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Summary

The context of this work is the application of formal methods in software engineering. It is based
on the specification language of abstract state machines (ASMs) defined in [Gur95].

In this work we develop tool support for ASMs, for their specification as well as for the
verification of refinements. We want to make possible the development of correct software from a
first abstract requirements specification to an implementation that is got by stepwise refinement.
Our work consists of four parts.

Embedding of ASM specifications in a logic: We define a 1:1 mapping of ASM specifications
into Dynamic Logic (DL). This makes formal verification of ASM properties possible.

Modularization of correctness proofs for refinements: Two refinement notions known from
literature are formalized in DL. Generic modularization theorems for proving the correctness
of refinements are developed, that generalize the theorems known from literature.

Implementation of the results in the KIV system: The KIV system is a specification and
verification tool, that supports algebraic specifications and DL. A number of extensions and
improvements were necessary to support ASMs and ASM refinements.

Demonstration of the practical applicability of the developed concepts in a large case study:
The chosen case study from compiler construction treats the translation of Prolog programs
into code of the Warren Abstract Machine (WAM). An informal presentation, that trans-
forms a Prolog interpreter in 12 systematic refinements to the WAM was given in [BR95].
The formal specification and verification of 8 of the 12 refinements was a major part of
this work. A comparison with two other case studies on the same topic showed, that the
necessary verification effort was much smaller due to developed theory for ASM refinement.
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Chapter 1

Introduction

The context of this work is the application of formal methods in Software Engineering. The goal
is the development of correct software for safety critical applications.

Application of formal methods presupposes a suitable specification language which abstractly
and unambigously describes the requirements for the software to be developed. This makes them
accessible to a mathematical analysis. Validation by theorem proving e.g. by verifying safety
properties becomes possible already in the early phases of software development, where no imple-
mentation is available. Systematic transformation of abstract requirements to implemented code
then requires a suitable notion of refinement.

Proofs for the validation of specifications and for the correctness of refinements are possible in
various levels of detail, from informal proof sketches to fully formal proofs in a machine-supported
calculus.

The goal of this work is to make the specification language of Abstract State Machines (in the
following abbreviated as ASMs, [Gur95]) available in the specification and verification tool KIV.

The choice of the specification language is based on the fact, that there are two main families:
The first are algebraic specification languages [Wir90], [Gau92], [CoF97] and their generalization
to process algebras [Mil89], [Bae90]. These view a software system as a generalized data struc-
ture, with suitable functions and relations for modification. Mathematically a software system is
modeled as an Algebra, a specification describes a class of algebras as possible implementations. A
special case of algebraic specifications are model based specifications, in which a software system
is built up from standard data types from set theory (like tuples, functions, power sets).

The second family of specification languages are state based languages, which model a system
by a set of states, by possible state transitions and thereby resulting traces. Examples e.g. Z
[Spi&8], VDM [Jon90] and RAISE [JC94]. Abstract State Machines also belong to this family.
To describe the components of a state state based specification languages are usually based on
algebraic ones. In a sense state based specification languages can even be viewed as a special
case of algebraic ones, since state transitions can be modeled as functions or relations on states.
Therefore many verification tools support algebraic specification only. The disadvantage of this
approach is, that the basic concepts of state based systems have to be modeled in an algebraic
setting first.

Traditionally the KIV system supported the algebraic approach to software development. KIV
allows to define structured algebraic specifications and offers appropriate proof support [RSSB9S].
An elaborated refinement concept is available, which allows the structured, modular refinement
of specifications by software modules [Rei95].

This work is a contribution to the realization of support for state based specifications in KIV.
The choice of ASMs as the specification language was mainly due to the fact, that ASMs offer a
conceptually simple, but very flexible approach to the specification of state based systems, that
allows a wide variety of case studies. ASMs were already used successfully in a number of case
studies, that dealt with such different topics as the semantics of programming languages (e.g.
Prolog [BR94], C [GH93] and Java [BS98b]), communication protocols (e.g. Bakery algorithm
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4 CHAPTER 1. INTRODUCTION

[BGRY5]), compiler correctness (e.g. Occam [BD96], Prolog [BR95] and Java [BS98al, [Sch99]),
distributed systems (e.g. PVM [BG95]) and hardware architectures (e.g. DLX [BM96]). An
overview over a large number of applications can be found in [BH98] and also in the internet
under the URLs http://www.eecs.umich.edu/gasm/ and hitp://www.uni-paderborn.de/cs/asm/.
In most case studies the correctness proofs were done as mathematical proofs, they were not
supported by a verification system.

To support the formalism of ASMs described in Chap. 2, we first had to define an embedding in
the specification language of KIV. Here, compared to purely algebraic specification systems, KIV
has the advantage, that abstract programs over algebraic data types (which have state transitions
as semantics) are already available. Therefore a first result of this work is the definition of a 1:1
translation of ASM rules to abstract programs. Chapter 3 describes the specification language and
the logic used in KIV, and the extensions, which were done in the context of this work. Chapter
4 defines the translation.

Besides formal specification of ASM properties the embedding in KIV also offers the possibility
to do formal, machine supported proofs in Dynamic Logic, the program logic KIV is based on. To
complete the systematic support for ASMs, a refinement notion is defined in Chap. 5. It is shown,
that correctness of refinements is expressible in DL.

The kernel of this work is the development of proof support for the modular verification of
the correctness of refinements in Chap. 6. A general modularization theorem is developed first
in its simplest form for the refinement of deterministic ASMs. Then several generalizations for
indeterministic ASMs and for iterated refinement are given. We also give references to other
correctness notions for refinements. The main result is a generalization of the known theory
of refinements: Instead of using abstraction functions we use arbitrary relations, and instead of
commuting diagrams with one rule of each ASM, we consider m:n diagrams with an arbitrary
numbers m and n.

As an application of the theory, Chap. 7 shows that correctness of peephole optimizations can
be derived as a corollary of the modularization theorem.

The theory defined in Chap. 6 has not been derived by theoretical considerations, how to gen-
eralize existing refinement notions. We believe, that there already exist too many concepts for the
verification of software, that have nice theoretical properties, but no useful practical applications.
Instead the flexibility of the modularization theorem and the quality of the proof support should
be evaluated by its usefulness in practical applications. Therefore the theory was developed based
on a realistic, large case study.

The chosen case study is the translation of Prolog to assembler code of the Warren Abstract
Machine (WAM). There was already a mathematical analysis available [BR95], on which we could
base our work. The case study showed a variety of problems in working with ASM refinements,
especially in the application domain of compiler correctness. With 9 man months of work the case
study belongs to the big and challenging works in this area. In the second part of this work we
give a detailed presentation of the case study, in which we verified 8 of the 12 refinements given
by [BR95].

The main result of the case study was the demonstration of the productiveness of the theory.
This becomes clear when one considers two other case studies with other systems on the same
topic, which needed substantially more effort to achieve smaller verification results. Currently the
theory is also used in [Sch99] in the verification of a Java compiler.

The case study also shows what is gained by a machine checked proof in comparison to a
mathematical analysis. We think, that the analysis in [BR95] is already a very careful and detailed
one, and does not contain any conceptual errors. Nevertheless we were able to uncover numerous
of small problems, that would have lead to an incorrect compiler. Therefore this work shows
that it is worthwhile to invest the high cost of a formal, systematic verification if the application
requires absolutely error free software (in this case an error free compiler).



Chapter 2

Abstract State Machines

Abstract State Machines (short ASMs) are a specification language to describe software and hard-
ware systems. The basic idea of ASMs is the stepwise transformation of a state by executing
rules. Therefore they belong to the family of specification languages, whose semantics is a state
based system. State based systems are defined in the first section. Sect. 2.2 then gives the basic
definition of sequential ASMs. A variant of this definition, which is used in the Prolog-WAM
case study is explained in Sect. 2.2. Finally, Sect. 2.4 defines distributed ASMs, which are used
to model distributed systems. A comprehensive presentation of ASMs, which gives additional
concepts besides the basic ones defined here, can be found in [Gur95].

2.1 State Based Systems

The basic idea of a state based system is the transformation of states by rules. More formally a
state based system ZS = (S, I, p) consists of a set S of possible states, a set I C S of initial states
and a transition relation p : S x S. (st,st’) € p means, that st’ is a possible successor state of st.
A set F of final states can be fixed as the set of those states which have no successor state. State
based systems are often chosen as a natural formalization of software systems, since the typical
computation of a computer with a von-Neumann-architecture involves the state of a memory, that
is modified by a processor (which defines the state transition relation). Other examples are finite
automata (the set of states the is the set of all strings over an alphabet), Rewrite systems (where
a state is a term), communication protocols and interpreters of programming languages. Even
mathematical concepts like the derivation notion of logical calculi can be described as state based
systems.

An special case of state based systems that is often used are sequential (or deterministic)
systems, in which every state st has at most one successor state st’ with (st,st') € p. For this case
a state transition function 7 can be defined on all non-final states (S\ F') by 7(st) = st iff (st,st')
€ p.

For a state based system the set of possible traces can be defined as the set of all finite (stp,

.., st,) and infinite sequences (sty, sti, ...) of states with (st;,st;11) € p for every i. A trace is
required to start in an initial state sty € I and, when finite to end in a final state st, € F.

2.2 Sequential ASMs

ASMs ([Gur95]) are a formalism to define state based systems. The set of all possible states is
given as the class of all possible algebras Alg(SIG) over a (one-sorted) signature SIG. To allow the
definition of boolean expressions and partiality, it is assumed that the signature always contains
the usual boolean operations (t, ff, A, V, etc.) as well as a constant undef.

The set of initial algebras I is usually given by a set-theoretic description of algebras or an
algebraic specification. The transition relation is given by a rule R. For sequential ASMs of this
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6 CHAPTER 2. ABSTRACT STATE MACHINES

section rules are defined inductively as follows:

1. f(t) :=t' is a rule, for every n-ary function symbol f (n > 0), and ground terms ¢
and t'. The rule modifies the value of f at the arguments ¢ to be t’ .

2. If Ry, ..., R, are rules, then so is their parallel execution (Ry, ..., Ry,)

3. If Ry, ..., R, are rules, and &1, ...&,, are boolean expressions, then so is the
conditional rule
(if &, then R, else if ¢ then R, else ...if ¢, then R,,)

The semantics of a rule R is a transition function, that given an algebra A delivers a new algebra
B. B is defined with the help of a finite set of updates Upd(R,A) = {(f1,a1,b1), --- (fn,@n.0n)},
which is are computed from the rule R and the algebra A.

Each update (f,a,b) consists of an n-ary function symbol f, and values a,b € A™*! over the
carrier (the universe) A of the algebra A. Corresponding to the structure of rules the set of updates
is defined by

2. Upd((Ry,..., Ru),A) = Upd(R1) U ... U Upd(R)

3. Upd(if &1 then R, else ...else if ¢, then R,) = Upd(Ry),
where k is minimal with A |=e. If for all k =1,...,n A }£ &, holds, then Upd(if ...) = 0.

The set Upd(R, A) is inconsistent, if it contains several elements (f, a, b) with the same function
f and vector a. In this case the transition function is identity, i.e. 7(A) = A. If Upd(R, A) = 0,
then A is a final state'. If Upd(R, A) is consistent and nonempty, B has the same carrier as A
and the semantics of its functions is defined by

fi(a) = { b if (fab) € Upd(R,4)

fa(a) otherwise.

For every ASM operations can be partitioned into two disjoint sets: A set of dynamic functions,
which occur on the left hand side of an assignment in a rule, and the complementary set of static
functions, which are never changed during the run of the ASM.

Static functions are used, to model operations on data structures (like + on natural numbers,
or append on lists). Of course it is required, that the boolean operations are static.

0-ary dynamic operations (for obvious reasons, we do not call them ‘constants’) are used
as “program variables”. Dynamic functions with arguments are often used to model memory.
Application of a dynamic function at a results in the content f(a) of memory f at address (or
location) a. Modification of the function f at address a means to overwrite the memory location.
A dynamic function with finite domain G can also be viewed as an abstract form of an array with
indexes in G.

Sorts are modeled in ASMs as unary predicates. To have an addition operation which adds
a new element to the carrier of a sort, often the following extension is used: It is assumed, that
there is a predefined sort reserve (i.e. a unary predicate) that has an infinite carrier (“reserve
elements”) in every initial state. The new rule construct

import x in R endimport

then allows to remove an element from reserve, to bind it to the variable z and to execute rule R
with this binding. Addition of an element to a sort S then can be achieved with

import x in S(x) := tt; R endimport

L[Gur95] does not define final states for sequential ASMs. We add the definition here, since we need final states
for the definition of ASM refinements.
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This is abbreviated as

extend S with x in R endextend

We do not give a precise definition of this extension, since it has some pitfalls and causes a lot
of technical overhead (rules can now use the local variable R, nested imports must return new
elements sequentially). A precise definition can be found in [Gur95].

2.3 Sequential ASMs in the WAM

The ASMs of the Prolog-WAM case study in [BR95] use a variant of the definition of sequential
ASMs. In this variant rules must have the simpler form

1

if ¢ then (f; (t1) == t, fa(t) := to, ..., f(tn) := t,)

Instead of one rule every ASM now has a set of such simpler rules. A state transition consists
in the indeterministic choice of a rule, which has a test (often called guard) e that is true, and
the execution of its updates. If all rule tests mutually exclude each other, then such a rule set is
obviously equivalent to a nested conditional rule of the previous section (with an arbitrary order
of the rules). For the Prolog-WAM case study the mutual exclusion of rule tests was intended
(for a case, where the intention was not met, see Sect. 12.2), so we do not need to consider the
problem of indeterminism here.

2.4 Distributed ASMs

The basic idea of a distributed ASM also is the modification of a state by rules®’. But instead
of a single rule a distributed ASM has a finite set A of (active) agents, where each of the agents
has one rule of a finite set of rules R attached (the attached rule is the program, that the agent
currently runs). One state transition then consists in the selection of one agent a € A, and the
execution of the rule attached to it. Rules in distributed, indeterministic ASMs can change the
set of the active agents as well as the rule attached to each agent.

To formally define these concepts a distributed ASM contains a set N of rule names, i.e. static
constants v, which denote rules. For a rule name v, R, is the corresponding rule. The signature
also contains a (dynamic) function Rule, which maps agents to rule names. The set of active
agents is given implicitly as the set of elements, for which Rule(a) € N holds.

The set of possible states of a distributed ASM is restricted to such algebras, in which rule
names denote different constants, and in which the set of agents is finite.

Finally, compared to the definition of rules for sequential ASMs, there is one extension: all
rules may use the symbol Self for the actually chosen agent. If a rule R is executed by an agent
a, then in the computation of Upd(R,.A) the symbol Self is interpreted as a. In this way rules
can be parameterized with the agent executing them. If an agent e.g. executes the assignment

Rule(Self) := undef

then it terminates its computation. A distributed ASM reaches a final state when the set of
agents becomes empty.

2we assume the semantics defined as that of ‘Sequential Runs’. [Gur95] gives other possible definitions.
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Chapter 3

Dynamic Logic and Algebraic
Specifications

3.1 Dynamic Logic

Dynamic Logic (DL) is an extension of first-order logic by program formulas of the form {a) ¢
and [a] ¢. Here, a is an imperative program and ¢ is again a formula of DL. Programs contain
the usual constructs like parallel assignment x := ¢, sequential composition «; 3, conditional if &
then « else 3, while loop while ¢ do a and procedure call p(t; z) with value Parameters ¢ and
reference parameters z. For theoretic reasons we also have the program skip, that does nothing,
the never terminating program abort, i-fold iteration loop a times i, random assignment z : =7
and a procedure call procbound i in p(¢; z) with a bound ¢ on the recursion depth (if the bound
is exceeded the call does not terminate).

The semantics of programs [« is defined as a binary relation on states, i.e. valuations in the
usual sense of first-order logic. For a deterministic program the relation is a partial function, i.e.
for every valuation z there is at most one z’, such that z[a]z’ holds. The only indeterministic
program construct is random assignment: z[z :=7]z' holds for all z’ = z[z + a], which result
from a modification of the value of x by an arbitrary a.

The program formula (a) ¢ holds in a state z, if there is a state z' with z[a]z’ and ¢ holds
in z’. Dual to this definition [a] ¢ holds in a state if in every state z’' with z[a]z' the formula ¢
holds.

The program formula (a) ¢ therefore means, that there is a terminating run of «, such
that afterwards ¢ holds. [a] ¢ holds, if ¢ holds after every terminating run of a. ¢ — [a] ¢
resp. ¢ — (@) 1 express partial resp. total correctness with respect to precondition ¢ and post-
condition 1.

Syntax and semantics of DL are precisely defined in appendix B. Note, that a many-sorted
logic is used, that defines expressions only and does not distinguish between formulas and terms.
Formulas are identified with expressions of sort bool. This has the advantage, that by adding
lambda expressions the logic can easily be extended to a higher-order logic. A technical advantage
is that a general if-then—else Operator (¢ D t1;t2) is available (¢ a formula, t1;ty two arbitrary
expressions of the same sort). The expression is equal to #1, if ¢ is true, and equal to to otherwise.

3.2 Algebraic Specifications

We will use algebraic speicifications with the structuring operations union (+), enrichment, renam-
ing, parameterization (generic specifications), and actualization. For freely generated data types
we will use datatype declarations (see e.g. lists as defined in appendix E), which automatically
generate apropriate axioms. The syntax should be self-explanatory, the semantics of the structur-
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10 DL AND ALGEBRAIC SPECIFICATIONS

ing operations is defined as usual. It is e.g. almost identical to the definition of the semantics of
the standard specification language CASL [CoF97].

In basic specifications we will allow as axioms not only first-order formulas, but also arbitrary
DL formulas, generation principles and procedure declarations. The semantics of basic specifica-
tions is the class of all models of the axioms (loose semantics). A precise definition is given at the
end of appendix B.

3.3 KIV

KIV is a system for the development of correct software. The specification language supported by
KIV are structured, algebraic first-order specifications. The software development methodology
used until now was based on structured, modular refinement of such specifications by program
modules. Their correctness can be expressed by proof obligations in DL. This methodology is
comprehensively presented in [Rei95]. The verification of program modules is discussed in [RSS95].

Deduction support in KIV is based on a sequent calculus for Dynamic Logic. An overview of
the support for deduction over algebraic specification is given in [RSSB9S].

3.4 Improvement of Proof Strategies

In the context of this work the KIV system was improved in a number of ways, particularly in the
deduction component. These improvements were important for the efficient verification of ASM
refinements, especially in the Prolog-WAM case study (see also the statistics in section 19). This
section gives a short listing of the items improved:

e extension of the specification language from structured first-order to structured DL specifi-
cations with global procedure declarations (instead of local ones). Global procedure decla-
rations make the global definition of ASMs possible.

e Removal of the distinction between terms and formulas, thereby identifying formulas with
boolean terms. This modification allows to use boolean dynamic functions (boolean predi-
cates) like all other dynamic functions. This modification also allows (independent of this
work) to easily extend DL with higher-order functions by adding A-terms.

e The proof strategy for programs now can handle parallel assignments. These were supported
by the logic, but not by the prover.

e Addition of an induction principle over the recursion depth for procedures. This proof
principle simplifies the previously defined proof principle (Induction over environments, see
[Ste85]) for recursively defined procedures. The new proof principle was a key concept to
verify properties of the CHAIN# procedure in the Prolog-WAM case study (see Sect. 15.2).
It also simpifies the definition of the semantics and the completeness proof for DL.

e Extension of the tactics and heuristics for while loops, and the loop construct, which both
play a central role in the proofs of the proof obligations for the correctness of ASM refine-
ments.

e Extensions of several other heuristics, e.g. the heuristics for unfolding procedures and for
quantifier instantiation.

e Implementation of an efficient simplification strategy (see [RSSB98]). The current imple-
mentation can deal with the 2000 simplification rules, which occurred in the Prolog-WAM
case study.

e Several other efficiency improvements, that became necessary simply by the size of the goals
that were to prove. In some case sequents in the Prolog-WAM case study reached the size
of 5 screen pages, and proof trees had up to 1000 nodes.



Chapter 4

Formalization of ASMs in DL

This chapter starts with the definition of a translation of ASMs to algebraic specifications and
Dynamic Logic (DL). The translation will be essentially one to one, since the basic constructs
of both ASMs and DL are assignments. Since there is no need to formalize the semantics of
ASMs, i.e. to encode ASM rules as relations over states, DL is a good starting point for the
verification of ASM properties. The translation consists of three steps: In the first step (Sect. 4.1)
we will show, that algebras, which are used as ASM states can be transformed into valuations
over a suitable algebraic specification. The second step (Sect. 4.2) then translates ASM rules to
imperative programs, using the valuations of step one as intermediate states of the program.

Sections 4.3 and 4.4 then consider the third step, the translation of sequential resp. distributed
ASMs into an imperative program.

The main proof principle for ASMs is induction over the number of executed rules. Section 4.5
shows, how this proof principle is formalized in DL.

In Sect. 4.6 we finally discuss alternatives to our approach of translating ASMs to DL.

4.1 Translation of Specifications

To translate the abstract data types of an ASMs to algebraic specification, we first have to partition
the signature into a static and a dynamic part. The dynamic part contains those sorts and
operations, which are modified by assignments of the ASM. The static part typically contains
data types like list, number with suitable operations. For this part no translation is necessary; it
simply has to be specified algebraically.

The main idea for the translation of the dynamic part is, to encode the semantics of dynamic
functions as values of (usual first-order) variables. Assignments of the ASM thereby become
assignments in DL.

0-ary functions are simply translated to first-order variables. The case of a function with
several arguments can be reduced to the case with one argument by adding a suitable tuple sort.
For functions with one argument we have to encode the (second-order) data type of a function
into a first-order data type, to make values of the datatype available as the values of variables.
This can be accomplished with the datatype shown in Fig. 4.1, which specifies functions from a
domain dom to a codomain codom:

The data type defines a constant function cf(z) for every element z of the codomain. Applica-
tion of this function to any element z of the domain always gives z, as stated by the first axiom.
The (binary) operation “function application of f to x” is written (using mixfix-notation) as f[x]
(note that now f is a variable of sort dynfun, not a function symbol!). With a suitable constant
z of the codomain constant functions are typically used as initial values for dynamic functions.

An assignment f(z) := t of the ASM formalism is translated to the algebraic setting as an
assignment f := f[x < t] to the variable f. The new function value, which is the old modified at =

11
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Dynfun =

generic specification
parameter sorts dom, codom;
target sorts dynfun;

functions cf : codom — dynfun;
1] : dynfun x dom — codom;
.[. 4+ .]: dynfun x dom x codom — dynfun;

variables f : dynfun; x, y : dom; z : codom;
axioms cf(z) [x] = 7,
flx 7 [x] =2,
x #y = f[x 7] [y] = fy]
end generic specification

Figure 4.1 Specification of Dynamic Functions

by ¢ we again use the mixfix-notation f[x < ¢] (instead of “modify(f,x,t)”). The last two axioms
describe its behavior.

It should be noted, that (in contrast to the usual methodology used in KIV when specifying
non-free datatypes) it was not necessary to define an extensionality axiom

f=g <+ Vx flx] = g[x]

in the specification of dynamic functions. Such an axiom would have allowed to deduce equations
between functions like f = f[z + f[z]]. Since such equations are not part of the ASM formalism,
they are not needed for the translation either. For the same reason we could avoid to define an
induction principle for dynamic functions (e.g. structural induction over ¢f and modify).

It is easy to see, that the set of all functions from dom to codom is a model of the specification
given above. For this model we have the 1:1 correspondence between dynamic functions and
valuations of the corresponding variables in the translation.

The basic form of the translation gives an algebraic specification, in which neither the possi-
bilities to use underspecification nor the existence of sorts (except to define tuple and function
sorts) has been exploited. This can be improved by using sorts instead of sort predicates wherever
possible in the algebraic translation. Underspecification can be used to avoid the use of an explicit
error element undef.

An important role in the translation of sorts is played by the predicate reserve in the ASMs,
which defines an infinite set of “reserve elements”. Of course it is possible to treat the reserve
predicate like all other dynamic functions, and to translate it into a boolean dynamic function.
For the import construct ([Gur95], Sect. 3.2) then a function some(reserve) has to be defined,
which given the current value of reserve delivers an element x with reserve[z] = tt. But typically
elements of the reserve carrier are used only to dynamically add them to the carrier of some other
sort (e.g. to increase the set of nodes of a search tree or to allocate a new address in memory). In
this case, which uses the abbreviation

extend s with x in R endextend,

to move one element from the reserve carrier to the one for sort s, there is a much simpler
translation, which avoids to use “reserve elements” completely. To define it, we will encode the
current elements of sort s as the valuation of a variable se of sort set (with elements of sort s).
To specify such sets usually the specification of finite sets from Fig. 4.2 can be used, since in
most cases the used carrier sets will be finite (if the initial carrier set of an ASM is infinite, a
suitable constant has to be added). The carrier set of s now contains the infinitely many potential
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elements, that can be inserted into the dynamic set se. Function new(se) gives a new element
relative to se. The sort update above therefore can be expressed in the translation as

var x = new(se) in begin se := se U {x}; R end

Set, =
generic specification
parameter S;

target

sorts set;

constants () : set;

functions
{.} :s — set;
.U, :set X set — set;
new 1 set — S;

predicates

. €. 18 X set;

variables se, seq, ses : set; X, v :8;

axioms
set generated by 0, { . }, U;
ax€eldxe{yteox=y,
X € se; Usey <+ X € se; V X € seyp,
se; =sey < (Vx. X € se; ¢ X € seq),
- new(se) € se

end generic specification

Figure 4.2 Algebraic Specification of Sets

4.2 Translation of ASM Rules

In this section we will define the translation of ASM rules into (flat) DL programs. It is sufficient
to translate condition rule, whose bodies are sequences of update instructions,

if ¢; then U, else
if 5 then U, else

if e, then U,
since iterated application of the transformation
(R, if € then R’ else R") = if ¢ then (R,R’) else (R,R")

will bring every rule into this form.

The conditional is unchanged by the translation!, the translation of a single assignment f(t) :=
t' to f := f[t + t'] was already discussed in the previous section. For parallel assignments with
several updates of the same function, we must take the possibility of inconsistent updates into
account. This is done using additional checks. As an example, f(z) := ¢, f(z') := t' must be

Inote, that in DL if e then U, is an abbreviation for if ¢, then U, else skip



14 CHAPTER 4. FORMALIZATION OF ASMS IN DL

translated to if = 2’ A t # t’ then skip else f := f[x < t][z' < '] (in most cases the
inconsistency checks can be simplified using the preconditions of the case under consideration,
often they can be completely dropped). With the additional checks inconsistency leads to no state
change, as required by the definition of ASM semantics. To improve readability we will write
flz] :=t instead of f := f[z « t] in DL programs.

4.3 Translation of Sequential ASMs

To simplify the presentation, we will assume in the rest of this work, that the test, if any ASM rule
is applicable can be decided using a predicate final (final is simply the conjunction of all negated
rule tests). Then the result of the translation is the following procedure:

ASM(var x)
begin
while - final(x) do RULE(;x)

end

The allowed initial states of the ASM are given by suitable initial valuations of the variables
z. The variables z are used as input and output. They store the valuations of all dynamic
functions. Iterated application of rules is done with a while loop. procedure RULE contains
the translated code of the ASM rule (the semicolon before the variables z in the call indicates
reference parameters). A separate procedure was defined simply to have a suitable abbreviation
in the following.

The equivalence of the while program to the definition of the ASM semantics is given by
considering the sequences of states, through which the program runs at the beginning of the while
loop. The possible sequences are (modulo the translation of algebras to valuations) exactly the
same as in the ASM. A restriction of the expressiveness of DL is only, that we are not able to
talk directly about these sequences of states and their properties. This would require either the
introduction of operators similar to temporal logic, or the definition of a data type of streams to
encode the sequences. In main topic of this work, ASM refinements, the explicit representation of
traces will be mostly sufficient. In particular, traces of states will not occur in the proof obligations
for refinement correctness. Only for ASMs with unbounded indeterminism (Sect. 6.4) we will need
the temporal logic operator AF, and in the definition of trace correctness in Sect. 6.3 we will make
use of a formalization of streams as (dynamic) functions from natural numbers to states.

4.4 Translation of Distributed ASMs

The main problem in the translation of distributed ASMs is the indeterministic choice of an agent
a from a finite set A of candidates. Although the finite set A can be described using the datatype
of finite sets from Sect. 4.1, it is not possible to use an additional function some, since for a set s
such a function would always deliver the same element some(s). Nevertheless a solution in DL is
easy: One uses a procedure SOME, that has the current set of active agents as input and returns
the agent Self, which should execute a rule. Self is now a program variable. For the procedure
SOME only the axioms

a € A — (SOME(A;Self)) Self = a (4.1)
and

[SOME(A;Self)] Self € A
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are needed. They say, that the input/output relation of SOME is in all models of the specification
equal to the element relation (the first axioms says superset, the second subset). This means,that
every time each choice of an agent from the set is possible, corresponding to the definition of the
ASM semantics. An implementation of the procedure SOME would be a scheduler for agents.
Such an implementation will usually have a strategy for choosing the next agent and therefore
not be fully indeterministic. It will often also depend on other state components. Therefore, to
support arbitrary schedulers, SOME can be called with the complete state z of the ASM and the
axiom (4.1) can be replaced by the weaker totality axiom

A # 0 — (SOME(x;Self)) true

Then, the input/output relation of a scheduler is only required to be a total subrelation of the
element relation. This makes it possible to relate different schedulers in ASM refinements (see
Chap. 5), e.g. by stating that every choice of a concrete scheduler should be possible by the abstract
one t00). It should be noted, that restrictions such as fairness constraints will probably make it
necessary to talk about the sequence of selected Self values. To do this will require extensions
of Dynamic Logic or the explicit use of streams (see also the translation of linear temporal logic
(LTL) discussed in [Vog97]).
Using the SOME procedure the distributed ASM is translated to

ASM(var x)
begin
while A # () do
begin
SOME(x;Self);
if Rule(Self) = v; then RULE, (;x) else
if Rule(Self) = v» then RULE,(;x) else

if Rule(Self) = v, then RULE, (;x)
end
end

where the rules RULE;, RULF>, ..., RULE, are translated as for sequential ASMs. Note, that
the currently selected agent Self, the set of active agents A and the dynamic function Rule, which
gives the rule name for an agent are all part of the vector of program variables. The rule names
are specified as an enumeration type with values vy, ...v,.

