the ativator of the old deglseq with the body of the seleted lause. As

a utpoint the father of the old urrnode is attahed to this new goal. The mgu is applied to the

resulting deglseq (with the in�x operation ^

d

) and omposed (with Æ) with the old substitution

sub.

The result of applying the selet rule in our example is shown in Fig. 10.3. The value of the

mode variable is now all again. Sine the ativator fail is not user de�ned, fail rule is applied.

fail rule

if at = fail then baktrak

It sets urrnode to A again. Note that node B is not formally dealloated. It remains in the

arrier set of node. Again in selet mode, the next andidate node for A, node C, is seleted.

Its deglseq is omputed as [h[q; !; true℄;?i ; h[℄;?i ℄. Subsequently all rule alloates one new

andidate node E for the only appropriate lause q. After seletion of node E ASM1 reahes the

state shown in Fig. 10.4.

1

sine lause learly depends on the Prolog program, we have added an argument db ompared to [BR95℄
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76 5401 23
?

[h[p℄,?i℄

/. -,() *+
a

OO

���
�

[h[fail℄,?i,h[℄,?i℄

/. -,() *+�� ���� ��
b

;;wwwww /. -,() *+
(

,

OO

2

/. -,() *+
d

__>>>>

4

)

Figure 10.3
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Figure 10.4

The now empty goal is removed by the goal suess rule.

goal suess rule

if deglseq 6= [℄ ^ goal = [℄

then deglseq := dr(deglseq)

Then the ativator is a ut, whih is removed from deglseq by ut rule.

ut rule

if at = !

then father := tpt

deglseq := ont

The rule sets the father of the urrent node E to the utpoint tpt of the urrent deglseq, whih

here is the root node ? (see Fig. 10.5). This \uts" the alternative D at node A. The ut rule is

the only one that uses tpt. For the ativator true ASM1 then exeutes the following rule.
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Figure 10.5

true rule

if at = true then deglseq := ont

Finally, with another two appliations of goal suess rule, deglseq(E) beomes empty. This

means that the initial query is ompletely solved. Therefore query suess rule sets the answer
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substitution subst to sub(urrnode) (here, of ourse, the empty substitution), and �nishes the

exeution by setting stop to halt.

query suess rule

if deglseq(urrnode) = [℄

then stop := halt

subst := sub

If we onsider a variant of our example program, where we replae lause p :- q,!,true with

p :- q,!,r, we would also arrive at the situation of Fig. 10.5. But now all rule would alloate a

node F with an empty list of andidates, sine no lauses for prediate r are given. selet mode,

�nding no more alternatives, would baktrak from nodes F and E. Sine the father of E is the

root node ?, exeution would �nally stop with stop = halt and subst = failure.
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Chapter 11

1/2: From Searh Trees to Staks

11.1 De�nition of ASM2

In this setion we desribe the �rst re�nement of the ASM desribed above towards the War-

ren Abstrat Mahine (WAM), following [BR95℄, [Setion 1.2℄. There are three main di�erenes

between the �rst and the seond ASM.

First, funtion father is renamed to b. This hange indiates that b now points bakwards in

a hain of nodes, whih form a stak.

Seond, ASM2 provides the registers llreg, deglseqreg, breg and subreg orresponding to ll,

deglseq, father and sub applied to the urrnode. Thereby it avoids alloation of urrnode.

Third, instead of providing a list of andidate nodes, ASM2 attahes the �rst andidate diretly

via the ll -funtion. This is possible if we assume that lauses whose head starts with the same

prediate are stored in suessive lause lines followed by a speial null marker. The \ompiled"

representation db

2

of our example Prolog program for ASM2 thus has to look like

1 p :- fail. 3 p. 5 q.

2 p :- q,!,true. 4 null 6 null

A new prodef

2

funtion is needed, suh that prodef

2

(at,db

2

) now yields the �rst lause line whose

head may unify with the ativator at.

For at = p we get prodef

2

(p,db

2

) = 1, the �rst line of a lause with head p. The onnetion to

the old prodef funtion is stated in the following ompiler assumption about funtion ompile

12

,

whih is used as an axiom in the equivalene proof for 1/2.

db

2

= ompile

12

(db)

! hCLLS#(prodef

2

(at,db

2

),db

2

),db

2

;ol)i

maplause(prodef(at,db),db) = maplause

0

(ol,db

2

)

Proedure CLLS#

1

ollets onseutive line numbers, until a null is reahed, and funtions

maplause and maplause

0

selet the lauses at eah line number. Note that in ontrast to [BR95℄

(p. 17) we have not assumed that the literals were sorted in the original database, and that

the equality prodef(at,db) = ol of lause lines holds. Instead we only require the equality of

the lauses. This weakening of the ompiler assumption is neessary, otherwise it an not be

ful�lled by any implementation of the prodef funtion that selets lauses more preisely than

looking only at the leading prediate symbol. Note, that with the stronger assumption the three

alls prodef

2

(p(f(X));db

2

), prodef

2

(p(g(X));db

2

) and prodef

2

(p(X),db

2

) an not return three

di�erent results, sine the three lause lists, whih an be olleted at these addresses end with

1

A proedure, not a funtion is used, to make sure that the spei�ation does not beome inonsistent with a

db

2

that does not ontain a null marker. See the same argument for STACK# in the following setion, p. 71

65
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the same null marker, that marks the end of the lauses for p (so all three lists must be end piees,

not arbitrary sublists of the lause list for p). Our weaker assumption an be implemented for any

de�nition of prodef by dupliating ode. The dupliated ode an be removed later on, when the

abstrat ode seletion with prodef is replaed with swithing instrutions (see Set. 15.1).

Instead of alloating a andidate list, ASM2 simply assigns prodef '(at,db) to llreg. Removing

a andidate from ands now orresponds to inrementing llreg. If the lause at llreg beomes

null, no more andidates are available.

Sine ASM2 no longer needs to alloate a urrent node urrnode, a new node must be reated

in selet mode, to save the urrent register ontents to a node. The new all and selet rule

therefore are

all rule

if is user de�ned(at) ^ mode = all

then llreg := prodef

2

(at,db

2

)

mode := selet

selet rule

if is user de�ned(at) ^ mode = selet

then if lause(llreg,db

2

) = null

then baktrak

else let la = rename(lause(llreg,db

2

),vireg)

let mgu = unify(at, head(la))

if mgu = failure

then llreg := llreg +1

else let tmp = new(s)

s := s [ ftmpg

breg := tmp

b[tmp℄ := breg

deglseq[tmp℄ := deglseqreg

sub[tmp℄ := subreg

ll[tmp℄ := llreg +1

deglseqreg := mgu ^

d

[hbody(la),bregi j ont℄

subreg := subreg Æ mgu

vireg := vireg +1

mode := all

where

baktrak �

if breg = ?

then stop := halt

subst := failure

else deglseqreg := deglseq[breg℄

subreg := sub[breg℄

breg := b[breg℄

llreg := ll[breg℄

mode := selet

All other rule of ASM1 are unhanged, exept that father is renamed to b and abbreviations

deglseq, father and sub (for deglseq[urrnode℄ et.) have to be replaed with the registers deglse-

qreg, breg and subreg.

In our example program ASM2 now runs through the states shown in Fig. 11.1 and Fig. 11.2.

The orresponding states in ASM1 were those in Fig. 10.3 and Fig. 10.4.
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Dashed arrows now point to the ll of a node. Sine the values attahed to the urrnode

are now stored in registers, alloation of nodes orresponding to B and D is avoided. On the

other hand, when node A is visited by baktraking (by exeuting fail rule in the state shown in

Fig. 10.1), its omputation state is moved to registers, and the following selet rule alloates a

new, similar hoiepoint A'. Removing this redundany is the subjet of the next re�nement.

In ASM2, the nodes whih may be visited in the future are always reahable from breg via

the b funtion. They form a stak, but note that there may still be abandoned nodes in the

node universe, whih are no longer reahable (here A). This auses one of the problems in the

veri�ation of the re�nement from ASM1 to ASM2. The tuple of values deglseq(n), sub(n), ll(n)

and b(n) attahed to a stak node n is usually alled a hoiepoint.

11.2 Equivalene Proof 1/2

In this setion we will desribe the formal veri�ation of the �rst re�nement with KIV. The main

fous of this setion is not the appliation of the general theory for the veri�ation of ASMs we

developed in the �rst part (we have data re�nement with 1:1 diagrams here), but on the pratial

problems that arise in a formal, system-supported orretness proof, whih onsists mainly in

the inremental development of a suitable oupling invariant. We will show exemplarily for this

re�nement, that

� the informal orrespondene between the states of the ASMs given in [BR95℄ is by far not

suÆient for a formal proof.

� a lot of additional properties must be formulated, that are not foreseeable at the beginning

of the veri�ation, but whih are neessary to guarantee the orretness of the re�nement.

� the eÆient veri�ation of ASM re�nements requires a system with very good support for

an inremental veri�ation of goals.

To assure the last point, a lot of details had to be improved in the KIV system. Some of them

were desribed in Set. 3.4.
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The following desription of the veri�ation unfortunately requires to onfront the reader with a

lot of details. Only the onsideration of these details leads to the detetion of hidden assumptions,

whih ultimately guarantee the orretness of the re�nement. The reader who is not interested in

the details may just have a look at the 9 initial properties as given in [BR95℄ at the beginning of

the following subsetion, and ompare them to �nal oupling invariant shown at the end. This

should give an impression about the work needed to translate an informal mathematial argument

to a omplete, formal proof.

The Initial Coupling Invariant The re�nement from ASM1 to ASM2 does not hange the

ontrol struture of the interpreter. One rule appliation of ASM1 orresponds to one rule appli-

ation of ASM2, i.e. we have the ase of data re�nement. For the proof obligations from Chapter 6

this means, that we an hoose ndtype(x; x

0

) to be onstantly mn, and that by hoosing i = j = 1

in the proof obligation (6.5) we an simplify it to

INV(x,x

0

), stop = run, stop

0

= run

` hif stop = run then RULEi

hif stop

0

= run then RULE

0

i INV(x,x

0

)

(11.1)

The proof now splits into 5 ases for eah of the 5 rules of the two ASMs. The other proof

obligations (6.10), (6.8), (6.9) and (6.11) are all trivial, sine INV will ontain the formula stop

= stop

0

. So the \only" ritial point for a suessful formal proof is to �nd a oupling invariant

INV(x,x'), suh that formula (11.1) is provable for eah orresponding pair of rules.

Some rough indiation how suh a formula INV might look like is already given in [BR95℄,

p.17f. There an auxiliary funtion F is proposed, whih maps the nodes in the stak of ASM2 to

orresponding nodes in the searh tree of ASM1 (see Fig. 11.3).

[Sh94℄ pointed out that F annot be given statially, but has to be de�ned by indution on

the number of rule appliations. This requires a formalism, where a dynami funtion an be

updated by proof steps.

In DL, the answer omes for free sine we made dynami funtions available as a datatype (see

spei�ation `Dynfun', Set. 4.1). When F is a datastruture it an be (�rst order) quanti�ed. Our

oupling invariant then asserts the existene of a suitable funtion F for every two orrespond-

ing interpreter states. F then gets updated by instantiation. Based on this dynami funtion

the properties listed on p.17f of [BR95℄ translate to the following onjunts in our invariant (in

ambiguous ases the variables of the seond interpreter are primed):

9 F:

1 deglseq[urrnode℄ = deglseqreg

2 sub[urrnode℄ = subreg

3a maplause(map(ll, ands[urrnode℄),db)

= maplause

0

(lls(llreg,db

2

),db

2

)

3b every(father,ands[urrnode℄, urrnode)

4 father[urrnode℄ = F[breg℄

5 deglseq[F[n℄℄ = deglseq

0

[n℄

6 sub[F[n℄℄ = sub

0

[n℄

7a maplause(map(ll, ands[F[n℄℄),db)

= maplause

0

(lls(ll

0

[n℄,db

2

),db

2

)

7b every(father, ands[F[n℄℄, F[n℄)
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8 father[F[n℄℄ = b[n℄

9 F[?℄ = ?

In the formulas every(father,ands[n℄; n) means, that n is the father node of every node in ands[n℄.

The equations 1 and 5 atually do not hold. Although the goals are idential, utpoints have

to be mapped by F . Therefore already [Sh94℄ de�nes a funtion F

d

with the axioms

F

d

(F,[℄) = [℄

F

d

(F,[hgoal,tpti j dgl℄) = [hgoal, F(tpt)i j F

d

(F, dgl)℄

and replaes 1 and 5 by

1 deglseq[urrnode℄ = F

d

(F, deglseqreg)

5 deglseq[F[n℄℄ = F

d

(F, deglseq

0

[n℄)

He also adds the obvious equations

10 stop = stop

0

^ mode = mode

0

^ vireg = vireg

0

Formulas 1 { 10 formed our �rst version of the oupling invariant, with whih we started the

formal veri�ation with the KIV system.

Development of the Corret Coupling Invariant We found that the �rst version of the

oupling invariant was not suÆient to prove the orretness. Instead a dozen iterations were

neessary to �nd the orret one. The failed proof attempts took muh more time than the

suessful veri�ation with the orret invariant. We give a rough overview over the searh and

explain, how hidden assumptions were deteted during proof attempts. Adding these assumptions

to the oupling invariant and attempting a new proof revealed further gaps, whih required new

modi�ations in the oupling invariant. An evolutionary proof proess resulted.

breg

b father

father

currnode

cands

cands

cands

breg
subreg
cllreg
decglseqreg

global registers:

b

b

father

father

cands

F

F

F

F

⊥⊥

Figure 11.3

Injetivity of F After only 5 min. (and 6 interations) of proving we reahed the unprovable

goal:

F[breg℄ = F[?℄ ! breg = ? (11.2)
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This formula holds (ompare Fig. 11.3), but how to dedue it? A short look at the visualized

proof tree shows that this proof situation arose by trying to guarantee that in the baktraking

ase ASM2 stops (with failure) if and only if ASM1 stops! The \if" diretion is trivial but for the

\only if" diretion we must prove (11.2).

What we need is the injetivity of F, as an also be seen in Fig. 11.3. We therefore add

11 F injon s

to INV, where injon is de�ned as

F injon s � 8 n,n

1

. n 2 s ^ n

1

2 s ^ F[n℄ = F[n

1

℄ ! n = n

1

Thereby we make it available in all proof situations. On the other hand it is now neessary to

prove that injetivity is invariant in all rules.

Charaterization of the Stak Unfortunately, it is too strong, to assume the injetivity of F.

A proof attempt now fails, with a goal that requires to prove injetivity of F[new(s

0

)  urrnode℄.

We are not able to show, that selet rule keeps the injetivity of F invariant. (after selet rule the

new node new(s

0

) must be mapped to urrnode). A detailed analysis shows, that there are indeed

situations, where this is impossible. Figure 11.4 shows suh a situation, in whih two di�erent

nodes of ASM2 are mapped to the same node of ASM1.

breg

father

father

currnode

cands

cands

cands

b

b

father

father

cands

F

F

F

F

F

⊥ ⊥

Figure 11.4

The problem arises beause there are abandoned nodes that are no longer in the stak (i.e.

reahable following the funtion b from breg) but still present in the set of alloated nodes. The

funtion F is still de�ned on suh nodes, violating injetivity. But on the smaller set of stak

nodes injetivity holds. What we need is a logial haraterization of the stak nodes. Then we

an restrit injetivity of F to the stak.

A haraterization of the stak is also neessary to restrit other still missing properties of F

to stak nodes. One other suh property an be derived from another unprovable goal in the same

proof.

ands[urrnode  x℄[F[n℄℄ = ands[F[n℄℄

Here it must be proved, that a modi�ation of the andidates ands[urrnode℄ does not modify

the andidates of any node in the odomain of F. To prove this we need:

12 F[n℄ 6= urrnode
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breg

b father

father

currnode

cands

cands

cands

b

b

father

father

cands

F

F

F

F

F

⊥ ⊥

Figure 11.5

But this formula is also not true for abandoned nodes, as an be seen in Fig. 11.5, that shows a

pair of states after baktraking. Only that urrnode is not in the image of stak nodes is true.

An important problem with the formal de�nition of stak nodes is, that the simple approah

that de�nes a funtion stakof with

stakof(b,?) = [℄,

breg 6= ? ! stakof(b,breg) = [breg j stakof(b,b[breg℄)℄

is inorret. It leads to an inonsistent spei�ation, sine it is possible to onstrut dynami

funtions, that ylially onnet nodes (for an arbitrary funtion b and a node n 6= ? de�ne

b

0

:= b[n  n℄. Then using the axioms above, it is easy to prove stakof(b

0

; n) = [njstakof(b

0

; n)℄,

ontraditing the list axiom x 6= [ajx℄).

A orret approah to haraterize the list of stak nodes is, to use the program STACK#

below. Its termination guarantees, that the stak does not ontain yles.

STACK#(n, b; var stak)

begin

if n = ? then stak := [℄ else

begin STACK#(b[n℄, b; stak); stak := [n j stak℄ end

end

Figure 11.6 : Charaterization of yle free Staks

Now let  (n) be the onjuntion of all subformulas, whih depend on the seleted node n (5 to 8

and 11) and let ' be the onjuntion of the remaining subformulas (1 to 4, 9, 10 and 12). Then

the oupling invariant INV gets the form:

9 F: ' ^ hSTACK#(breg, b; stak)i (8 n. n 2 stak !  (n)) (11.3)

It says now, that (for suitable F ) ' holds and that B-LIST# terminates with a list stak as result,

suh that  holds for all its elements.

Cutpoints Proving equivalene between the two ut rules with this version of INV shows an-

other diÆulty:  must be guaranteed for the new stak shortened by exeution of the ut. This

stak starts with a new breg, whih was set to the �rst utpoint of deglseqreg. Now, of ourse, the
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new stak would inherit  from the old one, if we knew that it is a part of the old one. But this

an not be dedued from the urrent INV. We have to assert that the utpoints in the urrent

deorated goal sequene are elements of the urrent stak. We therefore de�ne a new prediate

utptsin (written in�x) with axioms

[ ℄ utptsin stak,

[hgoal,tpti jdgl℄ utptsin stak $ tpt 2 stak ^ dgl utptsin stak

(11.4)

and add:

deglseqreg utptsin stak

to the oupling invariant. In this version, the de�nition of utptsin simply heks whether all

utpoints of the �rst argument are elements of the seond. Beause the deorated goal sequene

deglseq[n℄ of every node in the stak an potentially beome the deglseqreg (by baktraking),

we also have to add

deglseq

0

[n℄ utptsin (stak from b[n℄)

where funtion from (again written in�x) is axiomatized with

[ ℄ from n = [ ℄,

n 6= n

0

! [njl℄ from n

0

= l from n

0

,

[njl℄ from n = [njl℄

With the new formulas INV is now

9 F. '

^ hSTACK#(breg, b; stak)i

( deglseqreg utptsin stak

^ (8 n. n 2 stak

!  (n)

^ deglseq'[n℄ utptsin (stak from b[n℄)

Still, this invariant is not strong enough. The proof fails beause when the ut rule is applied,

we have not made sure, that the utpoints in deglseqreg other than the �rst remain in the stak

that has been shortened by the ut. This is true only beause the utpoints point into the stak in

the right ordering (see Fig. 11.7). Therefore the axioms (11.4) for utptsin must be strengthened

to

[ ℄ utptsin stak,

[hgoal,tpti jdgl℄ utptsin stak

$ tpt 2 stak

^ dgl utptsin (stak from tpt)

INV is syntatially unhanged. Fortunately all proofs up to this point used only lemmas for

utptsin that remain valid for the new axiomatization. Therefore, no proof needs to be redone

(and this fat is heked by the \orretness management" of KIV).
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father

father

father

father

currnode
decglseq

(  |  ) , (  |  ) , (  |  )

⊥

Figure 11.7

More Properties The oupling invariant is still not omplete. Several further proof attempts

revealed that it is neessary to make properties about the struture of the searh tree of ASM1

expliit. Some of these properties are (informally): no andidate is in the range of F, no andidate

list has dupliates, the intersetion of di�erent andidate lists is empty, and so on. Altogether 12

proof attempts were made with di�erent oupling invariants (not ounting di�erent versions due

to typing errors) until the �nal oupling invariant shown below was reahed. All of the properties

listed were atually needed to omplete the proof.

INV

12

�

9 F. stop = stop

0

^ mode = mode

0

^ vireg = vireg

0

^ subreg = sub[urrnode℄

^ F[?℄ = ? ^ F[breg℄ = father[urrnode℄ ^ ? 6= urrnode

^ F

d

(F, deglseqreg) = deglseq[urrnode℄

^ ? 2 s

0

^ ? 2 s ^ urrnode 2 s

^ ( mode = selet

! hCLLS#(llreg, db

2

;ol)i

maplause

0

(ol, db

2

) = maplause(map(ll, ands[urrnode℄), db)

^ every(father, ands[urrnode℄, urrnode)

^ : urrnode 2 ands[urrnode℄ ^ : ? 2 ands[urrnode℄

^ ands[urrnode℄ � s ^ nodups(ands[urrnode℄))

^ hSTACK#(breg, b; stak)i

( deglseqreg utptsin stak ^ andsdisjoint(F, ands, stak)

^ F injon stak

^ noands(F, ands, stak) ^ stak � s

0

^ 8 n. n 2 stak

! sub

0

[n℄ = sub[F[n℄℄ ^ F[b[n℄℄ = father[F[n℄℄

^ F

d

(F, deglseq

0

[n℄) = deglseq[F[n℄℄

^ hCLLS#(ll

0

[n℄,db

2

;ol)i

maplause

0

(ol,db

2

) = mapl(map(ll, ands[F[n℄℄), db)

^ every(father, ands[F[n℄℄, F[n℄)

^ F[n℄ 6= urrnode ^ F[n℄ 2 s ^ nodups(ands[F[n℄℄)

^ ands[F[n℄℄ � s ^ : urrnode 2 ands[F[n℄℄

^ ( mode = selet

! : F[n℄ 2 ands[urrnode℄

^ disjoint(ands[F[n℄℄, ands[urrnode℄))

^ deglseq

0

[n℄ utptsin (stak from b[n℄))
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Chapter 12

2/3: Reuse of Choiepoints

12.1 De�nition of ASM3

Although ASM2 alloates fewer nodes that ASM1, there are still two more possibilities to redue

their number, that are exploited in the optimizations to ASM3 and ASM4.

In this setion we �rst desribe the reuse of hoiepoints. We follow [BR95℄, Chapter 1.3.

The optimization an be explained most easily by looking at the example of the previous setion:

When the �rst alternative for ativator p is tried, ASM2 alloates a new node A, and sets the

values deglseq[A℄, sub[A℄ and ll[A℄ of the new hoiepoint.

Sine the �rst alternative does not lead to a solution, the interpreter exeutes a baktrak

instrution, whih removes the node A from the stak. Thereby the whole hoiepoint beomes

inaessible. The subsequent selet rule for the seond alternative then pushes a new hoiepoint

A' on the stak. This hoiepoint gets the same values as the one for the �rst alternative, exept

that ll(A') has been inremented (see Fig. 11.2, p. 67 in Set. 11.2).

The optimization done in ASM3 avoids dealloation and realloation of hoiepoints. Instead

it reuses the existing hoiepoint. The optimization is ahieved by replaing the removal of a

hoiepoint in the else-branh of baktraking with the assignment mode := retry, whih ativates

a new rule, retry rule. This rule ombines the e�ets of the else-branh of baktrak and of selet.

It is exeuted instead of selet rule for every alternative exept the �rst. It removes a hoiepoint

(i.e. to set breg to b(breg)) only on exeution of the last alternative. Otherwise it reuses the old

hoiepoint by inrementing ll(breg). The old selet rule, whih alloates a new hoiepoint is

now only alled for the �rst alternative lause, and is renamed to try rule. The test whether any

alternative exists, an now be done already in the all rule instead of the try rule. To avoid ode

dupliation the ommon parts of try and retry rule (uni�ation with the ativator, inrementing

vireg et.) are moved to a new enter rule, whih is ativated with mode := enter. Altogether these

transformations result in the following set of rules:

all rule

if mode = all ^ is user de�ned(at)

then if lause(prodef

2

(at,db

2

)) = null

then baktrak

else llreg := prodef

2

(at,db

2

)

treg := breg

mode := try

enter rule

if mode = enter

then let la = rename(lause(llreg,db

2

),vireg)

let mgu = unify(at, hd(la))

if mgu = nil

75
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then baktrak

else deglseqreg := mgu ^

d

[<bdy(la),treg> j ont℄

subreg := subreg Æ mgu

vireg := vireg +1

mode := all

goal suess rule

if goal = [℄ ^ deglseqreg 6= [℄

then deglseqreg := dr(deglseqreg)

query suess rule

if deglseqreg = [℄ then stop := halt

subst := subreg

try rule

if mode = try

then mode := enter

let tmp = new(s)

s := s [ ftmpg

breg := tmp

b[tmp℄ := breg

deglseq[tmp℄ := deglseqreg

sub[tmp℄ := subreg

ll[tmp℄ := llreg +1

retry rule

if mode = retry

then if lause(ll[breg℄,db

2

) = null

then deep-baktrak

else deglseqreg := deglseq[breg℄

subreg := sub[breg℄

llreg := ll[breg℄

treg := b[breg℄

mode := enter

ut rule

if at = ! then father := utpt

deglseqreg := ont

fail rule

if at = fail then baktrak

where

baktrak �

if breg = ?

then stop := halt

subst := failure

else mode := retry

It should be noted, that enter rule uses a new register treg to set the utpoint tpt of the new

deglseqreg. This is neessary, sine after a retry rule we must now use b[breg℄ instead of breg as

the value of tpt. all rule and retry rule set treg appropriately.
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12.2 Equivalene Proof 2/3

The desription of the optimization from ASM2 to ASM3 suggests not to look at single rules in

the veri�ation, but to look for orresponding states, and to de�ne groups of rules whih keep this

orrespondene invariant. Two obviously orresponding states are the ones, when both ASMs are

in all mode. In these states the values of the registers and the state of the hoiepoint stak are

the same (modulo renaming of stak nodes). Only little more ompliated is the orrespondene,

when ASM3 exeutes a retry and ASM2 exeutes the orresponding selet. In this ase the register

ontents of ASM2 agree with the ontent of the topmost hoiepoint of ASM3, and the remainder

of ASM3 stak is idential to the ASM2 stak. If one writes regs, stak resp. regs

0

, stak

0

for the

registers and the stak of ASM2 resp. ASM3, a �rst attempt for the oupling invariant is

INV23(regs,stak,regs

0

,stak

0

) � CINV _ RINV

where

CINV � mode = all ^ mode

0

= all ^ regs = regs

0

^ stak = stak

0

,

RINV � mode = selet ^ mode

0

= retry ^ stak

0

= push(regs,stak)

An analysis, whih rule sequenes lead from orresponding states to orresponding states results

in the ommuting diagrams shown in Fig. 12.1.

all // selet1 // selet1 //

all1

//��
CINV

OO

zz
RINV

::uuuuuuuuuu
retry1

//��
RINV

OO

��
RINV

OO

all // selet2 // selet2 //

all2

//��
CINV

OO

try

//
enter1

//$$

RINV

ddIIIIIIIIII

retry2

//��
RINV

OO

enter1

//$$

RINV

ddIIIIIIIIII

all // selet3 // selet3 //

all2

//��
CINV

OO

try

//
enter2

//$$

RINV

ddIIIIIIIIII

retry2

//��
RINV

OO

enter2

//$$

RINV

ddIIIIIIIIII

ut // fail // true //

ut

//��
CINV

OO

��
CINV

OO

fail

//��
CINV

OO

��
RINV

OO

true

//��
CINV

OO

��
CINV

OO

Figure 12.1 : Commuting Diagrams for the Re�nement 2/3

selet1, selet2 and selet3 are the three subases of the selet rule, retry1 et. are de�ned

similarly. The theory developed in Chapter 6 now shows, that the proof of ommutativity for all

given diagrams is suÆient, to prove the equivalene of ASM2 and ASM3 (after a ase distintion

over all possible pairs of rules, just instantiate the quanti�ed variables i and j in proof obligation

(6.5) aording to the size of eah diagram). The ommuting diagrams as well as the �rst approah

for a oupling invariant agree with the ones given [BR95℄.

Sine ASM3 alloates fewer nodes that ASM2, it is obvious that for the formal veri�ation

to go through, we again need a mapping F between the nodes. This again auses some of the

problems that already showed up in the �rst re�nement, namely injetivity of F on the urrent

stak, and the utptsin property.
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A new property that was not needed in the veri�ation of 1/2 is, that eah deglseq[n℄ is not

empty, and its �rst goal starts with a user de�ned literal (we again write goal[n℄ and at[n℄ for

these omponents). This property is neessary to make sure that the rule that is applied after

baktraking an only be retry, and not goal suess.

Using the theory from Chapter 6 simpli�es veri�ation enormously, sine it is ompletely

unneessary to de�ne a oupling invariant for intermediate states of the diagrams (see also the

omparison to Isabelle in Set. 20).

A �rst attempt, to prove that all diagrams ommute, was suessful within 2 weeks, This �rst

attempt used a preliminary version of the theory, whih allowed the use of arbitrary ommuting

diagrams. It still required a separate orretness and ompleteness proof with two di�erent ou-

pling invariants, as well as a proof of the generi modularization theorem for the onrete instane

(as we have now seen). 8 attempts were neessary, to �nd the two oupling invariants.

A seond attempt with the full theory was suessful to prove the equivalene of ASM2 and

ASM3 in a few hours. Of ourse the time for the suessful seond attempt was shortened by the

fat that a suessful proof already existed. Somewhat more realisti is the omparison of intera-

tions in both proofs: instead of 234 interations only 75 were neessary to prove the ommutation

of all diagrams following oupling invariant.



12.2. EQUIVALENCE PROOF 2/3 79

INV

23

�

stop = stop

0

^ (stop = suess ! subreg = subreg

0

)

^ ? 2 s ^ ? 2 s

0

^ ( stop 6= run

(* CINV *)

_ stop = run ^ stop

0

= run ^ mode = all ^ mode

0

= all

^ vireg = vireg

0

^ subreg = subreg

0

^ (9 F. F[?℄ = ? ^ breg = F[breg

0

℄

^ F

d

(F, deglseqreg

0

) = deglseqreg

^ hSTACK#(breg

0

, b

0

; stak)i

( hSTACK#(breg, b; stak

0

)i F

l

(F, stak) = stak

0

^ F injon stak ^ F

l

(F, stak) � s ^ stak � s

0

^ deglseqreg

0

utptsin stak

^ (8 n. n 2 stak

! sub

0

[n℄ = sub[F[n℄℄ ^ ll

0

[n℄ = ll[F[n℄℄

^ F

d

(F, deglseq

0

[n℄) = deglseq[F[n℄℄

^ deglseq

0

[n℄ utptsin dr(stak from n)

^ deglseq

0

[n℄ 6= [℄ ^ goal

0

[n℄ 6= [℄

^ is user de�ned(at

0

[n℄))))

(* RINV *)

_ stop = run ^ stop

0

= run ^ mode = selet ^ mode

0

= retry

^ deglseqreg

0

6= [℄ ^ goal

0

6= [℄ ^ deglseqreg 6= [℄ ^ goal 6= [℄

^ is user de�ned(at) ^ breg

0

6= ?

^ vireg = vireg

0

^ sub

0

[breg

0

℄ = subreg ^ ll

0

[breg

0

℄ = llreg

^ (9 F. hSTACK#(b

0

[breg

0

℄, b

0

; stak)i

( hSTACK#(breg, b; stak

0

)i F

l

(F, stak) = stak

0

^ F

d

(F, deglseq

0

[breg

0

℄) = deglseqreg ^ F[?℄ = ?

