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Summary

The 
ontext of this work is the appli
ation of formal methods in software engineering. It is based

on the spe
i�
ation language of abstra
t state ma
hines (ASMs) de�ned in [Gur95℄.

In this work we develop tool support for ASMs, for their spe
i�
ation as well as for the

veri�
ation of re�nements. We want to make possible the development of 
orre
t software from a

�rst abstra
t requirements spe
i�
ation to an implementation that is got by stepwise re�nement.

Our work 
onsists of four parts.

� Embedding of ASM spe
i�
ations in a logi
: We de�ne a 1:1 mapping of ASM spe
i�
ations

into Dynami
 Logi
 (DL). This makes formal veri�
ation of ASM properties possible.

� Modularization of 
orre
tness proofs for re�nements: Two re�nement notions known from

literature are formalized in DL. Generi
 modularization theorems for proving the 
orre
tness

of re�nements are developed, that generalize the theorems known from literature.

� Implementation of the results in the KIV system: The KIV system is a spe
i�
ation and

veri�
ation tool, that supports algebrai
 spe
i�
ations and DL. A number of extensions and

improvements were ne
essary to support ASMs and ASM re�nements.

� Demonstration of the pra
ti
al appli
ability of the developed 
on
epts in a large 
ase study:

The 
hosen 
ase study from 
ompiler 
onstru
tion treats the translation of Prolog programs

into 
ode of the Warren Abstra
t Ma
hine (WAM). An informal presentation, that trans-

forms a Prolog interpreter in 12 systemati
 re�nements to the WAM was given in [BR95℄.

The formal spe
i�
ation and veri�
ation of 8 of the 12 re�nements was a major part of

this work. A 
omparison with two other 
ase studies on the same topi
 showed, that the

ne
essary veri�
ation e�ort was mu
h smaller due to developed theory for ASM re�nement.
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Chapter 1

Introdu
tion

The 
ontext of this work is the appli
ation of formal methods in Software Engineering. The goal

is the development of 
orre
t software for safety 
riti
al appli
ations.

Appli
ation of formal methods presupposes a suitable spe
i�
ation language whi
h abstra
tly

and unambigously des
ribes the requirements for the software to be developed. This makes them

a

essible to a mathemati
al analysis. Validation by theorem proving e.g. by verifying safety

properties be
omes possible already in the early phases of software development, where no imple-

mentation is available. Systemati
 transformation of abstra
t requirements to implemented 
ode

then requires a suitable notion of re�nement.

Proofs for the validation of spe
i�
ations and for the 
orre
tness of re�nements are possible in

various levels of detail, from informal proof sket
hes to fully formal proofs in a ma
hine-supported


al
ulus.

The goal of this work is to make the spe
i�
ation language of Abstra
t State Ma
hines (in the

following abbreviated as ASMs, [Gur95℄) available in the spe
i�
ation and veri�
ation tool KIV.

The 
hoi
e of the spe
i�
ation language is based on the fa
t, that there are two main families:

The �rst are algebrai
 spe
i�
ation languages [Wir90℄, [Gau92℄, [CoF97℄ and their generalization

to pro
ess algebras [Mil89℄, [Bae90℄. These view a software system as a generalized data stru
-

ture, with suitable fun
tions and relations for modi�
ation. Mathemati
ally a software system is

modeled as an Algebra, a spe
i�
ation des
ribes a 
lass of algebras as possible implementations. A

spe
ial 
ase of algebrai
 spe
i�
ations are model based spe
i�
ations, in whi
h a software system

is built up from standard data types from set theory (like tuples, fun
tions, power sets).

The se
ond family of spe
i�
ation languages are state based languages, whi
h model a system

by a set of states, by possible state transitions and thereby resulting tra
es. Examples e.g. Z

[Spi88℄, VDM [Jon90℄ and RAISE [JC94℄. Abstra
t State Ma
hines also belong to this family.

To des
ribe the 
omponents of a state state based spe
i�
ation languages are usually based on

algebrai
 ones. In a sense state based spe
i�
ation languages 
an even be viewed as a spe
ial


ase of algebrai
 ones, sin
e state transitions 
an be modeled as fun
tions or relations on states.

Therefore many veri�
ation tools support algebrai
 spe
i�
ation only. The disadvantage of this

approa
h is, that the basi
 
on
epts of state based systems have to be modeled in an algebrai


setting �rst.

Traditionally the KIV system supported the algebrai
 approa
h to software development. KIV

allows to de�ne stru
tured algebrai
 spe
i�
ations and o�ers appropriate proof support [RSSB98℄.

An elaborated re�nement 
on
ept is available, whi
h allows the stru
tured, modular re�nement

of spe
i�
ations by software modules [Rei95℄.

This work is a 
ontribution to the realization of support for state based spe
i�
ations in KIV.

The 
hoi
e of ASMs as the spe
i�
ation language was mainly due to the fa
t, that ASMs o�er a


on
eptually simple, but very 
exible approa
h to the spe
i�
ation of state based systems, that

allows a wide variety of 
ase studies. ASMs were already used su

essfully in a number of 
ase

studies, that dealt with su
h di�erent topi
s as the semanti
s of programming languages (e.g.

Prolog [BR94℄, C [GH93℄ and Java [BS98b℄), 
ommuni
ation proto
ols (e.g. Bakery algorithm

3



4 CHAPTER 1. INTRODUCTION

[BGR95℄), 
ompiler 
orre
tness (e.g. O

am [BD96℄, Prolog [BR95℄ and Java [BS98a℄, [S
h99℄),

distributed systems (e.g. PVM [BG95℄) and hardware ar
hite
tures (e.g. DLX [BM96℄). An

overview over a large number of appli
ations 
an be found in [BH98℄ and also in the internet

under the URLs http://www.ee
s.umi
h.edu/gasm/ and http://www.uni-paderborn.de/
s/asm/.

In most 
ase studies the 
orre
tness proofs were done as mathemati
al proofs, they were not

supported by a veri�
ation system.

To support the formalism of ASMs des
ribed in Chap. 2, we �rst had to de�ne an embedding in

the spe
i�
ation language of KIV. Here, 
ompared to purely algebrai
 spe
i�
ation systems, KIV

has the advantage, that abstra
t programs over algebrai
 data types (whi
h have state transitions

as semanti
s) are already available. Therefore a �rst result of this work is the de�nition of a 1:1

translation of ASM rules to abstra
t programs. Chapter 3 des
ribes the spe
i�
ation language and

the logi
 used in KIV, and the extensions, whi
h were done in the 
ontext of this work. Chapter

4 de�nes the translation.

Besides formal spe
i�
ation of ASM properties the embedding in KIV also o�ers the possibility

to do formal, ma
hine supported proofs in Dynami
 Logi
, the program logi
 KIV is based on. To


omplete the systemati
 support for ASMs, a re�nement notion is de�ned in Chap. 5. It is shown,

that 
orre
tness of re�nements is expressible in DL.

The kernel of this work is the development of proof support for the modular veri�
ation of

the 
orre
tness of re�nements in Chap. 6. A general modularization theorem is developed �rst

in its simplest form for the re�nement of deterministi
 ASMs. Then several generalizations for

indeterministi
 ASMs and for iterated re�nement are given. We also give referen
es to other


orre
tness notions for re�nements. The main result is a generalization of the known theory

of re�nements: Instead of using abstra
tion fun
tions we use arbitrary relations, and instead of


ommuting diagrams with one rule of ea
h ASM, we 
onsider m:n diagrams with an arbitrary

numbers m and n.

As an appli
ation of the theory, Chap. 7 shows that 
orre
tness of peephole optimizations 
an

be derived as a 
orollary of the modularization theorem.

The theory de�ned in Chap. 6 has not been derived by theoreti
al 
onsiderations, how to gen-

eralize existing re�nement notions. We believe, that there already exist too many 
on
epts for the

veri�
ation of software, that have ni
e theoreti
al properties, but no useful pra
ti
al appli
ations.

Instead the 
exibility of the modularization theorem and the quality of the proof support should

be evaluated by its usefulness in pra
ti
al appli
ations. Therefore the theory was developed based

on a realisti
, large 
ase study.

The 
hosen 
ase study is the translation of Prolog to assembler 
ode of the Warren Abstra
t

Ma
hine (WAM). There was already a mathemati
al analysis available [BR95℄, on whi
h we 
ould

base our work. The 
ase study showed a variety of problems in working with ASM re�nements,

espe
ially in the appli
ation domain of 
ompiler 
orre
tness. With 9 man months of work the 
ase

study belongs to the big and 
hallenging works in this area. In the se
ond part of this work we

give a detailed presentation of the 
ase study, in whi
h we veri�ed 8 of the 12 re�nements given

by [BR95℄.

The main result of the 
ase study was the demonstration of the produ
tiveness of the theory.

This be
omes 
lear when one 
onsiders two other 
ase studies with other systems on the same

topi
, whi
h needed substantially more e�ort to a
hieve smaller veri�
ation results. Currently the

theory is also used in [S
h99℄ in the veri�
ation of a Java 
ompiler.

The 
ase study also shows what is gained by a ma
hine 
he
ked proof in 
omparison to a

mathemati
al analysis. We think, that the analysis in [BR95℄ is already a very 
areful and detailed

one, and does not 
ontain any 
on
eptual errors. Nevertheless we were able to un
over numerous

of small problems, that would have lead to an in
orre
t 
ompiler. Therefore this work shows

that it is worthwhile to invest the high 
ost of a formal, systemati
 veri�
ation if the appli
ation

requires absolutely error free software (in this 
ase an error free 
ompiler).



Chapter 2

Abstra
t State Ma
hines

Abstra
t State Ma
hines (short ASMs) are a spe
i�
ation language to des
ribe software and hard-

ware systems. The basi
 idea of ASMs is the stepwise transformation of a state by exe
uting

rules. Therefore they belong to the family of spe
i�
ation languages, whose semanti
s is a state

based system. State based systems are de�ned in the �rst se
tion. Se
t. 2.2 then gives the basi


de�nition of sequential ASMs. A variant of this de�nition, whi
h is used in the Prolog-WAM


ase study is explained in Se
t. 2.2. Finally, Se
t. 2.4 de�nes distributed ASMs, whi
h are used

to model distributed systems. A 
omprehensive presentation of ASMs, whi
h gives additional


on
epts besides the basi
 ones de�ned here, 
an be found in [Gur95℄.

2.1 State Based Systems

The basi
 idea of a state based system is the transformation of states by rules. More formally a

state based system ZS = (S; I; �) 
onsists of a set S of possible states, a set I � S of initial states

and a transition relation � : S � S. (st,st

0

) 2 � means, that st

0

is a possible su

essor state of st.

A set F of �nal states 
an be �xed as the set of those states whi
h have no su

essor state. State

based systems are often 
hosen as a natural formalization of software systems, sin
e the typi
al


omputation of a 
omputer with a von-Neumann-ar
hite
ture involves the state of a memory, that

is modi�ed by a pro
essor (whi
h de�nes the state transition relation). Other examples are �nite

automata (the set of states the is the set of all strings over an alphabet), Rewrite systems (where

a state is a term), 
ommuni
ation proto
ols and interpreters of programming languages. Even

mathemati
al 
on
epts like the derivation notion of logi
al 
al
uli 
an be des
ribed as state based

systems.

An spe
ial 
ase of state based systems that is often used are sequential (or deterministi
)

systems, in whi
h every state st has at most one su

essor state st

0

with (st,st

0

) 2 �. For this 
ase

a state transition fun
tion � 
an be de�ned on all non-�nal states (S nF ) by �(st) = st

0

i� (st,st

0

)

2 �.

For a state based system the set of possible tra
es 
an be de�ned as the set of all �nite (st

0

,

. . . , st

n

) and in�nite sequen
es (st

0

, st

1

, . . . ) of states with (st

i

,st

i+1

) 2 � for every i. A tra
e is

required to start in an initial state st

0

2 I and, when �nite to end in a �nal state st

n

2 F .

2.2 Sequential ASMs

ASMs ([Gur95℄) are a formalism to de�ne state based systems. The set of all possible states is

given as the 
lass of all possible algebras Alg(SIG) over a (one-sorted) signature SIG. To allow the

de�nition of boolean expressions and partiality, it is assumed that the signature always 
ontains

the usual boolean operations (tt, �, ^, _, et
.) as well as a 
onstant undef.

The set of initial algebras I is usually given by a set-theoreti
 des
ription of algebras or an

algebrai
 spe
i�
ation. The transition relation is given by a rule R. For sequential ASMs of this

5
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se
tion rules are de�ned indu
tively as follows:

1. f(t) := t

0

is a rule, for every n-ary fun
tion symbol f (n � 0), and ground terms t

and t

0

. The rule modi�es the value of f at the arguments t to be t

0

.

2. If R

1

, . . . , R

n

are rules, then so is their parallel exe
ution (R

1

, . . . , R

n

)

3. If R

1

, . . . , R

n

are rules, and "

1

, . . . "

n

, are boolean expressions, then so is the


onditional rule

(if "

1

then R

1

else if "

2

then R

2

else . . . if "

n

then R

n

)

The semanti
s of a rule R is a transition fun
tion, that given an algebraA delivers a new algebra

B. B is de�ned with the help of a �nite set of updates Upd(R;A) = f(f

1

,a

1

,b

1

), . . . (f

n

,a

n

,b

n

)g,

whi
h is are 
omputed from the rule R and the algebra A.

Ea
h update (f; a; b) 
onsists of an n-ary fun
tion symbol f , and values a; b 2 A

n+1

over the


arrier (the universe) A of the algebraA. Corresponding to the stru
ture of rules the set of updates

is de�ned by

1. Upd(f(t) := t

0

;A) = f(f; t

A

; t

0

A

)g

2. Upd((R

1

; : : : ; R

n

);A) = Upd(R

1

) [ : : : [ Upd(R

n

)

3. Upd(if "

1

then R

1

else . . .else if "

n

then R

n

) = Upd(R

k

),

where k is minimal with A j= "

k

. If for all k = 1;. . . ; n A 6j= "

k

holds, then Upd(if . . . ) = ;.

The set Upd(R;A) is in
onsistent, if it 
ontains several elements (f; a; b) with the same fun
tion

f and ve
tor a. In this 
ase the transition fun
tion is identity, i.e. �(A) = A. If Upd(R;A) = ;,

then A is a �nal state

1

. If Upd(R;A) is 
onsistent and nonempty, B has the same 
arrier as A

and the semanti
s of its fun
tions is de�ned by

f

B

(a) =

�

b if (f,a,b) 2 Upd(R,A)

f

A

(a) otherwise.

For every ASM operations 
an be partitioned into two disjoint sets: A set of dynami
 fun
tions,

whi
h o

ur on the left hand side of an assignment in a rule, and the 
omplementary set of stati


fun
tions, whi
h are never 
hanged during the run of the ASM.

Stati
 fun
tions are used, to model operations on data stru
tures (like + on natural numbers,

or append on lists). Of 
ourse it is required, that the boolean operations are stati
.

0-ary dynami
 operations (for obvious reasons, we do not 
all them `
onstants') are used

as \program variables". Dynami
 fun
tions with arguments are often used to model memory.

Appli
ation of a dynami
 fun
tion at a results in the 
ontent f(a) of memory f at address (or

lo
ation) a. Modi�
ation of the fun
tion f at address a means to overwrite the memory lo
ation.

A dynami
 fun
tion with �nite domain G 
an also be viewed as an abstra
t form of an array with

indexes in G.

Sorts are modeled in ASMs as unary predi
ates. To have an addition operation whi
h adds

a new element to the 
arrier of a sort, often the following extension is used: It is assumed, that

there is a prede�ned sort reserve (i.e. a unary predi
ate) that has an in�nite 
arrier (\reserve

elements") in every initial state. The new rule 
onstru
t

import x in R endimport

then allows to remove an element from reserve, to bind it to the variable x and to exe
ute rule R

with this binding. Addition of an element to a sort S then 
an be a
hieved with

import x in S(x) := tt; R endimport

1

[Gur95℄ does not de�ne �nal states for sequential ASMs. We add the de�nition here, sin
e we need �nal states

for the de�nition of ASM re�nements.
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This is abbreviated as

extend S with x in R endextend

We do not give a pre
ise de�nition of this extension, sin
e it has some pitfalls and 
auses a lot

of te
hni
al overhead (rules 
an now use the lo
al variable R, nested imports must return new

elements sequentially). A pre
ise de�nition 
an be found in [Gur95℄.

2.3 Sequential ASMs in the WAM

The ASMs of the Prolog-WAM 
ase study in [BR95℄ use a variant of the de�nition of sequential

ASMs. In this variant rules must have the simpler form

if " then (f

1

(t

1

) := t

0

1

, f

2

(t

2

) := t

0

2

, . . . , f

n

(t

n

) := t

0

n

)

Instead of one rule every ASM now has a set of su
h simpler rules. A state transition 
onsists

in the indeterministi
 
hoi
e of a rule, whi
h has a test (often 
alled guard) " that is true, and

the exe
ution of its updates. If all rule tests mutually ex
lude ea
h other, then su
h a rule set is

obviously equivalent to a nested 
onditional rule of the previous se
tion (with an arbitrary order

of the rules). For the Prolog-WAM 
ase study the mutual ex
lusion of rule tests was intended

(for a 
ase, where the intention was not met, see Se
t. 12.2), so we do not need to 
onsider the

problem of indeterminism here.

2.4 Distributed ASMs

The basi
 idea of a distributed ASM also is the modi�
ation of a state by rules

2

. But instead

of a single rule a distributed ASM has a �nite set A of (a
tive) agents, where ea
h of the agents

has one rule of a �nite set of rules R atta
hed (the atta
hed rule is the program, that the agent


urrently runs). One state transition then 
onsists in the sele
tion of one agent a 2 A, and the

exe
ution of the rule atta
hed to it. Rules in distributed, indeterministi
 ASMs 
an 
hange the

set of the a
tive agents as well as the rule atta
hed to ea
h agent.

To formally de�ne these 
on
epts a distributed ASM 
ontains a set N of rule names, i.e. stati



onstants �, whi
h denote rules. For a rule name �, R

�

is the 
orresponding rule. The signature

also 
ontains a (dynami
) fun
tion Rule, whi
h maps agents to rule names. The set of a
tive

agents is given impli
itly as the set of elements, for whi
h Rule(a) 2 N holds.

The set of possible states of a distributed ASM is restri
ted to su
h algebras, in whi
h rule

names denote di�erent 
onstants, and in whi
h the set of agents is �nite.

Finally, 
ompared to the de�nition of rules for sequential ASMs, there is one extension: all

rules may use the symbol Self for the a
tually 
hosen agent. If a rule R is exe
uted by an agent

a, then in the 
omputation of Upd(R;A) the symbol Self is interpreted as a. In this way rules


an be parameterized with the agent exe
uting them. If an agent e.g. exe
utes the assignment

Rule(Self) := undef

then it terminates its 
omputation. A distributed ASM rea
hes a �nal state when the set of

agents be
omes empty.

2

we assume the semanti
s de�ned as that of `Sequential Runs'. [Gur95℄ gives other possible de�nitions.
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Chapter 3

Dynami
 Logi
 and Algebrai


Spe
i�
ations

3.1 Dynami
 Logi


Dynami
 Logi
 (DL) is an extension of �rst-order logi
 by program formulas of the form h�i '

and [�℄ '. Here, � is an imperative program and ' is again a formula of DL. Programs 
ontain

the usual 
onstru
ts like parallel assignment x := t, sequential 
omposition �;�, 
onditional if "

then � else �, while loop while " do � and pro
edure 
all p(t;x) with value Parameters t and

referen
e parameters x. For theoreti
 reasons we also have the program skip, that does nothing,

the never terminating program abort, i-fold iteration loop � times i, random assignment x :=?

and a pro
edure 
all pro
bound i in p(t;x) with a bound i on the re
ursion depth (if the bound

is ex
eeded the 
all does not terminate).

The semanti
s of programs [[�℄℄ is de�ned as a binary relation on states, i.e. valuations in the

usual sense of �rst-order logi
. For a deterministi
 program the relation is a partial fun
tion, i.e.

for every valuation z there is at most one z

0

, su
h that z[[�℄℄z

0

holds. The only indeterministi


program 
onstru
t is random assignment: z[[x :=?℄℄z

0

holds for all z

0

= z[x  a℄, whi
h result

from a modi�
ation of the value of x by an arbitrary a.

The program formula h�i ' holds in a state z, if there is a state z

0

with z[[�℄℄z

0

and ' holds

in z

0

. Dual to this de�nition [�℄ ' holds in a state if in every state z

0

with z[[�℄℄z

0

the formula '

holds.

The program formula h�i ' therefore means, that there is a terminating run of �, su
h

that afterwards ' holds. [�℄ ' holds, if ' holds after every terminating run of �. ' ! [�℄  

resp. ' ! h�i  express partial resp. total 
orre
tness with respe
t to pre
ondition ' and post-


ondition  .

Syntax and semanti
s of DL are pre
isely de�ned in appendix B. Note, that a many-sorted

logi
 is used, that de�nes expressions only and does not distinguish between formulas and terms.

Formulas are identi�ed with expressions of sort bool. This has the advantage, that by adding

lambda expressions the logi
 
an easily be extended to a higher-order logi
. A te
hni
al advantage

is that a general if{then{else Operator (' � t

1

; t

2

) is available (' a formula, t

1

; t

2

two arbitrary

expressions of the same sort). The expression is equal to t

1

, if ' is true, and equal to t

2

otherwise.

3.2 Algebrai
 Spe
i�
ations

We will use algebrai
 spei
i�
ations with the stru
turing operations union (+), enri
hment, renam-

ing, parameterization (generi
 spe
i�
ations), and a
tualization. For freely generated data types

we will use datatype de
larations (see e.g. lists as de�ned in appendix E), whi
h automati
ally

generate apropriate axioms. The syntax should be self-explanatory, the semanti
s of the stru
tur-

9
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ing operations is de�ned as usual. It is e.g. almost identi
al to the de�nition of the semanti
s of

the standard spe
i�
ation language CASL [CoF97℄.

In basi
 spe
i�
ations we will allow as axioms not only �rst-order formulas, but also arbitrary

DL formulas, generation prin
iples and pro
edure de
larations. The semanti
s of basi
 spe
i�
a-

tions is the 
lass of all models of the axioms (loose semanti
s). A pre
ise de�nition is given at the

end of appendix B.

3.3 KIV

KIV is a system for the development of 
orre
t software. The spe
i�
ation language supported by

KIV are stru
tured, algebrai
 �rst-order spe
i�
ations. The software development methodology

used until now was based on stru
tured, modular re�nement of su
h spe
i�
ations by program

modules. Their 
orre
tness 
an be expressed by proof obligations in DL. This methodology is


omprehensively presented in [Rei95℄. The veri�
ation of program modules is dis
ussed in [RSS95℄.

Dedu
tion support in KIV is based on a sequent 
al
ulus for Dynami
 Logi
. An overview of

the support for dedu
tion over algebrai
 spe
i�
ation is given in [RSSB98℄.

3.4 Improvement of Proof Strategies

In the 
ontext of this work the KIV system was improved in a number of ways, parti
ularly in the

dedu
tion 
omponent. These improvements were important for the eÆ
ient veri�
ation of ASM

re�nements, espe
ially in the Prolog-WAM 
ase study (see also the statisti
s in se
tion 19). This

se
tion gives a short listing of the items improved:

� extension of the spe
i�
ation language from stru
tured �rst-order to stru
tured DL spe
i�-


ations with global pro
edure de
larations (instead of lo
al ones). Global pro
edure de
la-

rations make the global de�nition of ASMs possible.

� Removal of the distin
tion between terms and formulas, thereby identifying formulas with

boolean terms. This modi�
ation allows to use boolean dynami
 fun
tions (boolean predi-


ates) like all other dynami
 fun
tions. This modi�
ation also allows (independent of this

work) to easily extend DL with higher-order fun
tions by adding �-terms.

� The proof strategy for programs now 
an handle parallel assignments. These were supported

by the logi
, but not by the prover.

� Addition of an indu
tion prin
iple over the re
ursion depth for pro
edures. This proof

prin
iple simpli�es the previously de�ned proof prin
iple (Indu
tion over environments, see

[Ste85℄) for re
ursively de�ned pro
edures. The new proof prin
iple was a key 
on
ept to

verify properties of the CHAIN# pro
edure in the Prolog-WAM 
ase study (see Se
t. 15.2).

It also simpi�es the de�nition of the semanti
s and the 
ompleteness proof for DL.

� Extension of the ta
ti
s and heuristi
s for while loops, and the loop 
onstru
t, whi
h both

play a 
entral role in the proofs of the proof obligations for the 
orre
tness of ASM re�ne-

ments.

� Extensions of several other heuristi
s, e.g. the heuristi
s for unfolding pro
edures and for

quanti�er instantiation.

� Implementation of an eÆ
ient simpli�
ation strategy (see [RSSB98℄). The 
urrent imple-

mentation 
an deal with the 2000 simpli�
ation rules, whi
h o

urred in the Prolog-WAM


ase study.

� Several other eÆ
ien
y improvements, that be
ame ne
essary simply by the size of the goals

that were to prove. In some 
ase sequents in the Prolog-WAM 
ase study rea
hed the size

of 5 s
reen pages, and proof trees had up to 1000 nodes.



Chapter 4

Formalization of ASMs in DL

This 
hapter starts with the de�nition of a translation of ASMs to algebrai
 spe
i�
ations and

Dynami
 Logi
 (DL). The translation will be essentially one to one, sin
e the basi
 
onstru
ts

of both ASMs and DL are assignments. Sin
e there is no need to formalize the semanti
s of

ASMs, i.e. to en
ode ASM rules as relations over states, DL is a good starting point for the

veri�
ation of ASM properties. The translation 
onsists of three steps: In the �rst step (Se
t. 4.1)

we will show, that algebras, whi
h are used as ASM states 
an be transformed into valuations

over a suitable algebrai
 spe
i�
ation. The se
ond step (Se
t. 4.2) then translates ASM rules to

imperative programs, using the valuations of step one as intermediate states of the program.

Se
tions 4.3 and 4.4 then 
onsider the third step, the translation of sequential resp. distributed

ASMs into an imperative program.

The main proof prin
iple for ASMs is indu
tion over the number of exe
uted rules. Se
tion 4.5

shows, how this proof prin
iple is formalized in DL.

In Se
t. 4.6 we �nally dis
uss alternatives to our approa
h of translating ASMs to DL.

4.1 Translation of Spe
i�
ations

To translate the abstra
t data types of an ASMs to algebrai
 spe
i�
ation, we �rst have to partition

the signature into a stati
 and a dynami
 part. The dynami
 part 
ontains those sorts and

operations, whi
h are modi�ed by assignments of the ASM. The stati
 part typi
ally 
ontains

data types like list, number with suitable operations. For this part no translation is ne
essary; it

simply has to be spe
i�ed algebrai
ally.

The main idea for the translation of the dynami
 part is, to en
ode the semanti
s of dynami


fun
tions as values of (usual �rst-order) variables. Assignments of the ASM thereby be
ome

assignments in DL.

0-ary fun
tions are simply translated to �rst-order variables. The 
ase of a fun
tion with

several arguments 
an be redu
ed to the 
ase with one argument by adding a suitable tuple sort.

For fun
tions with one argument we have to en
ode the (se
ond-order) data type of a fun
tion

into a �rst-order data type, to make values of the datatype available as the values of variables.

This 
an be a

omplished with the datatype shown in Fig. 4.1, whi
h spe
i�es fun
tions from a

domain dom to a 
odomain 
odom:

The data type de�nes a 
onstant fun
tion 
f(z) for every element z of the 
odomain. Appli
a-

tion of this fun
tion to any element x of the domain always gives z, as stated by the �rst axiom.

The (binary) operation \fun
tion appli
ation of f to x" is written (using mix�x-notation) as f [x℄

(note that now f is a variable of sort dynfun, not a fun
tion symbol!). With a suitable 
onstant

z of the 
odomain 
onstant fun
tions are typi
ally used as initial values for dynami
 fun
tions.

An assignment f(x) := t of the ASM formalism is translated to the algebrai
 setting as an

assignment f := f [x  t℄ to the variable f. The new fun
tion value, whi
h is the old modi�ed at x

11
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Dynfun =

generi
 spe
i�
ation

parameter sorts dom, 
odom;

target sorts dynfun;

fun
tions 
f : 
odom ! dynfun;

. [ . ℄ : dynfun � dom ! 
odom;

. [ .  . ℄ : dynfun � dom � 
odom ! dynfun;

variables f : dynfun; x, y : dom; z : 
odom;

axioms 
f(z) [x℄ = z,

f [x  z℄ [x℄ = z,

x 6= y ! f [x  z℄ [y℄ = f[y℄

end generi
 spe
i�
ation

Figure 4.1 Spe
i�
ation of Dynami
 Fun
tions

by t we again use the mix�x-notation f [x  t℄ (instead of \modify(f,x,t)"). The last two axioms

des
ribe its behavior.

It should be noted, that (in 
ontrast to the usual methodology used in KIV when spe
ifying

non-free datatypes) it was not ne
essary to de�ne an extensionality axiom

f = g $ 8 x. f[x℄ = g[x℄

in the spe
i�
ation of dynami
 fun
tions. Su
h an axiom would have allowed to dedu
e equations

between fun
tions like f = f [x  f [x℄℄. Sin
e su
h equations are not part of the ASM formalism,

they are not needed for the translation either. For the same reason we 
ould avoid to de�ne an

indu
tion prin
iple for dynami
 fun
tions (e.g. stru
tural indu
tion over 
f and modify).

It is easy to see, that the set of all fun
tions from dom to 
odom is a model of the spe
i�
ation

given above. For this model we have the 1:1 
orresponden
e between dynami
 fun
tions and

valuations of the 
orresponding variables in the translation.

The basi
 form of the translation gives an algebrai
 spe
i�
ation, in whi
h neither the possi-

bilities to use underspe
i�
ation nor the existen
e of sorts (ex
ept to de�ne tuple and fun
tion

sorts) has been exploited. This 
an be improved by using sorts instead of sort predi
ates wherever

possible in the algebrai
 translation. Underspe
i�
ation 
an be used to avoid the use of an expli
it

error element undef.

An important role in the translation of sorts is played by the predi
ate reserve in the ASMs,

whi
h de�nes an in�nite set of \reserve elements". Of 
ourse it is possible to treat the reserve

predi
ate like all other dynami
 fun
tions, and to translate it into a boolean dynami
 fun
tion.

For the import 
onstru
t ([Gur95℄, Se
t. 3.2) then a fun
tion some(reserve) has to be de�ned,

whi
h given the 
urrent value of reserve delivers an element x with reserve[x℄ = tt. But typi
ally

elements of the reserve 
arrier are used only to dynami
ally add them to the 
arrier of some other

sort (e.g. to in
rease the set of nodes of a sear
h tree or to allo
ate a new address in memory). In

this 
ase, whi
h uses the abbreviation

extend s with x in R endextend,

to move one element from the reserve 
arrier to the one for sort s, there is a mu
h simpler

translation, whi
h avoids to use \reserve elements" 
ompletely. To de�ne it, we will en
ode the


urrent elements of sort s as the valuation of a variable se of sort set (with elements of sort s).

To spe
ify su
h sets usually the spe
i�
ation of �nite sets from Fig. 4.2 
an be used, sin
e in

most 
ases the used 
arrier sets will be �nite (if the initial 
arrier set of an ASM is in�nite, a

suitable 
onstant has to be added). The 
arrier set of s now 
ontains the in�nitely many potential
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elements, that 
an be inserted into the dynami
 set se. Fun
tion new(se) gives a new element

relative to se. The sort update above therefore 
an be expressed in the translation as

var x = new(se) in begin se := se [ fxg; R end

Set =

generi
 spe
i�
ation

parameter S;

target

sorts set;


onstants ; : set;

fun
tions

f . g : s ! set;

. [ . : set � set ! set;

new : set ! s;

predi
ates

. 2 . : s � set;

variables se, se

1

, se

2

: set; x, y :s;

axioms

set generated by ;, f . g, [;

: x 2 ;, x 2 fyg $ x = y,

x 2 se

1

[ se

2

$ x 2 se

1

_ x 2 se

2

,

se

1

= se

2

$ (8 x. x 2 se

1

$ x 2 se

2

),

: new(se) 2 se

end generi
 spe
i�
ation

Figure 4.2 Algebrai
 Spe
i�
ation of Sets

4.2 Translation of ASM Rules

In this se
tion we will de�ne the translation of ASM rules into (
at) DL programs. It is suÆ
ient

to translate 
ondition rule, whose bodies are sequen
es of update instru
tions,

if "

1

then U

1

else

if "

2

then U

2

else

.

.

.

if "

n

then U

n

sin
e iterated appli
ation of the transformation

(R, if " then R

0

else R

00

) ) if " then (R,R

0

) else (R,R

00

)

will bring every rule into this form.

The 
onditional is un
hanged by the translation

1

, the translation of a single assignment f(t) :=

t

0

to f := f [t  t

0

℄ was already dis
ussed in the previous se
tion. For parallel assignments with

several updates of the same fun
tion, we must take the possibility of in
onsistent updates into

a

ount. This is done using additional 
he
ks. As an example, f(x) := t; f(x

0

) := t

0

must be

1

note, that in DL if "

n

then U

n

is an abbreviation for if "

n

then U

n

else skip
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translated to if x = x

0

^ t 6= t

0

then skip else f := f [x  t℄[x

0

 t

0

℄ (in most 
ases the

in
onsisten
y 
he
ks 
an be simpli�ed using the pre
onditions of the 
ase under 
onsideration,

often they 
an be 
ompletely dropped). With the additional 
he
ks in
onsisten
y leads to no state


hange, as required by the de�nition of ASM semanti
s. To improve readability we will write

f [x℄ := t instead of f := f [x  t℄ in DL programs.

4.3 Translation of Sequential ASMs

To simplify the presentation, we will assume in the rest of this work, that the test, if any ASM rule

is appli
able 
an be de
ided using a predi
ate �nal (�nal is simply the 
onjun
tion of all negated

rule tests). Then the result of the translation is the following pro
edure:

ASM(var x)

begin

while : �nal(x) do RULE(;x)

end

The allowed initial states of the ASM are given by suitable initial valuations of the variables

x. The variables x are used as input and output. They store the valuations of all dynami


fun
tions. Iterated appli
ation of rules is done with a while loop. pro
edure RULE 
ontains

the translated 
ode of the ASM rule (the semi
olon before the variables x in the 
all indi
ates

referen
e parameters). A separate pro
edure was de�ned simply to have a suitable abbreviation

in the following.

The equivalen
e of the while program to the de�nition of the ASM semanti
s is given by


onsidering the sequen
es of states, through whi
h the program runs at the beginning of the while

loop. The possible sequen
es are (modulo the translation of algebras to valuations) exa
tly the

same as in the ASM. A restri
tion of the expressiveness of DL is only, that we are not able to

talk dire
tly about these sequen
es of states and their properties. This would require either the

introdu
tion of operators similar to temporal logi
, or the de�nition of a data type of streams to

en
ode the sequen
es. In main topi
 of this work, ASM re�nements, the expli
it representation of

tra
es will be mostly suÆ
ient. In parti
ular, tra
es of states will not o

ur in the proof obligations

for re�nement 
orre
tness. Only for ASMs with unbounded indeterminism (Se
t. 6.4) we will need

the temporal logi
 operator AF, and in the de�nition of tra
e 
orre
tness in Se
t. 6.3 we will make

use of a formalization of streams as (dynami
) fun
tions from natural numbers to states.

4.4 Translation of Distributed ASMs

The main problem in the translation of distributed ASMs is the indeterministi
 
hoi
e of an agent

a from a �nite set A of 
andidates. Although the �nite set A 
an be des
ribed using the datatype

of �nite sets from Se
t. 4.1, it is not possible to use an additional fun
tion some, sin
e for a set s

su
h a fun
tion would always deliver the same element some(s). Nevertheless a solution in DL is

easy: One uses a pro
edure SOME, that has the 
urrent set of a
tive agents as input and returns

the agent Self, whi
h should exe
ute a rule. Self is now a program variable. For the pro
edure

SOME only the axioms

a 2 A ! hSOME(A;Self)i Self = a (4.1)

and

[SOME(A;Self)℄ Self 2 A
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are needed. They say, that the input/output relation of SOME is in all models of the spe
i�
ation

equal to the element relation (the �rst axioms says superset, the se
ond subset). This means,that

every time ea
h 
hoi
e of an agent from the set is possible, 
orresponding to the de�nition of the

ASM semanti
s. An implementation of the pro
edure SOME would be a s
heduler for agents.

Su
h an implementation will usually have a strategy for 
hoosing the next agent and therefore

not be fully indeterministi
. It will often also depend on other state 
omponents. Therefore, to

support arbitrary s
hedulers, SOME 
an be 
alled with the 
omplete state x of the ASM and the

axiom (4.1) 
an be repla
ed by the weaker totality axiom

A 6= ; ! hSOME(x;Self)i true

Then, the input/output relation of a s
heduler is only required to be a total subrelation of the

element relation. This makes it possible to relate di�erent s
hedulers in ASM re�nements (see

Chap. 5), e.g. by stating that every 
hoi
e of a 
on
rete s
heduler should be possible by the abstra
t

one too). It should be noted, that restri
tions su
h as fairness 
onstraints will probably make it

ne
essary to talk about the sequen
e of sele
ted Self values. To do this will require extensions

of Dynami
 Logi
 or the expli
it use of streams (see also the translation of linear temporal logi


(LTL) dis
ussed in [Vog97℄).

Using the SOME pro
edure the distributed ASM is translated to

ASM(var x)

begin

while A 6= ; do

begin

SOME(x;Self);

if Rule(Self) = �

1

then RULE

1

(;x) else

if Rule(Self) = �

2

then RULE

2

(;x) else

.

.

.

if Rule(Self) = �

n

then RULE

n

(;x)

end

end

where the rules RULE

1

, RULE

2

, . . . , RULE

n

are translated as for sequential ASMs. Note, that

the 
urrently sele
ted agent Self, the set of a
tive agents A and the dynami
 fun
tion Rule, whi
h

gives the rule name for an agent are all part of the ve
tor of program variables. The rule names

are spe
i�ed as an enumeration type with values �

1

, . . . �

n

.

Like in the sequential 
ase the possible sequen
es of states at the beginning of the while loop


oin
ide with the possible tra
es of the ASM (modulo en
oding algebras as valuations). To have a

uniform notation for sequential and distributed ASMs, we will also write RULE (;x) for the body

of the while loop, and we will use the general test �nal(x) instead of the spe
ial A 6= ; used here.

4.5 Rule Indu
tion in DL

The main proof prin
iple to reason about ASMs that we will use in the following is indu
tion over

the number of exe
uted rules (\rule indu
tion"). In this se
tion we give the formal 
orresponding

proof prin
iple in DL, indu
tion on the number of while loop iterations. Indu
tion on this number

is possible using the Omega-Axiom of Dynami
 Logi
:

hwhile " do �i ' $ 9 i. hloop if " then � times ii (' ^ : ") (4.2)
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In this axiom i is a natural number (whi
h 
an be used for indu
tion) that 
ounts the number

of loop iterations. The loop program loop � times i exe
utes its body � i times. Axiom (4.2)

therefore states, that a formula ' holds after the exe
ution of a while loop, if and only if there is a

number i 
hosen suÆ
iently large, su
h that after iterating if " then � this often ' holds and the

test " of the while loop is false. Note that for some �xed initial state the value of i need not be


hosen as the exa
t number of times the while loop will be iterated when starting from this state.

Any number greater than this number will also be suÆ
ient, sin
e exe
uting if " then � when "

is already false has no e�e
t. This gives some extra degree of freedom in proofs where only some

properties of the initial state are known (repla
ing if " then � in the body of the loop 
onstru
t

by if " then � else abort gives the more restri
tive variant, where i must be the exa
t number

of iterations).

The loop 
onstru
t is de�ned in DL re
ursively by the two axioms:

hloop � times 0i ' $ '

hloop � times i +1i ' $ hloop � times ii h�i '

(4.3)

4.6 Alternatives to our Formalization

The translation of ASMs to DL is not the only alternative to realize dedu
tion support for ASMs.

Several others are possible:

1. Embedding ASMs in a higher-order variant of Dynami
 Logi
.

2. De�nition of an \ASM logi
": Su
h a logi
 must support the modi�
ation of algebras by

programs. A suitable 
andidate would be MLCM (modal logi
 if 
reation and modi�
ation

[GdL94℄,[GR95℄). [S
h95℄ is an attempt, to implement a variant of MLCM in the KIV

system.

3. Instead of formalizing ASMs, their semanti
s, i.e. state based systems 
an be formalized

algebrai
ally. This is possible with �rst-order logi
 and was done for the Prolog-WAM


ase study in Isabelle [Pus96℄ (the formalization used higher-order logi
, but this was not


ompulsory). ASM rules are repla
ed with an expli
it des
ription of the state transition

relation, and an indu
tive de�nition of the relation between input and output states.

4. Embedding ASMs in temporal logi


The �rst solution is a variant of our solution, whi
h repla
es the datatype `dynami
 fun
tion'

by se
ond-order fun
tions. The solution requires to extend DL with higher-order expressions

(su
h an extension is 
urrently planned). The solution would have the advantage, that the spe
ial

`apply' operation 
ould be repla
ed with the usual fun
tion appli
ation. An argument for the


urrent solution is, that it does not mix dynami
 fun
tions with general higher-order fun
tions.

The �rst are usually used as global registers and 
an be destru
tively overwritten while the other

usually may not be modi�ed destru
tively. Separation of the two 
ases 
ould therefore ease eÆ
ient

implementation.

The se
ond solution is also similar to our solution. From our viewpoint it has the disadvantage,

that the de�nition of a new logi
 requires mu
h more e�ort: In addition to the implementation

of new ta
ti
s and the de�nition of a new semanti
s also a 
orre
tness and 
ompleteness proofs

for the new logi
 has to be done. Note also, that the 
orre
tness proofs for ASM re�nements

sometimes make it ne
essary to quantify over dynami
 fun
tions (for an example see Se
t. 11.2),

whi
h is impossible in MLCM.

The third solution is mu
h more di�erent from ours, sin
e it requires to develop a general

theory of indu
tive relations (or an even more general �xpoint theory as it was done in PVS

[BDvH

+

96℄), to make indu
tion over the number of exe
uted rules possible. Su
h a theory was
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de�ned e.g. in Isabelle ([Pau94℄). In our approa
h su
h a theory is already present in the axioms

for while loops (
ompare to the previous Se
t. 4.5).

For pra
ti
al appli
ations the solution has the disadvantage that every modi�
ation of the state

must refer to the whole state (this is known as the \frame problem"). An assignment

x

i

:= f(y)

to a single 
omponent x

i

of the state must be repla
ed by a relation ) (written in�x)

(x

1

; : : : ; x

i

; : : : x

n

) ) (x

1

; : : : ; f(y); : : : x

n

)

in whi
h the whole state (x

1

; : : : ; x

n

) is mentioned, 
ausing notational overhead. Also adding a

new 
omponent to the state will require to 
hange all existing proofs, even if they do not 
onsider

the new 
omponent.

For the generi
 de�nition and the proof of the modularization theorem for ASM re�nements,

that will be done in Chap. 6, the frame problem is irrelevant, sin
e in the theorem states will be


onsidered as an unspe
i�ed, monolithi
 parameter sort. We will therefore have a short look on

the �rst-order formalization of the theorem in Se
t. 6.2.5.

An advantage of using indu
tive relations against ASMs is that they (like DL programs) allow

arbitrary re
ursion. Arbitrary re
ursion for ASMs requires to extend the basi
 formalism (see

[GS97℄).

The fourth solution, embedding ASMs in a temporal logi
 (like CTL*) is a good alternative,

when properties of single ASMs are 
onsidered. But relations between ASMs (like re�nement)

require to 
onsider several state transition relations at one, whi
h make an en
oding more diÆ
ult

(or require the use of a multimodal temporal logi
).

Finally it should be noted, that instead of transforming the rules of an ASMs to a normal form

(Se
t. 4.1) a general operator for parallel exe
ution of programs 
ould be added. The transforma-

tion to normal form then 
an be des
ribed by rules in the logi
. [S
h95℄ shows, how this possibility


an be realized for MLCM. We 
urrently prefer the transformation, sin
e it is more eÆ
ient and

we 
urrently see no way to avoid it: in
onsisten
y of a rule 
an be dete
ted easily only, when the

rule is in normal form.
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Chapter 5

Re�nement of ASMs and

Formalization in DL

A re�nement of one ASM = (S; I; �) to another ASM

0

= (S

0

; I

0

; �

0

) is given by a relation IN : I�I

0

on initial states and a relation OUT : F �F

0

on the �nal states F and F

0

. Often spe
ial 
ases are


onsidered, where fun
tions instead of general relations IN and OUT are given.

De�nition 1 
orre
tness and 
ompleteness of re�nements

A re�nement of ASM to ASM' is 
orre
t, if for every �nite tra
e (st

0

0

,. . . , st

0

n

) of ASM

0

(with

st

0

n

2 F

0

) and every st

0

of ASM with IN(st

0

,st

0

0

) there exists a tra
e �nite tra
e (st

0

,. . . , st

m

) of

ASM with st

m

2 F and OUT(st

m

,st

0

n

). We will write ASM

.

ASM

0

for a 
orre
t re�nement. A

re�nement from ASM to ASM

0

is 
omplete, short ASM

/

ASM

0

, i� the re�nement from ASM

0

to

ASM is 
orre
t

Corre
tness and 
ompleteness of a re�nement is often expressed as the 
ommutativity of the

diagram in Fig. 5.1:

st

0

//
OO

IN

��

st

1

//
: : :

//
st

m aa
OUT

!!D
DD

DD
DD

D

st

0

0

//
st

0

1

//
: : :

//
st

0

n

Figure 5.1 : Diagrammati
 Visualization of an ASM Re�nement

Corre
tness and 
ompleteness 
an be de�ned relative to one algebra, or relative to all models

of the 
ommon spe
i�
ations of both ASMs. The proof obligations, that we will derive in the

following 
hapter will imply the 
orre
tness resp. 
ompleteness in every single model of the 
ommon

spe
i�
ation (this is stronger than \if the proof obligations hold in every model, then we have


orre
tness resp. 
ompleteness"), therefore the distin
tion is unimportant in the following.

The notions of `
orre
tness' and `
ompleteness' are drawn from ASM terminology ([BR95℄).

In the literature several other terms are used: In the Veri�x proje
t ([GDG

+

96℄) they are 
alled

`preservation of partial 
orre
tness' and `preservation of total 
orre
tness'. A 
orre
t and 
om-

plete re�nement is sometimes 
alled a `Bisimulation'. In 
ase studies with the NQTHM system

([BHMY89℄) the notion `interpreter equivalen
e' is used.

Our 
orre
tness notion 
ompares the input/output behavior of the ASMs. It is adequate for

ASMs, whose purpose is the \
omputation of a result". If an ASM des
ribes a rea
tive system,

there is another 
orre
tness notion, whi
h 
ompares tra
es of both ASMs. We will postpone the

de�nition of su
h a notion (\tra
e 
orre
tness") until Se
t. 6.3 where we will show that the proof

obligations for both 
orre
tness notions di�er only marginally.

19
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5.1 Compiler Veri�
ation

A typi
al example where ASM re�nements are used is 
ompilation of programming languages. Two

ASMs are 
onsidered, where the �rst is an interpreter for the sour
e language and the other is an

interpreter for the target language. Initial states store the sour
e and target 
ode of the program

that should be exe
uted. The IN relation between the initial states is given by a fun
tion 
ompile

whi
h does the 
ompilation:

IN(st,st

0

) $ program

0

(st

0

) = 
ompile(program(st)) ^ I(st) ^ I

0

(st

0

).

Usually an initial states is �xed uniquely by a given program that should be interpreted. Some-

times the weaker 
ondition, that for every initial ASM

0

state st

0

there is an ASM state st with

IN(st,st

0

), is required.

For the output relation OUT it is usually required, that it should be possible to re
over the

(abstra
t) result of the sour
e 
ode interpreter by applying an abstra
tion fun
tion to the result

of the target 
ode interpreter.

OUT(st,st

0

) $ result(st) = abstra
t(result

0

(st

0

)).

5.2 Formalization of Corre
tness in DL

The Corre
tness of a re�nement from ASM to ASM

0


an be expressed in DL as

ASM

.

ASM

0

�

IN(x,x

0

) ^ hASM

0

(;x

0

)ix

0

= x

0

0

! hASM(;x)i OUT(x,x

0

0

)

(5.1)

In the formula x and x

0

are two disjoint ve
tors of variables that result from the translation

of dynami
 fun
tions from both ASMs. The formula states that IN (x; x

0

) and the existen
e of a

terminating run of ASM

0

with result x

0

0

imply the existen
e of a terminating run of ASM, su
h

that relation OUT holds for x

0

0

and its result (note that the x in IN (x; x

0

) denotes an arbitrary

initial value of the variables, while the x in OUT(x; x

0

0

) denotes the valuation of the variable after

the exe
ution of ASM).

For the formalization of 
ompleteness simply the roles of ASM and ASM

0

are swit
hed:

ASM

/

ASM

0

�

IN(x,x

0

) ^ hASM(;x)ix = x

0

! hASM

0

(;x

0

)i OUT(x

0

,x

0

)

(5.2)

The equivalen
e of ASM and ASM

0

then is the 
onjun
tion of (5.1) and (5.2). If the state ve
tors

of both ASMs have the same types, and if OUT (x; x

0

) is de�ned as x = x

0

, this 
onjun
tion 
an

be simpli�ed to the program equivalen
e

ASM

./

ASM

0

�

IN(x,x

0

) ! (hASM(;x)ix = x

0

$ hASM

0

(;x

0

)ix

0

= x

0

)



Chapter 6

A Generi
 Proof Method for ASM

Re�nements

This 
hapter is the kernel of the theoreti
al work. It is shown, that the 
orre
tness and 
om-

pleteness proofs for a re�nement from ASM to ASM

0


an be modularized. The proof obligations

that guarantee the 
orre
tness of the modularization were formulated in Dynami
 Logi
, and were

veri�ed with the KIV system.

The �rst two se
tions 
onsider sequential, deterministi
 ASMs. For introdu
tion, Se
t. 6.1

dis
usses the spe
ial 
ase of \data re�nement" known from literature. In this 
ase one rule appli-


ation of ASM 
orresponds to one rule appli
ation of ASM

0

and an abstra
tion fun
tion is given,

that maps states of ASM

0

to states of ASM.

Se
tion 6.2 then 
onsiders the general 
ase, in whi
h the 
orresponden
e between states is

given by an arbitrary relation, that we 
all a \
oupling invariant". The restri
tion, that one rule

appli
ation of ASM must 
orrespond to one of ASM

0

is dropped. Instead it is only required that

the diagram shown in Fig. 5.1 
an be de
omposed into smaller diagrams, su
h that the 
oupling

invariant holds at all partitioning points. The main result of this se
tion is the theorem, that

under this 
ondition the 
ommutativity proof of the whole diagram 
an be split to 
ommutativity

proofs for the subdiagrams. It is shown, that it is suÆ
ient to prove one proof obligation for ea
h

subdiagram in order to show 
orre
tness and 
ompleteness.

Se
tion 6.3 
onsiders an alternative to the de�nition of re�nement 
orre
tness we gave in Se
t. 5.

The new 
orre
tness notion is 
alled \tra
e 
orre
tness", sin
e it does not rely on input/output

behavior, but 
ompares tra
es of the ASMs. Tra
e 
orre
tness is stronger than 
orre
tness. For

deterministi
 ASMs 
orre
tness and 
ompleteness imply tra
e 
orre
tness. We will give an ex-

ample, that shows, that this is not the 
ase for indeterministi
 ASMs. Therefore we will, before

we 
onsider indeterministi
 ASMs, de�ne tra
e 
orre
tness formally. Like for the deterministi



ase we will generalize the approa
h from literature whi
h uses abstra
tion fun
tions to the use of

arbitrary 
oupling invariants. We will show, that the proof obligations for 
orre
tness and tra
e


orre
tness di�er only marginally.

Se
tion 6.4 treats re�nements of indeterministi
 ASMs. We will show, whi
h modi�
ations are

ne
essary, to apply the modularization theorem for indeterministi
 ASMs. As the main di�eren
e

we will have two separate proof obligations for 
orre
tness and 
ompleteness. Also the 
ompli
ation

must be 
onsidered, that the size of subdiagrams resulting from the modularization may now

depend on indeterministi
ally 
hosen rules.

Se
tion 6.5 gives optimizations of the theorem, that are possible for an iterated re�nement

from ASM �rst to ASM

0

and then to ASM

00

.

Se
tion 6.6 �nally dis
usses some related work. Corre
tness in the sense, that both ASMs make

the same outputs during runs (\behavioral 
orre
tness") is is identi�ed as a spe
ial 
ase of tra
e


orre
tness.

21
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6.1 Data Re�nement

6.1.1 De�nition

The simplest 
ase of a re�nement of a sequential ASM is \data re�nement" ([Hoa72℄). The idea is

to transform an \abstra
t" set of states S in ASM to a more \
on
rete" state set S

0

in ASM

0

(this

idea is also the basis of many purely algebrai
 re�nement notions). If a state from S e.g. stores a

set of elements, then the state in S

0

that represents it 
ould store a list of the same elements. In

data re�nement the 
onne
tion between states is usually given by an abstra
tion fun
tion

abstr : S

0

! S

that maps 
on
rete states to abstra
t ones. The fun
tion may be partial, sin
e not every 
on
rete

state must represent an abstra
t one (e.g. only dupli
ate-free lists 
ould be used as representations

of sets). The fun
tion also does not need to be inje
tive, sin
e several 
on
rete states may represent

the same abstra
t one (in the example [1,2℄ and [2,1℄ would represent the same set). The state

transition fun
tion �

0

of ASM

0

has to be 
hosen in this kind of re�nement, su
h that it a
hieves

the same e�e
t on 
on
rete states as � of ASM on abstra
t ones. This 
an be formalized as

abstr(x

0

) = x ^ : �nal(x) ^ : �nal

0

(x

0

)

! hRULE(;x)i hRULE

0

(;x

0

)i abstr(x

0

) = x

(6.1)

in DL (where x and x

0

are two disjoint ve
tors of program variables, that result from the translation

of dynami
 fun
tions from the two ASMs). Informally the equivalen
e of rule appli
ations 
an be

des
ribed as the 
ommutativity of the diagram in Fig. 6.1.

x

1

� //
OO

abstr

x

2OO

abstr

x

0

1

�

0

//
x

0

2

�

Figure 6.1 : Commuting 1:1 Diagram

Sin
e one rule appli
ation of ASM is equivalent to one of ASM

0

, both systems work syn
hronously.