Like in the sequential case the possible sequences of states at the beginning of the while loop
coincide with the possible traces of the ASM (modulo encoding algebras as valuations). To have a
uniform notation for sequential and distributed ASMs, we will also write RULE(; z) for the body
of the while loop, and we will use the general test final(z) instead of the special A # () used here.

4.5 Rule Induction in DL

The main proof principle to reason about ASMs that we will use in the following is induction over
the number of executed rules (“rule induction”). In this section we give the formal corresponding
proof principle in DL, induction on the number of while loop iterations. Induction on this number
is possible using the Omega-Axiom of Dynamic Logic:

(while € do a) ¢ <> 31i. (loop if ¢ then a times i) (p A =€) (4.2)
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In this axiom i is a natural number (which can be used for induction) that counts the number
of loop iterations. The loop program loop « times i executes its body « 4 times. Axiom (4.2)
therefore states, that a formula ¢ holds after the execution of a while loop, if and only if there is a
number ¢ chosen sufficiently large, such that after iterating if € then « this often ¢ holds and the
test e of the while loop is false. Note that for some fixed initial state the value of i need not be
chosen as the ezact number of times the while loop will be iterated when starting from this state.
Any number greater than this number will also be sufficient, since executing if € then « when ¢
is already false has no effect. This gives some extra degree of freedom in proofs where only some
properties of the initial state are known (replacing if £ then « in the body of the loop construct
by if £ then « else abort gives the more restrictive variant, where i must be the exact number
of iterations).

The loop construct is defined in DL recursively by the two axioms:

(loop a times 0) p < ¢
(loop « times i +1) ¢ + (loop « times i) (@) ¢

4.6 Alternatives to our Formalization

The translation of ASMs to DL is not the only alternative to realize deduction support for ASMs.
Several others are possible:

1. Embedding ASMs in a higher-order variant of Dynamic Logic.

2. Definition of an “ASM logic”: Such a logic must support the modification of algebras by
programs. A suitable candidate would be MLCM (modal logic if creation and modification
[GAL94],[GRI5]). [Sch95] is an attempt, to implement a variant of MLCM in the KIV
system.

3. Instead of formalizing ASMs, their semantics, i.e. state based systems can be formalized
algebraically. This is possible with first-order logic and was done for the Prolog-WAM
case study in Isabelle [Pus96] (the formalization used higher-order logic, but this was not
compulsory). ASM rules are replaced with an explicit description of the state transition
relation, and an inductive definition of the relation between input and output states.

4. Embedding ASMs in temporal logic

The first solution is a variant of our solution, which replaces the datatype ‘dynamic function’
by second-order functions. The solution requires to extend DL with higher-order expressions
(such an extension is currently planned). The solution would have the advantage, that the special
‘apply’ operation could be replaced with the usual function application. An argument for the
current solution is, that it does not mix dynamic functions with general higher-order functions.
The first are usually used as global registers and can be destructively overwritten while the other
usually may not be modified destructively. Separation of the two cases could therefore ease efficient
implementation.

The second solution is also similar to our solution. From our viewpoint it has the disadvantage,
that the definition of a new logic requires much more effort: In addition to the implementation
of new tactics and the definition of a new semantics also a correctness and completeness proofs
for the new logic has to be done. Note also, that the correctness proofs for ASM refinements
sometimes make it necessary to quantify over dynamic functions (for an example see Sect. 11.2),
which is impossible in MLCM.

The third solution is much more different from ours, since it requires to develop a general
theory of inductive relations (or an even more general fixpoint theory as it was done in PVS
[BDvH™96]), to make induction over the number of executed rules possible. Such a theory was
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defined e.g. in Isabelle ([Pau94]). In our approach such a theory is already present in the axioms
for while loops (compare to the previous Sect. 4.5).

For practical applications the solution has the disadvantage that every modification of the state
must refer to the whole state (this is known as the “frame problem”). An assignment

x; = f(y)
to a single component x; of the state must be replaced by a relation = (written infix)

(X1, 5 X1, Xn) = (X150, (), ... xn)

in which the whole state (xy,...,x,) is mentioned, causing notational overhead. Also adding a
new component to the state will require to change all existing proofs, even if they do not consider
the new component.

For the generic definition and the proof of the modularization theorem for ASM refinements,
that will be done in Chap. 6, the frame problem is irrelevant, since in the theorem states will be
considered as an unspecified, monolithic parameter sort. We will therefore have a short look on
the first-order formalization of the theorem in Sect. 6.2.5.

An advantage of using inductive relations against ASMs is that they (like DL programs) allow
arbitrary recursion. Arbitrary recursion for ASMs requires to extend the basic formalism (see
[GS97)).

The fourth solution, embedding ASMs in a temporal logic (like CTL*) is a good alternative,
when properties of single ASMs are considered. But relations between ASMs (like refinement)
require to consider several state transition relations at one, which make an encoding more difficult
(or require the use of a multimodal temporal logic).

Finally it should be noted, that instead of transforming the rules of an ASMs to a normal form
(Sect. 4.1) a general operator for parallel execution of programs could be added. The transforma-
tion to normal form then can be described by rules in the logic. [Sch95] shows, how this possibility
can be realized for MLCM. We currently prefer the transformation, since it is more efficient and
we currently see no way to avoid it: inconsistency of a rule can be detected easily only, when the
rule is in normal form.
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Chapter 5

Refinement of ASMs and
Formalization in DL

A refinement of one ASM = (S, I, p) to another ASM’ = (S’,I', p) is given by a relation IN: I x I'
on initial states and a relation OUT : F' x F' on the final states F' and F’. Often special cases are
considered, where functions instead of general relations IN and OUT are given.

Definition 1 correctness and completeness of refinements

A refinement of ASM to ASM’ is correct, if for every finite trace (stf,..., st,) of ASM' (with
st € F') and every st of ASM with IN(sty,st) there exists a trace finite trace (stp,..., Sty) of
ASM with st,, € F and OUT(sty,,st,,). We will write ASM > ASM' for a correct refinement. A
refinement from ASM to ASM' is complete, short ASM < ASM', iff the refinement from ASM’ to
ASM is correct

Correctness and completeness of a refinement is often expressed as the commutativity of the
diagram in Fig. 5.1:

sto stq s Stm
| Y
IN
st st’y - st',

Figure 5.1 : Diagrammatic Visualization of an ASM Refinement

Correctness and completeness can be defined relative to one algebra, or relative to all models
of the common specifications of both ASMs. The proof obligations, that we will derive in the
following chapter will imply the correctness resp. completeness in every single model of the common
specification (this is stronger than “if the proof obligations hold in every model, then we have
correctness resp. completeness”), therefore the distinction is unimportant in the following.

The notions of ‘correctness’ and ‘completeness’ are drawn from ASM terminology ([BR95]).
In the literature several other terms are used: In the Verifix project ([GDG'96]) they are called
‘preservation of partial correctness’ and ‘preservation of total correctness’. A correct and com-
plete refinement is sometimes called a ‘Bisimulation’. In case studies with the NQTHM system
([BHMY89]) the notion ‘interpreter equivalence’ is used.

Our correctness notion compares the input/output behavior of the ASMs. It is adequate for
ASMs, whose purpose is the “computation of a result”. If an ASM describes a reactive system,
there is another correctness notion, which compares traces of both ASMs. We will postpone the
definition of such a notion (“trace correctness”) until Sect. 6.3 where we will show that the proof
obligations for both correctness notions differ only marginally.
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5.1 Compiler Verification

A typical example where ASM refinements are used is compilation of programming languages. Two
ASMs are considered, where the first is an interpreter for the source language and the other is an
interpreter for the target language. Initial states store the source and target code of the program
that should be executed. The IN relation between the initial states is given by a function compile
which does the compilation:

IN(st,st’) <» program’(st’) = compile(program(st)) A I(st) A I'(st’).

Usually an initial states is fixed uniquely by a given program that should be interpreted. Some-
times the weaker condition, that for every initial ASM’ state st’ there is an ASM state st with
IN(st,st'), is required.

For the output relation OUT it is usually required, that it should be possible to recover the

(abstract) result of the source code interpreter by applying an abstraction function to the result
of the target code interpreter.

OUT(st,st') <> result(st) = abstract(result’(st')).

5.2 Formalization of Correctness in DL
The Correctness of a refinement from ASM to ASM’ can be expressed in DL as

ASM > ASM' =

INGea') A (ASM () = o — (ASM(ix)) OUT (x0) (5.1)

In the formula z and z' are two disjoint vectors of variables that result from the translation
of dynamic functions from both ASMs. The formula states that IN(z,z') and the existence of a
terminating run of ASM' with result z'; imply the existence of a terminating run of ASM, such
that relation OUT holds for 2’y and its result (note that the z in IN(z,z') denotes an arbitrary
initial value of the variables, while the zin OUT(z,2',) denotes the valuation of the variable after
the execution of ASM).

For the formalization of completeness simply the roles of ASM and ASM’ are switched:

ASM < ASM' = (5.2)
IN(xx') A (ASM(;x))x = x0 = (ASM'(;x")) OUT(x0,X') '

The equivalence of ASM and ASM’ then is the conjunction of (5.1) and (5.2). If the state vectors
of both ASMs have the same types, and if OUT (z,z') is defined as z = 2’, this conjunction can
be simplified to the program equivalence

ASM 1 ASM' =
IN(x,x') = ((ASM(;x))x = X0 < (ASM'(;x'))x" = xo)



Chapter 6

A Generic Proof Method for ASM
Refinements

This chapter is the kernel of the theoretical work. It is shown, that the correctness and com-
pleteness proofs for a refinement from ASM to ASM' can be modularized. The proof obligations
that guarantee the correctness of the modularization were formulated in Dynamic Logic, and were
verified with the KIV system.

The first two sections consider sequential, deterministic ASMs. For introduction, Sect. 6.1
discusses the special case of “data refinement” known from literature. In this case one rule appli-
cation of ASM corresponds to one rule application of ASM’ and an abstraction function is given,
that maps states of ASM’ to states of ASM.

Section 6.2 then considers the general case, in which the correspondence between states is
given by an arbitrary relation, that we call a “coupling invariant”. The restriction, that one rule
application of ASM must correspond to one of ASM’ is dropped. Instead it is only required that
the diagram shown in Fig. 5.1 can be decomposed into smaller diagrams, such that the coupling
invariant holds at all partitioning points. The main result of this section is the theorem, that
under this condition the commutativity proof of the whole diagram can be split to commutativity
proofs for the subdiagrams. It is shown, that it is sufficient to prove one proof obligation for each
subdiagram in order to show correctness and completeness.

Section 6.3 considers an alternative to the definition of refinement correctness we gave in Sect. 5.
The new correctness notion is called “trace correctness”, since it does not rely on input/output
behavior, but compares traces of the ASMs. Trace correctness is stronger than correctness. For
deterministic ASMs correctness and completeness imply trace correctness. We will give an ex-
ample, that shows, that this is not the case for indeterministic ASMs. Therefore we will, before
we consider indeterministic ASMs, define trace correctness formally. Like for the deterministic
case we will generalize the approach from literature which uses abstraction functions to the use of
arbitrary coupling invariants. We will show, that the proof obligations for correctness and trace
correctness differ only marginally.

Section 6.4 treats refinements of indeterministic ASMs. We will show, which modifications are
necessary, to apply the modularization theorem for indeterministic ASMs. As the main difference
we will have two separate proof obligations for correctness and completeness. Also the complication
must be considered, that the size of subdiagrams resulting from the modularization may now
depend on indeterministically chosen rules.

Section 6.5 gives optimizations of the theorem, that are possible for an iterated refinement
from ASM first to ASM' and then to ASM".

Section 6.6 finally discusses some related work. Correctness in the sense, that both ASMs make
the same outputs during runs (“behavioral correctness”) is is identified as a special case of trace
correctness.
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6.1 Data Refinement

6.1.1 Definition

The simplest case of a refinement of a sequential ASM is “data refinement” ([Hoa72]). The idea is
to transform an “abstract” set of states S in ASM to a more “concrete” state set S’ in ASM' (this
idea is also the basis of many purely algebraic refinement notions). If a state from S e.g. stores a
set of elements, then the state in S’ that represents it could store a list of the same elements. In
data refinement the connection between states is usually given by an abstraction function

abstr: ' — S

that maps concrete states to abstract ones. The function may be partial, since not every concrete
state must represent an abstract one (e.g. only duplicate-free lists could be used as representations
of sets). The function also does not need to be injective, since several concrete states may represent
the same abstract one (in the example [1,2] and [2,1] would represent the same set). The state
transition function 7/ of ASM’ has to be chosen in this kind of refinement, such that it achieves
the same effect on concrete states as 7 of ASM on abstract ones. This can be formalized as

abstr(x’) = x A - final(x) A - final'(x)
( (6.1)

— (RULE(;x)) (RULE'(;x")) abstr(x') = x

in DL (where z and z' are two disjoint vectors of program variables, that result from the translation
of dynamic functions from the two ASMs). Informally the equivalence of rule applications can be
described as the commutativity of the diagram in Fig. 6.1.

.
X —X

abstrT O Tabstr

Figure 6.1 : Commuting 1:1 Diagram

Since one rule application of ASM is equivalent to one of ASM', both systems work synchronously.
The fact, that (6.1) is the main criterion sufficient for the equivalence of ASM and ASM’ is shown
by induction on the number of executed steps. Informally commuting diagrams are put together
as shown in Fig. 6.2:

Xo X1 E X1 Xy
abstr]\ abstrT Tabstr Tabstr
! ! ! /
Xog—>X1— T X k1 T X

T T T T

Figure 6.2 : Commuting 1:1 Diagrams

For the induction base it is required, that initial states are connected by the abstraction
function:

IN(x,x') — abstr(x') = x (6.2)
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Normally this is guaranteed by simply defining IN (z,z') as abstr(z') = z. Finally it is needed,
that two final states deliver the same output

abstr(x') = x A final’(x’) A final(x) - OUT(x,x') (6.3)
and that both ASMs reach their final states simultaneously:
abstr(x') = x — (final(x) « final’(x)) (6.4)

Putting everything together we get the theorem

Theorem 1 correctness and completeness for data refinement
The validity of the four proof obligations (6.1), (6.2), (6.3) and (6.4) implies the correctness and
completeness of the refinement from ASM to ASM'

(6.1) A (6.2) A (6.3) A (6.4) = ASM > ASM/

6.2 The Modularization Theorem

6.2.1 Informal Description

In this section we give a generic theorem for the modularization of equivalence proofs for refine-
ments of sequential ASMs. We will first give an informal correctness proof. Then we will sketch its
formalization in KIV. Finally we will also show a proof for the first-order formalization of ASMs.
This will assure, that the theorem is independent of the formalization of ASMs.

The basic idea of the theorem is shown most easily by looking at the commuting diagram, that
describes the equivalence of two ASMs. To modularize the proof, we decompose the diagram into
subdiagrams, as it is shown in Fig. 6.3. Edges connecting states represent an (arbitrary!) relation
INV, that we call the coupling invariant. The basic assumption, underlying a modularization of

| 0 o
] O:NV\%V o N OW

Figure 6.3 : decomposition of the full diagram (above) in subdiagrams (below) using a coupling
invariant

this kind is, that the correspondence between two computations of the ASMs can be reduced to
the correspondence of suitable “subcomputations” (i.e. finite sequences of rule applications), that
both ASMs do in the same order. Corresponding “similar” states are characterized by the cou-
pling invariant. This correspondence automatically decomposes the full diagram into subdiagrams
(simply connect corresponding states). For practical cases it is helpful, to also name corresponding
sequences of rule applications. This helps to understand how the commuting diagrams look, and
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we will of course do this in the Prolog-WAM-case study. But for the formalization it is redundant
to give corresponding rule sequences.

Since we allow full freedom in the definition of the coupling invariant, a subcomputation can
consist of an arbitrary number of rule applications. The number can even depend on the values of
certain program variables. As an important special case some subcomputation of one ASM may
be dropped in the other altogether. This case results in triangular diagrams.

The basic assumption, that both ASMs run through corresponding subcomputations, need not
always be fulfilled (ASM’ could be the result of an arbitrary program transformation on ASM,
e.g. ASM' could do the computation steps of ASM in reverse order). But for many cases the
assumption is valid, especially in compiler verification, where corresponding subcomputations are
a natural result of executing corresponding parts of the compiled program.

The idea for the modularization theorem therefore is: Given a decomposition of the full diagram
into subdiagrams, then commutation of all subdiagrams implies equivalence of both ASMs.

6.2.2 Definition of the Theorem

To turn the idea into a theorem, we will now
1. formally specify how to decompose diagrams into subdiagrams in DL
2. give proof obligations for the commutativity of subdiagrams

3. formally state and prove the modularization theorem

We assume, that we are given ASM and ASM' translated to DL as ASM(z) and ASM'(z')
with two disjoint vectors z and z’' of variables. A correspondence between states will then be
given as a coupling invariant, i.e. a DL formula INV (z,2') with free variables in 2 U 2/. Defining
the edges of subdiagrams to be those pairs of states (z,z’) for which INV holds already gives a
suitable decomposition of the diagram into subdiagrams. If there are no triangular diagrams, it is
sufficient to show, that for each pair of nonfinal states, a commuting (sub-)diagram as shown in
Fig. 6.4 can be attached.

INv[ O \\I\V

3]

Figure 6.4 : generic commuting diagram

The size of the diagram need not be given explicitly, it is sufficient to show, that there are
positive numbers of rule applications for both ASMs, such that INV holds again in the resulting
states. Formalized as a DL formula this results in the following proof obligation (the precondition
ndt(z,z") =mn can be ignored, it will be explained in the following):

INV(x, x') A = final(x) A = final’(x") A ndt(x, x') = mn
— 31> 0. (loop if - final(x) then RULE(;x) times i)
3j > 0. (loop if = final’(x") then RULE'(;x') times j)
INV(x, x')

(6.5)

An additional problem occurs when triangular diagrams are present. Then it must be prohib-
ited that the whole diagram consists solely of triangular ones as shown in Fig. 6.5 and 6.6. In the
first case ASM' could have an infinite run, while ASM would not make a single step, which would
violate completeness. Similarly, the second case would violate correctness.
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INV
INV I

—

Figure 6.5 : infinite sequence of 0:n diagrams

INV I
INV

Figure 6.6 : infinite sequence of m:0 diagrams

Since triangular diagrams often occur in applications as results of optimizations, we must
restrict the number of possible successive triangular diagrams. To do this, we first have to decide
for every pair of states (z,z'), for which INV holds, which type of diagram follows:

e An m:n diagram, where both ASM and ASM’ make a positive number of steps,
e An m:0 diagram, where only ASM makes a positive number of steps, or

e a 0:n diagram, where only ASM’' makes a positive number of steps

For this purpose we introduce a function ndt (”‘next diagram type”’), which returns for every
pair of states (z,z'), for which INV holds, an element from {mn,m0,0n}. To implement the
restriction on the number of successive m:0 diagrams we use a function ezeem0. For (z,z') with
INV (z,2") and ndt(z,2') =m0 the result of ndt(z,z') should be a natural number that bounds
the number of successive m:0 diagrams.

Proof obligation (6.5) now considers the case of m:n diagrams and therefore gets the additional
precondition ndt(z,z') =mn. For m:0 diagrams we have the following proof obligation:

INV(x, x') A = final(x) A ndt(x, x') = m0 A exeem0(x, x') =k
— 31> 0. (loop if — final(x) then RULE(;x) times i)
( INV(x, x')
A (= final(x) A ndt(x, x’) = m0 — execmO0(x, x') < k))

(6.6)

It says, that a m:0 diagram must preserve the coupling invariant, and if another m:0 diagram
follows, then the value of of execm0 must have decreased (if execm0(z,z') = k, then at most &k + 1
successive m:0 diagrams are possible). For 0:n diagrams we get the following dual proof obligation:

INV(x, x') A = final’(x') A ndt(x, x') = On A execOn(x, x') =k
— 3j > 0. (loop if - final'(x’) then RULE'(;x') times j)
( INV(x, x')
A (= final'(x') A ndt(x, x') = On — execOn(x, x') < k))

(6.7)

Note that the proof obligation for m:0 diagrams does not assume, that ASM' is not in a final
state. It is possible (and indeed does occur in the Prolog-WAM case study, see Sect. 13.2) that
ASM’ has already terminated, while ASM is still doing “superfluous” steps (such a situation is
not possible in data refinement). But in this case it must be required that only m:0 diagrams are
possible:

INV(x, x') A = final(x) A final'(x') — ndt(x, x') = m0 (6.8)
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Dually it has to be shown for n:0 diagrams that

INV(x, x') A final(x) A = final'(x') — ndt(x, x') = On (6.9)

To connect the coupling invariant to the input/output relation of the refinement, we finally have
to require

IN(x, x') = INV(x, x') (6.10)

and

INV(x, x') A final(x) A final’(x") - OUT(x, x') (6.11)

similar to proof obligations (6.2) and (6.3) for data refinement. With these proof obligations we
can now state the modularization theorem.

Theorem 2 Modularization Theorem for Sequential ASMs.

Given a refinement from ASM to ASM' of deterministic ASMs, a predicate INV and functions
ndt, execOn, execm(, such that the proof obligations (6.5), (6.6), (6.7), (6.8), (6.9), (6.10) and
(6.11) hold, then the refinement is correct and complete:

ASM deterministic A ASM’ deterministic

A (6.5) A (6.6) A (6.7) A (6.8) A (6.9) A (6.10) A (6.11)
= ASM >a ASM'

Before we discuss the proof of the theorem, here are some remarks on how it is applied:

The theorem does not require to verify separate proof obligations for correctness and com-
pleteness.

e The main difficulty in applying the theorem is to find a suitable coupling invariant. The
type of the following subdiagram usually follows simply from which case of the rules of ASM
and ASM' is executed in the pair (z,z') of states. execm( (and similarly ezecOn) usually
is constantly 0, i.e. an m:0 diagram is never followed by another. Otherwise the result of
execm( often is the size of a datastructure (e.g. a stack) from the state of ASM, that is
currently reduced (e.g. to the empty stack).

e Data refinement is the simple special case, in which INV (z,z') = abstr(z') = z and ndt is
constantly mn (no triangular diagrams). The proof obligation (6.1) from data refinement is
then the case of (6.5), where both i and j are instantiated by 1. (6.4) follows trivially from
(6.8) and (6.9).

e The subdiagrams resulting from the decomposition have the same form as the original dia-
gram. It is therefore possible to apply the modularization theorem recursively on the subdi-
agrams. This was done in the Prolog-WAM case study for the refinement 5/6 considered in
Sect. 15.2.



6.2. THE MODULARIZATION THEOREM 27

6.2.3 The Proof of the Theorem

The proof of the modularization theorem consists of two parts. In the first part it is shown, that
the proof obligations imply correctness, in the second that they imply completeness. Both proofs
are dual (only the roles of ASM and ASM' are exchanged) therefore we only consider the proof
for correctness.

The proof is done by reducing the correctness assertion to a property, that can be shown by
induction over the number of applied rules in ASM'. To state this properties easily, we denote by
z; the state of ASM that results from ¢ rule applications, when starting in 2. In DL, 2; can be
formally defined as

y = x — (loop if - final(y) then RULE(;y) times i)y = x;

(note, that for a final state z, we have ; = z). Now we define a property PROP by

PROP(x, ¥') +» 31, j. INV(x;, x';)

Informally, PROP says that (z,z') is a pair of states, such that there is a number i of rule
applications of ASM and a number j of rule applications of ASM', such that for the states z; and

x; reached then the coupling invariant holds. For this property the following lemma holds:

Lemma 1 PROP is an invariant of ASM': If z, z' are two states of ASM and ASM' with

INV (z,2'), then PROP(z,z';) will hold for all states z', that are reached during the run of
ASM' (starting from z’).

Proof of Lemma 1 The proof is by induction over the number k of applied rules. The base case
(k = 0) is trivial. In the induction step we can assume two states z, ' with INV (z,z') and two
values i and j such that INV (z;, 'y, ;), and we have to find i’ and j', so that INV (z;, &' (4 1)1/)
holds. The case j # 0 is simple with i’ := i, j' := j — 1 as well as the case where z';, is already
a final state. Otherwise we need Lemma 2 described below, to deduce from INV (z;,2';) that we
can construct an i’ > 0 with INV (z;;»,2';,) and either ndt(z,, ;.,z';) # m0 or final(z; ., z';).
In the first case assumptions (6.5) and (6.7) guarantee the existence of i’ > 0 and j' > 0 such
that INV (z;, i, 2ty m) holds. Therefore we can choose i’ := 4" 44", j' := ("' —1). In the
other case because of (6.9) a 0:n diagram follows and the proof follows with (6.7) as above. i

The proof uses the following lemma, that says, that two corresponding states can be followed
by only finitely many m:0 diagrams. The state thereby reached by ASM is z;.

Lemma 2 For every two states z, 2" with INV (z,2') there is an ¢ > 0, such that INV (z;,z') and
either ndt(x;,z') # m0 or final(z;) hold.

Proof of Lemma 2 In the case, that ndt(z,z') is equal to m0 and we do not already have
final(z) (otherwise the theorem holds with ¢ := 0), the proof is by (noetherian) induction on the
size of execm0O(z,z'). (6.6) implies that there is an i’ > 0, such that INV(z,,z') and either
execm0(z; ,z') has become smaller or ndt(z;,z') # m0. In the first case the statement follows
from the induction hypothesis, in the second 4 := 4’ is sufficient. |

Proof of Theorem 2 Using lemmas 1 and 2 the proof of the correctness of the refinement is as
follows: Let (2',2';,...2')) be an arbitrary terminating run of ASM' (so we have final'(z'},)) and
z a state with IN(z,z'). Then (6.10) implies INV(z,z'). Now Lemma 1 implies, that there are i, j,
such that INV (z;, 2’y ;) holds. Because of definition we have z';,; = z';, therefore INV(z;,z'},)
holds. With Lemma 2 we get an 4’, such that INV(z; ,,z';) and either ndt(z;,;,z';) # m0 or
final(z;, ;). The first case is impossible because of (6.8), therefore z;, ; is a final state too, and
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we have a terminating run of ASM. (6.11) finally implies that at the end we have OUT(z;,;/,2';).
O

From the proof of the modularization theorem we immediately get

Corollary 1 If it is possible, to verify a refinement by decomposing it into m:n diagrams, then
there is also a possibility to verify it using 1:1, 0:1 and 1:0 diagrams.

As the new coupling invariant simply choose PROP. Of course to really choose the stronger
decomposition into smaller diagrams is not a good idea for practical applications, since then part
of the generic proof has to be done when verifying the proof obligations. Proofs will get even
bigger, when one tries to avoid rule applications (or equivalently DL programs) in PROP. This is
possible when all diagrams have a fixed size (that is independent of the size of data structures in
the ASMs). Then a function neztij can be defined that computes for two states the numbers ¢ and
j of rule applications, that are necessary to reach two states again, for which INV holds. Instead
of using quantification over all possible i and j, we can then formulate PROP as a conjunction
over the formulas

nextij(x,x’) = (i,j) = INV(x;, x5)

where (4, j) runs through all concrete values, that are less than the maximal diagram size. Finally,
the rule applications of ASM must be removed from the formulas z; (and similarly for the z';)
by symbolic execution (this is possible, since i is now a concrete number in each case). The
result is a coupling invariant which is sufficient to show refinement correctness. But since INV is
the conjunct for (i,7) = (0,0), the computed new coupling invariant is unnecessary complicated,
unless the original decomposition used no other than 1:1, 0:1 and 1:0 diagrams. In general it is
therefore a good idea in practical applications to make diagrams as large as possible, to have a
small coupling invariant. Two cases in the Prolog-WAM case study that exemplify this fact are
the refinements 2/3 and 3/4 (see the remarks at the end of Sect. 13.2, and the comparison of effort

for the two refinements in KIV vs. in Isabelle in Sect. 20).

6.2.4 Formalization of the proof in DL

It is possible to formalize the proof of the modularization theorem given above in DL. Property
PROP is then defined as

PROP(x, x') =
31, j. (loop if — final(x) then RULE(;x) times i) (6.12)
(loop if - final'(x') then RULE/(;x') times j) INV(x, x')

The formal proof of the modularization theorem required 452 proof steps and 64 interactions in
KIV. Half of these were necessary to show correctness, the other half to show completeness of the
refinement. The numbers include proofs of elementary facts such as (z;)# = z;, . By instantiation
(actualization) the modularization theorem can be applied on every concrete ASM refinement. The
full formal specification and the proved theorems and lemmas are given in appendix C.2. Theorems
corr-step and finite-On from the appendix correspond to the Lemma 1 and to the case ndt(z,z') =
On of Lemma 2.