^ F injon stak ^ F

l

(F, stak) � s ^ stak � s

0

^ breg

0

2 s

0

^ deglseq

0

[breg

0

℄ utptsin stak

^ (8 n. n 2 stak

! sub

0

[n℄ = sub[F[n℄℄ ^ ll

0

[n℄ = ll[F[n℄℄

^ F

d

(F, deglseq

0

[n℄) = deglseq[F[n℄℄

^ deglseq

0

[n℄ utptsin dr(stak from n)

^ deglseq

0

[n℄ 6= [℄ ^ goal[n℄ 6= [℄

^ is user de�ned(at[n℄)))))
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Chapter 13

3/4: Determinay Detetion

13.1 De�nition of ASM4

In the re�nement of ASM2 to ASM3 we have removed the unneessary dealloation and realloation

of hoiepoints. But there is another possibility for optimization, namely hoiepoints with an

empty list of andidates (\empty hoiepoints").

As an example in Fig. 11.2, p. 67 from Set. 11.2 both hoiepoints A

0

(in ASM3 A is reused)

and C point to an empty list of lauses, i.e. lause(ll [A

0

℄,db

2

) = lause(ll [C℄,db

2

) = null. If

suh an empty hoiepoint is visited in retry rule, deep-baktrak is alled and the hoiepoint is

simply removed. This behavior an be optimized by avoiding the reation of empty hoiepoints

altogether with look-ahead tests ("`determinay detetion"'). For the try rule this means, that a

hoiepoint need not be reated when prodef

2

(at,db

2

) gives only one lause. In the retry rule

a hoiepoint an be removed altogether instead of modifying it, when the stored alternatives

beome empty. The test for an empty hoiepoint beomes obsolete. The state of ASM2 from

Fig. 11.2 then orresponds to the state of ASM4 shown in Fig. 13.1.

76 5401 23
?

[h[p℄,?i℄

/. -,() *+
a

OO

//__
3

deglseqreg = [h[℄,ai,h[!,true℄,?i,h[℄,?i ℄

breg = a

Figure 13.1

The modi�ed try- and retry rule of ASM4 are

81
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try rule

if mode = try

then mode := enter

if lause

0

(llreg +1, db

2

) 6= null

then let tmp = new(s)

s := s [ ftmpg

b[tmp℄ := breg

deglseq[tmp℄ := deglseqreg

sub[tmp℄ := subreg

ll[tmp℄ := llreg +1

breg := tmp

retry rule

if mode = retry

then deglseqreg := deglseq[breg℄

subreg := sub[breg℄

llreg := ll[breg℄

treg := b[breg℄

mode := enter

/* look ahead guard */

if lause(ll[breg℄ +1,db

2

) 6= null

then ll[breg℄ := ll[breg℄ +1

else breg := b[breg℄

13.2 Equivalene Proof 3/4

To verify the equivalene between ASM3 and ASM4 a bijetion F between the nonempty hoie-

points of ASM3 and ASM4 is needed. Whether the funtion is de�ned to map nonempty hoie-

points of ASM3 to ones of ASM4 or the other way round is not too important, it only determines

whih of the two staks has to be omputed with a all to STACK# (the other stak then is the

image under F ). To be onsistent with [BR95℄ we have hosen to map the stak of ASM3 to the

one of ASM4.

As the ritial point in the de�nition of the oupling invariant it remains to de�ne a orre-

spondene between the utpoints, To this purpose we use a program F# that maps eah utpoint

of ASM3 to the next one below it in the stak that is nonempty. Program G# applies F# to

all utpoints of a deglseq. Applying �rst G# and then F (with F

d

) on a deglseq of ASM3 then

gives the orresponding deglseq of ASM4. Again a �rst-order de�nition is not possible sine in-

onsisteny due to yli pointer strutures has to be avoided. Figure 13.2 graphially shows the

orrespondene between the two hoiepoint staks. Empty hoiepoints are shown as a \Æ".

The formal de�nition of the proedures F# and G# is

F#(n,b,ll,db

2

;var n

0

)

begin

if n = ?

then n

0

:= n

else if lause(ll[n℄,db

2

) = null

then F#(b[n℄,b,ll,db

2

;n

0

)

else n

0

:= n

end

G#(deglseqreg,b,ll,db

2

;var deglseqreg

0

)

begin

if deglseqreg = [℄ then deglseqreg

0

:= [℄ else



13.2. EQUIVALENCE PROOF 3/4 83

Æ
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Figure 13.2 : Corresponding Choiepoints in ASM3 and ASM4

var tpt

0

, ont

0

in

begin

F#(tpt,b,ll,db

2

;tpt

0

);

G#(ont,b,ll,db

2

;ont

0

);

deglseqreg

0

:= [hat, tpt

0

i j ont

0

℄

end

end

It orrets and simpli�es the de�nitions of F and G given in [BR95℄.

As a �rst approah for a oupling invariant the onsiderations above suggest

INV

34

�

9 F.

stop = stop

0

^ vireg = vireg

0

^ subreg = subreg

0

^ llreg = llreg

0

^ F[?℄ = ? ^ mode = mode

0

^ hF#(breg, b, ll, db

2

; breg

0

)i F[breg

0

℄ = breg

0

^ hSTACK#(breg,b;stak)i

hG#(deglseqreg,b,ll,db

2

;bf var deglseqreg

0

)i

F

d

(F,deglseqreg

0

) =deglseqreg

0

^ 8 n. n 2 stak

! sub[n℄ = sub

0

[n℄ ^ ll[n℄ = ll

0

[n℄

^ hF#(b[n℄, b, ll, db

2

; n

0

)i

F[n

0

℄ = b

0

[F[n℄℄

The two onjunts with alls to F# and the formula F [?℄ = ? desribe the onstrution of

the ASM4 stak from the ASM3 stak. Most of the rules of ASM3 orrespond to the same rule in

ASM4. Only appliations of the retry rule, that remove an empty hoiepoint with deep-baktrak

have no ounterpart in ASM4. We have a 1:0 diagram for this ase and 1:1 diagrams otherwise.

Therefore the funtion ndt from Chapter 6 no longer has the onstant value mn. Instead we have

to de�ne

1

ndt by

stop = run ^ deglseqreg 6= [℄ ^ goal 6= [℄

^ mode = retry ^ lause(ll[breg℄,db

2

) = null

� ndt(x,x

0

) = m0 ; ndt(x,x

0

) = mn

1

A � B;C abbreviates (A ! B) ^ (: A ! C), see Appendix B.
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In the de�nition, as usual x =deglseqreg, deglseq, stop, . . . and x

0

= deglseqreg

0

, deglseq

0

,

stop

0

, . . . denote the vetors of all dynami funtions of ASM3 and ASM4 (translated to program

variables). To apply the modularization theorem from Chapter 6, we also need to de�ne a funtion

exe0n that bounds the number of suessive triangular 1:0 diagrams, i.e. of suessive alls to

deep-baktrak. Suh a bound is obviously given by the size of the ASM3 stak (omputed with

#). With this instane, proof obligation (6.6) from Chapter 6 beomes

stop = run ^ INV

34

^ deglseqreg 6= [℄ ^ goal 6= [℄

^ mode = retry ^ lause(ll[breg℄,db

2

) = null

^ hSTACK#(breg,b;stak)i #(stak) = m

! hRULE

3

i ( INV

34

^ (hSTACK#(breg,b;stak)i #(stak) < m _ stop = failure))

The disjunt ndt(x; x

0

) 6= m0 in the postondition has been strengthened to stop = failure, sine

this is the only ase, where ASM3 does not redue the size of the stak.

It should be noted, that the preondition of the proof obligation does not inlude stop

0

= run.

Just on the ontrary proof obligation (6.9) from Chapter 6 now requires to prove that

stop = run ^ stop

0

6= run ^ INV

34

! ndt(x,x

0

) = m0

holds. This results in the main problem for the veri�ation: it must be made sure that INV

34

holds, when ASM4 has already terminated, while ASM3 still has to remove empty hoiepoints.

This situation of asynhronous termination ompliates the de�nition of the oupling invariant.

In it we do not have stop = stop

0

, and also mode = mode

0

is violated. So we have to weaken these

properties in the oupling invariant to

(stop

0

6= failure ! stop = stop

0

^ mode = mode

0

)

^ ( stop

0

= failure ^ stop 6= failure

! mode = retry ^ breg

0

= ?)

Together with the property

hF#(breg, b, ll, db

2

; breg

0

)i F[breg

0

℄ = breg

0

already present in the invariant, it is guaranteed that in the ritial ase, where ASM4 has stopped,

all hoiepoints in the stak of ASM3 are empty.

As always this approah for the oupling invariant is still insuÆient for the equivalene proofs.

Like in 1/2 and 2/3 we additionally need the injetivity of F , but this time only for nonempty

hoiepoints. Also the utptsin property and the existene of at[n℄ for every hoiepoint n are

required. Finally we need to mention a number of preonditions for single rule appliations like

mode

0

= retry ! breg

0

6= ?, and a haraterization of treg and treg

0

in terms of breg and breg

0

.

These properties were easy to �nd, and after 2 weeks of work and 5 iterations the following, orret

oupling invariant was found.

INV

34

�

9 F.

(mode = try ! treg = breg ^ lause

0

(llreg, db

2

) 6= null)

^ ( mode = enter

! breg 6= ? ^ treg = b[breg℄ ^ subreg = sub[breg℄

^ lause

0

(llreg, db

2

) 6= null ^ llreg+1 = ll[breg℄

^ deglseqreg = deglseq[breg℄)
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^ (mode

0

= retry ! breg

0

6= ?)

^ (mode

0

= try ! treg

0

= breg

0

^ lause

0

(llreg

0

, db

2

) 6= null)

^ (mode

0

= enter ! lause

0

(llreg

0

, db

2

) 6= null)

^ ( mode

0

= enter ^ lause

0

(llreg

0

+1, db

2

) 6= null

! breg

0

6= ? ^ treg

0

= b

0

[breg

0

℄)

^ (mode

0

= enter ^ lause

0

(llreg

0

+1, db

2

) = null ! treg

0

= breg

0

)

^ F[?℄ = ? ^ ? 2 s ^ ? 2 s

0

^ breg 2 s ^ treg 2 s

^ vireg = vireg

0

^ subreg = subreg

0

^ llreg = llreg

0

^ (mode = retry ! breg 6= ? ^ deglseqreg 6= [℄ ^ goal 6= [℄)

^ (deglseqreg

0

= [℄ _ goal = [℄ ! mode = all)

^ (stop

0

6= failure ! mode = mode

0

^ stop = stop

0

)

^ ( stop

0

= failure ^ stop 6= failure

! stop = run ^ mode = retry ^ breg

0

= ?)

^ hF#(breg, b, ll, db

2

; n

0

)i F[n

0

℄ = breg

0

^ hG#(deglseqreg, b, ll, db

2

; deglseqreg

0

)i

F

d

(F, deglseqreg

0

) = deglseqreg

0

^ hSTACK#(breg, b; stak)i

( stak � s ^ (mode 6= retry ! deglseqreg utptsin stak)

^ (8 n. n 2 stak

! deglseq[n℄ utptsin dr(stak from n)

^ deglseq[n℄ 6= [℄ ^ goal[n℄ 6= [℄)

^ (8 n. n 2 stak ^ lause

0

(ll[n℄, db

2

) 6= null

! F[n℄ 2 s

0

^ F[n℄ 6= ? ^ deglseq[n℄ 6= [℄ ^ goal 6= [℄

^ hF#(b[n℄, b, ll, db

2

; n

0

)i F[n

0

℄ = b

0

[F[n℄℄

^ hG#(deglseq[n℄, b, ll, db

2

; deglseqreg

0

)i

F

d

(F, deglseqreg

0

) = deglseq

0

[F[n℄℄

^ ll[n℄ = ll

0

[F[n℄℄ ^ sub[n℄ = sub

0

[F[n℄℄

^ (8 n

1

. n

1

2 stak ^ lause

0

(ll[n

1

℄, db

2

) 6= null

^ n 6= n

1

! F[n℄ 6= F[n

1

℄)))

With hindsight this invariant ould be simpli�ed by merging some of the 1:1 diagrams whih

deterministially are suessors of eah others. This is the ase for the rule sequenes all (seond

ase that does not baktrak) try, enter (whih gives a 3:3 diagram) and retry, enter (2:2 diagram).

Using larger diagrams would redue the number of states, in whih the oupling invariant must

hold. Spei�ally all onjunts with one of the preonditions mode = try, mode

0

= try, mode =

enter or mode

0

= enter, i.e. the �rst 11 lines of the invariant, ould be removed.
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Chapter 14

4/5: Linear Compilation of

Prediate Struture

14.1 De�nition of ASM5

The �rst three re�nement steps an be viewed as an optimization of the �rst ASM whih do not

hange the representation of the Prolog program. In ontrast, the re�nement from ASM4 to ASM5

ompiles the prediate struture of Prolog. For the �rst time instrutions are introdued, whih

will also be present in the �nal WAM. We will deviate in this setion from [BR95℄ insofar, as

the ode of ASM5 will �rst ontain linear hains, not the more omplex nested hains, whih we

will de�ne in ASM6 (a preise de�nition of \hains" will be given below). The reason is, that

the re�nement 4/5 allows to study the typial problems of a ompilation step, without having to

onsider the problems of m:n diagrams simultaneously.

The general idea of the re�nement step is to move ontrol over the rule to be exeuted from the

mode-Variable to the atual ode. To do this, llreg no longer points to the line of a lause, but

to an address, where instrutions are stored. llreg beomes a program ounter, and is therefore

renamed to preg. Similarly the lause line ll[n℄ stored in hoiepoints beomes a ode pointer

p[n℄.

The instrution stored at preg is now the result of a funtion ode, that replaes lause. Cheks

for the value of mode are replaed by heks on the type of the instrution ode(preg,db

5

), where

db

5

is the database of ASM5. Possible instrutions may at this stage still be lauses (they are

replaed by �ner-grained instrutions in the re�nements 8/9 and 9/10), but additionally we now

have the ontrol instrutions try me else, retry me else and trust me, whih replae the rules try

and retry (then and else ase).

To understand the e�et of the ontrol instrutions, onsider the following example lauses for

a prediate p:

p(X) :- body1.

p(f(X)) :- body2.

p(g(X)) :- body3.

p(g(X)) :- body4.

(14.1)

In the re�nement of ASM4 to ASM5 they are translated to the ode fragment (labels L1 { L4 are

symboli addresses):

87
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L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: retry_me_else(L4)

p(g(X)) :- body3.

L4: trust_me

p(g(X)) :- body4.

(14.2)

On a query ?- p(X), all rule of ASM5 (alled when preg is at a speial start address) will set

preg to the start address L1 of the lauses for p (a speial address failode is used as the result of

the prodef funtion, when no lauses are available for an ativator).

all rule

if is user de�ned(at) ^ preg = start

then treg := breg

if ode(prodef

5

(at,db

5

)) = failode

then baktrak

else preg := prodef

5

(at,db

5

)

where

baktrak �

if breg = ?

then stop := failure

else preg := p[breg℄

Exeution of try me else(L2) at address L1 with the try me rule will have the same e�et,

that try rule in ASM4 had.

try me rule

if ode(preg,db

5

) = try me else(N)

then let tmp = new(s)

s := s [ ftmpg

breg := tmp

b[tmp℄ := breg

deglseq[tmp℄ := deglseqreg

sub[tmp℄ := subreg

p[tmp℄ := N

preg := preg +1

The address for alternative lauses stored in the hoiepoint is L2 and exeution ontinues with

the next address. The lause there is exeuted with enter rule, whih has the same e�et as in

ASM4. Sine it must ativate all rule on suessful invoation, it sets preg := start.

enter rule

if is user de�ned(at) ^ ode(preg,db

5

) = lause

then let la = rename(lause,vi)

let mgu = unify(at, hd(la))

if mgu = nil

then baktrak

else deglseqreg := mgu ^

d

[<bdy(la),treg> j ont℄

subreg := subreg Æ unify

vi := vi +1

preg := start
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When preg is set to L3 or to L5 by baktraking, the retry me rule resp. the trust me rule

are exeuted. They orrespond to the then- and the else-branh of retry rule of ASM4. The ase

distintion is no longer done at run time, but at ompile time.

retry me rule

if ode(preg,db

5

) = retry me else(N)

then deglseqreg := deglseq[breg℄

subreg := sub[breg℄

treg := b[breg℄

p[breg℄ := N

preg := preg +1

trust me rule

if ode(preg,db

5

) = trust me

then deglseqreg := deglseq[breg℄

treg := b[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := preg +1

In general, the list of lauses for one prediate given in the original program is ompiled to

a ode fragment stored in the memory of ASM5, whih starts with a try me else instrution

and onsist of the list of lauses separated by retry me else instrutions, exept the last, whih

is separated by a trust me instrution. Suh a ode fragment is alled a linear hain. The

requirement, that all ode fragments must be linear hains is formally reeted in the ompiler

assumption for the re�nement from interpreter 4 to 5:

db

5

= ompile

45

(db

2

)

! [CLLS#(prodef

2

(at,db

2

),db

2

),db

2

;ol

1

)℄

hL-CHAIN#(prodef

5

(at,db

5

),db

5

;ol

2

)i

maplause

0

(ol

1

,db

2

) = maplause

0

(ol

2

,db

5

)

(14.3)

prodef

2

and db

2

are the prodef funtion and the Prolog program that have been used in the ASM2,

ASM3 and ASM4. prodef

5

is the new prodef -funtion for ASM5 and db

5

is the ompiled Prolog

program. The proedure L-CHAIN# terminates, i� the ode fragment stored at prodef

5

(at,db

5

)

is a linear hain, and delivers the lauses ontained in it. As for stakof (see p. 71 in Set. 11.2)

a de�nition a �rst-order funtion l-hain instead of the proedure is not suÆient to haraterize

linear hains. By the termination of the proedure yli hains have to be ruled out as possible

results of the ompilation. A preise de�nition of the L-CHAIN# program is given in appendix

D.1.

14.2 Equivalene Proof 4/5

A preise analysis of the re�nement from ASM4 to ASM5 shows that it does not just replae mode

with instrutions. Also the test lause(prodef

2

(at,db

2

)) = null is moved from try rule (ASM4)

to all rule (ASM5). This modi�ation an also be done in ASM4. Just replae try rule and all

rule with

all rule

if stop = run ^ mode = all

^ is user de�ned(at)

then if lause(prodef

2

(at,db

2

)) = null

then baktrak
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else llreg := prodef

2

(at,db

2

)

treg := breg

if lause(prodef

2

(at,db

2

)+1, db

2

) 6= null

then mode := try

else mode := enter

try rule

if stop = run ^ mode = try

then mode := enter

let tmp = new(s)

s := s [ ftmpg

breg := tmp

b[tmp℄ := breg

deglseq[tmp℄ := deglseqreg

sub[tmp℄ := subreg

ll[tmp℄ := llreg +1

If we all the result ASM4a, then the re�nement of ASM4a to ASM5 only ontains 1:1 diagrams.

In the veri�ation of the re�nement from ASM4 to ASM4a we must onsider a 2:1 and a

2:2 diagram for the ase where mode = all and no baktraking happens, depending on whether

lause(prodef

2

(at,db

2

)) = null holds. Otherwise the veri�ation is trivial, sine obviously identity

suÆes as oupling invariant.

The veri�ation of 4a/5 was the subjet of the diploma thesis of Wolfgang Ahrendt at the

university of Karlsruhe ([Ahr95℄). Details are also given in [SA98℄.

About one month of work and 9 iterations were neessary to �nd the orret oupling invariant.

The omplexity of the proofs is about the same as for the re�nement 1/2. The main problem in

the development of the oupling invariant is to transform the ompiler assumption into suitable

onnetions between the hoiepoints. E.g. in the ase mode = retry we must have that for eah

hoiepoint n the ode hain of ASM5 at p[n℄ starts with a retry me else or trust me and ontains

the same lauses as the lause list of ASM4 starting with ll[n℄. Formally we have to add

hCLLS#(ll[n℄, db

2

; ol

1

)i

hL-CHAIN-RETRY-ME#(p[n℄, db

5

; ol

2

)i

mapode(ol

2

, db

5

) = maplause

0

(ol

1

, db

2

))

to the oupling invariant. The use of a subproedure (here C-CHAIN-RETRY-ME#) of the

proedure L-CHAIN# used in the ompiler assumption is typial for ompilation steps (for the

de�nition of L-CHAIN# see appendix D.1). To have a simple oupling invariant, it is reommend-

able to struture the proedures in the ompiler assumptions aording to the struture of ASM

runs.

The most important result of the formal veri�ation of 4a/5 was that an unintended indeter-

minism was revealed in ASM3 and ASM4. The problem was found when verifying 4a/5, sine this

re�nement was veri�ed before re�nements 2/3 and 3/4.

To see the problem, onsider again the fail rule from ASM3 (p. 76), that is also used in ASM4.

The obvious intention of the rule is that retry rule should be exeuted afterwards.

Now it seems to be obvious that the only rule that is appliable at all after exeution of fail

rule is indeed retry rule. But our orretness proofs revealed that fail rule does not invalidate its

own guard, so it may be exeuted again, leading to an in�nite loop. The rule system is therefore

indeterministi (or following the terminology of [Gur95℄, inonsistent), and does no longer orretly

implement a Prolog interpreter.

Although the error is easy to orret (the onjunt mode = all must be added to the guard of

fail rule), we think this is a typial error that is very diÆult to �nd even by intensive inspetion

(and, of ourse, we had to inspet the ode thoroughly before we ould make an attempt to de�ne a



14.2. EQUIVALENCE PROOF 4/5 91

oupling invariant). A reader will always unonsiously resolve the indeterminism in the intended

way. Nevertheless, an implementation is blind for intentions, and will possibly resolve the onit

in the wrong way (and ours did!).

The oupling invariant required for suessful veri�ation is:

INV

45

�

stop = stop

0

^ vireg = vireg

0

^ subreg = subreg

0

^ breg = breg

0

^ treg = treg

0

^ deglseqreg = deglseqreg

0

^ s = s

0

^ breg 2 s ^ treg 2 s

^ deglseqreg tpelem s

^ (mode = all ! preg = start)

^ (mode = retry ! breg 6= ? ^ preg = p[breg

0

℄)

^ (mode = enter ! ode(preg, db

5

) = mkl(the lau(lause

0

(llreg, db

2

))))

^ ( mode = try

! is user de�ned(at)

^ hCLLS#(llreg, db

2

; ol

1

)i

hL-CHAIN-TRY-ME#(preg, db

5

; ol

2

)i

mapode(ol

2

, db

5

) = maplause

0

(ol

1

, db

2

))

^ (deglseqreg = [℄ _ goal = [℄ _ at = ! _ at = true ! mode = all

0

)

^ (8 n. n 2 s ^ n 6= ?

! b[n℄ 2 s ^ deglseq[n℄ tpelem s ^ sub[n℄ = sub

0

[n℄

^ b[n℄ = b

0

[n℄ ^ deglseq[n℄ = deglseq

0

[n℄ ^ deglseq[n℄ 6= [℄

^ goal 6= [℄ ^ is user de�ned(at[n℄)

^ hCLLS#(ll[n℄, db

2

; ol

1

)i

hL-CHAIN-RETRY-ME#(p[n℄, db

5

; ol

2

)i

mapode(ol

2

, db

5

) = maplause

0

(ol

1

, db

2

))
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Chapter 15

5/7: Strutured Compilation of

Prediate Struture

15.1 De�nition of ASM6 and ASM7

In ASMs 1{5 the problem, how to determine \relevant" lauses, whih have a head that uni�es

with an ativator, was enoded into the under-spei�ed prodef funtion. In ASM7 this under-

spei�ation is removed by de�ning instrution sequenes that selet relevant lauses.

A onrete de�nition of the prodef funtion has to be between two extremes:

� A simple implementation, in whih prodef(at,db) returns all lauses, whih have a head

that starts with the leading prediate symbol of at. This solution is ineÆient, sine it

leads to a linear searh in lauses, and auses a lot of (expensive) failed uni�ation attempts.

Consider e.g. a olletion of fats p(

1

), ..., p(

n

) in a database.

� An elaborate solution, whih selets exatly those lauses, whih unify with the ativator.

Suh a solution is possible using \disrimination nets" (see e.g. [Gra96℄). It enodes the

whole uni�ation into lause seletion.

The solution taken in the WAM is a ompromise between both extremes. It uses the simple

prodef funtion in the all rule and additional swithing instrutions, that selet relevant \groups"

of lauses depending on the leading funtion symbol of some argument of at. If e.g. the ativator

is of the form p(t1,f(t2)), then a swithing instrution ould selet a group of lauses whih

have as seond argument either a variable or f. Clauses with a seond argument, that starts with

a funtion symbol di�erent from f would not be onsidered.

Before swithing instrutions an be introdued, �rst \grouping" of lauses must be made

possible. This is done in ASM6 by allowing instrution sequenes that form nested hains. Nested

hains are de�ned like linear hains, but at eah position where a linear hain ontains a lause,

a nested hain may ontain another (nested) hain. Suh an inner hain an be used to group

similar lauses together, so that they an be skipped as a whole with a swithing instrution in

ASM7.

If we look at the example program (14.1) from Set. 14.1, then we ould for example group the

last two lauses. The resulting ode shown in Fig. 15.1 has a subhain for the two lauses starting

at label L4.
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L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: trust_me

L4: try_me_else(L5)

p(g(X)) :- body3.

L5: trust_me

p(g(X)) :- body4.

(15.1)

Allowing nested instead of linear hains requires only a minimal hange in the ASM ode. In

the retry me else and trust me instrutions we an no longer load treg with b[breg℄, sine the

utpoint of the urrently ative goal need no longer be the father of breg. Instead all hoiepoints

that were onstruted for the urrent goal have to be ignored. The number of these hoiepoints is

equal to the nesting depth of the hain the ASM urrently works on. For the trust me at L5 it is 2,

the orret value that should be assigned to treg in the rule therefore should be treg := b[b[breg℄℄.

The trust me at L3 should set treg to b[breg℄. To solve the problem, there are two alternatives.

[BR95℄ leaves open whih one to hoose by not giving a onrete de�nition for the restore utpoint

statement. The �rst solution is to add an additional argument to eah retry me else and trust me

instrution, whih reords its urrent depth in the hain. The seond solution is to store the

orret treg within the hoiepoint. We have hosen the seond one, sine aording to [AK91℄

it is the one usually adopted. An additional omponent t is added to eah hoiepoint and the

new try me else, retry me else are trust me rule are:

try me rule

if ode(preg,db

7

) = try me else(N)

then let tmp = new(s)

s := s [ ftmpg

b[tmp℄ := breg

deglseq[tmp℄ := deglseqreg

sub[tmp℄ := subreg

p[tmp℄ := N

breg := tmp

t[tmp℄ := treg

preg := preg +1

retry me else rule

if ode(preg,db

7

) = retry me else(N)

then deglseqreg := deglseq[breg℄

treg := t[breg℄

subreg := sub[breg℄

p[breg℄ := N

preg := preg +1

trust me rule

if ode(preg,db

7

) = trust me

then deglseqreg := deglseq[breg℄

treg := t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := preg +1

After ASM6 has made grouping instrutions together possible, ASM7 allows to put swithing

instrutions at the front of hains or subhains. There are three types:
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� swith on term(i,Lv,L,Ll,Ls) jumps to address Lv, L, Ll or Ls, if the i

th

argument

arg(at,i) of the ativator is a variable, a onstant a list or a funtion term (a struture).

� swith on strut(i,N,T) assumes, that it has been already assured, that arg(at,i) is a

struture. The address to jump to is found by looking up the leading funtion symbol in a

table of triples (f,j,L). If arg(at,i) is a funtion term with leading funtion symbol f and j

subterms, the instrution jumps to L. The seletion of the jump address is enoded into an

abstrat funtion hashs. For the ase desribed we have

hashs(arg(at,i),N,T,db

7

) = L

� swith on onst(i,N,T) assumes similar to swith on strut that arg(at,i) is a onstant

and branhes aording to a table at address T that stores N pairs (,L). For the abstrat

funtion hash we have analogously

hashs(arg(at,i),N,T,db

7

) = L

whenever arg(at,i) = .

In our example we ould add at L4 the following swithing instrutions:

L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: trust_me

L4: swith_on_term(L7,failode,failode,L6)

L6: swith_on_strut(1,1,T)

L7: try_me_else(L5)

p(g(X)) :- body3.

L5: trust_me

p(g(X)) :- body4.

(15.2)

Address T should ontain a list with one element (g,1,L7). failode is a speial address, that

leads to baktraking. This address must be returned by hashs and hash, when the funtion or

onstant symbol is not found in the table. The ASM instrutions for swithing are

swith on term rule

if ode(preg, db

7

) = swith on term(i, N

s

, N



, N

v

, N

l

)

then let x

i

= arg(at,i)

if is strut(x

i

) then preg := N

s

else

if is onst(x

i

) then preg := N



else

if is var(x

i

) then preg := N

v

else

if is list(x

i

) then preg := N

l

;

if preg = failode then baktrak

swith on onstant rule

if ode(preg, db

7

) = swith on onstant(i, tabsize, table)

then let x

i

= arg(at,i)

preg := hash(table, tabsize, onstsym(x

i

), db

7

);

if preg = failode then baktrak

swith on struture rule

if ode(preg, db

7

) = swith on struture(i, tabsize, table)

then let x

i

= arg(at,i)

preg := hashs(table, tabsize, funt(x

i

), arity(x

i

),db

7

);

if preg = failode then baktrak
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Note that the failode address is used in the examples given in [BR95℄, but that the all

of baktraking is missing in the ASM rules of appendix 2. In the rules given in [AK91℄ for

swith on strut and swith on onst the all is de�ned, but in the swith on term it is also realized

only by the assumption never given expliitly, that failode is the address of the baktraking

routine.

To allow the use of lauses in several hains, ASM6 additionally introdues instrutions try(L),

retry(L) and trust(L). Their e�et is idential to the one try me else(L), retry me else(L) and

trust me, exept that the role of L and preg +1 as address of the hoiepoint to reate resp. address

to ontinue the omputation are exhanged.

try rule

if ode(preg,db

7

) = try(N)

then let tmp = new(s)

s := s [ ftmpg

b[tmp℄ := breg

deglseq[tmp℄ := deglseqreg

sub[tmp℄ := subreg

p[tmp℄ := preg +1

breg := tmp

t[tmp℄ := treg

preg := N

retry rule

if ode(preg,db

7

) = retry(N)

then deglseqreg := deglseq[breg℄

treg := t[breg℄

subreg := sub[breg℄

p[breg℄ := preg +1

preg := N

trust rule

if ode(preg,db

7

) = trust(N)

then deglseqreg := deglseq[breg℄

treg := t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := N

In our example above a meaningful use of the new instrutions would be

swith_on_term(L2,failode,failode,L1)

L1: swith_on_strut(1,1,T)

L2: try_me_else(L4)

p(X) :- body1.

L3: retry_me_else(L6)

L4: p(f(X)) :- body2.

L5: retry_me_else(L8)

L6: p(g(X)) :- body3.

L7: trust_me

L8: p(g(X)) :- body4.

L9: try(L6)

trust(L8)

(15.3)
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where the table T now has entries (g; 1;L6) and (f; 1;L9). With an ativator p(f(X)) ASM7

would exeute the �rst two swithing instrutions. The last one would jump to L9. There, by

exeution of the try and trust the lauses at L6 and L8 would be tried.

Finally it should be remarked, that the ode shemes given are only two of many possible ones.

The ompiler assumption of 5/7 allows a great number of alternatives, among others the variants

\one-level swithing" and \two-level swithing" disussed in [AK91℄.

The ompiler assumption

db

6

= ompile

56

(db

5

) ! [L-CHAIN#(prodef

5

(at,db

5

),db

5

; ol

1

)℄

hCHAIN#(prodef

6

(at,db

6

),db

6

; ol

2

)i

mapode(ol

1

, db

5

) = mapode(ol

2

, db

6

)

(15.4)

for 5/6 is similar to the one for 4/5. By the introdution of swithing instrutions in ASM7

seletion of relevant lauses for one leading prediate symbol is then moved from the prodef

funtion to the swithing instrutions. Only the starting address for one leading prediate symbol

must still be seleted by a prodef funtion. The seletion an now be done by a table lookup,

abstratly enoded into a dynami funtion prodef

7

, whih is a result of the ompilation step from

ASM6 to ASM7. Therefore we have for ompile

67

(db

6

) :=hprodef

7

,db

7

i :

[CHAIN#(prodef

6

(at,db

6

),db

6

; ol

1

)℄

hS-CHAIN#(at, prodef

7

[id(at)℄,db

7

; ol

2

)i

mapode(ol

1

, db

6

) = mapode(ol

2

, db

7

)

(15.5)

In the ompiler assumption id selets the leading prediate symbol of a literal inluding its arity.