The fa
t, that (6.1) is the main 
riterion suÆ
ient for the equivalen
e of ASM and ASM

0

is shown

by indu
tion on the number of exe
uted steps. Informally 
ommuting diagrams are put together

as shown in Fig. 6.2:

x

0

� //
OO

abstr

x

1OO

abstr

� //
: : :

� //
x

k�1

� //
OO

abstr

x

kOO

abstr

x

0

0

�

0

//
x

0

1

�

0

//
: : :

�

0

//
x

0

k�1

�

0

//
x

0

k

Figure 6.2 : Commuting 1:1 Diagrams

For the indu
tion base it is required, that initial states are 
onne
ted by the abstra
tion

fun
tion:

IN(x,x

0

) ! abstr(x

0

) = x (6.2)
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Normally this is guaranteed by simply de�ning IN (x; x

0

) as abstr(x

0

) = x. Finally it is needed,

that two �nal states deliver the same output

abstr(x

0

) = x ^ �nal

0

(x

0

) ^ �nal(x) ! OUT(x,x

0

) (6.3)

and that both ASMs rea
h their �nal states simultaneously:

abstr(x

0

) = x ! (�nal(x) $ �nal

0

(x

0

)) (6.4)

Putting everything together we get the theorem

Theorem 1 
orre
tness and 
ompleteness for data re�nement

The validity of the four proof obligations (6.1), (6.2), (6.3) and (6.4) implies the 
orre
tness and


ompleteness of the re�nement from ASM to ASM

0

(6.1) ^ (6.2) ^ (6.3) ^ (6.4) ) ASM

./

ASM

0

6.2 The Modularization Theorem

6.2.1 Informal Des
ription

In this se
tion we give a generi
 theorem for the modularization of equivalen
e proofs for re�ne-

ments of sequential ASMs. We will �rst give an informal 
orre
tness proof. Then we will sket
h its

formalization in KIV. Finally we will also show a proof for the �rst-order formalization of ASMs.

This will assure, that the theorem is independent of the formalization of ASMs.

The basi
 idea of the theorem is shown most easily by looking at the 
ommuting diagram, that

des
ribes the equivalen
e of two ASMs. To modularize the proof, we de
ompose the diagram into

subdiagrams, as it is shown in Fig. 6.3. Edges 
onne
ting states represent an (arbitrary!) relation

INV, that we 
all the 
oupling invariant. The basi
 assumption, underlying a modularization of

// // // // // // // aa
OUT

!!C
CC

CC
CCC

//��
IN

OO

// // // //
�

// // //

// //cc

INV

##G
GGGGGGGG cc

##G
GGGGGGGG // //;;

{{wwwwwwwww ;;

INV

{{wwwwwwwww
//cc

##G
GGGGGGGG cc
INV

##G
GGGGGGGG // //;;

INV

{{wwwwwwwww ;;

{{wwwwwwwwwcc
INV

##G
GGGGGGGG

//
�

��
INV

OO

// //
�

//
�

//
�

// //
�

//

Figure 6.3 : de
omposition of the full diagram (above) in subdiagrams (below) using a 
oupling

invariant

this kind is, that the 
orresponden
e between two 
omputations of the ASMs 
an be redu
ed to

the 
orresponden
e of suitable \sub
omputations" (i.e. �nite sequen
es of rule appli
ations), that

both ASMs do in the same order. Corresponding \similar" states are 
hara
terized by the 
ou-

pling invariant. This 
orresponden
e automati
ally de
omposes the full diagram into subdiagrams

(simply 
onne
t 
orresponding states). For pra
ti
al 
ases it is helpful, to also name 
orresponding

sequen
es of rule appli
ations. This helps to understand how the 
ommuting diagrams look, and
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we will of 
ourse do this in the Prolog-WAM-
ase study. But for the formalization it is redundant

to give 
orresponding rule sequen
es.

Sin
e we allow full freedom in the de�nition of the 
oupling invariant, a sub
omputation 
an


onsist of an arbitrary number of rule appli
ations. The number 
an even depend on the values of


ertain program variables. As an important spe
ial 
ase some sub
omputation of one ASM may

be dropped in the other altogether. This 
ase results in triangular diagrams.

The basi
 assumption, that both ASMs run through 
orresponding sub
omputations, need not

always be ful�lled (ASM

0


ould be the result of an arbitrary program transformation on ASM,

e.g. ASM

0


ould do the 
omputation steps of ASM in reverse order). But for many 
ases the

assumption is valid, espe
ially in 
ompiler veri�
ation, where 
orresponding sub
omputations are

a natural result of exe
uting 
orresponding parts of the 
ompiled program.

The idea for the modularization theorem therefore is: Given a de
omposition of the full diagram

into subdiagrams, then 
ommutation of all subdiagrams implies equivalen
e of both ASMs.

6.2.2 De�nition of the Theorem

To turn the idea into a theorem, we will now

1. formally spe
ify how to de
ompose diagrams into subdiagrams in DL

2. give proof obligations for the 
ommutativity of subdiagrams

3. formally state and prove the modularization theorem

We assume, that we are given ASM and ASM

0

translated to DL as ASM(x) and ASM

0

(x

0

)

with two disjoint ve
tors x and x

0

of variables. A 
orresponden
e between states will then be

given as a 
oupling invariant, i.e. a DL formula INV (x; x

0

) with free variables in x [ x

0

. De�ning

the edges of subdiagrams to be those pairs of states (x; x

0

) for whi
h INV holds already gives a

suitable de
omposition of the diagram into subdiagrams. If there are no triangular diagrams, it is

suÆ
ient to show, that for ea
h pair of non�nal states, a 
ommuting (sub-)diagram as shown in

Fig. 6.4 
an be atta
hed.

OO

INV

��

//
9 i

// \\

INV

��8
88

88
88

88

//
9 j

�

// //

Figure 6.4 : generi
 
ommuting diagram

The size of the diagram need not be given expli
itly, it is suÆ
ient to show, that there are

positive numbers of rule appli
ations for both ASMs, su
h that INV holds again in the resulting

states. Formalized as a DL formula this results in the following proof obligation (the pre
ondition

ndt(x; x

0

) =mn 
an be ignored, it will be explained in the following):

INV(x, x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! 9 i > 0. hloop if : �nal(x) then RULE(;x) times ii

9 j > 0. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji

INV(x, x

0

)

(6.5)

An additional problem o

urs when triangular diagrams are present. Then it must be prohib-

ited that the whole diagram 
onsists solely of triangular ones as shown in Fig. 6.5 and 6.6. In the

�rst 
ase ASM

0


ould have an in�nite run, while ASM would not make a single step, whi
h would

violate 
ompleteness. Similarly, the se
ond 
ase would violate 
orre
tness.
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gg
INV

''OOOOOOOOOO

//vv

INV

66mmmmmmmmmmmmmmm //}}

==||||||||| //��

OO

//!!

. . .

aaBBBBBBBBB
: : :

Figure 6.5 : in�nite sequen
e of 0:n diagrams

//hh

INV

((QQQQQQQQQQQQQQQ //aa

!!B
BB

BB
BB

BB
//OO

��

//==

. . .

}}||
||

||
||

|
: : :

ww INV

77oooooooooo

Figure 6.6 : in�nite sequen
e of m:0 diagrams

Sin
e triangular diagrams often o

ur in appli
ations as results of optimizations, we must

restri
t the number of possible su

essive triangular diagrams. To do this, we �rst have to de
ide

for every pair of states (x; x

0

), for whi
h INV holds, whi
h type of diagram follows:

� An m:n diagram, where both ASM and ASM

0

make a positive number of steps,

� An m:0 diagram, where only ASM makes a positive number of steps, or

� a 0:n diagram, where only ASM

0

makes a positive number of steps

For this purpose we introdu
e a fun
tion ndt ("`next diagram type"'), whi
h returns for every

pair of states (x; x

0

), for whi
h INV holds, an element from fmn,m0,0ng. To implement the

restri
tion on the number of su

essive m:0 diagrams we use a fun
tion exe
m0. For (x; x

0

) with

INV (x; x

0

) and ndt(x; x

0

) =m0 the result of ndt(x; x

0

) should be a natural number that bounds

the number of su

essive m:0 diagrams.

Proof obligation (6.5) now 
onsiders the 
ase of m:n diagrams and therefore gets the additional

pre
ondition ndt(x; x

0

) =mn. For m:0 diagrams we have the following proof obligation:

INV(x, x

0

) ^ : �nal(x) ^ ndt(x, x

0

) = m0 ^ exe
m0(x, x

0

) = k

! 9 i > 0. hloop if : �nal(x) then RULE(;x) times ii

( INV(x, x

0

)

^ (: �nal(x) ^ ndt(x, x

0

) = m0 ! exe
m0(x, x

0

) < k))

(6.6)

It says, that a m:0 diagram must preserve the 
oupling invariant, and if another m:0 diagram

follows, then the value of of exe
m0 must have de
reased (if exe
m0 (x; x

0

) = k, then at most k+1

su

essive m:0 diagrams are possible). For 0:n diagrams we get the following dual proof obligation:

INV(x, x

0

) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ^ exe
0n(x, x

0

) = k

! 9 j > 0. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji

( INV(x, x

0

)

^ (: �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ! exe
0n(x, x

0

) < k))

(6.7)

Note that the proof obligation for m:0 diagrams does not assume, that ASM

0

is not in a �nal

state. It is possible (and indeed does o

ur in the Prolog-WAM 
ase study, see Se
t. 13.2) that

ASM

0

has already terminated, while ASM is still doing \super
uous" steps (su
h a situation is

not possible in data re�nement). But in this 
ase it must be required that only m:0 diagrams are

possible:

INV(x, x

0

) ^ : �nal(x) ^ �nal

0

(x

0

) ! ndt(x, x

0

) = m0 (6.8)
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Dually it has to be shown for n:0 diagrams that

INV(x, x

0

) ^ �nal(x) ^ : �nal

0

(x

0

) ! ndt(x, x

0

) = 0n (6.9)

To 
onne
t the 
oupling invariant to the input/output relation of the re�nement, we �nally have

to require

IN(x, x

0

) ! INV(x, x

0

) (6.10)

and

INV(x, x

0

) ^ �nal(x) ^ �nal

0

(x

0

) ! OUT(x, x

0

) (6.11)

similar to proof obligations (6.2) and (6.3) for data re�nement. With these proof obligations we


an now state the modularization theorem.

Theorem 2 Modularization Theorem for Sequential ASMs.

Given a re�nement from ASM to ASM

0

of deterministi
 ASMs, a predi
ate INV and fun
tions

ndt, exe
0n, exe
m0, su
h that the proof obligations (6.5), (6.6), (6.7), (6.8), (6.9), (6.10) and

(6.11) hold, then the re�nement is 
orre
t and 
omplete:

ASM deterministi
 ^ ASM

0

deterministi


^ (6.5) ^ (6.6) ^ (6.7) ^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

./

ASM

0

Before we dis
uss the proof of the theorem, here are some remarks on how it is applied:

� The theorem does not require to verify separate proof obligations for 
orre
tness and 
om-

pleteness.

� The main diÆ
ulty in applying the theorem is to �nd a suitable 
oupling invariant. The

type of the following subdiagram usually follows simply from whi
h 
ase of the rules of ASM

and ASM

0

is exe
uted in the pair (x; x

0

) of states. exe
m0 (and similarly exe
0n) usually

is 
onstantly 0, i.e. an m:0 diagram is never followed by another. Otherwise the result of

exe
m0 often is the size of a datastru
ture (e.g. a sta
k) from the state of ASM, that is


urrently redu
ed (e.g. to the empty sta
k).

� Data re�nement is the simple spe
ial 
ase, in whi
h INV (x; x

0

) � abstr(x

0

) = x and ndt is


onstantly mn (no triangular diagrams). The proof obligation (6.1) from data re�nement is

then the 
ase of (6.5), where both i and j are instantiated by 1. (6.4) follows trivially from

(6.8) and (6.9).

� The subdiagrams resulting from the de
omposition have the same form as the original dia-

gram. It is therefore possible to apply the modularization theorem re
ursively on the subdi-

agrams. This was done in the Prolog-WAM 
ase study for the re�nement 5/6 
onsidered in

Se
t. 15.2.
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6.2.3 The Proof of the Theorem

The proof of the modularization theorem 
onsists of two parts. In the �rst part it is shown, that

the proof obligations imply 
orre
tness, in the se
ond that they imply 
ompleteness. Both proofs

are dual (only the roles of ASM and ASM

0

are ex
hanged) therefore we only 
onsider the proof

for 
orre
tness.

The proof is done by redu
ing the 
orre
tness assertion to a property, that 
an be shown by

indu
tion over the number of applied rules in ASM

0

. To state this properties easily, we denote by

x

i

the state of ASM that results from i rule appli
ations, when starting in x. In DL, x

i


an be

formally de�ned as

y = x ! hloop if : �nal(y) then RULE(;y) times iiy = x

i

(note, that for a �nal state x, we have x

i

= x). Now we de�ne a property PROP by

PROP(x, x

0

) $ 9 i, j. INV(x

i

, x

0

j

)

Informally, PROP says that (x; x

0

) is a pair of states, su
h that there is a number i of rule

appli
ations of ASM and a number j of rule appli
ations of ASM

0

, su
h that for the states x

i

and

x

j

rea
hed then the 
oupling invariant holds. For this property the following lemma holds:

Lemma 1 PROP is an invariant of ASM

0

: If x, x

0

are two states of ASM and ASM

0

with

INV (x; x

0

), then PROP(x; x

0

k

) will hold for all states x

0

k

, that are rea
hed during the run of

ASM

0

(starting from x

0

).

Proof of Lemma 1 The proof is by indu
tion over the number k of applied rules. The base 
ase

(k = 0) is trivial. In the indu
tion step we 
an assume two states x, x

0

with INV (x; x

0

) and two

values i and j su
h that INV (x

i

; x

0

k+j

), and we have to �nd i

0

and j

0

, so that INV (x

i

0

; x

0

(k+1)+j

0

)

holds. The 
ase j 6= 0 is simple with i

0

:= i, j

0

:= j � 1 as well as the 
ase where x

0

k

is already

a �nal state. Otherwise we need Lemma 2 des
ribed below, to dedu
e from INV (x

i

; x

0

k

) that we


an 
onstru
t an i

00

� 0 with INV (x

i+i

00

; x

0

k

) and either ndt(x

i+i

00

; x

0

k

) 6= m0 or �nal(x

i+i

00

; x

0

k

).

In the �rst 
ase assumptions (6.5) and (6.7) guarantee the existen
e of i

000

� 0 and j

000

> 0 su
h

that INV (x

i+i

00

+i

000

; x

0

k+j

000

) holds. Therefore we 
an 
hoose i

0

:= i

00

+ i

000

, j

0

:= (j

000

� 1). In the

other 
ase be
ause of (6.9) a 0:n diagram follows and the proof follows with (6.7) as above. 2

The proof uses the following lemma, that says, that two 
orresponding states 
an be followed

by only �nitely many m:0 diagrams. The state thereby rea
hed by ASM is x

i

.

Lemma 2 For every two states x, x

0

with INV (x; x

0

) there is an i � 0, su
h that INV (x

i

; x

0

) and

either ndt(x

i

; x

0

) 6= m0 or �nal(x

i

) hold.

Proof of Lemma 2 In the 
ase, that ndt(x; x

0

) is equal to m0 and we do not already have

�nal(x) (otherwise the theorem holds with i := 0), the proof is by (noetherian) indu
tion on the

size of exe
m0(x; x

0

). (6.6) implies that there is an i

0

> 0, su
h that INV (x

i

0

; x

0

) and either

exe
m0 (x

i

0

; x

0

) has be
ome smaller or ndt(x

i

0

; x

0

) 6= m0. In the �rst 
ase the statement follows

from the indu
tion hypothesis, in the se
ond i := i

0

is suÆ
ient. 2

Proof of Theorem 2 Using lemmas 1 and 2 the proof of the 
orre
tness of the re�nement is as

follows: Let (x

0

; x

0

1

; : : : x

0

k

) be an arbitrary terminating run of ASM

0

(so we have �nal

0

(x

0

k

)) and

x a state with IN(x; x

0

). Then (6.10) implies INV(x; x

0

). Now Lemma 1 implies, that there are i, j,

su
h that INV (x

i

; x

0

k+j

) holds. Be
ause of de�nition we have x

0

k+j

= x

0

k

, therefore INV(x

i

; x

0

k

)

holds. With Lemma 2 we get an i

0

, su
h that INV(x

i+i

0

; x

0

k

) and either ndt(x

i+i

0

; x

0

k

) 6= m0 or

�nal(x

i+i

0

). The �rst 
ase is impossible be
ause of (6.8), therefore x

i+i

0

is a �nal state too, and
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we have a terminating run of ASM. (6.11) �nally implies that at the end we have OUT(x

i+i

0

; x

0

k

).

2

From the proof of the modularization theorem we immediately get

Corollary 1 If it is possible, to verify a re�nement by de
omposing it into m:n diagrams, then

there is also a possibility to verify it using 1:1, 0:1 and 1:0 diagrams.

As the new 
oupling invariant simply 
hoose PROP. Of 
ourse to really 
hoose the stronger

de
omposition into smaller diagrams is not a good idea for pra
ti
al appli
ations, sin
e then part

of the generi
 proof has to be done when verifying the proof obligations. Proofs will get even

bigger, when one tries to avoid rule appli
ations (or equivalently DL programs) in PROP. This is

possible when all diagrams have a �xed size (that is independent of the size of data stru
tures in

the ASMs). Then a fun
tion nextij 
an be de�ned that 
omputes for two states the numbers i and

j of rule appli
ations, that are ne
essary to rea
h two states again, for whi
h INV holds. Instead

of using quanti�
ation over all possible i and j, we 
an then formulate PROP as a 
onjun
tion

over the formulas

nextij(x,x') = (i,j) ! INV(x

i

, x

0

j

)

where (i; j) runs through all 
on
rete values, that are less than the maximal diagram size. Finally,

the rule appli
ations of ASM must be removed from the formulas x

i

(and similarly for the x

0

j

)

by symboli
 exe
ution (this is possible, sin
e i is now a 
on
rete number in ea
h 
ase). The

result is a 
oupling invariant whi
h is suÆ
ient to show re�nement 
orre
tness. But sin
e INV is

the 
onjun
t for (i; j) = (0; 0), the 
omputed new 
oupling invariant is unne
essary 
ompli
ated,

unless the original de
omposition used no other than 1:1, 0:1 and 1:0 diagrams. In general it is

therefore a good idea in pra
ti
al appli
ations to make diagrams as large as possible, to have a

small 
oupling invariant. Two 
ases in the Prolog-WAM 
ase study that exemplify this fa
t are

the re�nements 2/3 and 3/4 (see the remarks at the end of Se
t. 13.2, and the 
omparison of e�ort

for the two re�nements in KIV vs. in Isabelle in Se
t. 20).

6.2.4 Formalization of the proof in DL

It is possible to formalize the proof of the modularization theorem given above in DL. Property

PROP is then de�ned as

PROP(x, x

0

) �

9 i, j. hloop if : �nal(x) then RULE(;x) times ii

hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji INV(x, x

0

)

(6.12)

The formal proof of the modularization theorem required 452 proof steps and 64 intera
tions in

KIV. Half of these were ne
essary to show 
orre
tness, the other half to show 
ompleteness of the

re�nement. The numbers in
lude proofs of elementary fa
ts su
h as (x

i

)

i

0

= x

i+i

0

. By instantiation

(a
tualization) the modularization theorem 
an be applied on every 
on
rete ASM re�nement. The

full formal spe
i�
ation and the proved theorems and lemmas are given in appendix C.2. Theorems


orr-step and �nite-0n from the appendix 
orrespond to the Lemma 1 and to the 
ase ndt(x; x

0

) =

0n of Lemma 2.

6.2.5 Formalization of the Proof in First-Order Logi


The proof of the modularization theorem 
an also be formalized in �rst-order logi
. This �rst

requires to formalize state transition relations as a datatype (in higher-order logi
 this step 
an

be dropped). The simplest formalization uses the datatype of dynami
 fun
tions from Se
t. 4. A

relation is a dynami
 fun
tion r that assigns a boolean result to a pair st

1

� st

2

of states. r[st

1
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� st

2

℄ holds if and only st

2

is a possible su

essor state of st

1

. The state transition relation � of

an ASM then is a 
onstant of this datatype. Sin
e we 
onsider sequential ASMs, � will ful�ll the

fun
tionality axiom

�[st

1

� st

2

℄ ^ �[st

1

� st

3

℄ ! st

2

= st

3

The predi
ate �nal, that 
hara
terizes �nal states, is de�ned as

�nal(st) � : 9 st

0

. �[st � st

0

℄

To formalize the proof in �rst-order logi
 we must then formalize the semanti
s of the ASMs. To

de�ne i-fold rule appli
ation, a relation �

i

is de�ned by

�

0

[st

1

� st

2

℄ $ st

1

= st

2

�

i+1

[st

1

� st

2

℄ $ 9 st

0

. �

i

[st

1

� st

0

℄ ^ �[st

0

� st

2

℄

The relation �

i


orresponds to the semanti
s of

loop if : �nal(st) then RULE(st) else abort times i

in DL. Finally we 
an de�ne the input/output relation �

�

of the ASM as

�

�

[st

1

� st

2

℄ $ 9 i. �

i

[st

1

� st

2

℄ ^ �nal(st

2

)

Again this 
orresponds to the semanti
s of the while loop in DL. The proof obligations and the

�rst-order proofs then 
an be got from the DL version by simply repla
ing

9 i. hloop if : �nal(st) then RULE(st) times ii '(st)

with

9 i,st

0

. �

i

(st,st

0

) ^ '(st

0

)

(using a new variable st

0

). The e�ort for doing the proofs in �rst-order logi
 in KIV was with

98 intera
tions somewhat higher than in DL. The main reason for this is, that DL automates the


omputation of the ne
essary iterations of a while loop with heuristi
s, while in the �rst-order

variant this number has to be given intera
tively by quanti�er instantiation. The number of proof

steps for the �rst-order variant is 247, whi
h is somewhat less than in DL, sin
e appli
ations of

ta
ti
s for DL programs are now repla
ed by appli
ations of rewrite rules, and one appli
ation of

the simpli�
ation ta
ti
 will often apply several rewrite rules in one step.

6.3 Tra
e Corre
tness

The de�nition of re�nement 
orre
tness given in Chap. 5 was based on a 
omparison of the in-

put/output behavior of the two ASMs. An alternative is to 
ompare the tra
es of the ASMs. In

the simplest 
ase there is an abstra
tion fun
tion abstr (like in data re�nement, see Se
t. 6.1), su
h

that for every run (x

0

0

; x

0

1

; : : :) of ASM

0

(abstr(x

0

0

); abstr(x

0

1

); . . . ) is a run of ASM. The main

di�eren
es to our de�nition: Already the de�nition of re�nement 
orre
tness mentions an abstra
-

tion fun
tion, and not only �nite but also in�nite runs are 
onsidered. In a 
orre
t re�nement it
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is no longer allowed to implement a terminating run by a nonterminating one. For deterministi


ASMs this restri
tion is not very important, sin
e in a 
omplete re�nement the implementation of

a terminating run by a nonterminating one is impossible. But for indeterministi
 (e.g. distributed)

ASMs whi
h will be 
onsidered in the next se
tion there is a major di�eren
e. The di�eren
e 
an

be exempli�ed by looking at the re�nement of the deterministi
 ASM de�ned by the rule

RULE(var init,b) �

if init then b := false, init := false

to the indeterministi
 ASM

0

de�ned by the rule (the DL statement b := ? \guesses" a boolean

value. It is equivalent to the 
hoose statement of ASMs as de�ned in Se
t. 4.2 in [Gur95℄)

RULE

0

(var init,b) �

if init then b := ?, init := false else if b then b := b

For an initial state with b = init = true ASM has exa
tly one tra
e, that applies RULE on
e,

setting b and init to false, and terminates (sin
e RULE is no longer appli
able). The same run is

possible in ASM

0

too, if the �rst rule appli
ation 
hooses b = false. But ASM

0

has an additional

nonterminating run, when the 
hoi
e b = true is taken. In this run RULE

0

is applied in�nitely

often without 
hanging the state (b = true and init = false) any more.

The re�nement is 
orre
t and 
omplete in the sense of our de�nition (when both the IN and

OUT relation are 
hosen to be identity), sin
e for every �nite run of one of the ASMs there is a

suitable �nite run of the other. But the re�nement is not tra
e-
orre
t, sin
e for the in�nite run

of ASM

0

there is no 
orresponding run in ASM.

Whether the re�nement is viewed as 
orre
t in an intuitive sense depends on whether the whole

run or only the result of an ASM 
an be observed. If only results are relevant, then the re�nement

is 
orre
t, sin
e ASM

0

does not deliver any other results than ASM. But if both ASMs are viewed

as rea
tive systems, and an observer 
an view and 
ompare at least some of the intermediate

states, then the re�nement should not be 
onsidered to be 
orre
t.

Therefore we de�ne at this point the notion of \tra
e 
orre
tness", su
h that it is general

enough to be usable for indeterministi
 ASMs. Instead of using abstra
tion fun
tions, we again

use the more general notion of \
orresponding states" de�ned by a 
oupling invariant. We require,

that for a tra
e-
orre
t re�nement, that for every run of ASM

0

there exists a 
orresponding run

of ASM and intermediate (\observable") pairs of states, for whi
h the 
oupling invariant holds.

For a �nite run, we require the run of ASM and the number of 
orresponding states to be �nite.

Also the last pair of states should then be the two �nal states. For an in�nite run, we require an

in�nite run of ASM and an in�nite number of 
orresponding states. Formally this gives

De�nition 2 A re�nement of ASM to ASM

0

is tra
e-
orre
t, in short ASM

�

ASM

0

, if there is a


oupling invariant INV (x; x

0

), su
h that

� for every �nite run (x

0

0

; x

0

1

; : : : ; x

0

m

) of ASM

0

(with x

0

m

2 F

0

) and for every x

0

with

IN (x

0

; x

0

0

) there is a �nite run (x

0

; x

1

; : : : ; x

n

) of ASM (with x

n

2 F ) and two stri
tly

monotoni
 sequen
es of natural numbers (i

0

; i

1

; : : : ; i

p

) and (j

0

; j

1

; : : : ; j

p

) of the same length,

su
h that i

p

= m, j

p

= n and for all k � p INV (x

i

k

; x

0

j

k

) holds.

� for every in�nite run (x

0

0

; x

0

1

; : : :) of ASM

0

and every state x

0

su
h that IN (x

0

; x

0

0

) there is

an in�nite run (x

0

; x

1

; : : :) of ASM and two in�nite, stri
tly monotoni
 sequen
es of natural

numbers (i

0

; i

1

; : : :) and (j

0

; j

1

; : : :), su
h that for all n INV (x

i

n

; x

0

j

n

) holds.

� (6.11) holds, i.e. for every pair of �nal states the 
oupling invariant implies OUT.

The pairs of states 
omparable with the 
oupling invariant are (x

i

0

; x

i

1

; : : :) and (x

j

0

; x

j

1

; : : :).

The de�nition immediately implies

Theorem 3 Relations between Corre
tness and Tra
e Corre
tness.

For every two abstra
t state ma
hines ASM and ASM

0

:
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stream =

enri
h Dynfun[nat,state℄ with

fun
tions 
ons : state � stream ! stream;


dr : stream ! stream;

variables st : state; s : stream;

axioms 
ons(st,s)[0℄ = st,


ons(st,s)[m +1℄ = s[m℄,


dr(s)[m℄ = s[m +1℄

end enri
h

Figure 6.7 : Spe
i�
ation of Streams

� ASM

�

ASM

0

) ASM

.

ASM

0

.

� ASM

0

deterministi
 ^ ASM

./

ASM

0

) ASM

�

ASM

0

To formalize the de�nition of tra
e 
orre
tness in DL, we �rst need a formal de�nition of the

tra
es of an ASM. For this purpose we use the enri
hment of dynami
 fun
tions given in Fig. 6.7.

For an ASM rule RULE with state argument st a stream s is a tra
e of the ASM (with initial

state s[0℄), if the predi
ate Tra
e(s) de�ned by

Tra
e(s) �

8 m, st. st = s[m℄ ! hif : �nal(st) then RULE(;st)i st = s[m +1℄

holds. The de�nition depends on the 
hosen ASM rule RULE and is su
h that a �nite tra
e (st

0

,

st

1

, . . . , st

m

) 
orresponds to a stream s with s[k℄ = st

k

for k � m and s[k℄ = st

m

for k > m

(be
ause of the test for : �nal(st)). With this de�nition, the requirement of tra
e 
orre
tness

relative to some INV 
an then be formalized as

8 s

0

. Tra
e

0

(s

0

)

! 9 s. Tra
e(s)

^ 8 m, k. 9 i, j. i � m ^ j � k ^ INV(s[i℄,s

0

[j℄)

^ (�nal(s[i℄) $ �nal

0

(s

0

[j℄))

(6.13)

In the formula Tra
e

0

is the predi
ate for RULE

0

of ASM

0

and Tra
e is the predi
ate forRULE of

ASM. Note that \INV holds in�nitely often" is formalized as \for every two positions m; k in both

tra
es, there are two larger ones, for whi
h INV holds" as it is usual in temporal logi
 (\in�nitely

often '" � 23'). The 
ase distin
tion over �nite and in�nite runs is unne
essary be
ause of

our formalization of tra
es (that extends �nite to in�nite runs that repeat the �nal state). The

requirement �nal(s[i℄) $ �nal

0

(s

0

[j℄) is for the spe
ial 
ase of �nite runs.

We will now show, that the di�eren
e between 
orre
tness and tra
e 
orre
tness is minimal,

sin
e the proof obligations for 
orre
tness already imply tra
e 
orre
tness for the 
oupling invariant.

Informally the reason for this is simply, that our de
omposition of the whole 
ommuting diagram

in 
ommuting subdiagrams does not require �niteness of the tra
es. Also the de
omposition does

neither allow n:1 diagrams nor in�nitely many su

essive 0:n diagrams. If we analyze the proof

for the modularization theorem, we �nd that the 
ondition, that we must have only �nitely many

su

essive 0:n diagrams (i.e. that the value of exe
0n in proof obligation (6.7) de
reases) is not

ne
essary for 
orre
tness, but for 
ompleteness as well as for tra
e 
orre
tness. Formally we have

the following theorem:

Theorem 4 Tra
e Corre
tness for sequential ASMs

If all proof obligations of theorem 2 hold, then the re�nement of ASM to ASM

0

is also tra
e-
orre
t
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for the 
oupling invariant INV :

(6.5) ^ (6.6) ^ (6.7) ^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

�

ASM

0

To prove the theorem we de�ne

INV

0

(st,st

0

) � INV(st,st

0

) ^ (�nal(st) $ �nal(st

0

))

and show as a �rst lemma, that for every pair of states with INV two more 
an be rea
hed in the

further run of the ASMs with INV

0

:

Lemma 3 If the proof obligations of Theorem 2 hold, and if for a state st of ASM and a tra
e s

0

of ASM

0

INV(st; s

0

[0℄) holds, then there are a tra
e of ASM starting with s[0℄ = st and numbers

i; j � 0, su
h that INV

0

(s[i℄; s

0

[j℄) holds.

Proof of Lemma 3 For the proof 4 
ases have to be 
onsidered. The two 
ases in whi
h st and

s

0

[0℄ are either both �nal states or both non�nal states are trivial with i = j := 0. If st is a �nal

state, but not s

0

[0℄, then a

ording to Lemma 2 there is an i, su
h that INV(s[i℄; s

0

[0℄) holds, and

we have either �nal(s[i℄) or ndt(s[i℄; s

0

[0℄) 6= m0. Sin
e the se
ond 
ase is impossible be
ause of

proof obligation (6.8), the proof is 
ompleted with j := 0 in the �rst 
ase. Finally we have the

fourth 
ase in whi
h s

0

[0℄ is a �nal state, but not st. This 
ase follows similarly with the dual

lemma of Lemma 2. 2

Using the lemma we are now able to prove, that whenever we have two states with INV

0

, we


an add a diagram with a positive number of steps for both ASMs, su
h that INV

0

holds again

at the end.

Lemma 4 If the proof obligations for Theorem 2 hold, and if for a state st of ASM and a tra
e s

0

of ASM

0

INV

0

(st,s

0

[0℄) holds, then there are a tra
e s of ASM with s[0℄ = st and numbers i; j > 0,

su
h that again INV

0

(s[i℄; s

0

[j℄) holds.

Proof of Lemma 4 If both �nal(st) and �nal

0

(s

0

[0℄) hold, then we have s

0

[1℄ = s

0

[0℄ and

s[1℄ = s[0℄ = st for an arbitrary tra
e s starting with st. Therefore i = j := 1 will be suÆ
ient to

prove the goal. Otherwise both states are non�nal, and we have 3 
ases:

� ndt(st,s

0

[0℄) = mn. Then (a

ording to proof obligation (6.5)) after i > 0 steps of ASM and

j > 0 steps of ASM

0

two states are rea
hed su
h that INV(s[i℄; s

0

[j℄) holds, and the goal

follows with Lemma 3 above.

� ndt(st; s

0

[0℄) = m0. Lemma 2 give i > 0, su
h that INV (s[i℄; s

0

[0℄) and ndt(s[i℄; s

0

[0℄) 6=

m0 hold. If now ndt(s[i℄; s

0

[0℄) = mn, the goal follows as in the previous 
ase. Otherwise

ndt(s[i℄; s

0

[0℄) = 0n, and the next 0:n diagram (a

ording to proof obligation (6.7)) gives

j > 0, su
h that INV (s[i℄; s

0

[j℄) holds. Again the goal is now implied by Lemma 3.

� ndt(st; s

0

[0℄) = 0n. This 
ase is dual to the previous one.

2
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Figure 6.8 : 
ommuting diagrams in the proof of tra
e 
orre
tness

Proof of Theorem 4 The proof is done by indu
tively adding m:n diagrams with m;n > 0,

that keep INV

0

valid, using Lemma 4 in the indu
tion step. Formally we 
onstru
t in the k

th

step

a tra
e s

k

and two stri
t monotone sequen
es (i

0

; : : : i

k

) and (i

0

; : : : i

k

) su
h that for all p � k

INV

0

(s

k

[i

p

℄, s

0

[j

p

℄)

holds. The tra
e s

k


ontains k 
ommuting diagrams as shown in diagram 6.8.

The indu
tion base follows from Lemma 3, sin
e in two initial states of the ASMs the 
oupling

invariant holds. The indu
tion step follows from Lemma 4 using the axiom of 
hoi
e of higher-order

logi


(8 x. 9 y. p(x,y)) ! 9 f. 8 x. p(x,f(x))

The axiom is used, to turn the possibility of adding a 
ommuting diagram (in Appendix C.3

formalized as the predi
ate p) into a fun
tion, whi
h 
onstru
ts the next tra
es

k+1

, and the next

numbers i

k+1

and j

k+1

from the previous ones. Finally we de�ne the tra
e s that is needed in the

theorem by s[k℄ := s

k

[k℄. s agrees with every s

k

until position i

k

(� k). Choosing positions i and

j in the theorem to be i

max(m;n)

and j

max(m;n)

is suÆ
ient to prove it, sin
e both are greater or

equal to m and n. 2

The indu
tive 
onstru
tion of tuples (
onsisting of s

k

, i

k

and j

k

) makes the formal proof of

tra
e 
orre
tness in KIV somewhat more elaborate than the proof of 
orre
tness. Altogether the

proof for the most general 
ase (indeterministi
 ASMs with diagrams of indeterministi
 size, whi
h

we will 
onsider in the next se
tion) required 412 proof steps and 138 intera
tions (not in
luding

Lemma 2, on whi
h the proof was based). A full listing of the theorems and lemmas proved 
an

be found in appendix C.3.

For the spe
ial 
ase, in whi
h all diagrams are 1:n or 0:n (i.e. the 
ase, in whi
h proof obligations

(6.5) and (6.6) are both provable with i := 1) all states of ASM are observable (i.e. all states of

ASM are 
onne
ted with INV to some state of ASM

0

). We 
an then de�ne a 
orollary for this 
ase

in whi
h the sequen
e (i

0

, i

1

, . . . ) is spe
ialized to be (0,1, . . . ). A similar 
orollary is possible for

the dual 
ase of m:1 and m:0 diagrams. Sin
e data re�nement (1:1 diagrams) is in the interse
tion

of both spe
ial 
ases, the 
orollaries imply that for data re�nement INV (x

n

; x

0

n

) holds for every

n.

6.4 Extensions for Indeterministi
 ASMs

In this se
tion we will 
onsider arbitrary indeterministi
 ASMs instead of sequential ones. Dis-

tributed ASMs, that were des
ribed in Se
t. 4.4 are an important example for indeterminism. Also

the extension with a CHOOSE 
onstru
t (as des
ribed in [Gur95℄, Se
t. 4.1) that 
orresponds to

the random assignment in DL results in ASMs that are indeterministi
. In the next subse
tion,

we will des
ribe how the modularization theorem of the previous se
tion 
an be adapted to inde-

terministi
 ASMs. The se
ond subse
tion then gives an example of diagrams of indeterministi


size. The adaptions dis
ussed to handle this 
ase are more 
omplex than the ones dis
ussed in the
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�rst subse
tion, sin
e there it is assumed that the size of a diagram 
an be 
omputed from the

knowledge about the initial states alone.

6.4.1 Adaption of the Modularization Theorem to Indeterministi
 ASMs

A �rst look at the basi
 ideas underlying the modularization theorem gives the impression, that

de
omposing diagrams into smaller diagrams should be possible for indeterministi
 ASMs in the

same way as for deterministi
 ones.

But if one analyses the proof of the previous se
tion, it be
omes 
lear that the determinism of

ASM was essential to express the 
ommutativity of a subdiagram as one proof obligation.

This 
an be shown by looking at proof obligation (6.5) for m:n diagrams: for an indeterministi


ASM the requirement only says that for two states x and x

0

with INV there exist numbers i, j,

su
h that for one possible su

essor state x

i

and x

0

j

of ea
h ASM INV holds again. But for


orre
tness, we must �nd for every possible su

essor state x

0

j

a suitable state x

i

with INV. For

indeterministi
 ASMs proof obligation (6.5) must therefore be generalized to

INV(x,x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! 9 j > 0. [loop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times j℄

9 i > 0. hloop if : �nal(x) then RULE(;x) times ii

INV(x, x

0

)

(6.14)

The right hand side of the impli
ation now states that there is a j, su
h that for every terminating

possibility to apply j rules of ASM

0

an i exists, su
h that after i (suitable!) rule appli
ations of

ASM the invariant holds again. That this is the suitable generalization, follows from the fa
t,

that ASMs have no nonterminating rules. Therefore all possibilities to apply j rules terminate

(statements of the form \all runs of a program terminate" require an extension of DL, see the

dis
ussion in [Gol82℄, p. 101).

The proof of 
ompleteness now requires dually the following proof obligation for m:n diagrams:

INV(x, x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! 9 i > 0. [loop if : �nal(x) then RULE(;x) times i℄

9 j > 0. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji

INV(x, x

0

)

(6.15)

For the 
ase in whi
h the next i rules appli
able in ASM state x as well as the next j rules

appli
able in ASM

0

state x

0

are deterministi
, the three 
onditions (6.5), (6.14) and (6.15) are all

equivalent. If deterministi
 rules are re�ned by other deterministi
 rules, then we have to prove

only one obligation (6.5).

The generalization for m:n diagrams 
an analogously be done for m:0 and 0:n diagrams. But

instead of two proof obligations we only get one. For 
ompleteness we have to require

INV(x, x

0

) ^ : �nal(x) ^ ndt(x, x

0

) = m0

^ exe
m0(x, x

0

) = k

! 9 i > 0. [loop if : �nal(x) then RULE(;x) times i℄

( INV(x, x

0

)

^ (: �nal(x) ^ ndt(x, x

0

) = m0 ! exe
m0(x, x

0

) < k))

(6.16)

for m:0 diagrams. For 
orre
tness the weaker 
ondition (6.6) is still suÆ
ient. Similarly the


orre
tness proof requires for 0:n diagrams
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INV(x, x

0

) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n

^ exe
0n(x, x

0

) = k

! 9 j > 0. [loop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times j℄

( INV(x, x

0

)

^ (: �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ! exe
0n(x, x

0

) < k))

(6.17)

whi
h implies the weaker 
ondition (6.7), whi
h is ne
essary for 
ompleteness. With the new proof

obligations we 
an now prove the modularization theorem for indeterministi
 ASMs:

Theorem 5 Modularization Theorem for Indeterministi
 ASMs

Given a re�nement of an indeterministi
 ASM to ASM

0

, a predi
ate INV and fun
tions ndt,

exe
0n, exe
m0, su
h that proof obligations (6.14), (6.15), (6.16), (6.17), (6.8), (6.9), (6.10), (6.11)

all hold, then the re�nement is 
orre
t and 
omplete.

(6.14) ^ (6.15) ^ (6.16) ^ (6.17)

^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

./

ASM

0

For 
orre
tness and tra
e-
orre
tness it is suÆ
ient to prove (6.14), (6.17), (6.8), (6.9), (6.10),

(6.11) and instead of (6.16) the weaker 
ondition (6.6):

(6.14) ^ (6.17) ^ (6.6)

^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

�

ASM

0

The proof of 
orre
tness and 
ompleteness of the re�nement is the same as in Se
t. 6.2.3. The

only di�eren
e is, that instead of one invariant PROP we now need two dually de�ned properties

KPROP and VPROP, one for the 
orre
tness, the other for the 
ompleteness proof:

KPROP(x, x

0

) �

9 j. [loop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times j℄

9 i. hloop if : �nal(x) then RULE(;x) times ii INV(x, x

0

)

(6.18)

VPROP(x, x

0

) �

9 i. [loop if : �nal(x) then RULE(;x) times i℄

9 j. hloop if : �nal

0

(x

0

) RULE

0

(;x

0

) times ji INV(x, x

0

)

(6.19)

It should be noted, that whenever the proof mentions x

0

k

, this state no longer denotes the

unique state that 
an be rea
hed from x

0

in k steps, but some arbitrary state whi
h 
an be

rea
hed in k steps.

6.4.2 Diagrams of Indeterministi
 Size

An analysis of the proof obligation (6.14) of the previous se
tion shows, that it does not 
apture the

most general form of a 
ommuting m:n diagram with m;n > 0 that is suÆ
ient for the 
orre
tness

of a re�nement. The reason is that the proof obligation �xes the number j of rule appli
ations of

ASM

0

, su
h that from all states x

0

j

a state x

i

must be rea
hable with INV, prior to the exe
ution

of ASM

0

.

Now it may happen, that the number j of steps ne
essary, does not only depend on the initial

state, but also on indeterministi
 \guessing" steps of ASM. To illustrate this phenomenon, let us


onsider the following two ASMs de�ned by RULE and RULE

0

.
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RULE(var x):

if x = 0 then x := 1

RULE

0

(var x):

if x = 0 then 
hoose y 2 nat in x := y +1 else

if x > 1 then x := x �1

Both are started in a state x = 0, and both terminate in a state with x = 1. In the �rst

step ASM

0

randomly 
hooses (\guesses") a natural number y, and sets x to this number plus one.

The positive value of x then is de
remented by the following rule appli
ations until 1 is rea
hed.

Obviously this is equivalent to ASM, whi
h immediately sets x to 1. Nevertheless there is no

uniform number j of ASM

0

rule appli
ations, that rea
h the �nal state (i.e. a state equivalent to

the �nal state of ASM). The number of rule appli
ations is dependent on the number of x 
hosen

in the �rst rule appli
ation.

If one looks at more 
ompli
ated re�nements, then it may be the 
ase that not only one

indeterministi
 rule appli
ations at the beginning of a diagram determines its size, but that there

are several, whi
h in
uen
e the size. Nevertheless it is suÆ
ient for 
orre
tness that for ea
h tra
e

of ASM

0

eventually a state state is rea
hed, su
h that INV holds again.

To formalize this in DL, we de�ne an Operator AF (�; ')

1

, whi
h says, that ea
h iterated

exe
ution of � will eventually lead to a state in whi
h ' holds.

Using streams, as they were de�ned in Se
t. 6.3 we 
an de�ne AF (�; ') as an abbreviation for

AF(�; ') � 8 s. (Tra
e(s) ^x = s[0℄ ! 9 m. '[x  s[m℄℄) (6.20)

In the formula, x are the variables modi�ed by �, s is a stream of values of this type, and Tra
e(s)

is de�ned by

Tra
e(s) �

8 m, x. x = s[m℄ ! h�ix = s[m +1℄

Instead of using streams, it is also possible to de�ne the operator AF (�; ') semanti
ally:

De�nition 3 A; z j= AF (�,') i� for all sequen
es of (z

0

; z

1

; . . . ) of states for whi
h z

0

= z and

z

i

[[�℄℄z

i+1

hold there is an n su
h that A; z

n

j= ' holds.

To axiomatize the new operator we de�ne two properties AF

1

(M) and AF

2

(M; z

0

) for sets

of states M . Both properties presuppose a given algebra A, a �xed program � and a formula '.

The se
ond property also assumes a �xed (initial) state z

0

.

AF

1

(M) :, ea
h state z is in M , if A; z j= ' holds, or if all su

essor states z

0

(for whi
h z[[�℄℄

A;z

0

holds) are in M

(6.21)

and

AF

2

(M; z

0

) :, ea
h state z is in M , if it is rea
hable from z

0

(i.e. it is on a tra
e

starting at z

0

) and if A; z j= ' holds or if all su
essor states are in M

(6.22)

For the two properties we have the following theorem:

Theorem 6 Chara
terisation of AF(�; ')

The set of states, for whi
h AF (�; ') holds, is equal to the interse
tion of all sets M , that have

the property AF

1

(M). In a state z

0

AF (�; ') holds, if and only if it is in the interse
tion of all

sets M with AF

2

(M; z

0

).

1

The term AF is from temporal logi
, see e.g. [Eme90℄
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Proof of Theorem 6 In the proof let M

0

be the set of all states, for whi
h AF (�; ') holds,

M

1

:=

T

fM j AF

1

(M)g, andM

2

(z

0

) :=

T

fM j AF

2

(M ,z

0

)g. Then we obviously haveAF

1

(M

0

),

whi
h implies M

1

�M

0

. Also for ea
h 
hoi
e of z

0

we have that every set M with AF

1

(M) also

has the property AF

2

(M ,z

0

), sin
e (6.21) implies (6.22) for every z

0

. So ea
h M

2

(z

0

) is a subset

of M

1

. To 
omplete the proof, it is therefore suÆ
ient to show, that ea
h z

0

0

2 M

0

is also in

M

2

(z

0

). If this were not the 
ase, i.e. z

0

0

62M

2

(z

0

) then we would have a set M with AF

2

(M ,z

0

)

that does not 
ontain z

0

0

. Now, (6.22) implies that ' does not hold in z

0

0

and that there is a

su

essor state z

0

1

whi
h is not inM either. Continuing in this way, a sequen
e z

0

0

, z

0

1

, . . . of states


an be 
onstru
ted indu
tively, that are all not in M (but rea
hable from z

0

0

!), for whi
h ' does

not hold. But this is a 
ontradi
tion to z

0

0

2 M

0

. 2

The semanti
 de�nition of AF (�,') now immediately implies the 
orre
tness of the axiom

AF(�,') $ ' _ [�℄AF(�,') (6.23)

The 
hara
terization of AF as the interse
tion of all sets M with AF

1

(M) implies that axiom

(8x. ((' _ [�℄ ) !  )) ! (AF(�,') !  ) (6.24)

is valid. The 
hara
terization with AF

2

(M ,z) implies the validity of the stronger axiom

(8 i. [loop � times i℄((' _ [�℄ ) !  )) ! (AF(�,') !  ) (6.25)

This axiom allows, to restri
t the states for whi
h (' _ [�℄ ) !  has to be shown to those,

whi
h are rea
hable from the initial state. Formulas (6.23) and (6.25) are suÆ
ient to axiomatize

AF (�; ') to prove the following theorems, so we 
an avoid to refer to streams by using (6.20).

Using the AF operator we 
an now set up proof obligations for diagrams of indeterministi
 size

by s
hemati
ally repla
ing formulas of the form \9 i: [loop � times i℄ '" with AF (�,'). This

results in the following formulas:

INV(x, x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! AF(if : �nal

0

(x

0

) then RULE

0

(;x

0

),

9 i > 0. hloop if : �nal(x) then RULE(;x) times ii

INV(x, x

0

))

(6.26)

INV(x, x

0

) ^ : �nal(x) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = mn

! AF(if : �nal(x) then RULE(;x),

9 j > 0. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji

INV(x, x

0

))

(6.27)

INV(x, x

0

) ^ : �nal(x) ^ ndt(x, x

0

) = m0 ^ exe
m0(x, x

0

) = k

! AF(if : �nal(x) then RULE(;x),

( INV(x, x

0

)

^ (: �nal(x) ^ ndt(x, x

0

) = m0 ! exe
m0(x, x

0

) < k)))

(6.28)
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INV(x, x

0

) ^ : �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ^ exe
0n(x, x

0

) = k

! AF(if : �nal

0

(x

0

) then RULE

0

(;x

0

),

( INV(x, x

0

)

^ (: �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n ! exe
0n(x, x

0

) < k)))

(6.29)

Theorem 7 Modularisation Theorem for Unbounded Indeterminism

Given a re�nement of ASM to ASM

0

, a predi
ate INV and fun
tions ndt, exe
0n, exe
m0, su
h

that all proof obligations (6.26), (6.27), (6.28), (6.29), (6.8), (6.9), (6.10), (6.11) 
an be shown,

then the re�nement is 
orre
t and 
omplete:

(6.26) ^ (6.27) ^ (6.28) ^ (6.29)

^ (6.8) ^ (6.9) ^ (6.10) ^ (6.11)

) ASM

./

ASM

0

To prove tra
e 
orre
tness it is suÆ
ient to prove (6.26), (6.28), (6.8), (6.9), (6.10), (6.11) and

instead of (6.29) the weaker property (6.7). For 
orre
tness the 
ondition, that exe
0n de
reases,


an be dropped from 
ondition (6.7).

(6.26) ^ (6.28) ^ (6.7)

^ (6.8) ^ (6.9) ^ (6.10) ^,(6.11)

) ASM

�

ASM

0

The formal proofs in KIV do not 
hange, only the de�nition of KPROP and VPROP has to

be modi�ed:

KPROP(x, x

0

) �

AF(if : �nal

0

(x

0

) then RULE

0

(;x

0

),

9 i. hloop if : �nal(x) then RULE(;x) times ii INV(x, x

0

))

VPROP(x, x

0

) �

AF(if : �nal(x) then RULE(;x),

9 j. hloop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times ji INV(x, x

0

))

Instead of the axioms (4.3) for loops the axioms (6.23) and (6.25) for the AF operator are used.

Sin
e the AF operator 
urrently is available in KIV only as an abbreviation, the proof of the

modularisation theorem requires some more e�ort as in the deterministi
 
ase (466 proof steps

and 94 intera
tions). The formal spe
i�
ations and the proved theorems and lemmas 
an be found

in appendix C.3.

We want to �nish this se
tion with some further remarks on the de�nition of the AF operator;

AF 
an not be de�ned uniformly as an abbreviation in DL (the extension of DL with streams is

not uniform, sin
e the datatype of streams depends on the types of the variables modi�ed by �),

sin
e AF (�,') is equivalent to the statement: The program AF#, de�ned by (x are the variables

o

uring in �)

AF#(;var x)

begin

if ' then

begin

�;

AF#(;x)

end

end
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always terminates. Now the fa
t, that an indeterministi
 program always terminates, 
annot be

expressed in DL in general (see [Gol82℄). But there is a spe
ial 
ase, in whi
h this is possible

nevertheless:

Theorem 8 Bounded Indeterminism

If � is an always termitating program with only bounded indeterminism, i.e. if for every state z

there are only �nitly many su

essor states z

0

with z[[�℄℄z

0

, then:

AF(�,') $ 9 j. [loop if : ' then � times j℄ '

Proof of Theorem 8 For the proof from left to right (the other dire
tion is trivial) one has to


onsider all tra
es from a �xed initial state z su
h that for all states on the tra
e : ' holds. These

tra
es form a tree stru
ture, that a

ording to the pre
ondition has no in�nite paths. Sin
e � has

only bounded indeterminism, the tree is �nitely bran
hing. Now K�onig's Lemma from set theory

(see e.g. [Knu73℄, p. 381{383) implies that the tree is �nite. The length of ea
h path (tra
e) is

bounded by the depth d of the tree. Therefore j := d+1 is suÆ
ient to prove the formula on the

right hand side of the equivalen
e.

Always terminating programs, that have only bounded indeterminism, result from the trans-

lation of distributed ASMs to DL. In 
ontrast to the ASM from the beginning of the se
tion,

whi
h 
ould 
hoose one of in�nitely many natural numbers, a distributed ASM has only bounded

indeterminism, sin
e it always 
hooses from �nitely many agents. Therefore we do not need the

AF operator in the 
ase of distributed ASMs.

For the proof obligations this means that we 
an keep the old proof obligations from the previ-

ous se
tion. Only the tests : �nal(x) resp. : �nal

0

(x

0

) of the Box-Formulas with loop 
onstru
ts

have to be repla
ed by the more 
omplex tests

: �nal(x) ^ : '

where ' is the post 
ondition of the loop. This exploits that we allow arbitrary formulas in the

tests of 
onditions.

As an example we 
onsider ASM from the beginning of the se
tion and ASM

0

with the rule:

RULE

0

(var x):

if x = 0 then 
hoose b in

if b then x := 3

else x:= 2

else if x > 1 then x := -1

ASM

0

now 
hooses the value of x indeterministi
ally to be 2 or 3 | now there are �nitely many


hoi
es. Therefore it is suÆ
ient to show

9 i. [loop if : x = 1

^ : 9 j. hloop if : x

0

= 1 then RULE

0

(; x

0

)i x = x

0

then RULE(; x)℄

9 j. hloop if : x

0

= 1 then RULE

0

(; x

0

)i x = x

0

for 
orre
tness. This is possible with i = 3 und j = 1.

6.5 Extensions for Iterated Re�nement

In this se
tion we are 
on
erned with the problem, that the systemati
 translation of a program-

ming language to assembler 
ode often requires several re�nements, that introdu
e orthogonal


on
epts. Now, in the veri�
ation of two su

essive re�nements ASM

.

ASM

0

.

ASM

00

we often

get 
oupling invariants INV and INV

0

whi
h have many 
ommon parts (we will see examples
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in the Prolog-WAM 
ase study in Se
t. 17.2 and 18). The 
ommon parts 
onsist of properties of

ASM

0

, whi
h are relevant for both equivalen
e proofs. If MINV

0

(x

0

) is a 
ommon part of INV and

INV

0

our 
urrent modularization theorem requires, that MINV

0

(x

0

) is shown in both re�nements

to be invariant in ASM

0

. In this se
tion we give a generi
 method, that allows us to avoid this

dupli
ation of proofs. We assume that the equivalen
e of ASM and ASM

0

has already been proven

with a 
oupling invariant INV. Then it is easy to see, that the formula

9x. INV(x, x

0

) (6.30)

holds in all states of ASM

0

, whi
h are at the \
orners" of 
ommuting diagrams of the re�nement.

Now usually it is simple to 
hara
terize these states by a predi
ateMINVNOW

0

(x

0

), whi
h 
onsists

of a disjun
tion of ASM

0

rule tests. Then the formula MINV

0

de�ned as

MINVNOW

0

(x

0

) ! 9x. INV(x, x

0

) (6.31)

is an invariant of ASM

0

. Sin
e every weaker formula is also an invariant, one will usually 
hoose

a formula that is implied by (6.31) and that does not mention the variables x of ASM anymore.