6.2.5 Formalization of the Proof in First-Order Logic

The proof of the modularization theorem can also be formalized in first-order logic. This first
requires to formalize state transition relations as a datatype (in higher-order logic this step can
be dropped). The simplest formalization uses the datatype of dynamic functions from Sect. 4. A
relation is a dynamic function r that assigns a boolean result to a pair st; X sty of states. r[st;
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X sty] holds if and only st» is a possible successor state of st;. The state transition relation p of
an ASM then is a constant of this datatype. Since we consider sequential ASMs, p will fulfill the
functionality axiom

plst1 X sta] A plsty X stz] = sto = sts

The predicate final, that characterizes final states, is defined as

final(st) = — I stg. p[st X sto]

To formalize the proof in first-order logic we must then formalize the semantics of the ASMs. To
define i-fold rule application, a relation p' is defined by

pP[sty X sto] < sty = st
pi sty X sta] ¢ I stg. pl[sty X sto] A p[sto X sta]

The relation p’ corresponds to the semantics of

loop if — final(st) then RULE(st) else abort times i

in DL. Finally we can define the input/output relation p* of the ASM as

p*[st1 x sta] <> Fi. pi[sty x sta] A final(stz)

Again this corresponds to the semantics of the while loop in DL. The proof obligations and the
first-order proofs then can be got from the DL version by simply replacing

31i. (loop if — final(st) then RULE(st) times i) o(st)

with

Ji,stg . p(st,sto) A p(sto)

(using a new variable sty). The effort for doing the proofs in first-order logic in KIV was with
98 interactions somewhat higher than in DL. The main reason for this is, that DL automates the
computation of the necessary iterations of a while loop with heuristics, while in the first-order
variant this number has to be given interactively by quantifier instantiation. The number of proof
steps for the first-order variant is 247, which is somewhat less than in DL, since applications of
tactics for DL programs are now replaced by applications of rewrite rules, and one application of
the simplification tactic will often apply several rewrite rules in one step.

6.3 Trace Correctness

The definition of refinement correctness given in Chap. 5 was based on a comparison of the in-
put/output behavior of the two ASMs. An alternative is to compare the traces of the ASMs. In
the simplest case there is an abstraction function abstr (like in data refinement, see Sect. 6.1), such
that for every run (z'y,z'y,...) of ASM' (abstr(z'y), abstr(z',), ...) is a run of ASM. The main
differences to our definition: Already the definition of refinement correctness mentions an abstrac-
tion function, and not only finite but also infinite runs are considered. In a correct refinement it
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is no longer allowed to implement a terminating run by a nonterminating one. For deterministic
ASMs this restriction is not very important, since in a complete refinement the implementation of
a terminating run by a nonterminating one is impossible. But for indeterministic (e.g. distributed)
ASMs which will be considered in the next section there is a major difference. The difference can
be exemplified by looking at the refinement of the deterministic ASM defined by the rule

RULE(var init,b) =
if init then b := false, init := false

to the indeterministic ASM’ defined by the rule (the DL statement b := ? “guesses” a boolean
value. It is equivalent to the choose statement of ASMs as defined in Sect. 4.2 in [Gur95])

RULE' (var init,b) =
if init then b := 7, init := false else if b then b := b

For an initial state with b = init = true ASM has exactly one trace, that applies RULE once,
setting b and init to false, and terminates (since RULFE is no longer applicable). The same run is
possible in ASM’ too, if the first rule application chooses b = false. But ASM’ has an additional
nonterminating run, when the choice b = true is taken. In this run RULE' is applied infinitely
often without changing the state (b = true and init = false) any more.

The refinement is correct and complete in the sense of our definition (when both the IN and
OUT relation are chosen to be identity), since for every finite run of one of the ASMs there is a
suitable finite run of the other. But the refinement is not trace-correct, since for the infinite run
of ASM’ there is no corresponding run in ASM.

Whether the refinement is viewed as correct in an intuitive sense depends on whether the whole
run or only the result of an ASM can be observed. If only results are relevant, then the refinement
is correct, since ASM' does not deliver any other results than ASM. But if both ASMs are viewed
as reactive systems, and an observer can view and compare at least some of the intermediate
states, then the refinement should not be considered to be correct.

Therefore we define at this point the notion of “trace correctness”, such that it is general
enough to be usable for indeterministic ASMs. Instead of using abstraction functions, we again
use the more general notion of “corresponding states” defined by a coupling invariant. We require,
that for a trace-correct refinement, that for every run of ASM' there exists a corresponding run
of ASM and intermediate (“observable”) pairs of states, for which the coupling invariant holds.
For a finite run, we require the run of ASM and the number of corresponding states to be finite.
Also the last pair of states should then be the two final states. For an infinite run, we require an
infinite run of ASM and an infinite number of corresponding states. Formally this gives

Definition 2 A refinement of ASM to ASM' is trace-correct, in short ASM » ASM’, if there is a
coupling invariant INV (z,z'), such that

e for every finite run (z'q,2'y,...,2',) of ASM' (with z',, € F') and for every z, with
IN(zy,2',) there is a finite run (zy,z,,...,z,) of ASM (with z,, € F) and two strictly
monotonic sequences of natural numbers (io, i1, . . .,ip) and (jo, j1, - - -, jp) of the same length,

such that i, = m, j, =n and for all k <p INV(z;, ,z';, ) holds.

e for every infinite run (2'y, z',,...) of ASM' and every state zo such that IN (z,,2',) there is
an infinite run (z,,z,,...) of ASM and two infinite, strictly monotonic sequences of natural
numbers (io, i1,-..) and (jo, ji,.-.), such that for all n INV (z; ,z'; ) holds.

e (6.11) holds, i.e. for every pair of final states the coupling invariant implies OUT.

The pairs of states comparable with the coupling invariant are (z
The definition immediately implies

T

iorZiyy---) and (z; ,z

oLy )

Theorem 3 Relations between Correctness and Trace Correctness.
For every two abstract state machines ASM and ASM':
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stream =
enrich Dynfun[nat,state] with
functions cons : state x stream — stream;
cdr : stream — stream;
variables st : state; s : stream,;
axioms cons(st,s)[0] = st,
cons(st,s)[m +1] = s[m],
cdr(s)[m] = s[m +1]
end enrich

Figure 6.7 : Specification of Streams

e ASM » ASM' = ASM > ASM'.

o ASM' deterministic A ASM >t ASM’ = ASM » ASM'

To formalize the definition of trace correctness in DL, we first need a formal definition of the
traces of an ASM. For this purpose we use the enrichment of dynamic functions given in Fig. 6.7.

For an ASM rule RULE with state argument st a stream s is a trace of the ASM (with initial
state s[0]), if the predicate Trace(s) defined by

Trace(s) =
V m, st. st = s[m] — (if - final(st) then RULE(;st)) st = s[m +1]

holds. The definition depends on the chosen ASM rule RULE and is such that a finite trace (sto,
sty, ..., Sty) corresponds to a stream s with s[k] = st;, for k¥ < m and s[k] = st,, for k > m
(because of the test for = final(st)). With this definition, the requirement of trace correctness
relative to some INV can then be formalized as

Vs'.  Trace'(s')
— 3. Trace(s)

AVm,k Ji,j. (6.13)

A INV(s[i]s'[j])

i>2mAj>kA
[i]) < final'(s'[j]))

A (final(s

In the formula Trace' is the predicate for RULE' of ASM' and Trace is the predicate forRULE of
ASM. Note that “INV holds infinitely often” is formalized as “for every two positions m, k in both
traces, there are two larger ones, for which INV holds” as it is usual in temporal logic (“infinitely
often ¢” = OOyp). The case distinction over finite and infinite runs is unnecessary because of
our formalization of traces (that extends finite to infinite runs that repeat the final state). The
requirement final(s[i]) <> final'(s'[]) is for the special case of finite runs.

We will now show, that the difference between correctness and trace correctness is minimal,
since the proof obligations for correctness already imply trace correctness for the coupling invariant.
Informally the reason for this is simply, that our decomposition of the whole commuting diagram
in commuting subdiagrams does not require finiteness of the traces. Also the decomposition does
neither allow n:co diagrams nor infinitely many successive 0:n diagrams. If we analyze the proof
for the modularization theorem, we find that the condition, that we must have only finitely many
successive 0:n diagrams (i.e. that the value of ezecOn in proof obligation (6.7) decreases) is not
necessary for correctness, but for completeness as well as for trace correctness. Formally we have
the following theorem:

Theorem 4 Trace Correctness for sequential ASMs
If all proof obligations of theorem 2 hold, then the refinement of ASM to ASM' is also trace-correct
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for the coupling invariant INV:

(6.5) A (6.6) A (6.7) A (6.8) A (6.9) A (6.10) A (6.11)
= ASM »ASM'

To prove the theorem we define

INV'(st,st’) = INV(st,st') A (final(st) <> final(st'))

and show as a first lemma, that for every pair of states with INV two more can be reached in the
further run of the ASMs with INV':

Lemma 3 If the proof obligations of Theorem 2 hold, and if for a state st of ASM and a trace s’
of ASM' INV(st, s'[0]) holds, then there are a trace of ASM starting with s[0] = st and numbers
i,j > 0, such that INV'(s[i], s'[j]) holds.

Proof of Lemma 3 For the proof 4 cases have to be considered. The two cases in which st and
§'[0] are either both final states or both nonfinal states are trivial with i = j := 0. If st is a final
state, but not §'[0], then according to Lemma 2 there is an 4, such that INV{(s[i], s'[0]) holds, and
we have either final(s[i]) or ndt(s[i], s'[0]) # m0. Since the second case is impossible because of
proof obligation (6.8), the proof is completed with j := 0 in the first case. Finally we have the
fourth case in which s'[0] is a final state, but not st. This case follows similarly with the dual
lemma of Lemma 2. a

Using the lemma we are now able to prove, that whenever we have two states with INV', we
can add a diagram with a positive number of steps for both ASMs, such that INV' holds again
at the end.

Lemma 4 If the proof obligations for Theorem 2 hold, and if for a state st of ASM and a trace s’
of ASM' INV'(st,s'[0]) holds, then there are a trace s of ASM with s[0] = st and numbers 7,5 > 0,
such that again INV'(s[i], s'[]) holds.

Proof of Lemma 4 If both final(st) and final’(s'[0]) hold, then we have s'[1] = s'[0] and
s[1] = s[0] = st for an arbitrary trace s starting with st. Therefore ¢ = j := 1 will be sufficient to
prove the goal. Otherwise both states are nonfinal, and we have 3 cases:

e ndi(st,s'[0]) = mn. Then (according to proof obligation (6.5)) after i > 0 steps of ASM and
j > 0 steps of ASM’ two states are reached such that INV(s[i], s'[j]) holds, and the goal
follows with Lemma 3 above.

o ndit(st,s'[0]) = m0. Lemma 2 give i > 0, such that INV (s[i],s'[0]) and ndt(s[i],s'[0]) #
m0 hold. If now ndt(s[i],s'[0]) = mn, the goal follows as in the previous case. Otherwise
ndt(s[i], s'[0]) = On, and the next 0:n diagram (according to proof obligation (6.7)) gives
j > 0, such that INV (s[i], s'[f]) holds. Again the goal is now implied by Lemma 3.

e ndi(st, s'[0]) = On. This case is dual to the previous one.
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s“[io] = s*[i1] s¥[ig] > s¥[l—1] ——= ——s[i]
INv’i IN‘x /; v W wvr
'fjo] —= ——=5'[j1] = 8'[ja] —= o 1] — —— ]

Figure 6.8 : commuting diagrams in the proof of trace correctness

Proof of Theorem 4 The proof is done by inductively adding m:n diagrams with m,n > 0,
that keep INV valid, using Lemma 4 in the induction step. Formally we construct in the k' step
a trace s* and two strict monotone sequences (ig,...4x) and (ig,...i) such that for all p < k

INV'(s"[ip], s'[jp])

holds. The trace s* contains k& commuting diagrams as shown in diagram 6.8.

The induction base follows from Lemma 3, since in two initial states of the ASMs the coupling
invariant holds. The induction step follows from Lemma 4 using the axiom of choice of higher-order
logic

(Vx. Jy. pxy)) = 3. Vx p(xf(x))

The axiom is used, to turn the possibility of adding a commuting diagram (in Appendix C.3
formalized as the predicate p) into a function, which constructs the next traces**!, and the next
numbers i1 and ji41 from the previous ones. Finally we define the trace s that is needed in the
theorem by s[k] := s¥[k]. s agrees with every s* until position it (> k). Choosing positions i and
J in the theorem to be inaz(m,n) a0d Jmar(m,n) 18 sufficient to prove it, since both are greater or
equal to m and n. O

The inductive construction of tuples (consisting of s*, iz and j;) makes the formal proof of
trace correctness in KIV somewhat more elaborate than the proof of correctness. Altogether the
proof for the most general case (indeterministic ASMs with diagrams of indeterministic size, which
we will consider in the next section) required 412 proof steps and 138 interactions (not including
Lemma 2, on which the proof was based). A full listing of the theorems and lemmas proved can
be found in appendix C.3.

For the special case, in which all diagrams are 1:n or O:n (i.e. the case, in which proof obligations
(6.5) and (6.6) are both provable with i := 1) all states of ASM are observable (i.e. all states of
ASM are connected with INVto some state of ASM'). We can then define a corollary for this case
in which the sequence (ig, i1, ...) is specialized to be (0,1, ...). A similar corollary is possible for
the dual case of m:1 and m:0 diagrams. Since data refinement (1:1 diagrams) is in the intersection
of both special cases, the corollaries imply that for data refinement INV (z,,,2',,) holds for every
n.

6.4 Extensions for Indeterministic ASMs

In this section we will consider arbitrary indeterministic ASMs instead of sequential ones. Dis-
tributed ASMs, that were described in Sect. 4.4 are an important example for indeterminism. Also
the extension with a CHOOSE construct (as described in [Gur95], Sect. 4.1) that corresponds to
the random assignment in DL results in ASMs that are indeterministic. In the next subsection,
we will describe how the modularization theorem of the previous section can be adapted to inde-
terministic ASMs. The second subsection then gives an example of diagrams of indeterministic
size. The adaptions discussed to handle this case are more complex than the ones discussed in the
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first subsection, since there it is assumed that the size of a diagram can be computed from the
knowledge about the initial states alone.

6.4.1 Adaption of the Modularization Theorem to Indeterministic ASMs

A first look at the basic ideas underlying the modularization theorem gives the impression, that
decomposing diagrams into smaller diagrams should be possible for indeterministic ASMs in the
same way as for deterministic ones.

But if one analyses the proof of the previous section, it becomes clear that the determinism of
ASM was essential to express the commutativity of a subdiagram as one proof obligation.

This can be shown by looking at proof obligation (6.5) for m:n diagrams: for an indeterministic
ASM the requirement only says that for two states z and z' with INV there exist numbers i, 7,
such that for one possible successor state x; and g’j of each ASM INV holds again. But for
correctness, we must find for every possible successor state g’j a suitable state z; with INV. For
indeterministic ASMs proof obligation (6.5) must therefore be generalized to

INV(x,x') A = final(x) A = final'(x') A ndt(x, x') = mn
— 3j > 0. [loop if — final’(x') then RULE'(;x') times j]
31> 0. (loop if — final(x) then RULE(;x) times i)
INV(x, x')

(6.14)

The right hand side of the implication now states that there is a j, such that for every terminating
possibility to apply j rules of ASM' an 4 exists, such that after i (suitable!) rule applications of
ASM the invariant holds again. That this is the suitable generalization, follows from the fact,
that ASMs have no nonterminating rules. Therefore all possibilities to apply j rules terminate
(statements of the form “all runs of a program terminate” require an extension of DL, see the
discussion in [Gol82], p. 101).

The proof of completeness now requires dually the following proof obligation for m:n diagrams:

INV(x, x') A = final(x) A = final’(x") A ndt(x, x') = mn
— 31> 0. [loop if - final(x) then RULE(;x) times i]
3j > 0. (loop if — final’(x") then RULE/(;x’) times j)
INV(x, x')

(6.15)

For the case in which the next i rules applicable in ASM state z as well as the next j rules
applicable in ASM’ state 2’ are deterministic, the three conditions (6.5), (6.14) and (6.15) are all
equivalent. If deterministic rules are refined by other deterministic rules, then we have to prove
only one obligation (6.5).

The generalization for m:n diagrams can analogously be done for m:0 and 0:n diagrams. But
instead of two proof obligations we only get one. For completeness we have to require

INV(x, x') A = final(x) A ndt(x, x') = m0
A exeem0(x, x') = k
— 31> 0. [loop if - final(x) then RULE(;x) times i] (6.16)
( INV(x, x')
A (= final(x) A ndt(x, x') = m0 — execm0(x, x') < k))

for m:0 diagrams. For correctness the weaker condition (6.6) is still sufficient. Similarly the
correctness proof requires for 0:n diagrams
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INV(x, x') A = final’(x') A ndt(x, x') = On
A execOn(x, x') = k
— 3j > 0. [loop if — final’(x') then RULE'(;x') times j] (6.17)
( INV(x, x')
A (= final'(x') A ndt(x, x') = On — execOn(x, x') < k))

which implies the weaker condition (6.7), which is necessary for completeness. With the new proof
obligations we can now prove the modularization theorem for indeterministic ASMs:

Theorem 5 Modularization Theorem for Indeterministic ASMs

Given a refinement of an indeterministic ASM to ASM’, a predicate INV and functions ndt,
execOn, execm(0, such that proof obligations (6.14), (6.15), (6.16), (6.17), (6.8), (6.9), (6.10), (6.11)
all hold, then the refinement is correct and complete.

(6.14) A (6.15) A (6.16) A (6.17)
A (6.8) A (6.9) A (6.10) A (6.11)
= ASM >a ASM'

For correctness and trace-correctness it is sufficient to prove (6.14), (6.17), (6.8), (6.9), (6.10),
(6.11) and instead of (6.16) the weaker condition (6.6):

(6.14) A (6.17) A (6.6)
A (6.8) A (6.9) A (6.10) A (6.11)
= ASM » ASM'

The proof of correctness and completeness of the refinement is the same as in Sect. 6.2.3. The
only difference is, that instead of one invariant PROP we now need two dually defined properties
KPROP and VPROP, one for the correctness, the other for the completeness proof:

KPROP(x, x') =
3j. [loop if = final’(x') then RULE'(;x) times j] (6.18)
31i. (loop if - final(x) then RULE(;x) times i) INV(x, x')

VPROP(x, x') =
31i. [loop if — final(x) then RULE(;x) times i] (6.19)
3j. (loop if = final’(x") RULE'(;x') times j) INV(x, x')

It should be noted, that whenever the proof mentions z';, this state no longer denotes the
unique state that can be reached from 2z’ in k steps, but some arbitrary state which can be
reached in k steps.

6.4.2 Diagrams of Indeterministic Size

An analysis of the proof obligation (6.14) of the previous section shows, that it does not capture the
most general form of a commuting m:n diagram with m,n > 0 that is sufficient for the correctness
of a refinement. The reason is that the proof obligation fixes the number j of rule applications of
ASM’, such that from all states g’j a state z; must be reachable with INV, prior to the execution
of ASM'".

Now it may happen, that the number j of steps necessary, does not only depend on the initial
state, but also on indeterministic “guessing” steps of ASM. To illustrate this phenomenon, let us
consider the following two ASMs defined by RULE and RULE'.
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RULE(var x):
ifx=0thenx:=1

RULE'(var x):
if x = 0 then choose y € nat in x :=y +1 else
ifx > 1thenx:=x -1

Both are started in a state z = 0, and both terminate in a state with = 1. In the first
step ASM' randomly chooses (“guesses”) a natural number y, and sets z to this number plus one.
The positive value of z then is decremented by the following rule applications until 1 is reached.
Obviously this is equivalent to ASM, which immediately sets z to 1. Nevertheless there is no
uniform number j of ASM' rule applications, that reach the final state (i.e. a state equivalent to
the final state of ASM). The number of rule applications is dependent on the number of z chosen
in the first rule application.

If one looks at more complicated refinements, then it may be the case that not only one
indeterministic rule applications at the beginning of a diagram determines its size, but that there
are several, which influence the size. Nevertheless it is sufficient for correctness that for each trace
of ASM' eventually a state state is reached, such that INV holds again.

To formalize this in DL, we define an Operator AF(a,)', which says, that each iterated
execution of a will eventually lead to a state in which ¢ holds.

Using streams, as they were defined in Sect. 6.3 we can define AF(«, ) as an abbreviation for

AF(a,p) =V s. (Trace(s) Ax = s[0] = I m. g[x + s[m]]) (6.20)

In the formula, z are the variables modified by «, s is a stream of values of this type, and Trace(s)
is defined by

Instead of using streams, it is also possible to define the operator AF(«, p) semantically:

Definition 3 A,z = AF(a,p) iff for all sequences of (zg,2z1, ...) of states for which zy = z and
z;[a]zi+1 hold there is an n such that A, z, |= ¢ holds.

To axiomatize the new operator we define two properties AFy (M) and AF5(M,zq) for sets
of states M. Both properties presuppose a given algebra A, a fixed program a and a formula ¢.
The second property also assumes a fixed (initial) state zg.

AF (M) :& each state z is in M, if A,z |= ¢ holds, or if all successor states z’

(for which z[a] 4 ,, holds) are in M (6.21)

and

AF5(M,zp) :& each state z is in M, if it is reachable from zg (i.e. it is on a trace (6.22)
starting at zg) and if A,z = ¢ holds or if all sucessor states are in M )

For the two properties we have the following theorem:

Theorem 6 Characterisation of AF(a, )

The set of states, for which AF(«, ) holds, is equal to the intersection of all sets M, that have
the property AF;(M). In a state zg AF(a,p) holds, if and only if it is in the intersection of all
sets M with AFo(M,zg).

I'The term AF is from temporal logic, see e.g. [Eme90]
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Proof of Theorem 6 In the proof let My be the set of all states, for which AF(«,¢) holds,
My =N {M | AF1(M)}, and M>(zo) := () {M | AF>(M ,z0)}. Then we obviously have AF; (M),
which implies M; C Mp. Also for each choice of zg we have that every set M with AF; (M) also
has the property AFs(M,zg), since (6.21) implies (6.22) for every zg. So each Ms(zg) is a subset
of M;. To complete the proof, it is therefore sufficient to show, that each zy € My is also in
M>(zg). If this were not the case, i.e. zgq & Ma(zg) then we would have a set M with AFo(M ,zq)
that does not contain zp. Now, (6.22) implies that ¢ does not hold in zy and that there is a

successor state z; which is not in M either. Continuing in this way, a sequence zg, 2}, .. .of states
can be constructed inductively, that are all not in M (but reachable from zg!), for which ¢ does
not hold. But this is a contradiction to zg € Mp. i

The semantic definition of AF(«,p) now immediately implies the correctness of the axiom

AF(a,p) & ¢ V [a]AF(a,p) (6.23)

The characterization of AF as the intersection of all sets M with AF; (M) implies that axiom

(vx. (¢ V [a]9) = ¢)) = (AF(ayp) — ¢) (6.24)

is valid. The characterization with AF,(M,z) implies the validity of the stronger axiom

(Vi. [loop « times i]((¢ V [a]Y) = ¢¥)) = (AF(a,p) = ¥) (6.25)

This axiom allows, to restrict the states for which (¢ V [a]i) — 1 has to be shown to those,
which are reachable from the initial state. Formulas (6.23) and (6.25) are sufficient to axiomatize
AF (a, ) to prove the following theorems, so we can avoid to refer to streams by using (6.20).

Using the AF operator we can now set up proof obligations for diagrams of indeterministic size
by schematically replacing formulas of the form “3 4. [loop « times i] ¢” with AF(a,p). This
results in the following formulas:

INV(x, x') A = final(x) A — final’(x") A ndt(x, x') = mn
— AF(if - final’'(x') then RULE'(;x'),

31> 0. (loop if - final(x) then RULE(;x) times i) (6.26)
INV(x, x))
INV(x, x') A = final(x) A = final’(x") A ndt(x, x') = mn
— AF(if - final(x) then RULE(;x), (6.27)
3j > 0. (loop if — final’(x") then RULE/(;x’) times j) )
INV(x, x'))
INV(x, x') A = final(x) A ndt(x, x') = m0 A execm0(x, x') = k
— AF(if - final(x) then RULE(;x), (6.28)

( INV(x, x)
A (= final(x) A ndt(x, x') = m0 — execmO0(x, x') < k)))
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INV(x, x') A = final’'(x') A ndt(x,
— AF(if - final’'(x') then RULE'(;x
( INV(x, x')
A (= final’(x') A ndt(x, x') = On — execOn(x, x') < k)))

x') = 0n A execOn(x, x') = k
)

(6.29)

Theorem 7 Modularisation Theorem for Unbounded Indeterminism

Given a refinement of ASM to ASM', a predicate INV and functions ndt, execOn, execm0, such
that all proof obligations (6.26), (6.27), (6.28), (6.29), (6.8), (6.9), (6.10), (6.11) can be shown,
then the refinement is correct and complete:

(6.26) A (6.27) A (6.28) A (6.29)
A (6.8) A (6.9) A (6.10) A (6.11)
= ASM >a ASM'

To prove trace correctness it is sufficient to prove (6.26), (6.28), (6.8), (6.9), (6.10), (6.11) and
instead of (6.29) the weaker property (6.7). For correctness the condition, that ezecOn decreases,
can be dropped from condition (6.7).

(6.26) A (6.28) A (6.7)
A (6.8) A (6.9) A (6.10) A,(6.11)
= ASM » ASM'

The formal proofs in KIV do not change, only the definition of KPROP and VPROP has to
be modified:

KPROP(x, ¥/
AF(if - final’'(x') then RULE'(;x’),
J1i. (loop if - final(x) then RULE(;x) times i) INV(x, x'))

VPROP(x, x') =
AF(if - final(x) then RULE(;x),
3j. (loop if - final'(x') then RULE/(;x') times j) INV(x, x))

Instead of the axioms (4.3) for loops the axioms (6.23) and (6.25) for the AF operator are used.
Since the AF operator currently is available in KIV only as an abbreviation, the proof of the
modularisation theorem requires some more effort as in the deterministic case (466 proof steps
and 94 interactions). The formal specifications and the proved theorems and lemmas can be found
in appendix C.3.

We want to finish this section with some further remarks on the definition of the AF operator;
AF can not be defined uniformly as an abbreviation in DL (the extension of DL with streams is
not uniform, since the datatype of streams depends on the types of the variables modified by «),
since AF (o) is equivalent to the statement: The program AF#, defined by (z are the variables
occuring in )

AF+#(;var x)
begin
if p then
begin
o
AF#(;x)
end
end
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always terminates. Now the fact, that an indeterministic program always terminates, cannot be
expressed in DL in general (see [Gol82]). But there is a special case, in which this is possible
nevertheless:

Theorem 8 Bounded Indeterminism
If a is an always termitating program with only bounded indeterminism, i.e. if for every state z
there are only finitly many successor states z’' with z[a]z’, then:

AF(a,p) + 3j. [loop if = ¢ then a times j] ¢

Proof of Theorem 8 For the proof from left to right (the other direction is trivial) one has to
consider all traces from a fixed initial state z such that for all states on the trace = ¢ holds. These
traces form a tree structure, that according to the precondition has no infinite paths. Since a has
only bounded indeterminism, the tree is finitely branching. Now Koénig’s Lemma from set theory
(see e.g. [Knu73], p. 381-383) implies that the tree is finite. The length of each path (trace) is
bounded by the depth d of the tree. Therefore j := d + 1 is sufficient to prove the formula on the
right hand side of the equivalence.

Always terminating programs, that have only bounded indeterminism, result from the trans-
lation of distributed ASMs to DL. In contrast to the ASM from the beginning of the section,
which could choose one of infinitely many natural numbers, a distributed ASM has only bounded
indeterminism, since it always chooses from finitely many agents. Therefore we do not need the
AF operator in the case of distributed ASMs.

For the proof obligations this means that we can keep the old proof obligations from the previ-
ous section. Only the tests — final(z) resp. — final’(z') of the Box-Formulas with loop constructs
have to be replaced by the more complex tests

- final(x) A = o

where ¢ is the post condition of the loop. This exploits that we allow arbitrary formulas in the
tests of conditions.
As an example we consider ASM from the beginning of the section and ASM’ with the rule:

RULE'(var x):

if x = 0 then choose b in
if b then x := 3
else x:= 2

else if x > 1 then x := -1

ASM’ now chooses the value of z indeterministically to be 2 or 3 — now there are finitely many
choices. Therefore it is sufficient to show

3i. [loop if -x=1
A = 3j. (loop if = x' =1 then RULE'(; ¥')) x = %'
then RULE(; x)]
3j. (loop if = x' = 1 then RULE'(; x')) x = ¥’

for correctness. This is possible with ¢ = 3 und j = 1.

6.5 Extensions for Iterated Refinement

In this section we are concerned with the problem, that the systematic translation of a program-
ming language to assembler code often requires several refinements, that introduce orthogonal
concepts. Now, in the verification of two successive refinements ASM > ASM' > ASM"” we often
get coupling invariants INV and INV' which have many common parts (we will see examples
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in the Prolog-WAM case study in Sect. 17.2 and 18). The common parts consist of properties of
ASM’, which are relevant for both equivalence proofs. If MINV'(z') is a common part of INV and
INV' our current modularization theorem requires, that MINV'(z') is shown in both refinements
to be invariant in ASM’. In this section we give a generic method, that allows us to avoid this
duplication of proofs. We assume that the equivalence of ASM and ASM' has already been proven
with a coupling invariant INV. Then it is easy to see, that the formula

Ix. INV(x, x') (6.30)

holds in all states of ASM’, which are at the “corners” of commuting diagrams of the refinement.
Now usually it is simple to characterize these states by a predicate MINVNOW'(z'), which consists
of a disjunction of ASM’ rule tests. Then the formula MINV' defined as

MINVNOW'(x') — 3x. INV(x, x') (6.31)

is an invariant of ASM'. Since every weaker formula is also an invariant, one will usually choose
a formula that is implied by (6.31) and that does not mention the variables x of ASM anymore.