We have introdued seletion of the leading prediate symbol in the re�nement 6/7, sine it seemed

to be the logial onsequene of the re�nement idea for lause seletion given in [BR95℄, p. 27. In

[BR95℄ seletion of the leading prediate symbol is done, without mentioning the hange, only in

the �nal ASM (the WAM).

The programs CHAIN# and S-CHAIN# in the ompiler assumption haraterize nested hains

and nested hains with swithing. A onrete de�nition of these programs is given in appendix

D.2. The de�nition is signi�antly more omplex that the de�nition given in [BR95℄, beause

yli hains have to be avoided. Also the fat, that swithing instrutions are allowed only at the

beginning of subhains had to be made preise.

15.2 Equivalene Proof 5/7

An informal argument for the equivalene of ASM5, ASM6 and ASM7 is that they all try the

same andidate lauses. To be a little more preise, all 3 ASMs go through the same sequene of

all and enter rules with the same ativators at and the same andidate nodes (in the remaining

hain starting with preg). Unfortunately this informal argument, whih is also given in [BR95℄,

is far away from a formal proof. Although it suggest to deompose the ommuting diagram into

subdiagrams with orners at states where preg = start and is lause(ode(preg,db)), it does neither

give a hint how to set up a orrespondene between states, nor how to prove the ommutativity

of the subdiagrams.

To make the veri�ation manageable, we therefore had to solve the following three problems,

that will be disussed in the following setions:

� De�ne a preise orrespondene between the hoiepoint staks.

� Given the orret orrespondene between hoiepoints, de�ne another one for the utpoints

stored in the deglseq 's. This results in a �rst approah to de�ne the oupling invariant.

� Finally verify the subdiagrams. These now have no �xed size any longer as in all previous

re�nements. Their size now depends on the number of instrutions in the ode hains. We

disuss two methods two verify diagrams with datastruture-dependent size.
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Trying to solve the �rst problem, one immediately �nds that it is easier to verify the re�nement

5/7 than to verify 6/7. In the �rst ase the one hoiepoint that is alloated for an ativator in

ASM5 must be ompared with the orresponding set of hoiepoints in ASM7 (like for 5/6), for

the seond ase two sets of hoiepoints must be ompared. We have �rst veri�ed re�nement 5/6,

quasi as a \preliminary study" for the problems that will our in 5/7. We will disuss the three

problems desribed above �rst for the re�nement 5/6 and will then show how muh the solutions

developed for 5/6 had to be hanged for 5/7.

Correspondene of Choiepoint Staks To model the orrespondene of hoiepoint staks

we �rst used for 5/6 as well as for 5/7 a dynami funtion H : node! nodelist that given an ASM5

hoiepoint returns the orresponding ones of ASM6 resp. ASM7. The funtion is used existentially

quanti�ed in the oupling invariant just like funtion F was used in the veri�ation of 1/2 (see

Set. 11.2). Appending of all the (nonempty) lists H [n℄ for all stak nodes n of ASM5 should

give the staks of ASM6 resp. ASM7. The (remainder of a) hain starting at p[n℄ (omputed with

CHAIN-RET#) should ontain the same lauses as an be omputed by appending the lauses

that are stored in the hains p

0

[n

0

℄ for n

0

2 H [n℄ (these lauses are omputed with the program

APP-CHAINS-RET#). Also the sub[n℄ and the goals in deglseq[n℄ should be idential to sub[n

0

℄

and deglseq[n

0

℄. Formalized this an be written as:

hSTACK#(breg,b;stak)i

( hSTACK#(breg

0

,b

0

;stak

0

)i stak

0

= H

l

(H,stak)

^ 8 n. n 2 stak

! hL-CHAIN-RET#(p[n℄, db

5

;ol

1

)i

hS-APP-CHAINS-RET#(deglseq

0

,p,H[n℄,db

7

;ol

2

)i

maplause(ol

1

,db

5

) = maplause(ol

2

,db

7

)

Now it turns out, that this formula is a orret desription of the orrespondene of ASM5 and

ASM6, but insuÆient for 5/7. The reason is, that in ASM7 hoiepoints n are possible, for whih

the hain starting at p[n℄ does ontain no lauses at all (i.e. a suitable all to S-CHAIN-RET#

omputes an empty list of lauses). For suh a hoiepoint, whih we all empty in the following,

there is no orresponding hoiepoint in ASM5.

An example for suh an empty hoiepoint an be onstruted for the following example pro-

gram, where we assume that table T ontains the two entries (f; 1;L5) and (g; 1;L7):

L1: try_me_else(L2)

p(X) :- body1.

L2: trust_me

swith_on_term(L4,failode,failode,L3)

L3: swith_on_strut(1,2,T)

L4: try_me_else(L6)

L5: p(f(X)) :- body2.

L6: trust_me

L7: p(g(X)) :- body3.

(15.6)

For an ativator p(h()) an empty hoiepoint n is present while the �rst lause is onsidered.

During this p[n℄ points to L2 (alloated in the try me else instrution). But exeution of the

instrutions at L2 will lead to baktraking in the swith on strut) instrution, without any

lause being onsidered. Nevertheless the empty hoiepoint is present, while body1 is exeuted.

On the other hand, in ASM5 no hoiepoint is onstruted for the ativator p(h()), sine the

ode of ASM5 onsists aording to the ompiler assumption

hL-CHAIN#(prodef

5

(at,db

5

), db

5

; ol

1

)i ol

1

= [p(X):-body1℄
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Figure 15.1

of only the �rst lause. Summarizing, the image of the ASM5 stak under H is not the whole

ASM7 stak, but between the images H [n℄ and H [b[n℄℄ of two suessive hoiepoints there may

be an arbitrary number of empty hoiepoints.

Figure 15.1 depits the situation graphially. Empty hoiepoints are represented as `Æ'. regs

are the urrent values of the registers deglseqreg,subreg and llreg. The �gure shows, that the

ontents of ASM5 registers not only orrespond to the registers of ASM6 resp. ASM7, but also

to an additional list nl of hoiepoints. It is also shown that we have formalized the problem of

empty hoiepoints using an additional funtion H

0

and an additional list nl

0

. It should be noted

that at the lower end of an ASM7 stak there may also be a list H

0

(?) of empty hoiepoints.

This auses the problem of asynhronous termination just as in the re�nement 3/4.

Correspondene of Cutpoints For the re�nement 5/6 a utpoint tpt of ASM5 is simply

mapped to ar(H [tpt℄), the topmost orresponding Cutpoint in ASM6. H

d

(H;deglseq[n℄) maps

all utpoints of deglseq[n℄ in this way.

We made a similar assumption, that tpt should be mapped to ar(H

0

[tpt℄) also in our �rst

proof attempt for 5/7. But a thorough analysis why it failed showed, that the utpoint of ASM7

orresponding to tpt maybe loated anywhere between H[tpt℄ and H[b[tpt℄℄ or may be the �rst

element of H[b[tpt℄℄. There is even an exeption for b[tpt℄ = ?: then the orresponding utpoint

may be in H

0

[?℄ or it may be ? itself. The formal de�nition of similarity between deglseq 's of

ASM5 and ASM7 is therefore (dr([℄) ist de�ned as [℄ here):
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eqh(H

0

, H, [℄, [℄),

: eqh(H

0

, H, [hgoal,tpti,dgl℄,[℄),

: eqh(H

0

, H, [℄,[hgoal

0

,tpt

0

i, dgl

0

℄),

eqh(H

0

, H, [hgoal,tpti, dgl℄,[hgoal

0

,tpt

0

i, dgl

0

℄)

$ eqh(H

0

, H, dgl, dgl

0

) ^ goal = goal

0

^ (tpt = ? � tpt

0

2 H

0

[?℄ _ tpt

0

= ?;

tpt

0

2 H

0

[?℄ ^ tpt

0

62 dr(H[tpt℄)

Diagrams with Datastruture Dependent Size The ommuting diagrams in the re�nements

5/6 and 5/7 are no longer diagrams of some type m:n with some onstants m, n (e.g. m = 1,

n = 2). Instead n is determined by the number of instrutions, that have to be exeuted until

the next lause is reahed. That n is �nite, is impliitly guaranteed by the termination of the

CHAIN# resp. S-CHAIN# program from the ompiler assumption, but for a formal (indutive)

argument we need an expliit size n. An expliit de�nition is easy for 5/6, sine the number of

instrutions in a hain orresponds diretly to the number of lauses stored in the hain. For ASM7

this is not the ase, sine empty hains of arbitrary length are possible. Therefore appendix D.3

de�nes a proedure S-COUNT# whih expliitly ounts the remaining instrutions in the hain.

The termination of S-COUNT# should be intuitively lear, sine it follows the same reursion

struture than S-CHAIN#. But for a formal proof we need the new proof priniple of indution

over the reursion depth of proedures, that was desribed in Set. 3. It allows to prove the

termination of S-COUNT# (as well as the termination of all auxiliary proedures mentioned in

appendix D.3) easily.

To prove the ommutation of diagrams of datastruture dependent size, we then have 2 alter-

natives, that we will disuss in the following. Either we an reursively deompose them, or we

an prove auxiliary lemmata for eah single ASM.

Reursive Deomposition of Diagrams This tehnique was applied in the veri�ation of

5/6. It interprets eah m:n (sub)diagram with a datastruture dependent n as a re�nement, and

deomposes it, using the modularisation theorem reursively into smaller (subsub)diagrams. This

aproah seems natural here, sine the oupling invariantWINV

56

for two intermediate states dur-

ing the exeution of suh a diagram an be de�ned just by generalizing the ase from the oupling

invariant INV

56

, in whih both ASMs are diretly at a lause: For 5/6 the requirement that

is lause(ode(preg,db

5

)) ^ is lause(ode(preg

0

,db

6

)) is generalied to the the weaker requirement,

that the instrution sequenes urrently exeuted lead to the same lause. The weaker invariant

WINV

56

for subdiagrams now holds in all intermediate states. It deomposes the diagrams shown

in Fig. 15.2 in 1:0 and 0:1 subdiagrams.

Pairs of states whih orrespond aording to WINV

56

are onneted by dashed lines. all1

and all2 denote the �rst resp. seond ase of the all rule. The suÆx \(a)" denotes the subase

of baktraking, where breg = ?, in whih the ASM therefore �nishes its omputation with result

failure. The suÆxes \(A)" and \(B)" divide the suessful ase of all rule into the subase,

where only one lause is tried and into the subases, where several lauses are to explore (in the

latter ase the subsequent instrution must be a try me else or a try). ret* denotes an arbitrary

number of retry, retry me, trust or trust me instrutions, and tr* an arbitrary number of try or

try me instrutions. The resulting subdiagrams of the reursive appliation of the modularisation

theorem are shown in Fig. 15.3.

Compared to an immediate deomposion of the whole proof in the smaller subdiagrams the

aproah has the advantage that proofs are more modular, and oupling invariants are somewhat

smaller. These advantages should in general be ompared to the neessity to de�ne two oupling

invariants INV

56

and WINV

56

simultaneously. The disadavantage is not too muh of a problem

here, sine the relation
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all2(A) // tryme // all2(B) //
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//��
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��
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Figure 15.2 : Commuting Diagrams for the Re�nement 5/6

preg 6= start

! ( INV

56

$ WINV

56

^ is lause(ode(preg,db

5

))

^ is lause(ode(preg

0

,db

6

)))

(15.7)

must hold, whih given WINV

56

is suÆient to onstrut INV

56

for the ase where preg 6= start

(the ase preg = start is relatively easy). The re�nement ould be veri�ed in 2 weeks and with

8 iterations. The generalisation of INV

56

to WINV

56

was no real problem. The following two

oupling invariants were used:

HINV

56

�

9 h. ? 2 s ^ ? 2 s

0

^ h[?℄ = [?℄ ^ treg 2 s ^ treg

0

2 s

0

^ stop = stop

0

^ vireg = vireg

0

^ (h[breg℄ 6= [℄ ! ar(h[breg℄) = breg

0

)

^ ( : ( is retry me(ode(preg

0

, db

6

)) _ is retry(ode(preg

0

, db

6

))

_ is trust me(ode(preg

0

, db

6

)) _ is trust(ode(preg

0

, db

6

)))

! treg

0

= ar(h[treg℄))

^ subreg = subreg

0

^ hdg(h, deglseqreg) = deglseqreg

0

^ (preg = start $ preg

0

= start)

^ (deglseqreg = [℄ _ goal = [℄ _ at = ! _ at = true ! preg = start)

^ ( is lause(ode(preg, db

5

)) ^ treg 6= breg

! treg = b[breg℄ ^ breg 6= ?

^ deglseq[breg℄ = deglseqreg ^ sub[breg℄ = subreg)

^ ( preg 6= start

! is lause(ode(preg, db

5

)) ^ is lause(ode(preg

0

, db

6

))

^ ode(preg, db

5

) = ode(preg

0

, db

6

)) ^ treg

0

= ar(h[treg℄)

^ hSTACK#(breg, b; stak)i

( stak � s ^ deglseqreg utptsin stak
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Figure 15.3 : Subdiagrams for the Re�nement 5/6

^ hSTACK#(breg

0

, b

0

; stak

0

)i

(stak

0

= hl(h, stak) ^ stak

0

� s

0

)

^ (8 n. n 2 stak

! deglseq[n℄ 6= [℄ ^ goal[n℄ 6= [℄

^ is user de�ned(at[n℄) ^ h[n℄ 6= [℄

^ deglseq[n℄ utptsin dr(stak from n)

^ (8 n

0

. n

0

2 h[n℄

! sub[n℄ = sub

0

[n

0

℄

^ hdg(h, deglseq[n℄) = deglseq

0

[n

0

℄

^ t[n

0

℄ = ar(h[b[n℄℄))

^ hL-CHAIN-RETRY-ME#(p[n℄, db

5

; ol)i

hAPP-CHAINS-RET#(p

0

, h[n℄, db

6

; ol

2

)i

mapode(ol, db

5

) = mapode(ol

2

, db

6

)))

^ STACKINV

56

(true)

WINV

56

�

9 h. ? 2 s ^ ? 2 s

0

^ h[?℄ = ? +

sl

[℄ ^ treg 2 s ^ treg

0

2 s

0

^ stop = run ^ stop = stop

0

^ vireg = vireg

0

^ (h[breg℄ 6= [℄ ! ar(h[breg℄) = breg

0

)

^ ( : ( is retry me(ode(preg

0

, db

6

)) _ is retry(ode(preg

0

, db

6

))

_ is trust me(ode(preg

0

, db

6

)) _ is trust(ode(preg

0

, db

6

)))

! treg

0

= ar(h[treg℄))

^ subreg = subreg

0

^ hdg(h, deglseqreg) = deglseqreg

0

^ preg 6= start ^ preg

0

6= start

^ deglseqreg 6= [℄ ^ goal 6= [℄ ^ at 6= ! ^ at 6= true

^ (is try me(ode(preg, db

5

)) ! is user de�ned(at) ^ treg = breg)

^ ( is lause(ode(preg, db

5

)) ^ treg 6= breg

! treg = b[breg℄ ^ breg 6= ?

^ deglseq[breg℄ = deglseqreg ^ sub[breg℄ = subreg)

^ (is lause(ode(preg, db

5

)) ! treg

0

= ar(h[treg℄))

^ ( is try me(ode(preg

0

, db

6

)) _ is try(ode(preg

0

, db

6

))

! is user de�ned(at

0

))

^ ( is retry me(ode(preg

0

, db

6

)) _ is retry(ode(preg

0

, db

6

))

_ is trust me(ode(preg

0

, db

6

)) _ is trust(ode(preg

0

, db

6

))
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! breg

0

6= ? ^ preg

0

= p

0

[breg

0

℄ ^ treg

0

= ar(h[b[breg℄℄)

^ (is retry me(ode(preg, db

5

)) _ is trust me(ode(preg, db

5

))))

^ ( is retry me(ode(preg, db

5

)) _ is trust me(ode(preg, db

5

))

! ( is retry me(ode(preg

0

, db

6

)) _ is retry(ode(preg

0

, db

6

))

_ is trust me(ode(preg

0

, db

6

)) _ is trust(ode(preg

0

, db

6

)))

^ breg 6= ? ^ preg = p[breg℄

^ hL-CHAIN-RETRY-ME#(preg, db

5

; ol)i

hAPP-CHAINS-RET#(p

0

, h[breg℄, db

6

; ol

2

)i

mapode(ol, db

5

) = mapode(ol

2

, db

6

))

^ ( is try me(ode(preg, db

5

))

! (is try(ode(preg

0

, db

6

)) _ is try me(ode(preg

0

, db

6

)))

^ hL-CHAIN-TRY-ME#(preg, db

5

; ol)i

hCHAIN-REC#(preg

0

, db

6

; ol

1

)i

mapode(ol, db

5

) = mapode(ol

1

, db

6

))

^ (is lause(ode(preg, db

5

)) ^ : is lause(ode(preg

0

, db

6

))

! (is try(ode(preg

0

, db

6

)) _ is try me(ode(preg

0

, db

6

)))

^ breg 6= ? ^ deglseqreg = deglseq[breg℄

^ subreg = sub[breg℄ ^ treg = b[breg℄

^ hL-CHAIN-RETRY-ME#(p[breg℄, db

5

; ol)i

hCHAIN-REC#(preg

0

, db

6

; ol

1

)i

hAPP-CHAINS-RET#(p

0

, h[breg℄, db

6

; ol

2

)i

the l(ode(preg, db

5

)) +

li

mapode(ol, db

5

)

= mapode(ol

1

�

ol

ol

2

, db

6

))

^ ( is try(ode(preg

0

, db

6

)) _ is try me(ode(preg

0

, db

6

))

! is try me(ode(preg, db

5

)) _ is lause(ode(preg, db

5

)))

^ (is lause(ode(preg

0

, db

6

)) ! ode(preg, db

5

) = ode(preg

0

, db

6

))

^ ( is lause(ode(preg, db

5

)) _ is try me(ode(preg, db

5

))

_ is retry me(ode(preg, db

5

)) _ is trust me(ode(preg, db

5

)))

^ STACKINV

56

(: is retry me(ode(preg, db

5

)))

STACKINV

56

�

hSTACK#(breg, b; stak)i

( stak � s ^ (ond ! deglseqreg utptsin stak)

^ hSTACK#(breg

0

, b

0

; stak

0

)i

(stak

0

= hl(h, stak) ^ stak

0

� s

0

)

^ (8 n. n 2 stak

! deglseq[n℄ 6= [℄ ^ goal[n℄ 6= [℄ ^ is user de�ned(at[n℄)

^ deglseq[n℄ utptsin dr(stak from n)

^ (8 n

0

. n

0

2 h[n℄

! sub[n℄ = sub

0

[n

0

℄ ^ t[n

0

℄ = ar(h[b[n℄℄)

^ hdg(h, deglseq[n℄) = deglseq

0

[n

0

℄

^ ( n 6= breg

_ : is try me(ode(preg

0

, db

6

))

^ : is try(ode(preg

0

, db

6

))

_ is try me(ode(preg, db

5

))

! h[n℄ 6= [℄

^ hCHAIN-RETRY-ME-FL#(p[n℄, db

5

; ol)i

hAPP-CHAINS-RET#(p

0

, h[n℄, db

6

; ol

2

)i

mapode(ol, db

5

) = mapode(ol

2

, db

6

))))

Auxiliary Theorems for the ASMs If one analyzes the equivalene proof 5/6 it beomes

obvious, that in the proofs of 0:1 diagrams a lot of properties of ASM5 are shown to be invariant

in ASM6, that are enoded only impliitly via the orrespondene to ASM6. An alternative is, to
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prove auxiliary theorems that are onerned with the exeution of hains in ASM6 alone.

We have worked out a proof for the re�nement 5/7 �rst using the tehnique of reursive

deomposition of diagrams. We found, that the generalization of INV

57

to WINV

57

is a very

hard problem: The �nalWINV

57

has 4 times the size ofWINV

56

. To �nd the orret version and

to verify 5/7 took 2 months and 20 iterations. Therefore we have tried the tehnique of auxiliary

theorems too. It lead to muh smaller proofs, as an be seen from the statistis at the end of

this setion. For omplex re�nements we therefore prefer this tehnique although it adds to the

problem of �nding a suitable oupling invariant the problem to �nd suitable auxiliary theorems,

whih are not only provable but als �t into the overall proof.

As auxiliary theorems for ASM7 we �rst formulated, that exeution of some arbitrary hain

leads to one of the following results:

� If the hain is empty and breg = ?, the run of ASM7 is terminated with stop = failure.

� If the hain is empty and breg 6= ?, then ASM7 will reah a state, in whih the instrutions

of the hain have been ompletely exeuted, and the hain has just been left by baktraking,

i.e. deglseqreg, subreg, treg, vireg and the stak are still unhanged and preg points to the

topmost stak element p[breg℄.

� If the hain is nonempty, then a state is reahed, in whih the �rst lause has been reahed,

i.e. deglseqreg, subreg, treg, vireg are unhanged, preg points to the �rst lause of the hain.

A number of hoiepoints have been pushed on the stak, whih all ontain deglseqreg, subreg

and treg, and whose hains ontain appended exatly the lauses of the original hain exept

the �rst.

As a formula this an be written as Lemma hain7 :

deglseq

0

= deglseq

0

0

^ sub

0

= sub

0

0

^ t = t

0

^ p

0

= p

0

0

^ b

0

= b

0

0

^ vireg

0

= vireg

0

0

^ stop

0

= run ^ s

0

0

� s

0

^ ? 2 s

0

0

^ deglseqreg

0

0

6= [℄ ^ goal

0

0

6= [℄ ^ is user de�ned(at

0

0

)

^ hSTACK#(breg

0

, b

0

; stak

0

)i stak

0

= stak ^ stak � s

0

^ ( is retry(ode(preg

0

, db

7

)) _ is retry me(ode(preg

0

, db

7

))

_ is trust(ode(preg

0

, db

7

)) _ is trust me(ode(preg

0

, db

7

))

� stak 6= [℄ ^ preg

0

= p

0

[ar(stak)℄ ^ deglseqreg

0

6= [℄

^ goal

0

6= [℄ ^ deglseqreg

0

0

= deglseq

0

[ar(stak)℄

^ subreg

0

0

= sub

0

[ar(stak)℄ ^ treg

0

0

= t[ar(stak)℄

^ stak

0

= dr(stak) ;

subreg

0

0

= subreg

0

^ deglseqreg

0

0

= deglseqreg

0

^ treg

0

0

= treg

0

^ stak

0

= stak)

^ hS-ANY-CHAIN#(at

0

0

, preg

0

, db

7

; ol)i

ol = ol

0

! 9 kappa.

hloop

if stop

0

= run then

RULE

0

(mko3res(db

7

, prodeftab); s

0

, vireg

0

, stop

0

, breg

0

,

treg

0

, sub

0

, subreg

0

, deglseq

0

, deglseqreg

0

, p

0

,

preg

0

, b

0

, t)

times kappai

( ol

0

= [℄

� stak

0

= [℄ � stop

0

= failure ^ breg

0

= ? ;

preg

0

= p

0

[ar(stak

0

)℄ ^ deglseqreg

0

= deglseqreg

0

0

^ subreg

0

= subreg

0

0

^ treg

0

= treg

0

0

^ vireg

0

= vireg

0

0

^ s

0

0

� s

0

^ stop

0

= run

^ hSTACK#(breg

0

, b

0

; stak)i

( stak = stak

0

^ stak � s

0
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^ (8 n. n 2 stak

! deglseq

0

[n℄ = deglseq

0

0

[n℄

^ sub

0

[n℄ = sub

0

0

[n℄ ^ b

0

[n℄ = b

0

0

[n℄

^ t[n℄ = t

0

[n℄ ^ p

0

[n℄ = p

0

0

[n℄)) ;

deglseqreg

0

= deglseqreg

0

0

^ subreg

0

= subreg

0

0

^ treg

0

= treg

0

0

^ vireg

0

= vireg

0

0

^ s

0

0

� s

0

^ stop

0

= run ^ is lause(ode(preg

0

, db

7

)) ^ preg

0

= ar(ol

0

)

^ (9 nl. hSTACK#(breg

0

, b

0

; stak)i

(stak = append(nl, stak

0

) ^ stak � s

0

)

^ hS-APP-CHAINS-RET#(deglseq

0

, p

0

, nl, db

7

;

ol)i ol = dr(ol

0

)

^ (8 n. n 2 nl

! deglseq

0

[n℄ = deglseqreg

0

0

^ sub

0

[n℄ = subreg

0

0

^ t[n℄ = treg

0

0

)

^ (8 n. n 2 stak

0

! deglseq

0

[n℄ = deglseq

0

0

[n℄

^ sub

0

[n℄ = sub

0

0

[n℄ ^ b

0

[n℄ = b

0

0

[n℄

^ t[n℄ = t

0

[n℄ ^ p

0

[n℄ = p

0

0

[n℄)))

The proof is by indution on the number of instrutions in the hain. Using the lemma it an

be proved, that if ASM7 does baktraking and the stak ontains a number of empty hoiepoints

at its top, then a state is reahed where all empty hoiepoints have been removed. Formally this

is lemma emptyhains7 :

deglseq

0

= deglseq

0

0

^ sub

0

= sub

0

0

^ t = t

0

^ p

0

= p

0

0

^ b

0

= b

0

0

^ vireg

0

= vireg

0

0

^ stop

0

= run ^ s

0

0

� s

0

^ ? 2 s

0

0

^ deglseqreg

0

6= [℄ ^ goal

0

6= [℄

^ hSTACK#(breg

0

, b

0

; stak

0

)i stak

0

= stak ^ stak � s

0

^ ( is retry(ode(preg

0

, db

7

)) _ is retry me(ode(preg

0

, db

7

))

_ is trust(ode(preg

0

, db

7

)) _ is trust me(ode(preg

0

, db

7

)))

^ stak = append(nl,stak

0

) ^ stak 6= [℄ ^ preg

0

= p

0

[ar(stak)℄

^ (8 n. n 2 nl

! deglseq

0

[n℄ 6= [℄ ^ goal

0

[n℄ 6= [℄

^ is user de�ned(at

0

[n℄))

^ hS-APP-CHAINS-RET#(deglseq

0

, p

0

, nl, db

7

; ol)i ol = [℄

! 9 kappa. hloop

if stop

0

= run then

RULE

0

(mko3res(db

7

, prodeftab); s

0

, vireg

0

, stop

0

, breg

0

,

treg

0

, sub

0

, subreg

0

, deglseq

0

, deglseqreg

0

, p

0

,

preg

0

, b

0

, t)

times kappai

(stak

0

= [℄ � stop

0

= failure ^ breg

0

= ? ;

preg

0

= p

0

[ar(stak

0

)℄

^ deglseqreg

0

6= [℄ ^ goal

0

6= [℄

^ vireg

0

= vireg

0

0

^ s

0

0

� s

0

^ stop

0

= run

^ hSTACK#(breg

0

, b

0

; stak)i

( stak = stak

0

^ stak � s

0

^ (8 n. n 2 stak

! deglseq

0

[n℄ = deglseq

0

0

[n℄

^ sub

0

[n℄ = sub

0

0

[n℄ ^ b

0

[n℄ = b

0

0

[n℄

^ t[n℄ = t

0

[n℄ ^ p

0

[n℄ = p

0

0

[n℄)))

Finally we need a lemma whih ombines hain7 and emptyhains7, alled nextlause7, whih

states that baktraking in a stak of hoiepoints leads to the �rst nonempty hoiepoint, and

that its hain is redued to a lause and new hoiepoints:
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deglseq

0

= deglseq

0

0

^ sub

0

= sub

0

0

^ t = t

0

^ p

0

= p

0

0

^ b

0

= b

0

0

^ vireg

0

= vireg

0

0

^ stop

0

= run ^ s

0

0

� s

0

^ ? 2 s

0

0

^ deglseqreg

0

6= [℄ ^ goal

0

6= [℄

^ hSTACK#(breg

0

, b

0

; stak

0

)i stak

0

= stak ^ stak � s

0

^ ( is retry(ode(preg

0

, db

7

)) _ is retry me(ode(preg

0

, db

7

))

_ is trust(ode(preg

0

, db

7

)) _ is trust me(ode(preg

0

, db

7

)))

^ stak = append(nl,stak

0

) ^ stak

0

6= [℄ ^ preg

0

= p

0

[ar(stak)℄

^ (8 n. n 2 nl

! deglseq

0

[n℄ 6= [℄ ^ goal

0

[n℄ 6= [℄ ^ is user de�ned(at

0

[n℄))

^ hS-APP-CHAINS-RET#(deglseq

0

, p

0

, nl, db

7

; ol)i ol = [℄

^ hS-CHAIN-RET#(at

0

[ar(stak

0

)℄, p

0

[ar(stak

0

)℄, db

7

; ol)i

ol = ol

0

^ ol

0

6= [℄ ^ deglseq

0

[ar(stak

0

)℄ 6= [℄

^ goal

0

[ar(stak

0

)℄ 6= [℄

^ is user de�ned(at

0

[sar(stak

0

)℄)

! 9 kappa. hloop

if stop

0

= run then

RULE

0

(mko3res(db

7

, prodeftab); s

0

, vireg

0

, stop

0

, breg

0

,

treg

0

, sub

0

, subreg

0

, deglseq

0

, deglseqreg

0

, p

0

,

preg

0

, b

0

, t)

times kappai

( deglseqreg

0

= deglseq

0

0

[ar(stak

0

)℄

^ subreg

0

= sub

0

0

[ar(stak

0

)℄ ^ treg

0

= t

0

[ar(stak

0

)℄

^ vireg

0

= vireg

0

0

^ s

0

0

� s

0

^ stop

0

= run

^ is lause(ode(preg

0

, db

7

)) ^ preg

0

= ar(ol

0

)

^ (9 nl

1

. hSTACK#(breg

0

, b

0

; stak)i

( stak = append(nl

1

, dr(stak

0

))

^ stak � s

0

)

^ hS-APP-CHAINS-RET#(deglseq

0

, p

0

, nl

1

, db

7

;

ol)i ol = dr(ol

0

)

^ (8 n. n 2 nl

1

! deglseq

0

[n℄ = deglseqreg

0

^ sub

0

[n℄ = subreg

0

^ t[n℄ = treg

0

)

^ (8 n. n 2 dr(stak

0

)

! deglseq

0

[n℄ = deglseq

0

0

[n℄

^ sub

0

[n℄ = sub

0

0

[n℄ ^ b

0

[n℄ = b

0

0

[n℄

^ t[n℄ = t

0

[n℄ ^ p

0

[n℄ = p

0

0

[n℄)))

With these lemmas we an then deompose the ommuting diagrams of 5/7 as shown in

Fig. 15.4.

CINV is the ase in the oupling invariant in whih preg = start holds, EINV is the ase

where the next instrution is a lause. In the ase FINV both ASMs have �nished their run. The

most ompliated proof is the one, in whih baktraking is alled (the 7 diagrams in the lower

half of Fig. 15.4). The �gure hints, that the proofs of the �rst 5 diagrams an be merged into

one. It is suÆient to use the oupling invariant as preondition, and to replae the two alls to

rules of ASM5 and ASM7 by alls to the orresponding baktrak program. The last two of the

7 diagrams an be redued to the proof of the diagram diretly above them, by applying lemma

hain7 �rst (to remove the empty hain in ASM7).