To make sure, that MINVNOW

0

does indeed 
hara
terize the 
orners of diagrams, we must

strengthen the 
onditions of the 
orre
tness proof of the re�nement from ASM to ASM

0

(the


ompleteness proof 
an be left un
hanged). In the following we show, how this has to be done in

the indeterministi
 
ase without diagrams of indeterministi
 size. The spe
ial 
ase of deterministi


ASMs (Diamonds instead of Boxes) and the generalization to diagrams of indeterministi
 size (AF

operator instead of Boxes) are treated as in the previous se
tions.

The two ne
essary 
hange are to strengthen the rule tests of ASM

0

with the additional 
ondition

: MINVNOW

0

(x

0

), and to additionally require MINVNOW

0

(x

0

) in the post 
ondition. This

assures, that ASM rules are applied as long as :MINVNOW

0

(x

0

) holds. For m:n and 0:n diagrams

this 
hanges 
onditions (6.14) and (6.17) to

INV(x,x

0

) ^ : �nal(x) ^ MINVNOW

0

(x

0

) ^ : �nal

0

(x

0

)

^ ndt(x, x

0

) = mn

! [if : �nal

0

(x

0

) then RULE

0

(x

0

) ℄

9 j. [loop if : �nal

0

(x

0

) ^ : MINVNOW

0

(x

0

)

then RULE

0

(x

0

) times j℄

( MINVNOW

0

(x

0

)

^ 9 i > 0. hloop if : �nal(x) then RULE(x) times ii

INV(x, x

0

))

(6.32)

INV(x, x

0

) ^ : �nal

0

(x

0

) ^ MINVNOW

0

(x

0

) ^ ndt(x, x

0

) = 0n

^ exe
0n(x, x

0

) = k

! [if : �nal

0

(x

0

) then RULE

0

(x

0

)℄

9 j > 0. [loop if : �nal

0

(x

0

) ^ : MINVNOW

0

(x

0

)

then RULE

0

(x

0

) times j℄

( MINVNOW

0

(x

0

) ^ INV(x, x

0

)

^ ( : �nal

0

(x

0

) ^ ndt(x, x

0

) = 0n

! exe
0n(x, x

0

) < k))

(6.33)

The proof obligation for m:0 diagrams (6.6) is un
hanged. With the new proof obligations the

following theorem 
an be shown.
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Theorem 9 Iterated Re�nement of ASMs.

The proof obligations (6.32), (6.33),(6.6) (6.8), (6.9), (6.10) and (6.11) imply in addition to the 
or-

re
tness and tra
e 
orre
tness of the re�nement from ASM to ASM

0

that every formulaMINV

0

(x

0

),

whi
h satis�es

(MINVNOW

0

(x

0

) ! 9x. INV(x, x

0

)) ! MINV

0

(x

0

)

is an invariant of ASM

0

. Formally it 
an be proved that

(9 st. IN(st, st'))

! 8 j. [loop if : �nal'(st') then RULE

0

(; st') times j℄ MINV

0

(x

0

)

holds

So, MINV

0

(x

0

) is true for all states during any run of ASM

0

, provided that the initial state

is related to some initial state of ASM with the IN relation (usually a trivial assumption). The

proof for re�nement 
orre
tness follows the same lines as before, only the de�nition of KPROP

has to be 
hanged to

KPROP(x, x

0

) �

9 j. [loop if : �nal

0

(x

0

) ^ : MINVNOW

0

(x

0

)

then RULE

0

(x

0

) times j℄

( MINVNOW

0

(x

0

)

^ 9 i. hloop if : �nal(x) then RULE(x) times ii

INV(x, x

0

))

(6.34)

The invarian
e of KPROP in ASM

0

immediately implies the invarian
e of

MINVNOW

0

(x

0

) ! 9x. INV(x, x

0

)

in ASM

0

. So the weaker formula MINV

0

is an invariant too.

MINV

0


an now be used in the proof obligations for the re�nement from ASM

0

to ASM

00

as an

additional pre
ondition. Using invariants as additional pre
onditions 
an be iterated by de�ning

another predi
ate MINVNOW

00

for the re�nement from ASM

0

to ASM

00

. Then the re�nement

proof will give another invariant MINV

00

for ASM

00

, whi
h 
an be used in the next re�nement.

Appendix C.4 de�nes the proof obligations for re�nement 
orre
tness for the 
ase, that we

already have an invariant MINV (x) for ASM and want to 
onstru
t an invariant MINV

0

(x) for

ASM

0

. The proof in KIV required 502 proof steps and 89 intera
tions. The proof obligations

shown above are the spe
ial 
ase, in whi
h no invariant for ASM is given (i.e. the 
ase in whi
h

MINV (x) is simply set to true).

6.6 Related Work

Most known work on equivalen
e proofs for ASMs is from the �eld of 
ompiler veri�
ation. In

most 
ases, the interpreters are not de�ned using the ASM formalism, but some are equivalent.

In work on 
ompiler veri�
ation, the 
ase of 1:1 diagrams is by far the most 
ommon 
ase. Often

several variants are dis
ussed, where IN, OUT and INV are fun
tions in one dire
tion or the other

(e.g. in [BHMY89℄). As a generalization, often the 
ase of 1:n diagrams with n > 0 is 
onsidered.

This 
ase often o

urs, when one instru
tion of the sour
e language has to be implemented by

several instru
tions of the target language. This generalization of data re�nement is only marginal,

sin
e the proof of re�nement 
orre
tness 
an still be done dire
tly by indu
tion on the number of

exe
uted ASM rules.

An example of a formal veri�
ation of a 
ompiler, in whi
h 1:n diagrams o

ur, is the veri�
ation

of the 
ompilation if an imperative programming language (GYPSY), that was translated in
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several re�nements �rst to a high-level assembler language (Piton) and then in ma
hine 
ode of

the FM8502 pro
essor. The veri�
ation whi
h was done with NQTHM is des
ribed in ([BM79℄,

[BM88℄). Sin
e NQTHM does not allow existential quanti�
ation, the number n of steps of ASM

0

that is ne
essary to simulatem steps of ASM is 
omputed by a skolem fun
tion as n = 
lo
k(m; st

0

),

where st

0

is the initial state of ASM.

A similar skolem fun
tion (num non visible) is also used in [Cyr93℄. The 
orre
tness notion

used there is tra
e 
orre
tness for sequential ASMs with respe
t to an abstra
tion fun
tion abstr.

All states of the abstra
t ASM are required to be visible. This 
orresponds to a restri
tion of

1:n with n > 0 for the possible diagram forms. The paper sket
hes two proof te
hniques. The

�rst (\speeding up the implementation ma
hine") 
orresponds to the dire
t veri�
ation of the 1:n

diagrams with the 
oupling invariant

INV(x,x

0

) � visible(x

0

) ! abstr(x

0

) = x

The used fun
tion visible I, that en
odes num non visible many steps of ASM

0

into one steps,


orresponds exa
tly to our

loop if : �nal

0

(x

0

) then RULE

0

(;x

0

) times num non visible(x

0

)

The se
ond proof te
hnique (\slowing down the Spe
i�
ation Ma
hine") splits the 1:n dia-

grams into one 1:1 and n-1 1:0 diagrams (\stuttering steps"), that are veri�ed separately. The

\termination" 
ondition used there 
orresponds to our requirement, that the exe
0n fun
tion must

de
rease. The approa
h sket
hed in the paper seems to require the expli
it introdu
tion of time in

the spe
i�
ation. The outlook of [Cyr93℄ gives as desirable extensions indeterminism, stuttering of

both ma
hines (i.e. 0:n and n:0 diagrams in one re�nement), and iterated re�nement (\hierar
hi
al

de
omposition"), that we all have treated in this work.

Arbitrary m:n diagrams with m;n > 0 are roughly sket
hed in [M
G72℄. The paper assumes

determinism and a 
oupling invariant INV (x; x

0

) that has the spe
ial form f

1

(x) = f

2

(x

0

).

A formal treatment of m:n diagrams with m;n > 0 has been worked out in parallel to this

work in [Dol98℄. The paper generalizes the approa
h of [Cyr93℄ by using two num non visible

fun
tions (one for ea
h ASM). Indeterminism is 
onsidered, but only bounded indeterminism

(for unbounded indeterminism it is impossible to de�ne a fun
tion num non visible). Also still

abstra
tion fun
tions are used.

Another new work on ASM re�nement in 
ompiler veri�
ation is [ZG97℄. The 
orre
tness

notion given there is only de�ned semanti
ally (there is no logi
 for formal veri�
ation). As the

only approa
h known to us it uses a relation � instead of an abstra
tion fun
tion between the

states of both ASMs. The relation 
orresponds to the semanti
s of our 
oupling invariant INV.

The 
orre
tness notion is based on equivalen
e (modulo an abstra
tion fun
tion) of the output

that is made during two ASM runs. Output is de�ned impli
itly as 
hanges of the values of 
ertain

output variables. To formalize this 
orre
tness notion in our setting, it is ne
essary to modify the

ASMs so that they 
olle
t the outputs in a list outputlist (we introdu
e a \history variable" in the

sense of [AL91℄). Then the 
orre
tness notion of [ZG97℄ is equivalent to tra
e 
orre
tness with

IN(x,x

0

) � outputlist = outputlist

0

= [℄

OUT(x,x

0

) � map(abstr,outputlist

0

)= outputlist

(this 
orresponds to the 
onditions of Theorem 4 for the relation �). [ZG97℄ also gives a

modularization theorem (Theorem 5, \Horizontal De
omposition"). The idea is also to de
ompose

the whole diagram into subdiagrams. The de
omposition requires, that ea
h subdiagram 
ontains

at most one rule that produ
es output. If one depi
ts a rule appli
ation with output by a 
ontinuous

arrow, an arbitrary number of rule appli
ations with no output as a dotted arrow, then Fig. 6.9

gives a visualization of the proof obligations.
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Figure 6.9 : Modularization a

ording to [ZG97℄
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Figure 6.10 In
orre
t re�nement with unbounded indeterminism

But the theorem is not 
orre
t for several reasons: First, it is possible to verify in
orre
t re�ne-

ments with in�nite sequen
es of m:0 diagrams like in diagram 6.6 (see Se
t. 6.2.2). Se
ond, some

impli
it assumptions are missing. Finally, the formalization (a

idently) ex
ludes 1:n diagrams

with n > 1.

The assumptions that are present in the examples, but not expli
itly stated are, that external

fun
tions do not 
ause unbounded indeterminism and that the outputs are 
olle
ted in an output-

list as above. Without these assumptions the 
ounter examples shown in Fig. 6.10 and in Fig. 6.11


an be 
onstru
ted: the �gures present the ASMs as automata with two program variables. The

�rst stores the internal state, the se
ond stores the 
urrent output. Figure 6.11 shows the unpleas-

ant possibilities of unbounded indeterminism, that made the introdu
tion of the AF operator in

Se
t. 6.4 ne
essary. Figure 6.10 exploits, that the possibility of a state transition from q

0

1

to q

0

2

with one output does not imply that there is one output on all paths from q

0

1

to q

0

2

.

m:n diagrams with n > 1 (espe
ially 1:n diagrams whi
h often show up in appli
ations) are

ruled out by the formalization, sin
e it is required that the diagrams shown in Fig. 6.9 
ommute

for every q

0

2

(espe
ially for ea
h dire
t su

essor of q

0

1

) and not only for some arbitrary su

essor

on ea
h path starting at q

0

1

, as our theorem requires.

If one adds the impli
it assumptions to the theorem and ex
ludes in�nite sequen
es of m:0

diagrams, then it 
an be shown that Theorem 5 from [ZG97℄ is a spe
ial 
ase of Theorem 5, p.

35. The problem of in�nite sequen
es of 0:n diagrams does not o

ur, sin
e the theorem does

allow only 0:n diagrams that 
an be extended to a 1:n diagram: therefore we 
an always 
hoose

ndt(x; x

0

) 6= 0n.

(q

0

1

; 0)

//
(q

0

; 2)

//
(q

0

2

; 2) (q

0

1

; 0)

//
77

(q

0

; 2)

//
(q

0

2

; 2)

Figure 6.11 In
orre
t re�nement with no outputlist
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Chapter 7

Peephole Optimization

In this se
tion we will apply the modularization theorem for 
orre
tness proofs of ASM re�ne-

ments to \peephole optimization" of program 
ode (usually assembler 
ode). The idea of su
h an

optimization is to walk with a window of �xed size (the \peephole") over a pie
e of program 
ode,

thereby repla
ing ineÆ
ient sequen
es of instru
tions with more eÆ
ient ones.

Se
t. 7.1 �rst gives a general approa
h for the 
ase, when the optimized instru
tions do not


ontain any jump instru
tions (but the whole 
ode may 
ontain jumps). It is shown, that the


onditions ne
essary for 
orre
tness 
an be de�ned simply by instantiating the modularization

theorem for ASM re�nements.

The idea of a general approa
h for the veri�
ation of peephole optimizations was taken from

[DvHPR97℄, whi
h 
onsists of 2 parts. The �rst part formalizes peephole optimization and proves,

that 
ertain proof obligations are suÆ
ient for 
orre
tness. The se
ond part then veri�es a number

of example optimizations, whi
h were taken from [TvS82℄.

Se
t. 7.2 shows, that our approa
h generalizes the one given in [DvHPR97℄. Although both

approa
hes are generi
 in the sense, that they do not �x a set of instru
tions, [DvHPR97℄ requires

the program 
ode to be a list of instru
tions whi
h are exe
uted sequentially. This is not realisti
,

sin
e real assembler 
ode always 
ontains jump instru
tions. The restri
tion to linear 
ode without

jumps 
an not be removed easily sin
e the proof for 
orre
tness of peephole optimization essentially

depends on indu
tion over the length of the instru
tion list.

In 
ontrast to the restri
tion to linear 
ode for the approa
h in [DvHPR97℄, we show that our

approa
h 
an also handle the examples with jump instru
tion from [TvS82℄ by just a minimal


hange to the 
oupling invariant. The reason is, that the examples all fall into the spe
ial 
ase,

where only the last instru
tion of an optimized instru
tion sequen
e is a jump instru
tion. Finally

we dis
uss with a simple example, that optimizations of instru
tion sequen
es with jumps in the

middle 
an also be veri�ed, by simply splitting the diagrams, whi
h are required to 
ommute, at

the jump instru
tions.

7.1 Formalization of Peephole Optimization

We �rst need to formalize a general interpreter as an ASM. We assume, that the program 
ode is

stored in a memory db (we do not 
onsider self-modifying 
ode, therefore db is a 
onstant), and

that with 
ode(p
,db) we 
an sele
t the instru
tion at an address stored in a program 
ounter p
.

An ASM rule RULE exe
utes a given instru
tion i = 
ode(p
;db), and thereby modi�es a program

state st and the program 
ounter p
. To allow erroneous exe
ution of instru
tions (e.g. division

by zero, or an attempt to get the top element of an empty sta
k) we assume that a predi
ate

ok(p
,st,db) is de�ned. The predi
ate should hold, i� exe
ution of the next instru
tion 
ode(p
,db)

does not lead to an error. We assume that RULE is not appli
able, when ok(p
,st,db) does not

hold. Finally, we assume a spe
ial instru
tion halt, whi
h indi
ates the end of the program.

Sin
e we want to 
onsider 
ode with jump instru
tions, we do not require that ea
h instru
tion

45
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in
rements p
. Nevertheless su
h instru
tions, 
alled linear instru
tions, are important in the

following. We de�ne the following auxiliary fun
tions and predi
ates for them:

instrs(p
,db,n) = [
ode(p
,db), . . . , 
ode(p
 +n�1 ,db)℄

lin(i)

$ 8 p
,p


0

,db,st. 
ode(p
,db) = i ^ p
 = p


0

^ ok(p
,st,db)

! hRULE#(db;p
,st)i p
 = p


0

+1

linear(p
,db,n) $ 8 k. 0 �k < n. lin(p
 + k,db)

instrs(p
,db,n) 
omputes the list of n instru
tions that follow p
. lin(i) states, that the instru
tion i

is linear, i.e. that it will in
rement p
 regardless of the state in whi
h it is exe
uted. linear(p
,db,n)

says, that all instru
tions in instrs(p
,db,n) are linear, and therefore will be exe
uted in the inter-

preter in this order. Su
h linear instru
tion sequen
es will be repla
ed by more eÆ
ient ones in

peephole optimization.

For the de�nition of peephole optimization we de�ne a predi
ate peephole(st

1

, p


1

,db

1

,k

1

, il

2

),

that should hold i� the instru
tions instrs(db

1

,p


1

,k

1

) that are exe
uted in state db

1

,st

1

,p


1

of the

ASM 
an be equivalently repla
ed by il

2

. If k

2

denotes the length of il

2

, then the requirement


orresponds intuitively to the 
ommutativity of the k

1

:k

2

diagram

db

1

; st

1

; p


1

//
OO

��

k

1

steps

//
st

1 ``

  B
BB

BB
BB

B

db

2

; st

1

; p


1

//
k

2

steps

// //
st

2

Formalized in Dynami
 Logi
 this is the requirement, that

I(db

1

,st

0

,p


0

)

^ 9 i. hloop RULE(db

1

;p


0

,st

0

) times ii (p


0

=p


1

^ st

0

=st

1

)

^ peephole(st

1

,p


1

,db

1

,k

1

,il

2

)

^ db

2

= repl(p


1

,db

1

,k

1

, il

2

)

^ p


1

= p


2

^ st

1

= st

2

! linear(instrs(p


1

,db

1

,k

1

))

^ linear(il

2

)

^ hloop RULE(db

1

;p


1

,st

1

) times k

1

i

hloop RULE(db

2

;p


2

,st

2

) times k

2

i st

1

= st

2

(7.1)

holds. The pre
ondition

I(db

1

,st

0

,p


0

)

^ 9 i. hloop RULE(db

1

;p


0

,st

0

) times ii (p


0

= p


1

^ st

0

= st

1

)

in the formula states, that the state (p


1

,st

1

) is rea
hable from an initial state (st

0

,p


0

) spe
i�ed

with a predi
ate I . The pre
ondition is often unne
essary, sin
e usually the diagram 
ommutes

for all states (p


1

,st

1

).

The linearity 
onditions for instrs(p


1

,db

1

,k

1

) resp. il

2

make sure, that the instru
tions are

really exe
uted before resp. after the optimization. Fun
tion repl(p


1

,db

1

,k

1

,il

2

) a
tually repla
es

the instru
tions instrs(p


1

,db

1

,k

1

) by il

2

. We must have
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db

2

= repl(p


1

,db

1

,k

1

, il

2

)

! 8 k. k < k

2

! 
ode(p


1

+k,db

2

) = get(k,il

2

)

(7.2)

This de�nition says, that the new program stores the new instru
tions at the addresses p
, p


+1, . . . (p


1

+k

2

-1). But this is not suÆ
ient. We must also make sure, that the resulting 
ode

has no gaps by moving 
ode by k

2

�k

1

. Also the addresses of jump instru
tions must be updated.

Sin
e we do not want to go into details of jump instru
tions, we simply require for the result of

repl, that ea
h moved instru
tion at p


0

= shift(p
;p


1

; k

2

� k

1

) has the same e�e
t as the original

instru
tion at p
:

db

2

= repl(p


1

,db

1

,k

1

, il

2

)

^ (p
 < p


1

_ p
 � p


1

+ k

1

)

^ p


0

= shift(p
,p


1

,k

2

� k

1

) ^ st = st

0

! hRULE(db

1

;p
,st)i hRULE(db

2

;p


0

,st

0

)i

(p


0

= shift(p
,p


1

, k

2

� k

1

) ^ st = st

0

)

(7.3)

In the formula shift is de�ned as

shift(p
; p


1

; n) =

�

p
, when p
 < p


1

p
 + n, otherwise

For some peephole optimization to be appli
able on db

1

, p


1

and il

2

we require that the pred-

i
ate peephole(st,p
,db

1

,k

1

,il

2

) holds in every state st, the ASM 
an rea
h. Formally

IN(db

1

,p


0

,st

0

)

^ 9 i. hloop RULE(db;p


0

,st

0

) times ii (p


0

= p


1

^ st

0

= st

1

)

! peephole(st

1

,p


1

,db

1

,k

1

,il

2

))

(7.4)

(7.1) gives a 
ondition for the optimization of a sequen
e of instru
tions. It is lo
al, sin
e

only the instru
tions at the addresses between p


1

and p


1

+ k

1

are relevant. For program 
ode,

that does not 
ontain jump instru
tions, this 
ondition is already suÆ
ient to assure, that the


onsidered instru
tions 
an be repla
ed by more eÆ
ient ones in every program. But for programs

with jumps we need an additional 
ondition: No instru
tion in the surrounding program must

jump in the middle of the optimized 
ode. This 
an be formalized with a predi
ate notjumpedto:

notjumpedto(p


1

,k

1

,db)

$ 8 st, p
. : p


1

� p
 < p


1

+ k

1

! hRULE(db;p
,p
)i : p


1

< p
 < p


1

+ k

1

(7.5)

Now we 
an prove the following theorem:

Theorem 10 Given a general interpreter formalized as an ASM (as above), a predi
ate peephole

and values db

1

, p


1

, k

1

, il

2

su
h that (7.1), (7.4) and notjumpedto(p


1

; k

1

;db

1

) hold, then the

modi�
ation of db

1

to repl(db

1

,p


1

,k

1

,il

2

) (where repl is spe
i�ed as in (7.2) and (7.3) is a 
orre
t

and 
omplete re�nement of ASM.

For the proof we de
ompose runs of both the original ASM with 
ode db

1

and of the optimized

ASM with 
ode db

2

= repl(db

1

,p


1

,k

1

,il

2

) into 1:1 diagrams as long as p
 6= p


1

, and into a k

1

:k

2

diagram for the optimized Code. As the 
oupling invariant we use the 
onjun
tion of the following

four formulas.
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9 p


0

,st

0

,i. I(db

0

,p


0

,st

0

)

^ hloop RULE(db

0

;p


0

,st

0

) times ii

(p


0

= p


1

^ st

0

= st

1

)

db

2

= repl(db

1

,p


1

,k

1

,il

2

)

: p


1

< p
 < p


1

+ k

1

p


0

= shift(p
,p


1

,k

2

� k

1

) ^ st

0

= st

A

ording to the proof obligations for the equivalen
e of ASMs from Chapter 6, we have to

show that all four formulas are invariant in the following k

1

:k

2

diagram, whenever p
 = p


1

, and

we have to show that they are invariant in the following 1:1 diagram otherwise.

For the �rst two formulas this is simple. The �rst is a trivial invariant of the original ASM,

whi
h says that ea
h intermediate state is rea
hable from the initial state.

The se
ond formula is the 
ompiler assumption between the program 
odes. It is obviously

invariant, sin
e it does mention values that are modi�ed by the ASM.

The third formula states, that p
 is not within the optimized pie
e of 
ode (p
 = p


1

is possible),

and the fourth gives the 
onne
tion between the states (p
,st) and (p


0

,st

0

) derof the two ASMs.

Their invarian
e follows from (7.1) for a k

1

:k

2

diagram, sin
e all pre
onditions are part of

the invariant, ex
ept peephole(st,p


1

,db

1

,k

1

,il

2

), whi
h follows dire
tly from (7.4): linearity of the

instru
tions implies that at the end of the diagram p
 = p


1

+ k

1

and p


0

= p


1

+ k

2

, so we have

indeed p


0

= shift(p
,p


1

,k

2

� k

1

).

For a 1:1 diagram the third formula is invariant be
ause we required notjumpedto(p


1

; k

1

;db

1

)

(no jumps into the optimized 
ode), and the invarian
e of the fourth formula is due to assumption

(7.3) for the repl fun
tion.

Finally, to show all proof obligations de�ned in Chapter 6 for the equivalen
e of the ASMs,

we have to show that the 
oupling invariant holds in initial states. The only nontrivial formula

of the 
oupling invariant here is the third, so we just have the requirement that ASM does not

start exe
ution within the optimized 
ode. Note that m:0 or 0:n diagrams, whi
h o

ur for k

1

= 0

or k

2

= 0, are no problem here, sin
e several su

essive ones are impossible. Also note, that the


oupling invariant trivially implies that both ASMs �nish in a state with st = st

0

.

Summarizing, 
orre
tness of peephole optimization is a spe
ial 
ase of the modularization

theorem for ASM re�nements, when the optimized 
ode does not 
ontain jump instru
tions. Jumps

in the optimized 
ode will be 
onsidered in the se
tion after the next.

7.2 Comparison to the Formalization in PVS

In this se
tion we give a short 
omparison of our formalization to the one de�ned in [DvHPR97℄.

A main te
hni
al di�eren
e is that [DvHPR97℄ gives a formalization of the semanti
s of an in-

terpreter (fun
tion interprete) and the equivalen
e of interpreters (predi
ate �) that is spe
ialized

for peephole optimization, while we have just instantiated the general notions of ASMs and ASM

re�nement.

A severe restri
tion of the formalization in [DvHPR97℄ is, that only program 
ode without

jump instru
tions is 
onsidered. The restri
tion allows to avoid a program 
ounter p
, and by

formalizing program 
ode as a list of instru
tions, proofs by indu
tion over the length of the list

are possible. Su
h an indu
tion is not possible when jump instru
tions are present.

The ne
essary 
onditions for the 
orre
tness of peephole optimization are the same for both

formalizations, ex
ept that our formalization has the two obvious additional requirements

� The program must not start in the middle of optimized 
ode.
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� There must not be jump instru
tions that point into optimized 
ode.

that result from the generalization to 
ode with jumps.

Some te
hni
al points of our de�nition are less restri
tive (but also less 
on
rete) than in

[DvHPR97℄. We have avoided to de�ne s
hemes for optimization rules by giving a more pre
ise

de�nition of the peephole predi
ate. We therefore de�ne here, how to spe
ialize our de�nitions to

the ones given in [DvHPR97℄:

A rule s
heme from [DvHPR97℄, p. 4, Fig. 1 
orresponds to a spe
ialization of the ASM rule

to the form

if 
ode(p
,db) = i

k

^ admissible(i

k

)(st)

then p
,st := e�e
t(i

k

)(p
 +1,st)

for every instru
tion i

k

. So it is 
lear, that the globally de�ned fun
tions admissible and e�e
t

are de�ned only to en
ode the semanti
s of a deterministi
 rule appli
ation fun
tionally (our

formalization avoids this restri
tion to a deterministi
 ASM). The impli
it restri
tion, that p


is in
remented, is given expli
itly in our ASM rule. Our predi
ate ok(p
,st,db) 
orresponds to

admissible(
ode(p
,db),p
,st).

The fun
tion interprete 
orresponds to the semanti
s of the ASM: if the result is the empty

set, then our formalization stops in a state st, where ok(p
,st,db) does not holds. The de�nition of

the \==" in Fig. 4, p. 5 is identi
al to our de�nition of equivalen
e of ASMs, where IN and OUT

are identity on p
 (modulo shift) and st.

Our predi
ate peephole is very abstra
t. [DvHPR97℄ gives a more 
on
rete de�nition: It is

based on a list of rules [R

1

, . . .R

n

℄ with the form R

i

= (p

i

; r

i

; 


i

). Ea
h rule 
onsists of three

parts:

� A �rst list p

i

(\patterns") of instru
tions, that should be repla
ed.

� A se
ond list r

i

(\repla
ements") of instru
tions, that will repla
e the p

i

.

� A predi
ate 


i

(\
ondition"), that 
hara
terizes the states, in whi
h the rule is appli
able.

This 
orresponds in our formalization to a de�nition of n predi
ates peephole

1

, . . . , peephole

n

de�ned by

peephole

i

(st,p
,db,k

1

,il

2

) : $ instrs(p
,db,k

1

) = p

i

^ il

2

= r

i

^ 


i

(st)

The rules are applied sequentially to the initial program (the 
orre
tness of all optimizations is then

by transitivity of program equivalen
e). We thought the de�nition in [DvHPR97℄ to be too spe
i�
,

sin
e there is no pattern mat
hing done between the patterns of a rule and the a
tual 
ode (it

seems that for every instan
e a new rule has to be given), and the predi
ates 


i

do not mention the


ode that is exe
uted before p
 is rea
hed: whether the test for 


i

holds, and rule R

i


an be applied,


an be de
ided only by inspe
ting all rea
hable states, whi
h is pra
ti
ally impossible. In 
ontrast,

our de�nition of a peephole predi
ate makes it possible to use arbitrary synta
ti
 
onditions in the

appli
ability 
ondition. Also arbitrary patterns and pattern mat
hing are still possible. Sin
e the


on
rete de�nition of pattern mat
hing as well as synta
ti
 appli
ability 
onditions depend on the


on
rete program 
ode, we have left the de�nition of the predi
ate peephole abstra
t.

7.3 Optimizations of Jump Instru
tions

In this se
tion we 
onsider optimizations of instru
tions with jumps. We will not give a generi


method for veri�
ation, but the given examples should make it obvious, that jump instru
tions


an be easily handled using the modularization theorem. Only the number of 
ommuting diagrams

that whi
h to be 
onsidered in
reases with the number of jump instru
tions.
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A spe
ial 
ase are the 
on
rete optimizations of a sta
k ma
hine given in [TvS82℄, that deal

with jump instru
tions and therefore 
ould not be 
onsidered in [DvHPR97℄. The optimizations

only 
onsider instru
tion sequen
es instrs(p


1

,db

1

,k

1

) and il

2

, where only the last instru
tion is a

jump. For this 
ase, it is suÆ
ient to generalize 
orre
tness 
ondition (7.1) to

I(db

1

,st

0

,p


0

)

^ 9 i. hloop RULE(db

1

;p


0

,st

0

) times ii (p


0

= p


1

^ st

0

= st

1

)

^ peephole(st

1

,p


1

,db

1

,k

1

,il

2

) ^ db

2

= repl(p


1

,db

1

,k

1

, il

2

)

^ p


1

= p


2

^ p


1

= p
 ^ st

1

= st

2

! k

1

6= 0 ^ linear(instrs(p


1

,db

1

,k

1

�1))

^ il

2

6= [℄ ^ linear(butlast(il

2

))

^ hloop RULE(db

1

;p


1

,st

1

) times k

1

i

hloop RULE(db

2

;p


2

,st

2

) times k

2

i

(st

1

= st

2

^ p


2

= shift(p


1

,p
,k

2

� k

1

))

(7.6)

(butlast removes the last element of a list). The new 
ondition is still suÆ
ient to guarantee the


ommutativity of the k

1

:k

2

diagram with un
hanged 
oupling invariant. The only new requirement

in the generalized 
ondition is, that the two last instru
tions jump to the same address (modulo

shift). That the jump address is not within the optimized 
ode already follows from (7.5).

Finally let us give a simple example for peephole optimization, where not only the last in-

stru
tion of the optimized sequen
e is a jump. The example should make it obvious, that we then

have to verify several 
ommuting diagrams, that result from de
omposing the k

1

:k

2

diagram into

subdiagrams at every jump instru
tion.

For the example we assume that it is possible to sele
t an integer value from the state st

with get(l,st) (typi
ally l is a lo
ation in memory and get is memory a

ess). Three typi
al jump

instru
tions would then be BZE(l; n), BNZ(l; n), and BRA(n) (bran
h on zero, bran
h on not

zero, bran
h un
onditionally) with ASM rules de�ned by

if 
ode(p
,db) = BZE(l,n)

then if get(l,st) = 0

then p
 := p
 + n

else p
 := p
 + 1

if 
ode(p
,db) = BNZ(l,n)

then if get(l,st) = 0

then p
 := p
 + 1

else p
 := p
 + n

if 
ode(p
,db) = BRA(n)

then p
 := p
 + n

An obvious peephole optimization then is to repla
e il

1

= [BZE(l; 2) BRA(n)℄ with il

2

=

[BNZ(l; n � 1)℄ whenever n > 0. If instr(p


1

,db

1

,2) = il

1

and neither the program start is at

p


1

+1 nor jumps to this address exist, then this is a 
orre
t optimization. For the veri�
ation we

need the same 
oupling invariant as in the previous se
tion and the proof for the 
ase p
 6= p


1

is un
hanged. For the veri�
ation of the optimized we now need two 
ommuting diagrams: A 1:1

diagram for the 
ase that get(l,st) = 0, and a 2:1 diagram for get(l,st) 6= 0. The formal proof, that

both diagrams 
ommutate, i.e. that

INV(db

1

,p
,st,db

2

,p


0

,st

0

) ^ p
 = p


1

^ get(l,st) = 0

! hRULE(db

1

;p
,st)i hRULE(db

2

;p


0

,st

0

)i

INV(db

1

,p
,st,db

2

,p


0

,st

0

)

and
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INV(db

1

,p
,st,db

2

,p


0

,st

0

) ^ p
 = p


1

^ get(l,st) 6= 0

! hRULE(db

1

;p
,st)i hRULE(db

1

;p
,st)i hRULE(db

2

;p


0

,st

0

)i

INV(db

1

,p
,st,db

2

,p


0

,st

0

).

hold, is easy.
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Chapter 8

Summary of Part I

The �rst part of this work was 
onsidered with the development of tool support for the spe
i�
a-

tion language of ASMs and the de�nition of generi
 proof obligation for the 
orre
tness of ASM

re�nements. Three main results were a
hieved:

First, we de�ned a natural embedding of the spe
i�
ation language of ASMs into Dynami


Logi
, that allows to formalize properties of ASMs, espe
ially the 
orre
tness of re�nements.

With this result, tool supported dedu
tion for ASMs be
omes possible.

Se
ond, we developed a theory for the modularization of 
orre
tness proofs for ASM re�ne-

ments. The veri�ed modularization theorems generalize the results known from literature. Data

re�nement and Peephole optimization from 
ompiler veri�
ation are spe
ial 
ases of the theorem.

Third, the results were integrated into the KIV system. The modularization theorems were

veri�ed in KIV and several extensions were made to the spe
i�
ation language and the dedu
tion


omponent, to get eÆ
ient tool support for ASMs.
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Part II

The Prolog-WAM Case Study
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Chapter 9

Introdu
tion and Overview

The subje
t of the Prolog-WAM 
ase study is the 
orre
tness proof for the 
ompilation of Prolog

programs into byte 
ode of the Warren Abstra
t Ma
hine (WAM). The WAM (and variants) today

is the basis of all popular Prolog implementations.

Our work is based on a systemati
 presentation of the 
ompilation as 12 ASM re�nements

in [BR95℄. The starting point is a Prolog interpreter, spe
i�ed as an ASM, that des
ribes the

operational semanti
s of the 
ore of Prolog (
lauses with !, true and fail) as the 
onstru
tion of a

sear
h tree. For pure Prolog the semanti
s is identi
al to the tree 
onstru
ted by SLD resolution.

The extension of the ASM to full Prolog (in [BR94℄) has be
ome an ISO standard for the de�nition

of Prolog semanti
s.

The �rst Prolog interpreter, we will 
all ASM1 in the following, is then stepwise re�ned to an

interpreter ASM13 of byte 
ode of the WAM. In parallel to this transformation the Prolog program

is 
ompiled. On intermediate levels the 
ode 
onsists partially of not yet 
ompiled Prolog 
lauses,

partially already of WAM instru
tions. Ea
h re�nement introdu
es ma
hine 
on
epts like sta
ks,

registers, pointer stru
tures et
.. The re�nements are 
onstru
ted su
h that they are orthogonal:

The 
ompilation of 
lause sele
tion, of single 
lauses and of literals are ea
h treated in separate

re�nement steps. Besides the pure 
ompilation steps there are also re�nements that optimize the

data representation. The byte 
ode instru
tions used in the �nal ASM13 are very simple. They


onsist ea
h of a number of register transfers that 
an easily be translated into the assembler 
ode

of any pro
essor.

The main goals in the Prolog-WAM 
ase study were:

� The formal spe
i�
ation of the 
ompilation steps and 
ompiler assumptions given in [BR95℄.

� The formalization of the 
orre
tness of re�nements.

� To de�ne a suitable proof methodology for the veri�
ation of re�nement 
orre
tness.

� The development of suitable support in the KIV system, that allows the eÆ
ient demonstra-

tion of the 
orre
tness of the re�nement steps.

� To formally prove the 
orre
tness arguments or to �nd errors and to remedy them.

Main parts of the theory in Chapters 4 and 6 were developed to a
hieve the �rst two goals.

Development of suitable proof support required many improvements in KIV, that were summa-

rized in se
tion 3.3. The 
omparison with the 
ase study in Isabelle in Se
t. 20 shows, that the

proof support 
an 
ompete with other systems. Nevertheless the formal veri�
ation of an ASM

re�nement still requires a man month on average. In this work 8 of the 12 re�nements have been

veri�ed.

A substantial result of the veri�
ation was a 
on�rmation of the work done in [BR95℄. Until

now, no major 
hanges were ne
essary for the ASMs. Also the ideas for the 
orre
tness proofs

were 
orre
t for all re�nements.

57



58 CHAPTER 9. INTRODUCTION AND OVERVIEW

Nevertheless even the veri�
ation of the �rst re�nement showed, that a formal veri�
ation

of re�nement 
orre
tness requires to make expli
it a large number of properties, that were only

impli
itly assumed (
ompare the �rst approa
h at the beginning of Se
t. 11.2 with the �nal 
oupling

invariant at the end). Although many of these properties are easy to �nd, we found that there is

a large gap between the mathemati
al argument for 
orre
tness and a fully formal proof.

Therefore it is not too surprising, that a large number of smaller problems were found in the

ASMs as well as in the 
ompiler assumptions, that did not show up in the informal analysis in

[BR95℄. The most important problems were:

� ASM3 and ASM4 
ontain a not intended indeterminism, that must removed by a stronger

rule test (see 14.2)

� In the swit
hing instru
tions the ba
ktra
king 
ase was missing (see 15.2)

� The unify instru
tion of ASM9 used the renaming index of the �rst instead of the se
ond

environment (see 17.1)

� The 
ompiler assumptions for several re�nements were des
ribed 
orre
tly in the text, but

the formalization had to be made more pre
ise (see 14.2,15.2)

� ASM1 { ASM8 answer the query ?- p(q) positively, given the two 
lauses p(X) :- X. and

q.. But in the translation of 
lauses to 
ode (i.e. in the re�nement to ASM9) 
lause bodies

may no longer 
ontain variables or lists (see 17.2).

All problems were relatively easy to 
orre
t. Nevertheless the result demonstrates, that even

a very 
areful informal analysis should be 
omplemented by a formal 
orre
tness proof, if the goal

is a 
orre
t 
ompiler.

The following 
hapters dis
uss the 
orre
tness proofs in detail. They are organized as follows:

The next 
hapter des
ribes the Prolog interpreter from [BR95℄. The following 
hapters then


onsist of two se
tions: the �rst spe
i�es the re�nement of ASM of the previous 
hapter to a new

ASM. This se
tion largely follows [BR95℄. Where already the formalization required 
orre
tions

or deviations, they are explained in this se
tion. The se
ond se
tion then des
ribes the formal

veri�
ation of the re�nement, the experien
es learned thereby, and the 
orre
tions of ASMs and


ompiler assumptions that resulted from the veri�
ation.

We always have tried, to explain the operations needed in ea
h re�nement and in the 
oupling

invariants immediately. If any notations should remain un
lear, they 
an be looked up in the full

algebrai
 spe
i�
ation in KIV given in Appendix E.

In the following we will denote with i=j the re�nement from ASMi to ASMj. In every se
tion

on the veri�
ation of re�nement i=j we will also use the 
onvention to name state variables of

ASMi (to be pre
ise: state variables that resulted from the translation of ASMi to DL) with x

and the state variables of ASMj with x

0

. We always assume the ve
tors to be disjoint. The rule

(in the sense of se
tion 2.2) of ASMi and ASMj will be named RULE and RULE

0

and always

have the form

RULE(var x) begin

if "

1

then RULE

1

(x) else

if "

2

then RULE

2

(x) else

.

.

.

if "

n

then RULE

n

(x) end

RULE

1

, RULE

2

, . . . , RULE

n

are rules in the sense of 2.3 and we will use the term \rule" in the

following only with this meaning.



Chapter 10

ASM1 : A Prolog Interpreter

The two most important data stru
tures needed to represent a Prolog 
omputation state are the

sequen
e of Prolog literals still to be exe
uted and the 
urrent substitution. This state is modi�ed

by

1. unifying the �rst literal of the sequen
e, 
alled a
t (a
tivator), with the head of a 
lause

2. repla
ing a
t by the body of that 
lause

3. applying the unifying substitution to the resulting sequen
e and

4. 
omposing the unifying substitution with the `old' substitution.

If a uni�
ation fails, alternative 
lauses have to be 
hosen by ba
ktra
king. Due to this the

interpreter has to keep a re
ord of the former 
omputation states and the 
orresponding 
lause


hoi
e alternatives. This history is usually represented as a sear
h tree, that is 
onstru
ted by the

operations above. Ea
h node represents a 
omputation state, and the 
hildren of a node are the

possible su

essor states, that 
an be rea
hed by uni�
ation with the di�erent 
lause heads.

In an ASM we represent a sear
h by a set of nodes, 
onne
ted from leaves to the root by a

fun
tion father. The root node is denoted by ?, father is unde�ned for this node. Information on

alternative 
lauses, whi
h may be tried at a node n, is stored as a list 
ands(n) of 
andidate nodes.

Ea
h node in this list refers via a fun
tion 
ll to a 
lause line in the Prolog program. Suitable

initial lists of 
andidates are 
onstru
ted with the help of a fun
tion pro
def (for the spe
i�
ation

of pro
def see later on).

The 
urrent 
omputation state of the interpreter is stored in a program variable (i.e. a 0-ary

dynami
 fun
tion), the 
urrnode. The 
omputation state of a node n 
ould be represented as the

result of two fun
tions glseq [n℄ (goal sequent) and sub[n℄.

But to handle the 
ut instru
tion of Prolog, an extension of this state representation is required.

A 
ut updates the father of the 
urrent node to the father of that 
omputation state whose a
t


aused the introdu
tion of the 
onsidered 
ut. For this we have to `remember' where a 
ut has

been introdu
ed. An uniform solution is to atta
h the father of the (old) 
urrnode to ea
h 
lause

body being introdu
ed to the literal sequen
e. This atta
hment divides the sequen
e of literals

into subsequents, 
alled goals, ea
h de
orated by one node, 
alled the 
utpoint of the goal. The

resulting (de
orated goal) sequen
e de
glseq looks as follows

de
glseq = [ h [

a
t

z}|{

g

1;1

; g

1;2

; : : : ; g

1;k

1

℄

| {z }

goal

;


tpt

z}|{

n

1

i ; : : : ; h [ g

m;1

; : : : ; g

m;k

m

℄ ; n

m

i ℄


ont = [ h [ g

1;2

; : : : ; g

1;k

1

℄ ; n

1

i ; : : : ; h [ g

m;1

; : : : ; g

m;k

m

℄ ; n

m

i ℄

The 
ontinuation 
ont, whi
h is the de
glseq without a
t, will later on help to des
ribe the 
on-

stru
tion of a new de
glseq.

59



60 CHAPTER 10. ASM1 : A PROLOG INTERPRETER

To introdu
e the rules of ASM1 we will now 
onsider the evaluation of the query ?- p. on the

following Prolog program.

1 p :- fail. 3 q.

2 p :- q,!,true. 4 p.

whi
h is stored as the value of a 
onstant db (database) in the initial algebra of the ASM. Line

numbers are shown expli
itly in the program for explanatory purposes. The query ?- p. is stored

as the de
glseq of node A in the initial sear
h tree depi
ted in Fig. 10.1.

76 5401 23
?

[h[p℄,?i℄

/. -,() *+�� ���� ��
a

OO

Figure 10.1

The two nodes labeled ? and A form the initial domain of a dynami
 sort node, whi
h is

extended by the rules of the ASM. Tree stru
ture as stored in the fun
tion father : node ! node

is indi
ated by the arrow in Fig. 6, so we have father(A) = ?. Root node ? serves only as a

marker when to �nish sear
h and does not 
arry information in ASM1. The initial 
urrnode is

A, as indi
ated by the double 
ir
le. Computed substitutions (atta
hed to the nodes with the sub

fun
tion) are not shown in the �gures, sin
e they are always empty in the example.

The ASM run is 
ontrolled by two program variables (i.e. 0-ary dynami
 fun
tions) mode and

stop. The value of mode swit
hes between 
all and sele
t, while the value of stop remains run

until it �nally 
hanges to halt. This stops the evaluation,sin
e all rule guards 
ontain the 
onjun
t

stop = run.

In 
all mode, whi
h is the initial mode, the 
andidate nodes are 
omputed (for a guard whi
h

involves a
t, 
he
ks for de
glseq 6= [℄ and goal 6= [℄ are impli
itly assumed, and we also omit the

obligatory 
onjun
t stop = run).


all rule

if is user de�ned(a
t) ^ mode = 
all

then let[
ll

1

,: : :,
ll

n

℄ = pro
def(a
t,db)

extend node

by tmp

1

,: : :,tmp

n

with father[tmp

i

℄ := 
urrnode


ll[tmp

i

℄ := 
ll

i


ands := [tmp

1

,: : :,tmp

n

℄

endextend

mode := sele
t

The rule uses the abbreviation 
ands for 
ands[
urrnode℄, i.e. the 
andidate nodes of 
urrnode. In

the following we will also use the analogous abbreviations father, de
glseq and sub.

The extend 
onstru
t, by expanding the universe node, allo
ates one node for every 
lause

whose head `may unify' with the literal a
t. This list of 
lause lines is 
omputed by pro
def(a
t,db)

and is assumed to 
ontain at least those 
lauses, whose heads unify with the a
tivator, and at

most those with the same leading predi
ate symbol as a
t. The use of extend with an arbitrary

number of allo
ated nodes is a slight extension of [Gur95℄. In DL the extension is realized with

a pro
edure, that traverses the list pro
def(a
t,db). The result of the appli
ation of 
all rule is

depi
ted in Fig. 10.2.

The 
ands list of node A is indi
ated by a dashed arrow to its �rst element and bra
kets around

the elements. The 
lause lines 
orresponding to the 
andidates are atta
hed to the new nodes via

the fun
tion 
ll, as shown by numbers below the nodes. The 
hange of the mode variable a
tivates

the sele
t rule.
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sele
t rule

if is user de�ned(a
t) ^ mode = sele
t

then if 
ands = [℄

then ba
ktra
k

else let 
lau = rename(
lause(
ll[
ar(
ands)℄,db),vireg)

let mgu = unify(a
t,head(
lau))

if mgu = failure

then 
ands := 
dr(
ands)

else 
urrnode := 
ar(
ands)

de
glseq(
ar(
ands)) := mgu ^

d

[hbody(
lau), fatheri j 
ont℄

sub[
ar(
ands)℄ := sub Æ mgu


ands := 
dr(
ands)

vireg := vireg +1

mode := 
all

where

ba
ktra
k �

if father = ?

then stop := halt

subst := failure

else 
urrnode := father

mode := sele
t

This rule 
auses ba
ktra
king if there are no (more) alternatives to sele
t. Otherwise, by

repeated appli
ation, it removes all 
andidates whose heads do not unify with a
t. When the

�rst 
andidate is rea
hed, for whi
h a most general uni�er mgu exists (fun
tion 
lause sele
ts

the 
lause at a 
lause line

1

, and variable index vireg is used to rename the impli
itly universal

quanti�ed 
lause variables to new instan
es), this node be
omes the new 
urrnode. A new de
glseq

is 
omputed by repla
ing the a
tivator of the old de
glseq with the body of the sele
ted 
lause. As

a 
utpoint the father of the old 
urrnode is atta
hed to this new goal. The mgu is applied to the

resulting de
glseq (with the in�x operation ^

d

) and 
omposed (with Æ) with the old substitution

sub.

The result of applying the sele
t rule in our example is shown in Fig. 10.3. The value of the

mode variable is now 
all again. Sin
e the a
tivator fail is not user de�ned, fail rule is applied.

fail rule

if a
t = fail then ba
ktra
k

It sets 
urrnode to A again. Note that node B is not formally deallo
ated. It remains in the


arrier set of node. Again in sele
t mode, the next 
andidate node for A, node C, is sele
ted.

Its de
glseq is 
omputed as [h[q; !; true℄;?i ; h[℄;?i ℄. Subsequently 
all rule allo
ates one new


andidate node E for the only appropriate 
lause q. After sele
tion of node E ASM1 rea
hes the

state shown in Fig. 10.4.

1

sin
e 
lause 
learly depends on the Prolog program, we have added an argument db 
ompared to [BR95℄
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The now empty goal is removed by the goal su

ess rule.

goal su

ess rule

if de
glseq 6= [℄ ^ goal = [℄

then de
glseq := 
dr(de
glseq)

Then the a
tivator is a 
ut, whi
h is removed from de
glseq by 
ut rule.


ut rule

if a
t = !

then father := 
tpt

de
glseq := 
ont

The rule sets the father of the 
urrent node E to the 
utpoint 
tpt of the 
urrent de
glseq, whi
h

here is the root node ? (see Fig. 10.5). This \
uts" the alternative D at node A. The 
ut rule is

the only one that uses 
tpt. For the a
tivator true ASM1 then exe
utes the following rule.
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true rule

if a
t = true then de
glseq := 
ont

Finally, with another two appli
ations of goal su

ess rule, de
glseq(E) be
omes empty. This

means that the initial query is 
ompletely solved. Therefore query su

ess rule sets the answer
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substitution subst to sub(
urrnode) (here, of 
ourse, the empty substitution), and �nishes the

exe
ution by setting stop to halt.

query su

ess rule

if de
glseq(
urrnode) = [℄

then stop := halt

subst := sub

If we 
onsider a variant of our example program, where we repla
e 
lause p :- q,!,true with

p :- q,!,r, we would also arrive at the situation of Fig. 10.5. But now 
all rule would allo
ate a

node F with an empty list of 
andidates, sin
e no 
lauses for predi
ate r are given. sele
t mode,

�nding no more alternatives, would ba
ktra
k from nodes F and E. Sin
e the father of E is the

root node ?, exe
ution would �nally stop with stop = halt and subst = failure.
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Chapter 11

1/2: From Sear
h Trees to Sta
ks

11.1 De�nition of ASM2

In this se
tion we des
ribe the �rst re�nement of the ASM des
ribed above towards the War-

ren Abstra
t Ma
hine (WAM), following [BR95℄, [Se
tion 1.2℄. There are three main di�eren
es

between the �rst and the se
ond ASM.

First, fun
tion father is renamed to b. This 
hange indi
ates that b now points ba
kwards in

a 
hain of nodes, whi
h form a sta
k.

Se
ond, ASM2 provides the registers 
llreg, de
glseqreg, breg and subreg 
orresponding to 
ll,

de
glseq, father and sub applied to the 
urrnode. Thereby it avoids allo
ation of 
urrnode.

Third, instead of providing a list of 
andidate nodes, ASM2 atta
hes the �rst 
andidate dire
tly

via the 
ll -fun
tion. This is possible if we assume that 
lauses whose head starts with the same

predi
ate are stored in su

essive 
lause lines followed by a spe
ial null marker. The \
ompiled"

representation db

2

of our example Prolog program for ASM2 thus has to look like

1 p :- fail. 3 p. 5 q.

2 p :- q,!,true. 4 null 6 null

A new pro
def

2

fun
tion is needed, su
h that pro
def

2

(a
t,db

2

) now yields the �rst 
lause line whose

head may unify with the a
tivator a
t.

For a
t = p we get pro
def

2

(p,db

2

) = 1, the �rst line of a 
lause with head p. The 
onne
tion to

the old pro
def fun
tion is stated in the following 
ompiler assumption about fun
tion 
ompile

12

,

whi
h is used as an axiom in the equivalen
e proof for 1/2.

db

2

= 
ompile

12

(db)

! hCLLS#(pro
def

2

(a
t,db

2

),db

2

),db

2

;
ol)i

map
lause(pro
def(a
t,db),db) = map
lause

0

(
ol,db

2

)

Pro
edure CLLS#

1


olle
ts 
onse
utive line numbers, until a null is rea
hed, and fun
tions

map
lause and map
lause

0

sele
t the 
lauses at ea
h line number. Note that in 
ontrast to [BR95℄

(p. 17) we have not assumed that the literals were sorted in the original database, and that

the equality pro
def(a
t,db) = 
ol of 
lause lines holds. Instead we only require the equality of

the 
lauses. This weakening of the 
ompiler assumption is ne
essary, otherwise it 
an not be

ful�lled by any implementation of the pro
def fun
tion that sele
ts 
lauses more pre
isely than

looking only at the leading predi
ate symbol. Note, that with the stronger assumption the three


alls pro
def

2

(p(f(X));db

2

), pro
def

2

(p(g(X));db

2

) and pro
def

2

(p(X),db

2

) 
an not return three

di�erent results, sin
e the three 
lause lists, whi
h 
an be 
olle
ted at these addresses end with

1

A pro
edure, not a fun
tion is used, to make sure that the spe
i�
ation does not be
ome in
onsistent with a

db

2

that does not 
ontain a null marker. See the same argument for STACK# in the following se
tion, p. 71

65
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the same null marker, that marks the end of the 
lauses for p (so all three lists must be end pie
es,

not arbitrary sublists of the 
lause list for p). Our weaker assumption 
an be implemented for any

de�nition of pro
def by dupli
ating 
ode. The dupli
ated 
ode 
an be removed later on, when the

abstra
t 
ode sele
tion with pro
def is repla
ed with swit
hing instru
tions (see Se
t. 15.1).

Instead of allo
ating a 
andidate list, ASM2 simply assigns pro
def '(a
t,db) to 
llreg. Removing

a 
andidate from 
ands now 
orresponds to in
rementing 
llreg. If the 
lause at 
llreg be
omes

null, no more 
andidates are available.

Sin
e ASM2 no longer needs to allo
ate a 
urrent node 
urrnode, a new node must be 
reated

in sele
t mode, to save the 
urrent register 
ontents to a node. The new 
all and sele
t rule

therefore are


all rule

if is user de�ned(a
t) ^ mode = 
all

then 
llreg := pro
def

2

(a
t,db

2

)

mode := sele
t

sele
t rule

if is user de�ned(a
t) ^ mode = sele
t

then if 
lause(
llreg,db

2

) = null

then ba
ktra
k

else let 
la = rename(
lause(
llreg,db

2

),vireg)

let mgu = unify(a
t, head(
la))

if mgu = failure

then 
llreg := 
llreg +1

else let tmp = new(s)

s := s [ ftmpg

breg := tmp

b[tmp℄ := breg

de
glseq[tmp℄ := de
glseqreg

sub[tmp℄ := subreg


ll[tmp℄ := 
llreg +1

de
glseqreg := mgu ^

d

[hbody(
la),bregi j 
ont℄

subreg := subreg Æ mgu

vireg := vireg +1

mode := 
all

where

ba
ktra
k �

if breg = ?

then stop := halt

subst := failure

else de
glseqreg := de
glseq[breg℄

subreg := sub[breg℄

breg := b[breg℄


llreg := 
ll[breg℄

mode := sele
t

All other rule of ASM1 are un
hanged, ex
ept that father is renamed to b and abbreviations

de
glseq, father and sub (for de
glseq[
urrnode℄ et
.) have to be repla
ed with the registers de
glse-

qreg, breg and subreg.

In our example program ASM2 now runs through the states shown in Fig. 11.1 and Fig. 11.2.