To make sure, that MINVNOW' does indeed characterize the corners of diagrams, we must
strengthen the conditions of the correctness proof of the refinement from ASM to ASM’ (the
completeness proof can be left unchanged). In the following we show, how this has to be done in
the indeterministic case without diagrams of indeterministic size. The special case of deterministic
ASMs (Diamonds instead of Boxes) and the generalization to diagrams of indeterministic size (AF
operator instead of Boxes) are treated as in the previous sections.

The two necessary change are to strengthen the rule tests of ASM’ with the additional condition
- MINVNOW'(z'), and to additionally require MINVNOW'(z') in the post condition. This
assures, that ASM rules are applied as long as = MINVNOW'(z') holds. For m:n and 0:n diagrams
this changes conditions (6.14) and (6.17) to

INV(x,x') A — final(x) A MINVNOW'(x') A — final(x')
A ndt(x, x') = mn
— [if - final’(x’) then RULE'(x') ]
3j. [loop if = final’(x’) A = MINVNOW' (x')
then RULE'(x') times j]
( MINVNOW'(x')
A 31> 0. (loop if — final(x) then RULE(x) times i)
INV(x, x'))

(6.32)

INV(x, x') A = final’(x") A MINVNOW' (x') A ndt(x, x') = On
A execOn(x, x') = k
— [if - final’(x’) then RULE'(x)]
3j > 0. [loop if — final’(x") A = MINVNOW'(x)
then RULE'(x') times j]
( MINVNOW'(x') A INV(x, x')
A (= final'(x') A ndt(x, x') = On
— execOn(x, x') < k))

(6.33)

The proof obligation for m:0 diagrams (6.6) is unchanged. With the new proof obligations the
following theorem can be shown.
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Theorem 9 [lterated Refinement of ASMs.

The proof obligations (6.32), (6.33),(6.6) (6.8), (6.9), (6.10) and (6.11) imply in addition to the cor-
rectness and trace correctness of the refinement from ASM to ASM’ that every formula MINV'(z'),
which satisfies

(MINVNOW'(x") — 3x. INV(x, x')) = MINV'(x)
is an invariant of ASM'. Formally it can be proved that

(3 st. IN(st, st’))
— Vj. [loop if = final’(st’) then RULE/(; st’) times j] MINV'(x’)

holds

So, MINV'(x') is true for all states during any run of ASM’, provided that the initial state
is related to some initial state of ASM with the IN relation (usually a trivial assumption). The
proof for refinement correctness follows the same lines as before, only the definition of KPROP
has to be changed to

KPROP (x, x') =
3j. [loop if = final’(x") A = MINVNOW'(x')
then RULE'(x') times j]
( MINVNOW'(x')
A 1. (loop if — final(x) then RULE(x) times i)
INV(x, x'))

(6.34)

The invariance of KPROP in ASM' immediately implies the invariance of
MINVNOW'(x') — 3Ix. INV(x, x')

in ASM’. So the weaker formula MINV’ is an invariant too.

MINV’ can now be used in the proof obligations for the refinement from ASM’ to ASM" as an
additional precondition. Using invariants as additional preconditions can be iterated by defining
another predicate MINVNOW" for the refinement from ASM’ to ASM"”. Then the refinement
proof will give another invariant MINV” for ASM", which can be used in the next refinement.

Appendix C.4 defines the proof obligations for refinement correctness for the case, that we
already have an invariant MINV (z) for ASM and want to construct an invariant MINV'(z) for
ASM'. The proof in KIV required 502 proof steps and 89 interactions. The proof obligations
shown above are the special case, in which no invariant for ASM is given (i.e. the case in which
MINV (z) is simply set to true).

6.6 Related Work

Most known work on equivalence proofs for ASMs is from the field of compiler verification. In
most cases, the interpreters are not defined using the ASM formalism, but some are equivalent.

In work on compiler verification, the case of 1:1 diagrams is by far the most common case. Often
several variants are discussed, where IN, OUT and INV are functions in one direction or the other
(e.g. in [BHMY89]). As a generalization, often the case of 1:n diagrams with n > 0 is considered.
This case often occurs, when one instruction of the source language has to be implemented by
several instructions of the target language. This generalization of data refinement is only marginal,
since the proof of refinement correctness can still be done directly by induction on the number of
executed ASM rules.

An example of a formal verification of a compiler, in which 1:n diagrams occur, is the verification
of the compilation if an imperative programming language (GYPSY), that was translated in
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several refinements first to a high-level assembler language (Piton) and then in machine code of
the FM8502 processor. The verification which was done with NQTHM is described in ([BM79],
[BMS8S]). Since NQTHM does not allow existential quantification, the number n of steps of ASM’
that is necessary to simulate m steps of ASM is computed by a skolem function as n = clock(m, stp),
where stq is the initial state of ASM.

A similar skolem function (num_non_visible) is also used in [Cyr93]. The correctness notion
used there is trace correctness for sequential ASMs with respect to an abstraction function abstr.
All states of the abstract ASM are required to be visible. This corresponds to a restriction of
1:n with n > 0 for the possible diagram forms. The paper sketches two proof techniques. The
first (“speeding up the implementation machine”) corresponds to the direct verification of the 1:n
diagrams with the coupling invariant

INV(x,x') = visible(x') — abstr(x') = x

The used function wvisible_I, that encodes num_non_visible many steps of ASM’ into one steps,
corresponds exactly to our

loop if = final'(x’) then RULE'(;x’) times num_non_visible(x’)

The second proof technique (“slowing down the Specification Machine”) splits the 1:n dia-
grams into one 1:1 and n-1 1:0 diagrams (“stuttering steps”), that are verified separately. The
“termination” condition used there corresponds to our requirement, that the ezecOn function must
decrease. The approach sketched in the paper seems to require the explicit introduction of time in
the specification. The outlook of [Cyr93] gives as desirable extensions indeterminism, stuttering of
both machines (i.e. 0:n and n:0 diagrams in one refinement), and iterated refinement ( “hierarchical
decomposition”), that we all have treated in this work.

Arbitrary m:n diagrams with m,n > 0 are roughly sketched in [McG72]. The paper assumes
determinism and a coupling invariant INV (z,z') that has the special form fi(z) = f2(a').

A formal treatment of m:n diagrams with m,n > 0 has been worked out in parallel to this
work in [Dol98]. The paper generalizes the approach of [Cyr93] by using two num_non_visible
functions (one for each ASM). Indeterminism is considered, but only bounded indeterminism
(for unbounded indeterminism it is impossible to define a function num_non_visible). Also still
abstraction functions are used.

Another new work on ASM refinement in compiler verification is [ZG97]. The correctness
notion given there is only defined semantically (there is no logic for formal verification). As the
only approach known to us it uses a relation p instead of an abstraction function between the
states of both ASMs. The relation corresponds to the semantics of our coupling invariant INV.

The correctness notion is based on equivalence (modulo an abstraction function) of the output
that is made during two ASM runs. Output is defined implicitly as changes of the values of certain
output variables. To formalize this correctness notion in our setting, it is necessary to modify the
ASMs so that they collect the outputs in a list outputlist (we introduce a “history variable” in the
sense of [AL91]). Then the correctness notion of [ZG97] is equivalent to trace correctness with

IN(x,x') = outputlist = outputlist’ = []
OUT(x,x') = map(abstr,outputlist’)= outputlist

(this corresponds to the conditions of Theorem 4 for the relation p). [ZG97] also gives a
modularization theorem (Theorem 5, “Horizontal Decomposition”). The idea is also to decompose
the whole diagram into subdiagrams. The decomposition requires, that each subdiagram contains
at most one rule that produces output. If one depicts a rule application with output by a continuous
arrow, an arbitrary number of rule applications with no output as a dotted arrow, then Fig. 6.9
gives a visualization of the proof obligations.
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Figure 6.9 : Modularization according to [ZG97)
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Figure 6.10 Incorrect refinement with unbounded indeterminism

But the theorem is not correct for several reasons: First, it is possible to verify incorrect refine-
ments with infinite sequences of m:0 diagrams like in diagram 6.6 (see Sect. 6.2.2). Second, some
implicit assumptions are missing. Finally, the formalization (accidently) excludes 1:n diagrams
with n > 1.

The assumptions that are present in the examples, but not explicitly stated are, that external
functions do not cause unbounded indeterminism and that the outputs are collected in an output-
list as above. Without these assumptions the counter examples shown in Fig. 6.10 and in Fig. 6.11
can be constructed: the figures present the ASMs as automata with two program variables. The
first stores the internal state, the second stores the current output. Figure 6.11 shows the unpleas-
ant possibilities of unbounded indeterminism, that made the introduction of the AF operator in
Sect. 6.4 necessary. Figure 6.10 exploits, that the possibility of a state transition from ¢ to ¢}
with one output does not imply that there is one output on all paths from ¢; to gb.

m:n diagrams with n > 1 (especially 1:n diagrams which often show up in applications) are
ruled out by the formalization, since it is required that the diagrams shown in Fig. 6.9 commute
for every ¢} (especially for each direct successor of ¢}) and not only for some arbitrary successor
on each path starting at g7, as our theorem requires.

If one adds the implicit assumptions to the theorem and excludes infinite sequences of m:0
diagrams, then it can be shown that Theorem 5 from [ZG97] is a special case of Theorem 5, p.
35. The problem of infinite sequences of 0:n diagrams does not occur, since the theorem does

allow only 0:n diagrams that can be extended to a 1:n diagram: therefore we can always choose
ndt(z,z") # On.

(¢1,0) —= (¢',2) —= (¢3,2) (01,0) —=(¢',2) — (¢5,2)

\_//

Figure 6.11 Incorrect refinement with no outputlist
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Chapter 7

Peephole Optimization

In this section we will apply the modularization theorem for correctness proofs of ASM refine-
ments to “peephole optimization” of program code (usually assembler code). The idea of such an
optimization is to walk with a window of fixed size (the “peephole”) over a piece of program code,
thereby replacing inefficient sequences of instructions with more efficient ones.

Sect. 7.1 first gives a general approach for the case, when the optimized instructions do not
contain any jump instructions (but the whole code may contain jumps). It is shown, that the
conditions necessary for correctness can be defined simply by instantiating the modularization
theorem for ASM refinements.

The idea of a general approach for the verification of peephole optimizations was taken from
[DvHPRY7], which consists of 2 parts. The first part formalizes peephole optimization and proves,
that certain proof obligations are sufficient for correctness. The second part then verifies a number
of example optimizations, which were taken from [TvS82].

Sect. 7.2 shows, that our approach generalizes the one given in [DvHPR97]. Although both
approaches are generic in the sense, that they do not fix a set of instructions, [DvHPR97] requires
the program code to be a list of instructions which are executed sequentially. This is not realistic,
since real assembler code always contains jump instructions. The restriction to linear code without
jumps can not be removed easily since the proof for correctness of peephole optimization essentially
depends on induction over the length of the instruction list.

In contrast to the restriction to linear code for the approach in [DvHPR97], we show that our
approach can also handle the examples with jump instruction from [TvS82] by just a minimal
change to the coupling invariant. The reason is, that the examples all fall into the special case,
where only the last instruction of an optimized instruction sequence is a jump instruction. Finally
we discuss with a simple example, that optimizations of instruction sequences with jumps in the
middle can also be verified, by simply splitting the diagrams, which are required to commute, at
the jump instructions.

7.1 Formalization of Peephole Optimization

We first need to formalize a general interpreter as an ASM. We assume, that the program code is
stored in a memory db (we do not consider self-modifying code, therefore db is a constant), and
that with code(pc,db) we can select the instruction at an address stored in a program counter pe.
An ASM rule RULE executes a given instruction ¢ = code(pc,db), and thereby modifies a program
state st and the program counter pc. To allow erroneous execution of instructions (e.g. division
by zero, or an attempt to get the top element of an empty stack) we assume that a predicate
ok(pc,st,db) is defined. The predicate should hold, iff execution of the next instruction code(pc,db)
does not lead to an error. We assume that RULE is not applicable, when ok(pc,st,db) does not
hold. Finally, we assume a special instruction halt, which indicates the end of the program.
Since we want to consider code with jump instructions, we do not require that each instruction
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increments pc. Nevertheless such instructions, called linear instructions, are important in the
following. We define the following auxiliary functions and predicates for them:

instrs(pc,db,n) = [code(pc,db), ..., code(pc +n—1 ,db)]

lin(i)
+ V pe,pco,db,st. code(pc,db) =i A pc = pcg A ok(pe,st,db)
— (RULE#(db;pc,st)) pc = pcg +1

linear(pc,db,n) < V k. 0 <k < n. lin(pc + k,db)

instrs(pc,db,n) computes the list of n instructions that follow pe. lin(i) states, that the instruction ¢
is linear, i.e. that it will increment pc regardless of the state in which it is executed. linear(pc,db,n)
says, that all instructions in instrs(pc,db,n) are linear, and therefore will be executed in the inter-
preter in this order. Such linear instruction sequences will be replaced by more efficient ones in
peephole optimization.

For the definition of peephole optimization we define a predicate peephole(st, pei,dby ki, i),
that should hold iff the instructions instrs(dby,pei k1) that are executed in state dby,st;,pe; of the
ASM can be equivalently replaced by ily. If ks denotes the length of ik, then the requirement
corresponds intuitively to the commutativity of the k;:k diagram

dby, st1, pcy — ky steps —— sty

! N\

dbs, st1, pcy — ko steps ———= —— st

Formalized in Dynamic Logic this is the requirement, that

I(dbl,Sto,pCO)
AT (lOOp RULE(dbl;pCO,Sto) times 1> (pCO =pciA sto =St1)
A peephole(sty,pcy,dby,ky,ils)
A db2 = repl(pc1 ,dbl,kl, 112)
A PC1 = pCa A sty = sto (71)
—  linear(instrs(pcy,dby k1))
A linear(ils)
A (loop RULE(dby;pcy,sty) times ky)
(loop RULE(dbg;pca,sts) times ko) st; = sty

holds. The precondition

I(dby,sto,pco)
A 3 i. {loop RULE(db;pcg,stg) times i) (pco = pci A stg = sty)

in the formula states, that the state (pci,st;) is reachable from an initial state (sto,pco) specified
with a predicate I. The precondition is often unnecessary, since usually the diagram commutes
for all states (pey,sty).

The linearity conditions for instrs(pci,dby,ki) resp. il make sure, that the instructions are
really executed before resp. after the optimization. Function repl(pc; ,dby k1 ,il) actually replaces
the instructions instrs(pey,dby ki) by il. We must have
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dby = repl(pcy,dby,ky, ilp)

— V k. k < ky — code(pci+k,dbs) = get(k,il) (7.2)

This definition says, that the new program stores the new instructions at the addresses pc, pc
+1, ... (pc1 +k2 -1). But this is not sufficient. We must also make sure, that the resulting code
has no gaps by moving code by ks — k;. Also the addresses of jump instructions must be updated.
Since we do not want to go into details of jump instructions, we simply require for the result of
repl, that each moved instruction at pc’ = shift(pc,pcr, k2 — k1) has the same effect as the original
instruction at pc:

dbg = repl(pc1 ,dbl,kl, 112)
A (pc < pcr V pe > per + ky)
A pc’ = shift(pc,per ko — ki) A st = st (7.3)
— (RULE(dby;pc,st)) (RULE(dbg;pc’,st’))
(pc’ = shift(pe,per, ke — k1) A st = st’)

In the formula shift is defined as

. _ | pc, when pc < pey
shift(pc, per, n) = { pc + n, otherwise
For some peephole optimization to be applicable on db;, pc; and il we require that the pred-
icate peephole(st,pc,db ki ,ilp) holds in every state st, the ASM can reach. Formally

IN(dby ,pco,sto)
A 3 1. (loop RULE(db;pcg,stg) times i) (pco = pcy A st = stq) (7.4)
— peephole(sty,pcy,dby ky,ils))

(7.1) gives a condition for the optimization of a sequence of instructions. It is local, since
only the instructions at the addresses between pc; and pe; + k; are relevant. For program code,
that does not contain jump instructions, this condition is already sufficient to assure, that the
considered instructions can be replaced by more efficient ones in every program. But for programs
with jumps we need an additional condition: No instruction in the surrounding program must
jump in the middle of the optimized code. This can be formalized with a predicate notjumpedto:

notjumpedto(pcy ,k; ,db)
< Vst,pe.  —pep < pe<pep + kg (7.5)
— (RULE(db;pc,pc)) = pey < pe < per + kg

Now we can prove the following theorem:

Theorem 10 Given a general interpreter formalized as an ASM (as above), a predicate peephole
and values dby, pei, ki, il such that (7.1), (7.4) and notjumpedto(pcy, k1,dby) hold, then the
modification of db; to repl(dby ,pci,ki1,il2) (where repl is specified as in (7.2) and (7.3) is a correct
and complete refinement of ASM.

For the proof we decompose runs of both the original ASM with code db; and of the optimized
ASM with code dbs = repl(dby,pcr, ki ,ilz) into 1:1 diagrams as long as pc # pey, and into a ky -k
diagram for the optimized Code. As the coupling invariant we use the conjunction of the following
four formulas.
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3 pcg,sto,i.  I(dbg,pco,sto)
A (loop RULE(dbyg;pco,stp) times i)
(pco = per A sto = sty)

dbg = repl(dbl,pcl ,kl,ilg)
- pc; < pe < pep + ky
pc’ = shift(pe,per ko — ki) A st’ = st

According to the proof obligations for the equivalence of ASMs from Chapter 6, we have to
show that all four formulas are invariant in the following k;:k» diagram, whenever pc = pc;, and
we have to show that they are invariant in the following 1:1 diagram otherwise.

For the first two formulas this is simple. The first is a trivial invariant of the original ASM,
which says that each intermediate state is reachable from the initial state.

The second formula is the compiler assumption between the program codes. It is obviously
invariant, since it does mention values that are modified by the ASM.

The third formula states, that pc is not within the optimized piece of code (pc = pc; is possible),
and the fourth gives the connection between the states (pe,st) and (pc’,st’) derof the two ASMs.

Their invariance follows from (7.1) for a k;:ky diagram, since all preconditions are part of
the invariant, except peephole(st,pci ,dby k1 ,ilz), which follows directly from (7.4): linearity of the
instructions implies that at the end of the diagram pc = pc; + k1 and pc’ = pey + ks, so we have
indeed pc’ = shift(pe,per ko — k).

For a 1:1 diagram the third formula is invariant because we required notjumpedto(pcy, k1,dby)
(no jumps into the optimized code), and the invariance of the fourth formula is due to assumption
(7.3) for the repl function.

Finally, to show all proof obligations defined in Chapter 6 for the equivalence of the ASMs,
we have to show that the coupling invariant holds in initial states. The only nontrivial formula
of the coupling invariant here is the third, so we just have the requirement that ASM does not
start execution within the optimized code. Note that m:0 or 0:n diagrams, which occur for k; =0
or ky = 0, are no problem here, since several successive ones are impossible. Also note, that the
coupling invariant trivially implies that both ASMs finish in a state with st = st’.

Summarizing, correctness of peephole optimization is a special case of the modularization
theorem for ASM refinements, when the optimized code does not contain jump instructions. Jumps
in the optimized code will be considered in the section after the next.

7.2 Comparison to the Formalization in PVS

In this section we give a short comparison of our formalization to the one defined in [DvHPR97].

A main technical difference is that [DvHPR97] gives a formalization of the semantics of an in-
terpreter (function interprete) and the equivalence of interpreters (predicate =) that is specialized
for peephole optimization, while we have just instantiated the general notions of ASMs and ASM
refinement.

A severe restriction of the formalization in [DvHPRO7] is, that only program code without
jump instructions is considered. The restriction allows to avoid a program counter pc, and by
formalizing program code as a list of instructions, proofs by induction over the length of the list
are possible. Such an induction is not possible when jump instructions are present.

The necessary conditions for the correctness of peephole optimization are the same for both
formalizations, except that our formalization has the two obvious additional requirements

e The program must not start in the middle of optimized code.
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e There must not be jump instructions that point into optimized code.

that result from the generalization to code with jumps.

Some technical points of our definition are less restrictive (but also less concrete) than in
[DvHPR97]. We have avoided to define schemes for optimization rules by giving a more precise
definition of the peephole predicate. We therefore define here, how to specialize our definitions to
the ones given in [DvHPRI7]:

A rule scheme from [DvHPR97], p. 4, Fig. 1 corresponds to a specialization of the ASM rule
to the form

if code(pc,db) = ix A admissible(iy)(st)
then pc,st := effect(ix)(pc +1,st)

for every instruction ix. So it is clear, that the globally defined functions admissible and effect
are defined only to encode the semantics of a deterministic rule application functionally (our
formalization avoids this restriction to a deterministic ASM). The implicit restriction, that pc
is incremented, is given explicitly in our ASM rule. Our predicate ok(pc,st,db) corresponds to
admissible( code(pe,db),pe, st).

The function interprete corresponds to the semantics of the ASM: if the result is the empty
set, then our formalization stops in a state st, where ok(pc,st,db) does not holds. The definition of
the “==" in Fig. 4, p. 5 is identical to our definition of equivalence of ASMs, where IN and OUT
are identity on pc (modulo shift) and st.

Our predicate peephole is very abstract. [DvHPRIT7] gives a more concrete definition: It is
based on a list of rules [Ry, ...R,] with the form R; = (p;,7i,¢;). Each rule consists of three
parts:

e A first list p; (“patterns”) of instructions, that should be replaced.
e A second list r; (“replacements”) of instructions, that will replace the p;.
e A predicate ¢; (“condition”), that characterizes the states, in which the rule is applicable.

This corresponds in our formalization to a definition of n predicates peepholey, ..., peephole,
defined by

peephole; (st,pe,dbky ,ily) : <> instrs(pe,db,ki) = p;
Aidly =15 A ¢i(st)

The rules are applied sequentially to the initial program (the correctness of all optimizations is then
by transitivity of program equivalence). We thought the definition in [DvHPR97] to be too specific,
since there is no pattern matching done between the patterns of a rule and the actual code (it
seems that for every instance a new rule has to be given), and the predicates ¢; do not mention the
code that is executed before pe is reached: whether the test for ¢; holds, and rule R; can be applied,
can be decided only by inspecting all reachable states, which is practically impossible. In contrast,
our definition of a peephole predicate makes it possible to use arbitrary syntactic conditions in the
applicability condition. Also arbitrary patterns and pattern matching are still possible. Since the
concrete definition of pattern matching as well as syntactic applicability conditions depend on the
concrete program code, we have left the definition of the predicate peephole abstract.

7.3 Optimizations of Jump Instructions

In this section we consider optimizations of instructions with jumps. We will not give a generic
method for verification, but the given examples should make it obvious, that jump instructions
can be easily handled using the modularization theorem. Only the number of commuting diagrams
that which to be considered increases with the number of jump instructions.
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A special case are the concrete optimizations of a stack machine given in [TvS82], that deal
with jump instructions and therefore could not be considered in [DvHPR97]. The optimizations
only consider instruction sequences instrs(pey,dby ki) and ily, where only the last instruction is a
jump. For this case, it is sufficient to generalize correctness condition (7.1) to

I(dby,sto,pco)
A 3 1. (loop RULE(dby;pco,sto) times i) (pco = pcr A stg = sty)
A peephole(sty,pci,dby ki,ila) A dby = repl(pcy,dby ki, ils)
A pc1 = pca2 A pcy = pc A st; = sto
— kg # 0 A linear(instrs(pcy,dby k1 —1)) (7.6)
A ily # [] A linear(butlast(ily))
A (loop RULE(dby;pcy,sty) times ky)
(loop RULE(dba;pca,stz) times ks)
(sty = sta A pca = shift(pey,pe,ka — ky))

(butlast removes the last element of a list). The new condition is still sufficient to guarantee the
commutativity of the & :k» diagram with unchanged coupling invariant. The only new requirement
in the generalized condition is, that the two last instructions jump to the same address (modulo
shift). That the jump address is not within the optimized code already follows from (7.5).

Finally let us give a simple example for peephole optimization, where not only the last in-
struction of the optimized sequence is a jump. The example should make it obvious, that we then
have to verify several commuting diagrams, that result from decomposing the k;:k; diagram into
subdiagrams at every jump instruction.

For the example we assume that it is possible to select an integer value from the state st
with get(l,st) (typically I is a location in memory and get is memory access). Three typical jump
instructions would then be BZE(l,n), BNZ(l,n), and BRA(n) (branch on zero, branch on not
zero, branch unconditionally) with ASM rules defined by

if code(pc,db) = BZE(1,n)

then if get(l,st) =0
then pc := pc + n
else pc :=pc + 1

if code(pc,db) = BNZ(l,n)

then if get(l,st) =0
then pc :=pc + 1
else pc :=pc+n

if code(pc,db) = BRA(n)
then pc :=pc +n

An obvious peephole optimization then is to replace iy = [BZE(l,2) BRA(n)] with ik =
[BNZ(l,n — 1)] whenever n > 0. If instr(pci,db;,2) = iy and neither the program start is at
pcy + 1 nor jumps to this address exist, then this is a correct optimization. For the verification we
need the same coupling invariant as in the previous section and the proof for the case pc # pcy
is unchanged. For the verification of the optimized we now need two commuting diagrams: A 1:1
diagram for the case that get(l,st) = 0, and a 2:1 diagram for get(l,st) # 0. The formal proof, that
both diagrams commutate, i.e. that

INV(dby,pc,st,dbs,pc’,st’) A pc = pey A get(lst) =0
— (RULE(dby;pc,st)) (RULE(dbe;pc’,st’))
INV(dby,pe,st,dbs,pc’,st’)

and
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INV(dby,pc,st,dbs,pc’ st’) A pc = pcy A get(l,st) # 0
— (RULE(dby;pc,st)) (RULE(dbg;pc,st)) (RULE(dba;pc’,st’))
INV(dby,pe,st,dbs,pc’,st’).

hold, is easy.
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Chapter 8

Summary of Part I

The first part of this work was considered with the development of tool support for the specifica-
tion language of ASMs and the definition of generic proof obligation for the correctness of ASM
refinements. Three main results were achieved:

First, we defined a natural embedding of the specification language of ASMs into Dynamic
Logic, that allows to formalize properties of ASMs, especially the correctness of refinements.
With this result, tool supported deduction for ASMs becomes possible.

Second, we developed a theory for the modularization of correctness proofs for ASM refine-
ments. The verified modularization theorems generalize the results known from literature. Data
refinement and Peephole optimization from compiler verification are special cases of the theorem.

Third, the results were integrated into the KIV system. The modularization theorems were
verified in KIV and several extensions were made to the specification language and the deduction
component, to get efficient tool support for ASMs.
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Part 11

The Prolog-WAM Case Study
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Chapter 9

Introduction and Overview

The subject of the Prolog-WAM case study is the correctness proof for the compilation of Prolog
programs into byte code of the Warren Abstract Machine (WAM). The WAM (and variants) today
is the basis of all popular Prolog implementations.

Our work is based on a systematic presentation of the compilation as 12 ASM refinements
in [BR95]. The starting point is a Prolog interpreter, specified as an ASM, that describes the
operational semantics of the core of Prolog (clauses with /, true and fail) as the construction of a
search tree. For pure Prolog the semantics is identical to the tree constructed by SLD resolution.
The extension of the ASM to full Prolog (in [BR94]) has become an ISO standard for the definition
of Prolog semantics.

The first Prolog interpreter, we will call ASM1 in the following, is then stepwise refined to an
interpreter ASM13 of byte code of the WAM. In parallel to this transformation the Prolog program
is compiled. On intermediate levels the code consists partially of not yet compiled Prolog clauses,
partially already of WAM instructions. Each refinement introduces machine concepts like stacks,
registers, pointer structures etc.. The refinements are constructed such that they are orthogonal:
The compilation of clause selection, of single clauses and of literals are each treated in separate
refinement steps. Besides the pure compilation steps there are also refinements that optimize the
data representation. The byte code instructions used in the final ASM13 are very simple. They
consist each of a number of register transfers that can easily be translated into the assembler code
of any processor.

The main goals in the Prolog-WAM case study were:

The formal specification of the compilation steps and compiler assumptions given in [BR95].

The formalization of the correctness of refinements.

To define a suitable proof methodology for the verification of refinement correctness.

The development, of suitable support in the KIV system, that allows the efficient demonstra-
tion of the correctness of the refinement steps.

e To formally prove the correctness arguments or to find errors and to remedy them.

Main parts of the theory in Chapters 4 and 6 were developed to achieve the first two goals.
Development, of suitable proof support required many improvements in KIV, that were summa-
rized in section 3.3. The comparison with the case study in Isabelle in Sect. 20 shows, that the
proof support can compete with other systems. Nevertheless the formal verification of an ASM
refinement still requires a man month on average. In this work 8 of the 12 refinements have been
verified.

A substantial result of the verification was a confirmation of the work done in [BR95]. Until
now, no major changes were necessary for the ASMs. Also the ideas for the correctness proofs
were correct for all refinements.
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Nevertheless even the verification of the first refinement showed, that a formal verification
of refinement correctness requires to make explicit a large number of properties, that were only
implicitly assumed (compare the first approach at the beginning of Sect. 11.2 with the final coupling
invariant at the end). Although many of these properties are easy to find, we found that there is
a large gap between the mathematical argument for correctness and a fully formal proof.