The total e�ort for the veri�ation of 5/7 by reursive deomposition of diagrams was 17009

proof steps and 1521 interations. The proof using auxiliary lemmas was done within a week and

required only 7473 proof steps and 1351 interations.
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all2(A) // try me // all2(B) //

all2

//��
CINV

OO

hain7

//____ ��
EINV

OO

all2

//��
CINV

OO

hain7

//____ ##

EINV

ccGGGGGGGG

suess // true // goal // ut //

suess

//��
CINV

OO

��
FINV

OO

true

//��
CINV

OO

��
CINV

OO

goal

//��
CINV

OO

��
CINV

OO

ut

//��
CINV

OO

��
CINV

OO

all1(a)

fail1(a)

enter1(a) //

all1(a)

fail1(a)

enter1(a) //

all1(a)

fail1(a)

enter1(a) //

all1(a)

fail(a)

enter1(a)

//��
CINV

OO

��
FINV

OO

all1(b)

fail(b)

enter1(b)

//��
CINV

OO

emptyhains7

//____ $$FINV

ddJJJJJJJJJ

all1(b)

fail(b)

enter1(b)

all2

//��
CINV

OO

emptyhains7

//____ $$

FINV

ddJJJJJJJJJ

all1(b)

fail(b)

enter1(b) // retry me //

all1(b)

fail(b)

enter1(b) // trust me //

all1(b)

fail(b)

enter1(b)

//��
CINV

OO

nextlause7

//____ ��
EINV

OO

all1(b)

fail(b)

enter1(b)

//��
CINV

OO

nextlause7

//____ ��
EINV

OO

all1(b) // retry me // all1(b) // trust me //

all2

//��
CINV

OO

nextlause7

//____ ��
EINV

OO

all2

//��
CINV

OO

nextlause7

//____ ��
EINV

OO

Figure 15.4 : Commuting Diagrams for the Re�nement 5/7
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Chapter 16

7/8: Environments and Stak

Sharing

16.1 De�nition of ASM8

After we have ompleted the ompilation of prediate struture with ASM7, re�nement 7/8 now

prepares the ompilation of single lauses. A �rst step in this diretion is to transform the data-

struture of deglseq 's, suh that the goals ontained in them are diretly aessible and an later

on be replaed with pointers into the ode of lause bodies. To make this possible, it is neessary

to delay the appliation of substitutions to goals. Instead substitutions are applied to literals

when the literal beomes a new ativator. With this approah all goals beome end piees of

lause bodies. Although goals still ontain renamed variables and an therefore not be replae by

pointers to ode immediately (this will be hanged in the re�nement 8/9, when the lauses are

ompiled), dispensing with the immediate appliation of substitutions in enter rule auses old and

new deglseqreg to have a large ommon part. By restruturing, the information ontained in the

ommon part an now be shared and stored only one.

Sharing is ahieved as follows: Instead of storing [hgoal

1

, tpt

1

i, hgoal

2

,tpt

2

i, hgoal

3

,tpt

3

i,

. . . ℄ in deglseqreg, goal

1

is aessible in ASM8 in a new register goalreg diretly. For the rest

of the informations an environment is alloated. Formally an environment is an element of a

dynami sort envnode, similar to a hoiepoint, that is stored in a register ereg (again, similar

to breg). Dynami funtions utpt and g attah the urrent utpoint and the seond goal (the

\ontinuation goal") to the environment: utpt[ereg℄ = tpt

1

and g[ereg℄ = goal

2

. The rest of

the information (tpt

2

, goal

3

, et.) an be reahed via a funtion e : envnode ! envnode (the

\ontinuation environment").

With the re-enoding of the information stored in deglseqreg a similar re-enoding for the data

stored in deglseqreg[n℄ for eah hoiepoint n beomes neessary. Instead of deglseqreg[n℄ ASM8

used two new funtions goal[n℄ and e[n℄ for this purpose, whih orrespond to goalreg and ereg.

Changing the representation of the data in the deglseq 's rises the question, whether environ-

ments have to be put on a separate (environment) stak. This is not the ase, it is possible to

store environments and hoiepoints on the same stak, and to introdue a genuine stak disi-

pline, that overwrites abandoned stak frames destrutively. By that, sort envnode beomes equal

to sort node.

In [BR95℄ the new stak disipline is introdued in two steps: First, ASM8 ontains a ommon,

but not destrutively modi�ed stak, and ASM9 then replaes alloation of new stak nodes with

overwriting. This two-step approah seemed disadvantageous for veri�ation to us, sine the

intermediate level requires to introdue an additional dynami funtion tos, whih has to return

the maximum of two nodes relative to a dynami stak haining funtion � (see p. 32 in [BR95℄).

The de�nition of suh a funtion is possible, but elaborate. It would be only needed in ASM8, and

an be avoided by going diretly to the stak representation of ASM9. Our solution therefore does

109
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not divide introdution of a destrutively modi�ed stak over two re�nements, but inludes it in

re�nement 7/8. The Hiding Lemma thereby is needed only in the veri�ation of this re�nement.

To introdue the destrutively modi�ed stak, we add a total order � on stak nodes, and

de�ne funtions +1 and �1 to inrement and derement them. Thereby, the role of stak nodes

beomes one of addresses. Alloation of stak nodes is no longer done with the funtion new

relative to a set of alloated nodes, but simply by inrementing the pointer to the top element

of the stak. To make an environment or a hoiepoint inaessible, we now simply derement

the pointer to the topmost stak frame. Alloation of a new stak frame will then overwrite the

inaessible one. Abandoned nodes, whih have been alloated but are not in the urrent stak

are no longer possible in ASM8. The statement of the Hiding Lemma is now, that when new

nodes (environment nodes as well as hoiepoint nodes) are always alloated at max(breg,ereg)+1,

then the environment nodes e[n℄, e[e[n℄℄, . . . belonging to a hoiepoint n will always be below

n (so the hoiepoints "`hides"' them from being overwritten). The same will also hold for the

hoiepoints utpt[n

0

℄, utpt[b[n

0

℄℄ stored in an environment or a hoiepoint n

0

. For ASM8 we

have the following rules:

baktrak �

if breg = ? then stop := failure

else preg := p[breg℄

all rule

let at = subreg ^

t

ar(goalreg)

if preg = start ^ is user de�ned(at)

then if prodef

7

(at,db

7

) = failode

then baktrak

else preg := prodef

7

(at,db

7

)

treg := breg

ut rule

let at = subreg ^

t

ar(goalreg)

if at = !

then breg := utpt[ereg℄

goalreg := rest(goalreg)

enter rule

if is lause(ode(preg, db

7

))

then let la = rename(lause(ode(preg, db

7

)), vireg)

let at = subreg ^

t

ar(goalreg)

let mgu = unify(at, hd(la))

if mgu = nil

then baktrak

else let tmp = max(ereg,breg)+1

e[tmp℄ := ereg

ereg := tmp

g[tmp℄ := rest(goalreg)

utpt[tmp℄ := treg

goalreg := bdy(la)

subreg := subreg Æ mgu

vireg := vireg +1

preg := start

fail rule

let at = subreg ^

t

ar(goalreg)

if at = fail

then baktrak
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goal suess rule

if goalreg = [℄ ^ : ereg = ?

then goalreg := g[ereg℄

ereg := e[ereg℄

query suess rule

if goalreg = [℄ ^ ereg = ?

then stop := suess

retry rule

if ode(preg,db

7

) = retry(N)

then ereg := e[breg℄

goalreg[breg℄ := goal[breg℄

treg := t[breg℄

subreg := sub[breg℄

p[breg℄ := preg +1

preg := N

retry me else rule

if ode(preg,db

7

) = retry me else(N)

then ereg := e[breg℄

goalreg := goal[breg℄

treg := t[breg℄

subreg := sub[breg℄

p[breg℄ := N

preg := preg +1

swith on onstant rule

let at = subreg ^

t

ar(goalreg)

if ode(preg, db

7

) = swith on onstant(i, tabsize, table)

then let x

i

= arg(at,i)

preg := hash(table, tabsize, onstsym(x

i

), db

7

);

if preg = failode then baktrak

swith on struture rule

let at = subreg ^

t

ar(goalreg)

if ode(preg, db

7

) = swith on struture(i, tabsize, table)

then let x

i

= arg(at,i)

preg := hashs(table, tabsize, funt(x

i

), arity(x

i

), db

7

);

if preg = failode then baktrak

swith on term rule

let at = subreg ^

t

ar(goalreg)

if ode(preg, db

7

) = swith on term(i, N

s

, N



, N

v

, N

l

)

then let x

i

= arg(at,i)

if is strut(x

i

) then preg := N

s

else

if is onst(x

i

) then preg := N



else

if is var(x

i

) then preg := N

v

else

if is list(x

i

) then preg := N

l

;

if preg = failode then baktrak

true rule

let at = subreg ^

t

ar(goalreg)

if at = true

then goalreg := rest(goalreg)
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trust rule

if ode(preg,db

7

) = trust(N)

then ereg := e[breg℄

goalreg := goal[breg℄

treg := t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := N

trust me rule

if ode(preg,db

7

) = trust me

then ereg := e[breg℄

goalreg := goal[breg℄

treg := t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := preg +1

try rule

if ode(preg,db

7

) = try(N)

then let tmp = max(ereg,breg) +1

b[tmp℄ := breg

e[tmp℄ := ereg

goal[tmp℄ := goalreg

sub[tmp℄ := subreg

p[tmp℄ := preg +1

breg := tmp

t[tmp℄ := treg

preg := N

try me rule

if ode(preg,db

7

) = try me else(N)

then let tmp = max(ereg,breg)+1

b[tmp℄ := breg

e[tmp℄ := ereg

goal[tmp℄ := goalreg

sub[tmp℄ := subreg

p[tmp℄ := N

breg := tmp

t[tmp℄ := treg

preg := preg +1

16.2 Equivalene Proof 7/8

Veri�ation of 7/8 poses 3 main problems: �rst, we must make preise the onnetion between

the deglseq 's and the omponents of ASM8. Here we found, that a modi�ation of the query

suess rule was neessary, to keep the 1:1 orrespondene of rules. Seond we have to make

the orretness of stak sharing expliit in the oupling invariant. Third, delaying substitutions

resulted in an additional ompiler assumption neessary for the orretness of the re�nement.

Correspondene of Environment and deglseq 's To verify 7/8 we �rst have to make preise

the initialization of environments, the onnetion between deglseq 's from ASM7 and the ompo-

nents of ASM8, and the termination riterion in ASM8. All three points are tightly onneted,
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sine the initial environment strongly inuenes the oupling invariant as well as the guard of

query suess rule. The ASM rules that were shown in the previous setion already ontain the

neessary modi�ations ompared to [BR95℄.

For the initialization we have set ereg to ?. The funtion e as well as utpt have to map ?

to ?. The initialization of g is arbitrary, and goalreg has to be initialized with the query. With

this initialization we an ompute deglseqreg and deglseq[n℄ from ASM7, using the omponents

of ASM8:

hSTACK#(ereg,e;estak)i

deglseqreg = subreg ^

d

[hgoalreg, utpt[ereg℄i j

deglseqof(utpt, g, e, estak)℄

hSTACK#(e[n℄,e;estak

0

)i deglseq[F[n℄℄

= sub[F[st℄℄ ^

d

F

d

(F,[hgoal[n℄,utpt[e[n℄℄i j

deglseqof(utpt, g, e, estak

0

)℄)

Like in the re�nements 1/2, 2/3 et. the hoiepoint of ASM8, that orresponds to a hoiepoint

st of ASM is omputed as F[st℄ with a dynami funtion F . estak and estak

0

are the environment

staks starting at ereg resp. e[n℄. These lists of stak nodes an be omputed with the same program

STACK# (see the de�nition in Set. 11.2), that was used for hoiepoints. The funtion deglseqof

ollets the information at the orresponding nodes:

deglseqof(utpt,g,e,[ ℄) = [ ℄

deglseqof(utpt,g,e,[n j estak℄)

= [hg[n℄,utpt[e[n℄℄i j deglseqof(utpt,g,e,estak)℄

Until now our de�nitions seem to agree with those given in [BR95℄. Only the initialization of

ereg with ? was added, the onnetion between the registers was formalized, and the de�nition

of funtion G (p.32 f), that would have to be realized as a program, was deomposed into alls

of STACK# and deglseqof. But our de�nition of the termination riterion for query suess will

deviate from [BR95℄, where the rule test is de�ned (using our notation) as

goalreg = ? ^ hSTACK#(ereg,e;estak)i 8 n2 estak. goal[n℄= [ ℄

We have deviated, although it is orret, to �nish the omputation when all goals on the stak

are empty. Nevertheless the test is very expensive sine all goal[n℄ must be looked at (and the test

has to be done eah time an empty goal is reahed to deide whether goal suess or query suess

rule should be applied). Also the optimisation removes all appliations of goal suess rule at the

end of a omputation, violating the proposed 1:1 orrespondene of ASM rules. Also the following

ASM9 does not look at several stak frames, so the optimisation is not used in ASM9. Therefore

we use

goalreg = ? ^ ereg = ?

as the rule test of query suess. This orresponds to a test deglseqreg=[h[ ℄;tpti ℄ in ASM7. This

means that the last appliations of goal suess and query suess in ASM7 have been replaed by

an appliation of query suess. Therefore we have a 2:1 diagram for this ase. The 2:1 diagram

annot be avoided, sine from the onnetion of deglseqreg to the omponents of ASM8 shown

above (whih will be part of the oupling invariant) it is lear that there is no possibility to

represent a state orresponding to deglseqreg = [ ℄ in ASM8.
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Stak Sharing The most deliate task in setting up the oupling invariant is to make the stak

sharing of ASM8 expliit. The oupling invariant must assure, that alloation of hoiepoints

and environments never overwrites still relevant old ones. To save lengthy alls to the STACK#

program in the following we denote with estak the urrent stak of environements (a list starting

starting with ereg), with bstak the urrent stak of hoiepoints (starting with breg) and with

estak[n℄ the stak of environments starting with the environemnt e[n℄ of hoiepoint n. Then we

need �rst need the following obvious properties:

� The hoiepoint stak bstak and the environment stak estak are disjoint (formalized as

disjoint(estak,bstak)).

� the hoiepoint stak bstak is also disjoint to the environement stak of every hoiepoint.

� The hoiepoints in bstak are stritly monotone dereasing with respet to � (formalised

as ordered(bstak)).

� The environments in estak and estak[n℄ are dereasing too.

� The environment e[n℄ of eah hoiepoint n is below the hoiepoint (this is the ontent of

the \Hiding Lemma").

Unfortunately these propertoes are not suÆient for a suessful veri�ation. We found, that

a number of other properties are neessary, that are not obvious at �rst. The two most important

are.

� breg is never below utpt[ereg℄

� t[n℄ is never above the hoiepoint n, and never below utpt[e[n℄℄

Two other simple properties are that no states are below ?, and the utptsin properties we

already needed in previous re�nements.

Delaying Substitutions Delaying the appliation of substitutions to goals as far as possible

seems to be a harmless transformation at �rst glane. But if one tries to prove the equivalene of

the two enter rules of ASM7 and ASM8, then one enounters the problem, that the substitutions

applied to ativators of ASM7 and ASM8 are di�erent ! To understand this, look at a situation

where an ativator is uni�ed with the head of a lause H : �B that has been renamed with vireg.

Let us assume, that the omputed substitutions in subreg and subreg

0

as well as both ativators

at and at

0

are equal. Then both ASM7 and ASM8 will ompute the same mgu. Both will then

ompute a new goal, onsisting of literal B. ASM7 instantiates B immediately with mgu, while

ASM8 will only ompute the new substitution subreg Æ mgu. When now B beomes itself the

ativator later on, ASM8 will instantiate it with this omposed substitution, and not only with

mgu. For both ativators to be equal, we must have

(subreg Æ mgu) ^

d

B = mgu ^

d

B

This is the ase, sine the appliation of subreg has no e�et on B : the lause H : �B, and so

espeially B were renamed with a new index vireg, that was not used previously. Therefore subreg

should ontain no variables whih were renamed with the index vireg at this point.

To formalise this argument we have de�ned prediates l <

vi

vireg, L <

tvi

vireg, dgl <

dvi

vireg

and subreg <

svi

vireg, whih state that lause l, deorated goal list dgl, literal L and substitution

subreg do not ontain variables renamed with index vireg. The proof, that subreg has no e�et on

literal B then an be redued to the goal, that the renaming funtion rent obeys

rent(L,vireg) <

tvi

vireg +1
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But for a natural de�nition of renaming, that is homomorphi over the datatypes mentioned (for

whih e.g. rent(f(t);vireg) = f(rent(t;vireg)) holds) this goal an be proved only if the literal to

rename does not ontain renamed variables already. Therefore we need

Compiler Assumption for the Re�nement 7/8: The original

Prolog program does not ontain renamed variables.

The assumption is realized in reality simply by giving renamed variables no readable represen-

tation. Nevertheless the formal veri�ation makes this impliit assumption expliit.

We de�ne the new ompiler assumption for the original database db of ASM1:

maplause(prodef(lit,db),db) <

lvi

0

With the previous ompiler assumptions it easy to propagate it to the database db

7

of ASM7.

As the oupling invariant we �nally reah after 12 attempts and one man month of work the

following formula.

INV

78

�

9 F. F[?℄ = ? ^ ? 2 s

^ (stop = run ! deglseqreg 6= [℄)

^ stop = stop

0

^ preg = preg

0

^ vireg = vireg

0

^ subreg = subreg

0

^ treg = F[treg

0

℄ ^ breg = F[breg

0

℄ ^ e[?℄ = ? ^ utpt[?℄ = ?

^ : breg

0

� ? ^ (breg

0

6= ? ! b

0

[breg

0

℄ � breg

0

) ^ : ereg � ?

^ subreg

0

<

svi

vireg

0

^ : breg

0

� utpt[ereg℄

^ ( preg

0

6= start ^ stop

0

= run

! goalreg 6= [℄ ^ is ret(ode(preg

0

, db

7

))

� breg 6= ? ^ preg

0

= p

0

[breg

0

℄ ;

: breg

0

� treg

0

^ : treg

0

� utpt[ereg℄

^ hS-CHAIN-REC#(at, preg, db

7

; ol)i tt))

^ hSTACK#(breg

0

, b

0

; stak

0

)i

( hSTACK#(breg, b; stak)i (F

l

(F, stak

0

) = stak ^ stak � s)

^ F injon stak

0

^ ordered(stak

0

)

^ ( stop = run

! hSTACK#(ereg, e; estak)i

hdeglseqreg

0

:= [hgoalreg, utpt[ereg℄i j

deglseqof(utpt, g, e, estak)℄

( deglseqreg = subreg ^

d

F

d

(F, deglseqreg

0

)

^ deglseqreg

0

<

dvi

vireg

0

^ disjoint(estak, stak

0

) ^ ordered(estak)

^ (preg

0

= start � deglseqreg

0

utptsin stak

0

;

: is ret(ode(preg

0

, db

7

))

! deglseqreg

0

utptsin stak

0

from treg

0

^ (treg

0

= ? _ treg

0

2 stak

0

))))

^ 8 n. STACKINV

78

),

where

is ret(instr) $ is retry(instr) _ is retry me(instr)

_ is trust(instr) _ is trust me(instr)
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STACKINV

78

�

n 2 stak

0

! sub[F[n℄℄ = sub

0

[n℄ ^ p[F[n℄℄ = p

0

[n℄ ^ t[F[n℄℄ = F[t

0

[n℄℄

^ b[F[n℄℄ = F[b

0

[n℄℄ ^ (t

0

[n℄ 6= ? ! t

0

[n℄ 2 dr(stak

0

from n))

^ : n � t

0

[n℄ ^ e[n℄ � n ^ : e[n℄ � ? ^ : t

0

[n℄ � utpt[e[n℄℄

^ : breg

0

� n ^ goal[n℄ 6= [℄ ^ sub

0

[n℄ <

svi

vireg

0

^ hS-CHAIN-RET#(at(F[n℄), p[F[n℄℄, db

7

; ol)i tt

^ hSTACK#(e[n℄, e; estak)i

hdeglseqreg

0

:= [hgoal[n℄, utpt[e[n℄℄i j

deglseqof(utpt, g, e, estak)℄i

( deglseqreg

0

utptsin stak

0

from t

0

[n℄

^ deglseqreg

0

<

dvi

vireg

0

^ disjoint(estak, stak

0

from n) ^ ordered(estak)

^ deglseq[F[n℄℄ = sub[F[n℄℄ ^

d

F

d

(F, deglseqreg

0

)



Chapter 17

8/9: Compilation of Clauses

17.1 De�nition of ASM9

In the re�nement from ASM8 to ASM9 lauses are deomposed into instrutions for every literal.

The memory db

9

of ASM9 now stores instead of a lause p :- q

1

, ...q

n

an instrution sequene

alloate

unify(p)

all(q

1

)

. . .

all(q

n

)

dealloate

proeed

(17.1)

For the ase where preg was start in ASM8, preg

0

of ASM9 now takes over the role of goalreg

(when preg 6= start, preg and preg

0

are equal). goalreg = [q

i

, . . . q

n

℄ now orresponds to a situation,

in whih preg

0

points to the instrution all(q

i

). The situation in ASM8, in whih preg points to

a lause and enter rule is exeuted orresponds to the situation in whih preg

0

points to alloate.

Exeution of the enter rule is replaed with exeution of the 2 instrutions alloate and unify(p).

Similarly the exeution of goal suess (an empty goalreg in ASM8 orresponds to preg

0

pointing

to dealloate) is replaed by exeution of dealloate and proeed. Splitting enter and goal suess

into two instrutions is not stritly neessary for this re�nement, but introdues instrutions used

in the WAM, that an be optimized in later re�nements.

To be able to remove goalreg, it must be taken are that the renaming of variables (with

vireg) done in the enter rule when goalreg is set, must now be postponed to the atual use of the

ativator. It is therefore neessary, to store the renaming index with a dynami funtion vi in the

urrent environment and in the environments of hoiepoints.

Replaing the use of goalreg with preg makes it neessary to also replae the urrent goal g in

hoiepoints with a pinter p into the program ode.

To omplete the de�nition of the ompilation, we �nally have to de�ne how a query q

i

, . . . q

n

is ompiled. The result is:

all(q

1

)

. . .

all(q

n

)

null

(17.2)

117
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Instead of the instrution null

1

[BR95℄ uses the instrution proeed. The appliability test for

query suess rule there is

ode(preg,db

9

) = proeed ^ ode(preg,db

9

) = proeed

This is not orret, when the last literal of a query is either ! or true, sine both instrutions

do not inrement preg, but leave it on the urrent instrution. This would result in an in�nite

loop by repeated exeution of the last instrution. There are two alternatives to our solution:

� Both the ut and the true rule �nally set preg to preg. This solution is ineÆient, sine

setting preg is unneessary during regular exeution.

� The ompiler removes literals true and ! at the end of a query, sine they have no e�et

anyway. Although this solution is possible for the two onstruts, it is problemati insofar,

as an extension of Prolog by other built-in onstruts (suh as assert) would mean that the

problem would have to be reonsidered.

It should also be noted, that the two alternatives ause two irregularities ompared to ours:

� An empty query must either be handled speially by initialisation of preg with preg, or it

must be ompletely forbidden (in our solution, no speial treatment is neessary, preg need

not be initialized). In the �rst ase we have an additional 1:1 diagram to verify for the empty

query.

� The rule mapping given in [BR95℄ that maps goal suess to dealloate and proeed (1:2

diagram) is not orret for this solution. Instead (assuming a nonempty query) in both

solutions the �nal two appliations of goal suess and query suess of ASM8 orrespond

to dealloate and query suess in ASM9. In the seond solution, we also get additional 1:0

diagrams resulting from the removal of true und ! literals.

In [AK91℄ the question of suessful termination is not even onsidered. A query seems to be

ompiled solely to a sequene of all instrutions, and the end of the omputation seems to be

de�ned impliitly by reahing the adress after the last all.

To formalize the ompiler assumption desribed above, we �rst need the following proedures

UNLOAD# and QUERY#, that reover a lause or the query from ompiled ode:

UNLOAD#(oa, db

9

; var l)

begin

if ode(oa,db

9

) = alloate _ is unify(ode(oa+1,db

9

))

then var goalreg = [℄

in begin

UNLOADREC#(oa+2),db

9

,true; goalreg);

l := <unifylit(ode(oa+1,db

9

)),goalreg>

end

else abort

end;

1

reusing the instrution null, whih in ASM2 indiated the end of a lause list, we avoid the introdution of

another instrution.
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UNLOADREC#(oa, db

9

, ag; var goalreg)

begin

var instr = ode(oa,db

9

)

in if ag ^ (instr = dealloate)

then begin

if ode(oa+1,db

9

) = proeed then goalreg := [℄

else abort end

else if : ag ^ (instr = null

0

) then goalreg := [℄

else if is all(instr) then begin

UNLOADREC#(oa+1,db

9

,ag; goalreg);

goalreg := [alllit(instr) j goalreg℄

end

else abort

end;

QUERY#(oa, db

9

; var goalreg)

begin

UNLOADREC#(oa, db

9

, false; goalreg)

end

The auxiliary proedureUNLOADREC# traverses suessive all instrutions. If the given ag

= tt, then it heks that at the end an alloate and a proeed instrution are found (lause ode),

otherwise it heks for a null (query ode). The de�nition of hains with swithing (S-CHAIN#'s,

see appendix D.2), is modi�ed to C-CHAIN#'s by replaing the ode

if is lause(instr) then ol := [o℄

with

if instr = alloate then UNLOAD#(preg; o)

With this de�nition the weakest ompiler assumption that an be stated for (prodef

9

,db

9

,preg

9

)

:= ompile

79

(prodef

7

,db

7

,query) would be

[S-CHAIN#(at,prodef

7

[id(at),db

7

℄,db

7

;ol)℄

hC-CHAIN#(at,prodef

9

[id(at),db

9

℄,db

9

;ol)

mapode(ol

1

, db

7

) = mapode(ol

2

, db

9

)

^ hQUERY#(preg

9

,db

9

;o)i mapode(o,db

9

) = query

(17.3)

But this assumption would allow to arbitrarily restruture the ode for swithing again. This is

of ourse not intended. Therefore we must have a stronger assumption, that just allows to replae

lauses by lause ode. Care has to be taken, sine the new ode might make it neessary to move

bloks of ode. To desribe suh ode movement we use a funtion C : odesort ! odesort. Sine

the funtion might depend on the input program, it must be spei�ed as a dynami funtion. It

would be possible to ompute C as an additional result of ompile

9

, but sine only its existene is

relevant, our ompiler assumption is:

db

2

= ompile2(ompile1(db))

! hQUERY#(preg

9

,db

9

;o)i mapode(o,db

9

) = query

^ 9 C. ( eqpdt(prodef

7

,prodef

9

,C)

^ eqode(db

7

,db

9

,C))

(17.4)
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In the formula eqpdt(prodef

7

,prodef

9

,C) says, that both aess tables are equal modulo the

ode movement given by C :

eqpdt(prodef

7

,prodef

9

,C)

$ 8 p/n. C[prodef

7

[p/n℄℄ = prodef

9

[p/n℄

eqode(db

7

,db

9

,C) means, that all instrutions, exept lauses, are mapped modulo ode move-

ment to themselves. E.g. we have

eqode(db

7

,db

9

,C) ^ ode(preg,db

7

) = retry(N)

! ode(C[preg℄,db

9

) = retry(C[N℄)

and analogous for all other instrutiosn. For lauses

eqode(db

7

,db

9

,C) ^ ode(preg,db

7

) = lause

! hUNLOAD#(C[preg℄,db

9

;)i = lause

must hold. The rules of ASM9 are:

baktrak �

if breg = ? then stop := failure

else preg := p[breg℄

all rule

if ode(preg,db

9

) = all(lit) ^ is user de�ned(lit)

then if prodef

9

(lit,db

9

) = failode

then baktrak

else preg := preg +1

preg := prodef

9

(lit,db

9

)

treg := breg

true rule

if ode(preg,db

9

) = all(!)

then breg := utpt[ereg℄

preg := preg +1

alloate rule

if ode(preg, db

9

) = alloate

then let tmp = max(ereg,breg)++

e[tmp℄ := ereg

ereg := tmp

p[tmp℄ := preg

vi[tmp℄ := vireg

utpt[tmp℄ := treg

preg := preg +1

unify rule

if ode(preg, db

9

) = unify(trm)

then let at = subreg ^

t

rent

0

(alllit(ode(preg �1, db

9

)), e[ereg℄, vi)

let mgu = unify(at, rent(trm, vireg))

if mgu = nil

then baktrak

else subreg := subreg Æ mgu

vireg := vireg +1

preg := preg +1
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dealloate rule

if ode(preg,db

9

) = dealloate

then preg := p[ereg℄

ereg := e[ereg℄

preg := preg +1

true rule

if ode(preg,db

9

) = all(fail)

then baktrak

proeed rule

if ode(preg,db

9

) = proeed

then preg := preg

query suess rule

if ode(preg,db

9

) = null

0

then stop := suess

retry rule

if ode(preg,db

9

) = retry(N)

then ereg := e[breg℄

preg := p[breg℄

treg := t[breg℄

subreg := sub[breg℄

p[breg℄ := preg +1

preg := N

retry me else rule

if ode(preg,db

9

) = retry me else(N)

then ereg := e[breg℄

preg := p[breg℄

treg := t[breg℄

subreg := sub[breg℄

p[breg℄ := N

preg := preg +1

swith on onstant rule

let at = subreg ^

t

rent

0

(alllit(ode(preg �1, db

9

)), ereg, vi)

if ode(preg, db

9

) = swith on onstant(i, tabsize, table)

then let x

i

= arg(at, i)

preg := hash(table, tabsize, onstsym(x

i

), db

9

);

if preg = failode then baktrak

swith on struture rule

let at = subreg ^

t

rent

0

(alllit(ode(preg �1, db

9

)), ereg, vi)

if ode(preg, db

9

) = swith on struture(i, tabsize, table)

then let x

i

= arg(at, i)

preg := hashs(table, tabsize, funt(x

i

), arity(x

i

), db

9

);

if preg = failode then baktrak

swith on term rule

let at = subreg ^

t

rent

0

(alllit(ode(preg �1, db

9

)), ereg, vi)

if ode(preg, db

9

) = swith on term(i, N

s

, N



, N

v

, N

l

)

then let x

i

= arg(at, i)

if is strut(x

i

) then preg := N

s

else
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if is onst(x

i

) then preg := N



else

if is var(x

i

) then preg := N

v

else

if is list(x

i

) then preg := N

l

;

if preg = failode then baktrak

true rule

if ode(preg,db

9

) = all(true)

then preg := preg +1

trust rule

if ode(preg,db

9

) = trust(N)

then ereg := e[breg℄

preg := p[breg℄

treg := t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := N

trust me rule

if ode(preg,db

9

) = trust me

then ereg := e[breg℄

preg := p[breg℄

treg := t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := preg +1

try rule

if ode(preg,db

9

) = try(N)

then let tmp = max(ereg,breg)++

b[tmp℄ := breg

e[tmp℄ := ereg

p[tmp℄ := preg

sub[tmp℄ := subreg

p[tmp℄ := preg +1

breg := tmp

t[tmp℄ := treg

preg := N

try me rule

if ode(preg,db

9

) = try me else(N)

then let tmp = max(ereg,breg)++

b[tmp℄ := breg

e[tmp℄ := ereg

p[tmp := preg

sub[tmp℄ := subreg

p[tmp℄ := N

breg := tmp

t[tmp℄ := treg

preg := preg +1

17.2 Equivalene Proof 8/9

For the equivalene proof of ASM8 and ASM9 we have used the theorem for iterated re�nement

desribed in Set. 6.5 for the �rst time. Instead of enoding all information into the oupling
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invariant INV

89

, we �rst derived a mahine invariant MINV

8

from the oupling invariant INV

78

.