The 
orresponding states in ASM1 were those in Fig. 10.3 and Fig. 10.4.
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Dashed arrows now point to the 
ll of a node. Sin
e the values atta
hed to the 
urrnode

are now stored in registers, allo
ation of nodes 
orresponding to B and D is avoided. On the

other hand, when node A is visited by ba
ktra
king (by exe
uting fail rule in the state shown in

Fig. 10.1), its 
omputation state is moved to registers, and the following sele
t rule allo
ates a

new, similar 
hoi
epoint A'. Removing this redundan
y is the subje
t of the next re�nement.

In ASM2, the nodes whi
h may be visited in the future are always rea
hable from breg via

the b fun
tion. They form a sta
k, but note that there may still be abandoned nodes in the

node universe, whi
h are no longer rea
hable (here A). This 
auses one of the problems in the

veri�
ation of the re�nement from ASM1 to ASM2. The tuple of values de
glseq(n), sub(n), 
ll(n)

and b(n) atta
hed to a sta
k node n is usually 
alled a 
hoi
epoint.

11.2 Equivalen
e Proof 1/2

In this se
tion we will des
ribe the formal veri�
ation of the �rst re�nement with KIV. The main

fo
us of this se
tion is not the appli
ation of the general theory for the veri�
ation of ASMs we

developed in the �rst part (we have data re�nement with 1:1 diagrams here), but on the pra
ti
al

problems that arise in a formal, system-supported 
orre
tness proof, whi
h 
onsists mainly in

the in
remental development of a suitable 
oupling invariant. We will show exemplarily for this

re�nement, that

� the informal 
orresponden
e between the states of the ASMs given in [BR95℄ is by far not

suÆ
ient for a formal proof.

� a lot of additional properties must be formulated, that are not foreseeable at the beginning

of the veri�
ation, but whi
h are ne
essary to guarantee the 
orre
tness of the re�nement.

� the eÆ
ient veri�
ation of ASM re�nements requires a system with very good support for

an in
remental veri�
ation of goals.

To assure the last point, a lot of details had to be improved in the KIV system. Some of them

were des
ribed in Se
t. 3.4.
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The following des
ription of the veri�
ation unfortunately requires to 
onfront the reader with a

lot of details. Only the 
onsideration of these details leads to the dete
tion of hidden assumptions,

whi
h ultimately guarantee the 
orre
tness of the re�nement. The reader who is not interested in

the details may just have a look at the 9 initial properties as given in [BR95℄ at the beginning of

the following subse
tion, and 
ompare them to �nal 
oupling invariant shown at the end. This

should give an impression about the work needed to translate an informal mathemati
al argument

to a 
omplete, formal proof.

The Initial Coupling Invariant The re�nement from ASM1 to ASM2 does not 
hange the


ontrol stru
ture of the interpreter. One rule appli
ation of ASM1 
orresponds to one rule appli-


ation of ASM2, i.e. we have the 
ase of data re�nement. For the proof obligations from Chapter 6

this means, that we 
an 
hoose ndtype(x; x

0

) to be 
onstantly mn, and that by 
hoosing i = j = 1

in the proof obligation (6.5) we 
an simplify it to

INV(x,x

0

), stop = run, stop

0

= run

` hif stop = run then RULEi

hif stop

0

= run then RULE

0

i INV(x,x

0

)

(11.1)

The proof now splits into 5 
ases for ea
h of the 5 rules of the two ASMs. The other proof

obligations (6.10), (6.8), (6.9) and (6.11) are all trivial, sin
e INV will 
ontain the formula stop

= stop

0

. So the \only" 
riti
al point for a su

essful formal proof is to �nd a 
oupling invariant

INV(x,x'), su
h that formula (11.1) is provable for ea
h 
orresponding pair of rules.

Some rough indi
ation how su
h a formula INV might look like is already given in [BR95℄,

p.17f. There an auxiliary fun
tion F is proposed, whi
h maps the nodes in the sta
k of ASM2 to


orresponding nodes in the sear
h tree of ASM1 (see Fig. 11.3).

[S
h94℄ pointed out that F 
annot be given stati
ally, but has to be de�ned by indu
tion on

the number of rule appli
ations. This requires a formalism, where a dynami
 fun
tion 
an be

updated by proof steps.

In DL, the answer 
omes for free sin
e we made dynami
 fun
tions available as a datatype (see

spe
i�
ation `Dynfun', Se
t. 4.1). When F is a datastru
ture it 
an be (�rst order) quanti�ed. Our


oupling invariant then asserts the existen
e of a suitable fun
tion F for every two 
orrespond-

ing interpreter states. F then gets updated by instantiation. Based on this dynami
 fun
tion

the properties listed on p.17f of [BR95℄ translate to the following 
onjun
ts in our invariant (in

ambiguous 
ases the variables of the se
ond interpreter are primed):

9 F:

1 de
glseq[
urrnode℄ = de
glseqreg

2 sub[
urrnode℄ = subreg

3a map
lause(map(
ll, 
ands[
urrnode℄),db)

= map
lause

0

(
lls(
llreg,db

2

),db

2

)

3b every(father,
ands[
urrnode℄, 
urrnode)

4 father[
urrnode℄ = F[breg℄

5 de
glseq[F[n℄℄ = de
glseq

0

[n℄

6 sub[F[n℄℄ = sub

0

[n℄

7a map
lause(map(
ll, 
ands[F[n℄℄),db)

= map
lause

0

(
lls(
ll

0

[n℄,db

2

),db

2

)

7b every(father, 
ands[F[n℄℄, F[n℄)
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8 father[F[n℄℄ = b[n℄

9 F[?℄ = ?

In the formulas every(father,
ands[n℄; n) means, that n is the father node of every node in 
ands[n℄.

The equations 1 and 5 a
tually do not hold. Although the goals are identi
al, 
utpoints have

to be mapped by F . Therefore already [S
h94℄ de�nes a fun
tion F

d

with the axioms

F

d

(F,[℄) = [℄

F

d

(F,[hgoal,
tpti j dgl℄) = [hgoal, F(
tpt)i j F

d

(F, dgl)℄

and repla
es 1 and 5 by

1 de
glseq[
urrnode℄ = F

d

(F, de
glseqreg)

5 de
glseq[F[n℄℄ = F

d

(F, de
glseq

0

[n℄)

He also adds the obvious equations

10 stop = stop

0

^ mode = mode

0

^ vireg = vireg

0

Formulas 1 { 10 formed our �rst version of the 
oupling invariant, with whi
h we started the

formal veri�
ation with the KIV system.

Development of the Corre
t Coupling Invariant We found that the �rst version of the


oupling invariant was not suÆ
ient to prove the 
orre
tness. Instead a dozen iterations were

ne
essary to �nd the 
orre
t one. The failed proof attempts took mu
h more time than the

su

essful veri�
ation with the 
orre
t invariant. We give a rough overview over the sear
h and

explain, how hidden assumptions were dete
ted during proof attempts. Adding these assumptions

to the 
oupling invariant and attempting a new proof revealed further gaps, whi
h required new

modi�
ations in the 
oupling invariant. An evolutionary proof pro
ess resulted.

breg

b father

father

currnode

cands

cands

cands

breg
subreg
cllreg
decglseqreg

global registers:

b

b

father

father

cands

F

F

F

F

⊥⊥

Figure 11.3

Inje
tivity of F After only 5 min. (and 6 intera
tions) of proving we rea
hed the unprovable

goal:

F[breg℄ = F[?℄ ! breg = ? (11.2)
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This formula holds (
ompare Fig. 11.3), but how to dedu
e it? A short look at the visualized

proof tree shows that this proof situation arose by trying to guarantee that in the ba
ktra
king


ase ASM2 stops (with failure) if and only if ASM1 stops! The \if" dire
tion is trivial but for the

\only if" dire
tion we must prove (11.2).

What we need is the inje
tivity of F, as 
an also be seen in Fig. 11.3. We therefore add

11 F injon s

to INV, where injon is de�ned as

F injon s � 8 n,n

1

. n 2 s ^ n

1

2 s ^ F[n℄ = F[n

1

℄ ! n = n

1

Thereby we make it available in all proof situations. On the other hand it is now ne
essary to

prove that inje
tivity is invariant in all rules.

Chara
terization of the Sta
k Unfortunately, it is too strong, to assume the inje
tivity of F.

A proof attempt now fails, with a goal that requires to prove inje
tivity of F[new(s

0

)  
urrnode℄.

We are not able to show, that sele
t rule keeps the inje
tivity of F invariant. (after sele
t rule the

new node new(s

0

) must be mapped to 
urrnode). A detailed analysis shows, that there are indeed

situations, where this is impossible. Figure 11.4 shows su
h a situation, in whi
h two di�erent

nodes of ASM2 are mapped to the same node of ASM1.

breg

father

father

currnode

cands

cands

cands

b

b

father

father

cands

F

F

F

F

F

⊥ ⊥

Figure 11.4

The problem arises be
ause there are abandoned nodes that are no longer in the sta
k (i.e.

rea
hable following the fun
tion b from breg) but still present in the set of allo
ated nodes. The

fun
tion F is still de�ned on su
h nodes, violating inje
tivity. But on the smaller set of sta
k

nodes inje
tivity holds. What we need is a logi
al 
hara
terization of the sta
k nodes. Then we


an restri
t inje
tivity of F to the sta
k.

A 
hara
terization of the sta
k is also ne
essary to restri
t other still missing properties of F

to sta
k nodes. One other su
h property 
an be derived from another unprovable goal in the same

proof.


ands[
urrnode  x℄[F[n℄℄ = 
ands[F[n℄℄

Here it must be proved, that a modi�
ation of the 
andidates 
ands[
urrnode℄ does not modify

the 
andidates of any node in the 
odomain of F. To prove this we need:

12 F[n℄ 6= 
urrnode
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Figure 11.5

But this formula is also not true for abandoned nodes, as 
an be seen in Fig. 11.5, that shows a

pair of states after ba
ktra
king. Only that 
urrnode is not in the image of sta
k nodes is true.

An important problem with the formal de�nition of sta
k nodes is, that the simple approa
h

that de�nes a fun
tion sta
kof with

sta
kof(b,?) = [℄,

breg 6= ? ! sta
kof(b,breg) = [breg j sta
kof(b,b[breg℄)℄

is in
orre
t. It leads to an in
onsistent spe
i�
ation, sin
e it is possible to 
onstru
t dynami


fun
tions, that 
y
li
ally 
onne
t nodes (for an arbitrary fun
tion b and a node n 6= ? de�ne

b

0

:= b[n  n℄. Then using the axioms above, it is easy to prove sta
kof(b

0

; n) = [njsta
kof(b

0

; n)℄,


ontradi
ting the list axiom x 6= [ajx℄).

A 
orre
t approa
h to 
hara
terize the list of sta
k nodes is, to use the program STACK#

below. Its termination guarantees, that the sta
k does not 
ontain 
y
les.

STACK#(n, b; var sta
k)

begin

if n = ? then sta
k := [℄ else

begin STACK#(b[n℄, b; sta
k); sta
k := [n j sta
k℄ end

end

Figure 11.6 : Chara
terization of 
y
le free Sta
ks

Now let  (n) be the 
onjun
tion of all subformulas, whi
h depend on the sele
ted node n (5 to 8

and 11) and let ' be the 
onjun
tion of the remaining subformulas (1 to 4, 9, 10 and 12). Then

the 
oupling invariant INV gets the form:

9 F: ' ^ hSTACK#(breg, b; sta
k)i (8 n. n 2 sta
k !  (n)) (11.3)

It says now, that (for suitable F ) ' holds and that B-LIST# terminates with a list sta
k as result,

su
h that  holds for all its elements.

Cutpoints Proving equivalen
e between the two 
ut rules with this version of INV shows an-

other diÆ
ulty:  must be guaranteed for the new sta
k shortened by exe
ution of the 
ut. This

sta
k starts with a new breg, whi
h was set to the �rst 
utpoint of de
glseqreg. Now, of 
ourse, the
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new sta
k would inherit  from the old one, if we knew that it is a part of the old one. But this


an not be dedu
ed from the 
urrent INV. We have to assert that the 
utpoints in the 
urrent

de
orated goal sequen
e are elements of the 
urrent sta
k. We therefore de�ne a new predi
ate


utptsin (written in�x) with axioms

[ ℄ 
utptsin sta
k,

[hgoal,
tpti jdgl℄ 
utptsin sta
k $ 
tpt 2 sta
k ^ dgl 
utptsin sta
k

(11.4)

and add:

de
glseqreg 
utptsin sta
k

to the 
oupling invariant. In this version, the de�nition of 
utptsin simply 
he
ks whether all


utpoints of the �rst argument are elements of the se
ond. Be
ause the de
orated goal sequen
e

de
glseq[n℄ of every node in the sta
k 
an potentially be
ome the de
glseqreg (by ba
ktra
king),

we also have to add

de
glseq

0

[n℄ 
utptsin (sta
k from b[n℄)

where fun
tion from (again written in�x) is axiomatized with

[ ℄ from n = [ ℄,

n 6= n

0

! [njl℄ from n

0

= l from n

0

,

[njl℄ from n = [njl℄

With the new formulas INV is now

9 F. '

^ hSTACK#(breg, b; sta
k)i

( de
glseqreg 
utptsin sta
k

^ (8 n. n 2 sta
k

!  (n)

^ de
glseq'[n℄ 
utptsin (sta
k from b[n℄)

Still, this invariant is not strong enough. The proof fails be
ause when the 
ut rule is applied,

we have not made sure, that the 
utpoints in de
glseqreg other than the �rst remain in the sta
k

that has been shortened by the 
ut. This is true only be
ause the 
utpoints point into the sta
k in

the right ordering (see Fig. 11.7). Therefore the axioms (11.4) for 
utptsin must be strengthened

to

[ ℄ 
utptsin sta
k,

[hgoal,
tpti jdgl℄ 
utptsin sta
k

$ 
tpt 2 sta
k

^ dgl 
utptsin (sta
k from 
tpt)

INV is synta
ti
ally un
hanged. Fortunately all proofs up to this point used only lemmas for


utptsin that remain valid for the new axiomatization. Therefore, no proof needs to be redone

(and this fa
t is 
he
ked by the \
orre
tness management" of KIV).



11.2. EQUIVALENCE PROOF 1/2 73

father

father

father

father

currnode
decglseq

(  |  ) , (  |  ) , (  |  )

⊥

Figure 11.7

More Properties The 
oupling invariant is still not 
omplete. Several further proof attempts

revealed that it is ne
essary to make properties about the stru
ture of the sear
h tree of ASM1

expli
it. Some of these properties are (informally): no 
andidate is in the range of F, no 
andidate

list has dupli
ates, the interse
tion of di�erent 
andidate lists is empty, and so on. Altogether 12

proof attempts were made with di�erent 
oupling invariants (not 
ounting di�erent versions due

to typing errors) until the �nal 
oupling invariant shown below was rea
hed. All of the properties

listed were a
tually needed to 
omplete the proof.

INV

12

�

9 F. stop = stop

0

^ mode = mode

0

^ vireg = vireg

0

^ subreg = sub[
urrnode℄

^ F[?℄ = ? ^ F[breg℄ = father[
urrnode℄ ^ ? 6= 
urrnode

^ F

d

(F, de
glseqreg) = de
glseq[
urrnode℄

^ ? 2 s

0

^ ? 2 s ^ 
urrnode 2 s

^ ( mode = sele
t

! hCLLS#(
llreg, db

2

;
ol)i

map
lause

0

(
ol, db

2

) = map
lause(map(
ll, 
ands[
urrnode℄), db)

^ every(father, 
ands[
urrnode℄, 
urrnode)

^ : 
urrnode 2 
ands[
urrnode℄ ^ : ? 2 
ands[
urrnode℄

^ 
ands[
urrnode℄ � s ^ nodups(
ands[
urrnode℄))

^ hSTACK#(breg, b; sta
k)i

( de
glseqreg 
utptsin sta
k ^ 
andsdisjoint(F, 
ands, sta
k)

^ F injon sta
k

^ no
ands(F, 
ands, sta
k) ^ sta
k � s

0

^ 8 n. n 2 sta
k

! sub

0

[n℄ = sub[F[n℄℄ ^ F[b[n℄℄ = father[F[n℄℄

^ F

d

(F, de
glseq

0

[n℄) = de
glseq[F[n℄℄

^ hCLLS#(
ll

0

[n℄,db

2

;
ol)i

map
lause

0

(
ol,db

2

) = map
l(map(
ll, 
ands[F[n℄℄), db)

^ every(father, 
ands[F[n℄℄, F[n℄)

^ F[n℄ 6= 
urrnode ^ F[n℄ 2 s ^ nodups(
ands[F[n℄℄)

^ 
ands[F[n℄℄ � s ^ : 
urrnode 2 
ands[F[n℄℄

^ ( mode = sele
t

! : F[n℄ 2 
ands[
urrnode℄

^ disjoint(
ands[F[n℄℄, 
ands[
urrnode℄))

^ de
glseq

0

[n℄ 
utptsin (sta
k from b[n℄))
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Chapter 12

2/3: Reuse of Choi
epoints

12.1 De�nition of ASM3

Although ASM2 allo
ates fewer nodes that ASM1, there are still two more possibilities to redu
e

their number, that are exploited in the optimizations to ASM3 and ASM4.

In this se
tion we �rst des
ribe the reuse of 
hoi
epoints. We follow [BR95℄, Chapter 1.3.

The optimization 
an be explained most easily by looking at the example of the previous se
tion:

When the �rst alternative for a
tivator p is tried, ASM2 allo
ates a new node A, and sets the

values de
glseq[A℄, sub[A℄ and 
ll[A℄ of the new 
hoi
epoint.

Sin
e the �rst alternative does not lead to a solution, the interpreter exe
utes a ba
ktra
k

instru
tion, whi
h removes the node A from the sta
k. Thereby the whole 
hoi
epoint be
omes

ina

essible. The subsequent sele
t rule for the se
ond alternative then pushes a new 
hoi
epoint

A' on the sta
k. This 
hoi
epoint gets the same values as the one for the �rst alternative, ex
ept

that 
ll(A') has been in
remented (see Fig. 11.2, p. 67 in Se
t. 11.2).

The optimization done in ASM3 avoids deallo
ation and reallo
ation of 
hoi
epoints. Instead

it reuses the existing 
hoi
epoint. The optimization is a
hieved by repla
ing the removal of a


hoi
epoint in the else-bran
h of ba
ktra
king with the assignment mode := retry, whi
h a
tivates

a new rule, retry rule. This rule 
ombines the e�e
ts of the else-bran
h of ba
ktra
k and of sele
t.

It is exe
uted instead of sele
t rule for every alternative ex
ept the �rst. It removes a 
hoi
epoint

(i.e. to set breg to b(breg)) only on exe
ution of the last alternative. Otherwise it reuses the old


hoi
epoint by in
rementing 
ll(breg). The old sele
t rule, whi
h allo
ates a new 
hoi
epoint is

now only 
alled for the �rst alternative 
lause, and is renamed to try rule. The test whether any

alternative exists, 
an now be done already in the 
all rule instead of the try rule. To avoid 
ode

dupli
ation the 
ommon parts of try and retry rule (uni�
ation with the a
tivator, in
rementing

vireg et
.) are moved to a new enter rule, whi
h is a
tivated with mode := enter. Altogether these

transformations result in the following set of rules:


all rule

if mode = 
all ^ is user de�ned(a
t)

then if 
lause(pro
def

2

(a
t,db

2

)) = null

then ba
ktra
k

else 
llreg := pro
def

2

(a
t,db

2

)


treg := breg

mode := try

enter rule

if mode = enter

then let 
la = rename(
lause(
llreg,db

2

),vireg)

let mgu = unify(a
t, hd(
la))

if mgu = nil

75
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then ba
ktra
k

else de
glseqreg := mgu ^

d

[<bdy(
la),
treg> j 
ont℄

subreg := subreg Æ mgu

vireg := vireg +1

mode := 
all

goal su

ess rule

if goal = [℄ ^ de
glseqreg 6= [℄

then de
glseqreg := 
dr(de
glseqreg)

query su

ess rule

if de
glseqreg = [℄ then stop := halt

subst := subreg

try rule

if mode = try

then mode := enter

let tmp = new(s)

s := s [ ftmpg

breg := tmp

b[tmp℄ := breg

de
glseq[tmp℄ := de
glseqreg

sub[tmp℄ := subreg


ll[tmp℄ := 
llreg +1

retry rule

if mode = retry

then if 
lause(
ll[breg℄,db

2

) = null

then deep-ba
ktra
k

else de
glseqreg := de
glseq[breg℄

subreg := sub[breg℄


llreg := 
ll[breg℄


treg := b[breg℄

mode := enter


ut rule

if a
t = ! then father := 
utpt

de
glseqreg := 
ont

fail rule

if a
t = fail then ba
ktra
k

where

ba
ktra
k �

if breg = ?

then stop := halt

subst := failure

else mode := retry

It should be noted, that enter rule uses a new register 
treg to set the 
utpoint 
tpt of the new

de
glseqreg. This is ne
essary, sin
e after a retry rule we must now use b[breg℄ instead of breg as

the value of 
tpt. 
all rule and retry rule set 
treg appropriately.
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12.2 Equivalen
e Proof 2/3

The des
ription of the optimization from ASM2 to ASM3 suggests not to look at single rules in

the veri�
ation, but to look for 
orresponding states, and to de�ne groups of rules whi
h keep this


orresponden
e invariant. Two obviously 
orresponding states are the ones, when both ASMs are

in 
all mode. In these states the values of the registers and the state of the 
hoi
epoint sta
k are

the same (modulo renaming of sta
k nodes). Only little more 
ompli
ated is the 
orresponden
e,

when ASM3 exe
utes a retry and ASM2 exe
utes the 
orresponding sele
t. In this 
ase the register


ontents of ASM2 agree with the 
ontent of the topmost 
hoi
epoint of ASM3, and the remainder

of ASM3 sta
k is identi
al to the ASM2 sta
k. If one writes regs, sta
k resp. regs

0

, sta
k

0

for the

registers and the sta
k of ASM2 resp. ASM3, a �rst attempt for the 
oupling invariant is

INV23(regs,sta
k,regs

0

,sta
k

0

) � CINV _ RINV

where

CINV � mode = 
all ^ mode

0

= 
all ^ regs = regs

0

^ sta
k = sta
k

0

,

RINV � mode = sele
t ^ mode

0

= retry ^ sta
k

0

= push(regs,sta
k)

An analysis, whi
h rule sequen
es lead from 
orresponding states to 
orresponding states results

in the 
ommuting diagrams shown in Fig. 12.1.


all // sele
t1 // sele
t1 //


all1

//��
CINV

OO

zz
RINV

::uuuuuuuuuu
retry1

//��
RINV

OO

��
RINV

OO


all // sele
t2 // sele
t2 //


all2

//��
CINV

OO

try

//
enter1

//$$

RINV

ddIIIIIIIIII

retry2

//��
RINV

OO

enter1

//$$

RINV

ddIIIIIIIIII


all // sele
t3 // sele
t3 //


all2

//��
CINV

OO

try

//
enter2

//$$

RINV

ddIIIIIIIIII

retry2

//��
RINV

OO

enter2

//$$

RINV

ddIIIIIIIIII


ut // fail // true //


ut

//��
CINV

OO

��
CINV

OO

fail

//��
CINV

OO

��
RINV

OO

true

//��
CINV

OO

��
CINV

OO

Figure 12.1 : Commuting Diagrams for the Re�nement 2/3

sele
t1, sele
t2 and sele
t3 are the three sub
ases of the sele
t rule, retry1 et
. are de�ned

similarly. The theory developed in Chapter 6 now shows, that the proof of 
ommutativity for all

given diagrams is suÆ
ient, to prove the equivalen
e of ASM2 and ASM3 (after a 
ase distin
tion

over all possible pairs of rules, just instantiate the quanti�ed variables i and j in proof obligation

(6.5) a

ording to the size of ea
h diagram). The 
ommuting diagrams as well as the �rst approa
h

for a 
oupling invariant agree with the ones given [BR95℄.

Sin
e ASM3 allo
ates fewer nodes that ASM2, it is obvious that for the formal veri�
ation

to go through, we again need a mapping F between the nodes. This again 
auses some of the

problems that already showed up in the �rst re�nement, namely inje
tivity of F on the 
urrent

sta
k, and the 
utptsin property.
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A new property that was not needed in the veri�
ation of 1/2 is, that ea
h de
glseq[n℄ is not

empty, and its �rst goal starts with a user de�ned literal (we again write goal[n℄ and a
t[n℄ for

these 
omponents). This property is ne
essary to make sure that the rule that is applied after

ba
ktra
king 
an only be retry, and not goal su

ess.

Using the theory from Chapter 6 simpli�es veri�
ation enormously, sin
e it is 
ompletely

unne
essary to de�ne a 
oupling invariant for intermediate states of the diagrams (see also the


omparison to Isabelle in Se
t. 20).

A �rst attempt, to prove that all diagrams 
ommute, was su

essful within 2 weeks, This �rst

attempt used a preliminary version of the theory, whi
h allowed the use of arbitrary 
ommuting

diagrams. It still required a separate 
orre
tness and 
ompleteness proof with two di�erent 
ou-

pling invariants, as well as a proof of the generi
 modularization theorem for the 
on
rete instan
e

(as we have now seen). 8 attempts were ne
essary, to �nd the two 
oupling invariants.

A se
ond attempt with the full theory was su

essful to prove the equivalen
e of ASM2 and

ASM3 in a few hours. Of 
ourse the time for the su

essful se
ond attempt was shortened by the

fa
t that a su

essful proof already existed. Somewhat more realisti
 is the 
omparison of intera
-

tions in both proofs: instead of 234 intera
tions only 75 were ne
essary to prove the 
ommutation

of all diagrams following 
oupling invariant.
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INV

23

�

stop = stop

0

^ (stop = su

ess ! subreg = subreg

0

)

^ ? 2 s ^ ? 2 s

0

^ ( stop 6= run

(* CINV *)

_ stop = run ^ stop

0

= run ^ mode = 
all ^ mode

0

= 
all

^ vireg = vireg

0

^ subreg = subreg

0

^ (9 F. F[?℄ = ? ^ breg = F[breg

0

℄

^ F

d

(F, de
glseqreg

0

) = de
glseqreg

^ hSTACK#(breg

0

, b

0

; sta
k)i

( hSTACK#(breg, b; sta
k

0

)i F

l

(F, sta
k) = sta
k

0

^ F injon sta
k ^ F

l

(F, sta
k) � s ^ sta
k � s

0

^ de
glseqreg

0


utptsin sta
k

^ (8 n. n 2 sta
k

! sub

0

[n℄ = sub[F[n℄℄ ^ 
ll

0

[n℄ = 
ll[F[n℄℄

^ F

d

(F, de
glseq

0

[n℄) = de
glseq[F[n℄℄

^ de
glseq

0

[n℄ 
utptsin 
dr(sta
k from n)

^ de
glseq

0

[n℄ 6= [℄ ^ goal

0

[n℄ 6= [℄

^ is user de�ned(a
t

0

[n℄))))

(* RINV *)

_ stop = run ^ stop

0

= run ^ mode = sele
t ^ mode

0

= retry

^ de
glseqreg

0

6= [℄ ^ goal

0

6= [℄ ^ de
glseqreg 6= [℄ ^ goal 6= [℄

^ is user de�ned(a
t) ^ breg

0

6= ?

^ vireg = vireg

0

^ sub

0

[breg

0

℄ = subreg ^ 
ll

0

[breg

0

℄ = 
llreg

^ (9 F. hSTACK#(b

0

[breg

0

℄, b

0

; sta
k)i

( hSTACK#(breg, b; sta
k

0

)i F

l

(F, sta
k) = sta
k

0

^ F

d

(F, de
glseq

0

[breg

0

℄) = de
glseqreg ^ F[?℄ = ?

^ F injon sta
k ^ F

l

(F, sta
k) � s ^ sta
k � s

0

^ breg

0

2 s

0

^ de
glseq

0

[breg

0

℄ 
utptsin sta
k

^ (8 n. n 2 sta
k

! sub

0

[n℄ = sub[F[n℄℄ ^ 
ll

0

[n℄ = 
ll[F[n℄℄

^ F

d

(F, de
glseq

0

[n℄) = de
glseq[F[n℄℄

^ de
glseq

0

[n℄ 
utptsin 
dr(sta
k from n)

^ de
glseq

0

[n℄ 6= [℄ ^ goal[n℄ 6= [℄

^ is user de�ned(a
t[n℄)))))
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Chapter 13

3/4: Determina
y Dete
tion

13.1 De�nition of ASM4

In the re�nement of ASM2 to ASM3 we have removed the unne
essary deallo
ation and reallo
ation

of 
hoi
epoints. But there is another possibility for optimization, namely 
hoi
epoints with an

empty list of 
andidates (\empty 
hoi
epoints").

As an example in Fig. 11.2, p. 67 from Se
t. 11.2 both 
hoi
epoints A

0

(in ASM3 A is reused)

and C point to an empty list of 
lauses, i.e. 
lause(
ll [A

0

℄,db

2

) = 
lause(
ll [C℄,db

2

) = null. If

su
h an empty 
hoi
epoint is visited in retry rule, deep-ba
ktra
k is 
alled and the 
hoi
epoint is

simply removed. This behavior 
an be optimized by avoiding the 
reation of empty 
hoi
epoints

altogether with look-ahead tests ("`determina
y dete
tion"'). For the try rule this means, that a


hoi
epoint need not be 
reated when pro
def

2

(a
t,db

2

) gives only one 
lause. In the retry rule

a 
hoi
epoint 
an be removed altogether instead of modifying it, when the stored alternatives

be
ome empty. The test for an empty 
hoi
epoint be
omes obsolete. The state of ASM2 from

Fig. 11.2 then 
orresponds to the state of ASM4 shown in Fig. 13.1.

76 5401 23
?

[h[p℄,?i℄

/. -,() *+
a

OO

//__
3

de
glseqreg = [h[℄,ai,h[!,true℄,?i,h[℄,?i ℄

breg = a

Figure 13.1

The modi�ed try- and retry rule of ASM4 are

81
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try rule

if mode = try

then mode := enter

if 
lause

0

(
llreg +1, db

2

) 6= null

then let tmp = new(s)

s := s [ ftmpg

b[tmp℄ := breg

de
glseq[tmp℄ := de
glseqreg

sub[tmp℄ := subreg


ll[tmp℄ := 
llreg +1

breg := tmp

retry rule

if mode = retry

then de
glseqreg := de
glseq[breg℄

subreg := sub[breg℄


llreg := 
ll[breg℄


treg := b[breg℄

mode := enter

/* look ahead guard */

if 
lause(
ll[breg℄ +1,db

2

) 6= null

then 
ll[breg℄ := 
ll[breg℄ +1

else breg := b[breg℄

13.2 Equivalen
e Proof 3/4

To verify the equivalen
e between ASM3 and ASM4 a bije
tion F between the nonempty 
hoi
e-

points of ASM3 and ASM4 is needed. Whether the fun
tion is de�ned to map nonempty 
hoi
e-

points of ASM3 to ones of ASM4 or the other way round is not too important, it only determines

whi
h of the two sta
ks has to be 
omputed with a 
all to STACK# (the other sta
k then is the

image under F ). To be 
onsistent with [BR95℄ we have 
hosen to map the sta
k of ASM3 to the

one of ASM4.

As the 
riti
al point in the de�nition of the 
oupling invariant it remains to de�ne a 
orre-

sponden
e between the 
utpoints, To this purpose we use a program F# that maps ea
h 
utpoint

of ASM3 to the next one below it in the sta
k that is nonempty. Program G# applies F# to

all 
utpoints of a de
glseq. Applying �rst G# and then F (with F

d

) on a de
glseq of ASM3 then

gives the 
orresponding de
glseq of ASM4. Again a �rst-order de�nition is not possible sin
e in-


onsisten
y due to 
y
li
 pointer stru
tures has to be avoided. Figure 13.2 graphi
ally shows the


orresponden
e between the two 
hoi
epoint sta
ks. Empty 
hoi
epoints are shown as a \Æ".

The formal de�nition of the pro
edures F# and G# is

F#(n,b,
ll,db

2

;var n

0

)

begin

if n = ?

then n

0

:= n

else if 
lause(
ll[n℄,db

2

) = null

then F#(b[n℄,b,
ll,db

2

;n

0

)

else n

0

:= n

end

G#(de
glseqreg,b,
ll,db

2

;var de
glseqreg

0

)

begin

if de
glseqreg = [℄ then de
glseqreg

0

:= [℄ else
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Æ
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Figure 13.2 : Corresponding Choi
epoints in ASM3 and ASM4

var 
tpt

0

, 
ont

0

in

begin

F#(
tpt,b,
ll,db

2

;
tpt

0

);

G#(
ont,b,
ll,db

2

;
ont

0

);

de
glseqreg

0

:= [ha
t, 
tpt

0

i j 
ont

0

℄

end

end

It 
orre
ts and simpli�es the de�nitions of F and G given in [BR95℄.

As a �rst approa
h for a 
oupling invariant the 
onsiderations above suggest

INV

34

�

9 F.

stop = stop

0

^ vireg = vireg

0

^ subreg = subreg

0

^ 
llreg = 
llreg

0

^ F[?℄ = ? ^ mode = mode

0

^ hF#(breg, b, 
ll, db

2

; breg

0

)i F[breg

0

℄ = breg

0

^ hSTACK#(breg,b;sta
k)i

hG#(de
glseqreg,b,
ll,db

2

;bf var de
glseqreg

0

)i

F

d

(F,de
glseqreg

0

) =de
glseqreg

0

^ 8 n. n 2 sta
k

! sub[n℄ = sub

0

[n℄ ^ 
ll[n℄ = 
ll

0

[n℄

^ hF#(b[n℄, b, 
ll, db

2

; n

0

)i

F[n

0

℄ = b

0

[F[n℄℄

The two 
onjun
ts with 
alls to F# and the formula F [?℄ = ? des
ribe the 
onstru
tion of

the ASM4 sta
k from the ASM3 sta
k. Most of the rules of ASM3 
orrespond to the same rule in

ASM4. Only appli
ations of the retry rule, that remove an empty 
hoi
epoint with deep-ba
ktra
k

have no 
ounterpart in ASM4. We have a 1:0 diagram for this 
ase and 1:1 diagrams otherwise.

Therefore the fun
tion ndt from Chapter 6 no longer has the 
onstant value mn. Instead we have

to de�ne

1

ndt by

stop = run ^ de
glseqreg 6= [℄ ^ goal 6= [℄

^ mode = retry ^ 
lause(
ll[breg℄,db

2

) = null

� ndt(x,x

0

) = m0 ; ndt(x,x

0

) = mn

1

A � B;C abbreviates (A ! B) ^ (: A ! C), see Appendix B.
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In the de�nition, as usual x =de
glseqreg, de
glseq, stop, . . . and x

0

= de
glseqreg

0

, de
glseq

0

,

stop

0

, . . . denote the ve
tors of all dynami
 fun
tions of ASM3 and ASM4 (translated to program

variables). To apply the modularization theorem from Chapter 6, we also need to de�ne a fun
tion

exe
0n that bounds the number of su

essive triangular 1:0 diagrams, i.e. of su

essive 
alls to

deep-ba
ktra
k. Su
h a bound is obviously given by the size of the ASM3 sta
k (
omputed with

#). With this instan
e, proof obligation (6.6) from Chapter 6 be
omes

stop = run ^ INV

34

^ de
glseqreg 6= [℄ ^ goal 6= [℄

^ mode = retry ^ 
lause(
ll[breg℄,db

2

) = null

^ hSTACK#(breg,b;sta
k)i #(sta
k) = m

! hRULE

3

i ( INV

34

^ (hSTACK#(breg,b;sta
k)i #(sta
k) < m _ stop = failure))

The disjun
t ndt(x; x

0

) 6= m0 in the post
ondition has been strengthened to stop = failure, sin
e

this is the only 
ase, where ASM3 does not redu
e the size of the sta
k.

It should be noted, that the pre
ondition of the proof obligation does not in
lude stop

0

= run.

Just on the 
ontrary proof obligation (6.9) from Chapter 6 now requires to prove that

stop = run ^ stop

0

6= run ^ INV

34

! ndt(x,x

0

) = m0

holds. This results in the main problem for the veri�
ation: it must be made sure that INV

34

holds, when ASM4 has already terminated, while ASM3 still has to remove empty 
hoi
epoints.

This situation of asyn
hronous termination 
ompli
ates the de�nition of the 
oupling invariant.

In it we do not have stop = stop

0

, and also mode = mode

0

is violated. So we have to weaken these

properties in the 
oupling invariant to

(stop

0

6= failure ! stop = stop

0

^ mode = mode

0

)

^ ( stop

0

= failure ^ stop 6= failure

! mode = retry ^ breg

0

= ?)

Together with the property

hF#(breg, b, 
ll, db

2

; breg

0

)i F[breg

0

℄ = breg

0

already present in the invariant, it is guaranteed that in the 
riti
al 
ase, where ASM4 has stopped,

all 
hoi
epoints in the sta
k of ASM3 are empty.

As always this approa
h for the 
oupling invariant is still insuÆ
ient for the equivalen
e proofs.

Like in 1/2 and 2/3 we additionally need the inje
tivity of F , but this time only for nonempty


hoi
epoints. Also the 
utptsin property and the existen
e of a
t[n℄ for every 
hoi
epoint n are

required. Finally we need to mention a number of pre
onditions for single rule appli
ations like

mode

0

= retry ! breg

0

6= ?, and a 
hara
terization of 
treg and 
treg

0

in terms of breg and breg

0

.

These properties were easy to �nd, and after 2 weeks of work and 5 iterations the following, 
orre
t


oupling invariant was found.

INV

34

�

9 F.

(mode = try ! 
treg = breg ^ 
lause

0

(
llreg, db

2

) 6= null)

^ ( mode = enter

! breg 6= ? ^ 
treg = b[breg℄ ^ subreg = sub[breg℄

^ 
lause

0

(
llreg, db

2

) 6= null ^ 
llreg+1 = 
ll[breg℄

^ de
glseqreg = de
glseq[breg℄)
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^ (mode

0

= retry ! breg

0

6= ?)

^ (mode

0

= try ! 
treg

0

= breg

0

^ 
lause

0

(
llreg

0

, db

2

) 6= null)

^ (mode

0

= enter ! 
lause

0

(
llreg

0

, db

2

) 6= null)

^ ( mode

0

= enter ^ 
lause

0

(
llreg

0

+1, db

2

) 6= null

! breg

0

6= ? ^ 
treg

0

= b

0

[breg

0

℄)

^ (mode

0

= enter ^ 
lause

0

(
llreg

0

+1, db

2

) = null ! 
treg

0

= breg

0

)

^ F[?℄ = ? ^ ? 2 s ^ ? 2 s

0

^ breg 2 s ^ 
treg 2 s

^ vireg = vireg

0

^ subreg = subreg

0

^ 
llreg = 
llreg

0

^ (mode = retry ! breg 6= ? ^ de
glseqreg 6= [℄ ^ goal 6= [℄)

^ (de
glseqreg

0

= [℄ _ goal = [℄ ! mode = 
all)

^ (stop

0

6= failure ! mode = mode

0

^ stop = stop

0

)

^ ( stop

0

= failure ^ stop 6= failure

! stop = run ^ mode = retry ^ breg

0

= ?)

^ hF#(breg, b, 
ll, db

2

; n

0

)i F[n

0

℄ = breg

0

^ hG#(de
glseqreg, b, 
ll, db

2

; de
glseqreg

0

)i

F

d

(F, de
glseqreg

0

) = de
glseqreg

0

^ hSTACK#(breg, b; sta
k)i

( sta
k � s ^ (mode 6= retry ! de
glseqreg 
utptsin sta
k)

^ (8 n. n 2 sta
k

! de
glseq[n℄ 
utptsin 
dr(sta
k from n)

^ de
glseq[n℄ 6= [℄ ^ goal[n℄ 6= [℄)

^ (8 n. n 2 sta
k ^ 
lause

0

(
ll[n℄, db

2

) 6= null

! F[n℄ 2 s

0

^ F[n℄ 6= ? ^ de
glseq[n℄ 6= [℄ ^ goal 6= [℄

^ hF#(b[n℄, b, 
ll, db

2

; n

0

)i F[n

0

℄ = b

0

[F[n℄℄

^ hG#(de
glseq[n℄, b, 
ll, db

2

; de
glseqreg

0

)i

F

d

(F, de
glseqreg

0

) = de
glseq

0

[F[n℄℄

^ 
ll[n℄ = 
ll

0

[F[n℄℄ ^ sub[n℄ = sub

0

[F[n℄℄

^ (8 n

1

. n

1

2 sta
k ^ 
lause

0

(
ll[n

1

℄, db

2

) 6= null

^ n 6= n

1

! F[n℄ 6= F[n

1

℄)))

With hindsight this invariant 
ould be simpli�ed by merging some of the 1:1 diagrams whi
h

deterministi
ally are su

essors of ea
h others. This is the 
ase for the rule sequen
es 
all (se
ond


ase that does not ba
ktra
k) try, enter (whi
h gives a 3:3 diagram) and retry, enter (2:2 diagram).

Using larger diagrams would redu
e the number of states, in whi
h the 
oupling invariant must

hold. Spe
i�
ally all 
onjun
ts with one of the pre
onditions mode = try, mode

0

= try, mode =

enter or mode

0

= enter, i.e. the �rst 11 lines of the invariant, 
ould be removed.
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Chapter 14

4/5: Linear Compilation of

Predi
ate Stru
ture

14.1 De�nition of ASM5

The �rst three re�nement steps 
an be viewed as an optimization of the �rst ASM whi
h do not


hange the representation of the Prolog program. In 
ontrast, the re�nement from ASM4 to ASM5


ompiles the predi
ate stru
ture of Prolog. For the �rst time instru
tions are introdu
ed, whi
h

will also be present in the �nal WAM. We will deviate in this se
tion from [BR95℄ insofar, as

the 
ode of ASM5 will �rst 
ontain linear 
hains, not the more 
omplex nested 
hains, whi
h we

will de�ne in ASM6 (a pre
ise de�nition of \
hains" will be given below). The reason is, that

the re�nement 4/5 allows to study the typi
al problems of a 
ompilation step, without having to


onsider the problems of m:n diagrams simultaneously.

The general idea of the re�nement step is to move 
ontrol over the rule to be exe
uted from the

mode-Variable to the a
tual 
ode. To do this, 
llreg no longer points to the line of a 
lause, but

to an address, where instru
tions are stored. 
llreg be
omes a program 
ounter, and is therefore

renamed to preg. Similarly the 
lause line 
ll[n℄ stored in 
hoi
epoints be
omes a 
ode pointer

p[n℄.

The instru
tion stored at preg is now the result of a fun
tion 
ode, that repla
es 
lause. Che
ks

for the value of mode are repla
ed by 
he
ks on the type of the instru
tion 
ode(preg,db

5

), where

db

5

is the database of ASM5. Possible instru
tions may at this stage still be 
lauses (they are

repla
ed by �ner-grained instru
tions in the re�nements 8/9 and 9/10), but additionally we now

have the 
ontrol instru
tions try me else, retry me else and trust me, whi
h repla
e the rules try

and retry (then and else 
ase).

To understand the e�e
t of the 
ontrol instru
tions, 
onsider the following example 
lauses for

a predi
ate p:

p(X) :- body1.

p(f(X)) :- body2.

p(g(X)) :- body3.

p(g(X)) :- body4.

(14.1)

In the re�nement of ASM4 to ASM5 they are translated to the 
ode fragment (labels L1 { L4 are

symboli
 addresses):

87
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L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: retry_me_else(L4)

p(g(X)) :- body3.

L4: trust_me

p(g(X)) :- body4.

(14.2)

On a query ?- p(X), 
all rule of ASM5 (
alled when preg is at a spe
ial start address) will set

preg to the start address L1 of the 
lauses for p (a spe
ial address fail
ode is used as the result of

the pro
def fun
tion, when no 
lauses are available for an a
tivator).


all rule

if is user de�ned(a
t) ^ preg = start

then 
treg := breg

if 
ode(pro
def

5

(a
t,db

5

)) = fail
ode

then ba
ktra
k

else preg := pro
def

5

(a
t,db

5

)

where

ba
ktra
k �

if breg = ?

then stop := failure

else preg := p[breg℄

Exe
ution of try me else(L2) at address L1 with the try me rule will have the same e�e
t,

that try rule in ASM4 had.

try me rule

if 
ode(preg,db

5

) = try me else(N)

then let tmp = new(s)

s := s [ ftmpg

breg := tmp

b[tmp℄ := breg

de
glseq[tmp℄ := de
glseqreg

sub[tmp℄ := subreg

p[tmp℄ := N

preg := preg +1

The address for alternative 
lauses stored in the 
hoi
epoint is L2 and exe
ution 
ontinues with

the next address. The 
lause there is exe
uted with enter rule, whi
h has the same e�e
t as in

ASM4. Sin
e it must a
tivate 
all rule on su

essful invo
ation, it sets preg := start.

enter rule

if is user de�ned(a
t) ^ 
ode(preg,db

5

) = 
lause

then let 
la = rename(
lause,vi)

let mgu = unify(a
t, hd(
la))

if mgu = nil

then ba
ktra
k

else de
glseqreg := mgu ^

d

[<bdy(
la),
treg> j 
ont℄

subreg := subreg Æ unify

vi := vi +1

preg := start
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When preg is set to L3 or to L5 by ba
ktra
king, the retry me rule resp. the trust me rule

are exe
uted. They 
orrespond to the then- and the else-bran
h of retry rule of ASM4. The 
ase

distin
tion is no longer done at run time, but at 
ompile time.

retry me rule

if 
ode(preg,db

5

) = retry me else(N)

then de
glseqreg := de
glseq[breg℄

subreg := sub[breg℄


treg := b[breg℄

p[breg℄ := N

preg := preg +1

trust me rule

if 
ode(preg,db

5

) = trust me

then de
glseqreg := de
glseq[breg℄


treg := b[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := preg +1

In general, the list of 
lauses for one predi
ate given in the original program is 
ompiled to

a 
ode fragment stored in the memory of ASM5, whi
h starts with a try me else instru
tion

and 
onsist of the list of 
lauses separated by retry me else instru
tions, ex
ept the last, whi
h

is separated by a trust me instru
tion. Su
h a 
ode fragment is 
alled a linear 
hain. The

requirement, that all 
ode fragments must be linear 
hains is formally re
e
ted in the 
ompiler

assumption for the re�nement from interpreter 4 to 5:

db

5

= 
ompile

45

(db

2

)

! [CLLS#(pro
def

2

(a
t,db

2

),db

2

),db

2

;
ol

1

)℄

hL-CHAIN#(pro
def

5

(a
t,db

5

),db

5

;
ol

2

)i

map
lause

0

(
ol

1

,db

2

) = map
lause

0

(
ol

2

,db

5

)

(14.3)

pro
def

2

and db

2

are the pro
def fun
tion and the Prolog program that have been used in the ASM2,

ASM3 and ASM4. pro
def

5

is the new pro
def -fun
tion for ASM5 and db

5

is the 
ompiled Prolog

program. The pro
edure L-CHAIN# terminates, i� the 
ode fragment stored at pro
def

5

(a
t,db

5

)

is a linear 
hain, and delivers the 
lauses 
ontained in it. As for sta
kof (see p. 71 in Se
t. 11.2)

a de�nition a �rst-order fun
tion l-
hain instead of the pro
edure is not suÆ
ient to 
hara
terize

linear 
hains. By the termination of the pro
edure 
y
li
 
hains have to be ruled out as possible

results of the 
ompilation. A pre
ise de�nition of the L-CHAIN# program is given in appendix

D.1.

14.2 Equivalen
e Proof 4/5

A pre
ise analysis of the re�nement from ASM4 to ASM5 shows that it does not just repla
e mode

with instru
tions. Also the test 
lause(pro
def

2

(a
t,db

2

)) = null is moved from try rule (ASM4)

to 
all rule (ASM5). This modi�
ation 
an also be done in ASM4. Just repla
e try rule and 
all

rule with


all rule

if stop = run ^ mode = 
all

^ is user de�ned(a
t)

then if 
lause(pro
def

2

(a
t,db

2

)) = null

then ba
ktra
k
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else 
llreg := pro
def

2

(a
t,db

2

)


treg := breg

if 
lause(pro
def

2

(a
t,db

2

)+1, db

2

) 6= null

then mode := try

else mode := enter

try rule

if stop = run ^ mode = try

then mode := enter

let tmp = new(s)

s := s [ ftmpg

breg := tmp

b[tmp℄ := breg

de
glseq[tmp℄ := de
glseqreg

sub[tmp℄ := subreg


ll[tmp℄ := 
llreg +1

If we 
all the result ASM4a, then the re�nement of ASM4a to ASM5 only 
ontains 1:1 diagrams.

In the veri�
ation of the re�nement from ASM4 to ASM4a we must 
onsider a 2:1 and a

2:2 diagram for the 
ase where mode = 
all and no ba
ktra
king happens, depending on whether


lause(pro
def

2

(a
t,db

2

)) = null holds. Otherwise the veri�
ation is trivial, sin
e obviously identity

suÆ
es as 
oupling invariant.

The veri�
ation of 4a/5 was the subje
t of the diploma thesis of Wolfgang Ahrendt at the

university of Karlsruhe ([Ahr95℄). Details are also given in [SA98℄.

About one month of work and 9 iterations were ne
essary to �nd the 
orre
t 
oupling invariant.

The 
omplexity of the proofs is about the same as for the re�nement 1/2. The main problem in

the development of the 
oupling invariant is to transform the 
ompiler assumption into suitable


onne
tions between the 
hoi
epoints. E.g. in the 
ase mode = retry we must have that for ea
h


hoi
epoint n the 
ode 
hain of ASM5 at p
[n℄ starts with a retry me else or trust me and 
ontains

the same 
lauses as the 
lause list of ASM4 starting with 
ll[n℄. Formally we have to add

hCLLS#(
ll[n℄, db

2

; 
ol

1

)i

hL-CHAIN-RETRY-ME#(p[n℄, db

5

; 
ol

2

)i

map
ode(
ol

2

, db

5

) = map
lause

0

(
ol

1

, db

2

))

to the 
oupling invariant. The use of a subpro
edure (here C-CHAIN-RETRY-ME#) of the

pro
edure L-CHAIN# used in the 
ompiler assumption is typi
al for 
ompilation steps (for the

de�nition of L-CHAIN# see appendix D.1). To have a simple 
oupling invariant, it is re
ommend-

able to stru
ture the pro
edures in the 
ompiler assumptions a

ording to the stru
ture of ASM

runs.

The most important result of the formal veri�
ation of 4a/5 was that an unintended indeter-

minism was revealed in ASM3 and ASM4. The problem was found when verifying 4a/5, sin
e this

re�nement was veri�ed before re�nements 2/3 and 3/4.

To see the problem, 
onsider again the fail rule from ASM3 (p. 76), that is also used in ASM4.

The obvious intention of the rule is that retry rule should be exe
uted afterwards.

Now it seems to be obvious that the only rule that is appli
able at all after exe
ution of fail

rule is indeed retry rule. But our 
orre
tness proofs revealed that fail rule does not invalidate its

own guard, so it may be exe
uted again, leading to an in�nite loop. The rule system is therefore

indeterministi
 (or following the terminology of [Gur95℄, in
onsistent), and does no longer 
orre
tly

implement a Prolog interpreter.

Although the error is easy to 
orre
t (the 
onjun
t mode = 
all must be added to the guard of

fail rule), we think this is a typi
al error that is very diÆ
ult to �nd even by intensive inspe
tion

(and, of 
ourse, we had to inspe
t the 
ode thoroughly before we 
ould make an attempt to de�ne a
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oupling invariant). A reader will always un
ons
iously resolve the indeterminism in the intended

way. Nevertheless, an implementation is blind for intentions, and will possibly resolve the 
on
i
t

in the wrong way (and ours did!).

The 
oupling invariant required for su

essful veri�
ation is:

INV

45

�

stop = stop

0

^ vireg = vireg

0

^ subreg = subreg

0

^ breg = breg

0

^ 
treg = 
treg

0

^ de
glseqreg = de
glseqreg

0

^ s = s

0

^ breg 2 s ^ 
treg 2 s

^ de
glseqreg 
tpelem s

^ (mode = 
all ! preg = start)

^ (mode = retry ! breg 6= ? ^ preg = p[breg

0

℄)

^ (mode = enter ! 
ode(preg, db

5

) = mk
l(the 
lau(
lause

0

(
llreg, db

2

))))

^ ( mode = try

! is user de�ned(a
t)

^ hCLLS#(
llreg, db

2

; 
ol

1

)i

hL-CHAIN-TRY-ME#(preg, db

5

; 
ol

2

)i

map
ode(
ol

2

, db

5

) = map
lause

0

(
ol

1

, db

2

))

^ (de
glseqreg = [℄ _ goal = [℄ _ a
t = ! _ a
t = true ! mode = 
all

0

)

^ (8 n. n 2 s ^ n 6= ?

! b[n℄ 2 s ^ de
glseq[n℄ 
tpelem s ^ sub[n℄ = sub

0

[n℄

^ b[n℄ = b

0

[n℄ ^ de
glseq[n℄ = de
glseq

0

[n℄ ^ de
glseq[n℄ 6= [℄

^ goal 6= [℄ ^ is user de�ned(a
t[n℄)

^ hCLLS#(
ll[n℄, db

2

; 
ol

1

)i

hL-CHAIN-RETRY-ME#(p[n℄, db

5

; 
ol

2

)i

map
ode(
ol

2

, db

5

) = map
lause

0

(
ol

1

, db

2

))
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Chapter 15

5/7: Stru
tured Compilation of

Predi
ate Stru
ture

15.1 De�nition of ASM6 and ASM7

In ASMs 1{5 the problem, how to determine \relevant" 
lauses, whi
h have a head that uni�es

with an a
tivator, was en
oded into the under-spe
i�ed pro
def fun
tion. In ASM7 this under-

spe
i�
ation is removed by de�ning instru
tion sequen
es that sele
t relevant 
lauses.

A 
on
rete de�nition of the pro
def fun
tion has to be between two extremes:

� A simple implementation, in whi
h pro
def(a
t,db) returns all 
lauses, whi
h have a head

that starts with the leading predi
ate symbol of a
t. This solution is ineÆ
ient, sin
e it

leads to a linear sear
h in 
lauses, and 
auses a lot of (expensive) failed uni�
ation attempts.

Consider e.g. a 
olle
tion of fa
ts p(


1

), ..., p(


n

) in a database.

� An elaborate solution, whi
h sele
ts exa
tly those 
lauses, whi
h unify with the a
tivator.

Su
h a solution is possible using \dis
rimination nets" (see e.g. [Gra96℄). It en
odes the

whole uni�
ation into 
lause sele
tion.

The solution taken in the WAM is a 
ompromise between both extremes. It uses the simple

pro
def fun
tion in the 
all rule and additional swit
hing instru
tions, that sele
t relevant \groups"

of 
lauses depending on the leading fun
tion symbol of some argument of a
t. If e.g. the a
tivator

is of the form p(t1,f(t2)), then a swit
hing instru
tion 
ould sele
t a group of 
lauses whi
h

have as se
ond argument either a variable or f. Clauses with a se
ond argument, that starts with

a fun
tion symbol di�erent from f would not be 
onsidered.

Before swit
hing instru
tions 
an be introdu
ed, �rst \grouping" of 
lauses must be made

possible. This is done in ASM6 by allowing instru
tion sequen
es that form nested 
hains. Nested


hains are de�ned like linear 
hains, but at ea
h position where a linear 
hain 
ontains a 
lause,

a nested 
hain may 
ontain another (nested) 
hain. Su
h an inner 
hain 
an be used to group

similar 
lauses together, so that they 
an be skipped as a whole with a swit
hing instru
tion in

ASM7.