Therefore it is not too surprising, that a large number of smaller problems were found in the
ASMs as well as in the compiler assumptions, that did not show up in the informal analysis in
[BR95]. The most important problems were:

e ASM3 and ASM4 contain a not intended indeterminism, that must removed by a stronger
rule test (see 14.2)

e In the switching instructions the backtracking case was missing (see 15.2)

e The unify instruction of ASM9 used the renaming index of the first instead of the second
environment (see 17.1)

e The compiler assumptions for several refinements were described correctly in the text, but
the formalization had to be made more precise (see 14.2,15.2)

e ASMI1 — ASMS8 answer the query 7- p(q) positively, given the two clauses p(X) :- X. and
q.. But in the translation of clauses to code (i.e. in the refinement to ASM9) clause bodies
may no longer contain variables or lists (see 17.2).

All problems were relatively easy to correct. Nevertheless the result demonstrates, that even
a very careful informal analysis should be complemented by a formal correctness proof, if the goal
is a correct compiler.

The following chapters discuss the correctness proofs in detail. They are organized as follows:

The next chapter describes the Prolog interpreter from [BR95]. The following chapters then
consist of two sections: the first specifies the refinement of ASM of the previous chapter to a new
ASM. This section largely follows [BR95]. Where already the formalization required corrections
or deviations, they are explained in this section. The second section then describes the formal
verification of the refinement, the experiences learned thereby, and the corrections of ASMs and
compiler assumptions that resulted from the verification.

We always have tried, to explain the operations needed in each refinement and in the coupling
invariants immediately. If any notations should remain unclear, they can be looked up in the full
algebraic specification in KIV given in Appendix E.

In the following we will denote with i/j the refinement from ASMi to ASMj. In every section
on the verification of refinement i/j we will also use the convention to name state variables of
ASM: (to be precise: state variables that resulted from the translation of ASMi to DL) with z
and the state variables of ASMj with z'. We always assume the vectors to be disjoint. The rule
(in the sense of section 2.2) of ASMi and ASMj will be named RULE and RULE' and always
have the form

RULE(var x) begin
if £; then RULE, (x) else
if e5 then RULE,(x) else

if £, then RULE, (x) end

RULE,, RULE,, ..., RULE, are rules in the sense of 2.3 and we will use the term “rule” in the
following only with this meaning.



Chapter 10

ASM1 : A Prolog Interpreter

The two most important data structures needed to represent a Prolog computation state are the
sequence of Prolog literals still to be executed and the current substitution. This state is modified
by

1. unifying the first literal of the sequence, called act (activator), with the head of a clause
2. replacing act by the body of that clause

3. applying the unifying substitution to the resulting sequence and

4. composing the unifying substitution with the ‘old’ substitution.

If a unification fails, alternative clauses have to be chosen by backtracking. Due to this the
interpreter has to keep a record of the former computation states and the corresponding clause
choice alternatives. This history is usually represented as a search tree, that is constructed by the
operations above. Each node represents a computation state, and the children of a node are the
possible successor states, that can be reached by unification with the different clause heads.

In an ASM we represent a search by a set of nodes, connected from leaves to the root by a
function father. The root node is denoted by L, father is undefined for this node. Information on
alternative clauses, which may be tried at a node n, is stored as a list cands(n) of candidate nodes.
Each node in this list refers via a function cll to a clause line in the Prolog program. Suitable
initial lists of candidates are constructed with the help of a function procdef (for the specification
of procdef see later on).

The current computation state of the interpreter is stored in a program variable (i.e. a 0-ary
dynamic function), the currnode. The computation state of a node n could be represented as the
result of two functions glseq[n] (goal sequent) and sub[n].

But to handle the cut instruction of Prolog, an extension of this state representation is required.
A cut updates the father of the current node to the father of that computation state whose act
caused the introduction of the considered cut. For this we have to ‘remember’ where a cut has
been introduced. An uniform solution is to attach the father of the (old) currnode to each clause
body being introduced to the literal sequence. This attachment divides the sequence of literals
into subsequents, called goals, each decorated by one node, called the cutpoint of the goal. The
resulting (decorated goal) sequence decglseq looks as follows

act ctpt
A —
decglseq = [{[81,1,81,2,--»81k], 01 ) 55 ([8m,15- -5 8m k] > i) ]
g:)ral
cont = [( (81,281 501 ) 5oy ([8m1s -+ 5 8Bm k) > i )]

The continuation cont, which is the decglseq without act, will later on help to describe the con-
struction of a new decglseq.

99
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To introduce the rules of ASM1 we will now consider the evaluation of the query ?- p. on the
following Prolog program.

1 p :- fail. 3 q.
2p:-q,!,true. 4 p.

which is stored as the value of a constant db (database) in the initial algebra of the ASM. Line
numbers are shown explicitly in the program for explanatory purposes. The query 7- p. is stored
as the decglseq of node A in the initial search tree depicted in Fig. 10.1.

e,
(s

Figure 10.1

The two nodes labeled L and A form the initial domain of a dynamic sort node, which is
extended by the rules of the ASM. Tree structure as stored in the function father : node — node
is indicated by the arrow in Fig. 6, so we have father(A) = L. Root node L serves only as a
marker when to finish search and does not carry information in ASM1. The initial currnode is
A, as indicated by the double circle. Computed substitutions (attached to the nodes with the sub
function) are not shown in the figures, since they are always empty in the example.

The ASM run is controlled by two program variables (i.e. 0-ary dynamic functions) mode and
stop. The value of mode switches between call and select, while the value of stop remains run
until it finally changes to halt. This stops the evaluation,since all rule guards contain the conjunct
stop = run.

In call mode, which is the initial mode, the candidate nodes are computed (for a guard which
involves act, checks for decglseq # [] and goal # [] are implicitly assumed, and we also omit the
obligatory conjunct stop = run).

call rule
if is_user_defined(act) A mode = call
then let[clly,. . .,cll,,] = procdef(act,db)
extend node
by tmpy,...,tmp,
with father[tmp;] := currnode
cllftmp;] == cll;
cands := [tmpy,. ..,tmpy,]
endextend
mode := select

The rule uses the abbreviation cands for cands[currnode], i.e. the candidate nodes of currnode. In
the following we will also use the analogous abbreviations father, decglseq and sub.

The extend construct, by expanding the universe node, allocates one node for every clause
whose head ‘may unify’ with the literal act. This list of clause lines is computed by procdef(act,db)
and is assumed to contain at least those clauses, whose heads unify with the activator, and at
most those with the same leading predicate symbol as act. The use of extend with an arbitrary
number of allocated nodes is a slight extension of [Gur95]. In DL the extension is realized with
a procedure, that traverses the list procdef(act,db). The result of the application of call rule is
depicted in Fig. 10.2.

The cands list of node A is indicated by a dashed arrow to its first element and brackets around
the elements. The clause lines corresponding to the candidates are attached to the new nodes via
the function cll, as shown by numbers below the nodes. The change of the mode variable activates
the select rule.
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select rule
if is_user_defined(act) A mode = select
then if cands = []
then backtrack
else let clau = rename(clause(cll[car(cands)],db),vireg)
let mgu = unify(act,head(clau))
if mgu = failure
then cands := cdr(cands)
else currnode := car(cands)
decglseq(car(cands)) := mgu ~4 [(body(clau), father) | cont]
sub[car(cands)] := sub o mgu
cands := cdr(cands)
vireg := vireg +1
mode := call

where

backtrack =
if father = L
then stop := halt
subst := failure
else currnode := father
mode := select

This rule causes backtracking if there are no (more) alternatives to select. Otherwise, by
repeated application, it removes all candidates whose heads do not unify with act. When the
first candidate is reached, for which a most general unifier mgu exists (function clause selects
the clause at a clause line', and variable index wvireg is used to rename the implicitly universal
quantified clause variables to new instances), this node becomes the new currnode. A new decglseq
is computed by replacing the activator of the old decglseq with the body of the selected clause. As
a cutpoint the father of the old currnode is attached to this new goal. The mgu is applied to the
resulting decglseq (with the infix operation ~4q) and composed (with o) with the old substitution
sub.

The result of applying the select rule in our example is shown in Fig. 10.3. The value of the
mode variable is now call again. Since the activator fail is not user defined, fail rule is applied.

fail rule
if act = fail then backtrack

It sets currnode to A again. Note that node B is not formally deallocated. It remains in the
carrier set of mode. Again in select mode, the next candidate node for A, node C, is selected.
Its decglseq is computed as [([g,!, true], L) ,{([], L) ]. Subsequently call rule allocates one new
candidate node E for the only appropriate clause q. After selection of node E ASM1 reaches the
state shown in Fig. 10.4.

1

since clause clearly depends on the Prolog program, we have added an argument db compared to [BR95]
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(L, (&)
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[([fail], L),([],L)] ( , (o)
4

Figure 10.3

[(0,2)([! true], L),(],-1)]

Figure 10.4

The now empty goal is removed by the goal success rule.

goal success rule
if decglseq # [] A goal = ]
then decglseq := cdr(decglseq)

Then the activator is a cut, which is removed from decglseq by cut rule.

cut rule
if act = !
then father := ctpt
decglseq := cont

The rule sets the father of the current node E to the cutpoint ctpt of the current decglseq, which
here is the root node L (see Fig. 10.5). This “cuts” the alternative D at node A. The cut rule is
the only one that uses ctpt. For the activator true ASM1 then executes the following rule.

[(fbrue], 1),(0,1)]

Figure 10.5

true rule
if act = true then decglseq := cont

Finally, with another two applications of goal success rule, decglseq(E) becomes empty. This
means that the initial query is completely solved. Therefore query success rule sets the answer
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substitution subst to sub(currnode) (here, of course, the empty substitution), and finishes the
execution by setting stop to halt.

query success rule
if decglseq(currnode) = [
then stop := halt
subst := sub

If we consider a variant of our example program, where we replace clause p :- q,!,true with
p :- q,!,r, we would also arrive at the situation of Fig. 10.5. But now call rule would allocate a
node F' with an empty list of candidates, since no clauses for predicate r are given. select mode,
finding no more alternatives, would backtrack from nodes F' and E. Since the father of E is the
root node L, execution would finally stop with stop = halt and subst = failure.
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Chapter 11

1/2: From Search Trees to Stacks

11.1 Definition of ASM?2

In this section we describe the first refinement of the ASM described above towards the War-
ren Abstract Machine (WAM), following [BR95], [Section 1.2]. There are three main differences
between the first and the second ASM.

First, function father is renamed to b. This change indicates that b now points backwards in
a chain of nodes, which form a stack.

Second, ASM2 provides the registers cllreg, decglseqreg, breg and subreg corresponding to ¢ll,
decglseq, father and sub applied to the currnode. Thereby it avoids allocation of currnode.

Third, instead of providing a list of candidate nodes, ASM2 attaches the first candidate directly
via the cll-function. This is possible if we assume that clauses whose head starts with the same
predicate are stored in successive clause lines followed by a special null marker. The “compiled”
representation dbs of our example Prolog program for ASM2 thus has to look like

1 p :- fail. 3 p. 5 q.
2p:-q,!,true. 4 null 6 null

A new procdefz function is needed, such that procdefs (act,dby) now yields the first clause line whose
head may unify with the activator act.

For act = p we get procdefa(p,dbs) = 1, the first line of a clause with head p. The connection to
the old procdef function is stated in the following compiler assumption about function compile;s,
which is used as an axiom in the equivalence proof for 1/2.

dby = compile;s(db)
— (CLLS# (procdef; (act,dbz),dbs),dbs;col))
mapclause(procdef(act,db),db) = mapclause’(col,dbs)

Procedure CLLS#' collects consecutive line numbers, until a null is reached, and functions
mapclause and mapclause’ select the clauses at each line number. Note that in contrast to [BR95]
(p. 17) we have not assumed that the literals were sorted in the original database, and that
the equality procdef(act,db) = col of clause lines holds. Instead we only require the equality of
the clauses. This weakening of the compiler assumption is necessary, otherwise it can not be
fulfilled by any implementation of the procdef function that selects clauses more precisely than
looking only at the leading predicate symbol. Note, that with the stronger assumption the three
calls procdefs (p (£ (X)) ,db2), procdefz(p(g(X)),dbz) and procdefs(p(X),db2) can not return three
different results, since the three clause lists, which can be collected at these addresses end with

LA procedure, not a function is used, to make sure that the specification does not become inconsistent with a
dbs that does not contain a null marker. See the same argument for STACK# in the following section, p. 71

65
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the same null marker, that marks the end of the clauses for p (so all three lists must be end pieces,
not arbitrary sublists of the clause list for p). Our weaker assumption can be implemented for any
definition of procdef by duplicating code. The duplicated code can be removed later on, when the
abstract code selection with procdef is replaced with switching instructions (see Sect. 15.1).

Instead of allocating a candidate list, ASM2 simply assigns procdef ’(act,db) to cllreg. Removing
a candidate from cands now corresponds to incrementing cllreg. If the clause at cllreg becomes
null, no more candidates are available.

Since ASM2 no longer needs to allocate a current node currnode, a new node must be created
in select mode, to save the current register contents to a node. The new call and select rule
therefore are

call rule
if is_user_defined(act) A mode = call
then cllreg := procdefs(act,dbs)
mode := select

select rule
if is_user_defined(act) A mode = select
then if clause(cllreg,dby) = null
then backtrack
else let cla = rename(clause(cllreg,dbs),vireg)
let mgu = unify(act, head(cla))
if mgu = failure
then cllreg := cllreg +1
else let tmp = new(s)
s:=s U {tmp}
breg := tmp
b[tmp] := breg
decglseq[tmp] := decglseqreg
sub[tmp] := subreg
cll[tmp] := cllreg +1
decglseqreg := mgu ~; [(body(cla),breg) | cont]
subreg := subreg o mgu
vireg := vireg +1
mode := call

where

backtrack =

if breg = L

then stop := halt
subst := failure

else decglseqreg := decglseq[breg]
subreg := sub[breg]
breg := b[breg]
cllreg := cll[breg]
mode := select

All other rule of ASM1 are unchanged, except that father is renamed to b and abbreviations
decglseq, father and sub (for decglseq[currnode] etc.) have to be replaced with the registers decglse-
greg, breg and subreg.

In our example program ASM2 now runs through the states shown in Fig. 11.1 and Fig. 11.2.
The corresponding states in ASM1 were those in Fig. 10.3 and Fig. 10.4.
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decglseqreg = [([fail],L),([],L) ]
breg = A

Figure 11.1

decglseqreg = [([],A"),([!,true], L) ([, 1} ]
breg = ¢

Figure 11.2

Dashed arrows now point to the cll of a node. Since the values attached to the currnode
are now stored in registers, allocation of nodes corresponding to B and D is avoided. On the
other hand, when node A is visited by backtracking (by executing fail rule in the state shown in
Fig. 10.1), its computation state is moved to registers, and the following select rule allocates a
new, similar choicepoint A’. Removing this redundancy is the subject of the next refinement.

In ASM2, the nodes which may be visited in the future are always reachable from breg via
the b function. They form a stack, but note that there may still be abandoned nodes in the
node universe, which are no longer reachable (here A). This causes one of the problems in the
verification of the refinement from ASM1 to ASM2. The tuple of values decglseq(n), sub(n), clli(n)
and b(n) attached to a stack node n is usually called a choicepoint.

11.2 Equivalence Proof 1/2

In this section we will describe the formal verification of the first refinement with KIV. The main
focus of this section is not the application of the general theory for the verification of ASMs we
developed in the first part (we have data refinement with 1:1 diagrams here), but on the practical
problems that arise in a formal, system-supported correctness proof, which consists mainly in
the incremental development of a suitable coupling invariant. We will show exemplarily for this
refinement, that

e the informal correspondence between the states of the ASMs given in [BR95] is by far not
sufficient for a formal proof.

e a lot of additional properties must be formulated, that are not foreseeable at the beginning
of the verification, but which are necessary to guarantee the correctness of the refinement.

e the efficient verification of ASM refinements requires a system with very good support for
an incremental verification of goals.

To assure the last point, a lot of details had to be improved in the KIV system. Some of them
were described in Sect. 3.4.
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The following description of the verification unfortunately requires to confront the reader with a
lot of details. Only the consideration of these details leads to the detection of hidden assumptions,
which ultimately guarantee the correctness of the refinement. The reader who is not interested in
the details may just have a look at the 9 initial properties as given in [BR95] at the beginning of
the following subsection, and compare them to final coupling invariant shown at the end. This
should give an impression about the work needed to translate an informal mathematical argument
to a complete, formal proof.

The Initial Coupling Invariant The refinement from ASM1 to ASM2 does not change the
control structure of the interpreter. One rule application of ASM1 corresponds to one rule appli-
cation of ASM2, i.e. we have the case of data refinement. For the proof obligations from Chapter 6
this means, that we can choose ndtype(z, z') to be constantly mn, and that by choosing i = j =1
in the proof obligation (6.5) we can simplify it to

INV(x,x'), stop = run, stop’ = run
F (if stop = run then RULE) (11.1)
(if stop’ = run then RULE’) INV(x,x")

The proof now splits into 5 cases for each of the 5 rules of the two ASMs. The other proof
obligations (6.10), (6.8), (6.9) and (6.11) are all trivial, since INV will contain the formula stop
= stop’. So the “only” critical point for a successful formal proof is to find a coupling invariant
INV(x,x’), such that formula (11.1) is provable for each corresponding pair of rules.

Some rough indication how such a formula INV might look like is already given in [BR95],
p.17f. There an auxiliary function F is proposed, which maps the nodes in the stack of ASM2 to
corresponding nodes in the search tree of ASM1 (see Fig. 11.3).

[Sch94] pointed out that F' cannot be given statically, but has to be defined by induction on
the number of rule applications. This requires a formalism, where a dynamic function can be
updated by proof steps.

In DL, the answer comes for free since we made dynamic functions available as a datatype (see
specification ‘Dynfun’, Sect. 4.1). When F is a datastructure it can be (first order) quantified. Our
coupling invariant then asserts the ezistence of a suitable function F for every two correspond-
ing interpreter states. F' then gets updated by instantiation. Based on this dynamic function
the properties listed on p.17f of [BR95] translate to the following conjuncts in our invariant (in
ambiguous cases the variables of the second interpreter are primed):

IF:
1 decglseq[currnode] = decglseqreg
2 sub[currnode] = subreg

3a  mapclause(map(cll, cands[currnode]),db)
= mapclause’(clls(cllreg,dbs),dbs)

3b every(father,cands[currnode], currnode)
4 father[currnode] = F[breg]
5 decglseq[F[n]] = decglseq'[n]
6 sub[F[n]] = sub’[n]

7a  mapclause(map(cll, cands[F[n]]),db)
= mapclause’(clls(cll'[n],dbz),dbs)

7b every(father, cands[F[n]], F[n])
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8 father[F[n]] = b[n]
9 F[1]=1

In the formulas every(father,cands[n], n) means, that n is the father node of every node in candsn].
The equations 1 and 5 actually do not hold. Although the goals are identical, cutpoints have
to be mapped by F. Therefore already [Sch94] defines a function F; with the axioms

Fa(F,[l) =11
Fa(F,[(goal,ctpt) | dgl]) = [(goal, F(ctpt)) | Fa(F, dgl)]
and replaces 1 and 5 by
1 decglseq[currnode] = Fy(F, decglseqreg)
5 decglseq[F[n]] = F4(F, decglseq'[n])
He also adds the obvious equations
10 stop = stop’ A mode = mode’ A vireg = vireg'

Formulas 1 — 10 formed our first version of the coupling invariant, with which we started the
formal verification with the KIV system.

Development of the Correct Coupling Invariant We found that the first version of the
coupling invariant was not sufficient to prove the correctness. Instead a dozen iterations were
necessary to find the correct one. The failed proof attempts took much more time than the
successful verification with the correct invariant. We give a rough overview over the search and
explain, how hidden assumptions were detected during proof attempts. Adding these assumptions
to the coupling invariant and attempting a new proof revealed further gaps, which required new
modifications in the coupling invariant. An evolutionary proof process resulted.

global registers:
breg

subreg

cllreg
decglseqreg

Figure 11.3

Injectivity of F After only 5 min. (and 6 interactions) of proving we reached the unprovable
goal:

F[breg] = F[L] — breg = L (11.2)
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This formula holds (compare Fig. 11.3), but how to deduce it? A short look at the visualized
proof tree shows that this proof situation arose by trying to guarantee that in the backtracking
case ASM2 stops (with failure) if and only if ASM1 stops! The “if” direction is trivial but for the
“only if” direction we must prove (11.2).

What we need is the injectivity of F, as can also be seen in Fig. 11.3. We therefore add

11 F injon s
to INV, where injon is defined as

Finjons=Vnn;.n€sAn €sAFn]=Fn;] >n=m

Thereby we make it available in all proof situations. On the other hand it is now necessary to
prove that injectivity is invariant in all rules.

Characterization of the Stack Unfortunately, it is too strong, to assume the injectivity of F.
A proof attempt now fails, with a goal that requires to prove injectivity of Flnew(s') + currnode].
We are not able to show, that select rule keeps the injectivity of F' invariant. (after select rule the
new node new(s’) must be mapped to currnode). A detailed analysis shows, that there are indeed
situations, where this is impossible. Figure 11.4 shows such a situation, in which two different
nodes of ASM2 are mapped to the same node of ASMI1.

Figure 11.4

The problem arises because there are abandoned nodes that are no longer in the stack (i.e.
reachable following the function b from breg) but still present in the set of allocated nodes. The
function F is still defined on such nodes, violating injectivity. But on the smaller set of stack
nodes injectivity holds. What we need is a logical characterization of the stack nodes. Then we
can restrict injectivity of F' to the stack.

A characterization of the stack is also necessary to restrict other still missing properties of F
to stack nodes. One other such property can be derived from another unprovable goal in the same
proof.

cands[currnode <+ x|[F[n]] = cands[F[n]]

Here it must be proved, that a modification of the candidates cands/currnode] does not modify
the candidates of any node in the codomain of F. To prove this we need:

12 F[n] # currnode
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Figure 11.5

But this formula is also not true for abandoned nodes, as can be seen in Fig. 11.5, that shows a
pair of states after backtracking. Only that currnode is not in the image of stack nodes is true.

An important problem with the formal definition of stack nodes is, that the simple approach
that defines a function stackof with

stackof(b, L) =],
breg # L — stackof(b,breg) = [breg | stackof(b,b[breg])]

is incorrect. It leads to an inconsistent specification, since it is possible to construct dynamic
functions, that cyclically connect nodes (for an arbitrary function b and a node n # L1 define
b := b[n < n]. Then using the axioms above, it is easy to prove stackof(b’,n) = [n|stackof(b’,n)],
contradicting the list axiom z # [a|z]).

A correct approach to characterize the list of stack nodes is, to use the program STACK#
below. Its termination guarantees, that the stack does not contain cycles.

STACK#(n, b; var stack)
begin
if n = 1 then stack := [] else
begin STACK# (b[n], b; stack); stack := [n | stack] end

end

Figure 11.6 : Characterization of cycle free Stacks

Now let ¢/(n) be the conjunction of all subformulas, which depend on the selected node n (5 to 8
and 11) and let ¢ be the conjunction of the remaining subformulas (1 to 4, 9, 10 and 12). Then
the coupling invariant INV gets the form:

I F: ¢ A (STACK#(breg, b; stack)) (V n. n € stack — ¢(n)) (11.3)

It says now, that (for suitable F') ¢ holds and that B-LIST# terminates with a list stack as result,
such that v holds for all its elements.

Cutpoints Proving equivalence between the two cut rules with this version of INV shows an-
other difficulty: 1 must be guaranteed for the new stack shortened by execution of the cut. This
stack starts with a new breg, which was set to the first cutpoint of decglseqreg. Now, of course, the
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new stack would inherit ¢ from the old one, if we knew that it is a part of the old one. But this
can not be deduced from the current INV. We have to assert that the cutpoints in the current
decorated goal sequence are elements of the current stack. We therefore define a new predicate
cutptsin (written infix) with axioms

[] cutptsin stack,
(11.4)
[(goal,ctpt) |dgl] cutptsin stack + ctpt € stack A dgl cutptsin stack

and add:

decglseqreg cutptsin stack

to the coupling invariant. In this version, the definition of cutptsin simply checks whether all
cutpoints of the first argument are elements of the second. Because the decorated goal sequence
decglseqn] of every node in the stack can potentially become the decglseqreg (by backtracking),
we also have to add

decglseq’[n] cutptsin (stack from b[n])

where function from (again written infix) is axiomatized with

[] from n =[],
n #n' — [n|l] from n’ =1 from n’,

[n|l] from n = [n|]]
With the new formulas INV is now

dF. o
A (STACK#(breg, b; stack))
( decglseqreg cutptsin stack
A (Vn. n € stack
- Y(n)
A decglseq’[n] cutptsin (stack from b[n])

Still, this invariant is not strong enough. The proof fails because when the cut rule is applied,
we have not made sure, that the cutpoints in decglseqreg other than the first remain in the stack
that has been shortened by the cut. This is true only because the cutpoints point into the stack in
the right ordering (see Fig. 11.7). Therefore the axioms (11.4) for cutptsin must be strengthened
to

[] cutptsin stack,

[(goal,ctpt) |dgl] cutptsin stack
+  ctpt € stack
A dgl cutptsin (stack from ctpt)

INYV is syntactically unchanged. Fortunately all proofs up to this point used only lemmas for
cutptsin that remain valid for the new axiomatization. Therefore, no proof needs to be redone
(and this fact is checked by the “correctness management” of KIV).
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Figure 11.7

More Properties The coupling invariant is still not complete. Several further proof attempts
revealed that it is necessary to make properties about the structure of the search tree of ASM1
explicit. Some of these properties are (informally): no candidate is in the range of F, no candidate
list has duplicates, the intersection of different candidate lists is empty, and so on. Altogether 12
proof attempts were made with different coupling invariants (not counting different versions due
to typing errors) until the final coupling invariant shown below was reached. All of the properties
listed were actually needed to complete the proof.

INV12 =

3F. stop = stop’ A mode = mode’ A vireg = vireg' A subreg = sub[currnode]
A F[L] = L A F[breg] = father[currnode] A L # currnode
A Fq(F, decglseqreg) = decglseq[currnode]
AL es" AL esAcurrnode € s
A ( mode = select
—  (CLLS#(cllreg, dbs;col))
mapclause’(col, dby) = mapclause(map(cll, cands[currnode]), db)
A every(father, cands[currnode], currnode)
A = currnode € cands[currnode] A = L € cands[currnode]
A cands[currnode] C s A nodups(cands[currnode]))
A (STACK#(breg, b; stack))
( decglseqreg cutptsin stack A candsdisjoint(F, cands, stack)
A F injon stack
A nocands(F, cands, stack) A stack C s
AV n. n € stack
—  sub’[n] = sub[F[n]] A F[b[n]] = father[F[n]]
A Fq(F, decglseq’[n]) = decglseq[F[n]]
A (CLLS#(cll'[n],dbs;col))
mapclause’(col,dbs) = mapcl(map(cll, cands[F[n]]), db)
A every(father, cands[F[n]], F[n])
A F[n] # currnode A F[n] € s A nodups(cands[F[n]])
A cands[F[n]] C s A = currnode € cands[F[n]]
A (- mode = select
— = F[n] € cands[currnode]
A disjoint(cands[F[n]], cands[currnode]))
A decglseq’[n] cutptsin (stack from b[n]))
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Chapter 12

2/3: Reuse of Choicepoints

12.1 Definition of ASM3

Although ASM2 allocates fewer nodes that ASM1, there are still two more possibilities to reduce
their number, that are exploited in the optimizations to ASM3 and ASM4.

In this section we first describe the reuse of choicepoints. We follow [BR95], Chapter 1.3.
The optimization can be explained most easily by looking at the example of the previous section:
When the first alternative for activator p is tried, ASM2 allocates a new node A, and sets the
values decglseq[A], sub[A] and cll[A] of the new choicepoint.

Since the first alternative does not lead to a solution, the interpreter executes a backtrack
instruction, which removes the node A from the stack. Thereby the whole choicepoint becomes
inaccessible. The subsequent select rule for the second alternative then pushes a new choicepoint
A’ on the stack. This choicepoint gets the same values as the one for the first alternative, except
that cll(A’) has been incremented (see Fig. 11.2, p. 67 in Sect. 11.2).