Sine all diagrams in the re�nement 7/8 are n:1 diagrams (we an set INVNOW

8

to be true), it

is suÆient to show

INV

78

! MINV

8

to makeMINV

8

usable as a preondition for all ommuting diagrams. To have a mahine invariant

for the next re�nement, we have also de�ned the prediate INVNOW

9

, that haraterized the states

of ASM9, in whih the oupling invariant holds. Now, in the re�nement 8/9 all rules are re�ned

with 1:1 diagrams, exept for enter and goal suess rule, whih are re�ned with alloate unify

resp. dealloate proeed. The oupling invariant therefore does not hold only in the middle states

of these 1:2 diagrams and we an set

INVNOW

9

(preg

0

,db

9

)

� ode(preg

0

,db

9

) 6= proeed ^ : is unify(ode(preg

0

,db

9

))

The proof obligations for the two 1:2 diagrams are the speial ase with j := 2 and i := 1 of

the proof obligations (6.32) from Set. 6.5:

INV

89

^ stop = run ^ stop

0

= run

^ MINV

8

^ is lause(ode(preg,db

7

))

! hRULE

9

i ( : INVNOW

9

(preg

0

,db

9

)

^ hRULE

9

i hRULE

8

i

(INV

89

^ INVNOW

9

(preg

0

,db

9

))

INV

89

^ stop = run ^ stop

0

= run

^ MINV

8

^ is lause(ode(preg,db

7

))

! hRULE

9

i ( : INVNOW

9

(preg

0

,db

9

)

^ hRULE

9

i hRULE

8

i

(INV

89

^ INVNOW

9

(preg

0

,db

9

))

For the de�nition of the oupling invariant we found the following 4 main problems:

Corret Treatment of Termination In our �rst proof attempts, we tried to follow [BR95℄.

Thereby we found the problems already desribed in the previous setion: �rst, we had to orret

the hoie of diagrams (a speial diagram was neessary for the empty query, and a 2:2 diagram

was neessary for goal suess, query suess in ASM8 vs. dealloate query suess in ASM9).

Then the proof for the equivalene of the ut rules failed, sine the ut rule of ASM9 does not

modify preg. This failure resulted in the orretion of query suess in ASM9.

No Instantiation of the Literal in Call Rule In the is user de�ned tests as well as in the

seletion of the leading prediate symbol in the all rules all ASMs until ASM8 have used the

instantiated ativator. ASM9 now uses instead the uninstantiated literal L from the instrution

all(L). For the omputation of the leading prediate symbol we have antiipated the modi�ation

from the re�nement 9/10. This was done to free the already omplex veri�ation from unneessary

additional problems.

Veri�ation now showed, that when using the uninstantiated literal, we must restrit the

aepted Prolog language: ASMs 1{8 gave a positive answer to the query ?- p(q)., given the

lauses p(X) :- X. and q.. ASM9 an not deal with suh a query, sine the leading prediate

symbol of an uninstantiated variable X is not de�ned. Given a query ?- p(!) (and the same

program), ASM9 in [BR95℄ even tries inorretly to ompute a leading prediate symbol instead

of exeuting the ut. The diÆulty of de�ning a leading prediate symbol also ours, when the

body literals are lists. Sine usual Prolog implementation do not have a \list prediate", and

instead interpret suh a literal as a ommand to load a �le, we de�ne
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Compiler Assumption for the Re�nement 8/9: No literal of

the query and no literal in any lause of the prolog may be a variable

or a list.

Of ourse all ASMs up to now ould not \meaningfully" solve a query ?- X., sine there is no

meaningful de�nition of the leading prediate symbol for a variable. But this was irrelevant for

orretness, sine however the seletion funtion was de�ned for the ase of a variable, all ASMs

behaved in the same way. The ore of the problem therefore is, that the semanti de�nition of

Prolog is inomplete for this ase.

If we would de�ne the ompiler assumption for the re�nement 8/9 as above, this would result in

additional formulas in the oupling invariant. For all literals, for whih from the mahine invariant

MINV

8

for ASM8 it is already known, that they are not renamed, we would now additionally

need, that they are no variables and no lists. This would mean that we would have to ompute

the hains, from whih the literals are seleted, twie, one in MINV

8

and one in INV

89

. To avoid

this, we have strengthened the prediate l <

vi

vireg used in ompiler assumption 7/8 to inlude

the ompiler assumption for 8/9, i.e. that l does not have literals whih are just variables or

lists. This does not hange the proofs for the re�nement 7/8 (sine we have just strengthened the

assumptions), and the assumptions that we have no variables or lists as literals, is now overed

already by MINV

8

.

Moving Renaming of the Ativator to its Atual Use Sine goals are no longer stored

expliitly in a register in ASM9, but are only referened by a pointer to the lause ode, the

renaming index neessary to rename lause variables before uni�ation must now be stored in the

environment and its use is postponed until the literal is atually used. To reonstrut a goal from

a pointer to ode we use the proedure UNLOADREC# from the ompiler assumption. For the

atual renaming of goal variables, we �rst de�ned a funtion reng, that renames all variables of a

goal with some index (reng is homomorphi to the funtion rename de�ned earlier for renaming

of lauses). In [BR95℄ olletion of literals and appliation of the renaming is merged together

in the funtion g de�ned on p. 34f. The assumption goalreg = g(Ptr,vireg) therefore reads in our

notation:

hUNLOADREC#(Ptr,db

9

;goal)i goalreg = reng(goalreg,vireg)

Veri�ation revealed, that this assumption is not orret in the ase where goalreg is a part of

the initial query, sine the query must not be renamed. It turns out, that in the oupling invariant

this ase orresponds to an attempt to ompute vireg as the unspei�ed vi[ereg℄ for ereg = ?.

We have spei�ed the exeptional ase expliitly, using a funtion reng

0

(goalreg,ereg,vi) with the

axioms

reng

0

(goalreg,?,vi) = goalreg

ereg 6= ? ! reng

0

(goalreg,?,vi) = reng(goalreg,vi[ereg℄)

An alternative would have been to initialize vi[?℄ in suh a way that appliation of this renaming

has no e�et (e.g. initialization of vi[?℄ with 0, of vireg with 1, and de�nition of reng(goalreg,0)

as goalreg).

Reonstrution of goalreg from ASM8 Using Data from ASM9 The entral point in the

de�nition of the oupling invariant for 8/9 is to reonstrut the goals stored expliitly in ASM8,

that are only impliitly represented by pointers to ode in ASM9. The main task in doing this

was to give a preise de�nition of the \Continuation Pointer Constraint" ([BR95℄, p. 34) and to

give a preise formalization of how the registers of ASM9 an be reonstruted from the data of

ASM9. We found that the uniform reonstrution as given in [BR95℄, p. 35 was not possible.

Instead three ases had to be de�ned:



17.2. EQUIVALENCE PROOF 8/9 125

In the �rst ase ASM8 is in a state where preg = start, and goalreg is reonstruted by

hUNLOADREC#(preg

0

, db

9

, ereg

0

6= ? ; goalreg

0

) endi

( reng

0

(goalreg

0

, ereg

0

, vi) = goalreg

^ nonvargoal(goalreg

0

))

The postondition nonvargoal(goalreg

0

) enodes the ompiler assumptions that the literals of

goalreg are neither renamed, nor variables or lists.

In the seond ase both ASMs are before a retry-, retry me-, trust- or trust me instrution.

In this ase no goalreg must be reonstruted (the instrution will set it from the hoiepoint).

For this ase it has also to be noted, that the two environment registers ereg and ereg

0

may be

di�erent : When an enter with baktraking is exeuted in ASM8, ereg is unhanged, while the

orresponding alloate in ASM9 will modify ereg

0

.

The ontinuation pointer onstraint is not needed in the �rst two ases, but in the remaining

third ase. In this ase we have preg

0

= C[preg ℄ and goalreg is omputed with preg �1:

hUNLOADREC#(preg �1, db

9

, ereg

0

6= ?; goalreg

0

) endi

( reng

0

(goalreg

0

, ereg

0

, vi) = goalreg

^ nonvargoal(goalreg

0

))

When we tried to determine how exatly this formula should look like, we tried several proof

attempts with e

0

[ereg

0

℄ instead of ereg

0

, sine otherwise we ould not verify the re�nement of

the enter rule to alloate unify. After some analysis of failed proof attempts we found, that the

problem was the renaming index used in the unify rule. In [BR95℄ this renaming index for the

ativator at is de�ned indiretly via the abbreviation goal as vi[ereg℄. This is orret for the

swithing rules and the all rule, but not for the unify rule, sine immediately before the alloate

rule already pushes a new renaming index onto the environment stak. This new index should be

used for the new goal that would be pushed onto the environment stak on suessful uni�ation.

The orret renaming index therefore is found at vi[e[ereg℄℄, when e[ereg℄ 6= ?. Therefore the

orreted unify rule alls the funtion rent

0

with e[ereg℄.

Putting all things together we reahed after 3 weeks and 8 iterations the following oupling

invariant was

INV

89

�

vireg = vireg

0

^ stop = stop

0

^ breg = breg

0

^ treg = treg

0

^ sub = sub

0

^ subreg = subreg

0

^ t = t

0

^ b = b

0

^ e = e

0

^ utpt

0

[?℄ = ?

^ ( stop = run

! : is unify(ode(preg

0

, db

9

)) ^ ode(preg

0

, db

9

) 6= proeed

^ ( preg = start

� ereg = ereg

0

^ hUNLOADREC#(preg

0

, db

9

, ereg

0

6= ?; goalreg

0

)i

reng

0

(goalreg

0

, ereg

0

, vi) = goalreg ^ nonvargoal(goalreg

0

);

: is all(ode(preg

0

, db

9

))

^ ode(preg

0

, db

9

) 6= dealloate

^ preg

0

= C[preg℄

^ : is ret(ode(preg, db

7

))

! ereg = ereg

0

^ hUNLOADREC#(preg�1, db

9

, ereg

0

6= ?; goalreg

0

)i

reng

0

(goalreg

0

,ereg

0

,vi)=goalreg ^ nonvargoal(goalreg

0

))

^ hSTACK#(ereg, e; estak)i

8 n. n 2 estak

! e[n℄ = e

0

[n℄ ^ utpt[n℄ = utpt

0

[n℄

^ hUNLOADREC#(p[n℄, db

9

, e[n℄ 6= ?; goalreg

0

)i

reng

0

(goalreg

0

, e[n℄, vi) = g[n℄ ^ nonvargoal(goalreg

0

)

^ hSTACK#(breg, b; stak)i
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8 n. n 2 stak

! p

0

[n℄ = C[p[n℄℄

^ hSTACK#(e[n℄, e; estak)i

8 n

0

. n

0

2 estak

! e[n

0

℄ = e

0

[n

0

℄ ^ utpt[n

0

℄ = utpt

0

[n

0

℄

^ hUNLOADREC#(p[n

0

℄, db

9

,

e[n

0

℄ 6= ?; goalreg

0

)i

reng

0

(goalreg

0

, e[n

0

℄, vi) = g[n

0

℄

^ nonvargoal(goalreg

0

)

^ hUNLOADREC#(p[n℄� 1, db

9

, e[n℄ 6= ?; goalreg

0

)i

reng

0

(goalreg

0

,e[n℄,vi) = goal[n℄ ^ nonvargoal(goalreg

0

)

^ eqode(db

7

, db

9

, C)

^ eqpdt(prodeftab

7

, prodeftab

9

, C))

The invariant, and so the number of onjunts to prove, would have been about twie the size

without using the tehnique for iterated re�nements, as an be seen from the mahine invariant

MINV

8

for ASM8:

MINV

8

�

stop = run

! (preg 6= start ! goalreg 6= [℄) ^ e[?℄ = ? ^ utpt[?℄ = ?

^ ( is retry me(ode(preg, db

8

)) _ is retry(ode(preg, db

8

))

_ is trust me(ode(preg, db

8

)) _ is trust(ode(preg, db

8

))

! breg 6= ? ^ preg = p[breg℄)

^ ( preg 6= start

^ : is retry me(ode(preg, db

8

)) ^ : is retry(ode(preg, db

8

))

^ : is trust me(ode(preg, db

8

)) ^ : is trust(ode(preg, db

8

))

! hS-CHAIN-REC#(subreg ^

t

ar(goalreg), preg, db

8

; ol)i

mapode(ol, db

8

) <

lvi

0)

^ hSTACK#(breg, b; stak)i

hb-list#(ereg, e; estak)i

( ( preg = start

_ : is retry me(ode(preg, db

8

))

! utpt[ereg℄ 2 stak _ utpt[ereg℄ = ?)

^ ordered(stak) ^ ordered(estak) ^ disjoint(stak, estak)

^ (8 n. n 2 stak

! e[n℄ � n ^ goal[n℄ 6= [℄

^ hSTACK#(e[n℄, e; estak)i

( disjoint(estak, stak from n)

^ ordered(estak))

^ hS-CHAIN-RET#(sub[n℄ ^

t

ar(goal[n℄),

p[n℄, db

8

; ol)i

mapode(ol, db

8

) <

lvi

0))

MINV

8

enodes properties of ASM8, that were already proved in the re�nement 7/8, like

disjointness of the environment and the hoiepoint stak. These properties ould be assumed for

8/9, and had not to be proved anew.



Chapter 18

9/10: Compilation of Terms

This hapter desribes our urrent work on the �rst re�nement from Chapter 4 in [BR95℄. Besides

the re�nement 5/7 this seems to be the most omplex re�nement. Although we were not suessful

to verify it ompletely in the ourse of this work, our attempts to formalize the re�nement and

�rst proof attempts have nevertheless unovered a number of problems. One part of the problems

resulted from misunderstanding several aspets of the re�nement, another part was due to the

fat, that the orretness assertions in [BR95℄ are given only very informally. We will therefore

not give a omplete detailed desription of the re�nement, but only sketh some of the problems

we found in the re�nement and sketh some approahes how to solve them.

The main aspet of the re�nement 9/10 is the representation of terms by pointer strutures

on the heap (introdued in the re�nement), and the ompilation of literals to instrutions, that

reate and unify suh pointer strutures. Unfortunately this is not the only modi�ation that is

done to ASM9. Several other aspets of the WAM are also introdued in the re�nement:

� The implementation of ASM10 does not have an our hek. But how an we formalize the

ondition \ASM9 does not all an our hek"?

� Instead of storing substitutions, ASM10 now uses another stak, the trail, to store variable

bindings. When, due to baktraking, an old substitution is needed, variable bindings are

undone destrutively.

� The stak of environments and hoiepoints in ASM10 is \at". It has no internal stru-

ture anymore as the previous one. The di�erent omponents are now stored in suessive

addresses, and aessed uniformly with a funtion val.

� ASM10 in [BR95℄ does not onsider the ut. The ut is reintrodued at the end of Chapter

4.

� Variable renaming is now done by alloation of a variables at a new address instead of using

a renaming index. The alloate instrution suggests that the new address alloated may be a

loally new address of the environment stak, not a globally new heap address. But it turned

out, that this assumption is wrong (whih does not mean, that the ASM given in [BR95℄

is wrong, see below). The temporary use of loally new heap addresses rises the problem,

how a orret mapping between globally renamed variables in ASM9 to loations in ASM10

should look like.

� It turns out, that the substitutions stored in ASM9 do not orrespond to those stored in

ASM10. Instead ertain variable bindings, that are no longer relevant, are disarded earlier

than in ASM9.

Only the �rst four aspets mentioned above are disussed expliitly in [BR95℄. To redue the

omplexity of veri�ation, we have tried to remove all aspets from the re�nement that are not

127
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oupled to the introdution of term representation. Therefore, as a �rst step, we have kept the

struture of environments and hoiepoints. Storing variables in an environment is done in our

ASM10 with a funtion x : env � nat ! node: the result of x(ereg,m) is the mth variable of the

urrent environment (the sort node is now simply the sort of memory addresses, a super sort of

env). The struture of main memory in the WAM assumes, that heap addresses are lower than

stak addresses. This gives a omplex ordering � on memory addresses, for whih the axioms

?+ m

1

� x(?+ m

2

,m

3

)

x(?+ m

0

,m

1

) � x(?+ m

2

,m

3

) $ m

0

< m

2

_ m

0

� m

2

^ m

1

< m

3

hold. The funtion val: heap ! termrep is used only to determine the ontent of heap loations

(heap now is also a subsort of node).

As a seond measure, we have kept the ut, whih is easily possible, sine we have kept

the struture of staks (an instrution to remove variable bindings from the staks is of ourse

neessary; otherwise we simply keep the registers of the previous ASM).

Third, we have kept the our hek of uni�ation. The \Meta Theorem", whih says, that

if our hek is not alled, it an be removed holds trivially for ASM10, too. Also keeping the

our hek has allowed us to falsify the statement, made in [AK91℄, p. 14 as well as in [BR95℄,

p. 39, that our hek should be simply integrated into the bind routine: an our hek is also

neessary in the unify value instrution.

Fourth, we have tried to hange the strategy of variable renaming already on the term level.

The idea was, that renaming a variable X with the urrent renaming index an be replaed by

using a new stak address x (ereg,m). The transition from a globally new variable to a variable

that is relatively new to the stak is suggested by the alloate instrution of ASM10 in [BR95℄,

whih alloates the new variable in just this way. Therefore we de�ned a variant ASM9a of ASM9,

that used new stak loations instead of a renaming index. But after some veri�ation e�orts, an

attempt to verify the equivalene of the dealloate rules failed, beause the dealloated variables

an still our in omputed substitutions, that are needed later on. The bindings of these variables

would be overwritten, when a new environment is alloated.

This would suppose at �rst glane, that ASM10 is inorret. But a thorough analysis shows,

that although a new variable X in ASM10 is �rst alloated on the stak, it is moved to the heap

when it ours in the variables of some term T (X 2 vars(T )) that is bound to some other variable

(by the instrutions unify variable and unify loal value). Therefore in some ases variables in the

WAM are renamed several times.

Of some help to understand how renaming really works was [AK91℄. The �rst variant of the

WAM that is given there does not alloate variables with an alloate instrution on the stak.

Instead when the variable �rst ours, it is alloated in the heap. Still there is one exeption:

if the variable is bound to a term on its �rst ourrene (in the instrution get variable, that is

generated for a variable X in a lause head p(X)) it is easy to see, that it an be alloated in the

stak, sine it will not play any role in the further omputation.

The optimizations shown in [AK91℄ as well as in [BR95℄ (espeially \last all optimization"

LCO) are tightly oupled with the question, under whih irumstanes variables an be alloated

in the stak instead of the heap. Therefore we think that this question should not be addressed

in the re�nement 9/10. It should be easier to move variables from the heap to the stak in one

separate re�nement, whih also hanges the relevant onstraints for address alloation (\heap

variables onstraint" and \stak variables onstraint").

Using a separate re�nement also seems to be desirable, sine the main theorems of the re-

�nement 9/10, whih are the \Getting Lemma" and the \Putting Lemma" depend on the exat

de�nition of these onstraints: it is impossible to �rst prove putting and getting lemma, as [BR95℄

suggests, and then to verify that heap and stak variables onstraints as invariants of the getting

and putting instrutions. Instead, we have found, that both onstraints are neessary preondi-

tions for getting and putting lemma. Ultimately both onstraints beome a entral part of the

oupling invariant for the re�nement 9/10.

Eah modi�ation in the de�nition of both onstraints (espeially eah modi�ation of the

alloation of variables in the heap or the stak) therefore means, that its invariane in the putting
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and getting instrutions has to be proved anew. Therefore we urrently use the �rst de�nition of

[AK91℄ for our re�nement. This de�nition has an ineÆient put variable instrution (that alloates

the variable in the heap), no unify loal value instrution, and instead of initializing all variables

in alloate variables are initialized on their �rst ourrene, like this is done in [BR95℄ later on (p.

58f).

This version of ASM10 allows to de�ne a very simple heap and stak variables onstraint, that

says, that eah pointer struture representing a term has to be ompletely in the heap, exept for

the leading ell. The leading ell may be stored on the stak or in a register, if it is not a referene

to itself (i.e. a representation of a variable). The ordering on addresses is not relevant for this

version of the onstraints. We urrently think, that it should be possible to de�ne a dynami

funtion, that is a bijetion between the variables of ASM9 that are renamed with a global vireg,

and the new heap variables of ASM10. Like funtion F in the re�nement 1/2 (see setion 11.2)

this funtion should be modi�ed eah time an instrution is enountered, that orresponds to the

�rst ourrene of a variable (other modi�ations should be unneessary).

We will then try to do the shifting of variables from the heap to stak (and the introdution

of stronger onstraints, the de�nition of temporary and permanent variables and the addition of

new instrutions like put unsafe value et.) in one separate re�nement.

Even when using the ASM10 as de�ned in [AK91℄ it is unavoidable to store fewer variable

bindings than in ASM9. Our urrent assumption is, that the (impliit) dealloation of variable

bindings that is done when the environment ereg is dealloated in ASM10, orresponds exatly to

an expliit dealloation of all bindings for variables renamed with vi[ereg℄ from subreg in ASM9.

Aording to our philosophy, to remove as muh burden from the re�nement 9/10 as possible, we

have therefore de�ned a funtion remove(subreg,vi[ereg℄) and veri�ed separately, that modifying

the dealloate rule of ASM9 to

dealloate rule

if ode(preg,db

9

) = dealloate

then preg := p[ereg℄

ereg := e[ereg℄

preg := preg +1

subreg := remove(subreg,vi[ereg℄)

does not have a signi�ant onsequene on the result of ASM9: if the omputation terminates,

the substitution omputed by the modi�ed ASM (ASM9a) still has the same e�et on the query.

We ould verify the equivalene of ASM9 and ASM9a in 2 weeks with 3 iterations. The oupling

invariant INV

99a

and the mahine invariant MINV

9

for ASM9 are

INV

99a

�

stop = stop

0

^ breg = breg

0

^ treg = treg

0

^ preg = preg

0

^ ereg = ereg

0

^ preg = preg

0

^ vireg = vireg

0

^ p = p

0

^ p = p

0

^ b = b

0

^ e = e

0

^ e = e

0

^ t = t

0

^ vi = vi

0

^ utpt = utpt

0

^ utpt[?℄ = ? ^ e[?℄ = ?

^ subreg <

svi

vireg ^ subreg

0

<

svi

vireg

^ (8 lit. lit <

tvi

0 ! subreg ^

t

lit = subreg

0

^

t

lit)

^ hSTACK#(ereg, e; estak)i

( slnodups(estak) ^ nlnodups(vilist(vi, estak))

^ ( : is ret(ode(preg, db

9

)) ^ stop = run

! vilist(vi, estak) <

nl

vireg)

^ (8 n, lit. lit <

tvi

0 ^ n 2 estak

! subreg ^

t

rent(lit, vi[n℄) = subreg

0

^

t

rent(lit, vi[n℄)))

^ hSTACK#(breg, b; stak)i

8 n, lit. lit <

tvi

0 ^ n 2 stak

! sub[n℄ ^

t

rent

0

(lit, e[n℄, vi) = sub

0

[n℄ ^

t

rent

0

(lit, e[n℄, vi)

^ sub[n℄ ^

t

lit = sub

0

[n℄ ^

t

lit

^ sub[n℄ <

svi

vireg ^ sub

0

[n℄ <

svi

vireg
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^ hSTACK#(e[n℄, e; estak

0

)i

( vilist(vi, estak

0

) <

nl

vireg

^ slnodups(estak

0

) ^ nlnodups(vilist(vi, estak

0

))

^ (8 n

0

. n

0

2 estak

0

! sub[n℄ ^

t

rent(lit, vi[n

0

℄)

= sub

0

[n℄ ^

t

rent(lit, vi[n

0

℄)))

MINV

9

�

stop = run

! : is unify(ode(preg, db

9

)) ^ ode(preg, db

9

) 6= proeed

^ ( is try(ode(preg, db

9

)) _ is try me(ode(preg, db

9

))

_ ode(preg, db

9

) = alloate _ is sw onst(ode(preg, db

9

))

_ is sw term(ode(preg, db

9

)) _ is sw strut(ode(preg, db

9

))

_ ode(preg, db

9

) = alloate

� hC-CHAIN-REC#(subreg ^

t

rent

0

(alllit(ode(preg�1), db

9

)),

ereg, vi), preg, db

9

; li)i li <

lvi

0

^ hUNLOADREC#(preg � 1, db

9

, ereg 6= ?; goalreg)i

(goalreg 6= [℄ ^ nonvargoal(goalreg)) ;

is ret(ode(preg, db

9

)) � breg 6= ? ^ preg = p[breg℄ ;

hUNLOADREC#(preg, db

9

, ereg 6= ?; goalreg)i

nonvargoal(goalreg))

^ hSTACK#(breg, b; stak)i

hSTACK#(is ret(ode(preg, db

9

)) � e[breg℄ ; ereg, e; estak)i

( ordered(estak) ^ ordered(stak) ^ disjoint(estak, stak)

^ ( : is ret(ode(preg, db

9

))

! utpt[ereg℄ 2 stak _ utpt[ereg℄ = ?)

^ (8 n. n 2 estak

! hUNLOADREC#(p[n℄, db

9

, e[n℄ 6= ?; goalreg)i

nonvargoal(goalreg))

^ (8 n. n 2 stak

! e[n℄ � n

^ hSTACK#(e[n℄, e; estak

0

)i

( disjoint(estak

0

, stak from n)

^ ordered(estak

0

)

^ (8 n

0

. n

0

2 estak

0

! hUNLOADREC#(p[n

0

℄, db

9

,

e[n

0

℄ 6= ?; goalreg)i

nonvargoal(goalreg)))

^ hUNLOADREC#(p[n℄� 1,db

9

, e[n℄ 6= ?; goalreg)i

(goalreg 6= [℄ ^ nonvargoal(goalreg))

^ hC-CHAIN-RET#(

sub[n℄ ^

t

rent

0

(alllit(ode(p[n℄ � 1, db

9

)),

e[n℄, vi), p[n℄, db

9

; li)i

li <

lvi

0))
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Statistis

The following table gives an overview over the e�orts needed for the Prolog-WAM ase study. For

eah re�nement the number of neessary proof steps and interations and the number of theorems

proved are listed. These numbers have been extrated from the urrent KIV version 4. The

number of iterations, that were neessary to reah the �nal oupling invariant, and the time that

was needed to suessfully verify the re�nement refer to version of KIV in whih the re�nements

were veri�ed originally (for 1/2 and 4/5 KIV version 1, for 2/3,3/4,5/6 and 5/7 KIV version 3).

1/2 2/3 3/4 4/5 5/6

Proof steps 1074 1760 2546 1722 5341

Interations 161 124 300 87 672

Theorems 15 13 22 17 42

Iterations 12 8 5 9 8

Verif. time 2 Mo. 2 Wo. 1 Wo. 1 Mo. 2 Wo.

Size of INV 20 25 25 14 53

5/7 7/8 8/9 9/9a

Proof steps 7558 3445 4295 3045

Interations 1383 336 377 426

Theorems 39 21 19 19

Iterations 17 12 8 4

Verif. time 2 Mo. 1 Mo. 3 Wo. 2 Wo.

Size of INV 36 36 23+17 18+23

Altogether the veri�ation e�ort is urrently about 9 man months, whih inludes the veri�a-

tion of 1771 auxiliary �rst-order lemmas, that required 17458 proof steps and 3393 interations.

Here are some more statistial data:

� The number of auxiliary �rst-order lemmas is now four times the number that were ne-

essary until re�nement 5/7. The main reason is, that starting from re�nement 8/9 a lot

of lemmas are neessary for uni�ation, renaming and substitution. Some of these lemmas

required elaborate proofs due to the omplex termination ordering of substitution (up to

20 interations), in ontrast to all lemmas proved previously (usually 0{2 interations). A

seond reason is, that for ASM10 a large number of simple lemmas for the representation of

terms by pointers, that have already been proved.

� Compared to the number given in [SA97℄, whih referred to KIV version 3, there have

been some major improvements. The most signi�ant is the redution of the size of the

oupling invariant for 5/7 from 97 to 36 lines by a modi�ation of the proof tehnique

(see Set. 15.2). In the re�nements 2/3 and 3/4 we have now used the generation of proof

obligations aording to the modularization theorem. In [SA97℄ the generi proof for the

modularization theorem was still done was done for every instane anew (de fato the proofs

for the instanes lead to the disovery of the general theory presented here).

� The improvements in the dedution support and in the automation of the KIV system

(without the improvements that result from the use of the modularization theorem) during

the ourse of the ase study an be shown learly for the veri�ation of the �rst re�nement,

sine it ontains 1:1 diagrams only: While in KIV version 1 378 interations were neessary,

this number dropped to 246 in version 3. In KIV version 4 it is now 161.
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� Re�nement 1/2 also gives a good measure for the the time needed to beome familiar with

KIV, sine the veri�ation in KIV version 3 was done by Harald Vogt, a student that had

attended a one-semester pratial ourse on KIV and had no prior knowledge of the ase

study. It required him 80 hours of work to port the proofs for the re�nement from version

1 to version 3 (porting the proofs from version 3 to 4 required about a day of work).

� The size of the interpreters starts with 120 lines of imperative (Pseudo-PASCAL-)ode and

reahes 300 lines for ASM9. Sine it ontains a lot of new instrutions, ASM10 (nearly

idential to the WAM) is muh larger with 950 lines of ode.



Chapter 20

Related Case Studies

There is a huge amount of researh in the literature, that onsiders ompiler orretness in papers.

For an overview see e.g. [Joy90℄. Large e�orts on the topi were e.g. the VLISP ([GRW95℄) and

the PROCOS ([BLH93℄) projet.

Most of the work falls (just like our work) in the ategory, that deals with the orretness of

the ompilation (\ompiling orretness"). The eÆient implementation of ompilers (\ompiler

orretness") was treated rarely, but is urrently researhed in the Veri�x projet ([GDG

+

96℄).

Work on system supported, formal veri�ation of ompilers is muh rarer. The most elaborate

work in this �eld is the formal veri�ation of a ompiler, that translates ode of the imperative

programming language Gypsy �rst to assembler ode and then into native mahine ode of the

FM8502 proessor ([Moo88℄, [You88℄).

Veri�ation of the ompilation of Prolog to the WAM was besides [BR95℄, on whih our work

is based, also disussed in [Rus92℄. This work makes some simpli�ations (it does neither onsider

the ut nor swithing), and does not struture the proof into several re�nements. An attempt to

formalize the proof failed beause of its omplexity. Therefore V. Austel tried to do a strutured

proof in [Aus98℄ with the HOL system ([Gor88℄). His proof attempt tries to re�ne the term

representation before the ontrol struture and is in our opinion nearly inomprehensible. The

work required one man year of e�ort, and aording to the author at least another year would be

neessary to omplete it.

The most interesting point in this work is the thesis, that a major problem, that [BR95℄ only

treats insuÆently, is the introdution of the term representation in one single re�nement (9/10).

Now our onsideration in Set. 18 have shown, that the introdution of term representation (and

all other onepts) in a single step must indeed be deomposed into several steps in order to make a

lear veri�ation possible. Nevertheless we think, that the deomposition as we urrently propose

it, will do this, and we do not see any fundamental problems.

Another work done parallel to this one is the formal treatment of the ompilation of Prolog to

the WAM by C. Push ([Pus96℄) with the Isabelle system ([Pau94℄). Her spei�ation is based on

indutively de�ned relations over the vetor of state variables. Using polymorphism and pattern

mathing makes the notation in Isabelle muh more ompat (but for an untrained reader also more

rypti) than ASM notation (and even more than our PASCAL-like notation in the translation to

DL).

The starting point of her work is based on a de�nition of an interpreter that already uses

staks of hoiepoints, not searh trees. Staks are modeled as lists, in ontrast to our pointer

struture. This avoids the neessity to ollet hoiepoints with the proedure STACK#. This

results in some simpli�ation for the proofs at the ost, that a pointer struture would have to

be introdued (and veri�ed) at latest in ASM8, when the stak of hoiepoints and the stak of

environments are merged.

Four re�nements were veri�ed: the �rst introdues utpoints (i.e. positions in the stak). These

were represented as sublists of the urrent stak in the �rst interpreter. The seond re�nement

shows, that instead of using all lauses as andidates a prodef funtion an be used, that gives all
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lauses with the same leading prediate symbol. The ASM that results from the seond re�nement

is (modulo notation) equivalent to our ASM2, and the last two re�nements veri�ed in Isabelle

are idential to our re�nements 2/3 and 3/4 (exept that the onstruts true and fail were not

onsidered, therefore the problem disussed in 14.2 we found in the fail rule ould not be found).