If we look at the example program (14.1) from Se
t. 14.1, then we 
ould for example group the

last two 
lauses. The resulting 
ode shown in Fig. 15.1 has a sub
hain for the two 
lauses starting

at label L4.
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L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: trust_me

L4: try_me_else(L5)

p(g(X)) :- body3.

L5: trust_me

p(g(X)) :- body4.

(15.1)

Allowing nested instead of linear 
hains requires only a minimal 
hange in the ASM 
ode. In

the retry me else and trust me instru
tions we 
an no longer load 
treg with b[breg℄, sin
e the


utpoint of the 
urrently a
tive goal need no longer be the father of breg. Instead all 
hoi
epoints

that were 
onstru
ted for the 
urrent goal have to be ignored. The number of these 
hoi
epoints is

equal to the nesting depth of the 
hain the ASM 
urrently works on. For the trust me at L5 it is 2,

the 
orre
t value that should be assigned to 
treg in the rule therefore should be 
treg := b[b[breg℄℄.

The trust me at L3 should set 
treg to b[breg℄. To solve the problem, there are two alternatives.

[BR95℄ leaves open whi
h one to 
hoose by not giving a 
on
rete de�nition for the restore 
utpoint

statement. The �rst solution is to add an additional argument to ea
h retry me else and trust me

instru
tion, whi
h re
ords its 
urrent depth in the 
hain. The se
ond solution is to store the


orre
t 
treg within the 
hoi
epoint. We have 
hosen the se
ond one, sin
e a

ording to [AK91℄

it is the one usually adopted. An additional 
omponent 
t is added to ea
h 
hoi
epoint and the

new try me else, retry me else are trust me rule are:

try me rule

if 
ode(preg,db

7

) = try me else(N)

then let tmp = new(s)

s := s [ ftmpg

b[tmp℄ := breg

de
glseq[tmp℄ := de
glseqreg

sub[tmp℄ := subreg

p[tmp℄ := N

breg := tmp


t[tmp℄ := 
treg

preg := preg +1

retry me else rule

if 
ode(preg,db

7

) = retry me else(N)

then de
glseqreg := de
glseq[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

p[breg℄ := N

preg := preg +1

trust me rule

if 
ode(preg,db

7

) = trust me

then de
glseqreg := de
glseq[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := preg +1

After ASM6 has made grouping instru
tions together possible, ASM7 allows to put swit
hing

instru
tions at the front of 
hains or sub
hains. There are three types:
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� swit
h on term(i,Lv,L
,Ll,Ls) jumps to address Lv, L
, Ll or Ls, if the i

th

argument

arg(a
t,i) of the a
tivator is a variable, a 
onstant a list or a fun
tion term (a stru
ture).

� swit
h on stru
t(i,N,T) assumes, that it has been already assured, that arg(a
t,i) is a

stru
ture. The address to jump to is found by looking up the leading fun
tion symbol in a

table of triples (f,j,L). If arg(a
t,i) is a fun
tion term with leading fun
tion symbol f and j

subterms, the instru
tion jumps to L. The sele
tion of the jump address is en
oded into an

abstra
t fun
tion hashs. For the 
ase des
ribed we have

hashs(arg(a
t,i),N,T,db

7

) = L

� swit
h on 
onst(i,N,T) assumes similar to swit
h on stru
t that arg(a
t,i) is a 
onstant

and bran
hes a

ording to a table at address T that stores N pairs (
,L). For the abstra
t

fun
tion hash
 we have analogously

hashs(arg(a
t,i),N,T,db

7

) = L

whenever arg(a
t,i) = 
.

In our example we 
ould add at L4 the following swit
hing instru
tions:

L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: trust_me

L4: swit
h_on_term(L7,fail
ode,fail
ode,L6)

L6: swit
h_on_stru
t(1,1,T)

L7: try_me_else(L5)

p(g(X)) :- body3.

L5: trust_me

p(g(X)) :- body4.

(15.2)

Address T should 
ontain a list with one element (g,1,L7). fail
ode is a spe
ial address, that

leads to ba
ktra
king. This address must be returned by hashs and hash
, when the fun
tion or


onstant symbol is not found in the table. The ASM instru
tions for swit
hing are

swit
h on term rule

if 
ode(preg, db

7

) = swit
h on term(i, N

s

, N




, N

v

, N

l

)

then let x

i

= arg(a
t,i)

if is stru
t(x

i

) then preg := N

s

else

if is 
onst(x

i

) then preg := N




else

if is var(x

i

) then preg := N

v

else

if is list(x

i

) then preg := N

l

;

if preg = fail
ode then ba
ktra
k

swit
h on 
onstant rule

if 
ode(preg, db

7

) = swit
h on 
onstant(i, tabsize, table)

then let x

i

= arg(a
t,i)

preg := hash
(table, tabsize, 
onstsym(x

i

), db

7

);

if preg = fail
ode then ba
ktra
k

swit
h on stru
ture rule

if 
ode(preg, db

7

) = swit
h on stru
ture(i, tabsize, table)

then let x

i

= arg(a
t,i)

preg := hashs(table, tabsize, fun
t(x

i

), arity(x

i

),db

7

);

if preg = fail
ode then ba
ktra
k
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Note that the fail
ode address is used in the examples given in [BR95℄, but that the 
all

of ba
ktra
king is missing in the ASM rules of appendix 2. In the rules given in [AK91℄ for

swit
h on stru
t and swit
h on 
onst the 
all is de�ned, but in the swit
h on term it is also realized

only by the assumption never given expli
itly, that fail
ode is the address of the ba
ktra
king

routine.

To allow the use of 
lauses in several 
hains, ASM6 additionally introdu
es instru
tions try(L),

retry(L) and trust(L). Their e�e
t is identi
al to the one try me else(L), retry me else(L) and

trust me, ex
ept that the role of L and preg +1 as address of the 
hoi
epoint to 
reate resp. address

to 
ontinue the 
omputation are ex
hanged.

try rule

if 
ode(preg,db

7

) = try(N)

then let tmp = new(s)

s := s [ ftmpg

b[tmp℄ := breg

de
glseq[tmp℄ := de
glseqreg

sub[tmp℄ := subreg

p[tmp℄ := preg +1

breg := tmp


t[tmp℄ := 
treg

preg := N

retry rule

if 
ode(preg,db

7

) = retry(N)

then de
glseqreg := de
glseq[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

p[breg℄ := preg +1

preg := N

trust rule

if 
ode(preg,db

7

) = trust(N)

then de
glseqreg := de
glseq[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := N

In our example above a meaningful use of the new instru
tions would be

swit
h_on_term(L2,fail
ode,fail
ode,L1)

L1: swit
h_on_stru
t(1,1,T)

L2: try_me_else(L4)

p(X) :- body1.

L3: retry_me_else(L6)

L4: p(f(X)) :- body2.

L5: retry_me_else(L8)

L6: p(g(X)) :- body3.

L7: trust_me

L8: p(g(X)) :- body4.

L9: try(L6)

trust(L8)

(15.3)



15.2. EQUIVALENCE PROOF 5/7 97

where the table T now has entries (g; 1;L6) and (f; 1;L9). With an a
tivator p(f(X)) ASM7

would exe
ute the �rst two swit
hing instru
tions. The last one would jump to L9. There, by

exe
ution of the try and trust the 
lauses at L6 and L8 would be tried.

Finally it should be remarked, that the 
ode s
hemes given are only two of many possible ones.

The 
ompiler assumption of 5/7 allows a great number of alternatives, among others the variants

\one-level swit
hing" and \two-level swit
hing" dis
ussed in [AK91℄.

The 
ompiler assumption

db

6

= 
ompile

56

(db

5

) ! [L-CHAIN#(pro
def

5

(a
t,db

5

),db

5

; 
ol

1

)℄

hCHAIN#(pro
def

6

(a
t,db

6

),db

6

; 
ol

2

)i

map
ode(
ol

1

, db

5

) = map
ode(
ol

2

, db

6

)

(15.4)

for 5/6 is similar to the one for 4/5. By the introdu
tion of swit
hing instru
tions in ASM7

sele
tion of relevant 
lauses for one leading predi
ate symbol is then moved from the pro
def

fun
tion to the swit
hing instru
tions. Only the starting address for one leading predi
ate symbol

must still be sele
ted by a pro
def fun
tion. The sele
tion 
an now be done by a table lookup,

abstra
tly en
oded into a dynami
 fun
tion pro
def

7

, whi
h is a result of the 
ompilation step from

ASM6 to ASM7. Therefore we have for 
ompile

67

(db

6

) :=hpro
def

7

,db

7

i :

[CHAIN#(pro
def

6

(a
t,db

6

),db

6

; 
ol

1

)℄

hS-CHAIN#(a
t, pro
def

7

[id(a
t)℄,db

7

; 
ol

2

)i

map
ode(
ol

1

, db

6

) = map
ode(
ol

2

, db

7

)

(15.5)

In the 
ompiler assumption id sele
ts the leading predi
ate symbol of a literal in
luding its arity.

We have introdu
ed sele
tion of the leading predi
ate symbol in the re�nement 6/7, sin
e it seemed

to be the logi
al 
onsequen
e of the re�nement idea for 
lause sele
tion given in [BR95℄, p. 27. In

[BR95℄ sele
tion of the leading predi
ate symbol is done, without mentioning the 
hange, only in

the �nal ASM (the WAM).

The programs CHAIN# and S-CHAIN# in the 
ompiler assumption 
hara
terize nested 
hains

and nested 
hains with swit
hing. A 
on
rete de�nition of these programs is given in appendix

D.2. The de�nition is signi�
antly more 
omplex that the de�nition given in [BR95℄, be
ause


y
li
 
hains have to be avoided. Also the fa
t, that swit
hing instru
tions are allowed only at the

beginning of sub
hains had to be made pre
ise.

15.2 Equivalen
e Proof 5/7

An informal argument for the equivalen
e of ASM5, ASM6 and ASM7 is that they all try the

same 
andidate 
lauses. To be a little more pre
ise, all 3 ASMs go through the same sequen
e of


all and enter rules with the same a
tivators a
t and the same 
andidate nodes (in the remaining


hain starting with preg). Unfortunately this informal argument, whi
h is also given in [BR95℄,

is far away from a formal proof. Although it suggest to de
ompose the 
ommuting diagram into

subdiagrams with 
orners at states where preg = start and is 
lause(
ode(preg,db)), it does neither

give a hint how to set up a 
orresponden
e between states, nor how to prove the 
ommutativity

of the subdiagrams.

To make the veri�
ation manageable, we therefore had to solve the following three problems,

that will be dis
ussed in the following se
tions:

� De�ne a pre
ise 
orresponden
e between the 
hoi
epoint sta
ks.

� Given the 
orre
t 
orresponden
e between 
hoi
epoints, de�ne another one for the 
utpoints

stored in the de
glseq 's. This results in a �rst approa
h to de�ne the 
oupling invariant.

� Finally verify the subdiagrams. These now have no �xed size any longer as in all previous

re�nements. Their size now depends on the number of instru
tions in the 
ode 
hains. We

dis
uss two methods two verify diagrams with datastru
ture-dependent size.
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Trying to solve the �rst problem, one immediately �nds that it is easier to verify the re�nement

5/7 than to verify 6/7. In the �rst 
ase the one 
hoi
epoint that is allo
ated for an a
tivator in

ASM5 must be 
ompared with the 
orresponding set of 
hoi
epoints in ASM7 (like for 5/6), for

the se
ond 
ase two sets of 
hoi
epoints must be 
ompared. We have �rst veri�ed re�nement 5/6,

quasi as a \preliminary study" for the problems that will o

ur in 5/7. We will dis
uss the three

problems des
ribed above �rst for the re�nement 5/6 and will then show how mu
h the solutions

developed for 5/6 had to be 
hanged for 5/7.

Corresponden
e of Choi
epoint Sta
ks To model the 
orresponden
e of 
hoi
epoint sta
ks

we �rst used for 5/6 as well as for 5/7 a dynami
 fun
tion H : node! nodelist that given an ASM5


hoi
epoint returns the 
orresponding ones of ASM6 resp. ASM7. The fun
tion is used existentially

quanti�ed in the 
oupling invariant just like fun
tion F was used in the veri�
ation of 1/2 (see

Se
t. 11.2). Appending of all the (nonempty) lists H [n℄ for all sta
k nodes n of ASM5 should

give the sta
ks of ASM6 resp. ASM7. The (remainder of a) 
hain starting at p[n℄ (
omputed with

CHAIN-RET#) should 
ontain the same 
lauses as 
an be 
omputed by appending the 
lauses

that are stored in the 
hains p

0

[n

0

℄ for n

0

2 H [n℄ (these 
lauses are 
omputed with the program

APP-CHAINS-RET#). Also the sub[n℄ and the goals in de
glseq[n℄ should be identi
al to sub[n

0

℄

and de
glseq[n

0

℄. Formalized this 
an be written as:

hSTACK#(breg,b;sta
k)i

( hSTACK#(breg

0

,b

0

;sta
k

0

)i sta
k

0

= H

l

(H,sta
k)

^ 8 n. n 2 sta
k

! hL-CHAIN-RET#(p[n℄, db

5

;
ol

1

)i

hS-APP-CHAINS-RET#(de
glseq

0

,p,H[n℄,db

7

;
ol

2

)i

map
lause(
ol

1

,db

5

) = map
lause(
ol

2

,db

7

)

Now it turns out, that this formula is a 
orre
t des
ription of the 
orresponden
e of ASM5 and

ASM6, but insuÆ
ient for 5/7. The reason is, that in ASM7 
hoi
epoints n are possible, for whi
h

the 
hain starting at p[n℄ does 
ontain no 
lauses at all (i.e. a suitable 
all to S-CHAIN-RET#


omputes an empty list of 
lauses). For su
h a 
hoi
epoint, whi
h we 
all empty in the following,

there is no 
orresponding 
hoi
epoint in ASM5.

An example for su
h an empty 
hoi
epoint 
an be 
onstru
ted for the following example pro-

gram, where we assume that table T 
ontains the two entries (f; 1;L5) and (g; 1;L7):

L1: try_me_else(L2)

p(X) :- body1.

L2: trust_me

swit
h_on_term(L4,fail
ode,fail
ode,L3)

L3: swit
h_on_stru
t(1,2,T)

L4: try_me_else(L6)

L5: p(f(X)) :- body2.

L6: trust_me

L7: p(g(X)) :- body3.

(15.6)

For an a
tivator p(h(
)) an empty 
hoi
epoint n is present while the �rst 
lause is 
onsidered.

During this p[n℄ points to L2 (allo
ated in the try me else instru
tion). But exe
ution of the

instru
tions at L2 will lead to ba
ktra
king in the swit
h on stru
t) instru
tion, without any


lause being 
onsidered. Nevertheless the empty 
hoi
epoint is present, while body1 is exe
uted.

On the other hand, in ASM5 no 
hoi
epoint is 
onstru
ted for the a
tivator p(h(
)), sin
e the


ode of ASM5 
onsists a

ording to the 
ompiler assumption

hL-CHAIN#(pro
def

5

(a
t,db

5

), db

5

; 
ol

1

)i 
ol

1

= [p(X):-body1℄
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Figure 15.1

of only the �rst 
lause. Summarizing, the image of the ASM5 sta
k under H is not the whole

ASM7 sta
k, but between the images H [n℄ and H [b[n℄℄ of two su

essive 
hoi
epoints there may

be an arbitrary number of empty 
hoi
epoints.

Figure 15.1 depi
ts the situation graphi
ally. Empty 
hoi
epoints are represented as `Æ'. regs

are the 
urrent values of the registers de
glseqreg,subreg and 
llreg. The �gure shows, that the


ontents of ASM5 registers not only 
orrespond to the registers of ASM6 resp. ASM7, but also

to an additional list nl of 
hoi
epoints. It is also shown that we have formalized the problem of

empty 
hoi
epoints using an additional fun
tion H

0

and an additional list nl

0

. It should be noted

that at the lower end of an ASM7 sta
k there may also be a list H

0

(?) of empty 
hoi
epoints.

This 
auses the problem of asyn
hronous termination just as in the re�nement 3/4.

Corresponden
e of Cutpoints For the re�nement 5/6 a 
utpoint 
tpt of ASM5 is simply

mapped to 
ar(H [
tpt℄), the topmost 
orresponding Cutpoint in ASM6. H

d

(H;de
glseq[n℄) maps

all 
utpoints of de
glseq[n℄ in this way.

We made a similar assumption, that 
tpt should be mapped to 
ar(H

0

[
tpt℄) also in our �rst

proof attempt for 5/7. But a thorough analysis why it failed showed, that the 
utpoint of ASM7


orresponding to 
tpt maybe lo
ated anywhere between H[
tpt℄ and H[b[
tpt℄℄ or may be the �rst

element of H[b[
tpt℄℄. There is even an ex
eption for b[
tpt℄ = ?: then the 
orresponding 
utpoint

may be in H

0

[?℄ or it may be ? itself. The formal de�nition of similarity between de
glseq 's of

ASM5 and ASM7 is therefore (
dr([℄) ist de�ned as [℄ here):
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eqh(H

0

, H, [℄, [℄),

: eqh(H

0

, H, [hgoal,
tpti,dgl℄,[℄),

: eqh(H

0

, H, [℄,[hgoal

0

,
tpt

0

i, dgl

0

℄),

eqh(H

0

, H, [hgoal,
tpti, dgl℄,[hgoal

0

,
tpt

0

i, dgl

0

℄)

$ eqh(H

0

, H, dgl, dgl

0

) ^ goal = goal

0

^ (
tpt = ? � 
tpt

0

2 H

0

[?℄ _ 
tpt

0

= ?;


tpt

0

2 H

0

[?℄ ^ 
tpt

0

62 
dr(H[
tpt℄)

Diagrams with Datastru
ture Dependent Size The 
ommuting diagrams in the re�nements

5/6 and 5/7 are no longer diagrams of some type m:n with some 
onstants m, n (e.g. m = 1,

n = 2). Instead n is determined by the number of instru
tions, that have to be exe
uted until

the next 
lause is rea
hed. That n is �nite, is impli
itly guaranteed by the termination of the

CHAIN# resp. S-CHAIN# program from the 
ompiler assumption, but for a formal (indu
tive)

argument we need an expli
it size n. An expli
it de�nition is easy for 5/6, sin
e the number of

instru
tions in a 
hain 
orresponds dire
tly to the number of 
lauses stored in the 
hain. For ASM7

this is not the 
ase, sin
e empty 
hains of arbitrary length are possible. Therefore appendix D.3

de�nes a pro
edure S-COUNT# whi
h expli
itly 
ounts the remaining instru
tions in the 
hain.

The termination of S-COUNT# should be intuitively 
lear, sin
e it follows the same re
ursion

stru
ture than S-CHAIN#. But for a formal proof we need the new proof prin
iple of indu
tion

over the re
ursion depth of pro
edures, that was des
ribed in Se
t. 3. It allows to prove the

termination of S-COUNT# (as well as the termination of all auxiliary pro
edures mentioned in

appendix D.3) easily.

To prove the 
ommutation of diagrams of datastru
ture dependent size, we then have 2 alter-

natives, that we will dis
uss in the following. Either we 
an re
ursively de
ompose them, or we


an prove auxiliary lemmata for ea
h single ASM.

Re
ursive De
omposition of Diagrams This te
hnique was applied in the veri�
ation of

5/6. It interprets ea
h m:n (sub)diagram with a datastru
ture dependent n as a re�nement, and

de
omposes it, using the modularisation theorem re
ursively into smaller (subsub)diagrams. This

aproa
h seems natural here, sin
e the 
oupling invariantWINV

56

for two intermediate states dur-

ing the exe
ution of su
h a diagram 
an be de�ned just by generalizing the 
ase from the 
oupling

invariant INV

56

, in whi
h both ASMs are dire
tly at a 
lause: For 5/6 the requirement that

is 
lause(
ode(preg,db

5

)) ^ is 
lause(
ode(preg

0

,db

6

)) is generalied to the the weaker requirement,

that the instru
tion sequen
es 
urrently exe
uted lead to the same 
lause. The weaker invariant

WINV

56

for subdiagrams now holds in all intermediate states. It de
omposes the diagrams shown

in Fig. 15.2 in 1:0 and 0:1 subdiagrams.

Pairs of states whi
h 
orrespond a

ording to WINV

56

are 
onne
ted by dashed lines. 
all1

and 
all2 denote the �rst resp. se
ond 
ase of the 
all rule. The suÆx \(a)" denotes the sub
ase

of ba
ktra
king, where breg = ?, in whi
h the ASM therefore �nishes its 
omputation with result

failure. The suÆxes \(A)" and \(B)" divide the su

essful 
ase of 
all rule into the sub
ase,

where only one 
lause is tried and into the sub
ases, where several 
lauses are to explore (in the

latter 
ase the subsequent instru
tion must be a try me else or a try). ret* denotes an arbitrary

number of retry, retry me, trust or trust me instru
tions, and tr* an arbitrary number of try or

try me instru
tions. The resulting subdiagrams of the re
ursive appli
ation of the modularisation

theorem are shown in Fig. 15.3.

Compared to an immediate de
omposion of the whole proof in the smaller subdiagrams the

aproa
h has the advantage that proofs are more modular, and 
oupling invariants are somewhat

smaller. These advantages should in general be 
ompared to the ne
essity to de�ne two 
oupling

invariants INV

56

and WINV

56

simultaneously. The disadavantage is not too mu
h of a problem

here, sin
e the relation
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all2(A) // tryme // 
all2(B) //

enter1(a)

fail(a)


all1(a) //


all2

//��
INV

OO

tr�

//��

OO�
�
�
}}

=={
{

{
{ ��

OO�
�
�

!!

INV

aaCCCCCCCC


all2

//��
INV

OO

��
INV

OO

enter1(a)

fail1(a)


all1(a)

//��
INV

OO

��
INV

OO

enter1(b)

fail(b)


all1(b) // retryme //

enter1(b)

fail(b)


all1(b) // trustme //

enter1(b)

fail(b)


all1(b)

//��
INV

OO

retry

trust

retryme

trustme

//��

OO�
�
�

tr�

//��

OO�
�
�

!!

aaC
C

C
C ((

INV

hhQQQQQQQQQQQQQQQ

enter1(b)

fail(b)


all1(b)

//��
INV

OO

trust

trustme

//��

OO�
�
� ��

INV

OO


ut // goal // query //


ut

//��
INV

OO

��
INV

OO

goal

//��
INV

OO

��
INV

OO

query

//��
INV

OO

��
INV

OO

Figure 15.2 : Commuting Diagrams for the Re�nement 5/6

preg 6= start

! ( INV

56

$ WINV

56

^ is 
lause(
ode(preg,db

5

))

^ is 
lause(
ode(preg

0

,db

6

)))

(15.7)

must hold, whi
h given WINV

56

is suÆ
ient to 
onstru
t INV

56

for the 
ase where preg 6= start

(the 
ase preg = start is relatively easy). The re�nement 
ould be veri�ed in 2 weeks and with

8 iterations. The generalisation of INV

56

to WINV

56

was no real problem. The following two


oupling invariants were used:

HINV

56

�

9 h. ? 2 s ^ ? 2 s

0

^ h[?℄ = [?℄ ^ 
treg 2 s ^ 
treg

0

2 s

0

^ stop = stop

0

^ vireg = vireg

0

^ (h[breg℄ 6= [℄ ! 
ar(h[breg℄) = breg

0

)

^ ( : ( is retry me(
ode(preg

0

, db

6

)) _ is retry(
ode(preg

0

, db

6

))

_ is trust me(
ode(preg

0

, db

6

)) _ is trust(
ode(preg

0

, db

6

)))

! 
treg

0

= 
ar(h[
treg℄))

^ subreg = subreg

0

^ hdg(h, de
glseqreg) = de
glseqreg

0

^ (preg = start $ preg

0

= start)

^ (de
glseqreg = [℄ _ goal = [℄ _ a
t = ! _ a
t = true ! preg = start)

^ ( is 
lause(
ode(preg, db

5

)) ^ 
treg 6= breg

! 
treg = b[breg℄ ^ breg 6= ?

^ de
glseq[breg℄ = de
glseqreg ^ sub[breg℄ = subreg)

^ ( preg 6= start

! is 
lause(
ode(preg, db

5

)) ^ is 
lause(
ode(preg

0

, db

6

))

^ 
ode(preg, db

5

) = 
ode(preg

0

, db

6

)) ^ 
treg

0

= 
ar(h[
treg℄)

^ hSTACK#(breg, b; sta
k)i

( sta
k � s ^ de
glseqreg 
utptsin sta
k
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tryme // DD

��






 ZZ

��4
4

4
4 DD

��






 ZZ

��4
4

4
4

��

ZZ4
4
4
4 ��

DD









try

//
tryme

//


all // enter // trustme // trustme //


all

//��

OO

��

OO�
�
�

enter

//��

OO

��

OO�
�
�

trust

//��

OO�
�
� ��

OO

trustme

//��

OO�
�
� ��

OO

retryme // retryme // retryme // retryme //

retry

//��

OO�
�
� ��

OO�
�
�

trust

//��

OO�
�
� ��

OO�
�
�

retryme

//��

OO�
�
� ��

OO�
�
�

trustme

//��

OO�
�
� ��

OO�
�
�

Figure 15.3 : Subdiagrams for the Re�nement 5/6

^ hSTACK#(breg

0

, b

0

; sta
k

0

)i

(sta
k

0

= hl(h, sta
k) ^ sta
k

0

� s

0

)

^ (8 n. n 2 sta
k

! de
glseq[n℄ 6= [℄ ^ goal[n℄ 6= [℄

^ is user de�ned(a
t[n℄) ^ h[n℄ 6= [℄

^ de
glseq[n℄ 
utptsin 
dr(sta
k from n)

^ (8 n

0

. n

0

2 h[n℄

! sub[n℄ = sub

0

[n

0

℄

^ hdg(h, de
glseq[n℄) = de
glseq

0

[n

0

℄

^ 
t[n

0

℄ = 
ar(h[b[n℄℄))

^ hL-CHAIN-RETRY-ME#(p[n℄, db

5

; 
ol)i

hAPP-CHAINS-RET#(p

0

, h[n℄, db

6

; 
ol

2

)i

map
ode(
ol, db

5

) = map
ode(
ol

2

, db

6

)))

^ STACKINV

56

(true)

WINV

56

�

9 h. ? 2 s ^ ? 2 s

0

^ h[?℄ = ? +

sl

[℄ ^ 
treg 2 s ^ 
treg

0

2 s

0

^ stop = run ^ stop = stop

0

^ vireg = vireg

0

^ (h[breg℄ 6= [℄ ! 
ar(h[breg℄) = breg

0

)

^ ( : ( is retry me(
ode(preg

0

, db

6

)) _ is retry(
ode(preg

0

, db

6

))

_ is trust me(
ode(preg

0

, db

6

)) _ is trust(
ode(preg

0

, db

6

)))

! 
treg

0

= 
ar(h[
treg℄))

^ subreg = subreg

0

^ hdg(h, de
glseqreg) = de
glseqreg

0

^ preg 6= start ^ preg

0

6= start

^ de
glseqreg 6= [℄ ^ goal 6= [℄ ^ a
t 6= ! ^ a
t 6= true

^ (is try me(
ode(preg, db

5

)) ! is user de�ned(a
t) ^ 
treg = breg)

^ ( is 
lause(
ode(preg, db

5

)) ^ 
treg 6= breg

! 
treg = b[breg℄ ^ breg 6= ?

^ de
glseq[breg℄ = de
glseqreg ^ sub[breg℄ = subreg)

^ (is 
lause(
ode(preg, db

5

)) ! 
treg

0

= 
ar(h[
treg℄))

^ ( is try me(
ode(preg

0

, db

6

)) _ is try(
ode(preg

0

, db

6

))

! is user de�ned(a
t

0

))

^ ( is retry me(
ode(preg

0

, db

6

)) _ is retry(
ode(preg

0

, db

6

))

_ is trust me(
ode(preg

0

, db

6

)) _ is trust(
ode(preg

0

, db

6

))
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! breg

0

6= ? ^ preg

0

= p

0

[breg

0

℄ ^ 
treg

0

= 
ar(h[b[breg℄℄)

^ (is retry me(
ode(preg, db

5

)) _ is trust me(
ode(preg, db

5

))))

^ ( is retry me(
ode(preg, db

5

)) _ is trust me(
ode(preg, db

5

))

! ( is retry me(
ode(preg

0

, db

6

)) _ is retry(
ode(preg

0

, db

6

))

_ is trust me(
ode(preg

0

, db

6

)) _ is trust(
ode(preg

0

, db

6

)))

^ breg 6= ? ^ preg = p[breg℄

^ hL-CHAIN-RETRY-ME#(preg, db

5

; 
ol)i

hAPP-CHAINS-RET#(p

0

, h[breg℄, db

6

; 
ol

2

)i

map
ode(
ol, db

5

) = map
ode(
ol

2

, db

6

))

^ ( is try me(
ode(preg, db

5

))

! (is try(
ode(preg

0

, db

6

)) _ is try me(
ode(preg

0

, db

6

)))

^ hL-CHAIN-TRY-ME#(preg, db

5

; 
ol)i

hCHAIN-REC#(preg

0

, db

6

; 
ol

1

)i

map
ode(
ol, db

5

) = map
ode(
ol

1

, db

6

))

^ (is 
lause(
ode(preg, db

5

)) ^ : is 
lause(
ode(preg

0

, db

6

))

! (is try(
ode(preg

0

, db

6

)) _ is try me(
ode(preg

0

, db

6

)))

^ breg 6= ? ^ de
glseqreg = de
glseq[breg℄

^ subreg = sub[breg℄ ^ 
treg = b[breg℄

^ hL-CHAIN-RETRY-ME#(p[breg℄, db

5

; 
ol)i

hCHAIN-REC#(preg

0

, db

6

; 
ol

1

)i

hAPP-CHAINS-RET#(p

0

, h[breg℄, db

6

; 
ol

2

)i

the 
l(
ode(preg, db

5

)) +


li

map
ode(
ol, db

5

)

= map
ode(
ol

1

�


ol


ol

2

, db

6

))

^ ( is try(
ode(preg

0

, db

6

)) _ is try me(
ode(preg

0

, db

6

))

! is try me(
ode(preg, db

5

)) _ is 
lause(
ode(preg, db

5

)))

^ (is 
lause(
ode(preg

0

, db

6

)) ! 
ode(preg, db

5

) = 
ode(preg

0

, db

6

))

^ ( is 
lause(
ode(preg, db

5

)) _ is try me(
ode(preg, db

5

))

_ is retry me(
ode(preg, db

5

)) _ is trust me(
ode(preg, db

5

)))

^ STACKINV

56

(: is retry me(
ode(preg, db

5

)))

STACKINV

56

�

hSTACK#(breg, b; sta
k)i

( sta
k � s ^ (
ond ! de
glseqreg 
utptsin sta
k)

^ hSTACK#(breg

0

, b

0

; sta
k

0

)i

(sta
k

0

= hl(h, sta
k) ^ sta
k

0

� s

0

)

^ (8 n. n 2 sta
k

! de
glseq[n℄ 6= [℄ ^ goal[n℄ 6= [℄ ^ is user de�ned(a
t[n℄)

^ de
glseq[n℄ 
utptsin 
dr(sta
k from n)

^ (8 n

0

. n

0

2 h[n℄

! sub[n℄ = sub

0

[n

0

℄ ^ 
t[n

0

℄ = 
ar(h[b[n℄℄)

^ hdg(h, de
glseq[n℄) = de
glseq

0

[n

0

℄

^ ( n 6= breg

_ : is try me(
ode(preg

0

, db

6

))

^ : is try(
ode(preg

0

, db

6

))

_ is try me(
ode(preg, db

5

))

! h[n℄ 6= [℄

^ hCHAIN-RETRY-ME-FL#(p[n℄, db

5

; 
ol)i

hAPP-CHAINS-RET#(p

0

, h[n℄, db

6

; 
ol

2

)i

map
ode(
ol, db

5

) = map
ode(
ol

2

, db

6

))))

Auxiliary Theorems for the ASMs If one analyzes the equivalen
e proof 5/6 it be
omes

obvious, that in the proofs of 0:1 diagrams a lot of properties of ASM5 are shown to be invariant

in ASM6, that are en
oded only impli
itly via the 
orresponden
e to ASM6. An alternative is, to
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prove auxiliary theorems that are 
on
erned with the exe
ution of 
hains in ASM6 alone.

We have worked out a proof for the re�nement 5/7 �rst using the te
hnique of re
ursive

de
omposition of diagrams. We found, that the generalization of INV

57

to WINV

57

is a very

hard problem: The �nalWINV

57

has 4 times the size ofWINV

56

. To �nd the 
orre
t version and

to verify 5/7 took 2 months and 20 iterations. Therefore we have tried the te
hnique of auxiliary

theorems too. It lead to mu
h smaller proofs, as 
an be seen from the statisti
s at the end of

this se
tion. For 
omplex re�nements we therefore prefer this te
hnique although it adds to the

problem of �nding a suitable 
oupling invariant the problem to �nd suitable auxiliary theorems,

whi
h are not only provable but als �t into the overall proof.

As auxiliary theorems for ASM7 we �rst formulated, that exe
ution of some arbitrary 
hain

leads to one of the following results:

� If the 
hain is empty and breg = ?, the run of ASM7 is terminated with stop = failure.

� If the 
hain is empty and breg 6= ?, then ASM7 will rea
h a state, in whi
h the instru
tions

of the 
hain have been 
ompletely exe
uted, and the 
hain has just been left by ba
ktra
king,

i.e. de
glseqreg, subreg, 
treg, vireg and the sta
k are still un
hanged and preg points to the

topmost sta
k element p[breg℄.

� If the 
hain is nonempty, then a state is rea
hed, in whi
h the �rst 
lause has been rea
hed,

i.e. de
glseqreg, subreg, 
treg, vireg are un
hanged, preg points to the �rst 
lause of the 
hain.

A number of 
hoi
epoints have been pushed on the sta
k, whi
h all 
ontain de
glseqreg, subreg

and 
treg, and whose 
hains 
ontain appended exa
tly the 
lauses of the original 
hain ex
ept

the �rst.

As a formula this 
an be written as Lemma 
hain7 :

de
glseq

0

= de
glseq

0

0

^ sub

0

= sub

0

0

^ 
t = 
t

0

^ p

0

= p

0

0

^ b

0

= b

0

0

^ vireg

0

= vireg

0

0

^ stop

0

= run ^ s

0

0

� s

0

^ ? 2 s

0

0

^ de
glseqreg

0

0

6= [℄ ^ goal

0

0

6= [℄ ^ is user de�ned(a
t

0

0

)

^ hSTACK#(breg

0

, b

0

; sta
k

0

)i sta
k

0

= sta
k ^ sta
k � s

0

^ ( is retry(
ode(preg

0

, db

7

)) _ is retry me(
ode(preg

0

, db

7

))

_ is trust(
ode(preg

0

, db

7

)) _ is trust me(
ode(preg

0

, db

7

))

� sta
k 6= [℄ ^ preg

0

= p

0

[
ar(sta
k)℄ ^ de
glseqreg

0

6= [℄

^ goal

0

6= [℄ ^ de
glseqreg

0

0

= de
glseq

0

[
ar(sta
k)℄

^ subreg

0

0

= sub

0

[
ar(sta
k)℄ ^ 
treg

0

0

= 
t[
ar(sta
k)℄

^ sta
k

0

= 
dr(sta
k) ;

subreg

0

0

= subreg

0

^ de
glseqreg

0

0

= de
glseqreg

0

^ 
treg

0

0

= 
treg

0

^ sta
k

0

= sta
k)

^ hS-ANY-CHAIN#(a
t

0

0

, preg

0

, db

7

; 
ol)i


ol = 
ol

0

! 9 kappa.

hloop

if stop

0

= run then

RULE

0

(mk
o3res(db

7

, pro
deftab); s

0

, vireg

0

, stop

0

, breg

0

,


treg

0

, sub

0

, subreg

0

, de
glseq

0

, de
glseqreg

0

, p

0

,

preg

0

, b

0

, 
t)

times kappai

( 
ol

0

= [℄

� sta
k

0

= [℄ � stop

0

= failure ^ breg

0

= ? ;

preg

0

= p

0

[
ar(sta
k

0

)℄ ^ de
glseqreg

0

= de
glseqreg

0

0

^ subreg

0

= subreg

0

0

^ 
treg

0

= 
treg

0

0

^ vireg

0

= vireg

0

0

^ s

0

0

� s

0

^ stop

0

= run

^ hSTACK#(breg

0

, b

0

; sta
k)i

( sta
k = sta
k

0

^ sta
k � s

0
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^ (8 n. n 2 sta
k

! de
glseq

0

[n℄ = de
glseq

0

0

[n℄

^ sub

0

[n℄ = sub

0

0

[n℄ ^ b

0

[n℄ = b

0

0

[n℄

^ 
t[n℄ = 
t

0

[n℄ ^ p

0

[n℄ = p

0

0

[n℄)) ;

de
glseqreg

0

= de
glseqreg

0

0

^ subreg

0

= subreg

0

0

^ 
treg

0

= 
treg

0

0

^ vireg

0

= vireg

0

0

^ s

0

0

� s

0

^ stop

0

= run ^ is 
lause(
ode(preg

0

, db

7

)) ^ preg

0

= 
ar(
ol

0

)

^ (9 nl. hSTACK#(breg

0

, b

0

; sta
k)i

(sta
k = append(nl, sta
k

0

) ^ sta
k � s

0

)

^ hS-APP-CHAINS-RET#(de
glseq

0

, p

0

, nl, db

7

;


ol)i 
ol = 
dr(
ol

0

)

^ (8 n. n 2 nl

! de
glseq

0

[n℄ = de
glseqreg

0

0

^ sub

0

[n℄ = subreg

0

0

^ 
t[n℄ = 
treg

0

0

)

^ (8 n. n 2 sta
k

0

! de
glseq

0

[n℄ = de
glseq

0

0

[n℄

^ sub

0

[n℄ = sub

0

0

[n℄ ^ b

0

[n℄ = b

0

0

[n℄

^ 
t[n℄ = 
t

0

[n℄ ^ p

0

[n℄ = p

0

0

[n℄)))

The proof is by indu
tion on the number of instru
tions in the 
hain. Using the lemma it 
an

be proved, that if ASM7 does ba
ktra
king and the sta
k 
ontains a number of empty 
hoi
epoints

at its top, then a state is rea
hed where all empty 
hoi
epoints have been removed. Formally this

is lemma empty
hains7 :

de
glseq

0

= de
glseq

0

0

^ sub

0

= sub

0

0

^ 
t = 
t

0

^ p

0

= p

0

0

^ b

0

= b

0

0

^ vireg

0

= vireg

0

0

^ stop

0

= run ^ s

0

0

� s

0

^ ? 2 s

0

0

^ de
glseqreg

0

6= [℄ ^ goal

0

6= [℄

^ hSTACK#(breg

0

, b

0

; sta
k

0

)i sta
k

0

= sta
k ^ sta
k � s

0

^ ( is retry(
ode(preg

0

, db

7

)) _ is retry me(
ode(preg

0

, db

7

))

_ is trust(
ode(preg

0

, db

7

)) _ is trust me(
ode(preg

0

, db

7

)))

^ sta
k = append(nl,sta
k

0

) ^ sta
k 6= [℄ ^ preg

0

= p

0

[
ar(sta
k)℄

^ (8 n. n 2 nl

! de
glseq

0

[n℄ 6= [℄ ^ goal

0

[n℄ 6= [℄

^ is user de�ned(a
t

0

[n℄))

^ hS-APP-CHAINS-RET#(de
glseq

0

, p

0

, nl, db

7

; 
ol)i 
ol = [℄

! 9 kappa. hloop

if stop

0

= run then

RULE

0

(mk
o3res(db

7

, pro
deftab); s

0

, vireg

0

, stop

0

, breg

0

,


treg

0

, sub

0

, subreg

0

, de
glseq

0

, de
glseqreg

0

, p

0

,

preg

0

, b

0

, 
t)

times kappai

(sta
k

0

= [℄ � stop

0

= failure ^ breg

0

= ? ;

preg

0

= p

0

[
ar(sta
k

0

)℄

^ de
glseqreg

0

6= [℄ ^ goal

0

6= [℄

^ vireg

0

= vireg

0

0

^ s

0

0

� s

0

^ stop

0

= run

^ hSTACK#(breg

0

, b

0

; sta
k)i

( sta
k = sta
k

0

^ sta
k � s

0

^ (8 n. n 2 sta
k

! de
glseq

0

[n℄ = de
glseq

0

0

[n℄

^ sub

0

[n℄ = sub

0

0

[n℄ ^ b

0

[n℄ = b

0

0

[n℄

^ 
t[n℄ = 
t

0

[n℄ ^ p

0

[n℄ = p

0

0

[n℄)))

Finally we need a lemma whi
h 
ombines 
hain7 and empty
hains7, 
alled next
lause7, whi
h

states that ba
ktra
king in a sta
k of 
hoi
epoints leads to the �rst nonempty 
hoi
epoint, and

that its 
hain is redu
ed to a 
lause and new 
hoi
epoints:
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de
glseq

0

= de
glseq

0

0

^ sub

0

= sub

0

0

^ 
t = 
t

0

^ p

0

= p

0

0

^ b

0

= b

0

0

^ vireg

0

= vireg

0

0

^ stop

0

= run ^ s

0

0

� s

0

^ ? 2 s

0

0

^ de
glseqreg

0

6= [℄ ^ goal

0

6= [℄

^ hSTACK#(breg

0

, b

0

; sta
k

0

)i sta
k

0

= sta
k ^ sta
k � s

0

^ ( is retry(
ode(preg

0

, db

7

)) _ is retry me(
ode(preg

0

, db

7

))

_ is trust(
ode(preg

0

, db

7

)) _ is trust me(
ode(preg

0

, db

7

)))

^ sta
k = append(nl,sta
k

0

) ^ sta
k

0

6= [℄ ^ preg

0

= p

0

[
ar(sta
k)℄

^ (8 n. n 2 nl

! de
glseq

0

[n℄ 6= [℄ ^ goal

0

[n℄ 6= [℄ ^ is user de�ned(a
t

0

[n℄))

^ hS-APP-CHAINS-RET#(de
glseq

0

, p

0

, nl, db

7

; 
ol)i 
ol = [℄

^ hS-CHAIN-RET#(a
t

0

[
ar(sta
k

0

)℄, p

0

[
ar(sta
k

0

)℄, db

7

; 
ol)i


ol = 
ol

0

^ 
ol

0

6= [℄ ^ de
glseq

0

[
ar(sta
k

0

)℄ 6= [℄

^ goal

0

[
ar(sta
k

0

)℄ 6= [℄

^ is user de�ned(a
t

0

[s
ar(sta
k

0

)℄)

! 9 kappa. hloop

if stop

0

= run then

RULE

0

(mk
o3res(db

7

, pro
deftab); s

0

, vireg

0

, stop

0

, breg

0

,


treg

0

, sub

0

, subreg

0

, de
glseq

0

, de
glseqreg

0

, p

0

,

preg

0

, b

0

, 
t)

times kappai

( de
glseqreg

0

= de
glseq

0

0

[
ar(sta
k

0

)℄

^ subreg

0

= sub

0

0

[
ar(sta
k

0

)℄ ^ 
treg

0

= 
t

0

[
ar(sta
k

0

)℄

^ vireg

0

= vireg

0

0

^ s

0

0

� s

0

^ stop

0

= run

^ is 
lause(
ode(preg

0

, db

7

)) ^ preg

0

= 
ar(
ol

0

)

^ (9 nl

1

. hSTACK#(breg

0

, b

0

; sta
k)i

( sta
k = append(nl

1

, 
dr(sta
k

0

))

^ sta
k � s

0

)

^ hS-APP-CHAINS-RET#(de
glseq

0

, p

0

, nl

1

, db

7

;


ol)i 
ol = 
dr(
ol

0

)

^ (8 n. n 2 nl

1

! de
glseq

0

[n℄ = de
glseqreg

0

^ sub

0

[n℄ = subreg

0

^ 
t[n℄ = 
treg

0

)

^ (8 n. n 2 
dr(sta
k

0

)

! de
glseq

0

[n℄ = de
glseq

0

0

[n℄

^ sub

0

[n℄ = sub

0

0

[n℄ ^ b

0

[n℄ = b

0

0

[n℄

^ 
t[n℄ = 
t

0

[n℄ ^ p

0

[n℄ = p

0

0

[n℄)))

With these lemmas we 
an then de
ompose the 
ommuting diagrams of 5/7 as shown in

Fig. 15.4.

CINV is the 
ase in the 
oupling invariant in whi
h preg = start holds, EINV is the 
ase

where the next instru
tion is a 
lause. In the 
ase FINV both ASMs have �nished their run. The

most 
ompli
ated proof is the one, in whi
h ba
ktra
king is 
alled (the 7 diagrams in the lower

half of Fig. 15.4). The �gure hints, that the proofs of the �rst 5 diagrams 
an be merged into

one. It is suÆ
ient to use the 
oupling invariant as pre
ondition, and to repla
e the two 
alls to

rules of ASM5 and ASM7 by 
alls to the 
orresponding ba
ktra
k program. The last two of the

7 diagrams 
an be redu
ed to the proof of the diagram dire
tly above them, by applying lemma


hain7 �rst (to remove the empty 
hain in ASM7).

The total e�ort for the veri�
ation of 5/7 by re
ursive de
omposition of diagrams was 17009

proof steps and 1521 intera
tions. The proof using auxiliary lemmas was done within a week and

required only 7473 proof steps and 1351 intera
tions.
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all2(A) // try me // 
all2(B) //


all2

//��
CINV

OO


hain7

//____ ��
EINV

OO


all2

//��
CINV

OO


hain7

//____ ##

EINV

ccGGGGGGGG

su

ess // true // goal // 
ut //

su

ess

//��
CINV

OO

��
FINV

OO

true

//��
CINV

OO

��
CINV

OO

goal

//��
CINV

OO

��
CINV

OO


ut

//��
CINV

OO

��
CINV

OO


all1(a)

fail1(a)

enter1(a) //


all1(a)

fail1(a)

enter1(a) //


all1(a)

fail1(a)

enter1(a) //


all1(a)

fail(a)

enter1(a)

//��
CINV

OO

��
FINV

OO


all1(b)

fail(b)

enter1(b)

//��
CINV

OO

empty
hains7

//____ $$FINV

ddJJJJJJJJJ


all1(b)

fail(b)

enter1(b)


all2

//��
CINV

OO

empty
hains7

//____ $$

FINV

ddJJJJJJJJJ


all1(b)

fail(b)

enter1(b) // retry me //


all1(b)

fail(b)

enter1(b) // trust me //


all1(b)

fail(b)

enter1(b)

//��
CINV

OO

next
lause7

//____ ��
EINV

OO


all1(b)

fail(b)

enter1(b)

//��
CINV

OO

next
lause7

//____ ��
EINV

OO


all1(b) // retry me // 
all1(b) // trust me //


all2

//��
CINV

OO

next
lause7

//____ ��
EINV

OO


all2

//��
CINV

OO

next
lause7

//____ ��
EINV

OO

Figure 15.4 : Commuting Diagrams for the Re�nement 5/7
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Chapter 16

7/8: Environments and Sta
k

Sharing

16.1 De�nition of ASM8

After we have 
ompleted the 
ompilation of predi
ate stru
ture with ASM7, re�nement 7/8 now

prepares the 
ompilation of single 
lauses. A �rst step in this dire
tion is to transform the data-

stru
ture of de
glseq 's, su
h that the goals 
ontained in them are dire
tly a

essible and 
an later

on be repla
ed with pointers into the 
ode of 
lause bodies. To make this possible, it is ne
essary

to delay the appli
ation of substitutions to goals. Instead substitutions are applied to literals

when the literal be
omes a new a
tivator. With this approa
h all goals be
ome end pie
es of


lause bodies. Although goals still 
ontain renamed variables and 
an therefore not be repla
e by

pointers to 
ode immediately (this will be 
hanged in the re�nement 8/9, when the 
lauses are


ompiled), dispensing with the immediate appli
ation of substitutions in enter rule 
auses old and

new de
glseqreg to have a large 
ommon part. By restru
turing, the information 
ontained in the


ommon part 
an now be shared and stored only on
e.

Sharing is a
hieved as follows: Instead of storing [hgoal

1

, 
tpt

1

i, hgoal

2

,
tpt

2

i, hgoal

3

,
tpt

3

i,

. . . ℄ in de
glseqreg, goal

1

is a

essible in ASM8 in a new register goalreg dire
tly. For the rest

of the informations an environment is allo
ated. Formally an environment is an element of a

dynami
 sort envnode, similar to a 
hoi
epoint, that is stored in a register ereg (again, similar

to breg). Dynami
 fun
tions 
utpt and 
g atta
h the 
urrent 
utpoint and the se
ond goal (the

\
ontinuation goal") to the environment: 
utpt[ereg℄ = 
tpt

1

and 
g[ereg℄ = goal

2

. The rest of

the information (
tpt

2

, goal

3

, et
.) 
an be rea
hed via a fun
tion 
e : envnode ! envnode (the

\
ontinuation environment").

With the re-en
oding of the information stored in de
glseqreg a similar re-en
oding for the data

stored in de
glseqreg[n℄ for ea
h 
hoi
epoint n be
omes ne
essary. Instead of de
glseqreg[n℄ ASM8

used two new fun
tions goal[n℄ and e[n℄ for this purpose, whi
h 
orrespond to goalreg and ereg.

Changing the representation of the data in the de
glseq 's rises the question, whether environ-

ments have to be put on a separate (environment) sta
k. This is not the 
ase, it is possible to

store environments and 
hoi
epoints on the same sta
k, and to introdu
e a genuine sta
k dis
i-

pline, that overwrites abandoned sta
k frames destru
tively. By that, sort envnode be
omes equal

to sort node.

In [BR95℄ the new sta
k dis
ipline is introdu
ed in two steps: First, ASM8 
ontains a 
ommon,

but not destru
tively modi�ed sta
k, and ASM9 then repla
es allo
ation of new sta
k nodes with

overwriting. This two-step approa
h seemed disadvantageous for veri�
ation to us, sin
e the

intermediate level requires to introdu
e an additional dynami
 fun
tion tos, whi
h has to return

the maximum of two nodes relative to a dynami
 sta
k 
haining fun
tion � (see p. 32 in [BR95℄).

The de�nition of su
h a fun
tion is possible, but elaborate. It would be only needed in ASM8, and


an be avoided by going dire
tly to the sta
k representation of ASM9. Our solution therefore does

109
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not divide introdu
tion of a destru
tively modi�ed sta
k over two re�nements, but in
ludes it in

re�nement 7/8. The Hiding Lemma thereby is needed only in the veri�
ation of this re�nement.

To introdu
e the destru
tively modi�ed sta
k, we add a total order � on sta
k nodes, and

de�ne fun
tions +1 and �1 to in
rement and de
rement them. Thereby, the role of sta
k nodes

be
omes one of addresses. Allo
ation of sta
k nodes is no longer done with the fun
tion new

relative to a set of allo
ated nodes, but simply by in
rementing the pointer to the top element

of the sta
k. To make an environment or a 
hoi
epoint ina

essible, we now simply de
rement

the pointer to the topmost sta
k frame. Allo
ation of a new sta
k frame will then overwrite the

ina

essible one. Abandoned nodes, whi
h have been allo
ated but are not in the 
urrent sta
k

are no longer possible in ASM8. The statement of the Hiding Lemma is now, that when new

nodes (environment nodes as well as 
hoi
epoint nodes) are always allo
ated at max(breg,ereg)+1,

then the environment nodes e[n℄, 
e[e[n℄℄, . . . belonging to a 
hoi
epoint n will always be below

n (so the 
hoi
epoints "`hides"' them from being overwritten). The same will also hold for the


hoi
epoints 
utpt[n

0

℄, 
utpt[b[n

0

℄℄ stored in an environment or a 
hoi
epoint n

0

. For ASM8 we

have the following rules:

ba
ktra
k �

if breg = ? then stop := failure

else preg := p[breg℄


all rule

let a
t = subreg ^

t


ar(goalreg)

if preg = start ^ is user de�ned(a
t)

then if pro
def

7

(a
t,db

7

) = fail
ode

then ba
ktra
k

else preg := pro
def

7

(a
t,db

7

)


treg := breg


ut rule

let a
t = subreg ^

t


ar(goalreg)

if a
t = !

then breg := 
utpt[ereg℄

goalreg := rest(goalreg)

enter rule

if is 
lause(
ode(preg, db

7

))

then let 
la = rename(
lause(
ode(preg, db

7

)), vireg)

let a
t = subreg ^

t


ar(goalreg)

let mgu = unify(a
t, hd(
la))

if mgu = nil

then ba
ktra
k

else let tmp = max(ereg,breg)+1


e[tmp℄ := ereg

ereg := tmp


g[tmp℄ := rest(goalreg)


utpt[tmp℄ := 
treg

goalreg := bdy(
la)

subreg := subreg Æ mgu

vireg := vireg +1

preg := start

fail rule

let a
t = subreg ^

t


ar(goalreg)

if a
t = fail

then ba
ktra
k
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goal su

ess rule

if goalreg = [℄ ^ : ereg = ?

then goalreg := 
g[ereg℄

ereg := 
e[ereg℄

query su

ess rule

if goalreg = [℄ ^ ereg = ?

then stop := su

ess

retry rule

if 
ode(preg,db

7

) = retry(N)

then ereg := e[breg℄

goalreg[breg℄ := goal[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

p[breg℄ := preg +1

preg := N

retry me else rule

if 
ode(preg,db

7

) = retry me else(N)

then ereg := e[breg℄

goalreg := goal[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

p[breg℄ := N

preg := preg +1

swit
h on 
onstant rule

let a
t = subreg ^

t


ar(goalreg)

if 
ode(preg, db

7

) = swit
h on 
onstant(i, tabsize, table)

then let x

i

= arg(a
t,i)

preg := hash
(table, tabsize, 
onstsym(x

i

), db

7

);

if preg = fail
ode then ba
ktra
k

swit
h on stru
ture rule

let a
t = subreg ^

t


ar(goalreg)

if 
ode(preg, db

7

) = swit
h on stru
ture(i, tabsize, table)

then let x

i

= arg(a
t,i)

preg := hashs(table, tabsize, fun
t(x

i

), arity(x

i

), db

7

);

if preg = fail
ode then ba
ktra
k

swit
h on term rule

let a
t = subreg ^

t


ar(goalreg)

if 
ode(preg, db

7

) = swit
h on term(i, N

s

, N




, N

v

, N

l

)

then let x

i

= arg(a
t,i)

if is stru
t(x

i

) then preg := N

s

else

if is 
onst(x

i

) then preg := N




else

if is var(x

i

) then preg := N

v

else

if is list(x

i

) then preg := N

l

;

if preg = fail
ode then ba
ktra
k

true rule

let a
t = subreg ^

t


ar(goalreg)

if a
t = true

then goalreg := rest(goalreg)
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trust rule

if 
ode(preg,db

7

) = trust(N)

then ereg := e[breg℄

goalreg := goal[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := N

trust me rule

if 
ode(preg,db

7

) = trust me

then ereg := e[breg℄

goalreg := goal[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := preg +1

try rule

if 
ode(preg,db

7

) = try(N)

then let tmp = max(ereg,breg) +1

b[tmp℄ := breg

e[tmp℄ := ereg

goal[tmp℄ := goalreg

sub[tmp℄ := subreg

p[tmp℄ := preg +1

breg := tmp


t[tmp℄ := 
treg

preg := N

try me rule

if 
ode(preg,db

7

) = try me else(N)

then let tmp = max(ereg,breg)+1

b[tmp℄ := breg

e[tmp℄ := ereg

goal[tmp℄ := goalreg

sub[tmp℄ := subreg

p[tmp℄ := N

breg := tmp


t[tmp℄ := 
treg

preg := preg +1

16.2 Equivalen
e Proof 7/8

Veri�
ation of 7/8 poses 3 main problems: �rst, we must make pre
ise the 
onne
tion between

the de
glseq 's and the 
omponents of ASM8. Here we found, that a modi�
ation of the query

su

ess rule was ne
essary, to keep the 1:1 
orresponden
e of rules. Se
ond we have to make

the 
orre
tness of sta
k sharing expli
it in the 
oupling invariant. Third, delaying substitutions

resulted in an additional 
ompiler assumption ne
essary for the 
orre
tness of the re�nement.