The optimization done in ASM3 avoids deallocation and reallocation of choicepoints. Instead
it reuses the existing choicepoint. The optimization is achieved by replacing the removal of a
choicepoint in the else-branch of backtracking with the assignment mode := retry, which activates
a new rule, retry rule. This rule combines the effects of the else-branch of backtrack and of select.
It is executed instead of select rule for every alternative except the first. It removes a choicepoint
(i.e. to set breg to b(breg)) only on execution of the last alternative. Otherwise it reuses the old
choicepoint by incrementing cll(breg). The old select rule, which allocates a new choicepoint is
now only called for the first alternative clause, and is renamed to try rule. The test whether any
alternative exists, can now be done already in the call rule instead of the try rule. To avoid code
duplication the common parts of try and retry rule (unification with the activator, incrementing
vireg etc.) are moved to a new enter rule, which is activated with mode := enter. Altogether these
transformations result in the following set of rules:

call rule
if mode = call A is_user_defined(act)
then if clause(procdef, (act,dbs)) = null
then backtrack
else cllreg := procdef, (act,dbs)
ctreg := breg
mode := try

enter rule
if mode = enter
then let cla = rename(clause(cllreg,dbs),vireg)
let mgu = unify(act, hd(cla))
if mgu = nil
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then backtrack

else decglseqreg := mgu ~; [<bdy(cla),ctreg> | cont]
subreg := subreg o mgu
vireg := vireg +1
mode := call

goal success rule
if goal = [] A decglseqreg # []
then decglseqreg := cdr(decglseqreg)

query success rule
if decglseqreg = [] then stop := halt
subst := subreg

try rule

if mode = try

then mode := enter
let tmp = new(s)
s :=s U {tmp}
breg := tmp
b[tmp] := breg
decglseq[tmp] := decglseqreg
sub[tmp] := subreg
cll[tmp] := cllreg +1

retry rule
if mode = retry
then if clause(cll[breg],dbs) = null
then deep-backtrack
else decglseqreg := decglseq[breg]
subreg := sub[breg]
cllreg := cll[breg]
ctreg := b[breg]
mode := enter

cut rule
if act = ! then father := cutpt
decglseqreg := cont

fail rule
if act = fail then backtrack

where

backtrack =
if breg = L
then stop := halt
subst := failure
else mode := retry

It should be noted, that enter rule uses a new register ctreg to set the cutpoint ctpt of the new
decglseqreg. This is necessary, since after a retry rule we must now use b[breg] instead of breg as
the value of ctpt. call rule and retry rule set ctreg appropriately.
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12.2 Equivalence Proof 2/3

The description of the optimization from ASM2 to ASM3 suggests not to look at single rules in
the verification, but to look for corresponding states, and to define groups of rules which keep this
correspondence invariant. Two obviously corresponding states are the ones, when both ASMs are
in call mode. In these states the values of the registers and the state of the choicepoint stack are
the same (modulo renaming of stack nodes). Only little more complicated is the correspondence,
when ASM3 executes a retry and ASM2 executes the corresponding select. In this case the register
contents of ASM2 agree with the content of the topmost choicepoint of ASM3, and the remainder
of ASMS3 stack is identical to the ASM2 stack. If one writes regs, stack resp. regs’, stack’ for the
registers and the stack of ASM2 resp. ASM3, a first attempt for the coupling invariant is

INV23(regs,stack,regs’,stack’) = CINV v RINV

where
CINV = mode = call A mode' = call A regs = regs’ A stack = stack’,
RINV = mode = select A mode’ = retry A stack’ = push(regs,stack)

An analysis, which rule sequences lead from corresponding states to corresponding states results
in the commuting diagrams shown in Fig. 12.1.

call select1 select1
CINV RINV RINV
RINV
B —
calll retryl
call select?2 select2
RINV RINV
CINV RINV
call2 try enterl retry?2 enterl
call select3 select3
RINV RINV
CINV RINV
call2 try enter2 retry?2 enter2
cut fail true
—_— —_—
CINVI ICINVCINVI IRINVCINVI ICINV
_— —_—
cut fail true

Figure 12.1 : Commuting Diagrams for the Refinement 2/3

selectl, select? and select3 are the three subcases of the select rule, retryl etc. are defined
similarly. The theory developed in Chapter 6 now shows, that the proof of commutativity for all
given diagrams is sufficient, to prove the equivalence of ASM2 and ASM3 (after a case distinction
over all possible pairs of rules, just instantiate the quantified variables ¢ and j in proof obligation
(6.5) according to the size of each diagram). The commuting diagrams as well as the first approach
for a coupling invariant agree with the ones given [BR95].

Since ASM3 allocates fewer nodes that ASM2, it is obvious that for the formal verification
to go through, we again need a mapping F' between the nodes. This again causes some of the
problems that already showed up in the first refinement, namely injectivity of F' on the current
stack, and the cutptsin property.
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A new property that was not needed in the verification of 1/2 is, that each decglseg[n] is not
empty, and its first goal starts with a user defined literal (we again write goalln] and act[n] for
these components). This property is necessary to make sure that the rule that is applied after
backtracking can only be retry, and not goal success.

Using the theory from Chapter 6 simplifies verification enormously, since it is completely
unnecessary to define a coupling invariant for intermediate states of the diagrams (see also the
comparison to Isabelle in Sect. 20).

A first attempt, to prove that all diagrams commute, was successful within 2 weeks, This first
attempt used a preliminary version of the theory, which allowed the use of arbitrary commuting
diagrams. It still required a separate correctness and completeness proof with two different cou-
pling invariants, as well as a proof of the generic modularization theorem for the concrete instance
(as we have now seen). 8 attempts were necessary, to find the two coupling invariants.

A second attempt with the full theory was successful to prove the equivalence of ASM2 and
ASM3 in a few hours. Of course the time for the successful second attempt was shortened by the
fact that a successful proof already existed. Somewhat more realistic is the comparison of interac-
tions in both proofs: instead of 234 interactions only 75 were necessary to prove the commutation
of all diagrams following coupling invariant.
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INV23 =
stop = stop’
A (stop = success — subreg = subreg’)
ANLesAnlLesd
A ( stop # run
(* CINV *)
V  stop = run A stop’ = run A mode = call A mode' = call
A vireg = vireg' A subreg = subreg’
A (AF. F[L] = L A breg = F[breg’]
A F4(F, decglseqreg’) = decglseqreg
A (STACK#(breg', b'; stack))
( (STACK#(breg, b; stacke)) Fi(F, stack) = stackg
A F injon stack A F(F, stack) C s A stack C s’
A decglseqreg’ cutptsin stack
A (Vn. n € stack
—  sub’[n] = sub[F[n]] A cll'[n] = cll[F[n]]
A Fa(F, decglseq’[n]) = decglseq[F[n]]
A decglseq’[n] cutptsin cdr(stack from n)
A decglseq’[n] # [] A goal'l] # [
A is_user_defined(act’[n]))))
(* RINV *)
V  stop = run A stop’ = run A mode = select A mode' = retry
A decglseqreg’ # [] A goal’ # [] A decglseqreg # [] A goal # []
A is_user_defined(act) A breg’ # L
A vireg = vireg' A sub’[breg'] = subreg A cll'[breg’] = cllreg
A (3 F. (STACK#(b'[breg'], b'; stack))
( (STACK#(breg, b; stackg)) Fi(F, stack) = stacko
A Fq(F, decglseq'[breg’]) = decglseqreg A F[L] = L
A F injon stack A Fi(F, stack) C s A stack C s’ A breg’ € s’
A decglseq’[breg’] cutptsin stack
A (Vn. n € stack
—  sub’[n] = sub[F[n]] A cll'[n] = cll[F[n]]
A Fa(F, decglseq’[n]) = decglseq[F[n]]
A decglseq’[n] cutptsin cdr(stack from n)
A decglseq'[n] # [] A goalln] # |
A is_user_defined(act[n])))))
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Chapter 13

3/4: Determinacy Detection

13.1 Definition of ASM4

In the refinement of ASM2 to ASM3 we have removed the unnecessary deallocation and reallocation
of choicepoints. But there is another possibility for optimization, namely choicepoints with an
empty list of candidates (“empty choicepoints”).

As an example in Fig. 11.2, p. 67 from Sect. 11.2 both choicepoints A’ (in ASM3 A is reused)
and C point to an empty list of clauses, i.e. clause(cll[A"],db2:) = clause(cll[C],db2) = null. Tf
such an empty choicepoint is visited in retry rule, deep-backtrack is called and the choicepoint is
simply removed. This behavior can be optimized by avoiding the creation of empty choicepoints
altogether with look-ahead tests (”‘determinacy detection”’). For the try rule this means, that a
choicepoint need not be created when procdefo(act,dby) gives only one clause. In the retry rule
a choicepoint can be removed altogether instead of modifying it, when the stored alternatives
become empty. The test for an empty choicepoint becomes obsolete. The state of ASM2 from
Fig. 11.2 then corresponds to the state of ASM4 shown in Fig. 13.1.

@
(Bl D] (D)3

decglseqreg = [([],4),([",true], L),([], 1) ]
breg = A

Figure 13.1

The modified try- and retry rule of ASM4 are
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try rule
if mode = try
then mode := enter
if clause’(cllreg +1, dby) # null
then let tmp = new(s)
s:=sU {tmp}
b[tmp] := breg
decglseq[tmp] := decglseqreg
sub[tmp] := subreg
cllftmp] := cllreg +1
breg := tmp

retry rule

if mode = retry

then decglseqreg := decglseq[breg]
subreg := sub[breg]
cllreg := cll[breg]
ctreg := b[breg]
mode := enter

/* look ahead guard */

if clause(cll[breg] +1,dbs) # null
then cll[breg] := cll[breg] +1
else breg := b[breg]

13.2 Equivalence Proof 3/4

To verify the equivalence between ASM3 and ASM4 a bijection F' between the nonempty choice-
points of ASM3 and ASM4 is needed. Whether the function is defined to map nonempty choice-
points of ASM3 to ones of ASM4 or the other way round is not too important, it only determines
which of the two stacks has to be computed with a call to STACK# (the other stack then is the
image under F'). To be consistent with [BR95] we have chosen to map the stack of ASM3 to the
one of ASM4.

As the critical point in the definition of the coupling invariant it remains to define a corre-
spondence between the cutpoints, To this purpose we use a program F# that maps each cutpoint
of ASM3 to the next one below it in the stack that is nonempty. Program G# applies F# to
all cutpoints of a decglseq. Applying first G# and then F' (with F;) on a decglseq of ASM3 then
gives the corresponding decglseq of ASM4. Again a first-order definition is not possible since in-
consistency due to cyclic pointer structures has to be avoided. Figure 13.2 graphically shows the
correspondence between the two choicepoint stacks. Empty choicepoints are shown as a “o”.

The formal definition of the procedures F# and G# is

F#(n,b,cll,dbs;var ny)

begin

ifn=1

then ng :=n

else if clause(cll[n],dbs) = null
then F#(b[n],b,cll,dbs;ng)
elseng :=n

end

G#(decglseqreg,b,cll,dby;var decglseqregp)
begin
if decglseqreg = [] then decglseqreg, := [] else



13.2. EQUIVALENCE PROOF 3/4 83

N
[eint] F# (e 7 .

b
v i
o ‘b’
F#(Eb :
Y Y
F [ ] [ ]
# : F :
‘b ‘b’
- A Y
[ ] [ )
#Cz F 5
‘b N
Y °

Figure 13.2 : Corresponding Choicepoints in ASM3 and ASM4

var ctptg, contg in
begin
F# (ctpt,b,cll,dbs;ctpto);
G#(cont,b,cll,dbs;contg);
decglseqregp := [(act, ctptg) | conty)
end

end

It corrects and simplifies the definitions of F' and G given in [BR95].
As a first approach for a coupling invariant the considerations above suggest

INV3y =
JF.
stop = stop’ A vireg = vireg’ A subreg = subreg’
A cllreg = cllreg’ A F[1] = L A mode = mode’
A (F#(breg, b, cll, dbs; bregg)) F[brego] = breg’
A (STACK# (breg,b;stack))
(G#(decglsegreg,b,cll,dbs;bf var decglseqregy))
Fq(F,decglseqregy) =decglseqreg’
A Y n. n € stack
—  sub[n] = sub’[n] A cll[n] = cll'[n]
A <F#(b[n]7 b7 C117 db2; Il[)))
Flno] = b/[F[n]

The two conjuncts with calls to F# and the formula F[1] = L describe the construction of
the ASM4 stack from the ASM3 stack. Most of the rules of ASM3 correspond to the same rule in
ASM4. Only applications of the retry rule, that remove an empty choicepoint with deep-backtrack
have no counterpart in ASM4. We have a 1:0 diagram for this case and 1:1 diagrams otherwise.
Therefore the function ndt from Chapter 6 no longer has the constant value mn. Instead we have
to define! ndt by

stop = run A decglseqreg # [] A goal # ||
A mode = retry A clause(cll[breg],dbs) = null
D ndt(x,x) = m0 ; ndt(x,x') = mn
LA D B;C abbreviates (A — B) A (- A — C), see Appendix B.
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In the definition, as usual z =decglseqreg, decglseq, stop, ... and z' = decglseqreg’, decglseq’,
stop’, ...denote the vectors of all dynamic functions of ASM3 and ASM4 (translated to program
variables). To apply the modularization theorem from Chapter 6, we also need to define a function
execOn that bounds the number of successive triangular 1:0 diagrams, i.e. of successive calls to
deep-backtrack. Such a bound is obviously given by the size of the ASM3 stack (computed with
#). With this instance, proof obligation (6.6) from Chapter 6 becomes

stop = run A INV34 A decglseqreg # [] A goal # []
A mode = retry A clause(cll[breg],dbs) = null
A (STACK# (breg,b;stack)) #(stack) = m
— (RULE;) ( INVay
A ((STACK#(breg,b;stack)) #(stack) < m V stop = failure))

The disjunct ndi(z,z') # m0 in the postcondition has been strengthened to stop = failure, since
this is the only case, where ASM3 does not reduce the size of the stack.

It should be noted, that the precondition of the proof obligation does not include stop’ = run.
Just on the contrary proof obligation (6.9) from Chapter 6 now requires to prove that

stop = run A stop’ # run A INV34 — ndt(x,x’) = m0

holds. This results in the main problem for the verification: it must be made sure that INV34
holds, when ASM4 has already terminated, while ASM3 still has to remove empty choicepoints.
This situation of asynchronous termination complicates the definition of the coupling invariant.
In it we do not have stop = stop’, and also mode = mode’ is violated. So we have to weaken these
properties in the coupling invariant to

(stop’ # failure — stop = stop’ A mode = mode')
A ( stop’ = failure A stop # failure
— mode = retry A breg’ = 1)

Together with the property

(F#(breg, b, cll, dbs; bregg)) F[bregg] = breg’

already present in the invariant, it is guaranteed that in the critical case, where ASM4 has stopped,
all choicepoints in the stack of ASM3 are empty.

As always this approach for the coupling invariant is still insufficient for the equivalence proofs.
Like in 1/2 and 2/3 we additionally need the injectivity of F', but this time only for nonempty
choicepoints. Also the cutptsin property and the existence of act[n] for every choicepoint n are
required. Finally we need to mention a number of preconditions for single rule applications like
mode’ = retry — breg’ # 1, and a characterization of ctreg and ctreg’ in terms of breg and breg'.
These properties were easy to find, and after 2 weeks of work and 5 iterations the following, correct
coupling invariant was found.

INV3y =
3F.
(mode = try — ctreg = breg A clause’(cllreg, dby) # null)
A ( mode = enter
—  breg # L A ctreg = b[breg] A subreg = sub[breg]
A clause’(cllreg, dbs) # null A cllreg+1 = cll[breg]
A decglseqreg = decglseq[breg])
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mode’ = retry — breg’ # 1)
mode’ = try — ctreg’ = breg’ A clause’(cllreg’, dbs) # null)
mode' = enter — clause’(cllreg’, dbs) # null)
mode’ = enter A clause’(cllreg’+1, dbs) # null
— breg’ # L A ctreg’ = b'[breg'])
A (mode’ = enter A clause’(cllreg'+1, dby) = null — ctreg’ = breg’)

A
A
A (
A

AF[L]=LALesALeEs Abreg€ s A ctreg € s
A vireg = vireg’ A subreg = subreg’ A cllreg = cllreg’
A (mode = retry — breg # L A decglseqreg # [] A goal # [])
A (decglseqreg’ =[] V goal = [] = mode = call)
A (stop’ # failure — mode = mode’ A stop = stop’)
A ( stop’ = failure A stop # failure
— stop = run A mode = retry A breg’ = 1)
A (F#(breg, b, cll, dbs; ng)) F[ng] = breg’
A {(G#(decglseqreg, b, cll, dbs; decglseqreg,))
F4(F, decglseqreg,) = decglseqreg’
A (STACK# (breg, b; stack))
( stack C s A (mode # retry — decglseqreg cutptsin stack)
A (Vn. n € stack
—  decglseq[n] cutptsin cdr(stack from n)
A decglseqfn] # [ A goalln] # [)
A (¥ n. n € stack A clause’(cll[n], dbs) # null
— F[n] € s A F[n] # L A decglseq[n] # [] A goal # []
A (F#(b[n], b, cll, dba; ng)) Fng] = b'[F[n]]
A {(G#(decglseq[n], b, cll, dbs; decglseqregp))
F4(F, decglseqregy) = decglseq'[F[n]]
A clln] = cll'[F[n]] A sub[n] = sub’[F[n]]
A (¥ ny. ny € stack A clause’(cll[ny], dbs) # null
An #ng
~ Fln] # Fimy))))

With hindsight this invariant could be simplified by merging some of the 1:1 diagrams which
deterministically are successors of each others. This is the case for the rule sequences call (second
case that does not backtrack) try, enter (which gives a 3:3 diagram) and retry, enter (2:2 diagram).
Using larger diagrams would reduce the number of states, in which the coupling invariant must
hold. Specifically all conjuncts with one of the preconditions mode = try, mode' = try, mode =
enter or mode' = enter, i.e. the first 11 lines of the invariant, could be removed.
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Chapter 14

4/5: Linear Compilation of
Predicate Structure

14.1 Definition of ASM5

The first three refinement steps can be viewed as an optimization of the first ASM which do not
change the representation of the Prolog program. In contrast, the refinement from ASM4 to ASM5
compiles the predicate structure of Prolog. For the first time instructions are introduced, which
will also be present in the final WAM. We will deviate in this section from [BR95] insofar, as
the code of ASM5 will first contain linear chains, not the more complex nested chains, which we
will define in ASM6 (a precise definition of “chains” will be given below). The reason is, that
the refinement 4/5 allows to study the typical problems of a compilation step, without having to
consider the problems of m:n diagrams simultaneously.

The general idea of the refinement step is to move control over the rule to be executed from the
mode-Variable to the actual code. To do this, cllreg no longer points to the line of a clause, but
to an address, where instructions are stored. cllreg becomes a program counter, and is therefore
renamed to preg. Similarly the clause line cllfn] stored in choicepoints becomes a code pointer
p[n].

The instruction stored at preg is now the result of a function code, that replaces clause. Checks
for the value of mode are replaced by checks on the type of the instruction code(preg,dbs), where
dbs is the database of ASM5. Possible instructions may at this stage still be clauses (they are
replaced by finer-grained instructions in the refinements 8/9 and 9/10), but additionally we now
have the control instructions try_me_else, retry_me_else and trust_me, which replace the rules try
and retry (then and else case).

To understand the effect of the control instructions, consider the following example clauses for
a predicate p:

p(X) :- bodyl.
p(f (X)) :- body2.
p(g(X)) :- body3.
p(g(X)) body4.

(14.1)

In the refinement of ASM4 to ASM5 they are translated to the code fragment (labels L1 — L4 are
symbolic addresses):
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L1: try_me_else(L2)
pX) :- bodyl.
L2: retry_me_else(L3)
p(£(X)) :- body2.
L3: retry_me_else(L4)
p(g(X)) :- body3.
L4: trust_me
p(g(X)) :- body4.

(14.2)

On a query ?7- p(X), call rule of ASM5 (called when preg is at a special start address) will set
preg to the start address L1 of the clauses for p (a special address failcode is used as the result of
the procdef function, when no clauses are available for an activator).

call rule
if is_user_defined(act) A preg = start
then ctreg := breg
if code(procdefs (act,dbs)) = failcode
then backtrack
else preg := procdefs(act,dbs)

where

backtrack =
if breg = L
then stop := failure
else preg := p[breg]

Execution of try me_else(L2) at address L1 with the ¢ry-me rule will have the same effect,
that ¢ry rule in ASM4 had.

try_me rule
if code(preg,dbs) = try_me_else(N)
then let tmp = new(s)
s :=s U {tmp}
breg := tmp
b[tmp] := breg
decglseq[tmp] := decglseqreg
sub[tmp] := subreg
pltmp] = N
preg := preg +1

The address for alternative clauses stored in the choicepoint is L2 and execution continues with
the next address. The clause there is executed with enter rule, which has the same effect as in
ASM4. Since it must activate call rule on successful invocation, it sets preg := start.

enter rule
if is_user_defined(act) A code(preg,dbs) = clause
then let cla = rename(clause,vi)
let mgu = unify(act, hd(cla))
if mgu = nil
then backtrack
else decglseqreg := mgu ~; [<bdy(cla),ctreg> | cont]
subreg := subreg o unify
vi:=vi +1
preg := start
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When preg is set to L3 or to L5 by backtracking, the retry_me rule resp. the trust_me rule
are executed. They correspond to the then- and the else-branch of retry rule of ASM4. The case
distinction is no longer done at run time, but at compile time.

retry_me rule
if code(preg,dbs) = retry_me_else(N)
then decglseqreg := decglseq[breg]
subreg := sub[breg]
ctreg := b[breg]
plbreg] := N
preg := preg +1

trust_me rule
if code(preg,dbs) = trust_me
then decglseqreg := decglseq[breg]
ctreg := b[breg]
subreg := sub[breg]
breg := blbreg]
preg := preg +1

In general, the list of clauses for one predicate given in the original program is compiled to
a code fragment stored in the memory of ASM5, which starts with a try me_else instruction
and consist of the list of clauses separated by retry me_else instructions, except the last, which
is separated by a trust.me instruction. Such a code fragment is called a linear chain. The
requirement, that all code fragments must be linear chains is formally reflected in the compiler
assumption for the refinement from interpreter 4 to 5:

dbs= compileys(dbs)
— [CLLS#(procdef,(act,dbs),dbs),dbs;coly )]
(L-CHAIN# (procdefs (act,dbs),dbs;cols))
mapclause’(col;,dby) = mapclause’(cols,dbs)

(14.3)

procdefo and dbs are the procdef function and the Prolog program that have been used in the ASM2,
ASM3 and ASMA4. procdefs is the new procdef-function for ASM5 and dby is the compiled Prolog
program. The procedure L-CHAIN# terminates, iff the code fragment stored at procdefs (act,dbs )
is a linear chain, and delivers the clauses contained in it. As for stackof (see p. 71 in Sect. 11.2)
a definition a first-order function [-chain instead of the procedure is not sufficient to characterize
linear chains. By the termination of the procedure cyclic chains have to be ruled out as possible
results of the compilation. A precise definition of the L-CHAIN# program is given in appendix
D.1.

14.2 Equivalence Proof 4/5

A precise analysis of the refinement from ASM4 to ASM5 shows that it does not just replace mode
with instructions. Also the test clause(procdefs(act,dbs)) = null is moved from ¢ry rule (ASM4)
to call rule (ASM5). This modification can also be done in ASM4. Just replace ¢ry rule and call
rule with

call rule
if stop = run A mode = call
A is_user_defined(act)
then if clause(procdef, (act,dbs)) = null
then backtrack
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else cllreg := procdef,(act,dbs)
ctreg := breg
if clause(procdefs (act,dbs)+1, dbs) # null
then mode := try
else mode := enter

try rule

if stop = run A mode = try

then mode := enter
let tmp = new(s)
s :=s U {tmp}
breg := tmp
b[tmp] := breg
decglseq[tmp] := decglseqreg
sub[tmp] := subreg
cllftmp] := cllreg +1

If we call the result ASM4a, then the refinement of ASM4a to ASM5 only contains 1:1 diagrams.

In the verification of the refinement from ASM4 to ASM4a we must consider a 2:1 and a
2:2 diagram for the case where mode = call and no backtracking happens, depending on whether
clause(procdefs (act,dby)) = null holds. Otherwise the verification is trivial, since obviously identity
suffices as coupling invariant.

The verification of 4a/5 was the subject of the diploma thesis of Wolfgang Ahrendt at the
university of Karlsruhe ([Ahr95]). Details are also given in [SA98].

About one month of work and 9 iterations were necessary to find the correct coupling invariant.
The complexity of the proofs is about the same as for the refinement 1/2. The main problem in
the development of the coupling invariant is to transform the compiler assumption into suitable
connections between the choicepoints. E.g. in the case mode = retry we must have that for each
choicepoint n the code chain of ASM5 at pe[n] starts with a retry-me_else or trust-me and contains
the same clauses as the clause list of ASM4 starting with cli[n]. Formally we have to add

(CLLS#(cll[n], dbe; coly))
(L-CHAIN-RETRY-ME#(p[n], dbs; col,))
mapcode(cols, dbs) = mapclause’(col;, dbs))

to the coupling invariant. The use of a subprocedure (here C-CHAIN-RETRY-ME#) of the
procedure L-CHAIN# used in the compiler assumption is typical for compilation steps (for the
definition of L-CHAIN# see appendix D.1). To have a simple coupling invariant, it is recommend-
able to structure the procedures in the compiler assumptions according to the structure of ASM
runs.

The most important result of the formal verification of 4a/5 was that an unintended indeter-
minism was revealed in ASM3 and ASM4. The problem was found when verifying 4a/5, since this
refinement was verified before refinements 2/3 and 3/4.

To see the problem, consider again the fail rule from ASM3 (p. 76), that is also used in ASM4.
The obvious intention of the rule is that retry rule should be executed afterwards.

Now it seems to be obvious that the only rule that is applicable at all after execution of fail
rule is indeed retry rule. But our correctness proofs revealed that fail rule does not invalidate its
own guard, so it may be executed again, leading to an infinite loop. The rule system is therefore
indeterministic (or following the terminology of [Gur95], inconsistent), and does no longer correctly
implement a Prolog interpreter.

Although the error is easy to correct (the conjunct mode = call must be added to the guard of
fail rule), we think this is a typical error that is very difficult to find even by intensive inspection
(and, of course, we had to inspect the code thoroughly before we could make an attempt to define a



14.2. EQUIVALENCE PROOF 4/5 91

coupling invariant). A reader will always unconsciously resolve the indeterminism in the intended
way. Nevertheless, an implementation is blind for intentions, and will possibly resolve the conflict
in the wrong way (and ours did!).

The coupling invariant required for successful verification is:

INV45 =
stop = stop’ A vireg = vireg’ A subreg = subreg’ A breg = breg’
A ctreg = ctreg’ A decglseqreg = decglseqreg’ A s = s’ A breg € s A ctreg € s
A decglseqreg ctpelem s
A (mode = call — preg = start)
A (mode = retry — breg # L A preg = p[breg'])
A (mode = enter — code(preg, dbs) = mkel(the_clau(clause’(cllreg, dbs))))
A ( mode = try
—  is_user_defined(act)
A (CLLS#(cllreg, dbs; coly))
(L-CHAIN-TRY-ME# (preg, dbs; colp))
mapcode(cola, dbs) = mapclause’(col;, dbs))
A (decglseqreg =[] V goal =[] V act =! V act = true — mode = call’)
ANVn nesAn#l
—  b[n] € s A decglseq[n] ctpelem s A sub[n] = sub'[n]

A b[n] = b'[n] A decglseqn] = decglseq’[n] A decglseq[n] # []

A goal # [] A is_user_defined(act[n])

A (CLLS#(cll[n], dbs; coly))

(L-CHAIN-RETRY-ME#(p[n], dbs; coly))
mapcode(colz, dbs) = mapclause’(col;, dbs))
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Chapter 15

5/7: Structured Compilation of
Predicate Structure

15.1 Definition of ASM6 and ASMT7

In ASMs 1-5 the problem, how to determine “relevant” clauses, which have a head that unifies
with an activator, was encoded into the under-specified procdef function. In ASM7 this under-
specification is removed by defining instruction sequences that select relevant clauses.

A concrete definition of the procdef function has to be between two extremes:

e A simple implementation, in which procdef(act,db) returns all clauses, which have a head
that starts with the leading predicate symbol of act. This solution is inefficient, since it
leads to a linear search in clauses, and causes a lot of (expensive) failed unification attempts.
Consider e.g. a collection of facts p(c1), ..., p(cy) in a database.

e An elaborate solution, which selects exactly those clauses, which unify with the activator.
Such a solution is possible using “discrimination nets” (see e.g. [Gra96]). It encodes the
whole unification into clause selection.

The solution taken in the WAM is a compromise between both extremes. It uses the simple
procdef function in the call rule and additional switching instructions, that select relevant “groups”
of clauses depending on the leading function symbol of some argument of act. If e.g. the activator
is of the form p(t1,f(t2)), then a switching instruction could select a group of clauses which
have as second argument either a variable or £. Clauses with a second argument, that starts with
a function symbol different from £ would not be considered.

Before switching instructions can be introduced, first “grouping” of clauses must be made
possible. This is done in ASM6 by allowing instruction sequences that form nested chains. Nested
chains are defined like linear chains, but at each position where a linear chain contains a clause,
a nested chain may contain another (nested) chain. Such an inner chain can be used to group
similar clauses together, so that they can be skipped as a whole with a switching instruction in
ASMT.

If we look at the example program (14.1) from Sect. 14.1, then we could for example group the
last two clauses. The resulting code shown in Fig. 15.1 has a subchain for the two clauses starting
at label L4.

93
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L1: try_me_else(L2)
p(X) :- bodyl.
L2: retry_me_else(L3)
p(£(X)) :- body2.
L3: trust_me (15.1)
L4: try_me_else(L5)
p(g(X)) :- body3.
L5: trust_me
p(g(X)) :- body4.