The veri�ation e�ort for the four re�nements is given in [Pus96℄ as 6 person months and 3500

interations. The major part of this e�ort was neessary for the re�nements 2/3 and 3/4, as an

be seen from the proof sripts. These �gures are more than twie the ones we ahieved. There

are two main reasons for this: First, no proof tehnique for m:n diagrams, as they appear in 2/3

and 3/4, was developed. Instead, diagrams were deomposed into 1:n diagrams, as we skethed

in Set. 6.2.3, p. 28. This resulted in a drasti inrease of the size of the invariants. Seond,

two separate, asymmetri proofs were done for orretness and ompleteness of eah re�nements.

The asymmetry of the proofs seems one hand to be due to the use of abstration funtions, that

required additionally the de�nition of their domain (with on�g ok), but asymmetrially, not

de�nition of their odomain. On the other hand it is the determinism of the state based system,

that is essential for the fat, that only one proof is neessary. In our enoding of the ASM in the

alulus of Dynami Logi determinism is syntatially supported by the axiom

h�i ' � [�℄ '

for deterministi programs � (this axiom is used in our orretness proof of the modularization

theorem). In the formalization of the ASM as an indutive relation a similar axiom has to be

proved individually for eah � by indution over its struture.



Chapter 21

Summary of Part II

In the seond part of this work we have investigated the pratial usefulness of the theory developed

in part 1. The ase study we used for this purpose is from ompiler veri�ation. With 9 months

of e�ort for the veri�ation, the ase study is a very large one.

The ontent of the ase study was the formal veri�ation of 8 of the 12 re�nements given in

[BR95℄, that ompile a Prolog program to assembler ode of the Warren Abstrat Mahine. The

ase study ontained a large number of typial problems from ompiler veri�ation, e.g. intro-

dution of registers, staks, environments (stak frames), the optimization of ontrol strutures

(swithing) or the translation of abstrat datatypes to pointer strutures. These problems should

also be relevant for other programming languages.

The ase study showed, that due to a large number of impliit assumptions, the fully formal

orretness proof of a re�nement is muh more expensive than one ould estimate by looking at

the already elaborate mathematial analysis done in [BR95℄. The additional e�ort payed o� in

the sense, that a number of small errors, that were left open in the mathematial analysis, ould

be found and removed.

To make the veri�ation of the re�nements tratable, the full theory developed in the �rst part

was neessary as well as a very powerful tool for veri�ation. The KIV system, that was used in

the ase study, has been signi�antly improved during the work on this ase study.

Finally the omparison with two ase studies on the same topi done with other systems (HOL,

Isabelle) in parallel to this work shows, that the developed theory allowed the neessary e�ort to

be signi�antly smaller.
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Chapter 22

Outlook

The ase study done in this work does not yet ompletely show the orretness of the ompilation

of Prolog to the WAM. There are still 4 re�nements until full WAM ode is reahed. The �rst

two re�nements will be relatively omplex to verify, while the other two (environment trimming

and removal of the struture of environments and hoiepoints) should be easy. Altogether, we

estimate the e�ort to omplete the veri�ation to be about 2{3 months.

To get a veri�ed Prolog ompiler from the ase study, then a ompiler ould be implemented,

that ful�lls the ompiler assumptions. This should be easy for an simple variant with reursively

de�ned DL programs, sine the ompiler assumptions are (with the exeption of swithing) already

algorithmi.

More interesting than to use imperative programs for the implementation would be to take

up the ideas from the Veri�x projet [GDG

+

96℄ and to use Prolog itself as the implementation

language of the ompiler. This would give the possibility to get an eÆient ompiler by ompiling

the ompiler with itself (\bootstrapping").

The de�nition of a Prolog ompiler in Prolog would be a list of lauses for a prediate ompile

with two arguments. A query would be of the form ompile(t;X), where t would be a Prolog

program enoded as a term. X would be the output variable, whose result value at the end of the

omputation would be generated WAM instrutions, again enoded in a term.

To onnet programs and WAM instrution lists to terms (\reetion"), two onversion fun-

tions lauselist-to-term and term-to-instrutionlist are neessary. They are easy to de�ne here,

sine Prolog is an untyped language (the programming language with the simplest reetion prin-

iple, namely the \quote" operation, is LISP, sine programs and data strutures are idential;

for typed languages reetion is a muh harder problem). Subsequently the Prolog ode db

ompile

of the Prolog ompiler ould be veri�ed, by showing that exeution of ASM1 with a query om-

pile(t;X) results for eah program 4 (enoded as a term) in a list of instrutions, whih ful�ll the

ompiler assumptions. Formally, we have to prove

t = lauselist-to-term(db)

^ hASM1(db

ompile

, ompile(t,X); subst)i subst = [X  t

0

℄

! CompAssum(db, term-to-instrutionlist(t

0

))

With this approah a ompiler would result, whose orretness depends only on the fat, that

ASM1 is a orret semanti de�nition of Prolog, the (trivial) orretness of the onversion funtions

and of ourse the orretness of the veri�ation tool.

For the bootstrapping of the ompiler with itself (to get a ompiler implemented in WAM

ode) there would be three hoies: Either the WAM ode ould be got by replaing db with

db

ompile

in the theorem above and symboli exeution of ASM1. This would be ideal, sine then

only the orretness of the veri�ation tool would be relevant for orret WAM ode. Experiene

of my olleague Kurt Stenzel with a Java ASM show, that this is very expensive (spae and time

onsuming) and ould turn out to be impossible with the resoures available. A seond possibility
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would be to do the bootstrapping with one (or several) available Prolog ompilers. A last possibility

would be to use the ode generation faility of KIV, that generates LISP programs for the abstrat

programs of ASM1. The resulting ode ould also be used to do the bootstrapping. The last two

methods are from a theoretial viewpoint not quite as safe as the �rst one, sine they require the

orretness of another ompiler (at least for the onsidered program of the Prolog ompiler), but if

both methods result in the same ode, the probability of an error should nevertheless be de fato

equal to zero.



Appendix A

Used Notations

This setion gives the basi notations used in this work.

For a set S we denote with P(S) the power set of S, with P

!

(S) the set of all �nite subsets of

S. S

n

is the set of all n-tuples over S (n � 0). We write x

1

: : : x

n

and (x

1

; : : : ; x

n

) for n-tuples.

If n is lear from the ontext or arbitrary, we also write x. S

�

is the union of all S

n

for n � 0.

This set also ontains the empty tuple, written (). S

+

is S

�

without the empty tuple.

^

S

n

is the

set of all dupliate free n-tuples: x

1

: : : x

n

2 S

n

i� x

i

6= x

j

for all 1 � i < j � n.

^

S

�

is the

union of all

^

S

n

. We use the notation M =

S

s2S

M

s

for a family of sets M

s

, indexed with the

elements of S. It is always assumed that the sets M

s

of the family are pairwise disjoint. M

s

1

:::s

n

abbreviates M

s

1

� : : : �M

s

n

and

^

M

s

1

�:::�s

n

is the same as M

s

1

� : : : �M

s

n

\

^

M

n

. For two

tuples (x

1

; : : : ; x

n

) 2 S

n

and (x

0

1

; : : : ; x

0

m

) 2 S

m

we de�ne their onatenation (x

1

; : : : ; x

n

) :

(x

0

1

; : : : ; x

0

m

) as (x

1

; : : : ; x

n

; x

0

1

; : : : ; x

0

m

) 2 S

n+m

. We identify S with S

1

, so x : (x

1

; : : : ; x

n

) is

the same as (x; x

1

; : : : ; x

n

) 2 S

n+1

.

If a funtion f : M ! N is given, then we assume, that the homomorphi extension to a

funtion on tuples from M

n

is de�ned by f((x

1

;: : : ; x

n

)) := (f(x

1

); : : : ; f(x

n

)) The homomorphi

extension of f to subsets of M is de�ned analogously.
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Appendix B

Syntax and Semantis of Dynami

Logi

B.1 Syntax of Dynami Logi

De�nition 4 Signatures

A (many-sorted) signature SIG = (S;OP;X; P ) onsists of a �nite set of sorts S, a family OP =

S

s2S

�

;s

0

2S

OP

s;s

0

of operations (with argument sorts s and target sort s

0

), a family X =

S

s2S

X

s

of ountably many variables for eah sort, and a family P =

S

s2S

�

;s

0

2S

�

P

s;s

0

of proedure names

with value parameters of sorts s and referene parameters of sorts s

0

(proedure names are used

in programs).

It is assumed, that S ontains at least the sorts bool and nat, as well as the usual operations

on these sorts (true,false,^,_,!, $,:, 0,+1,�1,+).

De�nition 5 DL Expressions

For a many-sorted signature SIG, the set DLEXPR =

S

s2S

DLEXPR

s

of expressions, and the

set PROG of programs are de�ned to be the smallest sets with

� X

s

� DLEXPR

s

for every s 2 S

� If f 2 OP

s;s

and t 2 DLEXPR

s

then f(t) 2 DLEXPR

s

� If ' 2 FMA and x 2

^

X

s

then 8 x:' 2 FMA

� If ' 2 FMA and x 2

^

X

s

then 9 x:' 2 FMA

� If t; t

0

2 DLEXPR

s

, then t = t

0

2 FMA

� If ' 2 FMA and t; t

0

2 DLEXPR

s

, then (' � t; t

0

) 2 DLEXPR

s

� If x 2

^

X

s

and t 2 U

s

, where U

s

= T

s

[ f?g, then x := t 2 PROG

� If � 2 PROG, x 2

^

X

s

and t 2 U

s

, where U

s

= T

s

[ f?g, then var x = t in � 2 PROG

� skip; abort 2 PROG

� If �; � 2 PROG, then �;� 2 PROG

� If �; � 2 PROG and " 2 BXP, then if " then � else � 2 PROG

� If � 2 PROG and " 2 BXP then while " do � 2 PROG

� If � 2 PROG and � 2 T

nat

then loop � times � 2 PROG
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� If p 2 P

s;s

0

, t 2 T

s

, x 2

^

X

s

0

and � 2 T

nat

then p(t;x) 2 PROG and probound � in p(t;x) 2

PROG. The latter program is a all to p with maximal reursion depth bounded by �.

The de�nition uses FMA (formulas) to abbreviate DLEXPR

bool

. The set T

s

(Terms of sort s)

is the subset of DLEXPR

s

, that does neither ontain quanti�ers nor programs. BXP (boolean

expressions) is T

bool

.

Remark 1 Like in Pasal we use begin . . . end as brakets around programs. if " then � is

used as an abbreviation for if " then � else skip.

Remark 2 The tests of while loops and onditionals must be boolean expressions in the de�nition

above (" 2 BXP). This is neessary for appliation programs. For proof obligations and in proofs

it is sometimes onvenient to use arbitrary formulas. This extension does not pose any problems,

everything that follows holds for arbitrary " 2 FMA too.

De�nition 6 Assigned Variables

The set asgv(�) of assigned variables in a programs � is de�ned by:

� asgv(skip) = asgv(abort) = ;

� asgv(�;�) = asgv(�) [ asgv(�)

� asgv(if " then � else �) = asgv(�) [ asgv(�)

� asgv(while " do �) = asgv(�)

� asgv(loop � times �) = asgv(�)

� asgv(var x = t in �) = asgv(�) n x

� asgv(p(t;x)) = x

� asgv(probound p(t;x) times �) = x

De�nition 7 Called Proedures

alledpros(�) is the set of all proedures that are alled in a program �.

De�nition 8 Proedure Delarations and Proedur Delaration Lists

The setPD of proedure delarations is the set of all p(x;var y):� with p 2 P

s;s

0

x; y 2

^

X

s;s

0

,

� 2 PROG and asgv(�) � x [ y. � must not ontain proedure alls with bounded reursion

depth. p is the proedure de�ned with the proedure delaration, � is the body of the proedure.

PDL is the set of all lists of Proedure delarations, suh that the alled proedures in their

bodies are a subset of the set of all de�ned proedures.

B.2 Semantis of Dynami Logi

De�nition 9 Algebra

An Algebra A over a signature SIG onsists of a nonempty arrier set A

s

for every sort s and a

funtion f

A

: A

s

! A

s

0

for every f 2 OP

s;s

0

. For every proedure p 2 P

s;s

0

and every n 2 IN the

algebra A ontains a relation [[p℄℄

A;n

on A

s;s

0

;s

0

. (whih is the semantis of p when the maximal

reursion depth is bounded by n). [[p℄℄

A;0

must be the empty relation. [[p℄℄

A

denotes the semantis

of the proedure and is de�ned as the union of all [[p℄℄

A;n

. The semantis de�nes a relation

between the initial values of value and referene parameters and the result values of the referene

parameters.

It is assumed that A

bool

= ftt,� g, A

nat

= IN, and that the operationen on booleans and natural

numbers have their usual semantis.
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De�nition 10 States/Valuations

For a signature SIG and an algebra A over this signature a state (or synonymously, a valuation)

z 2 ST

A

is de�ned as a funtion, that maps the variables of sort s to values in A

s

. The state

z[x  a℄ is the state, whih results from z by modifying the values at variables x with a.

De�nition 11 Semantis of Expressions

For an algebra A and a valuation z the semantis [[e℄℄

z

2 A

s

of a DL expresion e 2 DLEXPR

s

,

and the semantis z[[�℄℄z

0

of a program (a relation on states, written in�x) are de�ned by:

� [[x℄℄

z

= z(x)

� [[f(t)℄℄

z

= f

A

([[t℄℄

z

) for f 2 OP

s;s

0

and t 2 T

s

� [[8 x:e℄℄

z

= tt with x 2

^

X

s

i� [[e℄℄

z[x  a℄

= tt for all values a 2 A

s

� [[9 x:e℄℄

z

= tt with x 2

^

X

s

i� [[e℄℄

z[x  a℄

= tt for some values a 2 A

s

� [[(" � e; e

0

)℄℄

z

is [[e℄℄

z

, if [["℄℄

z

= tt, and [[e

0

℄℄

z

otherwise.

� z[[skip℄℄z

0

i� z = z

0

� [[abort℄℄ is the empty relation

� z[[x:=t℄℄z

0

i� z

0

= z[x  [[t℄℄

z

℄, where eah [[?℄℄

z

is some arbitrary value.

� z[[�;�℄℄z

0

i� there is a z

00

with z[[�℄℄z

00

and z

00

[[�℄℄z

0

� z[[if " then � else � ℄℄z

0

i�

either [["℄℄

z

= tt and z[[�℄℄z

0

or [["℄℄

z

= � and z[[�℄℄z

0

� z[[loop � times �℄℄z

0

i�

there are states z

0

:= z; z

1

; : : : ; z

n

:= z

0

with n := [[�℄℄

z

suh that

z

i�1

[[�℄℄z

i

for every 1 � i � n

� z[[while " do �℄℄z

0

i�

there are states z

0

:= z; z

1

; : : : ; z

n

:= z

0

with

z

i�1

[[�℄℄z

i

for 1 � i � n,

[["℄℄

z

i

= tt for 1 � i < n and [["℄℄

z

0

= �

� z[[var x = t in �℄℄z

0

i� z[x  a℄[[�℄℄z

00

and z

0

= z

00

[x  [[x℄℄

z

℄ where a

i

= [[t

i

℄℄ for t

i

6=? and

otherwise a

i

is arbitrary.

� z[[p(t; x)℄℄z

0

i� z(t); z(x); z

0

(x) 2 [[p℄℄ and z(y) = z

0

(y) for all y 62 x

� z[[probound � in p(t; x)℄℄z

0

i� z(t); z(x); z

0

(x) 2 [[p℄℄

n

, where n = [[�℄℄

z

, and z(y) = z

0

(y)

for all y 62 x

� [[h�i '℄℄

z

= tt i� there is a z

0

with z[[�℄℄z

0

and [['℄℄

z

0

= tt

� [[[�℄ '℄℄

z

= tt i� for all z

0

with z[[�℄℄z

0

: [['℄℄

z

0

= tt

Remark 3 The semantis of expressions and programs is de�ned unambiguously, sine eah ase

redues the number of elementary statements in the expression/program onsidered.

De�nition 12 Semantis of Proedure Delaration Lists

If Æ is a proedure delaration list, then A j= Æ i� for every proedure delaration p(x; y):�

ontained in Æ and every � = 0 + 1 : : :+ 1 (representing a number n � 0) the following property

holds:

[[probound �+ 1 in p(x; y)℄℄ = [[probound � in �℄℄
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In the de�nition probound � in � is the program, that results from replaing eah proedure

all q(�; z) in � by probound � in q(�; z) (for every proedure name q).

Remark 4 A proedure delaration list unambiguously �xes the semantis of the de�ned proe-

dures. The proof is by indution on n, that [[p℄℄

A;n

is �xed. It is also easy to show, that the [[p℄℄

A;n

are monotone inreasing relations for the de�ned proedures.

De�nition 13 models operator

� A; z j= ' holds (or is valid) for a formula ' i� [['℄℄

z

= tt

� A j= ' holds i� for all states z: A; z j= '

� j= ' holds o� for every algebra A : A j= '

� � j=  holds i� for every algebra A: from A j= ' for every ' 2 � follows A j=  .

Remark 5 The following properties are valid, if i does neither our in � nor in ". The �rst two

properties haraterize while loops (they allow indution over the number of iterations). The third

property allows to avoid loops with a ounter ourring in �.

� j= hwhile " do �i ' $ 9 i:hloop if " then � times ii (' ^ : ")

� j= hloop � times �+ 1i ' $ h�; loop � times �i '

� j= hloop � times �i ' $ (8 i:i = � ! hloop � times ii ')

Remark 6 Let A be an algebra with A j= Æ for a proedure delaration list Æ, that ontains a

proedure delaration p(x;var y):�. Then the following three formulas haraterize the reursive

proedure (i.e. their validity is equivalent to the proedure delaration). Proedure delara-

tion lists therefore an be viewed as abbreviations for axioms. The formulas allow to indue

over the reursion depth and unfolding of proedures. The �rst formulas holds in every alge-

bra. In the third formula x

0

and y

0

have to be new variables of the same sorts as x and y.

probound � in � again is the program, that is derived from � by replaing all proedure alls

q(�; z) with probound � in q(�; z).

� j= hp(t; z)i ' $ 9 �:hprobound � in p(t; z)i '

� A j= hprobound �+ 1 in p(t; z)i ' $

hx

0

; y

0

; x; y := x; y; t; z;probound � in �;x; y; y

0

:= x

0

; y

0

; y; z := y

0

i '

� A j= hp(t; z)i '

$ hx

0

; y

0

; x; y := x; y; t; z;�;x; y; y

0

:= x

0

; y

0

; y; z := y

0

i '

De�nition 14 (Basi) Spei�ations

A basi spei�ation SPEC = (SIG,Ax,GAx,PAx) onsists of

� a signature SIG = (S,OP,P,X).

� a set of axioms Ax (formulas over SIG).

� a set GAx of generation lauses of the form: s

1

; : : : s

n

generated by f

1

; : : : f

m

(n,m > 0).

It is required that s

1

; : : : s

n

2

^

S

�

and all f

j

have a target sort in s

1

; : : : s

n

.

� a set PAx of proedure delaration lists over SIG. If a proedure is delared in several lists,

the delarations must be idential.

De�nition 15 Semantis of Spei�ations

An algebra A is a model of SPEC (written as A j= SPEC, if it is an algebra over the signature of

the spei�ation with
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� A j= ' for every ' 2 Ax

� For every generation lause s

1

; : : : ; s

n

generated by f

1

; : : : ; f

m

2 GAx and every i = 1 : : : n,

every element a 2 A

s

i

an be got as the semantis a = [[t℄℄

z

of some term t under some values

for z. The term must not ontain variables of the sorts s

1

; : : : s

n

, and that ontains operation

symbols only from ff

1

; : : : ; f

m

g.

� A j= Æ for every Æ 2 PAx

Remark 7 For every model of a spei�ation (SIG,Ax,GAx,;) with no proedure names in its

signature, there is exatly one extension to a model (SIG [ P,Ax,GAx, PAx ), where P is the set

of de�ned proedures in PAx.

Remark 8 We write SPEC j= ', i� in every model A of SPEC A j= ' holds.

Theorem 11 Corretness and Completeness

The theory of basi spei�ations an be axiomatized orretly and ompletely, if we add for

every generation lause s

1

; : : : s

n

generated by f

1

; . . . ; f

m

an Omega rule: If for a formula '(x)

ontaining a free variable x from one of the sorts s

1

; : : : s

n

all (evtl. in�nite many) formulas '(t)

with terms t, whih are built up with the onstrutors f

1

; : : : f

m

and only ontain variables from

sorts not in s

1

; : : : s

n

an be derived, then 8 x:'(x) an be derived.

The rule has in�nitely many premises, so it annot be used in a theorem prover. In the

implementation of a alulus Omega rules are replaed by strutural indution priniples. These

are theoretially weaker than the Omega rules but suÆient for pratial appliation.

We do not want to prove the theorem here. The idea of the proof is to translate all DL formulas

into equivalent �rst-order formulas. To do this we translate every program � into a relation R

�

(input: all variables of the program, output: all assigned variables of the program) This redues

the orretness and ompleteness proofs to �rst-order spei�ations with generation lauses. For

these it is known that they an be orretly and ompletely axiomatized with an Omega rule (see

[Rei98℄).
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Appendix C

Spei�ations and Lemmas for the

Modularization Theorem

C.1 General Spei�ations

Spei�ations for natural numbers, lists and dynami funtions an be found in appendix E.

diagtype =

data spei�ation

diagtype = mn j 0n j m0;

variables : diagtype;

end data spei�ation

state =

spei�ation

sorts state;

variables st: state;

end spei�ation

f-state-state =

atualize Dynfun with parameter state by morphism

dom ! state, odom ! state, dynfun ! f-state-state,

.[ . ℄ ! . d . e

s

end atualize

iterate =

enrih nat, f-state-state with

funtions . ^ . : f-state-state � nat ! f-state-state prio 9;

axioms

it-base-ax : (f ^ 0)dste

s

= st,

it-re-ax : (f ^ m +1)dste

s

= fd(f ^ m)dste

s

e

s

end enrih

147
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stream =

atualize Dynfun with nat, parameter state by morphism

dom ! nat, odom ! state, dynfun ! stream,

. [ . ℄ ! . d . e, f ! s,

end atualize

enrstream =

enrih stream, iterate with

funtions

ons : state � stream ! stream;

dr : stream ! stream;

app : stream � nat � stream ! stream;

nthdr : stream � nat ! stream;

axioms

ons-base-ax : ons(st, s)d0e = st,

ons-re-ax : ons(st, s)dm +1e = sdme,

dr-ax : dr(s)dme = sdm +1e,

app-base-ax : app(s, 0, s

0

) = s

0

,

app-re-ax : app(s, m +1, s

0

) = ons(sd0e, app(dr(s), m, s

0

)),

nthdr-base-ax : nthdr(s, 0) = s,

nthdr-re-ax : nthdr(s, m +1) = nthdr(dr(s), m),

streamhoie :

(8 m. 9 st

1

. st

1

= (f ^ m)dst

0

e

s

)

! (9 s. 8 m. sdme = (f ^ m)dst

0

e

s

)

end enrih

tuple =

data spei�ation

using enrstream

tuple = mkt (. .s : stream, . .i : nat, . .j : nat);

variables t

1

, t

0

, t: tuple;

end data spei�ation

f-tup-tup =

atualize iterate with tuple by morphism

state ! tuple, f-state-state ! f-tup-tup, . d . e

s

! . [[ . ℄℄,

st ! t, f ! ft

end atualize

rule =

enrih enrstream with

prediates

Trae : stream;

�nal : state;

proedures

RULE : ! state; (: arbitrary proedure as ASM rule :)

axioms
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Trae-def :

Trae(s)

$ (8 m, st. st = sdme

! hif : �nal(st) then RULE(; st)i st = sdm +1e),

�nal-def : (: rule does not terminate �! �nal state :)

(: hRULE(; st)i true) ! �nal(st) ,

hoie : (: hoie axiom for RULE :)

(8 st. hif : �nal(st) then RULE(; st)i true)

! 9 f. 8 st

0

. hst := st

0

; if : �nal(st) then RULE(; st)i st = fdst

0

e

s

end enrih

rule' =

rename rule by morphism

stream ! stream', state ! state', . d . e ! . d . e', ons ! ons',

dr ! dr', app ! app', nthdr ! nthdr', Trae ! Trae',

�nal ! �nal', RULE ! RULE', s ! s', st ! st'

end rename

C.2 Re�nement of Deterministi ASMs

C.2.1 Spei�ation

detequiv =

enrih rule, rule', diagtype with

funtions

ndt : state � state' ! diagtype;

exe0n : state � state' ! nat;

exem0 : state � state' ! nat;

prediates

INV : state � state'; (: oupling invariant :)

IN : state � state'; (: input relation :)

OUT : state � state'; (: output relation :)

PROP : state � state';

variables i, j, k: nat;

axioms

init-ax : IN(st, st') ! INV(st, st'),

�nboth-ax : �nal(st) ^ �nal'(st') ^ INV(st, st') ! OUT(st, st'),

�n1-ax : �nal(st) ^ INV(st, st') ^ : �nal'(st') ! ndt(st, st') = 0n,

�n2-ax : �nal'(st') ^ INV(st, st') ^ : �nal(st) ! ndt(st, st') = m0,

mton-ax :

INV(st, st') ^ : �nal(st) ^ : �nal'(st') ^ ndt(st, st') = m0

! hif : �nal(st) then RULE(; st) i

9 i. hloop if : �nal(st) then RULE(; st) times ii

hif : �nal'(st') then RULE'(; st') i

9 j. hloop if : �nal'(st') then RULE'(; st') times j i INV(st, st'),

0ton-ax :

INV(st, st') ^ : �nal'(st') ^ ndt(st, st') = 0n ^ exe0n(st, st') = k
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! hif : �nal'(st') then RULE'(; st') i

9 j. hloop if : �nal'(st') then RULE'(; st') times ji

(INV(st, st') ^ (: �nal'(st') ^ ndt(st, st') = 0n ! exe0n(st, st') < k)),

mto0-ax :

INV(st, st') ^ : �nal(st) ^ ndt(st, st') = m0 ^ exem0(st, st') = k

! hif : �nal(st) then RULE(; st) i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (: �nal(st) ^ ndt(st, st') = m0 ! exem0(st, st') < k)),

prop-def :

PROP(st, st')

$ 9 i. hloop if : �nal(st) then RULE(; st) times ii

9 j. hloop if : �nal'(st') then RULE'(; st') times ji INV(st, st')

end enrih

C.2.2 Proved Theorems

�nite-0ton (the main ase of lemma 2 from Set. 6.2.3)

INV(st, st'), ndt(st, st') = 0n, : �nal'(st')

` hif : �nal'(st') then RULE'(; st') i

9 j. hloop if : �nal'(st') then RULE'(; st') times ji

(INV(st, st') ^ (�nal'(st') _ ndt(st, st') 6= 0n))

� used lemmas : 0ton-ax

� used by : ompl-step, ompleteness

�nite-mto0

INV(st, st'), ndt(st, st') = m0, : �nal(st)

` hif : �nal(st) then RULE(; st) i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (�nal(st) _ ndt(st, st') 6= m0))

� used lemmas : mto0-ax

� used by : orr-step, orretness

orr-step (Lemma 1 from Set. 6.2.3)

PROP(st, st') ` hif : �nal'(st') then RULE'(; st')i PROP(st, st')

� used lemmas : �nite-mto0, �n1-ax, 0ton-ax, mton-ax, prop-def

� used by : orretness

ompl-step

PROP(st, st') ` hif : �nal(st) then RULE(; st)i PROP(st, st')

� used lemmas : �nite-0ton, �n2-ax, mto0-ax, mton-ax, prop-def
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� used by : ompleteness

orretness (orretness of the re�nement)

IN(st, st')

` [while : �nal'(st') do RULE'(; st') ℄

hwhile : �nal(st) do RULE(; st)i OUT(st, st')

� used lemmas : �nboth-ax, �n2-ax, �nite-mto0, orr-step, init-ax, prop-def

ompleteness (ompleteness of the re�nement)

IN(st, st')

` [while : �nal(st) do RULE(; st)℄

hwhile : �nal'(st') do RULE'(; st')i OUT(st, st')

� used lemmas : �nboth-ax, �n1-ax, �nite-0ton, ompl-step, init-ax, prop-def

C.3 Re�nement of Indeterministi ASMs {

Diagrams of Indeterministi Size

C.3.1 Spei�ation

genindeteqtrae =

enrih rule, rule', f-tup-tup, diagtype with

funtions

ndt : state � state' ! diagtype;

exe0n : state � state' ! nat;

exem0 : state � state' ! nat;

prediates

INV : state � state';

INV' : state � state';

KPROP : state � state';

VPROP : state � state';

IN, : state � state';

OUT : state � state';

p : stream' � tuple � tuple;

variables i, i

0

, i

1

, j, j

0

, k: nat;

axioms

init-ax : IN(st, st') ! INV(st, st'),

�nboth-ax : �nal(st) ^ �nal'(st') ^ INV(st, st') ! OUT(st, st'),

�n1-ax : �nal(st) ^ INV(st, st') ^ : �nal'(st') ! ndt(st, st') = 0n,

�n2-ax : �nal'(st') ^ INV(st, st') ^ : �nal(st) ! ndt(st, st') = m0,

mton-orr-ax :

INV(st, st') ^ ndt(st, st') = m0 ^ Trae'(s')

^ st' = s'd0e

0

^ : �nal(st) ^ : �nal'(st')

! hif : �nal(st) then RULE(; st)i
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9 j. 9 i. hloop if : �nal(st) then RULE(; st) times i i INV(st, s'dj +1e

0

),

0ton-orr-ax :

INV(st, st') ^ ndt(st, st') = 0n ^ exe0n(st, st') = k

^ Trae'(s') ^ st' = s'd0e

0

^ : �nal'(st')

! 9 j. INV(st, s'dj +1e

0

)

^ (: �nal'(s'dj +1e

0

) ^ ndt(st, s'dj +1e

0

) = 0n ! exe0n(st, s'dj +1e

0

) < k),

mto0-orr-ax : (: follows from mto0-omp-ax, is suÆient for trae orretness :)

INV(st, st') ^ ndt(st, st') = m0 ^ exem0(st, st') = k ^ : �nal(st)

! hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (: �nal(st) ^ ndt(st, st') = m0 ! exem0(st, st') < k)),

mton-omp-ax :

INV(st, st') ^ ndt(st, st') = m0 ^ Trae(s)

^ st = sd0e ^ : �nal(st) ^ : �nal'(st')

! hif : �nal'(st') then RULE'(; st')i

9 i. 9 j. hloop if : �nal'(st') then RULE'(; st') times j i INV(sdi +1e, st'),

mto0-omp-ax :

INV(st, st') ^ ndt(st, st') = m0 ^ exem0(st, st') = k ^ Trae(s)

^ st = sd0e ^ : �nal(st)

! 9 i. INV(sdi +1e, st')

^ (: �nal(sdi +1e) ^ ndt(sdi +1e, st') = m0 ! exem0(sdi +1e, st') < k),

0ton-omp-ax : (: follows from 0ton-orr-ax :)

INV(st, st') ^ ndt(st, st') = 0n ^ exe0n(st, st') = k ^ : �nal'(st')

! hif : �nal'(st') then RULE'(; st')i

9 j. hloop if : �nal'(st') then RULE'(; st') times ji

(INV(st, st') ^ (: �nal'(st') ^ ndt(st, st') = 0n ! exe0n(st, st') < k)),

hoie-ax : (: axiom of hoie :)

(8 t. 9 t

0

. p(s', t, t

0

)) ! (9 ft. 8 t. p(s', t, ft[[t℄℄)),

diagonal-ax : (: axiom of hoie :)

8 m. 9 st. st = (ft " m)[[mkt(s

0

, 0, 0)

! 9 s. 8 m. sdme = ft " m[[mkt(s

0

, 0, 0)℄℄.sdme,

kprop-def :

KPROP(st, st')