Corresponden
e of Environment and de
glseq 's To verify 7/8 we �rst have to make pre
ise

the initialization of environments, the 
onne
tion between de
glseq 's from ASM7 and the 
ompo-

nents of ASM8, and the termination 
riterion in ASM8. All three points are tightly 
onne
ted,
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sin
e the initial environment strongly in
uen
es the 
oupling invariant as well as the guard of

query su

ess rule. The ASM rules that were shown in the previous se
tion already 
ontain the

ne
essary modi�
ations 
ompared to [BR95℄.

For the initialization we have set ereg to ?. The fun
tion 
e as well as 
utpt have to map ?

to ?. The initialization of 
g is arbitrary, and goalreg has to be initialized with the query. With

this initialization we 
an 
ompute de
glseqreg and de
glseq[n℄ from ASM7, using the 
omponents

of ASM8:

hSTACK#(ereg,
e;esta
k)i

de
glseqreg = subreg ^

d

[hgoalreg, 
utpt[ereg℄i j

de
glseqof(
utpt, 
g, 
e, esta
k)℄

hSTACK#(e[n℄,
e;esta
k

0

)i de
glseq[F[n℄℄

= sub[F[st℄℄ ^

d

F

d

(F,[hgoal[n℄,
utpt[e[n℄℄i j

de
glseqof(
utpt, 
g, 
e, esta
k

0

)℄)

Like in the re�nements 1/2, 2/3 et
. the 
hoi
epoint of ASM8, that 
orresponds to a 
hoi
epoint

st of ASM is 
omputed as F[st℄ with a dynami
 fun
tion F . esta
k and esta
k

0

are the environment

sta
ks starting at ereg resp. e[n℄. These lists of sta
k nodes 
an be 
omputed with the same program

STACK# (see the de�nition in Se
t. 11.2), that was used for 
hoi
epoints. The fun
tion de
glseqof


olle
ts the information at the 
orresponding nodes:

de
glseqof(
utpt,
g,
e,[ ℄) = [ ℄

de
glseqof(
utpt,
g,
e,[n j esta
k℄)

= [h
g[n℄,
utpt[
e[n℄℄i j de
glseqof(
utpt,
g,
e,esta
k)℄

Until now our de�nitions seem to agree with those given in [BR95℄. Only the initialization of

ereg with ? was added, the 
onne
tion between the registers was formalized, and the de�nition

of fun
tion G (p.32 f), that would have to be realized as a program, was de
omposed into 
alls

of STACK# and de
glseqof. But our de�nition of the termination 
riterion for query su

ess will

deviate from [BR95℄, where the rule test is de�ned (using our notation) as

goalreg = ? ^ hSTACK#(ereg,
e;esta
k)i 8 n2 esta
k. goal[n℄= [ ℄

We have deviated, although it is 
orre
t, to �nish the 
omputation when all goals on the sta
k

are empty. Nevertheless the test is very expensive sin
e all goal[n℄ must be looked at (and the test

has to be done ea
h time an empty goal is rea
hed to de
ide whether goal su

ess or query su

ess

rule should be applied). Also the optimisation removes all appli
ations of goal su

ess rule at the

end of a 
omputation, violating the proposed 1:1 
orresponden
e of ASM rules. Also the following

ASM9 does not look at several sta
k frames, so the optimisation is not used in ASM9. Therefore

we use

goalreg = ? ^ ereg = ?

as the rule test of query su

ess. This 
orresponds to a test de
glseqreg=[h[ ℄;
tpti ℄ in ASM7. This

means that the last appli
ations of goal su

ess and query su

ess in ASM7 have been repla
ed by

an appli
ation of query su

ess. Therefore we have a 2:1 diagram for this 
ase. The 2:1 diagram


annot be avoided, sin
e from the 
onne
tion of de
glseqreg to the 
omponents of ASM8 shown

above (whi
h will be part of the 
oupling invariant) it is 
lear that there is no possibility to

represent a state 
orresponding to de
glseqreg = [ ℄ in ASM8.
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Sta
k Sharing The most deli
ate task in setting up the 
oupling invariant is to make the sta
k

sharing of ASM8 expli
it. The 
oupling invariant must assure, that allo
ation of 
hoi
epoints

and environments never overwrites still relevant old ones. To save lengthy 
alls to the STACK#

program in the following we denote with esta
k the 
urrent sta
k of environements (a list starting

starting with ereg), with bsta
k the 
urrent sta
k of 
hoi
epoints (starting with breg) and with

esta
k[n℄ the sta
k of environments starting with the environemnt e[n℄ of 
hoi
epoint n. Then we

need �rst need the following obvious properties:

� The 
hoi
epoint sta
k bsta
k and the environment sta
k esta
k are disjoint (formalized as

disjoint(esta
k,bsta
k)).

� the 
hoi
epoint sta
k bsta
k is also disjoint to the environement sta
k of every 
hoi
epoint.

� The 
hoi
epoints in bsta
k are stri
tly monotone de
reasing with respe
t to � (formalised

as ordered(bsta
k)).

� The environments in esta
k and esta
k[n℄ are de
reasing too.

� The environment e[n℄ of ea
h 
hoi
epoint n is below the 
hoi
epoint (this is the 
ontent of

the \Hiding Lemma").

Unfortunately these propertoes are not suÆ
ient for a su

essful veri�
ation. We found, that

a number of other properties are ne
essary, that are not obvious at �rst. The two most important

are.

� breg is never below 
utpt[ereg℄

� 
t[n℄ is never above the 
hoi
epoint n, and never below 
utpt[e[n℄℄

Two other simple properties are that no states are below ?, and the 
utptsin properties we

already needed in previous re�nements.

Delaying Substitutions Delaying the appli
ation of substitutions to goals as far as possible

seems to be a harmless transformation at �rst glan
e. But if one tries to prove the equivalen
e of

the two enter rules of ASM7 and ASM8, then one en
ounters the problem, that the substitutions

applied to a
tivators of ASM7 and ASM8 are di�erent ! To understand this, look at a situation

where an a
tivator is uni�ed with the head of a 
lause H : �B that has been renamed with vireg.

Let us assume, that the 
omputed substitutions in subreg and subreg

0

as well as both a
tivators

a
t and a
t

0

are equal. Then both ASM7 and ASM8 will 
ompute the same mgu. Both will then


ompute a new goal, 
onsisting of literal B. ASM7 instantiates B immediately with mgu, while

ASM8 will only 
ompute the new substitution subreg Æ mgu. When now B be
omes itself the

a
tivator later on, ASM8 will instantiate it with this 
omposed substitution, and not only with

mgu. For both a
tivators to be equal, we must have

(subreg Æ mgu) ^

d

B = mgu ^

d

B

This is the 
ase, sin
e the appli
ation of subreg has no e�e
t on B : the 
lause H : �B, and so

espe
ially B were renamed with a new index vireg, that was not used previously. Therefore subreg

should 
ontain no variables whi
h were renamed with the index vireg at this point.

To formalise this argument we have de�ned predi
ates 
l <


vi

vireg, L <

tvi

vireg, dgl <

dvi

vireg

and subreg <

svi

vireg, whi
h state that 
lause 
l, de
orated goal list dgl, literal L and substitution

subreg do not 
ontain variables renamed with index vireg. The proof, that subreg has no e�e
t on

literal B then 
an be redu
ed to the goal, that the renaming fun
tion rent obeys

rent(L,vireg) <

tvi

vireg +1
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But for a natural de�nition of renaming, that is homomorphi
 over the datatypes mentioned (for

whi
h e.g. rent(f(t);vireg) = f(rent(t;vireg)) holds) this goal 
an be proved only if the literal to

rename does not 
ontain renamed variables already. Therefore we need

Compiler Assumption for the Re�nement 7/8: The original

Prolog program does not 
ontain renamed variables.

The assumption is realized in reality simply by giving renamed variables no readable represen-

tation. Nevertheless the formal veri�
ation makes this impli
it assumption expli
it.

We de�ne the new 
ompiler assumption for the original database db of ASM1:

map
lause(pro
def(lit,db),db) <


lvi

0

With the previous 
ompiler assumptions it easy to propagate it to the database db

7

of ASM7.

As the 
oupling invariant we �nally rea
h after 12 attempts and one man month of work the

following formula.

INV

78

�

9 F. F[?℄ = ? ^ ? 2 s

^ (stop = run ! de
glseqreg 6= [℄)

^ stop = stop

0

^ preg = preg

0

^ vireg = vireg

0

^ subreg = subreg

0

^ 
treg = F[
treg

0

℄ ^ breg = F[breg

0

℄ ^ 
e[?℄ = ? ^ 
utpt[?℄ = ?

^ : breg

0

� ? ^ (breg

0

6= ? ! b

0

[breg

0

℄ � breg

0

) ^ : ereg � ?

^ subreg

0

<

svi

vireg

0

^ : breg

0

� 
utpt[ereg℄

^ ( preg

0

6= start ^ stop

0

= run

! goalreg 6= [℄ ^ is ret(
ode(preg

0

, db

7

))

� breg 6= ? ^ preg

0

= p

0

[breg

0

℄ ;

: breg

0

� 
treg

0

^ : 
treg

0

� 
utpt[ereg℄

^ hS-CHAIN-REC#(a
t, preg, db

7

; 
ol)i tt))

^ hSTACK#(breg

0

, b

0

; sta
k

0

)i

( hSTACK#(breg, b; sta
k)i (F

l

(F, sta
k

0

) = sta
k ^ sta
k � s)

^ F injon sta
k

0

^ ordered(sta
k

0

)

^ ( stop = run

! hSTACK#(ereg, 
e; esta
k)i

hde
glseqreg

0

:= [hgoalreg, 
utpt[ereg℄i j

de
glseqof(
utpt, 
g, 
e, esta
k)℄

( de
glseqreg = subreg ^

d

F

d

(F, de
glseqreg

0

)

^ de
glseqreg

0

<

dvi

vireg

0

^ disjoint(esta
k, sta
k

0

) ^ ordered(esta
k)

^ (preg

0

= start � de
glseqreg

0


utptsin sta
k

0

;

: is ret(
ode(preg

0

, db

7

))

! de
glseqreg

0


utptsin sta
k

0

from 
treg

0

^ (
treg

0

= ? _ 
treg

0

2 sta
k

0

))))

^ 8 n. STACKINV

78

),

where

is ret(instr) $ is retry(instr) _ is retry me(instr)

_ is trust(instr) _ is trust me(instr)
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STACKINV

78

�

n 2 sta
k

0

! sub[F[n℄℄ = sub

0

[n℄ ^ p[F[n℄℄ = p

0

[n℄ ^ 
t[F[n℄℄ = F[
t

0

[n℄℄

^ b[F[n℄℄ = F[b

0

[n℄℄ ^ (
t

0

[n℄ 6= ? ! 
t

0

[n℄ 2 
dr(sta
k

0

from n))

^ : n � 
t

0

[n℄ ^ e[n℄ � n ^ : e[n℄ � ? ^ : 
t

0

[n℄ � 
utpt[e[n℄℄

^ : breg

0

� n ^ goal[n℄ 6= [℄ ^ sub

0

[n℄ <

svi

vireg

0

^ hS-CHAIN-RET#(a
t(F[n℄), p[F[n℄℄, db

7

; 
ol)i tt

^ hSTACK#(e[n℄, 
e; esta
k)i

hde
glseqreg

0

:= [hgoal[n℄, 
utpt[e[n℄℄i j

de
glseqof(
utpt, 
g, 
e, esta
k)℄i

( de
glseqreg

0


utptsin sta
k

0

from 
t

0

[n℄

^ de
glseqreg

0

<

dvi

vireg

0

^ disjoint(esta
k, sta
k

0

from n) ^ ordered(esta
k)

^ de
glseq[F[n℄℄ = sub[F[n℄℄ ^

d

F

d

(F, de
glseqreg

0

)



Chapter 17

8/9: Compilation of Clauses

17.1 De�nition of ASM9

In the re�nement from ASM8 to ASM9 
lauses are de
omposed into instru
tions for every literal.

The memory db

9

of ASM9 now stores instead of a 
lause p :- q

1

, ...q

n

an instru
tion sequen
e

allo
ate

unify(p)


all(q

1

)

. . .


all(q

n

)

deallo
ate

pro
eed

(17.1)

For the 
ase where preg was start in ASM8, preg

0

of ASM9 now takes over the role of goalreg

(when preg 6= start, preg and preg

0

are equal). goalreg = [q

i

, . . . q

n

℄ now 
orresponds to a situation,

in whi
h preg

0

points to the instru
tion 
all(q

i

). The situation in ASM8, in whi
h preg points to

a 
lause and enter rule is exe
uted 
orresponds to the situation in whi
h preg

0

points to allo
ate.

Exe
ution of the enter rule is repla
ed with exe
ution of the 2 instru
tions allo
ate and unify(p).

Similarly the exe
ution of goal su

ess (an empty goalreg in ASM8 
orresponds to preg

0

pointing

to deallo
ate) is repla
ed by exe
ution of deallo
ate and pro
eed. Splitting enter and goal su

ess

into two instru
tions is not stri
tly ne
essary for this re�nement, but introdu
es instru
tions used

in the WAM, that 
an be optimized in later re�nements.

To be able to remove goalreg, it must be taken 
are that the renaming of variables (with

vireg) done in the enter rule when goalreg is set, must now be postponed to the a
tual use of the

a
tivator. It is therefore ne
essary, to store the renaming index with a dynami
 fun
tion vi in the


urrent environment and in the environments of 
hoi
epoints.

Repla
ing the use of goalreg with preg makes it ne
essary to also repla
e the 
urrent goal 
g in


hoi
epoints with a pinter 
p into the program 
ode.

To 
omplete the de�nition of the 
ompilation, we �nally have to de�ne how a query q

i

, . . . q

n

is 
ompiled. The result is:


all(q

1

)

. . .


all(q

n

)

null

(17.2)

117
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Instead of the instru
tion null

1

[BR95℄ uses the instru
tion pro
eed. The appli
ability test for

query su

ess rule there is


ode(preg,db

9

) = pro
eed ^ 
ode(
preg,db

9

) = pro
eed

This is not 
orre
t, when the last literal of a query is either ! or true, sin
e both instru
tions

do not in
rement 
preg, but leave it on the 
urrent instru
tion. This would result in an in�nite

loop by repeated exe
ution of the last instru
tion. There are two alternatives to our solution:

� Both the 
ut and the true rule �nally set 
preg to preg. This solution is ineÆ
ient, sin
e

setting 
preg is unne

essary during regular exe
ution.

� The 
ompiler removes literals true and ! at the end of a query, sin
e they have no e�e
t

anyway. Although this solution is possible for the two 
onstru
ts, it is problemati
 insofar,

as an extension of Prolog by other built-in 
onstru
ts (su
h as assert) would mean that the

problem would have to be re
onsidered.

It should also be noted, that the two alternatives 
ause two irregularities 
ompared to ours:

� An empty query must either be handled spe
ially by initialisation of 
preg with preg, or it

must be 
ompletely forbidden (in our solution, no spe
ial treatment is ne
essary, 
preg need

not be initialized). In the �rst 
ase we have an additional 1:1 diagram to verify for the empty

query.

� The rule mapping given in [BR95℄ that maps goal su

ess to deallo
ate and pro
eed (1:2

diagram) is not 
orre
t for this solution. Instead (assuming a nonempty query) in both

solutions the �nal two appli
ations of goal su

ess and query su

ess of ASM8 
orrespond

to deallo
ate and query su

ess in ASM9. In the se
ond solution, we also get additional 1:0

diagrams resulting from the removal of true und ! literals.

In [AK91℄ the question of su

essful termination is not even 
onsidered. A query seems to be


ompiled solely to a sequen
e of 
all instru
tions, and the end of the 
omputation seems to be

de�ned impli
itly by rea
hing the adress after the last 
all.

To formalize the 
ompiler assumption des
ribed above, we �rst need the following pro
edures

UNLOAD# and QUERY#, that re
over a 
lause or the query from 
ompiled 
ode:

UNLOAD#(
oa, db

9

; var 
l)

begin

if 
ode(
oa,db

9

) = allo
ate _ is unify(
ode(
oa+1,db

9

))

then var goalreg = [℄

in begin

UNLOADREC#(
oa+2),db

9

,true; goalreg);


l := <unifylit(
ode(
oa+1,db

9

)),goalreg>

end

else abort

end;

1

reusing the instru
tion null, whi
h in ASM2 indi
ated the end of a 
lause list, we avoid the introdu
tion of

another instru
tion.
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UNLOADREC#(
oa, db

9

, 
ag; var goalreg)

begin

var instr = 
ode(
oa,db

9

)

in if 
ag ^ (instr = deallo
ate)

then begin

if 
ode(
oa+1,db

9

) = pro
eed then goalreg := [℄

else abort end

else if : 
ag ^ (instr = null

0

) then goalreg := [℄

else if is 
all(instr) then begin

UNLOADREC#(
oa+1,db

9

,
ag; goalreg);

goalreg := [
alllit(instr) j goalreg℄

end

else abort

end;

QUERY#(
oa, db

9

; var goalreg)

begin

UNLOADREC#(
oa, db

9

, false; goalreg)

end

The auxiliary pro
edureUNLOADREC# traverses su

essive 
all instru
tions. If the given 
ag

= tt, then it 
he
ks that at the end an allo
ate and a pro
eed instru
tion are found (
lause 
ode),

otherwise it 
he
ks for a null (query 
ode). The de�nition of 
hains with swit
hing (S-CHAIN#'s,

see appendix D.2), is modi�ed to C-CHAIN#'s by repla
ing the 
ode

if is 
lause(instr) then 
ol := [
o℄

with

if instr = allo
ate then UNLOAD#(preg; 
o)

With this de�nition the weakest 
ompiler assumption that 
an be stated for (pro
def

9

,db

9

,preg

9

)

:= 
ompile

79

(pro
def

7

,db

7

,query) would be

[S-CHAIN#(a
t,pro
def

7

[id(a
t),db

7

℄,db

7

;
ol)℄

hC-CHAIN#(a
t,pro
def

9

[id(a
t),db

9

℄,db

9

;
ol)

map
ode(
ol

1

, db

7

) = map
ode(
ol

2

, db

9

)

^ hQUERY#(preg

9

,db

9

;
o)i map
ode(
o,db

9

) = query

(17.3)

But this assumption would allow to arbitrarily restru
ture the 
ode for swit
hing again. This is

of 
ourse not intended. Therefore we must have a stronger assumption, that just allows to repla
e


lauses by 
lause 
ode. Care has to be taken, sin
e the new 
ode might make it ne
essary to move

blo
ks of 
ode. To des
ribe su
h 
ode movement we use a fun
tion C : 
odesort ! 
odesort. Sin
e

the fun
tion might depend on the input program, it must be spe
i�ed as a dynami
 fun
tion. It

would be possible to 
ompute C as an additional result of 
ompile

9

, but sin
e only its existen
e is

relevant, our 
ompiler assumption is:

db

2

= 
ompile2(
ompile1(db))

! hQUERY#(preg

9

,db

9

;
o)i map
ode(
o,db

9

) = query

^ 9 C. ( eqpdt(pro
def

7

,pro
def

9

,C)

^ eq
ode(db

7

,db

9

,C))

(17.4)
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In the formula eqpdt(pro
def

7

,pro
def

9

,C) says, that both a

ess tables are equal modulo the


ode movement given by C :

eqpdt(pro
def

7

,pro
def

9

,C)

$ 8 p/n. C[pro
def

7

[p/n℄℄ = pro
def

9

[p/n℄

eq
ode(db

7

,db

9

,C) means, that all instru
tions, ex
ept 
lauses, are mapped modulo 
ode move-

ment to themselves. E.g. we have

eq
ode(db

7

,db

9

,C) ^ 
ode(preg,db

7

) = retry(N)

! 
ode(C[preg℄,db

9

) = retry(C[N℄)

and analogous for all other instru
tiosn. For 
lauses

eq
ode(db

7

,db

9

,C) ^ 
ode(preg,db

7

) = 
lause

! hUNLOAD#(C[preg℄,db

9

;
)i
 = 
lause

must hold. The rules of ASM9 are:

ba
ktra
k �

if breg = ? then stop := failure

else preg := p[breg℄


all rule

if 
ode(preg,db

9

) = 
all(lit) ^ is user de�ned(lit)

then if pro
def

9

(lit,db

9

) = fail
ode

then ba
ktra
k

else 
preg := preg +1

preg := pro
def

9

(lit,db

9

)


treg := breg

true rule

if 
ode(preg,db

9

) = 
all(!)

then breg := 
utpt[ereg℄

preg := preg +1

allo
ate rule

if 
ode(preg, db

9

) = allo
ate

then let tmp = max(ereg,breg)++


e[tmp℄ := ereg

ereg := tmp


p[tmp℄ := 
preg

vi[tmp℄ := vireg


utpt[tmp℄ := 
treg

preg := preg +1

unify rule

if 
ode(preg, db

9

) = unify(trm)

then let a
t = subreg ^

t

rent

0

(
alllit(
ode(
preg �1, db

9

)), 
e[ereg℄, vi)

let mgu = unify(a
t, rent(trm, vireg))

if mgu = nil

then ba
ktra
k

else subreg := subreg Æ mgu

vireg := vireg +1

preg := preg +1
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deallo
ate rule

if 
ode(preg,db

9

) = deallo
ate

then 
preg := 
p[ereg℄

ereg := 
e[ereg℄

preg := preg +1

true rule

if 
ode(preg,db

9

) = 
all(fail)

then ba
ktra
k

pro
eed rule

if 
ode(preg,db

9

) = pro
eed

then preg := 
preg

query su

ess rule

if 
ode(preg,db

9

) = null

0

then stop := su

ess

retry rule

if 
ode(preg,db

9

) = retry(N)

then ereg := e[breg℄


preg := 
p[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

p[breg℄ := preg +1

preg := N

retry me else rule

if 
ode(preg,db

9

) = retry me else(N)

then ereg := e[breg℄


preg := 
p[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

p[breg℄ := N

preg := preg +1

swit
h on 
onstant rule

let a
t = subreg ^

t

rent

0

(
alllit(
ode(
preg �1, db

9

)), ereg, vi)

if 
ode(preg, db

9

) = swit
h on 
onstant(i, tabsize, table)

then let x

i

= arg(a
t, i)

preg := hash
(table, tabsize, 
onstsym(x

i

), db

9

);

if preg = fail
ode then ba
ktra
k

swit
h on stru
ture rule

let a
t = subreg ^

t

rent

0

(
alllit(
ode(
preg �1, db

9

)), ereg, vi)

if 
ode(preg, db

9

) = swit
h on stru
ture(i, tabsize, table)

then let x

i

= arg(a
t, i)

preg := hashs(table, tabsize, fun
t(x

i

), arity(x

i

), db

9

);

if preg = fail
ode then ba
ktra
k

swit
h on term rule

let a
t = subreg ^

t

rent

0

(
alllit(
ode(
preg �1, db

9

)), ereg, vi)

if 
ode(preg, db

9

) = swit
h on term(i, N

s

, N




, N

v

, N

l

)

then let x

i

= arg(a
t, i)

if is stru
t(x

i

) then preg := N

s

else
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if is 
onst(x

i

) then preg := N




else

if is var(x

i

) then preg := N

v

else

if is list(x

i

) then preg := N

l

;

if preg = fail
ode then ba
ktra
k

true rule

if 
ode(preg,db

9

) = 
all(true)

then preg := preg +1

trust rule

if 
ode(preg,db

9

) = trust(N)

then ereg := e[breg℄


preg := 
p[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := N

trust me rule

if 
ode(preg,db

9

) = trust me

then ereg := e[breg℄


preg := 
p[breg℄


treg := 
t[breg℄

subreg := sub[breg℄

breg := b[breg℄

preg := preg +1

try rule

if 
ode(preg,db

9

) = try(N)

then let tmp = max(ereg,breg)++

b[tmp℄ := breg

e[tmp℄ := ereg


p[tmp℄ := 
preg

sub[tmp℄ := subreg

p[tmp℄ := preg +1

breg := tmp


t[tmp℄ := 
treg

preg := N

try me rule

if 
ode(preg,db

9

) = try me else(N)

then let tmp = max(ereg,breg)++

b[tmp℄ := breg

e[tmp℄ := ereg


p[tmp := 
preg

sub[tmp℄ := subreg

p[tmp℄ := N

breg := tmp


t[tmp℄ := 
treg

preg := preg +1

17.2 Equivalen
e Proof 8/9

For the equivalen
e proof of ASM8 and ASM9 we have used the theorem for iterated re�nement

des
ribed in Se
t. 6.5 for the �rst time. Instead of en
oding all information into the 
oupling
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invariant INV

89

, we �rst derived a ma
hine invariant MINV

8

from the 
oupling invariant INV

78

.

Sin
e all diagrams in the re�nement 7/8 are n:1 diagrams (we 
an set INVNOW

8

to be true), it

is suÆ
ient to show

INV

78

! MINV

8

to makeMINV

8

usable as a pre
ondition for all 
ommuting diagrams. To have a ma
hine invariant

for the next re�nement, we have also de�ned the predi
ate INVNOW

9

, that 
hara
terized the states

of ASM9, in whi
h the 
oupling invariant holds. Now, in the re�nement 8/9 all rules are re�ned

with 1:1 diagrams, ex
ept for enter and goal su

ess rule, whi
h are re�ned with allo
ate unify

resp. deallo
ate pro
eed. The 
oupling invariant therefore does not hold only in the middle states

of these 1:2 diagrams and we 
an set

INVNOW

9

(preg

0

,db

9

)

� 
ode(preg

0

,db

9

) 6= pro
eed ^ : is unify(
ode(preg

0

,db

9

))

The proof obligations for the two 1:2 diagrams are the spe
ial 
ase with j := 2 and i := 1 of

the proof obligations (6.32) from Se
t. 6.5:

INV

89

^ stop = run ^ stop

0

= run

^ MINV

8

^ is 
lause(
ode(preg,db

7

))

! hRULE

9

i ( : INVNOW

9

(preg

0

,db

9

)

^ hRULE

9

i hRULE

8

i

(INV

89

^ INVNOW

9

(preg

0

,db

9

))

INV

89

^ stop = run ^ stop

0

= run

^ MINV

8

^ is 
lause(
ode(preg,db

7

))

! hRULE

9

i ( : INVNOW

9

(preg

0

,db

9

)

^ hRULE

9

i hRULE

8

i

(INV

89

^ INVNOW

9

(preg

0

,db

9

))

For the de�nition of the 
oupling invariant we found the following 4 main problems:

Corre
t Treatment of Termination In our �rst proof attempts, we tried to follow [BR95℄.

Thereby we found the problems already des
ribed in the previous se
tion: �rst, we had to 
orre
t

the 
hoi
e of diagrams (a spe
ial diagram was ne
essary for the empty query, and a 2:2 diagram

was ne
essary for goal su

ess, query su

ess in ASM8 vs. deallo
ate query su

ess in ASM9).

Then the proof for the equivalen
e of the 
ut rules failed, sin
e the 
ut rule of ASM9 does not

modify 
preg. This failure resulted in the 
orre
tion of query su

ess in ASM9.

No Instantiation of the Literal in Call Rule In the is user de�ned tests as well as in the

sele
tion of the leading predi
ate symbol in the 
all rules all ASMs until ASM8 have used the

instantiated a
tivator. ASM9 now uses instead the uninstantiated literal L from the instru
tion


all(L). For the 
omputation of the leading predi
ate symbol we have anti
ipated the modi�
ation

from the re�nement 9/10. This was done to free the already 
omplex veri�
ation from unne
essary

additional problems.

Veri�
ation now showed, that when using the uninstantiated literal, we must restri
t the

a

epted Prolog language: ASMs 1{8 gave a positive answer to the query ?- p(q)., given the


lauses p(X) :- X. and q.. ASM9 
an not deal with su
h a query, sin
e the leading predi
ate

symbol of an uninstantiated variable X is not de�ned. Given a query ?- p(!) (and the same

program), ASM9 in [BR95℄ even tries in
orre
tly to 
ompute a leading predi
ate symbol instead

of exe
uting the 
ut. The diÆ
ulty of de�ning a leading predi
ate symbol also o

urs, when the

body literals are lists. Sin
e usual Prolog implementation do not have a \list predi
ate", and

instead interpret su
h a literal as a 
ommand to load a �le, we de�ne
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Compiler Assumption for the Re�nement 8/9: No literal of

the query and no literal in any 
lause of the prolog may be a variable

or a list.

Of 
ourse all ASMs up to now 
ould not \meaningfully" solve a query ?- X., sin
e there is no

meaningful de�nition of the leading predi
ate symbol for a variable. But this was irrelevant for


orre
tness, sin
e however the sele
tion fun
tion was de�ned for the 
ase of a variable, all ASMs

behaved in the same way. The 
ore of the problem therefore is, that the semanti
 de�nition of

Prolog is in
omplete for this 
ase.

If we would de�ne the 
ompiler assumption for the re�nement 8/9 as above, this would result in

additional formulas in the 
oupling invariant. For all literals, for whi
h from the ma
hine invariant

MINV

8

for ASM8 it is already known, that they are not renamed, we would now additionally

need, that they are no variables and no lists. This would mean that we would have to 
ompute

the 
hains, from whi
h the literals are sele
ted, twi
e, on
e in MINV

8

and on
e in INV

89

. To avoid

this, we have strengthened the predi
ate 
l <


vi

vireg used in 
ompiler assumption 7/8 to in
lude

the 
ompiler assumption for 8/9, i.e. that 
l does not have literals whi
h are just variables or

lists. This does not 
hange the proofs for the re�nement 7/8 (sin
e we have just strengthened the

assumptions), and the assumptions that we have no variables or lists as literals, is now 
overed

already by MINV

8

.

Moving Renaming of the A
tivator to its A
tual Use Sin
e goals are no longer stored

expli
itly in a register in ASM9, but are only referen
ed by a pointer to the 
lause 
ode, the

renaming index ne
essary to rename 
lause variables before uni�
ation must now be stored in the

environment and its use is postponed until the literal is a
tually used. To re
onstru
t a goal from

a pointer to 
ode we use the pro
edure UNLOADREC# from the 
ompiler assumption. For the

a
tual renaming of goal variables, we �rst de�ned a fun
tion reng, that renames all variables of a

goal with some index (reng is homomorphi
 to the fun
tion rename de�ned earlier for renaming

of 
lauses). In [BR95℄ 
olle
tion of literals and appli
ation of the renaming is merged together

in the fun
tion g de�ned on p. 34f. The assumption goalreg = g(Ptr,vireg) therefore reads in our

notation:

hUNLOADREC#(Ptr,db

9

;goal)i goalreg = reng(goalreg,vireg)

Veri�
ation revealed, that this assumption is not 
orre
t in the 
ase where goalreg is a part of

the initial query, sin
e the query must not be renamed. It turns out, that in the 
oupling invariant

this 
ase 
orresponds to an attempt to 
ompute vireg as the unspe
i�ed vi[ereg℄ for ereg = ?.

We have spe
i�ed the ex
eptional 
ase expli
itly, using a fun
tion reng

0

(goalreg,ereg,vi) with the

axioms

reng

0

(goalreg,?,vi) = goalreg

ereg 6= ? ! reng

0

(goalreg,?,vi) = reng(goalreg,vi[ereg℄)

An alternative would have been to initialize vi[?℄ in su
h a way that appli
ation of this renaming

has no e�e
t (e.g. initialization of vi[?℄ with 0, of vireg with 1, and de�nition of reng(goalreg,0)

as goalreg).

Re
onstru
tion of goalreg from ASM8 Using Data from ASM9 The 
entral point in the

de�nition of the 
oupling invariant for 8/9 is to re
onstru
t the goals stored expli
itly in ASM8,

that are only impli
itly represented by pointers to 
ode in ASM9. The main task in doing this

was to give a pre
ise de�nition of the \Continuation Pointer Constraint" ([BR95℄, p. 34) and to

give a pre
ise formalization of how the registers of ASM9 
an be re
onstru
ted from the data of

ASM9. We found that the uniform re
onstru
tion as given in [BR95℄, p. 35 was not possible.

Instead three 
ases had to be de�ned:
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In the �rst 
ase ASM8 is in a state where preg = start, and goalreg is re
onstru
ted by

hUNLOADREC#(preg

0

, db

9

, ereg

0

6= ? ; goalreg

0

) endi

( reng

0

(goalreg

0

, ereg

0

, vi) = goalreg

^ nonvargoal(goalreg

0

))

The post
ondition nonvargoal(goalreg

0

) en
odes the 
ompiler assumptions that the literals of

goalreg are neither renamed, nor variables or lists.

In the se
ond 
ase both ASMs are before a retry-, retry me-, trust- or trust me instru
tion.

In this 
ase no goalreg must be re
onstru
ted (the instru
tion will set it from the 
hoi
epoint).

For this 
ase it has also to be noted, that the two environment registers ereg and ereg

0

may be

di�erent : When an enter with ba
ktra
king is exe
uted in ASM8, ereg is un
hanged, while the


orresponding allo
ate in ASM9 will modify ereg

0

.

The 
ontinuation pointer 
onstraint is not needed in the �rst two 
ases, but in the remaining

third 
ase. In this 
ase we have preg

0

= C[preg ℄ and goalreg is 
omputed with 
preg �1:

hUNLOADREC#(
preg �1, db

9

, ereg

0

6= ?; goalreg

0

) endi

( reng

0

(goalreg

0

, ereg

0

, vi) = goalreg

^ nonvargoal(goalreg

0

))

When we tried to determine how exa
tly this formula should look like, we tried several proof

attempts with 
e

0

[ereg

0

℄ instead of ereg

0

, sin
e otherwise we 
ould not verify the re�nement of

the enter rule to allo
ate unify. After some analysis of failed proof attempts we found, that the

problem was the renaming index used in the unify rule. In [BR95℄ this renaming index for the

a
tivator a
t is de�ned indire
tly via the abbreviation goal as vi[ereg℄. This is 
orre
t for the

swit
hing rules and the 
all rule, but not for the unify rule, sin
e immediately before the allo
ate

rule already pushes a new renaming index onto the environment sta
k. This new index should be

used for the new goal that would be pushed onto the environment sta
k on su

essful uni�
ation.

The 
orre
t renaming index therefore is found at vi[
e[ereg℄℄, when 
e[ereg℄ 6= ?. Therefore the


orre
ted unify rule 
alls the fun
tion rent

0

with 
e[ereg℄.

Putting all things together we rea
hed after 3 weeks and 8 iterations the following 
oupling

invariant was

INV

89

�

vireg = vireg

0

^ stop = stop

0

^ breg = breg

0

^ 
treg = 
treg

0

^ sub = sub

0

^ subreg = subreg

0

^ 
t = 
t

0

^ b = b

0

^ e = e

0

^ 
utpt

0

[?℄ = ?

^ ( stop = run

! : is unify(
ode(preg

0

, db

9

)) ^ 
ode(preg

0

, db

9

) 6= pro
eed

^ ( preg = start

� ereg = ereg

0

^ hUNLOADREC#(preg

0

, db

9

, ereg

0

6= ?; goalreg

0

)i

reng

0

(goalreg

0

, ereg

0

, vi) = goalreg ^ nonvargoal(goalreg

0

);

: is 
all(
ode(preg

0

, db

9

))

^ 
ode(preg

0

, db

9

) 6= deallo
ate

^ preg

0

= C[preg℄

^ : is ret(
ode(preg, db

7

))

! ereg = ereg

0

^ hUNLOADREC#(
preg�1, db

9

, ereg

0

6= ?; goalreg

0

)i

reng

0

(goalreg

0

,ereg

0

,vi)=goalreg ^ nonvargoal(goalreg

0

))

^ hSTACK#(ereg, 
e; esta
k)i

8 n. n 2 esta
k

! 
e[n℄ = 
e

0

[n℄ ^ 
utpt[n℄ = 
utpt

0

[n℄

^ hUNLOADREC#(
p[n℄, db

9

, 
e[n℄ 6= ?; goalreg

0

)i

reng

0

(goalreg

0

, 
e[n℄, vi) = 
g[n℄ ^ nonvargoal(goalreg

0

)

^ hSTACK#(breg, b; sta
k)i
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8 n. n 2 sta
k

! p

0

[n℄ = C[p[n℄℄

^ hSTACK#(e[n℄, 
e; esta
k)i

8 n

0

. n

0

2 esta
k

! 
e[n

0

℄ = 
e

0

[n

0

℄ ^ 
utpt[n

0

℄ = 
utpt

0

[n

0

℄

^ hUNLOADREC#(
p[n

0

℄, db

9

,


e[n

0

℄ 6= ?; goalreg

0

)i

reng

0

(goalreg

0

, 
e[n

0

℄, vi) = 
g[n

0

℄

^ nonvargoal(goalreg

0

)

^ hUNLOADREC#(
p[n℄� 1, db

9

, e[n℄ 6= ?; goalreg

0

)i

reng

0

(goalreg

0

,e[n℄,vi) = goal[n℄ ^ nonvargoal(goalreg

0

)

^ eq
ode(db

7

, db

9

, C)

^ eqpdt(pro
deftab

7

, pro
deftab

9

, C))

The invariant, and so the number of 
onjun
ts to prove, would have been about twi
e the size

without using the te
hnique for iterated re�nements, as 
an be seen from the ma
hine invariant

MINV

8

for ASM8:

MINV

8

�

stop = run

! (preg 6= start ! goalreg 6= [℄) ^ 
e[?℄ = ? ^ 
utpt[?℄ = ?

^ ( is retry me(
ode(preg, db

8

)) _ is retry(
ode(preg, db

8

))

_ is trust me(
ode(preg, db

8

)) _ is trust(
ode(preg, db

8

))

! breg 6= ? ^ preg = p[breg℄)

^ ( preg 6= start

^ : is retry me(
ode(preg, db

8

)) ^ : is retry(
ode(preg, db

8

))

^ : is trust me(
ode(preg, db

8

)) ^ : is trust(
ode(preg, db

8

))

! hS-CHAIN-REC#(subreg ^

t


ar(goalreg), preg, db

8

; 
ol)i

map
ode(
ol, db

8

) <


lvi

0)

^ hSTACK#(breg, b; sta
k)i

hb-list#(ereg, 
e; esta
k)i

( ( preg = start

_ : is retry me(
ode(preg, db

8

))

! 
utpt[ereg℄ 2 sta
k _ 
utpt[ereg℄ = ?)

^ ordered(sta
k) ^ ordered(esta
k) ^ disjoint(sta
k, esta
k)

^ (8 n. n 2 sta
k

! e[n℄ � n ^ goal[n℄ 6= [℄

^ hSTACK#(e[n℄, 
e; esta
k)i

( disjoint(esta
k, sta
k from n)

^ ordered(esta
k))

^ hS-CHAIN-RET#(sub[n℄ ^

t


ar(goal[n℄),

p[n℄, db

8

; 
ol)i

map
ode(
ol, db

8

) <


lvi

0))

MINV

8

en
odes properties of ASM8, that were already proved in the re�nement 7/8, like

disjointness of the environment and the 
hoi
epoint sta
k. These properties 
ould be assumed for

8/9, and had not to be proved anew.



Chapter 18

9/10: Compilation of Terms

This 
hapter des
ribes our 
urrent work on the �rst re�nement from Chapter 4 in [BR95℄. Besides

the re�nement 5/7 this seems to be the most 
omplex re�nement. Although we were not su

essful

to verify it 
ompletely in the 
ourse of this work, our attempts to formalize the re�nement and

�rst proof attempts have nevertheless un
overed a number of problems. One part of the problems

resulted from misunderstanding several aspe
ts of the re�nement, another part was due to the

fa
t, that the 
orre
tness assertions in [BR95℄ are given only very informally. We will therefore

not give a 
omplete detailed des
ription of the re�nement, but only sket
h some of the problems

we found in the re�nement and sket
h some approa
hes how to solve them.

The main aspe
t of the re�nement 9/10 is the representation of terms by pointer stru
tures

on the heap (introdu
ed in the re�nement), and the 
ompilation of literals to instru
tions, that


reate and unify su
h pointer stru
tures. Unfortunately this is not the only modi�
ation that is

done to ASM9. Several other aspe
ts of the WAM are also introdu
ed in the re�nement:

� The implementation of ASM10 does not have an o

ur 
he
k. But how 
an we formalize the


ondition \ASM9 does not 
all an o

ur 
he
k"?

� Instead of storing substitutions, ASM10 now uses another sta
k, the trail, to store variable

bindings. When, due to ba
ktra
king, an old substitution is needed, variable bindings are

undone destru
tively.

� The sta
k of environments and 
hoi
epoints in ASM10 is \
at". It has no internal stru
-

ture anymore as the previous one. The di�erent 
omponents are now stored in su

essive

addresses, and a

essed uniformly with a fun
tion val.

� ASM10 in [BR95℄ does not 
onsider the 
ut. The 
ut is reintrodu
ed at the end of Chapter

4.

� Variable renaming is now done by allo
ation of a variables at a new address instead of using

a renaming index. The allo
ate instru
tion suggests that the new address allo
ated may be a

lo
ally new address of the environment sta
k, not a globally new heap address. But it turned

out, that this assumption is wrong (whi
h does not mean, that the ASM given in [BR95℄

is wrong, see below). The temporary use of lo
ally new heap addresses rises the problem,

how a 
orre
t mapping between globally renamed variables in ASM9 to lo
ations in ASM10

should look like.

� It turns out, that the substitutions stored in ASM9 do not 
orrespond to those stored in

ASM10. Instead 
ertain variable bindings, that are no longer relevant, are dis
arded earlier

than in ASM9.

Only the �rst four aspe
ts mentioned above are dis
ussed expli
itly in [BR95℄. To redu
e the


omplexity of veri�
ation, we have tried to remove all aspe
ts from the re�nement that are not

127
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oupled to the introdu
tion of term representation. Therefore, as a �rst step, we have kept the

stru
ture of environments and 
hoi
epoints. Storing variables in an environment is done in our

ASM10 with a fun
tion x : env � nat ! node: the result of x(ereg,m) is the mth variable of the


urrent environment (the sort node is now simply the sort of memory addresses, a super sort of

env). The stru
ture of main memory in the WAM assumes, that heap addresses are lower than

sta
k addresses. This gives a 
omplex ordering � on memory addresses, for whi
h the axioms

?+ m

1

� x(?+ m

2

,m

3

)

x(?+ m

0

,m

1

) � x(?+ m

2

,m

3

) $ m

0

< m

2

_ m

0

� m

2

^ m

1

< m

3

hold. The fun
tion val: heap ! termrep is used only to determine the 
ontent of heap lo
ations

(heap now is also a subsort of node).

As a se
ond measure, we have kept the 
ut, whi
h is easily possible, sin
e we have kept

the stru
ture of sta
ks (an instru
tion to remove variable bindings from the sta
ks is of 
ourse

ne
essary; otherwise we simply keep the registers of the previous ASM).

Third, we have kept the o

ur 
he
k of uni�
ation. The \Meta Theorem", whi
h says, that

if o

ur 
he
k is not 
alled, it 
an be removed holds trivially for ASM10, too. Also keeping the

o

ur 
he
k has allowed us to falsify the statement, made in [AK91℄, p. 14 as well as in [BR95℄,

p. 39, that o

ur 
he
k should be simply integrated into the bind routine: an o

ur 
he
k is also

ne
essary in the unify value instru
tion.

Fourth, we have tried to 
hange the strategy of variable renaming already on the term level.

The idea was, that renaming a variable X with the 
urrent renaming index 
an be repla
ed by

using a new sta
k address x (ereg,m). The transition from a globally new variable to a variable

that is relatively new to the sta
k is suggested by the allo
ate instru
tion of ASM10 in [BR95℄,

whi
h allo
ates the new variable in just this way. Therefore we de�ned a variant ASM9a of ASM9,

that used new sta
k lo
ations instead of a renaming index. But after some veri�
ation e�orts, an

attempt to verify the equivalen
e of the deallo
ate rules failed, be
ause the deallo
ated variables


an still o

ur in 
omputed substitutions, that are needed later on. The bindings of these variables

would be overwritten, when a new environment is allo
ated.

This would suppose at �rst glan
e, that ASM10 is in
orre
t. But a thorough analysis shows,

that although a new variable X in ASM10 is �rst allo
ated on the sta
k, it is moved to the heap

when it o

urs in the variables of some term T (X 2 vars(T )) that is bound to some other variable

(by the instru
tions unify variable and unify lo
al value). Therefore in some 
ases variables in the

WAM are renamed several times.

Of some help to understand how renaming really works was [AK91℄. The �rst variant of the

WAM that is given there does not allo
ate variables with an allo
ate instru
tion on the sta
k.

Instead when the variable �rst o

urs, it is allo
ated in the heap. Still there is one ex
eption:

if the variable is bound to a term on its �rst o

urren
e (in the instru
tion get variable, that is

generated for a variable X in a 
lause head p(X)) it is easy to see, that it 
an be allo
ated in the

sta
k, sin
e it will not play any role in the further 
omputation.

The optimizations shown in [AK91℄ as well as in [BR95℄ (espe
ially \last 
all optimization"

LCO) are tightly 
oupled with the question, under whi
h 
ir
umstan
es variables 
an be allo
ated

in the sta
k instead of the heap. Therefore we think that this question should not be addressed

in the re�nement 9/10. It should be easier to move variables from the heap to the sta
k in one

separate re�nement, whi
h also 
hanges the relevant 
onstraints for address allo
ation (\heap

variables 
onstraint" and \sta
k variables 
onstraint").

Using a separate re�nement also seems to be desirable, sin
e the main theorems of the re-

�nement 9/10, whi
h are the \Getting Lemma" and the \Putting Lemma" depend on the exa
t

de�nition of these 
onstraints: it is impossible to �rst prove putting and getting lemma, as [BR95℄

suggests, and then to verify that heap and sta
k variables 
onstraints as invariants of the getting

and putting instru
tions. Instead, we have found, that both 
onstraints are ne
essary pre
ondi-

tions for getting and putting lemma. Ultimately both 
onstraints be
ome a 
entral part of the


oupling invariant for the re�nement 9/10.

Ea
h modi�
ation in the de�nition of both 
onstraints (espe
ially ea
h modi�
ation of the

allo
ation of variables in the heap or the sta
k) therefore means, that its invarian
e in the putting
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and getting instru
tions has to be proved anew. Therefore we 
urrently use the �rst de�nition of

[AK91℄ for our re�nement. This de�nition has an ineÆ
ient put variable instru
tion (that allo
ates

the variable in the heap), no unify lo
al value instru
tion, and instead of initializing all variables

in allo
ate variables are initialized on their �rst o

urren
e, like this is done in [BR95℄ later on (p.

58f).

This version of ASM10 allows to de�ne a very simple heap and sta
k variables 
onstraint, that

says, that ea
h pointer stru
ture representing a term has to be 
ompletely in the heap, ex
ept for

the leading 
ell. The leading 
ell may be stored on the sta
k or in a register, if it is not a referen
e

to itself (i.e. a representation of a variable). The ordering on addresses is not relevant for this

version of the 
onstraints. We 
urrently think, that it should be possible to de�ne a dynami


fun
tion, that is a bije
tion between the variables of ASM9 that are renamed with a global vireg,

and the new heap variables of ASM10. Like fun
tion F in the re�nement 1/2 (see se
tion 11.2)

this fun
tion should be modi�ed ea
h time an instru
tion is en
ountered, that 
orresponds to the

�rst o

urren
e of a variable (other modi�
ations should be unne
essary).

We will then try to do the shifting of variables from the heap to sta
k (and the introdu
tion

of stronger 
onstraints, the de�nition of temporary and permanent variables and the addition of

new instru
tions like put unsafe value et
.) in one separate re�nement.

Even when using the ASM10 as de�ned in [AK91℄ it is unavoidable to store fewer variable

bindings than in ASM9. Our 
urrent assumption is, that the (impli
it) deallo
ation of variable

bindings that is done when the environment ereg is deallo
ated in ASM10, 
orresponds exa
tly to

an expli
it deallo
ation of all bindings for variables renamed with vi[ereg℄ from subreg in ASM9.

A

ording to our philosophy, to remove as mu
h burden from the re�nement 9/10 as possible, we

have therefore de�ned a fun
tion remove(subreg,vi[ereg℄) and veri�ed separately, that modifying

the deallo
ate rule of ASM9 to

deallo
ate rule

if 
ode(preg,db

9

) = deallo
ate

then 
preg := 
p[ereg℄

ereg := 
e[ereg℄

preg := preg +1

subreg := remove(subreg,vi[ereg℄)

does not have a signi�
ant 
onsequen
e on the result of ASM9: if the 
omputation terminates,

the substitution 
omputed by the modi�ed ASM (ASM9a) still has the same e�e
t on the query.

We 
ould verify the equivalen
e of ASM9 and ASM9a in 2 weeks with 3 iterations. The 
oupling

invariant INV

99a

and the ma
hine invariant MINV

9

for ASM9 are

INV

99a

�

stop = stop

0

^ breg = breg

0

^ 
treg = 
treg

0

^ 
preg = 
preg

0

^ ereg = ereg

0

^ preg = preg

0

^ vireg = vireg

0

^ 
p = 
p

0

^ p = p

0

^ b = b

0

^ e = e

0

^ 
e = 
e

0

^ 
t = 
t

0

^ vi = vi

0

^ 
utpt = 
utpt

0

^ 
utpt[?℄ = ? ^ 
e[?℄ = ?

^ subreg <

svi

vireg ^ subreg

0

<

svi

vireg

^ (8 lit. lit <

tvi

0 ! subreg ^

t

lit = subreg

0

^

t

lit)

^ hSTACK#(ereg, 
e; esta
k)i

( slnodups(esta
k) ^ nlnodups(vilist(vi, esta
k))

^ ( : is ret(
ode(preg, db

9

)) ^ stop = run

! vilist(vi, esta
k) <

nl

vireg)

^ (8 n, lit. lit <

tvi

0 ^ n 2 esta
k

! subreg ^

t

rent(lit, vi[n℄) = subreg

0

^

t

rent(lit, vi[n℄)))

^ hSTACK#(breg, b; sta
k)i

8 n, lit. lit <

tvi

0 ^ n 2 sta
k

! sub[n℄ ^

t

rent

0

(lit, e[n℄, vi) = sub

0

[n℄ ^

t

rent

0

(lit, e[n℄, vi)

^ sub[n℄ ^

t

lit = sub

0

[n℄ ^

t

lit

^ sub[n℄ <

svi

vireg ^ sub

0

[n℄ <

svi

vireg
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^ hSTACK#(e[n℄, 
e; esta
k

0

)i

( vilist(vi, esta
k

0

) <

nl

vireg

^ slnodups(esta
k

0

) ^ nlnodups(vilist(vi, esta
k

0

))

^ (8 n

0

. n

0

2 esta
k

0

! sub[n℄ ^

t

rent(lit, vi[n

0

℄)

= sub

0

[n℄ ^

t

rent(lit, vi[n

0

℄)))

MINV

9

�

stop = run

! : is unify(
ode(preg, db

9

)) ^ 
ode(preg, db

9

) 6= pro
eed

^ ( is try(
ode(preg, db

9

)) _ is try me(
ode(preg, db

9

))

_ 
ode(preg, db

9

) = allo
ate _ is sw 
onst(
ode(preg, db

9

))

_ is sw term(
ode(preg, db

9

)) _ is sw stru
t(
ode(preg, db

9

))

_ 
ode(preg, db

9

) = allo
ate

� hC-CHAIN-REC#(subreg ^

t

rent

0

(
alllit(
ode(
preg�1), db

9

)),

ereg, vi), preg, db

9

; 
li)i 
li <


lvi

0

^ hUNLOADREC#(
preg � 1, db

9

, ereg 6= ?; goalreg)i

(goalreg 6= [℄ ^ nonvargoal(goalreg)) ;

is ret(
ode(preg, db

9

)) � breg 6= ? ^ preg = p[breg℄ ;

hUNLOADREC#(preg, db

9

, ereg 6= ?; goalreg)i

nonvargoal(goalreg))

^ hSTACK#(breg, b; sta
k)i

hSTACK#(is ret(
ode(preg, db

9

)) � e[breg℄ ; ereg, 
e; esta
k)i

( ordered(esta
k) ^ ordered(sta
k) ^ disjoint(esta
k, sta
k)

^ ( : is ret(
ode(preg, db

9

))

! 
utpt[ereg℄ 2 sta
k _ 
utpt[ereg℄ = ?)

^ (8 n. n 2 esta
k

! hUNLOADREC#(
p[n℄, db

9

, 
e[n℄ 6= ?; goalreg)i

nonvargoal(goalreg))

^ (8 n. n 2 sta
k

! e[n℄ � n

^ hSTACK#(e[n℄, 
e; esta
k

0

)i

( disjoint(esta
k

0

, sta
k from n)

^ ordered(esta
k

0

)

^ (8 n

0

. n

0

2 esta
k

0

! hUNLOADREC#(
p[n

0

℄, db

9

,


e[n

0

℄ 6= ?; goalreg)i

nonvargoal(goalreg)))

^ hUNLOADREC#(
p[n℄� 1,db

9

, e[n℄ 6= ?; goalreg)i

(goalreg 6= [℄ ^ nonvargoal(goalreg))

^ hC-CHAIN-RET#(

sub[n℄ ^

t

rent

0

(
alllit(
ode(
p[n℄ � 1, db

9

)),

e[n℄, vi), p[n℄, db

9

; 
li)i


li <


lvi

0))



Chapter 19

Statisti
s

The following table gives an overview over the e�orts needed for the Prolog-WAM 
ase study. For

ea
h re�nement the number of ne
essary proof steps and intera
tions and the number of theorems

proved are listed. These numbers have been extra
ted from the 
urrent KIV version 4. The

number of iterations, that were ne
essary to rea
h the �nal 
oupling invariant, and the time that

was needed to su

essfully verify the re�nement refer to version of KIV in whi
h the re�nements

were veri�ed originally (for 1/2 and 4/5 KIV version 1, for 2/3,3/4,5/6 and 5/7 KIV version 3).