Allowing nested instead of linear chains requires only a minimal change in the ASM code. In
the retry_me_else and trust_me instructions we can no longer load ctreg with b[breg], since the
cutpoint of the currently active goal need no longer be the father of breg. Instead all choicepoints
that were constructed for the current goal have to be ignored. The number of these choicepoints is
equal to the nesting depth of the chain the ASM currently works on. For the trust_me at L5 it is 2,
the correct value that should be assigned to ctreg in the rule therefore should be ctreg := b[b[breg]].
The trust_me at L3 should set ctreg to b[breg]. To solve the problem, there are two alternatives.
[BR95] leaves open which one to choose by not giving a concrete definition for the restore_cutpoint
statement. The first solution is to add an additional argument to each retry_me_else and trust_-me
instruction, which records its current depth in the chain. The second solution is to store the
correct ctreg within the choicepoint. We have chosen the second one, since according to [AK91]
it is the one usually adopted. An additional component ct is added to each choicepoint and the
new try-me_else, retry-me_else are trust_me rule are:

try_me rule
if code(preg,dby) = try_me_else(N)
then let tmp = new(s)
s :=s U {tmp}
b[tmp] := breg
decglseq[tmp] := decglseqreg
sub[tmp] := subreg
p[tmp] := N
breg := tmp
ct[tmp] := ctreg
preg := preg +1

retry_me_else rule
if code(preg,db) = retry_me_else(N)
then decglseqreg := decglseq[breg]
ctreg := ct[breg]
subreg := sub[breg]
plbreg] := N
preg := preg +1

trust_me rule
if code(preg,dbr) = trust_me
then decglseqreg := decglseq[breg]
ctreg := ct[breg]
subreg := sub[breg]
breg := b[breg]
preg := preg +1

After ASM6 has made grouping instructions together possible, ASM7 allows to put switching
instructions at the front of chains or subchains. There are three types:
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e switch_on_term(i,Lv,Lc,L1,Ls) jumps to address Lv, Lc, L1 or Ls, if the i** argument
arg(act,i) of the activator is a variable, a constant a list or a function term (a structure).

e switch on struct(i,N,T) assumes, that it has been already assured, that arg(act,i) is a
structure. The address to jump to is found by looking up the leading function symbol in a
table of triples (f,7,L). If arg(act,i) is a function term with leading function symbol f and j
subterms, the instruction jumps to L. The selection of the jump address is encoded into an
abstract function hashs. For the case described we have

hashs(arg(act,i),N,T,db7) = L

e switch on const(i,N,T) assumes similar to switch_on_struct that arg(act,i) is a constant
and branches according to a table at address T that stores N pairs (¢,L). For the abstract
function hashc we have analogously

hashs(arg(act,i),N,T,db7) = L
whenever arg(act,i) = c.

In our example we could add at L4 the following switching instructions:

L1: try_me_else(L2)
pX) :- bodyl.
L2: retry_me_else(L3)
p(f(X)) :- body2.
L3: trust_me
L4: switch_on_term(L7,failcode,failcode,L6) (15.2)
L6: switch_on_struct(1,1,T)
L7: try_me_else(L5)
p(g(X)) :- body3.
L5: trust_me
p(g(X)) :- body4.

Address T should contain a list with one element (g,1,L7). failcode is a special address, that
leads to backtracking. This address must be returned by hashs and hashc, when the function or
constant symbol is not found in the table. The ASM instructions for switching are

switch_on_term rule
if code(preg, db7) = switch_on_term(i, Ny, N., N,,, N;)
then let x; = arg(act,i)
if is_struct(x;) then preg := N else
if is_const(x;) then preg := N, else
if is_var(x;) then preg := N,, else
if is_list(x;) then preg := Ny;
if preg = failcode then backtrack

switch_on_constant rule
if code(preg, db7) = switch_on_constant(i, tabsize, table)
then let x; = arg(act,i)
preg := hashc(table, tabsize, constsym(x;), dbr);
if preg = failcode then backtrack

switch_on_structure rule
if code(preg, db7) = switch_on_structure(i, tabsize, table)
then let x; = arg(act,i)
preg := hashs(table, tabsize, funct(x;), arity(x;),dbr);
if preg = failcode then backtrack
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Note that the failcode address is used in the examples given in [BR95], but that the call
of backtracking is missing in the ASM rules of appendix 2. In the rules given in [AK91] for
switch_on_struct and switch_on_const the call is defined, but in the switch_on_term it is also realized
only by the assumption never given explicitly, that failcode is the address of the backtracking
routine.

To allow the use of clauses in several chains, ASM6 additionally introduces instructions ¢ry(L),
retry(L) and ¢rust(L). Their effect is identical to the one try-me_else(L), retry-me_else(L) and
trust_me, except that the role of L and preg +1 as address of the choicepoint to create resp. address
to continue the computation are exchanged.

try rule

if code(preg,db;) = try(N)

then let tmp = new(s)
s :=s U {tmp}
b[tmp] := breg
decglseq[tmp] := decglseqreg
sub[tmp] := subreg
p[tmp] := preg +1

breg := tmp
ct[tmp] := ctreg
preg := N

retry rule
if code(preg,dbr) = retry(N)
then decglseqreg := decglseq[breg]
ctreg := ct[breg]
subreg := sub[breg]
p[breg] := preg +1
preg := N

trust rule
if code(preg,dby) = trust(N)
then decglseqreg := decglseq[breg]
ctreg := ct[breg]
subreg := sub[breg]
breg := b[breg]
preg := N

In our example above a meaningful use of the new instructions would be

switch_on_term(L2,failcode,failcode,Ll)
L1l: switch_on_struct(1,1,T)
L2: try_me_else(L4)
pX) :- bodyl.
L3: retry_me_else(L6)
L4: p(£(X)) :- body2.
L5: retry_me_else(L8)
L6: p(g(X)) :- body3.
L7: trust_me
L8: p(g(X)) :- body4.
L9: try(Le)
trust (L8)

(15.3)
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where the table T' now has entries (g, 1,L6) and (f,1,L9). With an activator p(£(X)) ASM7
would execute the first two switching instructions. The last one would jump to L9. There, by
execution of the try and trust the clauses at L6 and L8 would be tried.

Finally it should be remarked, that the code schemes given are only two of many possible ones.
The compiler assumption of 5/7 allows a great number of alternatives, among others the variants
“one-level switching” and “two-level switching” discussed in [AK91].

The compiler assumption

dbe = compilesg(dbs) — [L-CHAIN#(procdefs (act,dbs),dbs; coly)]
(CHAIN# (procdefs (act,dbg),dbg; cols)) (15.4)
mapcode(col;, dbs) = mapcode(cols, dbg)

for 5/6 is similar to the one for 4/5. By the introduction of switching instructions in ASM7
selection of relevant clauses for one leading predicate symbol is then moved from the procdef
function to the switching instructions. Only the starting address for one leading predicate symbol
must still be selected by a procdef function. The selection can now be done by a table lookup,
abstractly encoded into a dynamic function procdef;, which is a result of the compilation step from
ASM6 to ASM7. Therefore we have for compilegr(dbg) :=(procdef;,dbs) :

[CHAIN# (procdefg (act,dbg),dbg; coly)]
(S-CHAIN# (act, procdef;[id(act)],dbz; cola)) (15.5)
mapcode(coly, dbg) = mapcode(cols, dbr)

In the compiler assumption id selects the leading predicate symbol of a literal including its arity.
We have introduced selection of the leading predicate symbol in the refinement 6/7, since it seemed
to be the logical consequence of the refinement idea for clause selection given in [BR95], p. 27. In
[BR95] selection of the leading predicate symbol is done, without mentioning the change, only in
the final ASM (the WAM).

The programs CHAIN# and S-CHAIN# in the compiler assumption characterize nested chains
and nested chains with switching. A concrete definition of these programs is given in appendix
D.2. The definition is significantly more complex that the definition given in [BR95], because
cyclic chains have to be avoided. Also the fact, that switching instructions are allowed only at the
beginning of subchains had to be made precise.

15.2 Equivalence Proof 5/7

An informal argument for the equivalence of ASM5, ASM6 and ASMT7 is that they all try the
same candidate clauses. To be a little more precise, all 3 ASMs go through the same sequence of
call and enter rules with the same activators act and the same candidate nodes (in the remaining
chain starting with preg). Unfortunately this informal argument, which is also given in [BR95],
is far away from a formal proof. Although it suggest to decompose the commuting diagram into
subdiagrams with corners at states where preg = start and is_clause( code(preg,db)), it does neither
give a hint how to set up a correspondence between states, nor how to prove the commutativity
of the subdiagrams.

To make the verification manageable, we therefore had to solve the following three problems,
that will be discussed in the following sections:

e Define a precise correspondence between the choicepoint stacks.

e Given the correct correspondence between choicepoints, define another one for the cutpoints
stored in the decglseq’s. This results in a first approach to define the coupling invariant.

e Finally verify the subdiagrams. These now have no fixed size any longer as in all previous
refinements. Their size now depends on the number of instructions in the code chains. We
discuss two methods two verify diagrams with datastructure-dependent size.
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Trying to solve the first problem, one immediately finds that it is easier to verify the refinement
5/7 than to verify 6/7. In the first case the one choicepoint that is allocated for an activator in
ASM5 must be compared with the corresponding set of choicepoints in ASMT7 (like for 5/6), for
the second case two sets of choicepoints must be compared. We have first verified refinement 5/6,
quasi as a “preliminary study” for the problems that will occur in 5/7. We will discuss the three
problems described above first for the refinement 5/6 and will then show how much the solutions
developed for 5/6 had to be changed for 5/7.

Correspondence of Choicepoint Stacks To model the correspondence of choicepoint stacks
we first used for 5/6 as well as for 5/7 a dynamic function H : node — nodelist that given an ASM5
choicepoint returns the corresponding ones of ASM6 resp. ASM7. The function is used existentially
quantified in the coupling invariant just like function F' was used in the verification of 1/2 (see
Sect. 11.2). Appending of all the (nonempty) lists H[n] for all stack nodes n of ASM5 should
give the stacks of ASM6 resp. ASM7. The (remainder of a) chain starting at p[n] (computed with
CHAIN-RET#) should contain the same clauses as can be computed by appending the clauses
that are stored in the chains p'[n'] for n' € H[n] (these clauses are computed with the program
APP-CHAINS-RET#). Also the sub[n] and the goals in decglseq[n] should be identical to sub[n']
and decglseg[n']. Formalized this can be written as:

(STACK#(breg,b;stack))
( (STACK#(breg',b';stack’)) stack’ = H,(H stack)
A Y n. n € stack
— (L-CHAIN-RET#(p[n], dbs;col,))
(S-APP-CHAINS-RET# (decglseq’,p,H[n],dbz;cols))
mapclause(col;,dbs) = mapclause(cola,dbr)

Now it turns out, that this formula is a correct description of the correspondence of ASM5 and
ASMS6, but insufficient for 5/7. The reason is, that in ASM7 choicepoints n are possible, for which
the chain starting at p[n] does contain no clauses at all (i.e. a suitable call to S-CHAIN-RET#
computes an empty list of clauses). For such a choicepoint, which we call empty in the following,
there is no corresponding choicepoint in ASMS5.

An example for such an empty choicepoint can be constructed for the following example pro-
gram, where we assume that table 7' contains the two entries (f,1,L5) and (g, 1,L7):

Ll: try_me_else(L2)
pX) :- bodyl.
L2: trust_me
switch_on_term(L4,failcode,failcode,L3)
L3: switch_on_struct(1,2,T) (15.6)
L4: try_me_else(L6)
L5: p(£(X)) :- body2.
L6: trust_me
L7: p(g(X)) :- body3.

For an activator p(h(c)) an empty choicepoint n is present while the first clause is considered.
During this p[n] points to L2 (allocated in the try-me_else instruction). But execution of the
instructions at L2 will lead to backtracking in the switch_on_struct) instruction, without any
clause being considered. Nevertheless the empty choicepoint is present, while body! is executed.
On the other hand, in ASM5 no choicepoint is constructed for the activator p(h(c)), since the
code of ASM5 consists according to the compiler assumption

(L-CHAIN# (procdef; (act,dbs), dbs; coly)) coly = [p(X) :-bodyl]
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of only the first clause. Summarizing, the image of the ASM5 stack under H is not the whole
ASMT stack, but between the images H[n] and H[b[n]] of two successive choicepoints there may
be an arbitrary number of empty choicepoints.

Figure 15.1 depicts the situation graphically. Empty choicepoints are represented as ‘o’. regs
are the current values of the registers decglseqreg,subreg and cllreg. The figure shows, that the
contents of ASM5 registers not only correspond to the registers of ASM6 resp. ASM7, but also
to an additional list nl of choicepoints. It is also shown that we have formalized the problem of
empty choicepoints using an additional function Hy and an additional list nly. It should be noted
that at the lower end of an ASM7 stack there may also be a list Hy(L) of empty choicepoints.
This causes the problem of asynchronous termination just as in the refinement 3/4.

Correspondence of Cutpoints For the refinement 5/6 a cutpoint ctpt of ASM5 is simply
mapped to car(H|[ctpt]), the topmost corresponding Cutpoint in ASM6. H;(H,decglseq[n]) maps
all cutpoints of decglseg[n] in this way.

We made a similar assumption, that ctpt should be mapped to car(Hy[ctpi]) also in our first
proof attempt for 5/7. But a thorough analysis why it failed showed, that the cutpoint of ASM7
corresponding to ctpt maybe located anywhere between H[ctpi] and H[b[ctpi]] or may be the first
element of H[b[ctpl]]. There is even an exception for b[ctpt] = L: then the corresponding cutpoint
may be in Hp[L] or it may be L itself. The formal definition of similarity between decglseq’s of
ASM5 and ASMT is therefore (edr([]) ist defined as [] here):
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eqh(H07 H7 []7 [])7
- eqh(Ho, Ha [(goal,Ctpt>7dgl]a[])a
= eqh(Hy, H, [],[{goal’,ctpt’), dgl']),

eqh(H07 H7 [(goalaCtpt>a dgl]7[<g0allaCtptl>a dgll])
+  eqh(Hy, H, dgl, dgl’) A goal = goal’
A (ctpt = L D ctpt’ € Hp[L] V ctpt’ = L;
ctpt’ € Ho[L] A ctpt’ & cdr(H[ctpt])

Diagrams with Datastructure Dependent Size The commuting diagrams in the refinements
5/6 and 5/7 are no longer diagrams of some type m:n with some constants m, n (e.g. m = 1,
n = 2). Instead n is determined by the number of instructions, that have to be executed until
the next clause is reached. That n is finite, is implicitly guaranteed by the termination of the
CHAIN# resp. S-CHAIN# program from the compiler assumption, but for a formal (inductive)
argument we need an explicit size n. An explicit definition is easy for 5/6, since the number of
instructions in a chain corresponds directly to the number of clauses stored in the chain. For ASM7
this is not the case, since empty chains of arbitrary length are possible. Therefore appendix D.3
defines a procedure S-COUNT# which explicitly counts the remaining instructions in the chain.
The termination of S-COUNT# should be intuitively clear, since it follows the same recursion
structure than S-CHAIN#. But for a formal proof we need the new proof principle of induction
over the recursion depth of procedures, that was described in Sect. 3. It allows to prove the
termination of S-COUNT# (as well as the termination of all auxiliary procedures mentioned in
appendix D.3) easily.

To prove the commutation of diagrams of datastructure dependent size, we then have 2 alter-
natives, that we will discuss in the following. Either we can recursively decompose them, or we
can prove auxiliary lemmata for each single ASM.

Recursive Decomposition of Diagrams This technique was applied in the verification of
5/6. It interprets each m:n (sub)diagram with a datastructure dependent n as a refinement, and
decomposes it, using the modularisation theorem recursively into smaller (subsub)diagrams. This
aproach seems natural here, since the coupling invariant WINV 54 for two intermediate states dur-
ing the execution of such a diagram can be defined just by generalizing the case from the coupling
invariant INV g, in which both ASMs are directly at a clause: For 5/6 the requirement that
is_clause( code(preg,dbs)) A is_clause(code(preq ,dbg)) is generalied to the the weaker requirement,
that the instruction sequences currently executed lead to the same clause. The weaker invariant
WINYV 56 for subdiagrams now holds in all intermediate states. It decomposes the diagrams shown
in Fig. 15.2 in 1:0 and 0:1 subdiagrams.

Pairs of states which correspond according to WINV 54 are connected by dashed lines. calll
and call2 denote the first resp. second case of the call rule. The suffix “(a)” denotes the subcase
of backtracking, where breg = 1, in which the ASM therefore finishes its computation with result
failure. The suffixes “(A)” and “(B)” divide the successful case of call rule into the subcase,
where only one clause is tried and into the subcases, where several clauses are to explore (in the
latter case the subsequent instruction must be a try_me_else or a try). ret* denotes an arbitrary
number of retry, retry_me, trust or trust_me instructions, and #r* an arbitrary number of try or
try_me instructions. The resulting subdiagrams of the recursive application of the modularisation
theorem are shown in Fig. 15.3.

Compared to an immediate decomposion of the whole proof in the smaller subdiagrams the
aproach has the advantage that proofs are more modular, and coupling invariants are somewhat
smaller. These advantages should in general be compared to the necessity to define two coupling
invariants INV 56 and WINV 56 simultaneously. The disadavantage is not too much of a problem
here, since the relation
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enterl(a)
fail(a)
call2(A)  tryme call2(B) calll(a)
—>A—’>1A R R
P INV
INVI | Y | \ INVI IINVINVI IINV
0 \
_ _
call2 tr* call2 enterl(a)
faill(a)
111
enter1(b) enterl(b) call(a)
fail(b) fail(b)
calll(b) retryme calll(b)  trustme
A A A
N INV
INV I | | N INV I | IINV
Y A \
enterl(b) retry tra enterl(b) trust
fail(b) trust fail(b) trustme
calll(b) retryme calll(b)
trustme
cut goal query
—_— —_—
INVI IINV INVI IINV INVI IINV
_ _— —_—
cut goal query

Figure 15.2 : Commuting Diagrams for the Refinement 5/6

preg # start
— ( INV36
<+  WINV;56 A is_clause(code(preg,dbs))
A is_clause(code(preg’,dbs)))
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must hold, which given WINV 54 is sufficient to construct INV5g for the case where preg # start
(the case preg = start is relatively easy). The refinement could be verified in 2 weeks and with
8 iterations. The generalisation of INV 54 to WINV 56 was no real problem. The following two

coupling invariants were used:
HINV56 =
Jh. L esALes Ah[L] =[L] A ctreg € s A ctreg’ € ¢
A stop = stop’ A vireg = vireg’ A (h[breg] # [| — car(h[breg]) = breg’)
A (= ( isretry_me(code(preg’, dbg)) V is_retry(code(preg’, dbg))
V is_trust_me(code(preg’, dbg)) V is_trust(code(preg’, dbg)))
— ctreg’ = car(h[ctreg)]))
A subreg = subreg’ A hdg(h, decglseqreg) = decglseqreg’
A (preg = start <> preg’ = start)
A (decglseqreg =[] V goal =[] V act = ! V act = true — preg = start)
A ( is_clause(code(preg, dbs)) A ctreg # breg
—  ctreg = b[breg] A breg # L
A decglseq[breg] = decglseqreg A sub[breg] = subreg)
A ( preg # start
— is_clause(code(preg, dbs)) A is_clause(code(preg’, dbg))
A code(preg, dbs) = code(preg’, dbg)) A ctreg’ = car(h[ctreg])
A (STACK#(breg, b; stack))
( stack C s A decglseqreg cutptsin stack
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tryme
» A 4 » EAS
\ / / \ / \
\ / / \ / \
\ ¥ ¥ \ ¥ \
—_—  E—
try tryme
call enter trustme trustme
A A A A
| | | |
\ A N A
call enter trust trustme
retryme retryme retryme retryme
A A A A A A A A
| | | | | | | |
\i \i A A \i \i A Y
retry trust retryme trustme

Figure 15.3 : Subdiagrams for the Refinement 5/6

A (STACK#(breg', b'; stack’))
(stack’ = hl(h, stack) A stack’ C ')
A (Vn. n € stack
—  decglseq[n] # [] A goal[n] # ]
A is_user_defined(act[n]) A h[n] # [|
A decglseq[n] cutptsin cdr(stack from n)
A (Y ng. ng € hin]
—  sub[n] = sub’[ng]
A hdg(h, decglseq[n]) = decglseq'[no]
A ct[ng] = car(h[b[n]]))
A (L-CHAIN-RETRY-ME# (p[n], dbs; col))
(APP-CHAINS-RET#(p’, hfn], dbg; coly))
mapcode(col, dbs) = mapcode(cols, dbg)))
A STACKINV5g (true)

WINV56 =
Jh. LesALles Ah[L] =L 44 [] Actreg € s A ctreg’ € s
A stop = run A stop = stop’ A vireg = vireg’
A (h[breg] # [| — car(h[breg]) = breg’)
A (= ( isretry_me(code(preg’, dbg)) V is_retry(code(preg’, dbg))
V is_trust_me(code(preg’, dbg)) V is_trust(code(preg’, dbg)))
— ctreg’ = car(h|ctreg]))
A subreg = subreg’ A hdg(h, decglseqreg) = decglseqreg’
A preg # start A preg’ # start
A decglseqreg # [] A goal # [] A act # ! A act # true
A (is-try_me(code(preg, dbs)) — is_user_defined(act) A ctreg = breg)
A ( is_clause(code(preg, dbs)) A ctreg # breg
—  ctreg = b[breg] A breg # L
A decglseq[breg] = decglseqreg A sub[breg] = subreg)
A (is_clause(code(preg, dbs)) — ctreg’ = car(h[ctreg]))
A ( is_try_me(code(preg’, dbg)) V is_try(code(preg’, dbg))
— is_user_defined(act’))
A ( is_retry_me(code(preg’, dbeg)) V is_retry(code(preg’, dbs))
V is_trust_me(code(preg’, dbg)) V is_trust(code(preg’, dbg))
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—  breg’ # L A preg’ = p’[breg'] A ctreg’ = car(h[b[breg]])
A (is_retry_me(code(preg, dbs)) V is_trust-me(code(preg, dbs))))
A ( is_retry_me(code(preg, dbs)) V is_trust-me(code(preg, dbs))
—  ( is_retry_me(code(preg’, dbg)) V is_retry(code(preg’, dbg))
V is_trust_me(code(preg’, dbg)) V is_trust(code(preg’, dbg)))
A breg # L A preg = p[breg]
A (L-CHAIN-RETRY-ME# (preg, dbs; col))
(APP-CHAINS-RET#(p’, h[breg], dbs; cols))
mapcode(col, dbs) = mapcode(cols, dbg))
A ( istry_me(code(preg, dbs))
—  (is_try(code(preg’, dbs)) V is_try_me(code(preg’, dbg)))
A (L-CHAIN-TRY-ME#(preg, dbs; col))
(CHAIN-REC#(preg’, dbg; coly))
mapcode(col, dbs) = mapcode(col;, dbg))
A (is_clause(code(preg, dbs)) A — is_clause(code(preg’, dbs))
—  (is_try(code(preg’, dbs)) V is_try_me(code(preg’, dbg)))
A breg # L A decglseqreg = decglseq[breg]
A subreg = sublbreg] A ctreg = b[breg]
A (L-CHAIN-RETRY-ME# (p[breg], dbs; col))
(CHAIN-REC#(preg’, dbg; coly))
(APP-CHAINS-RET#(p’, h[breg], dbs; cols))
the_cl(code(preg, dbs)) +.; mapcode(col, dbs)
= mapcode(col; ®co cola, dbg))
A ( is_try(code(preg’, dbg)) V is_try-me(code(preg’, dbg))
— is_try_me(code(preg, dbs)) V is_clause(code(preg, dbs)))
A (is_clause(code(preg’, dbg)) — code(preg, dbs) = code(preg’, dbs))
A ( is_clause(code(preg, dbs)) V is_try_me(code(preg, dbs))
V is_retry_me(code(preg, dbs)) V is_trust_me(code(preg, dbs)))
A STACKINV56(— isretry_me(code(preg, dbs)))

(STACK#(breg, b; stack))
( stack C s A (cond — decglseqreg cutptsin stack)
A (STACK#(breg’, b'; stack’))
(stack’ = hl(h, stack) A stack’ C ')
A (Vn. n € stack
—  decglseq[n] # [] A goal[n] # [] A is_user_defined(act[n])
A decglseq[n] cutptsin cdr(stack from n)
A (VY ng. mnp € hin]
—  sub[n] = sub’[ng] A ct[ng] = car(h[b[n]])
A hdg(h, decglseq[n]) = decglseq’'[ng]
A ( n # breg
V= is_try_me(code(preg’, dbg))
A = is_try(code(preg’, dbg))
V is_try_me(code(preg, dbs))
S b £
A (CHAIN-RETRY-ME-FL# (p[n], dbs; col))
(APP-CHAINS-RET#(p’, h[n], dbg; cols))
mapcode(col, dbs) = mapcode(cols, dbg))))

Auxiliary Theorems for the ASMs If one analyzes the equivalence proof 5/6 it becomes
obvious, that in the proofs of 0:1 diagrams a lot of properties of ASM5 are shown to be invariant
in ASMG6, that are encoded only implicitly via the correspondence to ASM6. An alternative is, to
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prove auxiliary theorems that are concerned with the execution of chains in ASM6 alone.

We have worked out a proof for the refinement 5/7 first using the technique of recursive
decomposition of diagrams. We found, that the generalization of INV5; to WINV 57 is a very
hard problem: The final WINV 57 has 4 times the size of WINV 5¢. To find the correct version and
to verify 5/7 took 2 months and 20 iterations. Therefore we have tried the technique of auxiliary
theorems too. It lead to much smaller proofs, as can be seen from the statistics at the end of
this section. For complex refinements we therefore prefer this technique although it adds to the
problem of finding a suitable coupling invariant the problem to find suitable auxiliary theorems,
which are not only provable but als fit into the overall proof.

As auxiliary theorems for ASM7 we first formulated, that execution of some arbitrary chain
leads to one of the following results:

e If the chain is empty and breg = L, the run of ASM7 is terminated with stop = failure.

e If the chain is empty and breg # L, then ASM7 will reach a state, in which the instructions
of the chain have been completely executed, and the chain has just been left by backtracking,
i.e. decglseqreg, subreg, ctreg, vireg and the stack are still unchanged and preg points to the
topmost stack element p[breg].

e If the chain is nonempty, then a state is reached, in which the first clause has been reached,
i.e. decglseqreg, subreg, ctreg, vireg are unchanged, preg points to the first clause of the chain.
A number of choicepoints have been pushed on the stack, which all contain decglseqreg, subreg
and ctreg, and whose chains contain appended exactly the clauses of the original chain except
the first.

As a formula this can be written as Lemma chain7:

decglseq’ = decglseqq A sub’ = subj A ct = ctg A p’ = pj
Ab' = by A vireg' = vireg A stop’ =run A sy Cs' A L € s
A decglseqregy # [] A goal'y # [] A is_user_defined(act'q)
A (STACK# (breg’, b'; stack’)) stack’ = stack A stack C &
A ( is_retry(code(preg’, dbr)) V is_retry_me(code(preg’, dby))
V is_trust(code(preg’, db7)) V is_trust_me(code(preg’, dbr))
D stack # [] A preg’ = p[car(stack)] A decglseqreg’ # []
A goal’ # [] A decglseqreg), = decglseq'[car(stack)]
A subregg, = sub’[car(stack)] A ctreg), = ct[car(stack)]
A stacky = cdr(stack) ;
subreg; = subreg’ A decglseqreg; = decglseqreg’
A ctregf, = ctreg’ A stackg = stack)
A (S-ANY-CHAIN#(act'g, preg’, dbr; col))

col = coly
— 3 kappa.
(loop

if stop’ = run then
RULE'(mkco3res(dby, procdeftab); s, vireg’, stop’, breg’,
ctreg’, sub’, subreg’, decglseq’, decglseqreg’, p/,

preg', b, ct)
times kappa)
( colp =]

D stackg =[] D stop’ = failure A breg’ = L ;
preg’ = p'[car(stacke)] A decglseqreg’ = decglseqreg,
A subreg’ = subregj, A ctreg = ctreg)
A vireg' = vireg A sj C s’ A stop’ = run
A (STACK#(breg', b'; stack))
( stack = stackg A stack C s’
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A (Vn. n € stack
—  decglseq’[n] = decglseqg[n]
A sub’[n] = subg[n] A b’[n] = bg[n]
A ct[n] = cto[n] A p'[n] = pgn])) ;
decglseqreg’ = decglseqregy A subreg’ = subreg
A ctreg’ = ctreg) A vireg' = vireg| A sh C '
A stop’ = run A is_clause(code(preg’, db7)) A preg’ = car(colp)
A (I nl. (STACK#(breg’, b’; stack))
(stack = append(nl, stackg) A stack C s')
A (S-APP-CHAINS-RET#(decglseq’, p', nl, dbr;
col)) col = cdr(colp)
A(Vn. néenl
—  decglseq'[n] = decglseqreg;,
A sub’[n] = subregj A ct[n] = ctreg))
A (Vn. n € stackg
—  decglseq'[n] = decglseqg[n]
A sub’[n] = subg[n] A b’[n] = bg[n]
A ct[n] = cto[n] A p'[n] = pg[n])))

The proof is by induction on the number of instructions in the chain. Using the lemma it can
be proved, that if ASM7 does backtracking and the stack contains a number of empty choicepoints
at its top, then a state is reached where all empty choicepoints have been removed. Formally this
is lemma emptychains7:

decglseq’ = decglseqq A sub’ = subj A ct = ctg A p’ = pj
Ab' = bg A vireg' = viregy A stop’ =run Ash Cs' A L €s)
A decglseqreg’ # [| A goal’ # |]
A (STACK# (breg’, b'; stack’)) stack’ = stack A stack C &
A ( isretry(code(preg’, dbr)) V is_retry_me(code(preg’, db7))
V is_trust(code(preg’, db7)) V is_trust_me(code(preg’, dbr)))
A stack = append(nl,stacke) A stack # [| A preg’ = p’[car(stack)]
A(¥Vn. nenl
~ decglseq’[n] # [| A goal'fn] # |
A is_user_defined(act’[n]))
A (S-APP-CHAINS-RET#(decglseq', p’, nl, dbz; col)) col =[]
— J kappa. (loop
if stop’ = run then
RULE' (mkco3res(dby, procdeftab); s’, vireg’, stop’, breg’,
ctreg’, sub’, subreg’, decglseq’, decglseqreg’, p’,
preg’, b’, ct)
times kappa)
(stackg =[] D stop’ = failure A breg’ = L ;
preg’ = p'[car(stacky)]
A decglseqreg’ # [] A goal’ # ||
A vireg’ = vireg A sf C s' A stop’ = run
A (STACK#(breg’, b'; stack))
( stack = stacko A stack C s’
A (Vn. n € stack
—  decglseq’[n] = decglseqg[n]
A sub’[n] = subg[n] A b’[n] = bg[n]
A ct[n] = cto[n] A p'[n] = pg[n])))
Finally we need a lemma which combines chain7 and emptychains?, called nextclause?, which

states that backtracking in a stack of choicepoints leads to the first nonempty choicepoint, and
that its chain is reduced to a clause and new choicepoints:
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decglseq’ = decglseqq A sub’ = subgy A ct = cty A p’ = ph
A b = by A vireg' = vireg), A stop’ =run A sy Cs' A L € s
A decglseqreg’ # [| A goal’ # []
A (STACK# (breg', b'; stack’)) stack’ = stack A stack C s’
A ( is_retry(code(preg’, dbr)) V is_retry_me(code(preg’, dbr))
V is_trust(code(preg’, db7)) V is_trust_me(code(preg’, dbr)))
A stack = append(nl,stackg) A stackg # [] A preg’ = p'[car(stack)]
A(¥n. nenl
—  decglseq’[n] # [] A goal’'[n] # [] A is_user_defined(act'[n]))
A (S-APP-CHAINS-RET#(decglseq’, p', nl, dbz; col)) col = ]
A (S-CHAIN-RET#(act'[car(stacke)], p'[car(stack)], dbr; col))
col = colp
A colg # [] A decglseq'[car(stacky)] # []
A goal’[car(stacky)] # []
A is_user_defined(act’[scar(stacky)])
— J kappa. (loop
if stop’ = run then
RULE' (mkco3res(dby, procdeftab); s', vireg’, stop’, breg’,
ctreg’, sub’, subreg’, decglseq’, decglseqreg’, p’,
preg’, b’, ct)
times kappa)
( decglseqreg’ = decglseqg[car(stack)]
A subreg’ = suby[car(stackg)] A ctreg’ = cto[car(stacky)]
A vireg' = viregj, A s, C s’ A stop’ = run
A is_clause(code(preg’, db7)) A preg’ = car(colp)
A (I nl;.  (STACK#(breg’, b'; stack))
( stack = append(nl;, cdr(stacky))
A stack C s')
A (S-APP-CHAINS-RET#(decglseq’, p’, nly, dby;
col)) col = cdr(coly)
A(Vn. nenl
—  decglseq'[n] = decglseqreg’
A sub'[n] = subreg’ A ct[n] = ctreg’)
A (Yn. n € cdr(stack)
—  decglseq'[n] = decglseqg[n]
A sub’[n] = subg[n] A b’[n] = bg[n]
A ctfn] = ctoln] A p'[n] = pha)))

With these lemmas we can then decompose the commuting diagrams of 5/7 as shown in
Fig. 15.4.