$ 8 s'. st' = s'd0e

0

^ Trae'(s')

! 9 i. hloop if : �nal(st) then RULE(; st) times ii

(9 m. INV(st, s'dme

0

)),

vprop-def :

VPROP(st, st')

$ 8 s. st = sd0e ^ Trae(s)

! 9 j. hloop if : �nal'(st') then RULE'(; st') times ji

(9 m. INV(sdme, st')),

inv'-def : INV'(st, st') $ INV(st, st') ^ (�nal(st) $ �nal'(st'))



INDETERMINISTIC ASMS 153

p-def : (: prediate that desribes adding diagrams :)

p(s', t, t

0

)

$ INV'(t.sdt.ie, s'dt.je

0

) ^ Trae(t.s) ^ Trae'(s')

! Trae(t

0

.s) ^ (8 i

1

. : t.i < i

1

! t.sdi

1

e = t

0

.sdi

1

e)

^ t.i < t

0

.i ^ t.j < t

0

.j ^ INV'(t

0

.sdt

0

.ie, s'dt

0

.je

0

),

end enrih

C.3.2 Proved Theorems

�n-0ton

INV(st, st'), ndt(st, st') = 0n, : �nal'(st')

` hif : �nal'(st') then RULE

0

(; st')i

9 j. hloop if : �nal'(st') then RULE

0

(; st') times ji

(INV(st, st') ^ (�nal'(st') _ ndt(st, st') 6= 0n))

� used lemmas : 0ton-omp-ax

� used by : ompl-step, ompleteness

�n-mto0

INV(st, st'), ndt(st, st') = m0, : �nal(st)

` hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (�nal(st) _ ndt(st, st') 6= m0))

� used lemmas : mto0-orr-ax

� used by : add-diagram, orr-step, orretness, equiv-�nal

�nite-0ton

ndt(st, st') = 0n, INV(st, st'), Trae'(s'), s'd0e

0

= st', : �nal'(st')

` 9 j. INV(st, s'dj +1e

0

) ^ (�nal'(s'dj +1e

0

) _ ndt(st, s'dj +1e

0

) 6= 0n)

� used lemmas : 0ton-orr-ax

� used by : add-diagram, equiv-�nal

orr-step

KPROP(st, st') ` [if : �nal'(st') then RULE

0

(; st')℄ KPROP(st, st')

� used lemmas : �n-mto0, �n1-ax, 0ton-orr-ax, mton-orr-ax, kprop-def

� used by : orretness

ompl-step

VPROP(st, st') ` [if : �nal(st) then RULE(; st)℄ VPROP(st, st')

� used lemmas : �n-0ton, �n2-ax, mto0-omp-ax, mton-omp-ax, vprop-def

� used by : ompleteness
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orretness (orretness of the re�nement)

IN(st, st')

` [while : �nal'(st') do RULE

0

(; st')℄

hwhile : �nal(st) do RULE(; st)i OUT(st, st')

� used lemmas : �n-mto0, �nboth-ax, �n2-ax, orr-step, init-ax, kprop-def

ompleteness (ompleteness of the re�nement)

IN(st, st')

` [while : �nal(st) do RULE(; st)℄

hwhile : �nal'(st') do RULE

0

(; st')i OUT(st, st')

� used lemmas : �nboth-ax, �n1-ax, �n-0ton, ompl-step, init-ax, vprop-def

equiv-�nal (Lemma 3 from Set. 6.3)

INV(st, st'), Trae'(s'), s'd0e

0

= st'

` 9 i. hloop if : �nal(st) then RULE(; st) times ii (9 j. INV'(st, s'dje

0

))

� used lemmas : �n2-ax, �n-mto0, �n1-ax, �nite-0ton, inv'-def

� used by : add-diagram

add-diagram (Lemma 4 from Set. 6.3)

INV'(st, st'), Trae'(s'), s'd0e

0

= st'

` hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(9 j. INV'(st, s'dj +1e

0

))

� used lemmas : �n1-ax, 0ton-orr-ax, �n-mto0, �n2-ax, mto0-orr-ax, �nite-0ton,

equiv-�nal, mton-orr-ax, inv'-def

� used by : totality

totality (Totality of the relation that desribes adding diagrams)

` 8 s', t. 9 t

0

. p(s', t, t

0

)

� used lemmas : inv'-def, p-def, add-diagram

� used by : hoie-onl, ind-hoie-onl

hoie-onl (existene of a funtion, that adds a diagram)

` 9 ft. p(s', t, ft[[t℄℄)

� used lemmas : totality, hoie-ax

ind-hoie-onl (speial ase of hoie-onl for ft " m)

` 9 ft. 8 m. p(s', (ft " m)[[t℄℄, (ft " m +1)[[t℄℄)
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� used lemmas : totality, hoie-ax

� used by : trae-orretness

diagonal (diagonalisation argument for m onstruted diagrams)

t

0

= mkt(s

0

, 0, 0), t = (ft " m)[[t

0

℄℄,

Trae(s

0

), Trae'(s'), INV'(s

0

d0e, s'd0e

0

),

8 k. p(s', (ft " k)[[t

0

℄℄, (ft " k +1)[[t

0

℄℄)

` INV'(t.sdt.ie, s'dt.je

0

)

^ m � t.i ^ m � t.j ^ Trae(t.s)

^ (8 i, j. i < j ^ j � m

! (ft " i)[[t

0

℄℄.i < (ft " j)[[t

0

℄℄.i ^ (ft " i)[[t

0

℄℄.j < (ft " j)[[t

0

℄℄.j)

^ (8 j, k. j � m ^ k � (ft " j)[[t

0

℄℄.i ! (ft " j)[[t

0

℄℄.sdke = t.sdke)

� used lemmas : p-def, inv'-def

� used by : trae-orretness

trae-orretness (trae orretness of the re�nement)

Trae'(s'), INV'(st, s'd0e

0

)

` 9 s. Trae(s) ^ sd0e = st ^ (8 m, k. 9 i, j. m � i ^ k � j ^ INV'(sdie, s'dje

0

))

� used lemmas : diagonal, diagonal-ax, ind-hoie-onl, inv'-def

C.4 Iterative Re�nement for

Indeterministi ASMs

C.4.1 Spei�ation

it-indetorr =

enrih rule, rule', diagtype with

funtions

ndt : state � state' ! diagtype ;

exe0n : state � state' ! nat ;

exem0 : state � state' ! nat ;

prediates

INV : state � state';

IN : state � state';

OUT : state � state';

KPROP : state � state';

MINV : state; (: existing invariant for ASM :)

MINVNOW : state';

MINV' : state'; (: onstruted invariant for ASM

0

:)

variables i, j, j

0

, k: nat;

axioms

minv-ax :

IN(st, st')
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! 8 i. [loop if : �nal(st) then RULE(; st) times i℄ MINV(st),

init-ax : IN(st, st') ! INV(st, st') ^ MINVNOW(st'),

�nboth-ax : �nal(st) ^ �nal'(st') ^ INV(st, st') ^ MINV(st) ! OUT(st, st'),

�n1-ax : �nal(st) ^ INV(st, st') ^ : �nal'(st') ^ MINV(st) ! ndt(st, st') = 0n,

�n2-ax : �nal'(st') ^ INV(st, st') ^ : �nal(st) ^ MINV(st) ! ndt(st, st') = m0,

mton-orr-ax :

INV(st, st') ^ MINV(st) ^ : �nal(st) ^ : �nal'(st') ^ ndt(st, st') = m0

! [if : �nal'(st') then RULE'(; st')℄

9 j. [loop if : �nal'(st') ^ : MINVNOW(st') then RULE'(; st') times j℄

( MINVNOW(st')

^ hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii INV(st, st')),

0ton-orr-ax :

INV(st, st') ^ MINV(st) ^ MINVNOW(st') ^ : �nal'(st')

^ ndt(st, st') = 0n ^ exe0n(st, st') = k

! [if : �nal'(st') then RULE'(; st')℄

9 j. [loop if : �nal'(st') ^ : MINVNOW(st') then RULE'(;st') times j℄

( INV(st, st') ^ MINVNOW(st')

^ (: �nal'(st') ^ ndt(st, st') = 0n ! exe0n(st, st') < k)),

mto0-orr-ax :

INV(st, st') ^ MINV(st) ^ MINVNOW(st') ^ : �nal(st)

^ ndt(st, st') = m0 ^ exem0(st, st') = k

! hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (: �nal(st) ^ ndt(st, st') = m0 ! exem0(st, st') < k)),

kprop-def :

KPROP(st, st')

$ 8 i. [loop if : �nal(st) then RULE(; st) times i℄ MINV(st)

^ (9 j. [loop if : �nal'(st') ^ : MINVNOW(st')

then RULE'(; st') times j℄

( MINVNOW(st')

^ (9 i. hloop if : �nal(st) then RULE(; st) times ii

INV(st, st')))),

minv'-def : (MINVNOW(st') ! (9 st. INV(st, st') ^ MINV(st))) ! MINV'(st')

end enrih

C.4.2 Proved Theorems

�nite-0ton

INV(st, st'), MINV(st), ndt(st, st') = 0n, : �nal'(st'), MINVNOW(st')

` [if : �nal'(st') then RULE

0

(; st')℄

9 j. [loop if : �nal'(st') then RULE

0

(; st') times j℄

(INV(st, st') ^ MINVNOW(st') ^ (�nal'(st') _ ndt(st, st') 6= 0n))

� used lemmas : 0ton-orr-ax
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�nite-mto0

8 i. [loop if : �nal(st) then RULE(; st) times i℄ MINV(st),

INV(st, st'), ndt(st, st') = m0, : �nal(st), MINVNOW(st')

` hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

( INV(st, st')

^ (�nal(st) _ ndt(st, st') 6= m0)

^ (8 i. [loop if : �nal(st) then RULE(; st) times i℄ MINV(st)))

� used lemmas : mto0-orr-ax

� used by : orr-step, orretness

orr-step

KPROP(st, st') ` [if : �nal'(st') then RULE

0

(; st')℄ KPROP(st, st')

� used lemmas : �nite-mto0, �n1-ax, 0ton-orr-ax, mton-orr-ax, kprop-def

� used by : orr-j-steps, orretness

kprop-minv'

KPROP(st, st') ` MINV'(st')

� used lemmas : minv'-def, kprop-def

� used by : newinvariane

in-kprop

IN(st, st') ` KPROP(st, st')

� used lemmas : init-ax, minv-ax, kprop-def

� used by : orr-j-steps, orretness, newinvariane

orr-j-steps

KPROP(st, st')

` [loop if : �nal'(st') then RULE

0

(; st') times j℄ KPROP(st, st')

� used lemmas : in-kprop, kprop-def, orr-step

� used by : newinvariane

orretness

IN(st, st')

` [while : �nal'(st') do RULE

0

(; st')℄

hwhile : �nal(st) do RULE(; st)i OUT(st, st')

� used lemmas : �nboth-ax, �n2-ax, �nite-mto0, kprop-def, orr-step, in-kprop

newinvariane (Theorem 9 from Set. 6.5)

9 st. IN(st, st')

` 8 j. [loop if : �nal'(st') then RULE

0

(; st') times j℄ MINV'(st')

� used lemmas : kprop-minv', in-kprop, orr-j-steps
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Appendix D

De�nition of Admitted Code

Sequenes (Chains)

D.1 De�nition of Linear Chains

L-CHAIN#(o, db

5

; var ol)

begin

var instr = ode(o, db

5

)

in if is try me(instr)

then L-CHAIN-TRY-ME#(o, db

5

; ol)

else if is lause(instr)

then ol := [o℄

else if instr = nil'

then ol := [℄

else abort

end;

L-CHAIN-TRY-ME#(o, db

5

; var ol)

begin

var instr = ode(o, db

5

),

follow = ode(o +1, db

5

)

in if instr = try me else(N)

then if is lause(follow)

then begin

L-CHAIN-RETRY-ME#(N, db

5

; ol);

ol := [o +1 j ol℄

end

else abort

else abort

end;

L-CHAIN-RETRY-ME#(o, db

5

; var ol)

begin

var instr = ode(o, db

5

),

follow = ode(o +1, db

5

)

in if instr = retry me else(N)

then if is lause(follow)

then begin

L-CHAIN-RETRY-ME#(where(instr), db

5

; ol);

ol := [o +1 j ol℄

159
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end

else abort

else if is trust me(instr)

then if is lause(follow)

then ol := [o +1℄

else abort

else abort

end

D.2 De�nition of Nested Chains with Swithing

S-ANY-CHAIN#(trm, o, db

7

; var ol)

begin

var instr = ode(o, db

7

)

in if is retry me(instr) _ is trust me(instr)

then S-CHAIN-RETRY-ME#(trm, o, db

7

; ol)

else if is retry(instr) _ is trust(instr)

then S-CHAIN-RETRY#(trm, o, db

7

; ol)

else S-CHAIN-REC#(trm, o, db

7

; ol)

end;

S-CHAIN#(trm, o, db

7

; var ol)

begin

if o = failode then ol := [℄

else S-CHAIN-REC#(trm, o, db

7

; ol)

end;

S-CHAIN-REC#(trm, o, db

7

; var ol)

begin

var instr = ode(o, db

7

)

in if is lause(instr) then ol := [o℄ else

if instr = try(N) then var ol

2

= [℄

in begin

S-CHAIN-REC#(trm, N, db

7

; ol);

S-CHAIN-RETRY#(trm, o +1, db

7

; ol

2

);

ol := append(ol, ol

2

)

end

else

if instr = try me else(N) then var ol

2

= [℄

in begin

S-CHAIN-REC#(trm, o +1, db

7

; ol);

S-CHAIN-RETRY-ME#(trm, N, db

7

; ol

2

);

ol := append(ol, ol

2

)

end

else

if : is strut(trm) _ arity(trm) < argindex(instr) then abort else

var xi = arg(trm, argindex(instr))

in if instr = swith on term(argindex, N

s

, N



, N

v

, N

l

)

then

if is strut(xi) then S-CHAIN#(trm, N

s

, db

7

; ol) else

if is onst(xi) then S-CHAIN#(trm, N



, db

7

; ol) else

if is var(xi) then S-CHAIN#(trm, N

v

, db

7

; ol) else

if is list(xi) then S-CHAIN#(trm, N

l

, db

7

; ol) else abort

else if instr = swith on onstant(argindex, tabsize, table)
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then if is onst(xi)

then S-CHAIN#(trm, hash(table, tabsize, onstsym(xi),

db

7

), db

7

; ol)

else abort

else if instr = swith on struture(argindex, tabsize, table)

then if is strut(xi)

then S-CHAIN#(trm, hashs(table, tabsize, funt(xi),

arity(xi), db

7

), db

7

; ol)

else abort

else abort

end;

S-CHAIN-RETRY-ME#(trm, o, db

7

; var ol)

begin

var instr = ode(o, db

7

)

in if instr = retry me else(N)

then var ol

2

= [℄

in begin

S-CHAIN-REC#(trm, o +1, db

7

; ol);

S-CHAIN-RETRY-ME#(trm, N, db

7

; ol

2

);

ol := append(ol,ol

2

)

end

else if is trust me(instr)

then S-CHAIN-REC#(trm, o +1, db

7

; ol)

else abort

end;

S-CHAIN-RETRY#(trm, o, db

7

; var ol)

begin

var instr = ode(o, db

7

)

in if instr = retry(N)

then var ol

2

= [℄

in begin

S-CHAIN-REC#(trm, N, db

7

; ol);

S-CHAIN-RETRY#(trm, o +1, db

7

; ol

2

);

ol := append(ol, ol

2

)

end

else if instr = trust(N)

then S-CHAIN-REC#(trm, N, db

7

; ol)

else abort

end;

S-CHAIN-RET#(trm, o, db

7

; var ol)

begin

var instr = ode(o, db

7

)

in if is retry me(instr) _ is trust me(instr)

then S-CHAIN-RETRY-ME#(trm, o, db

7

; ol)

else if is retry(instr) _ is trust(instr)

then S-CHAIN-RETRY#(trm, o, db

7

; ol)

else abort

end;

S-APP-CHAINS-RET#(deglseq', p, stl, db

7

; var ol)

begin

if stl = [℄ then ol := [℄
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else var ol

2

= [℄

in begin

S-CHAIN-RET#(ag[ar(stl), p[ar(stl)℄, db

7

; ol);

S-APP-CHAINS-RET#(deglseq', p, dr(stl), db

7

; ol

2

);

ol := append(ol, ol

2

)

end

end

D.3 De�nition of the Length of Nested Chains with Swith-

ing

C-S-ANY-CHAIN#(trm, o, db

7

; var m)

begin

var instr = ode(o, db

7

) in

if is retry me(instr) _ is trust me(instr) then

C-S-CHAIN-RETRY-ME#(trm, o, db

7

; m)

else if is retry(instr) _ is trust(instr) then

C-S-CHAIN-RETRY#(trm, o, db

7

; m)

else C-S-CHAIN-REC#(trm, o, db

7

; m)

end;

C-S-CHAIN#(trm, o, db

7

; var m)

begin

if o = failode then m := 0

else C-S-CHAIN-REC#(trm, o, db

7

; m)

end;

C-S-CHAIN-REC#(trm, o, db

7

; var m)

begin

var instr = ode(o, db

7

)

in if is lause(instr) then m := 0 else

if instr = try(N) then C-S-CHAIN-TRY#(trm, N, db

7

; m); else

if instr = try me(N) then C-S-CHAIN-TRY-ME#(trm, N, db

7

; m); else

if : is strut(trm) _ arity(trm) < argindex(instr) then abort

else var xi = arg(trm, argindex(instr)) in

if instr = swith on term(argindex, N

s

, N



, N

v

, N

l

) then

if is strut(xi) then

if N

s

= failode then m := 0

else begin C-S-CHAIN-REC#(trm, N

s

, db

7

; m); m := m +1 end

else if is onst(xi) then

if N



= failode then m := 0

else begin C-S-CHAIN-REC#(trm, N



, db

7

; m); m := m +1 end

else if is var(xi) then

if N

v

= failode then m := 0

else begin C-S-CHAIN-REC#(trm, N

v

, db

7

; m); m := m +1 end

else if is list(xi) then

if N

l

= failode then m := 0

else begin C-S-CHAIN-REC#(trm, N

l

, db

7

; m); m := m +1 end

else abort

else if instr = swith on onstant(argindex, tabsize, table) then

if is onst(xi) then

var preg = hash(table, tabsize, onstsym(xi)) in
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if preg = failode then m := 0

else begin

C-S-CHAIN-REC#(trm, preg, db

7

; m);

m := m +1

end

else abort

else if instr = swith on struture(argindex, tabsize, table) then

if is strut(xi) then

var preg = hashs(table, tabsize, funt(xi)) in

if preg = failode then m := 0

else begin

C-S-CHAIN-REC#(trm, preg, arity(xi), db

7

; m);

m := m +1

end

else abort

else abort

end;

C-S-CHAIN-TRY-ME#(trm, o, db

7

; var m)

begin

var instr = ode(o, db

7

) in

if instr = try me(N) then

var m

0

= 0 in begin

C-S-CHAIN-REC#(trm, o +1, db

7

; m);

C-S-CHAIN-RETRY-ME#(trm, N, db

7

; m

0

);

m := (m + m

0

) +1

end

else abort

end;

C-S-CHAIN-TRY#(trm, o, db

7

; var m)

begin

var instr = ode(o, db

7

) in

if instr = try(N) then

var m

0

= 0 in begin

C-S-CHAIN-REC#(trm, N, db

7

; m);

C-S-CHAIN-RETRY#(trm, o +1, db

7

; m

0

);

m := (m + m

0

) +1

end

else abort

end;

C-S-CHAIN-RETRY-ME#(trm, o, db

7

; var m)

begin

var instr = ode(o, db

7

) in

if instr = retry me(N) then

var m

0

= 0 in begin

C-S-CHAIN-REC#(trm, o +1, db

7

; m);

C-S-CHAIN-RETRY-ME#(trm, N, db

7

; m

0

);

m := (m + m

0

) +1

end

else if trust me(instr) then

begin C-S-CHAIN-REC#(trm, o +1, db

7

; m); m := m +1 end

else abort

end;
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C-S-CHAIN-RETRY#(trm, o, db

7

; var m)

begin

var instr = ode(o, db

7

) in

if instr = retry(N) then

var m

0

= 0 in begin

C-S-CHAIN-REC#(trm, N, db

7

; m);

C-S-CHAIN-RETRY#(trm, o +1, db

7

; m

0

);

m := (m + m

0

) +1

end

else if instr = trust(N) then

begin C-S-CHAIN-REC#(trm, N, db

7

; m); m := m +1 end

else abort

end;

C-S-CHAIN-RET#(trm, o, db

7

; var m)

begin

var instr = ode(o, db

7

) in

if is retry me(instr) _ is trust me(instr) then

C-S-CHAIN-RETRY-ME#(trm, o, db

7

; m)

else if is retry(instr) _ is trust(instr) then

C-S-CHAIN-RETRY#(trm, o, db

7

; m)

else abort

end;

C-S-APP-CHAINS-RET#(deglseq', p, stl, db

7

; var m)

begin

if stl = [℄ then m := 0

else var m

0

= 0 in begin

C-S-CHAIN-RET#(ag[ar(stl), p[ar(stl)℄, db

7

; m);

C-S-APP-CHAINS-RET#(deglseq', p, dr(stl), db

7

; m

0

);

m := (m + m

0

) +1

end

end



Appendix E

Spei�ations of the Prolog-WAM

Case Study

E.1 Spei�ations from the Library

elem =

spei�ation

sorts elem;

variables a, b,  : elem;

end spei�ation

elemI =

rename elem by morphism

elem ! elem', a ! a', b ! b',  ! '

end rename

elemII =

rename elem by morphism

elem ! elem", a ! a", b ! b",  ! "

end rename

pair =

generi data spei�ation

parameter elemI + elemII

pair = h . , . i (fst : elem', snd : elem");

variables p, p

0

, p

1

: pair;

end generi data spei�ation

Generated axioms:

pair freely generated by h . , . i;

fst(ha', a"i) = a',

snd(ha', a"i) = a",

ha', a"i = ha'

0

, a"

0

i $ a' = a'

0

^ a" = a"

0

,

hfst(p), snd(p)i = p

165
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vartermpair =

atualize pair with parameter node, term by morphism

elem' ! nodesort, elem" ! term, pair ! pairvarterm

end atualize

varvarpair =

atualize pair with parameter node by morphism

elem' ! nodesort, elem" ! nodesort, pair ! varvarpair

end atualize

termtermpair =

atualize pair with term by morphism

elem' ! term, elem" ! term, pair ! termtermpair

end atualize

degoal =

atualize pair with goalsort, parameter node by morphism

elem' ! goalsort, elem" ! nodesort, pair ! degoal

end atualize

lause =

atualize pair with term, goal by morphism

elem' ! term, elem" ! goalsort,

pair ! lausesort, p ! l

end atualize

ident =

atualize pair with parameter atom, nat by morphism

elem' ! atomsort, elem" ! nat, pair ! ident

end atualize

prodeftable =

atualize pair with ident, parameter ode by morphism

elem' ! ident, elem" ! odesort,

pair ! prodeftable, p ! pdt

end atualize

omp3result =

atualize pair

with parameter program2, prodeftable

by morphism

elem' ! program", elem" ! prodeftable, pair ! omp3result

.1 !.db, .2 !.pdtab, p ! o3res

end atualize

Dynfun =

generi spei�ation

parameter sorts dom, odom;

target sorts dynfun;

funtions f : odom ! dynfun;

. [ . ℄ : dynfun � dom ! odom;

. [ .  . ℄ : dynfun � dom � odom ! dynfun;
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variables f : dynfun; x, y : dom; z : odom;

axioms f(z) [x℄ = z,

f [x  z℄ [x℄ = z,

x 6= y ! f [x  z℄ [y℄ = f[y℄

end generi spei�ation

F-no-no =

atualize Dynfun with parameter node by morphism

dom ! nodesort, odom ! nodesort,

Dynfun ! funnodenode, f ! F

end atualize

vi =

atualize Dynfun with nat by morphism

dom ! nat, odom ! nodesort, Dynfun ! vifun, f ! vi

end atualize

F-o-o =

atualize Dynfun with parameter ode by morphism

dom ! odesort, odom ! odesort,

Dynfun ! funodeode, f ! C

end atualize

ll =

atualize Dynfun with parameter node, parameter ode by morphism

dom ! nodesort, odom ! odesort,

Dynfun ! llfun, f ! ll

end atualize

deglseq =

atualize Dynfun with degoallist by morphism

dom ! nodesort, odom ! degoallist,

Dynfun ! degoalseqfun, f ! deglseq

end atualize

ands =

atualize Dynfun with nodelist by morphism

dom ! nodesort, odom ! nodelist,

Dynfun ! andsfun, f ! ands

end atualize

p =

atualize Dynfun with parameter ode by morphism

dom ! nodesort, odom ! odesort,

Dynfun ! pfun, f ! p

end atualize

g =

atualize Dynfun with goal by morphism

dom ! nodesort, odom ! goal, Dynfun ! gfun, f ! g

end atualize

p =

atualize Dynfun with parameter node, parameter ode by morphism
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dom ! nodesort, odom ! odesort,

Dynfun ! pfun, f ! p

end atualize

sub =

atualize Dynfun with substitution by morphism

dom ! nodesort, odom ! substitution,

Dynfun ! subfun, f ! sub

end atualize

goalfun =

atualize Dynfun with parameter node, goal by morphism

dom ! nodesort, odom ! goalsort,

Dynfun ! goalfun, f ! goal

end atualize

H-no-nol =

atualize Dynfun with nodelist by morphism

dom ! nodesort, odom ! nodelist,

Dynfun ! funnodenodelist, f ! H

end atualize

nat-basi1 =

data spei�ation

nat = 0 j . +1 (. �1 : nat);

variables i, j, k, m : nat;

order prediates . < . : nat � nat;

end data spei�ation

Generated axioms:

nat freely generated by 0, +1;

i +1 �1 = n,

i +1 = j +1 $ i = j,

0 6= i +1,

i = 0 _ i = i �1 +1,

: i < i,

i < j ^ j < k ! i < k,

: i < 0,

i < j +1 $ i = j _ i < j

nat =

enrih nat-basi1 with

funtions . + . : nat � nat ! nat;

. � . : nat � nat ! nat prio 8 left;

prediates

. � . : nat � nat;

. > . : nat � nat;

. � . : nat � nat;
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axioms

i + 0 = i,

i + j +1 = (i + j)+1,

i � 0 = i,

i � j +1 = (i � j)�1,

i � j $ : j < i,

i > j $ j < i,

i � j $ : i < j

end enrih

set =

generi spei�ation

parameter elem using nat target

sorts set;

onstants ; : set;

funtions

f . g : elem ! set;

. [ . : set � set ! set prio 9 left;

prediates

. 2 . : elem � set;

. � . : set � set;

variables s, s' : set;

axioms

set generated by ;, f . g, . [ .

: a 2 ;,

a 2 fbg $ a = b,

a 2 s [ s' $ a 2 s _ a 2 s',

s = s' $ (8 a. a 2 s $ a 2 s'),

s � s' $ (8 a. a 2 s ! a 2 s')

end generi spei�ation

nodeset =

atualize set with parameter node by morphism

elem ! nodesort, set ! nodeset

end atualize

list-data =

generi data spei�ation

parameter elem using nat

list = [℄

j [ . j . ℄ (ar : elem, dr : list)

;

variables x, y, z : list;

size funtions # : list ! nat ;

order prediates . � . : list � list;

end generi data spei�ation

Generated axioms:
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list freely generated by [℄, [ . j . ℄

ar([a j x℄) = a,

dr([a j x℄) = x,

[a j x℄ = [b j y℄ $ a = b ^ x = y,

[℄ 6= [a j x℄,

x = [℄ _ x = [ar(x) j dr(x)℄,

#([℄) = 0,

#([a j x℄) = #(x)+1,

: x � x,

x � y ^ y � z ! x � z,

: x � [℄,

y � [a j x℄ $ y = x _ y � x

list =

enrih list-data with

funtions

append : list � list ! list;

rmdup : list ! list;

pos : list � elem ! nat;

rev : list ! list;

prediates

. 2 . : elem � list;

. subli . : list � list;

. subse . : list � list;

. � . : list � list;

dups : list;

nodups : list;

axioms

append([℄, x) = x,

append([a j x℄, y) = [a j append(x, y)℄,

a 2 x $ (9 y, z. x = append(y, [a j z℄),

[℄ subli x,

: [a j x℄ subli [℄,

[a j x℄ subli [b j y℄ $ a = b ^ x subli y _ a 6= b ^ [a j x℄ subli y,

[℄ subse x,

[a j x℄ subse y $ a 2 y ^ x subse y,

nodups([℄),

nodups([a j x℄) $ : a 2 x ^ nodups(x),

dups(x) $ : nodups(x),

rmdup([℄) = [℄,

a 2 x ! rmdup([a j x℄) = rmdup(x),

: a 2 x ! rmdup([a j x℄) = [a j rmdup(x)℄,

x � y $ #(rmdup(x)) < #(rmdup(y)) ^ x subse y

pos([a j x℄, a) = 0,

a 6= b ! pos([a j x℄, b) = pos(x, b) +1,

rev([℄) = [℄,

rev([a j x℄) = append(rev(x), [a℄)

end enrih

substitution =
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atualize list with pairvarterm by morphism

elem ! pairvarterm, list ! substitution, x ! su

end atualize

goal =

atualize list with term by morphism

elem ! term, list ! goal, x ! go

end atualize

natlist =

atualize list with nat by morphism

elem ! nat, list ! natlist, x ! nl

end atualize

varlist =

atualize list with parameter node by morphism

elem ! nodesort, list ! varlist, x ! vl

end atualize

nodelist =

atualize list with parameter node by morphism

elem ! nodesort, list ! nodelist, x ! stak

end atualize

odelist =

atualize list with parameter ode by morphism

elem ! odelist, list ! odesort, x ! ol

end atualize

degoallist =

atualize list with degoal by morphism

elem ! degoal, list ! degoallist, x ! dgl

end atualize

lauselist =

atualize list with lause by morphism

elem ! lause, list ! lauselist, x ! li

renaming =

atualize list with varvarpair by morphism

elem ! varvarpair, list ! renaming

end atualize

E.2 Spei�ations for ASM1 (PrologTree)

enrnodeset =

enrih nodeset with

funtions new : nodeset ! elem;

axioms
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: new(s) 2 s, new([℄) = ?

end enrih

mode =

data spei�ation

modesort = selet j all;

variables mode : modesort;

end data spei�ation

Generated axioms:

modesort freely generated by selet, all;

selet 6= all,

mode = selet _ mode = all

stopmode =

data spei�ation

stopmodesort = suess j failure j run;

variables stop : stopmodesort;

end data spei�ation

Generated axioms:

stopmodesort freely generated by suess, failure, run;

failure 6= run, suess 6= run, suess 6= failure,

stop = suess _ stop = failure _ stop = run

node =

spei�ation

sorts nodesort;

onstants ? : nodesort;

variables n : nodesort;

end spei�ation

atom =

spei�ation

sorts atomsort;

onstants utsym , failsym, truesym : atomsort;

variables at : atomsort;

axioms

utsym 6= failsym,

failsym 6= truesym,

truesym 6= utsym

end spei�ation
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term =

data spei�ation

using nat, parameter atom, parameter ordnode

term = strut (funt : atomsort, args : termlist) with is strut

j mkonst (onstsym : atomsort) with is onst

j mkvar (varsym : nodesort) with is var

j mklist (lar : term, ldr : term) with is list

;

termlist = the one (and only : term)

j tons (tar : term, tdr : termlist)

;

variables trm, trm

0

: term; trmli, trmli

0

: termlist;

size funtions tlen : termlist ! nat ;

order prediates . <

tl

. : termlist � termlist;

end data spei�ation

Generated axioms:

term, termlist freely generated by strut, mkonst, mkvar,

mklist, the one, tons;

.

.