1/2 2/3 3/4 4/5 5/6

Proof steps 1074 1760 2546 1722 5341

Intera
tions 161 124 300 87 672

Theorems 15 13 22 17 42

Iterations 12 8 5 9 8

Verif. time 2 Mo. 2 Wo. 1 Wo. 1 Mo. 2 Wo.

Size of INV 20 25 25 14 53

5/7 7/8 8/9 9/9a

Proof steps 7558 3445 4295 3045

Intera
tions 1383 336 377 426

Theorems 39 21 19 19

Iterations 17 12 8 4

Verif. time 2 Mo. 1 Mo. 3 Wo. 2 Wo.

Size of INV 36 36 23+17 18+23

Altogether the veri�
ation e�ort is 
urrently about 9 man months, whi
h in
ludes the veri�
a-

tion of 1771 auxiliary �rst-order lemmas, that required 17458 proof steps and 3393 intera
tions.

Here are some more statisti
al data:

� The number of auxiliary �rst-order lemmas is now four times the number that were ne
-

essary until re�nement 5/7. The main reason is, that starting from re�nement 8/9 a lot

of lemmas are ne
essary for uni�
ation, renaming and substitution. Some of these lemmas

required elaborate proofs due to the 
omplex termination ordering of substitution (up to

20 intera
tions), in 
ontrast to all lemmas proved previously (usually 0{2 intera
tions). A

se
ond reason is, that for ASM10 a large number of simple lemmas for the representation of

terms by pointers, that have already been proved.

� Compared to the number given in [SA97℄, whi
h referred to KIV version 3, there have

been some major improvements. The most signi�
ant is the redu
tion of the size of the


oupling invariant for 5/7 from 97 to 36 lines by a modi�
ation of the proof te
hnique

(see Se
t. 15.2). In the re�nements 2/3 and 3/4 we have now used the generation of proof

obligations a

ording to the modularization theorem. In [SA97℄ the generi
 proof for the

modularization theorem was still done was done for every instan
e anew (de fa
to the proofs

for the instan
es lead to the dis
overy of the general theory presented here).

� The improvements in the dedu
tion support and in the automation of the KIV system

(without the improvements that result from the use of the modularization theorem) during

the 
ourse of the 
ase study 
an be shown 
learly for the veri�
ation of the �rst re�nement,

sin
e it 
ontains 1:1 diagrams only: While in KIV version 1 378 intera
tions were ne
essary,

this number dropped to 246 in version 3. In KIV version 4 it is now 161.
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� Re�nement 1/2 also gives a good measure for the the time needed to be
ome familiar with

KIV, sin
e the veri�
ation in KIV version 3 was done by Harald Vogt, a student that had

attended a one-semester pra
ti
al 
ourse on KIV and had no prior knowledge of the 
ase

study. It required him 80 hours of work to port the proofs for the re�nement from version

1 to version 3 (porting the proofs from version 3 to 4 required about a day of work).

� The size of the interpreters starts with 120 lines of imperative (Pseudo-PASCAL-)
ode and

rea
hes 300 lines for ASM9. Sin
e it 
ontains a lot of new instru
tions, ASM10 (nearly

identi
al to the WAM) is mu
h larger with 950 lines of 
ode.



Chapter 20

Related Case Studies

There is a huge amount of resear
h in the literature, that 
onsiders 
ompiler 
orre
tness in papers.

For an overview see e.g. [Joy90℄. Large e�orts on the topi
 were e.g. the VLISP ([GRW95℄) and

the PROCOS ([BLH93℄) proje
t.

Most of the work falls (just like our work) in the 
ategory, that deals with the 
orre
tness of

the 
ompilation (\
ompiling 
orre
tness"). The eÆ
ient implementation of 
ompilers (\
ompiler


orre
tness") was treated rarely, but is 
urrently resear
hed in the Veri�x proje
t ([GDG

+

96℄).

Work on system supported, formal veri�
ation of 
ompilers is mu
h rarer. The most elaborate

work in this �eld is the formal veri�
ation of a 
ompiler, that translates 
ode of the imperative

programming language Gypsy �rst to assembler 
ode and then into native ma
hine 
ode of the

FM8502 pro
essor ([Moo88℄, [You88℄).

Veri�
ation of the 
ompilation of Prolog to the WAM was besides [BR95℄, on whi
h our work

is based, also dis
ussed in [Rus92℄. This work makes some simpli�
ations (it does neither 
onsider

the 
ut nor swit
hing), and does not stru
ture the proof into several re�nements. An attempt to

formalize the proof failed be
ause of its 
omplexity. Therefore V. Austel tried to do a stru
tured

proof in [Aus98℄ with the HOL system ([Gor88℄). His proof attempt tries to re�ne the term

representation before the 
ontrol stru
ture and is in our opinion nearly in
omprehensible. The

work required one man year of e�ort, and a

ording to the author at least another year would be

ne
essary to 
omplete it.

The most interesting point in this work is the thesis, that a major problem, that [BR95℄ only

treats insuÆently, is the introdu
tion of the term representation in one single re�nement (9/10).

Now our 
onsideration in Se
t. 18 have shown, that the introdu
tion of term representation (and

all other 
on
epts) in a single step must indeed be de
omposed into several steps in order to make a


lear veri�
ation possible. Nevertheless we think, that the de
omposition as we 
urrently propose

it, will do this, and we do not see any fundamental problems.

Another work done parallel to this one is the formal treatment of the 
ompilation of Prolog to

the WAM by C. Pus
h ([Pus96℄) with the Isabelle system ([Pau94℄). Her spe
i�
ation is based on

indu
tively de�ned relations over the ve
tor of state variables. Using polymorphism and pattern

mat
hing makes the notation in Isabelle mu
h more 
ompa
t (but for an untrained reader also more


rypti
) than ASM notation (and even more than our PASCAL-like notation in the translation to

DL).

The starting point of her work is based on a de�nition of an interpreter that already uses

sta
ks of 
hoi
epoints, not sear
h trees. Sta
ks are modeled as lists, in 
ontrast to our pointer

stru
ture. This avoids the ne
essity to 
olle
t 
hoi
epoints with the pro
edure STACK#. This

results in some simpli�
ation for the proofs at the 
ost, that a pointer stru
ture would have to

be introdu
ed (and veri�ed) at latest in ASM8, when the sta
k of 
hoi
epoints and the sta
k of

environments are merged.

Four re�nements were veri�ed: the �rst introdu
es 
utpoints (i.e. positions in the sta
k). These

were represented as sublists of the 
urrent sta
k in the �rst interpreter. The se
ond re�nement

shows, that instead of using all 
lauses as 
andidates a pro
def fun
tion 
an be used, that gives all
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lauses with the same leading predi
ate symbol. The ASM that results from the se
ond re�nement

is (modulo notation) equivalent to our ASM2, and the last two re�nements veri�ed in Isabelle

are identi
al to our re�nements 2/3 and 3/4 (ex
ept that the 
onstru
ts true and fail were not


onsidered, therefore the problem dis
ussed in 14.2 we found in the fail rule 
ould not be found).

The veri�
ation e�ort for the four re�nements is given in [Pus96℄ as 6 person months and 3500

intera
tions. The major part of this e�ort was ne
essary for the re�nements 2/3 and 3/4, as 
an

be seen from the proof s
ripts. These �gures are more than twi
e the ones we a
hieved. There

are two main reasons for this: First, no proof te
hnique for m:n diagrams, as they appear in 2/3

and 3/4, was developed. Instead, diagrams were de
omposed into 1:n diagrams, as we sket
hed

in Se
t. 6.2.3, p. 28. This resulted in a drasti
 in
rease of the size of the invariants. Se
ond,

two separate, asymmetri
 proofs were done for 
orre
tness and 
ompleteness of ea
h re�nements.

The asymmetry of the proofs seems one hand to be due to the use of abstra
tion fun
tions, that

required additionally the de�nition of their domain (with 
on�g ok), but asymmetri
ally, not

de�nition of their 
odomain. On the other hand it is the determinism of the state based system,

that is essential for the fa
t, that only one proof is ne
essary. In our en
oding of the ASM in the


al
ulus of Dynami
 Logi
 determinism is synta
ti
ally supported by the axiom

h�i ' � [�℄ '

for deterministi
 programs � (this axiom is used in our 
orre
tness proof of the modularization

theorem). In the formalization of the ASM as an indu
tive relation a similar axiom has to be

proved individually for ea
h � by indu
tion over its stru
ture.



Chapter 21

Summary of Part II

In the se
ond part of this work we have investigated the pra
ti
al usefulness of the theory developed

in part 1. The 
ase study we used for this purpose is from 
ompiler veri�
ation. With 9 months

of e�ort for the veri�
ation, the 
ase study is a very large one.

The 
ontent of the 
ase study was the formal veri�
ation of 8 of the 12 re�nements given in

[BR95℄, that 
ompile a Prolog program to assembler 
ode of the Warren Abstra
t Ma
hine. The


ase study 
ontained a large number of typi
al problems from 
ompiler veri�
ation, e.g. intro-

du
tion of registers, sta
ks, environments (sta
k frames), the optimization of 
ontrol stru
tures

(swit
hing) or the translation of abstra
t datatypes to pointer stru
tures. These problems should

also be relevant for other programming languages.

The 
ase study showed, that due to a large number of impli
it assumptions, the fully formal


orre
tness proof of a re�nement is mu
h more expensive than one 
ould estimate by looking at

the already elaborate mathemati
al analysis done in [BR95℄. The additional e�ort payed o� in

the sense, that a number of small errors, that were left open in the mathemati
al analysis, 
ould

be found and removed.

To make the veri�
ation of the re�nements tra
table, the full theory developed in the �rst part

was ne
essary as well as a very powerful tool for veri�
ation. The KIV system, that was used in

the 
ase study, has been signi�
antly improved during the work on this 
ase study.

Finally the 
omparison with two 
ase studies on the same topi
 done with other systems (HOL,

Isabelle) in parallel to this work shows, that the developed theory allowed the ne
essary e�ort to

be signi�
antly smaller.
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Chapter 22

Outlook

The 
ase study done in this work does not yet 
ompletely show the 
orre
tness of the 
ompilation

of Prolog to the WAM. There are still 4 re�nements until full WAM 
ode is rea
hed. The �rst

two re�nements will be relatively 
omplex to verify, while the other two (environment trimming

and removal of the stru
ture of environments and 
hoi
epoints) should be easy. Altogether, we

estimate the e�ort to 
omplete the veri�
ation to be about 2{3 months.

To get a veri�ed Prolog 
ompiler from the 
ase study, then a 
ompiler 
ould be implemented,

that ful�lls the 
ompiler assumptions. This should be easy for an simple variant with re
ursively

de�ned DL programs, sin
e the 
ompiler assumptions are (with the ex
eption of swit
hing) already

algorithmi
.

More interesting than to use imperative programs for the implementation would be to take

up the ideas from the Veri�x proje
t [GDG

+

96℄ and to use Prolog itself as the implementation

language of the 
ompiler. This would give the possibility to get an eÆ
ient 
ompiler by 
ompiling

the 
ompiler with itself (\bootstrapping").

The de�nition of a Prolog 
ompiler in Prolog would be a list of 
lauses for a predi
ate 
ompile

with two arguments. A query would be of the form 
ompile(t;X), where t would be a Prolog

program en
oded as a term. X would be the output variable, whose result value at the end of the


omputation would be generated WAM instru
tions, again en
oded in a term.

To 
onne
t programs and WAM instru
tion lists to terms (\re
e
tion"), two 
onversion fun
-

tions 
lauselist-to-term and term-to-instru
tionlist are ne
essary. They are easy to de�ne here,

sin
e Prolog is an untyped language (the programming language with the simplest re
e
tion prin-


iple, namely the \quote" operation, is LISP, sin
e programs and data stru
tures are identi
al;

for typed languages re
e
tion is a mu
h harder problem). Subsequently the Prolog 
ode db


ompile

of the Prolog 
ompiler 
ould be veri�ed, by showing that exe
ution of ASM1 with a query 
om-

pile(t;X) results for ea
h program 4 (en
oded as a term) in a list of instru
tions, whi
h ful�ll the


ompiler assumptions. Formally, we have to prove

t = 
lauselist-to-term(db)

^ hASM1(db


ompile

, 
ompile(t,X); subst)i subst = [X  t

0

℄

! CompAssum(db, term-to-instru
tionlist(t

0

))

With this approa
h a 
ompiler would result, whose 
orre
tness depends only on the fa
t, that

ASM1 is a 
orre
t semanti
 de�nition of Prolog, the (trivial) 
orre
tness of the 
onversion fun
tions

and of 
ourse the 
orre
tness of the veri�
ation tool.

For the bootstrapping of the 
ompiler with itself (to get a 
ompiler implemented in WAM


ode) there would be three 
hoi
es: Either the WAM 
ode 
ould be got by repla
ing db with

db


ompile

in the theorem above and symboli
 exe
ution of ASM1. This would be ideal, sin
e then

only the 
orre
tness of the veri�
ation tool would be relevant for 
orre
t WAM 
ode. Experien
e

of my 
olleague Kurt Stenzel with a Java ASM show, that this is very expensive (spa
e and time


onsuming) and 
ould turn out to be impossible with the resour
es available. A se
ond possibility
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would be to do the bootstrapping with one (or several) available Prolog 
ompilers. A last possibility

would be to use the 
ode generation fa
ility of KIV, that generates LISP programs for the abstra
t

programs of ASM1. The resulting 
ode 
ould also be used to do the bootstrapping. The last two

methods are from a theoreti
al viewpoint not quite as safe as the �rst one, sin
e they require the


orre
tness of another 
ompiler (at least for the 
onsidered program of the Prolog 
ompiler), but if

both methods result in the same 
ode, the probability of an error should nevertheless be de fa
to

equal to zero.



Appendix A

Used Notations

This se
tion gives the basi
 notations used in this work.

For a set S we denote with P(S) the power set of S, with P

!

(S) the set of all �nite subsets of

S. S

n

is the set of all n-tuples over S (n � 0). We write x

1

: : : x

n

and (x

1

; : : : ; x

n

) for n-tuples.

If n is 
lear from the 
ontext or arbitrary, we also write x. S

�

is the union of all S

n

for n � 0.

This set also 
ontains the empty tuple, written (). S

+

is S

�

without the empty tuple.

^

S

n

is the

set of all dupli
ate free n-tuples: x

1

: : : x

n

2 S

n

i� x

i

6= x

j

for all 1 � i < j � n.

^

S

�

is the

union of all

^

S

n

. We use the notation M =

S

s2S

M

s

for a family of sets M

s

, indexed with the

elements of S. It is always assumed that the sets M

s

of the family are pairwise disjoint. M

s

1

:::s

n

abbreviates M

s

1

� : : : �M

s

n

and

^

M

s

1

�:::�s

n

is the same as M

s

1

� : : : �M

s

n

\

^

M

n

. For two

tuples (x

1

; : : : ; x

n

) 2 S

n

and (x

0

1

; : : : ; x

0

m

) 2 S

m

we de�ne their 
on
atenation (x

1

; : : : ; x

n

) :

(x

0

1

; : : : ; x

0

m

) as (x

1

; : : : ; x

n

; x

0

1

; : : : ; x

0

m

) 2 S

n+m

. We identify S with S

1

, so x : (x

1

; : : : ; x

n

) is

the same as (x; x

1

; : : : ; x

n

) 2 S

n+1

.

If a fun
tion f : M ! N is given, then we assume, that the homomorphi
 extension to a

fun
tion on tuples from M

n

is de�ned by f((x

1

;: : : ; x

n

)) := (f(x

1

); : : : ; f(x

n

)) The homomorphi


extension of f to subsets of M is de�ned analogously.
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Appendix B

Syntax and Semanti
s of Dynami


Logi


B.1 Syntax of Dynami
 Logi


De�nition 4 Signatures

A (many-sorted) signature SIG = (S;OP;X; P ) 
onsists of a �nite set of sorts S, a family OP =

S

s2S

�

;s

0

2S

OP

s;s

0

of operations (with argument sorts s and target sort s

0

), a family X =

S

s2S

X

s

of 
ountably many variables for ea
h sort, and a family P =

S

s2S

�

;s

0

2S

�

P

s;s

0

of pro
edure names

with value parameters of sorts s and referen
e parameters of sorts s

0

(pro
edure names are used

in programs).

It is assumed, that S 
ontains at least the sorts bool and nat, as well as the usual operations

on these sorts (true,false,^,_,!, $,:, 0,+1,�1,+).

De�nition 5 DL Expressions

For a many-sorted signature SIG, the set DLEXPR =

S

s2S

DLEXPR

s

of expressions, and the

set PROG of programs are de�ned to be the smallest sets with

� X

s

� DLEXPR

s

for every s 2 S

� If f 2 OP

s;s

and t 2 DLEXPR

s

then f(t) 2 DLEXPR

s

� If ' 2 FMA and x 2

^

X

s

then 8 x:' 2 FMA

� If ' 2 FMA and x 2

^

X

s

then 9 x:' 2 FMA

� If t; t

0

2 DLEXPR

s

, then t = t

0

2 FMA

� If ' 2 FMA and t; t

0

2 DLEXPR

s

, then (' � t; t

0

) 2 DLEXPR

s

� If x 2

^

X

s

and t 2 U

s

, where U

s

= T

s

[ f?g, then x := t 2 PROG

� If � 2 PROG, x 2

^

X

s

and t 2 U

s

, where U

s

= T

s

[ f?g, then var x = t in � 2 PROG

� skip; abort 2 PROG

� If �; � 2 PROG, then �;� 2 PROG

� If �; � 2 PROG and " 2 BXP, then if " then � else � 2 PROG

� If � 2 PROG and " 2 BXP then while " do � 2 PROG

� If � 2 PROG and � 2 T

nat

then loop � times � 2 PROG
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� If p 2 P

s;s

0

, t 2 T

s

, x 2

^

X

s

0

and � 2 T

nat

then p(t;x) 2 PROG and pro
bound � in p(t;x) 2

PROG. The latter program is a 
all to p with maximal re
ursion depth bounded by �.

The de�nition uses FMA (formulas) to abbreviate DLEXPR

bool

. The set T

s

(Terms of sort s)

is the subset of DLEXPR

s

, that does neither 
ontain quanti�ers nor programs. BXP (boolean

expressions) is T

bool

.

Remark 1 Like in Pas
al we use begin . . . end as bra
kets around programs. if " then � is

used as an abbreviation for if " then � else skip.

Remark 2 The tests of while loops and 
onditionals must be boolean expressions in the de�nition

above (" 2 BXP). This is ne
essary for appli
ation programs. For proof obligations and in proofs

it is sometimes 
onvenient to use arbitrary formulas. This extension does not pose any problems,

everything that follows holds for arbitrary " 2 FMA too.

De�nition 6 Assigned Variables

The set asgv(�) of assigned variables in a programs � is de�ned by:

� asgv(skip) = asgv(abort) = ;

� asgv(�;�) = asgv(�) [ asgv(�)

� asgv(if " then � else �) = asgv(�) [ asgv(�)

� asgv(while " do �) = asgv(�)

� asgv(loop � times �) = asgv(�)

� asgv(var x = t in �) = asgv(�) n x

� asgv(p(t;x)) = x

� asgv(pro
bound p(t;x) times �) = x

De�nition 7 Called Pro
edures


alledpro
s(�) is the set of all pro
edures that are 
alled in a program �.

De�nition 8 Pro
edure De
larations and Pro
edur De
laration Lists

The setPD of pro
edure de
larations is the set of all p(x;var y):� with p 2 P

s;s

0

x; y 2

^

X

s;s

0

,

� 2 PROG and asgv(�) � x [ y. � must not 
ontain pro
edure 
alls with bounded re
ursion

depth. p is the pro
edure de�ned with the pro
edure de
laration, � is the body of the pro
edure.

PDL is the set of all lists of Pro
edure de
larations, su
h that the 
alled pro
edures in their

bodies are a subset of the set of all de�ned pro
edures.

B.2 Semanti
s of Dynami
 Logi


De�nition 9 Algebra

An Algebra A over a signature SIG 
onsists of a nonempty 
arrier set A

s

for every sort s and a

fun
tion f

A

: A

s

! A

s

0

for every f 2 OP

s;s

0

. For every pro
edure p 2 P

s;s

0

and every n 2 IN the

algebra A 
ontains a relation [[p℄℄

A;n

on A

s;s

0

;s

0

. (whi
h is the semanti
s of p when the maximal

re
ursion depth is bounded by n). [[p℄℄

A;0

must be the empty relation. [[p℄℄

A

denotes the semanti
s

of the pro
edure and is de�ned as the union of all [[p℄℄

A;n

. The semanti
s de�nes a relation

between the initial values of value and referen
e parameters and the result values of the referen
e

parameters.

It is assumed that A

bool

= ftt,� g, A

nat

= IN, and that the operationen on booleans and natural

numbers have their usual semanti
s.
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De�nition 10 States/Valuations

For a signature SIG and an algebra A over this signature a state (or synonymously, a valuation)

z 2 ST

A

is de�ned as a fun
tion, that maps the variables of sort s to values in A

s

. The state

z[x  a℄ is the state, whi
h results from z by modifying the values at variables x with a.

De�nition 11 Semanti
s of Expressions

For an algebra A and a valuation z the semanti
s [[e℄℄

z

2 A

s

of a DL expresion e 2 DLEXPR

s

,

and the semanti
s z[[�℄℄z

0

of a program (a relation on states, written in�x) are de�ned by:

� [[x℄℄

z

= z(x)

� [[f(t)℄℄

z

= f

A

([[t℄℄

z

) for f 2 OP

s;s

0

and t 2 T

s

� [[8 x:e℄℄

z

= tt with x 2

^

X

s

i� [[e℄℄

z[x  a℄

= tt for all values a 2 A

s

� [[9 x:e℄℄

z

= tt with x 2

^

X

s

i� [[e℄℄

z[x  a℄

= tt for some values a 2 A

s

� [[(" � e; e

0

)℄℄

z

is [[e℄℄

z

, if [["℄℄

z

= tt, and [[e

0

℄℄

z

otherwise.

� z[[skip℄℄z

0

i� z = z

0

� [[abort℄℄ is the empty relation

� z[[x:=t℄℄z

0

i� z

0

= z[x  [[t℄℄

z

℄, where ea
h [[?℄℄

z

is some arbitrary value.

� z[[�;�℄℄z

0

i� there is a z

00

with z[[�℄℄z

00

and z

00

[[�℄℄z

0

� z[[if " then � else � ℄℄z

0

i�

either [["℄℄

z

= tt and z[[�℄℄z

0

or [["℄℄

z

= � and z[[�℄℄z

0

� z[[loop � times �℄℄z

0

i�

there are states z

0

:= z; z

1

; : : : ; z

n

:= z

0

with n := [[�℄℄

z

su
h that

z

i�1

[[�℄℄z

i

for every 1 � i � n

� z[[while " do �℄℄z

0

i�

there are states z

0

:= z; z

1

; : : : ; z

n

:= z

0

with

z

i�1

[[�℄℄z

i

for 1 � i � n,

[["℄℄

z

i

= tt for 1 � i < n and [["℄℄

z

0

= �

� z[[var x = t in �℄℄z

0

i� z[x  a℄[[�℄℄z

00

and z

0

= z

00

[x  [[x℄℄

z

℄ where a

i

= [[t

i

℄℄ for t

i

6=? and

otherwise a

i

is arbitrary.

� z[[p(t; x)℄℄z

0

i� z(t); z(x); z

0

(x) 2 [[p℄℄ and z(y) = z

0

(y) for all y 62 x

� z[[pro
bound � in p(t; x)℄℄z

0

i� z(t); z(x); z

0

(x) 2 [[p℄℄

n

, where n = [[�℄℄

z

, and z(y) = z

0

(y)

for all y 62 x

� [[h�i '℄℄

z

= tt i� there is a z

0

with z[[�℄℄z

0

and [['℄℄

z

0

= tt

� [[[�℄ '℄℄

z

= tt i� for all z

0

with z[[�℄℄z

0

: [['℄℄

z

0

= tt

Remark 3 The semanti
s of expressions and programs is de�ned unambiguously, sin
e ea
h 
ase

redu
es the number of elementary statements in the expression/program 
onsidered.

De�nition 12 Semanti
s of Pro
edure De
laration Lists

If Æ is a pro
edure de
laration list, then A j= Æ i� for every pro
edure de
laration p(x; y):�


ontained in Æ and every � = 0 + 1 : : :+ 1 (representing a number n � 0) the following property

holds:

[[pro
bound �+ 1 in p(x; y)℄℄ = [[pro
bound � in �℄℄
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In the de�nition pro
bound � in � is the program, that results from repla
ing ea
h pro
edure


all q(�; z) in � by pro
bound � in q(�; z) (for every pro
edure name q).

Remark 4 A pro
edure de
laration list unambiguously �xes the semanti
s of the de�ned pro
e-

dures. The proof is by indu
tion on n, that [[p℄℄

A;n

is �xed. It is also easy to show, that the [[p℄℄

A;n

are monotone in
reasing relations for the de�ned pro
edures.

De�nition 13 models operator

� A; z j= ' holds (or is valid) for a formula ' i� [['℄℄

z

= tt

� A j= ' holds i� for all states z: A; z j= '

� j= ' holds o� for every algebra A : A j= '

� � j=  holds i� for every algebra A: from A j= ' for every ' 2 � follows A j=  .

Remark 5 The following properties are valid, if i does neither o

ur in � nor in ". The �rst two

properties 
hara
terize while loops (they allow indu
tion over the number of iterations). The third

property allows to avoid loops with a 
ounter o

urring in �.

� j= hwhile " do �i ' $ 9 i:hloop if " then � times ii (' ^ : ")

� j= hloop � times �+ 1i ' $ h�; loop � times �i '

� j= hloop � times �i ' $ (8 i:i = � ! hloop � times ii ')

Remark 6 Let A be an algebra with A j= Æ for a pro
edure de
laration list Æ, that 
ontains a

pro
edure de
laration p(x;var y):�. Then the following three formulas 
hara
terize the re
ursive

pro
edure (i.e. their validity is equivalent to the pro
edure de
laration). Pro
edure de
lara-

tion lists therefore 
an be viewed as abbreviations for axioms. The formulas allow to indu
e

over the re
ursion depth and unfolding of pro
edures. The �rst formulas holds in every alge-

bra. In the third formula x

0

and y

0

have to be new variables of the same sorts as x and y.

pro
bound � in � again is the program, that is derived from � by repla
ing all pro
edure 
alls

q(�; z) with pro
bound � in q(�; z).

� j= hp(t; z)i ' $ 9 �:hpro
bound � in p(t; z)i '

� A j= hpro
bound �+ 1 in p(t; z)i ' $

hx

0

; y

0

; x; y := x; y; t; z;pro
bound � in �;x; y; y

0

:= x

0

; y

0

; y; z := y

0

i '

� A j= hp(t; z)i '

$ hx

0

; y

0

; x; y := x; y; t; z;�;x; y; y

0

:= x

0

; y

0

; y; z := y

0

i '

De�nition 14 (Basi
) Spe
i�
ations

A basi
 spe
i�
ation SPEC = (SIG,Ax,GAx,PAx) 
onsists of

� a signature SIG = (S,OP,P,X).

� a set of axioms Ax (formulas over SIG).

� a set GAx of generation 
lauses of the form: s

1

; : : : s

n

generated by f

1

; : : : f

m

(n,m > 0).

It is required that s

1

; : : : s

n

2

^

S

�

and all f

j

have a target sort in s

1

; : : : s

n

.

� a set PAx of pro
edure de
laration lists over SIG. If a pro
edure is de
lared in several lists,

the de
larations must be identi
al.

De�nition 15 Semanti
s of Spe
i�
ations

An algebra A is a model of SPEC (written as A j= SPEC, if it is an algebra over the signature of

the spe
i�
ation with
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� A j= ' for every ' 2 Ax

� For every generation 
lause s

1

; : : : ; s

n

generated by f

1

; : : : ; f

m

2 GAx and every i = 1 : : : n,

every element a 2 A

s

i


an be got as the semanti
s a = [[t℄℄

z

of some term t under some values

for z. The term must not 
ontain variables of the sorts s

1

; : : : s

n

, and that 
ontains operation

symbols only from ff

1

; : : : ; f

m

g.

� A j= Æ for every Æ 2 PAx

Remark 7 For every model of a spe
i�
ation (SIG,Ax,GAx,;) with no pro
edure names in its

signature, there is exa
tly one extension to a model (SIG [ P,Ax,GAx, PAx ), where P is the set

of de�ned pro
edures in PAx.

Remark 8 We write SPEC j= ', i� in every model A of SPEC A j= ' holds.

Theorem 11 Corre
tness and Completeness

The theory of basi
 spe
i�
ations 
an be axiomatized 
orre
tly and 
ompletely, if we add for

every generation 
lause s

1

; : : : s

n

generated by f

1

; . . . ; f

m

an Omega rule: If for a formula '(x)


ontaining a free variable x from one of the sorts s

1

; : : : s

n

all (evtl. in�nite many) formulas '(t)

with terms t, whi
h are built up with the 
onstru
tors f

1

; : : : f

m

and only 
ontain variables from

sorts not in s

1

; : : : s

n


an be derived, then 8 x:'(x) 
an be derived.

The rule has in�nitely many premises, so it 
annot be used in a theorem prover. In the

implementation of a 
al
ulus Omega rules are repla
ed by stru
tural indu
tion prin
iples. These

are theoreti
ally weaker than the Omega rules but suÆ
ient for pra
ti
al appli
ation.

We do not want to prove the theorem here. The idea of the proof is to translate all DL formulas

into equivalent �rst-order formulas. To do this we translate every program � into a relation R

�

(input: all variables of the program, output: all assigned variables of the program) This redu
es

the 
orre
tness and 
ompleteness proofs to �rst-order spe
i�
ations with generation 
lauses. For

these it is known that they 
an be 
orre
tly and 
ompletely axiomatized with an Omega rule (see

[Rei98℄).
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Appendix C

Spe
i�
ations and Lemmas for the

Modularization Theorem

C.1 General Spe
i�
ations

Spe
i�
ations for natural numbers, lists and dynami
 fun
tions 
an be found in appendix E.

diagtype =

data spe
i�
ation

diagtype = mn j 0n j m0;

variables 
: diagtype;

end data spe
i�
ation

state =

spe
i�
ation

sorts state;

variables st: state;

end spe
i�
ation

f-state-state =

a
tualize Dynfun with parameter state by morphism

dom ! state, 
odom ! state, dynfun ! f-state-state,

.[ . ℄ ! . d . e

s

end a
tualize

iterate =

enri
h nat, f-state-state with

fun
tions . ^ . : f-state-state � nat ! f-state-state prio 9;

axioms

it-base-ax : (f ^ 0)dste

s

= st,

it-re
-ax : (f ^ m +1)dste

s

= fd(f ^ m)dste

s

e

s

end enri
h

147
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stream =

a
tualize Dynfun with nat, parameter state by morphism

dom ! nat, 
odom ! state, dynfun ! stream,

. [ . ℄ ! . d . e, f ! s,

end a
tualize

enrstream =

enri
h stream, iterate with

fun
tions


ons : state � stream ! stream;


dr : stream ! stream;

app : stream � nat � stream ! stream;

nth
dr : stream � nat ! stream;

axioms


ons-base-ax : 
ons(st, s)d0e = st,


ons-re
-ax : 
ons(st, s)dm +1e = sdme,


dr-ax : 
dr(s)dme = sdm +1e,

app-base-ax : app(s, 0, s

0

) = s

0

,

app-re
-ax : app(s, m +1, s

0

) = 
ons(sd0e, app(
dr(s), m, s

0

)),

nth
dr-base-ax : nth
dr(s, 0) = s,

nth
dr-re
-ax : nth
dr(s, m +1) = nth
dr(
dr(s), m),

stream
hoi
e :

(8 m. 9 st

1

. st

1

= (f ^ m)dst

0

e

s

)

! (9 s. 8 m. sdme = (f ^ m)dst

0

e

s

)

end enri
h

tuple =

data spe
i�
ation

using enrstream

tuple = mkt (. .s : stream, . .i : nat, . .j : nat);

variables t

1

, t

0

, t: tuple;

end data spe
i�
ation

f-tup-tup =

a
tualize iterate with tuple by morphism

state ! tuple, f-state-state ! f-tup-tup, . d . e

s

! . [[ . ℄℄,

st ! t, f ! ft

end a
tualize

rule =

enri
h enrstream with

predi
ates

Tra
e : stream;

�nal : state;

pro
edures

RULE : ! state; (: arbitrary pro
edure as ASM rule :)

axioms
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Tra
e-def :

Tra
e(s)

$ (8 m, st. st = sdme

! hif : �nal(st) then RULE(; st)i st = sdm +1e),

�nal-def : (: rule does not terminate �! �nal state :)

(: hRULE(; st)i true) ! �nal(st) ,


hoi
e : (: 
hoi
e axiom for RULE :)

(8 st. hif : �nal(st) then RULE(; st)i true)

! 9 f. 8 st

0

. hst := st

0

; if : �nal(st) then RULE(; st)i st = fdst

0

e

s

end enri
h

rule' =

rename rule by morphism

stream ! stream', state ! state', . d . e ! . d . e', 
ons ! 
ons',


dr ! 
dr', app ! app', nth
dr ! nth
dr', Tra
e ! Tra
e',

�nal ! �nal', RULE ! RULE', s ! s', st ! st'

end rename

C.2 Re�nement of Deterministi
 ASMs

C.2.1 Spe
i�
ation

detequiv =

enri
h rule, rule', diagtype with

fun
tions

ndt : state � state' ! diagtype;

exe
0n : state � state' ! nat;

exe
m0 : state � state' ! nat;

predi
ates

INV : state � state'; (: 
oupling invariant :)

IN : state � state'; (: input relation :)

OUT : state � state'; (: output relation :)

PROP : state � state';

variables i, j, k: nat;

axioms

init-ax : IN(st, st') ! INV(st, st'),

�nboth-ax : �nal(st) ^ �nal'(st') ^ INV(st, st') ! OUT(st, st'),

�n1-ax : �nal(st) ^ INV(st, st') ^ : �nal'(st') ! ndt(st, st') = 0n,

�n2-ax : �nal'(st') ^ INV(st, st') ^ : �nal(st) ! ndt(st, st') = m0,

mton-ax :

INV(st, st') ^ : �nal(st) ^ : �nal'(st') ^ ndt(st, st') = m0

! hif : �nal(st) then RULE(; st) i

9 i. hloop if : �nal(st) then RULE(; st) times ii

hif : �nal'(st') then RULE'(; st') i

9 j. hloop if : �nal'(st') then RULE'(; st') times j i INV(st, st'),

0ton-ax :

INV(st, st') ^ : �nal'(st') ^ ndt(st, st') = 0n ^ exe
0n(st, st') = k
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! hif : �nal'(st') then RULE'(; st') i

9 j. hloop if : �nal'(st') then RULE'(; st') times ji

(INV(st, st') ^ (: �nal'(st') ^ ndt(st, st') = 0n ! exe
0n(st, st') < k)),

mto0-ax :

INV(st, st') ^ : �nal(st) ^ ndt(st, st') = m0 ^ exe
m0(st, st') = k

! hif : �nal(st) then RULE(; st) i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (: �nal(st) ^ ndt(st, st') = m0 ! exe
m0(st, st') < k)),

prop-def :

PROP(st, st')

$ 9 i. hloop if : �nal(st) then RULE(; st) times ii

9 j. hloop if : �nal'(st') then RULE'(; st') times ji INV(st, st')

end enri
h

C.2.2 Proved Theorems

�nite-0ton (the main 
ase of lemma 2 from Se
t. 6.2.3)

INV(st, st'), ndt(st, st') = 0n, : �nal'(st')

` hif : �nal'(st') then RULE'(; st') i

9 j. hloop if : �nal'(st') then RULE'(; st') times ji

(INV(st, st') ^ (�nal'(st') _ ndt(st, st') 6= 0n))

� used lemmas : 0ton-ax

� used by : 
ompl-step, 
ompleteness

�nite-mto0

INV(st, st'), ndt(st, st') = m0, : �nal(st)

` hif : �nal(st) then RULE(; st) i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (�nal(st) _ ndt(st, st') 6= m0))

� used lemmas : mto0-ax

� used by : 
orr-step, 
orre
tness


orr-step (Lemma 1 from Se
t. 6.2.3)

PROP(st, st') ` hif : �nal'(st') then RULE'(; st')i PROP(st, st')

� used lemmas : �nite-mto0, �n1-ax, 0ton-ax, mton-ax, prop-def

� used by : 
orre
tness


ompl-step

PROP(st, st') ` hif : �nal(st) then RULE(; st)i PROP(st, st')

� used lemmas : �nite-0ton, �n2-ax, mto0-ax, mton-ax, prop-def



INDETERMINISTIC ASMS 151

� used by : 
ompleteness


orre
tness (
orre
tness of the re�nement)

IN(st, st')

` [while : �nal'(st') do RULE'(; st') ℄

hwhile : �nal(st) do RULE(; st)i OUT(st, st')

� used lemmas : �nboth-ax, �n2-ax, �nite-mto0, 
orr-step, init-ax, prop-def


ompleteness (
ompleteness of the re�nement)

IN(st, st')

` [while : �nal(st) do RULE(; st)℄

hwhile : �nal'(st') do RULE'(; st')i OUT(st, st')

� used lemmas : �nboth-ax, �n1-ax, �nite-0ton, 
ompl-step, init-ax, prop-def

C.3 Re�nement of Indeterministi
 ASMs {

Diagrams of Indeterministi
 Size

C.3.1 Spe
i�
ation

genindeteqtra
e =

enri
h rule, rule', f-tup-tup, diagtype with

fun
tions

ndt : state � state' ! diagtype;

exe
0n : state � state' ! nat;

exe
m0 : state � state' ! nat;

predi
ates

INV : state � state';

INV' : state � state';

KPROP : state � state';

VPROP : state � state';

IN, : state � state';

OUT : state � state';

p : stream' � tuple � tuple;

variables i, i

0

, i

1

, j, j

0

, k: nat;

axioms

init-ax : IN(st, st') ! INV(st, st'),

�nboth-ax : �nal(st) ^ �nal'(st') ^ INV(st, st') ! OUT(st, st'),

�n1-ax : �nal(st) ^ INV(st, st') ^ : �nal'(st') ! ndt(st, st') = 0n,

�n2-ax : �nal'(st') ^ INV(st, st') ^ : �nal(st) ! ndt(st, st') = m0,

mton-
orr-ax :

INV(st, st') ^ ndt(st, st') = m0 ^ Tra
e'(s')

^ st' = s'd0e

0

^ : �nal(st) ^ : �nal'(st')

! hif : �nal(st) then RULE(; st)i
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9 j. 9 i. hloop if : �nal(st) then RULE(; st) times i i INV(st, s'dj +1e

0

),

0ton-
orr-ax :

INV(st, st') ^ ndt(st, st') = 0n ^ exe
0n(st, st') = k

^ Tra
e'(s') ^ st' = s'd0e

0

^ : �nal'(st')

! 9 j. INV(st, s'dj +1e

0

)

^ (: �nal'(s'dj +1e

0

) ^ ndt(st, s'dj +1e

0

) = 0n ! exe
0n(st, s'dj +1e

0

) < k),

mto0-
orr-ax : (: follows from mto0-
omp-ax, is suÆ
ient for tra
e 
orre
tness :)

INV(st, st') ^ ndt(st, st') = m0 ^ exe
m0(st, st') = k ^ : �nal(st)

! hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (: �nal(st) ^ ndt(st, st') = m0 ! exe
m0(st, st') < k)),

mton-
omp-ax :

INV(st, st') ^ ndt(st, st') = m0 ^ Tra
e(s)

^ st = sd0e ^ : �nal(st) ^ : �nal'(st')

! hif : �nal'(st') then RULE'(; st')i

9 i. 9 j. hloop if : �nal'(st') then RULE'(; st') times j i INV(sdi +1e, st'),

mto0-
omp-ax :

INV(st, st') ^ ndt(st, st') = m0 ^ exe
m0(st, st') = k ^ Tra
e(s)

^ st = sd0e ^ : �nal(st)

! 9 i. INV(sdi +1e, st')

^ (: �nal(sdi +1e) ^ ndt(sdi +1e, st') = m0 ! exe
m0(sdi +1e, st') < k),

0ton-
omp-ax : (: follows from 0ton-
orr-ax :)

INV(st, st') ^ ndt(st, st') = 0n ^ exe
0n(st, st') = k ^ : �nal'(st')

! hif : �nal'(st') then RULE'(; st')i

9 j. hloop if : �nal'(st') then RULE'(; st') times ji

(INV(st, st') ^ (: �nal'(st') ^ ndt(st, st') = 0n ! exe
0n(st, st') < k)),


hoi
e-ax : (: axiom of 
hoi
e :)

(8 t. 9 t

0

. p(s', t, t

0

)) ! (9 ft. 8 t. p(s', t, ft[[t℄℄)),

diagonal-ax : (: axiom of 
hoi
e :)

8 m. 9 st. st = (ft " m)[[mkt(s

0

, 0, 0)

! 9 s. 8 m. sdme = ft " m[[mkt(s

0

, 0, 0)℄℄.sdme,

kprop-def :

KPROP(st, st')

$ 8 s'. st' = s'd0e

0

^ Tra
e'(s')

! 9 i. hloop if : �nal(st) then RULE(; st) times ii

(9 m. INV(st, s'dme

0

)),

vprop-def :

VPROP(st, st')

$ 8 s. st = sd0e ^ Tra
e(s)

! 9 j. hloop if : �nal'(st') then RULE'(; st') times ji

(9 m. INV(sdme, st')),

inv'-def : INV'(st, st') $ INV(st, st') ^ (�nal(st) $ �nal'(st'))



INDETERMINISTIC ASMS 153

p-def : (: predi
ate that des
ribes adding diagrams :)

p(s', t, t

0

)

$ INV'(t.sdt.ie, s'dt.je

0

) ^ Tra
e(t.s) ^ Tra
e'(s')

! Tra
e(t

0

.s) ^ (8 i

1

. : t.i < i

1

! t.sdi

1

e = t

0

.sdi

1

e)

^ t.i < t

0

.i ^ t.j < t

0

.j ^ INV'(t

0

.sdt

0

.ie, s'dt

0

.je

0

),

end enri
h

C.3.2 Proved Theorems

�n-0ton

INV(st, st'), ndt(st, st') = 0n, : �nal'(st')

` hif : �nal'(st') then RULE

0

(; st')i

9 j. hloop if : �nal'(st') then RULE

0

(; st') times ji

(INV(st, st') ^ (�nal'(st') _ ndt(st, st') 6= 0n))

� used lemmas : 0ton-
omp-ax

� used by : 
ompl-step, 
ompleteness

�n-mto0

INV(st, st'), ndt(st, st') = m0, : �nal(st)

` hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (�nal(st) _ ndt(st, st') 6= m0))

� used lemmas : mto0-
orr-ax

� used by : add-diagram, 
orr-step, 
orre
tness, equiv-�nal

�nite-0ton

ndt(st, st') = 0n, INV(st, st'), Tra
e'(s'), s'd0e

0

= st', : �nal'(st')

` 9 j. INV(st, s'dj +1e

0

) ^ (�nal'(s'dj +1e

0

) _ ndt(st, s'dj +1e

0

) 6= 0n)

� used lemmas : 0ton-
orr-ax

� used by : add-diagram, equiv-�nal


orr-step

KPROP(st, st') ` [if : �nal'(st') then RULE

0

(; st')℄ KPROP(st, st')

� used lemmas : �n-mto0, �n1-ax, 0ton-
orr-ax, mton-
orr-ax, kprop-def

� used by : 
orre
tness


ompl-step

VPROP(st, st') ` [if : �nal(st) then RULE(; st)℄ VPROP(st, st')

� used lemmas : �n-0ton, �n2-ax, mto0-
omp-ax, mton-
omp-ax, vprop-def

� used by : 
ompleteness



154 SPECIFICATIONS FOR THE MODULARIZATION THEOREM


orre
tness (
orre
tness of the re�nement)

IN(st, st')

` [while : �nal'(st') do RULE

0

(; st')℄

hwhile : �nal(st) do RULE(; st)i OUT(st, st')

� used lemmas : �n-mto0, �nboth-ax, �n2-ax, 
orr-step, init-ax, kprop-def


ompleteness (
ompleteness of the re�nement)

IN(st, st')

` [while : �nal(st) do RULE(; st)℄

hwhile : �nal'(st') do RULE

0

(; st')i OUT(st, st')

� used lemmas : �nboth-ax, �n1-ax, �n-0ton, 
ompl-step, init-ax, vprop-def

equiv-�nal (Lemma 3 from Se
t. 6.3)

INV(st, st'), Tra
e'(s'), s'd0e

0

= st'

` 9 i. hloop if : �nal(st) then RULE(; st) times ii (9 j. INV'(st, s'dje

0

))

� used lemmas : �n2-ax, �n-mto0, �n1-ax, �nite-0ton, inv'-def

� used by : add-diagram

add-diagram (Lemma 4 from Se
t. 6.3)

INV'(st, st'), Tra
e'(s'), s'd0e

0

= st'

` hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(9 j. INV'(st, s'dj +1e

0

))

� used lemmas : �n1-ax, 0ton-
orr-ax, �n-mto0, �n2-ax, mto0-
orr-ax, �nite-0ton,

equiv-�nal, mton-
orr-ax, inv'-def

� used by : totality

totality (Totality of the relation that des
ribes adding diagrams)

` 8 s', t. 9 t

0

. p(s', t, t

0

)

� used lemmas : inv'-def, p-def, add-diagram

� used by : 
hoi
e-
on
l, ind-
hoi
e-
on
l


hoi
e-
on
l (existen
e of a fun
tion, that adds a diagram)

` 9 ft. p(s', t, ft[[t℄℄)

� used lemmas : totality, 
hoi
e-ax

ind-
hoi
e-
on
l (spe
ial 
ase of 
hoi
e-
on
l for ft " m)

` 9 ft. 8 m. p(s', (ft " m)[[t℄℄, (ft " m +1)[[t℄℄)
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� used lemmas : totality, 
hoi
e-ax

� used by : tra
e-
orre
tness

diagonal (diagonalisation argument for m 
onstru
ted diagrams)

t

0

= mkt(s

0

, 0, 0), t = (ft " m)[[t

0

℄℄,

Tra
e(s

0

), Tra
e'(s'), INV'(s

0

d0e, s'd0e

0

),

8 k. p(s', (ft " k)[[t

0

℄℄, (ft " k +1)[[t

0

℄℄)

` INV'(t.sdt.ie, s'dt.je

0

)

^ m � t.i ^ m � t.j ^ Tra
e(t.s)

^ (8 i, j. i < j ^ j � m

! (ft " i)[[t

0

℄℄.i < (ft " j)[[t

0

℄℄.i ^ (ft " i)[[t

0

℄℄.j < (ft " j)[[t

0

℄℄.j)

^ (8 j, k. j � m ^ k � (ft " j)[[t

0

℄℄.i ! (ft " j)[[t

0

℄℄.sdke = t.sdke)

� used lemmas : p-def, inv'-def

� used by : tra
e-
orre
tness

tra
e-
orre
tness (tra
e 
orre
tness of the re�nement)

Tra
e'(s'), INV'(st, s'd0e

0

)

` 9 s. Tra
e(s) ^ sd0e = st ^ (8 m, k. 9 i, j. m � i ^ k � j ^ INV'(sdie, s'dje

0

))

� used lemmas : diagonal, diagonal-ax, ind-
hoi
e-
on
l, inv'-def

C.4 Iterative Re�nement for

Indeterministi
 ASMs

C.4.1 Spe
i�
ation

it-indet
orr =

enri
h rule, rule', diagtype with

fun
tions

ndt : state � state' ! diagtype ;

exe
0n : state � state' ! nat ;

exe
m0 : state � state' ! nat ;

predi
ates

INV : state � state';

IN : state � state';

OUT : state � state';

KPROP : state � state';

MINV : state; (: existing invariant for ASM :)

MINVNOW : state';

MINV' : state'; (: 
onstru
ted invariant for ASM

0

:)

variables i, j, j

0

, k: nat;

axioms

minv-ax :

IN(st, st')
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! 8 i. [loop if : �nal(st) then RULE(; st) times i℄ MINV(st),

init-ax : IN(st, st') ! INV(st, st') ^ MINVNOW(st'),

�nboth-ax : �nal(st) ^ �nal'(st') ^ INV(st, st') ^ MINV(st) ! OUT(st, st'),

�n1-ax : �nal(st) ^ INV(st, st') ^ : �nal'(st') ^ MINV(st) ! ndt(st, st') = 0n,

�n2-ax : �nal'(st') ^ INV(st, st') ^ : �nal(st) ^ MINV(st) ! ndt(st, st') = m0,

mton-
orr-ax :

INV(st, st') ^ MINV(st) ^ : �nal(st) ^ : �nal'(st') ^ ndt(st, st') = m0

! [if : �nal'(st') then RULE'(; st')℄

9 j. [loop if : �nal'(st') ^ : MINVNOW(st') then RULE'(; st') times j℄

( MINVNOW(st')

^ hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii INV(st, st')),

0ton-
orr-ax :

INV(st, st') ^ MINV(st) ^ MINVNOW(st') ^ : �nal'(st')

^ ndt(st, st') = 0n ^ exe
0n(st, st') = k

! [if : �nal'(st') then RULE'(; st')℄

9 j. [loop if : �nal'(st') ^ : MINVNOW(st') then RULE'(;st') times j℄

( INV(st, st') ^ MINVNOW(st')

^ (: �nal'(st') ^ ndt(st, st') = 0n ! exe
0n(st, st') < k)),

mto0-
orr-ax :

INV(st, st') ^ MINV(st) ^ MINVNOW(st') ^ : �nal(st)

^ ndt(st, st') = m0 ^ exe
m0(st, st') = k

! hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

(INV(st, st') ^ (: �nal(st) ^ ndt(st, st') = m0 ! exe
m0(st, st') < k)),

kprop-def :

KPROP(st, st')

$ 8 i. [loop if : �nal(st) then RULE(; st) times i℄ MINV(st)

^ (9 j. [loop if : �nal'(st') ^ : MINVNOW(st')

then RULE'(; st') times j℄

( MINVNOW(st')

^ (9 i. hloop if : �nal(st) then RULE(; st) times ii

INV(st, st')))),

minv'-def : (MINVNOW(st') ! (9 st. INV(st, st') ^ MINV(st))) ! MINV'(st')

end enri
h

C.4.2 Proved Theorems

�nite-0ton

INV(st, st'), MINV(st), ndt(st, st') = 0n, : �nal'(st'), MINVNOW(st')

` [if : �nal'(st') then RULE

0

(; st')℄

9 j. [loop if : �nal'(st') then RULE

0

(; st') times j℄

(INV(st, st') ^ MINVNOW(st') ^ (�nal'(st') _ ndt(st, st') 6= 0n))

� used lemmas : 0ton-
orr-ax
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�nite-mto0

8 i. [loop if : �nal(st) then RULE(; st) times i℄ MINV(st),

INV(st, st'), ndt(st, st') = m0, : �nal(st), MINVNOW(st')

` hif : �nal(st) then RULE(; st)i

9 i. hloop if : �nal(st) then RULE(; st) times ii

( INV(st, st')

^ (�nal(st) _ ndt(st, st') 6= m0)

^ (8 i. [loop if : �nal(st) then RULE(; st) times i℄ MINV(st)))

� used lemmas : mto0-
orr-ax

� used by : 
orr-step, 
orre
tness


orr-step

KPROP(st, st') ` [if : �nal'(st') then RULE

0

(; st')℄ KPROP(st, st')

� used lemmas : �nite-mto0, �n1-ax, 0ton-
orr-ax, mton-
orr-ax, kprop-def

� used by : 
orr-j-steps, 
orre
tness

kprop-minv'

KPROP(st, st') ` MINV'(st')

� used lemmas : minv'-def, kprop-def

� used by : newinvarian
e

in-kprop

IN(st, st') ` KPROP(st, st')

� used lemmas : init-ax, minv-ax, kprop-def

� used by : 
orr-j-steps, 
orre
tness, newinvarian
e


orr-j-steps

KPROP(st, st')

` [loop if : �nal'(st') then RULE

0

(; st') times j℄ KPROP(st, st')

� used lemmas : in-kprop, kprop-def, 
orr-step

� used by : newinvarian
e


orre
tness

IN(st, st')

` [while : �nal'(st') do RULE

0

(; st')℄

hwhile : �nal(st) do RULE(; st)i OUT(st, st')

� used lemmas : �nboth-ax, �n2-ax, �nite-mto0, kprop-def, 
orr-step, in-kprop

newinvarian
e (Theorem 9 from Se
t. 6.5)

9 st. IN(st, st')

` 8 j. [loop if : �nal'(st') then RULE

0

(; st') times j℄ MINV'(st')

� used lemmas : kprop-minv', in-kprop, 
orr-j-steps
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Appendix D

De�nition of Admitted Code

Sequen
es (Chains)

D.1 De�nition of Linear Chains

L-CHAIN#(
o, db

5

; var 
ol)

begin

var instr = 
ode(
o, db

5

)

in if is try me(instr)

then L-CHAIN-TRY-ME#(
o, db

5

; 
ol)

else if is 
lause(instr)

then 
ol := [
o℄

else if instr = nil'

then 
ol := [℄

else abort

end;

L-CHAIN-TRY-ME#(
o, db

5

; var 
ol)

begin

var instr = 
ode(
o, db

5

),

follow = 
ode(
o +1, db

5

)

in if instr = try me else(N)

then if is 
lause(follow)

then begin

L-CHAIN-RETRY-ME#(N, db

5

; 
ol);


ol := [
o +1 j 
ol℄

end

else abort

else abort

end;

L-CHAIN-RETRY-ME#(
o, db

5

; var 
ol)

begin

var instr = 
ode(
o, db

5

),

follow = 
ode(
o +1, db

5

)

in if instr = retry me else(N)

then if is 
lause(follow)

then begin

L-CHAIN-RETRY-ME#(where(instr), db

5

; 
ol);


ol := [
o +1 j 
ol℄

159
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end

else abort

else if is trust me(instr)

then if is 
lause(follow)

then 
ol := [
o +1℄

else abort

else abort

end

D.2 De�nition of Nested Chains with Swit
hing

S-ANY-CHAIN#(trm, 
o, db

7

; var 
ol)

begin

var instr = 
ode(
o, db

7

)

in if is retry me(instr) _ is trust me(instr)

then S-CHAIN-RETRY-ME#(trm, 
o, db

7

; 
ol)

else if is retry(instr) _ is trust(instr)

then S-CHAIN-RETRY#(trm, 
o, db

7

; 
ol)

else S-CHAIN-REC#(trm, 
o, db

7

; 
ol)

end;

S-CHAIN#(trm, 
o, db

7

; var 
ol)

begin

if 
o = fail
ode then 
ol := [℄

else S-CHAIN-REC#(trm, 
o, db

7

; 
ol)

end;

S-CHAIN-REC#(trm, 
o, db

7

; var 
ol)

begin

var instr = 
ode(
o, db

7

)

in if is 
lause(instr) then 
ol := [
o℄ else

if instr = try(N) then var 
ol

2

= [℄

in begin

S-CHAIN-REC#(trm, N, db

7

; 
ol);

S-CHAIN-RETRY#(trm, 
o +1, db

7

; 
ol

2

);


ol := append(
ol, 
ol

2

)

end

else

if instr = try me else(N) then var 
ol

2

= [℄

in begin

S-CHAIN-REC#(trm, 
o +1, db

7

; 
ol);

S-CHAIN-RETRY-ME#(trm, N, db

7

; 
ol

2

);


ol := append(
ol, 
ol

2

)

end

else

if : is stru
t(trm) _ arity(trm) < argindex(instr) then abort else

var xi = arg(trm, argindex(instr))

in if instr = swit
h on term(argindex, N

s

, N




, N

v

, N

l

)

then

if is stru
t(xi) then S-CHAIN#(trm, N

s

, db

7

; 
ol) else

if is 
onst(xi) then S-CHAIN#(trm, N




, db

7

; 
ol) else

if is var(xi) then S-CHAIN#(trm, N

v

, db

7

; 
ol) else

if is list(xi) then S-CHAIN#(trm, N

l

, db

7

; 
ol) else abort

else if instr = swit
h on 
onstant(argindex, tabsize, table)
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then if is 
onst(xi)

then S-CHAIN#(trm, hash
(table, tabsize, 
onstsym(xi),

db

7

), db

7

; 
ol)

else abort

else if instr = swit
h on stru
ture(argindex, tabsize, table)

then if is stru
t(xi)

then S-CHAIN#(trm, hashs(table, tabsize, fun
t(xi),

arity(xi), db

7

), db

7

; 
ol)

else abort

else abort

end;

S-CHAIN-RETRY-ME#(trm, 
o, db

7

; var 
ol)

begin

var instr = 
ode(
o, db

7

)

in if instr = retry me else(N)

then var 
ol

2

= [℄

in begin

S-CHAIN-REC#(trm, 
o +1, db

7

; 
ol);

S-CHAIN-RETRY-ME#(trm, N, db

7

; 
ol

2

);


ol := append(
ol,
ol

2

)

end

else if is trust me(instr)

then S-CHAIN-REC#(trm, 
o +1, db

7

; 
ol)

else abort

end;

S-CHAIN-RETRY#(trm, 
o, db

7

; var 
ol)

begin

var instr = 
ode(
o, db

7

)

in if instr = retry(N)

then var 
ol

2

= [℄

in begin

S-CHAIN-REC#(trm, N, db

7

; 
ol);

S-CHAIN-RETRY#(trm, 
o +1, db

7

; 
ol

2

);


ol := append(
ol, 
ol

2

)

end

else if instr = trust(N)

then S-CHAIN-REC#(trm, N, db

7

; 
ol)

else abort

end;

S-CHAIN-RET#(trm, 
o, db

7

; var 
ol)

begin

var instr = 
ode(
o, db

7

)

in if is retry me(instr) _ is trust me(instr)

then S-CHAIN-RETRY-ME#(trm, 
o, db

7

; 
ol)

else if is retry(instr) _ is trust(instr)

then S-CHAIN-RETRY#(trm, 
o, db

7

; 
ol)

else abort

end;

S-APP-CHAINS-RET#(de
glseq', p, stl, db

7

; var 
ol)

begin

if stl = [℄ then 
ol := [℄
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else var 
ol

2

= [℄

in begin

S-CHAIN-RET#(a
g[
ar(stl), p[
ar(stl)℄, db

7

; 
ol);

S-APP-CHAINS-RET#(de
glseq', p, 
dr(stl), db

7

; 
ol

2

);


ol := append(
ol, 
ol

2

)

end

end

D.3 De�nition of the Length of Nested Chains with Swit
h-

ing

C-S-ANY-CHAIN#(trm, 
o, db

7

; var m)

begin

var instr = 
ode(
o, db

7

) in

if is retry me(instr) _ is trust me(instr) then

C-S-CHAIN-RETRY-ME#(trm, 
o, db

7

; m)

else if is retry(instr) _ is trust(instr) then

C-S-CHAIN-RETRY#(trm, 
o, db

7

; m)

else C-S-CHAIN-REC#(trm, 
o, db

7

; m)

end;

C-S-CHAIN#(trm, 
o, db

7

; var m)

begin

if 
o = fail
ode then m := 0

else C-S-CHAIN-REC#(trm, 
o, db

7

; m)

end;

C-S-CHAIN-REC#(trm, 
o, db

7

; var m)

begin

var instr = 
ode(
o, db

7

)

in if is 
lause(instr) then m := 0 else

if instr = try(N) then C-S-CHAIN-TRY#(trm, N, db

7

; m); else

if instr = try me(N) then C-S-CHAIN-TRY-ME#(trm, N, db

7

; m); else

if : is stru
t(trm) _ arity(trm) < argindex(instr) then abort

else var xi = arg(trm, argindex(instr)) in

if instr = swit
h on term(argindex, N

s

, N




, N

v

, N

l

) then

if is stru
t(xi) then

if N

s

= fail
ode then m := 0

else begin C-S-CHAIN-REC#(trm, N

s

, db

7

; m); m := m +1 end

else if is 
onst(xi) then

if N




= fail
ode then m := 0

else begin C-S-CHAIN-REC#(trm, N




, db

7

; m); m := m +1 end

else if is var(xi) then

if N

v

= fail
ode then m := 0

else begin C-S-CHAIN-REC#(trm, N

v

, db

7

; m); m := m +1 end

else if is list(xi) then

if N

l

= fail
ode then m := 0

else begin C-S-CHAIN-REC#(trm, N

l

, db

7

; m); m := m +1 end

else abort

else if instr = swit
h on 
onstant(argindex, tabsize, table) then

if is 
onst(xi) then

var preg = hash
(table, tabsize, 
onstsym(xi)) in
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if preg = fail
ode then m := 0

else begin

C-S-CHAIN-REC#(trm, preg, db

7

; m);

m := m +1

end

else abort

else if instr = swit
h on stru
ture(argindex, tabsize, table) then

if is stru
t(xi) then

var preg = hashs(table, tabsize, fun
t(xi)) in

if preg = fail
ode then m := 0

else begin

C-S-CHAIN-REC#(trm, preg, arity(xi), db

7

; m);

m := m +1

end

else abort

else abort

end;

C-S-CHAIN-TRY-ME#(trm, 
o, db

7

; var m)

begin

var instr = 
ode(
o, db

7

) in

if instr = try me(N) then

var m

0

= 0 in begin

C-S-CHAIN-REC#(trm, 
o +1, db

7

; m);

C-S-CHAIN-RETRY-ME#(trm, N, db

7

; m

0

);

m := (m + m

0

) +1

end

else abort

end;

C-S-CHAIN-TRY#(trm, 
o, db

7

; var m)

begin

var instr = 
ode(
o, db

7

) in

if instr = try(N) then

var m

0

= 0 in begin

C-S-CHAIN-REC#(trm, N, db

7

; m);

C-S-CHAIN-RETRY#(trm, 
o +1, db

7

; m

0

);

m := (m + m

0

) +1

end

else abort

end;

C-S-CHAIN-RETRY-ME#(trm, 
o, db

7

; var m)

begin

var instr = 
ode(
o, db

7

) in

if instr = retry me(N) then

var m

0

= 0 in begin

C-S-CHAIN-REC#(trm, 
o +1, db

7

; m);

C-S-CHAIN-RETRY-ME#(trm, N, db

7

; m

0

);

m := (m + m

0

) +1

end

else if trust me(instr) then

begin C-S-CHAIN-REC#(trm, 
o +1, db

7

; m); m := m +1 end

else abort

end;
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C-S-CHAIN-RETRY#(trm, 
o, db

7

; var m)

begin

var instr = 
ode(
o, db

7

) in

if instr = retry(N) then

var m

0

= 0 in begin

C-S-CHAIN-REC#(trm, N, db

7

; m);

C-S-CHAIN-RETRY#(trm, 
o +1, db

7

; m

0

);

m := (m + m

0

) +1

end

else if instr = trust(N) then

begin C-S-CHAIN-REC#(trm, N, db

7

; m); m := m +1 end

else abort

end;

C-S-CHAIN-RET#(trm, 
o, db

7

; var m)

begin

var instr = 
ode(
o, db

7

) in

if is retry me(instr) _ is trust me(instr) then

C-S-CHAIN-RETRY-ME#(trm, 
o, db

7

; m)

else if is retry(instr) _ is trust(instr) then

C-S-CHAIN-RETRY#(trm, 
o, db

7

; m)

else abort

end;

C-S-APP-CHAINS-RET#(de
glseq', p, stl, db

7

; var m)

begin

if stl = [℄ then m := 0

else var m

0

= 0 in begin

C-S-CHAIN-RET#(a
g[
ar(stl), p[
ar(stl)℄, db

7

; m);

C-S-APP-CHAINS-RET#(de
glseq', p, 
dr(stl), db

7

; m

0

);

m := (m + m

0

) +1

end

end



Appendix E

Spe
i�
ations of the Prolog-WAM

Case Study

E.1 Spe
i�
ations from the Library

elem =

spe
i�
ation

sorts elem;

variables a, b, 
 : elem;

end spe
i�
ation

elemI =

rename elem by morphism

elem ! elem', a ! a', b ! b', 
 ! 
'

end rename

elemII =

rename elem by morphism

elem ! elem", a ! a", b ! b", 
 ! 
"

end rename

pair =

generi
 data spe
i�
ation

parameter elemI + elemII

pair = h . , . i (fst : elem', snd : elem");

variables p, p

0

, p

1

: pair;

end generi
 data spe
i�
ation

Generated axioms:

pair freely generated by h . , . i;

fst(ha', a"i) = a',

snd(ha', a"i) = a",

ha', a"i = ha'

0

, a"

0

i $ a' = a'

0

^ a" = a"

0

,

hfst(p), snd(p)i = p

165



166 SPECIFICATIONS OF THE CASE STUDY

vartermpair =

a
tualize pair with parameter node, term by morphism

elem' ! nodesort, elem" ! term, pair ! pairvarterm

end a
tualize

varvarpair =

a
tualize pair with parameter node by morphism

elem' ! nodesort, elem" ! nodesort, pair ! varvarpair

end a
tualize

termtermpair =

a
tualize pair with term by morphism

elem' ! term, elem" ! term, pair ! termtermpair

end a
tualize

de
goal =

a
tualize pair with goalsort, parameter node by morphism

elem' ! goalsort, elem" ! nodesort, pair ! de
goal

end a
tualize


lause =

a
tualize pair with term, goal by morphism

elem' ! term, elem" ! goalsort,

pair ! 
lausesort, p ! 
l

end a
tualize

ident =

a
tualize pair with parameter atom, nat by morphism

elem' ! atomsort, elem" ! nat, pair ! ident

end a
tualize

pro
deftable =

a
tualize pair with ident, parameter 
ode by morphism

elem' ! ident, elem" ! 
odesort,

pair ! pro
deftable, p ! pdt

end a
tualize


omp3result =

a
tualize pair

with parameter program2, pro
deftable

by morphism

elem' ! program", elem" ! pro
deftable, pair ! 
omp3result

.1 !.db, .2 !.pdtab, p ! 
o3res

end a
tualize

Dynfun =

generi
 spe
i�
ation

parameter sorts dom, 
odom;

target sorts dynfun;

fun
tions 
f : 
odom ! dynfun;

. [ . ℄ : dynfun � dom ! 
odom;

. [ .  . ℄ : dynfun � dom � 
odom ! dynfun;
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variables f : dynfun; x, y : dom; z : 
odom;

axioms 
f(z) [x℄ = z,

f [x  z℄ [x℄ = z,

x 6= y ! f [x  z℄ [y℄ = f[y℄

end generi
 spe
i�
ation

F-no-no =

a
tualize Dynfun with parameter node by morphism

dom ! nodesort, 
odom ! nodesort,

Dynfun ! funnodenode, f ! F

end a
tualize

vi =

a
tualize Dynfun with nat by morphism

dom ! nat, 
odom ! nodesort, Dynfun ! vifun, f ! vi

end a
tualize

F-
o-
o =

a
tualize Dynfun with parameter 
ode by morphism

dom ! 
odesort, 
odom ! 
odesort,

Dynfun ! fun
ode
ode, f ! C

end a
tualize


ll =

a
tualize Dynfun with parameter node, parameter 
ode by morphism

dom ! nodesort, 
odom ! 
odesort,

Dynfun ! 
llfun, f ! 
ll

end a
tualize

de
glseq =

a
tualize Dynfun with de
goallist by morphism

dom ! nodesort, 
odom ! de
goallist,

Dynfun ! de
goalseqfun, f ! de
glseq

end a
tualize


ands =

a
tualize Dynfun with nodelist by morphism

dom ! nodesort, 
odom ! nodelist,

Dynfun ! 
andsfun, f ! 
ands

end a
tualize

p =

a
tualize Dynfun with parameter 
ode by morphism

dom ! nodesort, 
odom ! 
odesort,

Dynfun ! pfun, f ! p

end a
tualize


g =

a
tualize Dynfun with goal by morphism

dom ! nodesort, 
odom ! goal, Dynfun ! 
gfun, f ! 
g

end a
tualize


p =

a
tualize Dynfun with parameter node, parameter 
ode by morphism
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dom ! nodesort, 
odom ! 
odesort,

Dynfun ! 
pfun, f ! 
p

end a
tualize

sub =

a
tualize Dynfun with substitution by morphism

dom ! nodesort, 
odom ! substitution,

Dynfun ! subfun, f ! sub

end a
tualize

goalfun =

a
tualize Dynfun with parameter node, goal by morphism

dom ! nodesort, 
odom ! goalsort,

Dynfun ! goalfun, f ! goal

end a
tualize

H-no-nol =

a
tualize Dynfun with nodelist by morphism

dom ! nodesort, 
odom ! nodelist,

Dynfun ! funnodenodelist, f ! H

end a
tualize

nat-basi
1 =

data spe
i�
ation

nat = 0 j . +1 (. �1 : nat);

variables i, j, k, m : nat;

order predi
ates . < . : nat � nat;

end data spe
i�
ation

Generated axioms:

nat freely generated by 0, +1;

i +1 �1 = n,

i +1 = j +1 $ i = j,

0 6= i +1,

i = 0 _ i = i �1 +1,

: i < i,

i < j ^ j < k ! i < k,

: i < 0,

i < j +1 $ i = j _ i < j

nat =

enri
h nat-basi
1 with

fun
tions . + . : nat � nat ! nat;

. � . : nat � nat ! nat prio 8 left;

predi
ates

. � . : nat � nat;

. > . : nat � nat;

. � . : nat � nat;
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axioms

i + 0 = i,

i + j +1 = (i + j)+1,

i � 0 = i,

i � j +1 = (i � j)�1,

i � j $ : j < i,

i > j $ j < i,

i � j $ : i < j

end enri
h

set =

generi
 spe
i�
ation

parameter elem using nat target

sorts set;


onstants ; : set;

fun
tions

f . g : elem ! set;

. [ . : set � set ! set prio 9 left;

predi
ates

. 2 . : elem � set;

. � . : set � set;

variables s, s' : set;

axioms

set generated by ;, f . g, . [ .

: a 2 ;,

a 2 fbg $ a = b,

a 2 s [ s' $ a 2 s _ a 2 s',

s = s' $ (8 a. a 2 s $ a 2 s'),

s � s' $ (8 a. a 2 s ! a 2 s')

end generi
 spe
i�
ation

nodeset =

a
tualize set with parameter node by morphism

elem ! nodesort, set ! nodeset

end a
tualize

list-data =

generi
 data spe
i�
ation

parameter elem using nat

list = [℄

j [ . j . ℄ (
ar : elem, 
dr : list)

;

variables x, y, z : list;

size fun
tions # : list ! nat ;

order predi
ates . � . : list � list;

end generi
 data spe
i�
ation

Generated axioms:
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list freely generated by [℄, [ . j . ℄


ar([a j x℄) = a,


dr([a j x℄) = x,

[a j x℄ = [b j y℄ $ a = b ^ x = y,

[℄ 6= [a j x℄,

x = [℄ _ x = [
ar(x) j 
dr(x)℄,

#([℄) = 0,

#([a j x℄) = #(x)+1,

: x � x,

x � y ^ y � z ! x � z,

: x � [℄,

y � [a j x℄ $ y = x _ y � x

list =

enri
h list-data with

fun
tions

append : list � list ! list;

rmdup : list ! list;

pos : list � elem ! nat;

rev : list ! list;

predi
ates

. 2 . : elem � list;

. subli . : list � list;

. subse . : list � list;

. � . : list � list;

dups : list;

nodups : list;

axioms

append([℄, x) = x,

append([a j x℄, y) = [a j append(x, y)℄,

a 2 x $ (9 y, z. x = append(y, [a j z℄),

[℄ subli x,

: [a j x℄ subli [℄,

[a j x℄ subli [b j y℄ $ a = b ^ x subli y _ a 6= b ^ [a j x℄ subli y,

[℄ subse x,

[a j x℄ subse y $ a 2 y ^ x subse y,

nodups([℄),

nodups([a j x℄) $ : a 2 x ^ nodups(x),

dups(x) $ : nodups(x),

rmdup([℄) = [℄,

a 2 x ! rmdup([a j x℄) = rmdup(x),

: a 2 x ! rmdup([a j x℄) = [a j rmdup(x)℄,

x � y $ #(rmdup(x)) < #(rmdup(y)) ^ x subse y

pos([a j x℄, a) = 0,

a 6= b ! pos([a j x℄, b) = pos(x, b) +1,

rev([℄) = [℄,

rev([a j x℄) = append(rev(x), [a℄)

end enri
h

substitution =



E.2. SPECIFICATIONS FOR ASM1 (PROLOGTREE) 171

a
tualize list with pairvarterm by morphism

elem ! pairvarterm, list ! substitution, x ! su

end a
tualize

goal =

a
tualize list with term by morphism

elem ! term, list ! goal, x ! go

end a
tualize

natlist =

a
tualize list with nat by morphism

elem ! nat, list ! natlist, x ! nl

end a
tualize

varlist =

a
tualize list with parameter node by morphism

elem ! nodesort, list ! varlist, x ! vl

end a
tualize

nodelist =

a
tualize list with parameter node by morphism

elem ! nodesort, list ! nodelist, x ! sta
k

end a
tualize


odelist =

a
tualize list with parameter 
ode by morphism

elem ! 
odelist, list ! 
odesort, x ! 
ol

end a
tualize

de
goallist =

a
tualize list with de
goal by morphism

elem ! de
goal, list ! de
goallist, x ! dgl

end a
tualize


lauselist =

a
tualize list with 
lause by morphism

elem ! 
lause, list ! 
lauselist, x ! 
li

renaming =

a
tualize list with varvarpair by morphism

elem ! varvarpair, list ! renaming

end a
tualize

E.2 Spe
i�
ations for ASM1 (PrologTree)

enrnodeset =

enri
h nodeset with

fun
tions new : nodeset ! elem;

axioms
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: new(s) 2 s, new([℄) = ?

end enri
h

mode =

data spe
i�
ation

modesort = sele
t j 
all;

variables mode : modesort;

end data spe
i�
ation

Generated axioms:

modesort freely generated by sele
t, 
all;

sele
t 6= 
all,

mode = sele
t _ mode = 
all

stopmode =

data spe
i�
ation

stopmodesort = su

ess j failure j run;

variables stop : stopmodesort;

end data spe
i�
ation

Generated axioms:

stopmodesort freely generated by su

ess, failure, run;

failure 6= run, su

ess 6= run, su

ess 6= failure,

stop = su

ess _ stop = failure _ stop = run

node =

spe
i�
ation

sorts nodesort;


onstants ? : nodesort;

variables n : nodesort;

end spe
i�
ation

atom =

spe
i�
ation

sorts atomsort;


onstants 
utsym , failsym, truesym : atomsort;

variables at : atomsort;

axioms


utsym 6= failsym,

failsym 6= truesym,

truesym 6= 
utsym

end spe
i�
ation
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term =

data spe
i�
ation

using nat, parameter atom, parameter ordnode

term = stru
t (fun
t : atomsort, args : termlist) with is stru
t

j mk
onst (
onstsym : atomsort) with is 
onst

j mkvar (varsym : nodesort) with is var

j mklist (l
ar : term, l
dr : term) with is list

;

termlist = the one (and only : term)

j t
ons (t
ar : term, t
dr : termlist)

;

variables trm, trm

0

: term; trmli, trmli

0

: termlist;

size fun
tions tlen : termlist ! nat ;

order predi
ates . <

tl

. : termlist � termlist;

end data spe
i�
ation

Generated axioms:

term, termlist freely generated by stru
t, mk
onst, mkvar,

mklist, the one, t
ons;

.

.

.

subst =

enri
h de
goallist, ident, enrterm with

fun
tions

. ^

d

. : de
goallist � substitution ! de
goallist;

. ^

sg

. : substitution � goalsort ! goalsort;

. ^

t

. : substitution � term ! term;

. ^

tl

. : substitution � termlist ! termlist;

axioms

su ^

sg

[℄ = [℄,

su ^

sg

[trm j go℄ = [su ^

t

trm j su ^

sg

go℄,

su ^

d

[℄ = [℄,

su ^

d

[hgo, sti j dgl℄ = [hsu ^

sg

go, sti j su ^

d

dgl℄,

su ^

t

stru
t(at, trmli) = stru
t(at, su ^

tl

trmli),

su ^

t

mklist(trm, trm

0

) = mklist(su ^

t

trm, su ^

t

trm

0

),

[℄ ^

t

mkvar(va) = mkvar(va),

[hva, trmi j su℄ ^

t

mkvar(va) = trm,

va 6= va

0

! [hva

0

, trmi j su℄ ^

t

mkvar(va) = su ^

t

mkvar(va),

su ^

t

mk
onst(at) = mk
onst(at),

su ^

tl

the one(trm) = the one(su ^

t

trm),

su ^

tl

t
ons(trm, trmli) = t
ons(su ^

t

trm, su ^

tl

trmli),

[℄ o su = su,

[hva

0

, trmi j su℄ o su

0

= [hva

0

, su

0

^

t

trmi j su o su

0

℄

end enri
h

substornil =

data spe
i�
ation

using subst
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substornil = oksubst(the subst : substitution) j nil;

variables subst : substornil;

end data spe
i�
ation

Generated axioms:

substornil freely generated by nil, oksubst;

the subst(oksubst(su)) = su,

oksubst(su) = oksubst(su

0

) $ su = su

0

,

oksubst(su) 6= nil,

subst = oksubst(the subst(subst)) _ subst = nil

enrterm =

enri
h term, substornil with


onstants ! : term; true : term; fail : term;

fun
tions

. Æ . : substitution � substornil ! substitution;

. o . : substitution � substitution ! substitution;

arity : term ! nat;

arg : term � nat ! term;

. �

tl

. : termlist � termlist ! termlist;

predi
ates is user de�ned : term;

variables su, su

1

, su

2

: substitution;

axioms

the one(trm) �

tl

trmli = t
ons(trm, trmli),

t
ons(trm, trmli) �

tl

trmli

1

= t
ons(trm, trmli �

tl

trmli

1

),

! = mk
onst(
utsym),

true = mk
onst(truesym),

fail = mk
onst(failsym),

is user de�ned(trm) $ trm 6= true ^ trm 6= fail ^ trm 6= !,

arity(trm) = tlen(args(trm))+1,

args(trm) = the one(trm

1

) ! arg(trm, 0 +1) = trm

1

,

args(trm) = t
ons(trm

1

, trmli)

! arg(trm, 0 +1) = trm

1

^ (0 < n ! arg(trm, n +1) = arg(stru
t(fun
t(trm), trmli), n)),

su Æ oksubst(su

0

) = su o su

0

end enri
h

unify =

enri
h substornil with

fun
tions unify : term � term ! substornil;

end enri
h


ode =

spe
i�
ation

sorts 
odesort;


onstants fail
ode : 
odesort;

fun
tions

. +1 : 
odesort ! 
odesort;

. �1 : 
odesort ! 
odesort;

variables 
o : 
odesort;
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axioms


o +1 �1 = 
o,


o �1 +1 = 
o

end spe
i�
ation

program =

spe
i�
ation

sorts program;

variables db : program;

end spe
i�
ation

union0 = mode + stopmode + unify + 
lauselist + rename + enrnodeset +

sub + 
ll + subst + F-no-no + de
glseq + enrterm


lausefun =

enri
h 
lause, parameter 
ode, parameter program with

fun
tions 
lause : 
odesort � program ! 
lausesort;

end enri
h

pro
def =

enri
h term, 
odelist, parameter program with

fun
tions pro
def : term � program ! 
odelist ;

end enri
h

PrologTree =

enri
h union0 + 
ands + pro
def + 
lausefun with

fun
tions

map
lause : 
odelist � program ! 
lauselist;

map : 
llfun � nodelist ! 
odelist;

predi
ates

every : funnodenode � nodelist � nodesort;

disjoint : nodelist � nodelist;

disjointls : nodelist � nodeset;

variables father: funnodenode;

axioms

map
lause([℄, db) = [℄,

map
lause([
o j 
ol℄, db) = [
lause(
o, db) j map
lause(
ol, db)℄,

every(father, [℄, n),

every(father, [n

1

j sta
k℄, n)

$ father[n

1

℄ = n ^ every(father, sta
k, n),

map(
ll, [℄) = [℄,

map(
ll, [n j sta
k℄) = [
ll[n℄ j map(
ll, sta
k)℄,

disjoint(sta
k, sta
k

0

) $ (8 n. n 2 sta
k ! : n 2 sta
k

0

),

disjointls(sta
k, s) $ (8 n. n 2 sta
k ! : n 2 s)

end enri
h
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E.3 Spe
i�
ations for ASM2 (TreetoSta
k)

pro
def2 =

enri
h term, parameter program, parameter 
ode with

fun
tions pro
def

2

: term � program ! 
odesort;

end enri
h


lauseornull =

data spe
i�
ation

using 
lause


lauseornull = mk
lau(the 
lau : 
lausesort) j null;

variables 
ln : 
lauseornull;

end data spe
i�
ation

Generated axioms:


lauseornull freely generated by null, mk
lau;

the 
lau(mk
lau(
l)) = 
l,

mk
lau(
l) = mk
lau(
l

0

) $ 
l = 
l

0

,

mk
lau(
l) 6= null,


ln = mk
lau(the 
lau(
ln)) _ 
ln = null


lauseIfun =

enri
h 
ode, 
lauseornull, program with

fun
tions 
lause' : 
odesort � program ! 
lauseornull;

axioms


lause'(fail
ode, db) = null

end enri
h

PrologSta
k =

enri
h union0 + pro
def2 + 
odelist + nodelist + 
lauseIfun with

fun
tions

. from . : nodelist � nodesort ! nodelist prio 7;


dr : nodelist ! nodelist;

predi
ates

. 
utptsin . : de
goallist � nodelist;

. 
tpelem . : de
goallist � nodeset;

. � . : nodelist � nodeset;

axioms

map
lause'([℄, db) = [℄,

map
lause'([
o j 
ol℄, db) = [the 
lau(
lause'(
o, db)) j map
lause'(
ol, db)℄,

[℄ 
utptsin sta
k,

[hgo, ni j dgl℄ 
utptsin sta
k

$ (n = ? _ n 2 sta
k) ^ dgl 
utptsin (sta
k from n),

[℄ from n = [℄,

[n j sta
k℄ from n = [n j sta
k℄,

n

1

6= n ! [n

1

j sta
k℄ from n = sta
k from n,
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[℄ 
tpelem s,

[hgo, ni j dgl℄ 
tpelem s $ n 2 s ^ dgl 
tpelem s,

sta
k � s $ (8 n. n 2 sta
k ! n 2 s),


dr([℄) = [℄,


dr([n j sta
k℄) = sta
k

end enri
h

CompAssum1 =

enri
h PrologTree, PrologSta
k with

fun
tions 
ompile

12

: program ! program;

variables lit : term; db : program;

axioms

hCLLS#(pro
def

2

(lit, 
ompile

12

(db)), 
ompile

12

(db); 
ol)i

map
lause(pro
def(lit, db), db) = map
lause'(
ol, 
ompile

12

(db))

end enri
h

Tree+Sta
k+F =

enri
h F-no-no, PrologTree, PrologSta
k with

fun
tions

F

d

: funnodenode � de
goallist ! de
goallist;

F

s

: funnodenode � nodeset ! nodeset;

predi
ates


andsdisjoint : funnodenode � 
andsfun � nodelist;

. injon . : funnodenode � nodelist;

no
ands : funnodenode � 
andsfun � nodelist;

axioms

F

d

(F, [℄) = [℄,

F

d

(F, [hgo, ni j dgl℄) = [hgo, F[n℄i j F

d

(F, dgl)℄,

F

s

(F, ;) = ;,

F

s

(F, s [ fng) = F

s

(F, s) [ fF[n℄g,


andsdisjoint(F, 
ands, sta
k)

$ 8 n, n

1

. n 2 sta
k ^ n

1

2 sta
k ^ n 6= n

1

! disjoint(
ands[F[n

1

℄℄, 
ands[F[n℄℄),

F injon sta
k

$ (8 n, n

1

. n 2 sta
k ^ n

1

2 [? j sta
k℄ ^ n 6= n

1

! F[n℄ 6= F[n

1

℄),

no
ands(F, 
ands, sta
k)

$ 8 n, n

1

. n 2 sta
k ^ n

1

2 [? j sta
k℄ ! : F[n

1

℄ 2 
ands[F[n℄℄

end enri
h

TreetoSta
k = CompAssum1 + Tree+Sta
k+F
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E.4 Spe
i�
ations for ASM3 (ReuseChoi
ep)

rmode =

data spe
i�
ation

rmodesort = try j retry j enter j 
all;

variables rmode : rmodesort;

end data spe
i�
ation

Generated axioms:

rmodesort freely generated by try, retry, enter, 
all;

enter 6= 
all, retry 6= 
all, retry 6= enter,

try 6= 
all, try 6= enter, try 6= retry,

rmode = try _ rmode = retry _ rmode = enter _ rmode = 
all

PrologSta
k+F =

enri
h F-no-no, Tree+Sta
k+F with

fun
tions F

l

: funnodenode � nodelist ! nodelist;

axioms

F

l

(F, [℄) = [℄,

F

l

(F, [n j sta
k℄) = [F[n℄ j F

l

(F, sta
k)℄

end enri
h

ReuseChoi
ep = PrologSta
k+F + rmode

E.5 Spe
i�
ations for ASM4 (DetermDete
t)

DetermDete
t = PrologSta
k+F + rmode

E.6 Spe
i�
ations for ASM5 (CompPredStru
t)

instr+
lau =

data spe
i�
ation

using nat, 
lause, varlist, parameter 
ode

instr-or-
l = try me else (where : 
odesort) with is try me

j retry me else (where : 
odesort) with is retry me

j trust me with is trust me

j try (what : 
odesort) with is try

j retry (what : 
odesort) with is retry

j trust (what : 
odesort) with is trust

j swit
h on term (argindex : nat,

vlabel : 
odesort, 
label : 
odesort,

llabel : 
odesort, slabel : 
odesort)

with is sw term

j swit
h on 
onstant (argindex : nat,
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tabsize : nat, table : 
odesort)

with is sw 
onst

j swit
h on stru
ture (argindex : nat,

tabsize : nat, table : 
odesort)

with is sw stru
t

j mk
l (the 
l : 
lausesort) with is 
lause

j mk
all (
alllit : term) with is 
all

j mkunify (unifylit : term) with is unify

j allo
ate

j deallo
ate

j pro
eed

j null

j 
ode of start

;

variables io
 : instr-or-
l;

end data spe
i�
ation

Generated axioms:

instr-or-
l freely generated by trust me, allo
ate, deallo
ate, pro
eed, null',


ode of start, try me else, retry me else, try', retry', trust, swit
h on term,

swit
h on 
onstant, swit
h on stru
ture, mk
l, mk
all, mkunify;

.

.

.

pro
def3 =

enri
h term, parameter program2, parameter 
ode with

fun
tions pro
def

3

: term � program" ! 
odesort;

end enri
h


odefun =

enri
h parameter 
ode, parameter program2, instr+
lau with


onstants start : 
odesort;

fun
tions 
ode : 
odesort � program" ! instr-or-
l;

axioms


o = start $ 
ode(
o, db

2

) = 
ode of start,


ode(fail
ode, db

2

) = nil'

end enri
h

CompAssum2 =

enri
h CompAssum1, instr+
lau, 
odefun, pro
def3 with

fun
tions


ompile

45

: program ! program";

map
ode : 
odelist � program" ! 
lauselist;

variables lit : term; db

2

: program; db

5

: program";
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axioms

map
ode([℄, db

5

) = [℄,

map
ode([
o j 
ol℄, db

5

) = [the 
l(
ode(
o, db

5

)) j map
ode(
ol, db

5

)℄,

[CLLS#(pro
def

2

(lit, db

2

), db

2

; 
ol

1

)℄

hCHAIN-FL#(pro
def

3

(lit, 
ompile

45

(db

2

)), 
ompile

45

(db

2

); 
ol

2

)i

map
ode(
ol

2

, 
ompile

45

(db

2

)) = map
lause'(
ol

1

, db

2

)

end enri
h

CompPredStru
t = CompAssum2 + PrologSta
k+F + rmode + p

E.7 Spe
i�
ations for ASM6 (CompPredStru
t2)

hash =

enri
h nat, parameter atom,

parameter 
ode, parameter program2 with

fun
tions

hash
 : 
odesort � nat � atomsort � program" ! 
odesort;

hashs : 
odesort � nat � atomsort � nat � program"! 
odesort;

end enri
h

CompAssum3a =

enri
h CompAssum2, p, hash with

fun
tions 
ompile

56

: program" ! program";

axioms

[CHAIN-FL#(pro
def

2

(lit, db

5

), db

5

; 
ol

1

)℄

hCHAIN#(pro
def

3

(lit, 
ompile

56

(db

5

)), 
ompile

56

(db

5

); 
ol

2

)i

map
ode(
ol

1

, db

5

) = map
ode(
ol

2

, 
ompile

56

(db

5

))

end enri
h

CompPredStru
t2 = CompAssum3a + PrologSta
k+H + p

E.8 Spe
i�
ations for ASM7 (Swit
hing)

idfun =

enri
h enrterm, ident with

fun
tions id : term ! ident;

axioms

is stru
t(trm) ! id(trm) = mkident(fun
t(trm), arity(trm)),

is 
onst(trm) ! id(trm) = mkident(
onstsym(trm), 0)

end enri
h
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CompAssum3 =

enri
h 
omp3result, CompAssum2, p, hash, idfun with

fun
tions 
ompile

57

: program" ! 
omp3result;

axioms

[CHAIN-FL#(pro
def

2

(lit, db

5

), db

5

; 
ol

1

)℄

hS-CHAIN#(lit, 
ompile

57

(db

5

).pdt[id(lit)℄, 
ompile

57

(db

5

).db; 
ol

2

)i

map
ode(
ol

1

, db

5

) = map
ode(
ol

2

, 
ompile

57

(db

5

).db)

end enri
h

PrologSta
k+H =

enri
h PrologSta
k, H-no-nol with

fun
tions

H

d

: funnodenodelist � de
goallist ! de
goallist;

H

l

: funnodenodelist � nodelist ! nodelist;


ar : nodelist ! nodesort;

axioms

H

d

(h, [℄) = [℄,

H

d

(h, [hgo, ni j dgl℄ = [hgo, 
ar(h[n℄)i j H

d

(h, dgl)℄,

H

l

(h, [℄) = [℄,

H

l

(h, [n j sta
k℄) = append(h[n℄, H

l

(h, sta
k)),


ar([℄) = ?,


ar([n j sta
k℄) = n

end enri
h

Swit
hing =

enri
h CompAssum3, PrologSta
k+H, p with

fun
tions . �

sl

. : nodelist � nodelist ! nodelist;

predi
ates

eqh : funnodenodelist � funnodenodelist � de
goallist � de
goallist;

. <=

s

. : nodelist � nodelist;

axioms

eqh(h, h

0

, [℄, [℄),

: eqh(h, h

0

, [hgo, ni j dgl℄, [℄),

: eqh(h, h

0

, [℄, [hgo

0

, n

0

i j dgl

0

℄),

eqh(h, h

0

, [hgo, ni j dgl℄, [hgo

0

, n

0

i j dgl

0

℄)

$ go = go

0

^ (n = ? � n

0

2 h

0

[?℄ _ n

0

= ?

; n

0

2 h

0

[n℄ ^ : n

0

2 
dr(h[n℄))

^ eqh(h, h

0

, dgl, dgl

0

),

sta
k <=

s

sta
k

0

$ sta
k �

s

sta
k

0

_ sta
k = sta
k

0

,

sta
k <=

s

sta
k

0

! (sta
k

0

�

sl

sta
k) �

sl

sta
k = sta
k

0

end enri
h
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E.9 Spe
i�
ations for ASM8 (ShareCont)

ordnode =

enri
h parameter node with

fun
tions

. +1 : nodesort ! nodesort;

. �1 : nodesort ! nodesort;

max : nodesort � nodesort ! nodesort;

predi
ates . � . : nodesort � nodesort;

axioms

n +1 �1 = n,

n �1 +1 = n,

n � n +1,

: n � n,

n

1

� n

2

_ n

1

= n

2

_ n

2

� n

1

,

n � n

0

^ n

0

� n

1

! n � n

1

,

n

1

� n

2

! max(n

1

, n

2

) = n

2

,

: n

1

� n

2

! max(n

1

, n

2

) = n

1

end enri
h

rensubst =

enri
h substitution, renaming with

fun
tions

. ^

r

. : renaming � term ! term;

. ^

rl

. : renaming � termlist ! termlist;

axioms

rn ^

r

stru
t(at, trmli) = stru
t(at, rn ^

rl

trmli),

rn ^

r

mklist(trm, trm

0

) = mklist(rn ^

r

trm, rn ^

r

trm

0

),

[℄ ^

r

mkvar(va) = mkvar(va),

[hva

1

,va

2

i j rn℄ ^

r

mkvar(va

1

) = mkvar(va

2

),

va 6= va

1

! [hva

1

,va

2

i j rn℄ ^

r

mkvar(va) = rn ^

r

mkvar(va),

rn ^

r

mk
onst(at) = mk
onst(at),

rn ^

rl

the one(trm) = the one(rn ^

r

trm),

rn ^

rl

t
ons(trm, trmli) = t
ons(rn ^

r

trm, rn ^

rl

trmli)

end enri
h

less-vi =

enri
h subst, vi, varlist, a
trenterm, unify, rename with

fun
tions

rentl : termlist � nat ! termlist;

rentl' : termlist � nodesort � vifun ! termlist;

rent' : term � nodesort � vifun ! term;

reng' : goalsort � nodesort � vifun ! goalsort;

renv : nodesort � nat ! nodesort;

predi
ates
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. <

svi

. : substitution � nat;

. <

tvi

. : term � nat;

. <

tlvi

. : termlist � nat;

. <

gvi

. : goalsort � nat;

. <

dvi

. : de
goallist � nat;

. <


vi

. : 
lausesort � nat;

. <

vvi

. : nodesort � nat;

. <

vlvi

. : varlist � nat;

variables lit : term;

axioms

su <

svi

i ^ su

0

<

svi

i ! su o su

0

<

svi

i,

su <

svi

i ! su ^

t

rent(trm, i) = rent(trm, i),

trm <

tvi

i ^ trm

1

<

tvi

i ^ unify(trm, trm

1

) 6= nil

! the subst(unify(trm, trm

1

)) <

svi

i,

trm <

tvi

i ^ i < j ! trm <

tvi

j,

trm <

tvi

0 ! rent(trm, i) <

tvi

i +1,

[℄ <

gvi

i,

[trm j go℄ <

gvi

i $ trm <

tvi

i ^ go <

gvi

i,

[℄ <

dvi

i,

[hgo, 
tpti j dgl℄ <

dvi

i $ go <

gvi

i ^ dgl <

dvi

i,

hlit, goi <


vi

i $ lit <

tvi

i ^ go <

gvi

i,

[℄ <

svi

i,

[hva

0

, trmi j su℄ <

svi

i

$ mkvar(va

0

) <

tvi

i ^ trm <

tvi

i ^ su <

svi

i,

rent(mkvar(va), i) = mkvar(renv(va, i)),

va <

vvi

0 ! : renv(va, i) <

vvi

i,

rent(mk
onst(at), i) = mk
onst(at),

rent(stru
t(at, trmli), i) = stru
t(at, rentl(trmli, i)),

rent(mklist(trm, trm

0

), i) = mklist(rent(trm, i), rent(trm

0

, i)),

rentl(the one(trm), i) = the one(rent(trm, i)),

rentl(t
ons(trm, trmli), i) = t
ons(rent(trm, i), rentl(trmli, i)),

the one(trm) <

tlvi

i $ trm <

tvi

i,

t
ons(trm, trmli) <

tlvi

i $ trm <

tvi

i ^ trmli <

tlvi

i,

stru
t(at, trmli) <

tvi

i $ trmli <

tlvi

i,

mk
onst(at) <

tvi

i,

mklist(trm, trm

0

) <

tvi

i $ trm <

tvi

i ^ trm

0

<

tvi

i,

mkvar(va) <

tvi

i $ va <

vvi

i,

[℄ <

vlvi

i,

[va j vl℄ <

vlvi

i $ va <

vvi

i ^ vl <

vlvi

i,

va <

vvi

0 ^ va

0

<

vvi

0

! (renv(va, i) = renv(va

0

, j) $ va = va

0

^ i = j),

rentl'(trmli, 
tpt, vi)

= (
tpt 6= ? � rentl(trmli, vi[
tpt℄) ; trmli),

rent'(trm, 
tpt, vi)

= (
tpt 6= ? � rent(trm, vi[
tpt℄) ; trm),

reng'(go, 
tpt, vi)

= (
tpt 6= ? � reng(go, vi[
tpt℄) ; go)

end enri
h

RenAssum =

enri
h CompAssum3, less-vi with
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predi
ates

. <


lvi

. : 
lauselist, nat;

nonvargoal : goalsort;

axioms

map
lause(pro
def(lit,db),db) <


lvi

0,

[℄ <


lvi

i,

[
l j 
li℄ <


lvi

i $ 
l <


vi

i ^ nonvargoal(bdy(
l)) ^ 
li <


lvi

i,

nonvargoal([℄),

nonvargoal([trm j go℄)

$ : is var(trm) ^ : is list(trm) ^ trm <

tvi

0 ^ nonvargoal(go)

end enri
h

rename =

enri
h nat, 
lause with

fun
tions

ren : 
lausesort � nat ! 
lausesort;

rent : term � nat ! term;

reng : goalsort � nat ! goalsort;

axioms

ren(mk
lause(trm, go), i) = mk
lause(rent(trm, i), reng(go, i)),

reng([℄, i) = [℄,

reng([trm j go℄, i) = [rent(trm, i) j reng(go, i)℄

end enri
h

ShareCont =

enri
h parameter ordnode, 
g, PrologSta
k+F,

goalfun, RenAssum with

fun
tions

de
glseqof : funnodenode � 
gfun � funnodenode � nodelist

! de
goallist;

predi
ates

ordered : nodelist;

axioms

de
glseqof(
utpt, 
g, 
e, [℄) = [℄,

de
glseqof(
utpt, 
g, 
e, [n j sta
k℄)

= [h
g[n℄, 
utpt[
e[n℄℄i j de
glseqof(
utpt, 
g, 
e, sta
k)℄,

ordered([℄),

ordered([n℄) $ ? � n,

ordered([n j n

0

j sta
k℄) $ n

0

� n ^ ordered([n

0

j sta
k℄)

end enri
h
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E.10 Spe
i�
ations for ASM9 (CompClause)


omp4result =

data spe
i�
ation

using pro
deftable, parameter program2


omp4result = mk
o4res (. .p
 : 
odesort, . .pdtab : pro
deftable,

. .db
 : program");

variables 
o4res : 
omp4result;

end data spe
i�
ation

Generated axioms:


omp4result freely generated by mk
o4res;

mk
o4res(
o, pro
deftab, db

7

).p
 = 
o,

mk
o4res(
o, pro
deftab, db

7

).pdtab = pro
deftab,

mk
o4res(
o, pro
deftab, db

7

).db
 = db

7

,

mk
o4res(
o, pro
deftab, db

7

) = mk
o4res(
o

0

, pro
deftab

0

, db'

7

)

$ 
o = 
o

0

^ pro
deftab = pro
deftab

0

^ db

7

= db'

7

,

mk
o4res(
o4res.p
, 
o4res.pdtab, 
o4res.db
) = 
o4res

CompAssum4 =

enri
h CompAssum3, 
lauselist, 
omp4result, F-
o-
o, RenAssum with

fun
tions 
ompile

89

: 
omp3result � goalsort ! 
omp4result ;

predi
ates

eqpdt : pro
deftable � pro
deftable � fun
ode
ode;

eq
ode : program" � program" � fun
ode
ode;

variables pdtab : pro
deftable; query, goalreg : goalsort;

axioms

hdb

7

, pro
def

7

i = 
ompile

57

(
ompile

45

(
ompile

12

(db)))

! 9 C. eqpdt(pro
def

7

, 
ompile

89

(hdb

7

, pro
def

7

i, goalreg).pdtab, C)

^ eq
ode(db

7

, 
ompile

89

(hdb

7

, pro
def

7

i, goalreg).db
, C),

eqpdt(pdtab

0

, pdtab, C) $ 8 lit. pdtab[id(lit)℄ = C[pdtab

0

[id(lit)℄℄,

eq
ode(db

7

, db

9

, C) ^ 
ode(
o,db

7

) = mk
l(
l

0

)

! hUNLOAD#(C[
o℄, db

9

; 
l)i 
l = 
l

0

eq
ode(db

7

, db

9

, C) ^ 
ode(
o,db

7

) = try me else(N)

! 
ode(C[
o℄, db

9

) = try me else(C[N℄)

eq
ode(db

7

, db

9

, C) ^ 
ode(
o,db

7

) = retry me else(N)

! 
ode(C[
o℄, db

9

) = retry me else(C[N℄)

eq
ode(db

7

, db

9

, C) ^ 
ode(
o,db

7

) = trust me

! 
ode(C[
o℄, db

9

) = trust me

eq
ode(db

7

, db

9

, C) ^ 
ode(
o,db

7

) = try(N)

! 
ode(C[
o℄, db

9

) = try(C[N℄)

eq
ode(db

7

, db

9

, C) ^ 
ode(
o,db

7

) = retry(N)

! 
ode(C[
o℄, db

9

) = retry(C[N℄)

eq
ode(db

7

, db

9

, C) ^ 
ode(
o,db

7

) = trust(N)

! 
ode(C[
o℄, db

9

) = trust(C[N℄)

eq
ode(db

7

, db

9

, C) ^ 
ode(
o,db

7

) = fail
ode
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! 
ode(C[
o℄, db

9

) = fail
ode

eq
ode(db

7

, db

9

, C)

^ 
ode(
o,db

7

) = swit
h on term(argindex, N

s

, N




, N

v

, N

l

))

! 
ode(C[
o℄, db

9

) = swit
h on term(argindex, C[N

s

℄, C[N




℄, C[N

v

℄, C[N

l

℄)

eq
ode(db

7

, db

9

, C)

^ 
ode(
o,db

7

) = swit
h on 
onstant(argindex, tabsize, 
o)

! 9 
o

0

. 
ode(C[
o℄, db

9

) = swit
h on 
onstant(argindex, tabsize, 
o

0

)

^ 8 at. C[hash
(
o, tabsize, at, db

7

)℄

= hash
(
o

0

, tabsize, at, db

9

))


ompile

57

(
ompile

45

(
ompile

12

(db))) = hdb

7

, pro
def

7

i

^ nonvargoal(goalreg)

! hQUERY#(
ompile

4

(db

9

, goalreg).p
, 
ompile

4

(db

9

, goalreg).db
; go)i

go = goalreg

end enri
h

CompClause = CompAssum4 + ShareCont + 
p

E.11 Spe
i�
ations for ASM9a (Renaming)

termvarli =

enri
h varlist, enrterm with

fun
tions

tvarli : term ! varlist;

tlvarli : termlist ! varlist;

axioms

tvarli(mk
onst(at)) = [℄,

tvarli(mkvar(va)) = [va j [℄℄,

tvarli(mklist(trm, trm

1

)) = rmdup(append(tvarli(trm), tvarli(trm

1

))),

tvarli(stru
t(at, trmli)) = tlvarli(trmli),

tlvarli(the one(trm)) = tvarli(trm),

tlvarli(t
ons(trm, trmli)) = rmdup(append(tvarli(trm), tlvarli(trmli))

end enri
h

ren =

enri
h natlist, termvarli, less-vi, nodelist with

fun
tions

dom : renaming ! varlist;


odom : renaming ! varlist;

. ^

rv

. : renaming � nodesort ! nodesort prio 9;

vilist : vifun � nodelist ! natlist;

predi
ates . <

nl

. : natlist � nat;

axioms
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dom([℄) = [℄,

dom([hva,va

1

i j rn℄) = [va j dom(rn)℄,


odom([℄) = [℄,


odom([hva,va

1

i j rn℄) = [va

1

j 
odom(rn)℄,

[℄ ^

rv

va = va,

[hva

1

j va

2

i, rn℄ ^

rv

va

1

= va

2

,

va 6= va

1

! [hva

1

,va

2

i j rn℄ ^

rv

va = rn ^

rv

va,

vilist(vi, [℄) = [℄,

vilist(vi, [st j stl℄) = [vi[st℄ j vilist(vi, stl)℄,

[℄ <

nl

n,

[m j nl℄ <

nl

n $ m < n ^ nl <

nl

n

end enri
h

goalvarli =

enri
h Rensta
k, 
lause with

fun
tions

gvarli : goalsort ! varlist;


lvarli : 
lausesort ! varlist;

axioms

gvarli([℄) = [℄,

gvarli([trm j go℄) = rmdup(append(tvarli(trm), gvarli(go))),


lvarli(htrm,goi) = rmdup(append(tvarli(trm), gvarli(go)))

end enri
h

enrunify =

enri
h subst, unify, termtermpair, termvarli, Rensta
k with

fun
tions

unifylist : termlist � termlist ! substornil;

#

t

. : term ! nat;

#

tl

. : termlist ! nat;

suv : substitution ! varlist;

sudom : substitution ! varlist;

su
od : substitution ! varlist;

. ^

rs

. : renaming � substitution ! substitution prio 9;

. ^

rsf

. : renaming � substornil ! substornil prio 9;

remove : substitution � nat ! substitution;

predi
ates

(: Terminierungsordnung f�ur unify :)

. � . : termtermpair � termtermpair;

o

urs : nodesort � term;

o

urslist : nodesort � termlist;

disj : varlist � varlist;

variables trmli, trmli

1

: termlist; ttp, ttp

1

: termtermpair;

axioms

remove([℄, i) = [℄,

remove([hva,trmi j su℄, i)

= (va <

vvi

(i +1) ^ va <

vvi

i � remove(su, n); [hva,trm i j remove(su,n)℄),

tlen(trmli) = tlen(trmli

1

)
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! unify(stru
t(at, trmli), stru
t(at, trmli

1

)) = unifylist(trmli, trmli

1

),

at 6= at

1

! unify(stru
t(at, trmli), stru
t(at

1

, trmli

1

)) = nil,

tlen(trmli) 6= tlen(trmli

1

)

! unify(stru
t(at, trmli), stru
t(at

1

, trmli

1

)) = nil,

unify(mklist(trm, trm

0

), mklist(trm

1

, trm

2

))

= unifylist(t
ons(trm, the one(trm

0

)), t
ons(trm

1

, the one(trm

2

))),

at 6= at

1

! unify(mk
onst(at), mk
onst(at

1

)) = nil,

unify(mk
onst(at), mk
onst(at)) = oksubst([℄),

unify(mkvar(va), trm)

= (o

urs(va, trm) � nil; oksubst([hva,trmi j [℄℄)),

: is var(trm)

! unify(trm, mkvar(va))

= (o

urs(va, trm) � nil; oksubst([hva,trmi j [℄℄)),

: is var(trm) ^ : is 
onst(trm) ! unify(mk
onst(at), trm) = nil,

: is var(trm) ^ : is list(trm) ! unify(mklist(trm

0

, trm

1

), trm) = nil,

: is var(trm) ^ : is stru
t(trm) ! unify(stru
t(at, trmli), trm) = nil,

: is var(trm) ^ : is 
onst(trm) ! unify(trm, mk
onst(at)) = nil,

: is var(trm) ^ : is list(trm) ! unify(trm, mklist(trm

0

, trm

1

)) = nil,

: is var(trm) ^ : is stru
t(trm) ! unify(trm, stru
t(at, trmli)) = nil,

o

urs(va, stru
t(at, trmli)) $ o

urslist(va, trmli),

o

urs(va, mklist(trm, trm

1

)) $ o

urs(va, trm) _ o

urs(va, trm

1

),

o

urs(va, mkvar(va

0

)) $ va = va

0

,

: o

urs(va, mk
onst(at)),

o

urslist(va, the one(trm)) $ o

urs(va, trm),

o

urslist(va, t
ons(trm, trmli)) $ o

urs(va, trm) _ o

urslist(va, trmli),

unifylist(the one(trm), the one(trm

1

)) = unify(trm, trm

1

),

unify(trm, trm

1

) = nil

! unifylist(t
ons(trm, trmli), t
ons(trm

1

, trmli

1

)) = nil,

unify(trm, trm

1

) = oksubst(su)

^ unifylist(su ^

tl

trmli, su ^

tl

trmli

1

) = oksubst(su

1

)

! unifylist(t
ons(trm, trmli), t
ons(trm

1

, trmli

1

)) = oksubst(su o su

1

),

unify(trm, trm

1

) = oksubst(su)

^ unifylist(su ^

tl

trmli, su ^

tl

trmli

1

) = nil

! unifylist(t
ons(trm, trmli), t
ons(trm

1

, trmli

1

)) = nil,

ttp � ttp

1

$ #(rmdup(tvarli(mklist(ttp.t1, ttp.t2))))

< #(rmdup(tvarli(mklist(ttp

1

.t1, ttp

1

.t2))))

_ #(rmdup(tvarli(mklist(ttp.t1, ttp.t2))))

= #(rmdup(tvarli(mklist(ttp

1

.t1, ttp

1

.t2))))

^ #

t

(ttp.t1) < #

t

(ttp

1

.t1),

#

t

(mk
onst(at)) = 1,

#

t

(mkvar(va)) = 1,

#

t

(stru
t(at, trmli)) = #

tl

(trmli)+1,

#

t

(mklist(trm, trm

0

)) = #

t

(trm) + #

t

(trm

0

)+1,

#

tl

(the one(trm)) = #

t

(trm),

#

tl

(t
ons(trm, trmli)) = #

t

(trm) + #

tl

(trmli),

suv([℄) = [℄,

suv([hva,trmi j su℄) = [va j append(tvarli(trm), suv(su))℄,

sudom([℄) = [℄,

sudom([hva,trmi j su℄) = [va j sudom(su)℄,

su
od([℄) = [℄,

su
od([hva,trmi j su℄) = append(tvarli(trm), su
od(su)),

disj(vl, vl

0

) $ (8 va. va 2 vl ! : va 2 vl

0

),

rn ^

rs

[℄ = [℄,
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rn ^

rs

[hva,trmi j su℄ = [hrn ^

rv

va,rn ^

r

trmi j rn ^

rs

su℄,

rn ^

rsf

nil = nil,

rn ^

rsf

oksubst(su) = oksubst(rn ^

rs

su)

end enri
h

Renaming = goalvarli + enrunify + CompClause
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