.

subst =

enrih degoallist, ident, enrterm with

funtions

. ^

d

. : degoallist � substitution ! degoallist;

. ^

sg

. : substitution � goalsort ! goalsort;

. ^

t

. : substitution � term ! term;

. ^

tl

. : substitution � termlist ! termlist;

axioms

su ^

sg

[℄ = [℄,

su ^

sg

[trm j go℄ = [su ^

t

trm j su ^

sg

go℄,

su ^

d

[℄ = [℄,

su ^

d

[hgo, sti j dgl℄ = [hsu ^

sg

go, sti j su ^

d

dgl℄,

su ^

t

strut(at, trmli) = strut(at, su ^

tl

trmli),

su ^

t

mklist(trm, trm

0

) = mklist(su ^

t

trm, su ^

t

trm

0

),

[℄ ^

t

mkvar(va) = mkvar(va),

[hva, trmi j su℄ ^

t

mkvar(va) = trm,

va 6= va

0

! [hva

0

, trmi j su℄ ^

t

mkvar(va) = su ^

t

mkvar(va),

su ^

t

mkonst(at) = mkonst(at),

su ^

tl

the one(trm) = the one(su ^

t

trm),

su ^

tl

tons(trm, trmli) = tons(su ^

t

trm, su ^

tl

trmli),

[℄ o su = su,

[hva

0

, trmi j su℄ o su

0

= [hva

0

, su

0

^

t

trmi j su o su

0

℄

end enrih

substornil =

data spei�ation

using subst
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substornil = oksubst(the subst : substitution) j nil;

variables subst : substornil;

end data spei�ation

Generated axioms:

substornil freely generated by nil, oksubst;

the subst(oksubst(su)) = su,

oksubst(su) = oksubst(su

0

) $ su = su

0

,

oksubst(su) 6= nil,

subst = oksubst(the subst(subst)) _ subst = nil

enrterm =

enrih term, substornil with

onstants ! : term; true : term; fail : term;

funtions

. Æ . : substitution � substornil ! substitution;

. o . : substitution � substitution ! substitution;

arity : term ! nat;

arg : term � nat ! term;

. �

tl

. : termlist � termlist ! termlist;

prediates is user de�ned : term;

variables su, su

1

, su

2

: substitution;

axioms

the one(trm) �

tl

trmli = tons(trm, trmli),

tons(trm, trmli) �

tl

trmli

1

= tons(trm, trmli �

tl

trmli

1

),

! = mkonst(utsym),

true = mkonst(truesym),

fail = mkonst(failsym),

is user de�ned(trm) $ trm 6= true ^ trm 6= fail ^ trm 6= !,

arity(trm) = tlen(args(trm))+1,

args(trm) = the one(trm

1

) ! arg(trm, 0 +1) = trm

1

,

args(trm) = tons(trm

1

, trmli)

! arg(trm, 0 +1) = trm

1

^ (0 < n ! arg(trm, n +1) = arg(strut(funt(trm), trmli), n)),

su Æ oksubst(su

0

) = su o su

0

end enrih

unify =

enrih substornil with

funtions unify : term � term ! substornil;

end enrih

ode =

spei�ation

sorts odesort;

onstants failode : odesort;

funtions

. +1 : odesort ! odesort;

. �1 : odesort ! odesort;

variables o : odesort;
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axioms

o +1 �1 = o,

o �1 +1 = o

end spei�ation

program =

spei�ation

sorts program;

variables db : program;

end spei�ation

union0 = mode + stopmode + unify + lauselist + rename + enrnodeset +

sub + ll + subst + F-no-no + deglseq + enrterm

lausefun =

enrih lause, parameter ode, parameter program with

funtions lause : odesort � program ! lausesort;

end enrih

prodef =

enrih term, odelist, parameter program with

funtions prodef : term � program ! odelist ;

end enrih

PrologTree =

enrih union0 + ands + prodef + lausefun with

funtions

maplause : odelist � program ! lauselist;

map : llfun � nodelist ! odelist;

prediates

every : funnodenode � nodelist � nodesort;

disjoint : nodelist � nodelist;

disjointls : nodelist � nodeset;

variables father: funnodenode;

axioms

maplause([℄, db) = [℄,

maplause([o j ol℄, db) = [lause(o, db) j maplause(ol, db)℄,

every(father, [℄, n),

every(father, [n

1

j stak℄, n)

$ father[n

1

℄ = n ^ every(father, stak, n),

map(ll, [℄) = [℄,

map(ll, [n j stak℄) = [ll[n℄ j map(ll, stak)℄,

disjoint(stak, stak

0

) $ (8 n. n 2 stak ! : n 2 stak

0

),

disjointls(stak, s) $ (8 n. n 2 stak ! : n 2 s)

end enrih
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E.3 Spei�ations for ASM2 (TreetoStak)

prodef2 =

enrih term, parameter program, parameter ode with

funtions prodef

2

: term � program ! odesort;

end enrih

lauseornull =

data spei�ation

using lause

lauseornull = mklau(the lau : lausesort) j null;

variables ln : lauseornull;

end data spei�ation

Generated axioms:

lauseornull freely generated by null, mklau;

the lau(mklau(l)) = l,

mklau(l) = mklau(l

0

) $ l = l

0

,

mklau(l) 6= null,

ln = mklau(the lau(ln)) _ ln = null

lauseIfun =

enrih ode, lauseornull, program with

funtions lause' : odesort � program ! lauseornull;

axioms

lause'(failode, db) = null

end enrih

PrologStak =

enrih union0 + prodef2 + odelist + nodelist + lauseIfun with

funtions

. from . : nodelist � nodesort ! nodelist prio 7;

dr : nodelist ! nodelist;

prediates

. utptsin . : degoallist � nodelist;

. tpelem . : degoallist � nodeset;

. � . : nodelist � nodeset;

axioms

maplause'([℄, db) = [℄,

maplause'([o j ol℄, db) = [the lau(lause'(o, db)) j maplause'(ol, db)℄,

[℄ utptsin stak,

[hgo, ni j dgl℄ utptsin stak

$ (n = ? _ n 2 stak) ^ dgl utptsin (stak from n),

[℄ from n = [℄,

[n j stak℄ from n = [n j stak℄,

n

1

6= n ! [n

1

j stak℄ from n = stak from n,
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[℄ tpelem s,

[hgo, ni j dgl℄ tpelem s $ n 2 s ^ dgl tpelem s,

stak � s $ (8 n. n 2 stak ! n 2 s),

dr([℄) = [℄,

dr([n j stak℄) = stak

end enrih

CompAssum1 =

enrih PrologTree, PrologStak with

funtions ompile

12

: program ! program;

variables lit : term; db : program;

axioms

hCLLS#(prodef

2

(lit, ompile

12

(db)), ompile

12

(db); ol)i

maplause(prodef(lit, db), db) = maplause'(ol, ompile

12

(db))

end enrih

Tree+Stak+F =

enrih F-no-no, PrologTree, PrologStak with

funtions

F

d

: funnodenode � degoallist ! degoallist;

F

s

: funnodenode � nodeset ! nodeset;

prediates

andsdisjoint : funnodenode � andsfun � nodelist;

. injon . : funnodenode � nodelist;

noands : funnodenode � andsfun � nodelist;

axioms

F

d

(F, [℄) = [℄,

F

d

(F, [hgo, ni j dgl℄) = [hgo, F[n℄i j F

d

(F, dgl)℄,

F

s

(F, ;) = ;,

F

s

(F, s [ fng) = F

s

(F, s) [ fF[n℄g,

andsdisjoint(F, ands, stak)

$ 8 n, n

1

. n 2 stak ^ n

1

2 stak ^ n 6= n

1

! disjoint(ands[F[n

1

℄℄, ands[F[n℄℄),

F injon stak

$ (8 n, n

1

. n 2 stak ^ n

1

2 [? j stak℄ ^ n 6= n

1

! F[n℄ 6= F[n

1

℄),

noands(F, ands, stak)

$ 8 n, n

1

. n 2 stak ^ n

1

2 [? j stak℄ ! : F[n

1

℄ 2 ands[F[n℄℄

end enrih

TreetoStak = CompAssum1 + Tree+Stak+F
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E.4 Spei�ations for ASM3 (ReuseChoiep)

rmode =

data spei�ation

rmodesort = try j retry j enter j all;

variables rmode : rmodesort;

end data spei�ation

Generated axioms:

rmodesort freely generated by try, retry, enter, all;

enter 6= all, retry 6= all, retry 6= enter,

try 6= all, try 6= enter, try 6= retry,

rmode = try _ rmode = retry _ rmode = enter _ rmode = all

PrologStak+F =

enrih F-no-no, Tree+Stak+F with

funtions F

l

: funnodenode � nodelist ! nodelist;

axioms

F

l

(F, [℄) = [℄,

F

l

(F, [n j stak℄) = [F[n℄ j F

l

(F, stak)℄

end enrih

ReuseChoiep = PrologStak+F + rmode

E.5 Spei�ations for ASM4 (DetermDetet)

DetermDetet = PrologStak+F + rmode

E.6 Spei�ations for ASM5 (CompPredStrut)

instr+lau =

data spei�ation

using nat, lause, varlist, parameter ode

instr-or-l = try me else (where : odesort) with is try me

j retry me else (where : odesort) with is retry me

j trust me with is trust me

j try (what : odesort) with is try

j retry (what : odesort) with is retry

j trust (what : odesort) with is trust

j swith on term (argindex : nat,

vlabel : odesort, label : odesort,

llabel : odesort, slabel : odesort)

with is sw term

j swith on onstant (argindex : nat,
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tabsize : nat, table : odesort)

with is sw onst

j swith on struture (argindex : nat,

tabsize : nat, table : odesort)

with is sw strut

j mkl (the l : lausesort) with is lause

j mkall (alllit : term) with is all

j mkunify (unifylit : term) with is unify

j alloate

j dealloate

j proeed

j null

j ode of start

;

variables io : instr-or-l;

end data spei�ation

Generated axioms:

instr-or-l freely generated by trust me, alloate, dealloate, proeed, null',

ode of start, try me else, retry me else, try', retry', trust, swith on term,

swith on onstant, swith on struture, mkl, mkall, mkunify;

.

.

.

prodef3 =

enrih term, parameter program2, parameter ode with

funtions prodef

3

: term � program" ! odesort;

end enrih

odefun =

enrih parameter ode, parameter program2, instr+lau with

onstants start : odesort;

funtions ode : odesort � program" ! instr-or-l;

axioms

o = start $ ode(o, db

2

) = ode of start,

ode(failode, db

2

) = nil'

end enrih

CompAssum2 =

enrih CompAssum1, instr+lau, odefun, prodef3 with

funtions

ompile

45

: program ! program";

mapode : odelist � program" ! lauselist;

variables lit : term; db

2

: program; db

5

: program";
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axioms

mapode([℄, db

5

) = [℄,

mapode([o j ol℄, db

5

) = [the l(ode(o, db

5

)) j mapode(ol, db

5

)℄,

[CLLS#(prodef

2

(lit, db

2

), db

2

; ol

1

)℄

hCHAIN-FL#(prodef

3

(lit, ompile

45

(db

2

)), ompile

45

(db

2

); ol

2

)i

mapode(ol

2

, ompile

45

(db

2

)) = maplause'(ol

1

, db

2

)

end enrih

CompPredStrut = CompAssum2 + PrologStak+F + rmode + p

E.7 Spei�ations for ASM6 (CompPredStrut2)

hash =

enrih nat, parameter atom,

parameter ode, parameter program2 with

funtions

hash : odesort � nat � atomsort � program" ! odesort;

hashs : odesort � nat � atomsort � nat � program"! odesort;

end enrih

CompAssum3a =

enrih CompAssum2, p, hash with

funtions ompile

56

: program" ! program";

axioms

[CHAIN-FL#(prodef

2

(lit, db

5

), db

5

; ol

1

)℄

hCHAIN#(prodef

3

(lit, ompile

56

(db

5

)), ompile

56

(db

5

); ol

2

)i

mapode(ol

1

, db

5

) = mapode(ol

2

, ompile

56

(db

5

))

end enrih

CompPredStrut2 = CompAssum3a + PrologStak+H + p

E.8 Spei�ations for ASM7 (Swithing)

idfun =

enrih enrterm, ident with

funtions id : term ! ident;

axioms

is strut(trm) ! id(trm) = mkident(funt(trm), arity(trm)),

is onst(trm) ! id(trm) = mkident(onstsym(trm), 0)

end enrih
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CompAssum3 =

enrih omp3result, CompAssum2, p, hash, idfun with

funtions ompile

57

: program" ! omp3result;

axioms

[CHAIN-FL#(prodef

2

(lit, db

5

), db

5

; ol

1

)℄

hS-CHAIN#(lit, ompile

57

(db

5

).pdt[id(lit)℄, ompile

57

(db

5

).db; ol

2

)i

mapode(ol

1

, db

5

) = mapode(ol

2

, ompile

57

(db

5

).db)

end enrih

PrologStak+H =

enrih PrologStak, H-no-nol with

funtions

H

d

: funnodenodelist � degoallist ! degoallist;

H

l

: funnodenodelist � nodelist ! nodelist;

ar : nodelist ! nodesort;

axioms

H

d

(h, [℄) = [℄,

H

d

(h, [hgo, ni j dgl℄ = [hgo, ar(h[n℄)i j H

d

(h, dgl)℄,

H

l

(h, [℄) = [℄,

H

l

(h, [n j stak℄) = append(h[n℄, H

l

(h, stak)),

ar([℄) = ?,

ar([n j stak℄) = n

end enrih

Swithing =

enrih CompAssum3, PrologStak+H, p with

funtions . �

sl

. : nodelist � nodelist ! nodelist;

prediates

eqh : funnodenodelist � funnodenodelist � degoallist � degoallist;

. <=

s

. : nodelist � nodelist;

axioms

eqh(h, h

0

, [℄, [℄),

: eqh(h, h

0

, [hgo, ni j dgl℄, [℄),

: eqh(h, h

0

, [℄, [hgo

0

, n

0

i j dgl

0

℄),

eqh(h, h

0

, [hgo, ni j dgl℄, [hgo

0

, n

0

i j dgl

0

℄)

$ go = go

0

^ (n = ? � n

0

2 h

0

[?℄ _ n

0

= ?

; n

0

2 h

0

[n℄ ^ : n

0

2 dr(h[n℄))

^ eqh(h, h

0

, dgl, dgl

0

),

stak <=

s

stak

0

$ stak �

s

stak

0

_ stak = stak

0

,

stak <=

s

stak

0

! (stak

0

�

sl

stak) �

sl

stak = stak

0

end enrih
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E.9 Spei�ations for ASM8 (ShareCont)

ordnode =

enrih parameter node with

funtions

. +1 : nodesort ! nodesort;

. �1 : nodesort ! nodesort;

max : nodesort � nodesort ! nodesort;

prediates . � . : nodesort � nodesort;

axioms

n +1 �1 = n,

n �1 +1 = n,

n � n +1,

: n � n,

n

1

� n

2

_ n

1

= n

2

_ n

2

� n

1

,

n � n

0

^ n

0

� n

1

! n � n

1

,

n

1

� n

2

! max(n

1

, n

2

) = n

2

,

: n

1

� n

2

! max(n

1

, n

2

) = n

1

end enrih

rensubst =

enrih substitution, renaming with

funtions

. ^

r

. : renaming � term ! term;

. ^

rl

. : renaming � termlist ! termlist;

axioms

rn ^

r

strut(at, trmli) = strut(at, rn ^

rl

trmli),

rn ^

r

mklist(trm, trm

0

) = mklist(rn ^

r

trm, rn ^

r

trm

0

),

[℄ ^

r

mkvar(va) = mkvar(va),

[hva

1

,va

2

i j rn℄ ^

r

mkvar(va

1

) = mkvar(va

2

),

va 6= va

1

! [hva

1

,va

2

i j rn℄ ^

r

mkvar(va) = rn ^

r

mkvar(va),

rn ^

r

mkonst(at) = mkonst(at),

rn ^

rl

the one(trm) = the one(rn ^

r

trm),

rn ^

rl

tons(trm, trmli) = tons(rn ^

r

trm, rn ^

rl

trmli)

end enrih

less-vi =

enrih subst, vi, varlist, atrenterm, unify, rename with

funtions

rentl : termlist � nat ! termlist;

rentl' : termlist � nodesort � vifun ! termlist;

rent' : term � nodesort � vifun ! term;

reng' : goalsort � nodesort � vifun ! goalsort;

renv : nodesort � nat ! nodesort;

prediates
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. <

svi

. : substitution � nat;

. <

tvi

. : term � nat;

. <

tlvi

. : termlist � nat;

. <

gvi

. : goalsort � nat;

. <

dvi

. : degoallist � nat;

. <

vi

. : lausesort � nat;

. <

vvi

. : nodesort � nat;

. <

vlvi

. : varlist � nat;

variables lit : term;

axioms

su <

svi

i ^ su

0

<

svi

i ! su o su

0

<

svi

i,

su <

svi

i ! su ^

t

rent(trm, i) = rent(trm, i),

trm <

tvi

i ^ trm

1

<

tvi

i ^ unify(trm, trm

1

) 6= nil

! the subst(unify(trm, trm

1

)) <

svi

i,

trm <

tvi

i ^ i < j ! trm <

tvi

j,

trm <

tvi

0 ! rent(trm, i) <

tvi

i +1,

[℄ <

gvi

i,

[trm j go℄ <

gvi

i $ trm <

tvi

i ^ go <

gvi

i,

[℄ <

dvi

i,

[hgo, tpti j dgl℄ <

dvi

i $ go <

gvi

i ^ dgl <

dvi

i,

hlit, goi <

vi

i $ lit <

tvi

i ^ go <

gvi

i,

[℄ <

svi

i,

[hva

0

, trmi j su℄ <

svi

i

$ mkvar(va

0

) <

tvi

i ^ trm <

tvi

i ^ su <

svi

i,

rent(mkvar(va), i) = mkvar(renv(va, i)),

va <

vvi

0 ! : renv(va, i) <

vvi

i,

rent(mkonst(at), i) = mkonst(at),

rent(strut(at, trmli), i) = strut(at, rentl(trmli, i)),

rent(mklist(trm, trm

0

), i) = mklist(rent(trm, i), rent(trm

0

, i)),

rentl(the one(trm), i) = the one(rent(trm, i)),

rentl(tons(trm, trmli), i) = tons(rent(trm, i), rentl(trmli, i)),

the one(trm) <

tlvi

i $ trm <

tvi

i,

tons(trm, trmli) <

tlvi

i $ trm <

tvi

i ^ trmli <

tlvi

i,

strut(at, trmli) <

tvi

i $ trmli <

tlvi

i,

mkonst(at) <

tvi

i,

mklist(trm, trm

0

) <

tvi

i $ trm <

tvi

i ^ trm

0

<

tvi

i,

mkvar(va) <

tvi

i $ va <

vvi

i,

[℄ <

vlvi

i,

[va j vl℄ <

vlvi

i $ va <

vvi

i ^ vl <

vlvi

i,

va <

vvi

0 ^ va

0

<

vvi

0

! (renv(va, i) = renv(va

0

, j) $ va = va

0

^ i = j),

rentl'(trmli, tpt, vi)

= (tpt 6= ? � rentl(trmli, vi[tpt℄) ; trmli),

rent'(trm, tpt, vi)

= (tpt 6= ? � rent(trm, vi[tpt℄) ; trm),

reng'(go, tpt, vi)

= (tpt 6= ? � reng(go, vi[tpt℄) ; go)

end enrih

RenAssum =

enrih CompAssum3, less-vi with
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prediates

. <

lvi

. : lauselist, nat;

nonvargoal : goalsort;

axioms

maplause(prodef(lit,db),db) <

lvi

0,

[℄ <

lvi

i,

[l j li℄ <

lvi

i $ l <

vi

i ^ nonvargoal(bdy(l)) ^ li <

lvi

i,

nonvargoal([℄),

nonvargoal([trm j go℄)

$ : is var(trm) ^ : is list(trm) ^ trm <

tvi

0 ^ nonvargoal(go)

end enrih

rename =

enrih nat, lause with

funtions

ren : lausesort � nat ! lausesort;

rent : term � nat ! term;

reng : goalsort � nat ! goalsort;

axioms

ren(mklause(trm, go), i) = mklause(rent(trm, i), reng(go, i)),

reng([℄, i) = [℄,

reng([trm j go℄, i) = [rent(trm, i) j reng(go, i)℄

end enrih

ShareCont =

enrih parameter ordnode, g, PrologStak+F,

goalfun, RenAssum with

funtions

deglseqof : funnodenode � gfun � funnodenode � nodelist

! degoallist;

prediates

ordered : nodelist;

axioms

deglseqof(utpt, g, e, [℄) = [℄,

deglseqof(utpt, g, e, [n j stak℄)

= [hg[n℄, utpt[e[n℄℄i j deglseqof(utpt, g, e, stak)℄,

ordered([℄),

ordered([n℄) $ ? � n,

ordered([n j n

0

j stak℄) $ n

0

� n ^ ordered([n

0

j stak℄)

end enrih
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E.10 Spei�ations for ASM9 (CompClause)

omp4result =

data spei�ation

using prodeftable, parameter program2

omp4result = mko4res (. .p : odesort, . .pdtab : prodeftable,

. .db : program");

variables o4res : omp4result;

end data spei�ation

Generated axioms:

omp4result freely generated by mko4res;

mko4res(o, prodeftab, db

7

).p = o,

mko4res(o, prodeftab, db

7

).pdtab = prodeftab,

mko4res(o, prodeftab, db

7

).db = db

7

,

mko4res(o, prodeftab, db

7

) = mko4res(o

0

, prodeftab

0

, db'

7

)

$ o = o

0

^ prodeftab = prodeftab

0

^ db

7

= db'

7

,

mko4res(o4res.p, o4res.pdtab, o4res.db) = o4res

CompAssum4 =

enrih CompAssum3, lauselist, omp4result, F-o-o, RenAssum with

funtions ompile

89

: omp3result � goalsort ! omp4result ;

prediates

eqpdt : prodeftable � prodeftable � funodeode;

eqode : program" � program" � funodeode;

variables pdtab : prodeftable; query, goalreg : goalsort;

axioms

hdb

7

, prodef

7

i = ompile

57

(ompile

45

(ompile

12

(db)))

! 9 C. eqpdt(prodef

7

, ompile

89

(hdb

7

, prodef

7

i, goalreg).pdtab, C)

^ eqode(db

7

, ompile

89

(hdb

7

, prodef

7

i, goalreg).db, C),

eqpdt(pdtab

0

, pdtab, C) $ 8 lit. pdtab[id(lit)℄ = C[pdtab

0

[id(lit)℄℄,

eqode(db

7

, db

9

, C) ^ ode(o,db

7

) = mkl(l

0

)

! hUNLOAD#(C[o℄, db

9

; l)i l = l

0

eqode(db

7

, db

9

, C) ^ ode(o,db

7

) = try me else(N)

! ode(C[o℄, db

9

) = try me else(C[N℄)

eqode(db

7

, db

9

, C) ^ ode(o,db

7

) = retry me else(N)

! ode(C[o℄, db

9

) = retry me else(C[N℄)

eqode(db

7

, db

9

, C) ^ ode(o,db

7

) = trust me

! ode(C[o℄, db

9

) = trust me

eqode(db

7

, db

9

, C) ^ ode(o,db

7

) = try(N)

! ode(C[o℄, db

9

) = try(C[N℄)

eqode(db

7

, db

9

, C) ^ ode(o,db

7

) = retry(N)

! ode(C[o℄, db

9

) = retry(C[N℄)

eqode(db

7

, db

9

, C) ^ ode(o,db

7

) = trust(N)

! ode(C[o℄, db

9

) = trust(C[N℄)

eqode(db

7

, db

9

, C) ^ ode(o,db

7

) = failode
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! ode(C[o℄, db

9

) = failode

eqode(db

7

, db

9

, C)

^ ode(o,db

7

) = swith on term(argindex, N

s

, N



, N

v

, N

l

))

! ode(C[o℄, db

9

) = swith on term(argindex, C[N

s

℄, C[N



℄, C[N

v

℄, C[N

l

℄)

eqode(db

7

, db

9

, C)

^ ode(o,db

7

) = swith on onstant(argindex, tabsize, o)

! 9 o

0

. ode(C[o℄, db

9

) = swith on onstant(argindex, tabsize, o

0

)

^ 8 at. C[hash(o, tabsize, at, db

7

)℄

= hash(o

0

, tabsize, at, db

9

))

ompile

57

(ompile

45

(ompile

12

(db))) = hdb

7

, prodef

7

i

^ nonvargoal(goalreg)

! hQUERY#(ompile

4

(db

9

, goalreg).p, ompile

4

(db

9

, goalreg).db; go)i

go = goalreg

end enrih

CompClause = CompAssum4 + ShareCont + p

E.11 Spei�ations for ASM9a (Renaming)

termvarli =

enrih varlist, enrterm with

funtions

tvarli : term ! varlist;

tlvarli : termlist ! varlist;

axioms

tvarli(mkonst(at)) = [℄,

tvarli(mkvar(va)) = [va j [℄℄,

tvarli(mklist(trm, trm

1

)) = rmdup(append(tvarli(trm), tvarli(trm

1

))),

tvarli(strut(at, trmli)) = tlvarli(trmli),

tlvarli(the one(trm)) = tvarli(trm),

tlvarli(tons(trm, trmli)) = rmdup(append(tvarli(trm), tlvarli(trmli))

end enrih

ren =

enrih natlist, termvarli, less-vi, nodelist with

funtions

dom : renaming ! varlist;

odom : renaming ! varlist;

. ^

rv

. : renaming � nodesort ! nodesort prio 9;

vilist : vifun � nodelist ! natlist;

prediates . <

nl

. : natlist � nat;

axioms
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dom([℄) = [℄,

dom([hva,va

1

i j rn℄) = [va j dom(rn)℄,

odom([℄) = [℄,

odom([hva,va

1

i j rn℄) = [va

1

j odom(rn)℄,

[℄ ^

rv

va = va,

[hva

1

j va

2

i, rn℄ ^

rv

va

1

= va

2

,

va 6= va

1

! [hva

1

,va

2

i j rn℄ ^

rv

va = rn ^

rv

va,

vilist(vi, [℄) = [℄,

vilist(vi, [st j stl℄) = [vi[st℄ j vilist(vi, stl)℄,

[℄ <

nl

n,

[m j nl℄ <

nl

n $ m < n ^ nl <

nl

n

end enrih

goalvarli =

enrih Renstak, lause with

funtions

gvarli : goalsort ! varlist;

lvarli : lausesort ! varlist;

axioms

gvarli([℄) = [℄,

gvarli([trm j go℄) = rmdup(append(tvarli(trm), gvarli(go))),

lvarli(htrm,goi) = rmdup(append(tvarli(trm), gvarli(go)))

end enrih

enrunify =

enrih subst, unify, termtermpair, termvarli, Renstak with

funtions

unifylist : termlist � termlist ! substornil;

#

t

. : term ! nat;

#

tl

. : termlist ! nat;

suv : substitution ! varlist;

sudom : substitution ! varlist;

suod : substitution ! varlist;

. ^

rs

. : renaming � substitution ! substitution prio 9;

. ^

rsf

. : renaming � substornil ! substornil prio 9;

remove : substitution � nat ! substitution;

prediates

(: Terminierungsordnung f�ur unify :)

. � . : termtermpair � termtermpair;

ours : nodesort � term;

ourslist : nodesort � termlist;

disj : varlist � varlist;

variables trmli, trmli

1

: termlist; ttp, ttp

1

: termtermpair;

axioms

remove([℄, i) = [℄,

remove([hva,trmi j su℄, i)

= (va <

vvi

(i +1) ^ va <

vvi

i � remove(su, n); [hva,trm i j remove(su,n)℄),

tlen(trmli) = tlen(trmli

1

)
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! unify(strut(at, trmli), strut(at, trmli

1

)) = unifylist(trmli, trmli

1

),

at 6= at

1

! unify(strut(at, trmli), strut(at

1

, trmli

1

)) = nil,

tlen(trmli) 6= tlen(trmli

1

)

! unify(strut(at, trmli), strut(at

1

, trmli

1

)) = nil,

unify(mklist(trm, trm

0

), mklist(trm

1

, trm

2

))

= unifylist(tons(trm, the one(trm

0

)), tons(trm

1

, the one(trm

2

))),

at 6= at

1

! unify(mkonst(at), mkonst(at

1

)) = nil,

unify(mkonst(at), mkonst(at)) = oksubst([℄),

unify(mkvar(va), trm)

= (ours(va, trm) � nil; oksubst([hva,trmi j [℄℄)),

: is var(trm)

! unify(trm, mkvar(va))

= (ours(va, trm) � nil; oksubst([hva,trmi j [℄℄)),

: is var(trm) ^ : is onst(trm) ! unify(mkonst(at), trm) = nil,

: is var(trm) ^ : is list(trm) ! unify(mklist(trm

0

, trm

1

), trm) = nil,

: is var(trm) ^ : is strut(trm) ! unify(strut(at, trmli), trm) = nil,

: is var(trm) ^ : is onst(trm) ! unify(trm, mkonst(at)) = nil,

: is var(trm) ^ : is list(trm) ! unify(trm, mklist(trm

0

, trm

1

)) = nil,

: is var(trm) ^ : is strut(trm) ! unify(trm, strut(at, trmli)) = nil,

ours(va, strut(at, trmli)) $ ourslist(va, trmli),

ours(va, mklist(trm, trm

1

)) $ ours(va, trm) _ ours(va, trm

1

),

ours(va, mkvar(va

0

)) $ va = va

0

,

: ours(va, mkonst(at)),

ourslist(va, the one(trm)) $ ours(va, trm),

ourslist(va, tons(trm, trmli)) $ ours(va, trm) _ ourslist(va, trmli),

unifylist(the one(trm), the one(trm

1

)) = unify(trm, trm

1

),

unify(trm, trm

1

) = nil

! unifylist(tons(trm, trmli), tons(trm

1

, trmli

1

)) = nil,

unify(trm, trm

1

) = oksubst(su)

^ unifylist(su ^

tl

trmli, su ^

tl

trmli

1

) = oksubst(su

1

)

! unifylist(tons(trm, trmli), tons(trm

1

, trmli

1

)) = oksubst(su o su

1

),

unify(trm, trm

1

) = oksubst(su)

^ unifylist(su ^

tl

trmli, su ^

tl

trmli

1

) = nil

! unifylist(tons(trm, trmli), tons(trm

1

, trmli

1

)) = nil,

ttp � ttp

1

$ #(rmdup(tvarli(mklist(ttp.t1, ttp.t2))))

< #(rmdup(tvarli(mklist(ttp

1

.t1, ttp

1

.t2))))

_ #(rmdup(tvarli(mklist(ttp.t1, ttp.t2))))

= #(rmdup(tvarli(mklist(ttp

1

.t1, ttp

1

.t2))))

^ #

t

(ttp.t1) < #

t

(ttp

1

.t1),

#

t

(mkonst(at)) = 1,

#

t

(mkvar(va)) = 1,

#

t

(strut(at, trmli)) = #

tl

(trmli)+1,

#

t

(mklist(trm, trm

0

)) = #

t

(trm) + #

t

(trm

0

)+1,

#

tl

(the one(trm)) = #

t

(trm),

#

tl

(tons(trm, trmli)) = #

t

(trm) + #

tl

(trmli),

suv([℄) = [℄,

suv([hva,trmi j su℄) = [va j append(tvarli(trm), suv(su))℄,

sudom([℄) = [℄,

sudom([hva,trmi j su℄) = [va j sudom(su)℄,

suod([℄) = [℄,

suod([hva,trmi j su℄) = append(tvarli(trm), suod(su)),

disj(vl, vl

0

) $ (8 va. va 2 vl ! : va 2 vl

0

),

rn ^

rs

[℄ = [℄,
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rn ^

rs

[hva,trmi j su℄ = [hrn ^

rv

va,rn ^

r

trmi j rn ^

rs

su℄,

rn ^

rsf

nil = nil,

rn ^

rsf

oksubst(su) = oksubst(rn ^

rs

su)

end enrih

Renaming = goalvarli + enrunify + CompClause
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