CINV is the case in the coupling invariant in which preg = start holds, EINV is the case
where the next instruction is a clause. In the case FINV both ASMs have finished their run. The
most complicated proof is the one, in which backtracking is called (the 7 diagrams in the lower
half of Fig. 15.4). The figure hints, that the proofs of the first 5 diagrams can be merged into
one. It is sufficient to use the coupling invariant as precondition, and to replace the two calls to
rules of ASM5 and ASM7 by calls to the corresponding backtrack program. The last two of the
7 diagrams can be reduced to the proof of the diagram directly above them, by applying lemma
chain7 first (to remove the empty chain in ASMT).

The total effort for the verification of 5/7 by recursive decomposition of diagrams was 17009
proof steps and 1521 interactions. The proof using auxiliary lemmas was done within a week and
required only 7473 proof steps and 1351 interactions.
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call2(A)  try_me call2(B)
—_— —_—
EINV
CINV EINV CINV
_— — — — > —_— — — — >
call2 chain7 call2 chain7
success true goal cut
—_— —_— B —— e

CINV1 FINVi CINV1 CINVi CINV1 CINVi CINV1

—_— —_— —_—
success true goal cut
calll(a) calll(a) calll(a)
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_— _— _—
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FINV
_— _— - - = > _ - -3
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fail(a) fail(b) fail(b)
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calll(b) calll(b)
fail (b) fail (b)
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CINV1 EINVi CINV1 1EINV
- . __ _
calll(b) nextclause? calll(b) nextclause?
fail(b) fail(b)
enterl(b) enterl(b)

calll(b)  retry_me

CINV1 EINVi CINVi

- — — >
call2 nextclause?

Figure 15.4 : Commuting Diagrams for the Refinement 5/7

calll(b) trust_-me

1EINV

- — — >
call2 nextclause7
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Chapter 16

7/8: Environments and Stack
Sharing

16.1 Definition of ASMS8

After we have completed the compilation of predicate structure with ASM7, refinement 7/8 now
prepares the compilation of single clauses. A first step in this direction is to transform the data-
structure of decglseq’s, such that the goals contained in them are directly accessible and can later
on be replaced with pointers into the code of clause bodies. To make this possible, it is necessary
to delay the application of substitutions to goals. Instead substitutions are applied to literals
when the literal becomes a new activator. With this approach all goals become end pieces of
clause bodies. Although goals still contain renamed variables and can therefore not be replace by
pointers to code immediately (this will be changed in the refinement 8/9, when the clauses are
compiled), dispensing with the immediate application of substitutions in enter rule causes old and
new decglseqreg to have a large common part. By restructuring, the information contained in the
common part can now be shared and stored only once.

Sharing is achieved as follows: Instead of storing [(goal;, ctpti), (goal,ctpts), {(goals,cipts),
...] in decglseqreg, goal, is accessible in ASM8 in a new register goalreg directly. For the rest
of the informations an environment is allocated. Formally an environment is an element of a
dynamic sort envnode, similar to a choicepoint, that is stored in a register ereg (again, similar
to breg). Dynamic functions cutpt and cg attach the current cutpoint and the second goal (the
“continuation goal”) to the environment: cutpt[ereq] = ctpt; and cg[ereq] = goal,. The rest of
the information (ctpts, goals, etc.) can be reached via a function ce : envnode — envnode (the
“continuation environment”).

With the re-encoding of the information stored in decglseqreg a similar re-encoding for the data
stored in decglseqreg[n] for each choicepoint n becomes necessary. Instead of decglseqregin] ASM8
used two new functions goal[n] and e[n] for this purpose, which correspond to goalreg and ereg.

Changing the representation of the data in the decglseq’s rises the question, whether environ-
ments have to be put on a separate (environment) stack. This is not the case, it is possible to
store environments and choicepoints on the same stack, and to introduce a genuine stack disci-
pline, that overwrites abandoned stack frames destructively. By that, sort envnode becomes equal
to sort node.

In [BR95] the new stack discipline is introduced in two steps: First, ASM8 contains a common,
but not destructively modified stack, and ASM9 then replaces allocation of new stack nodes with
overwriting. This two-step approach seemed disadvantageous for verification to us, since the
intermediate level requires to introduce an additional dynamic function tos, which has to return
the maximum of two nodes relative to a dynamic stack chaining function — (see p. 32 in [BR95]).
The definition of such a function is possible, but elaborate. It would be only needed in ASMS8, and
can be avoided by going directly to the stack representation of ASM9. Our solution therefore does

109
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not divide introduction of a destructively modified stack over two refinements, but includes it in
refinement 7/8. The Hiding Lemma thereby is needed only in the verification of this refinement.

To introduce the destructively modified stack, we add a total order <« on stack nodes, and
define functions +1 and —1 to increment and decrement them. Thereby, the role of stack nodes
becomes one of addresses. Allocation of stack nodes is no longer done with the function new
relative to a set of allocated nodes, but simply by incrementing the pointer to the top element
of the stack. To make an environment or a choicepoint inaccessible, we now simply decrement
the pointer to the topmost stack frame. Allocation of a new stack frame will then overwrite the
inaccessible one. Abandoned nodes, which have been allocated but are not in the current stack
are no longer possible in ASM8. The statement of the Hiding Lemma is now, that when new
nodes (environment nodes as well as choicepoint nodes) are always allocated at maz(breg,ereg) + 1,
then the environment nodes e[n], ce[e[n]], ... belonging to a choicepoint n will always be below
n (so the choicepoints ”‘hides”’ them from being overwritten). The same will also hold for the
choicepoints cutpt[n'], cutpt[b[n']] stored in an environment or a choicepoint n'. For ASM8 we
have the following rules:

backtrack =
if breg = L then stop := failure
else preg := p[breg]
call rule

let act = subreg ~; car(goalreg)
if preg = start A is_user_defined(act)
then if procdef; (act,dby) = failcode
then backtrack
else preg := procdefy (act,dbr)

ctreg := breg
cut rule
let act = subreg ~; car(goalreg)
if act = !

then breg := cutpt[ereg]
goalreg := rest(goalreg)

enter rule
if is_clause(code(preg, dbr))
then let cla = rename(clause(code(preg, dby)), vireg)
let act = subreg ~; car(goalreg)
let mgu = unify(act, hd(cla))
if mgu = nil
then backtrack
else let tmp = max(ereg,breg)+1
ce[tmp] := ereg
ereg := tmp
cg[tmp] := rest(goalreg)
cutpt[tmp] := ctreg
goalreg := bdy(cla)
subreg := subreg o mgu
vireg := vireg +1
preg := start

fail rule
let act = subreg ~; car(goalreg)
if act = fail
then backtrack
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goal success rule
if goalreg =[] A ~ereg = L
then goalreg := cglereg]
ereg := celereg]

query success rule
if goalreg = [| A ereg = L
then stop := success

retry rule

if code(preg,dby) = retry(N)

then ereg := e[breg]
goalreg[breg] := goal[breg]
ctreg := ct[breg]
subreg := sub[breg]
p[breg] := preg +1
preg := N

retry_me_else rule
if code(preg,db) = retry_me_else(N)
then ereg := e[breg]
goalreg := goal[breg]
ctreg := ct[breg]
subreg := sub[breg]
plbreg] := N
preg := preg +1

switch_on_constant rule
let act = subreg ~; car(goalreg)
if code(preg, db7) = switch_on_constant(i, tabsize, table)
then let x; = arg(act,i)
preg := hashc(table, tabsize, constsym(x;), dbr);
if preg = failcode then backtrack

switch_on_structure rule
let act = subreg ~; car(goalreg)
if code(preg, db7) = switch_on_structure(i, tabsize, table)
then let x; = arg(act,i)
preg := hashs(table, tabsize, funct(x;), arity(x;), dbr);
if preg = failcode then backtrack

switch_on_term rule
let act = subreg ~; car(goalreg)
if code(preg, db7) = switch_on_term(i, Ny, N., N,, N;)
then let x; = arg(act,i)
if is_struct(x;) then preg := Ny else
if is_const(x;) then preg := N, else
if is_var(x;) then preg := N, else
if is_list(x;) then preg := Ny;
if preg = failcode then backtrack

true rule
let act = subreg ~; car(goalreg)
if act = true
then goalreg := rest(goalreg)
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trust rule

if code(preg,db;) = trust(N)

then ereg := e[breg]
goalreg := goal[breg]
ctreg := ct[breg]
subreg := sub[breg]
breg := b[breg]
preg := N

trust_me rule

if code(preg,dby) = trust_me

then ereg := e[breg]
goalreg := goal[breg]
ctreg := ct[breg]
subreg := sub[breg]
breg := b[breg]
preg := preg +1

try rule

if code(preg,dbr) = try(N)

then let tmp = max(ereg,breg) +1
b[tmp] := breg
e[tmp] := ereg
goal[tmp] := goalreg
sub[tmp] := subreg
p[tmp] := preg +1

breg := tmp
ct[tmp] := ctreg
preg := N

try_me rule
if code(preg,db) = try_me_else(N)
then let tmp = max(ereg,breg)+1
b[tmp] := breg
e[tmp] := ereg
goal[tmp] := goalreg
sub[tmp] := subreg
p[tmp] := N
breg := tmp
ct[tmp] := ctreg
preg := preg +1

16.2 Equivalence Proof 7/8

Verification of 7/8 poses 3 main problems: first, we must make precise the connection between
the decglseq’s and the components of ASM8. Here we found, that a modification of the query
success rule was necessary, to keep the 1:1 correspondence of rules. Second we have to make
the correctness of stack sharing explicit in the coupling invariant. Third, delaying substitutions
resulted in an additional compiler assumption necessary for the correctness of the refinement.

Correspondence of Environment and decglseq’s To verify 7/8 we first have to make precise
the initialization of environments, the connection between decglseq’s from ASM7 and the compo-
nents of ASM8, and the termination criterion in ASMS8. All three points are tightly connected,
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since the initial environment strongly influences the coupling invariant as well as the guard of
query success rule. The ASM rules that were shown in the previous section already contain the
necessary modifications compared to [BR95].

For the initialization we have set ereg to L. The function ce as well as cutpt have to map L
to L. The initialization of ¢g is arbitrary, and goalreg has to be initialized with the query. With
this initialization we can compute decglseqreg and decglsegin] from ASMT, using the components
of ASMS:

(STACK# (ereg,ce;estack))
decglseqreg = subreg ~4 [(goalreg, cutpt[ereg]) |
decglseqof(cutpt, cg, ce, estack)]

(STACK#(e[n],ce;estack’)) decglseq[F[n]]
= sub[F[st]] 4 Fa(F,[(goal[n],cutpt[e[n]]) |
decglseqof(cutpt, cg, ce, estack’)])

Like in the refinements 1/2, 2/3 etc. the choicepoint of ASMS, that corresponds to a choicepoint
st of ASM is computed as F[st] with a dynamic function F. estack and estack’ are the environment
stacks starting at ereg resp. e[n]. These lists of stack nodes can be computed with the same program
STACK# (see the definition in Sect. 11.2), that was used for choicepoints. The function decglseqof
collects the information at the corresponding nodes:

decglseqof(cutpt,cg,ce,[]) = []

decglseqof(cutpt,cg,ce,[n | estack])
= [(cg[n],cutpt[ce[n]]) | decglseqof(cutpt,cg,ce,estack)]

Until now our definitions seem to agree with those given in [BR95]. Only the initialization of
ereg with | was added, the connection between the registers was formalized, and the definition
of function G (p.32 f), that would have to be realized as a program, was decomposed into calls
of STACK# and decglseqof. But our definition of the termination criterion for query success will
deviate from [BR95], where the rule test is defined (using our notation) as

goalreg = L A (STACK#(ereg,cesestack)) V n € estack. goal[n] =[]

We have deviated, although it is correct, to finish the computation when all goals on the stack
are empty. Nevertheless the test is very expensive since all goal[n] must be looked at (and the test
has to be done each time an empty goal is reached to decide whether goal success or query success
rule should be applied). Also the optimisation removes all applications of goal success rule at the
end of a computation, violating the proposed 1:1 correspondence of ASM rules. Also the following
ASM9 does not look at several stack frames, so the optimisation is not used in ASM9. Therefore
we use

goalreg = L A ereg = L

as the rule test of query success. This corresponds to a test decglseqreg=[([],ctpt)] in ASM7. This
means that the last applications of goal success and query success in ASM7 have been replaced by
an application of query success. Therefore we have a 2:1 diagram for this case. The 2:1 diagram
cannot be avoided, since from the connection of decglseqreg to the components of ASM8 shown
above (which will be part of the coupling invariant) it is clear that there is no possibility to
represent a state corresponding to decglseqreg =[] in ASMS.
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Stack Sharing The most delicate task in setting up the coupling invariant is to make the stack
sharing of ASMS8 explicit. The coupling invariant must assure, that allocation of choicepoints
and environments never overwrites still relevant old ones. To save lengthy calls to the STACK#
program in the following we denote with estack the current stack of environements (a list starting
starting with ereg), with bstack the current stack of choicepoints (starting with breg) and with
estack[n] the stack of environments starting with the environemnt e[n] of choicepoint n. Then we
need first need the following obvious properties:

e The choicepoint stack bstack and the environment stack estack are disjoint (formalized as
disjoint(estack,bstack)).

e the choicepoint stack bstack is also disjoint to the environement stack of every choicepoint.

e The choicepoints in bstack are strictly monotone decreasing with respect to < (formalised
as ordered(bstack)).

e The environments in estack and estack[n] are decreasing too.

e The environment e[n] of each choicepoint n is below the choicepoint (this is the content of
the “Hiding Lemma”).

Unfortunately these propertoes are not sufficient for a successful verification. We found, that
a number of other properties are necessary, that are not obvious at first. The two most important
are.

e breg is never below cutpt[ereg|

e ct[n] is never above the choicepoint n, and never below cutpt[e[n]]

Two other simple properties are that no states are below L, and the cutptsin properties we
already needed in previous refinements.

Delaying Substitutions Delaying the application of substitutions to goals as far as possible
seems to be a harmless transformation at first glance. But if one tries to prove the equivalence of
the two enter rules of ASM7 and ASMS, then one encounters the problem, that the substitutions
applied to activators of ASM7 and ASM8 are different! To understand this, look at a situation
where an activator is unified with the head of a clause H : —B that has been renamed with wvireg.
Let us assume, that the computed substitutions in subreg and subreg’ as well as both activators
act and act’ are equal. Then both ASM7 and ASM8 will compute the same mgu. Both will then
compute a new goal, consisting of literal B. ASM7 instantiates B immediately with mgu, while
ASMS8 will only compute the new substitution subreg o mgu. When now B becomes itself the
activator later on, ASM8 will instantiate it with this composed substitution, and not only with
mgu. For both activators to be equal, we must have

(subreg o mgu) “y B = mgu “4; B

This is the case, since the application of subreg has no effect on B: the clause H : —B, and so
especially B were renamed with a new index wvireg, that was not used previously. Therefore subreg
should contain no variables which were renamed with the index wvireg at this point.

To formalise this argument we have defined predicates ¢l <, vireg, L <gy; vireg, dgl <gy; vireg
and subreg <g,; vireg, which state that clause cl, decorated goal list dgl, literal L and substitution
subreg do not contain variables renamed with index wvireg. The proof, that subreg has no effect on
literal B then can be reduced to the goal, that the renaming function rent obeys

rent(L,vireg) <i,; vireg +1
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But for a natural definition of renaming, that is homomorphic over the datatypes mentioned (for
which e.g. rent(f(t),vireg) = f(rent(t,vireg)) holds) this goal can be proved only if the literal to
rename does not contain renamed variables already. Therefore we need

Compiler Assumption for the Refinement 7/8: The original
Prolog program does not contain renamed variables.

The assumption is realized in reality simply by giving renamed variables no readable represen-
tation. Nevertheless the formal verification makes this implicit assumption explicit.
We define the new compiler assumption for the original database db of ASM1:

mapclause(procdef(lit,db),db) <.,; 0

With the previous compiler assumptions it easy to propagate it to the database db; of ASMTY.
As the coupling invariant we finally reach after 12 attempts and one man month of work the
following formula.

INVg =
IF. Fll]=LlALlc€s
A (stop = run — decglseqreg # [])
A stop = stop’ A preg = preg’ A vireg = vireg’ A subreg = subreg’
A ctreg = Flctreg'] A breg = F[breg'] A ce[Ll] = L A cutpt[L] = L
A — breg’ < L A (breg’ # L — b'[breg’] < breg') A — ereg <« L
A subreg’ <, vireg' A — breg’ < cutpt[ereg]
A ( preg’ # start A stop’ = run
— goalreg # [] A is_ret(code(preg’, dbr))
D breg # L A preg’ = p/[breg’] ;
- breg’ < ctreg’ A — ctreg’ < cutpt|ereg]
A (S-CHAIN-REC# (act, preg, dbr; col)) tt))
A (STACK#(breg’, b'; stack’))
( (STACK#(breg, b; stack)) (F\(F, stack’) = stack A stack C s)
A F injon stack’ A ordered(stack’)
A ( stop = run
— (STACK#(ereg, ce; estack))
(decglseqreg’ := [(goalreg, cutptereg]) |
decglseqof(cutpt, cg, ce, estack)]
( decglseqreg = subreg ~4 Fq(F, decglseqreg’)
A decglseqreg’ <g,; vireg'
A disjoint(estack, stack’) A ordered(estack)
A (preg’ = start D decglseqreg’ cutptsin stack’ ;
- is_ret(code(preg’, db7))
—  decglseqreg’ cutptsin stack’ from ctreg’
A (ctreg’ = L V ctreg’ € stack’))))
AV n. STACKINVs),

where

is_ret(instr) «» is_retry(instr) V is_retry_me(instr)
V is_trust(instr) V is_trust_me(instr)
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STACKINVg =
n € stack’
—  sub[F[n]] = sub’[n] A p[F[n]] = p[n] A ct[F[n]] = Flct'[n]]
A b[F[n]] = F[b'[n]] A (ct'[n] # L — ct'[n] € cdr(stack’ from n))
A-n<ct'[n] Aen] € nA-en € LAt n] < cutptfe[n]]
A = breg’ < n A goal[n] # [] A sub’[n] <sy; vireg’
A (S-CHAIN-RET#(act(F[n]), p[F[n]], dbz; col)) tt
A (STACK#(e[n], ce; estack))
(decglseqreg’ := [(goal[n], cutpt[e[n]]) |
decglseqof(cutpt, cg, ce, estack)])
( decglseqreg’ cutptsin stack’ from ct’[n]
A decglseqreg’ < gy vireg'
A disjoint(estack, stack’ from n) A ordered(estack)
A decglseq[F[n]] = sub[F[n]] ~4 Fa(F, decglseqreg’)



Chapter 17

8/9: Compilation of Clauses

17.1 Definition of ASM9

In the refinement from ASMS8 to ASM9 clauses are decomposed into instructions for every literal.
The memory dby of ASM9 now stores instead of a clause p :- qi, -...q, an instruction sequence

allocate

unify(p)

call(qq)

e (17.1)
call(q,,)
deallocate
proceed

For the case where preg was start in ASMS8, preq of ASM9 now takes over the role of goalreg
(when preg # start, preg and preg’ are equal). goalreg = [g;, ... ¢,] now corresponds to a situation,
in which preg' points to the instruction call(g;). The situation in ASMS8, in which preg points to
a clause and enter rule is executed corresponds to the situation in which preg’ points to allocate.
Execution of the enter rule is replaced with execution of the 2 instructions allocate and unify(p).
Similarly the execution of goal success (an empty goalreg in ASMS8 corresponds to preg’ pointing
to deallocate) is replaced by execution of deallocate and proceed. Splitting enter and goal success
into two instructions is not strictly necessary for this refinement, but introduces instructions used
in the WAM, that can be optimized in later refinements.

To be able to remove goalreg, it must be taken care that the renaming of variables (with
vireg) done in the enter rule when goalreg is set, must now be postponed to the actual use of the
activator. It is therefore necessary, to store the renaming index with a dynamic function vi in the
current environment and in the environments of choicepoints.

Replacing the use of goalreg with preg makes it necessary to also replace the current goal ¢g in
choicepoints with a pinter ¢p into the program code.

To complete the definition of the compilation, we finally have to define how a query ¢;, ... qn
is compiled. The result is:

call(qq)

... 17.2
call(qy) ( )
null

117
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Instead of the instruction null' [BR95] uses the instruction proceed. The applicability test for
query success rule there is

code(preg,dbg) = proceed A code(cpreg,dbg) = proceed

This is not correct, when the last literal of a query is either / or true, since both instructions
do not increment cpreg, but leave it on the current instruction. This would result in an infinite
loop by repeated execution of the last instruction. There are two alternatives to our solution:

e Both the cut and the true rule finally set cpreg to preg. This solution is inefficient, since
setting cpreg is unneccessary during regular execution.

e The compiler removes literals true and ! at the end of a query, since they have no effect
anyway. Although this solution is possible for the two constructs, it is problematic insofar,
as an extension of Prolog by other built-in constructs (such as assert) would mean that the
problem would have to be reconsidered.

I

o+

should also be noted, that the two alternatives cause two irregularities compared to ours:

e An empty query must either be handled specially by initialisation of cpreg with preg, or it
must be completely forbidden (in our solution, no special treatment is necessary, cpreg need
not be initialized). In the first case we have an additional 1:1 diagram to verify for the empty

query.

e The rule mapping given in [BR95] that maps goal success to deallocate and proceed (1:2
diagram) is not correct for this solution. Instead (assuming a nonempty query) in both
solutions the final two applications of goal success and query success of ASM8 correspond
to deallocate and query success in ASM9. In the second solution, we also get additional 1:0
diagrams resulting from the removal of true und ! literals.

In [AK91] the question of successful termination is not even considered. A query seems to be
compiled solely to a sequence of call instructions, and the end of the computation seems to be
defined implicitly by reaching the adress after the last call.

To formalize the compiler assumption described above, we first need the following procedures
UNLOAD# and QUERY#, that recover a clause or the query from compiled code:

UNLOAD#(coa, dbg; var cl)
begin
if code(coa,dbg) = allocate V is_unify(code(coa+1,dby))
then var goalreg = ||
in begin
UNLOADREC#(coa+2),dbg,true; goalreg);
cl := <unifylit(code(coa+1,dby)),goalreg>
end
else abort
end;

Ireusing the instruction null, which in ASM2 indicated the end of a clause list, we avoid the introduction of

another instruction.
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UNLOADREC#(coa, dby, flag; var goalreg)
begin
var instr = code(coa,dbg)
in if flag A (instr = deallocate)
then begin
if code(coa+1,dbg) = proceed then goalreg := []
else abort end
else if — flag A (instr = null’) then goalreg := ||
else if is_call(instr) then begin
UNLOADREC#(coa+1,dbg,flag; goalreg);
goalreg := [calllit(instr) | goalreg]
end
else abort

end;

QUERY#(coa, dbg; var goalreg)
begin

UNLOADREC#(coa, dbg, false; goalreg)
end

The auxiliary procedure UNLOADREC# traverses successive call instructions. If the given flag
= tt, then it checks that at the end an allocate and a proceed instruction are found (clause code),
otherwise it checks for a null (query code). The definition of chains with switching (S-CHAIN#’s,
see appendix D.2), is modified to C-CHAIN#’s by replacing the code

if is_clause(instr) then col := [co]
with

if instr = allocate then UNLOAD# (preg; co)

With this definition the weakest compiler assumption that can be stated for (procdefy ,dbg,pregy )
:= compilery (procdefy ,dbr ,query) would be

[S-CHAIN# (act,procdefr[id(act),db7],dbr;col)]
(C-CHAIN#/(act,procdefy[id(act),dbg],dbg;col)
mapcode(col;, db7) = mapcode(cols, dbg)
A (QUERY#(pregg,dbg;co)) mapcode(co,dbg) = query

(17.3)

But this assumption would allow to arbitrarily restructure the code for switching again. This is
of course not intended. Therefore we must have a stronger assumption, that just allows to replace
clauses by clause code. Care has to be taken, since the new code might make it necessary to move
blocks of code. To describe such code movement we use a function C': codesort — codesort. Since
the function might depend on the input program, it must be specified as a dynamic function. It
would be possible to compute C as an additional result of compiley, but since only its existence is
relevant, our compiler assumption is:

dby = compile2(compilel(db))
—  (QUERY#(pregg,dbg;co)) mapcode(co,dbg) = query
A 3 C. ( eqpdt(procdefz,procdefy,C)
A eqcode(dbr,dbg,C))

(17.4)
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In the formula egpdt(procdef; ,procdefy,C) says, that both access tables are equal modulo the
code movement given by C:
eqpdt(procdef; ,procdefy,C)
< V p/n. C[procdef;[p/n]] = procdefs[p/n]
eqcode(dby ,dbg,C) means, that all instructions, except clauses, are mapped modulo code move-
ment to themselves. E.g. we have
eqcode(dbr,dbg,C) A code(preg,dbr) = retry(N)
— code(Clpreg],dbg) = retry(C[N])
and analogous for all other instructiosn. For clauses
eqcode(dbr,dbg,C) A code(preg,dby) = clause
— (UNLOAD#(CJpreg],dbg;c))c = clause

must hold. The rules of ASM9 are:

backtrack =
if breg = L then stop := failure
else preg := p[breg]
call rule

if code(preg,dbg) = call(lit) A is_user_defined(lit)
then if procdefy (lit,dbg) = failcode
then backtrack
else cpreg := preg +1
preg := procdefy (lit,dbg)
ctreg := breg

true rule
if code(preg,dbg) = call(!)
then breg := cutpt[ereg]
preg := preg +1

allocate rule

if code(preg, dbg) = allocate

then let tmp = max(ereg,breg)++
ce[tmp] := ereg
ereg := tmp
cp[tmp] := cpreg
vi[tmp] := vireg
cutpt[tmp] := ctreg
preg := preg +1

unify rule
if code(preg, dbg) = unify(trm)
then let act = subreg ~; rent’(calllit(code(cpreg —1, dby)), celereg], vi)
let mgu = unify(act, rent(trm, vireg))
if mgu = nil
then backtrack
else subreg := subreg o mgu
vireg := vireg +1
preg := preg +1
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deallocate rule
if code(preg,dbg) = deallocate
then cpreg := cplereg]
ereg := celereg]
preg := preg +1

true rule
if code(preg,dbg) = call(fail)
then backtrack

proceed rule
if code(preg,dbg) = proceed
then preg := cpreg

query success rule
if code(preg,dbg) = null’
then stop := success

retry rule

if code(preg,dbg) = retry(N)

then ereg := e[breg]
cpreg := cplbreg]
ctreg := ct[breg]
subreg := sub[breg]
plbreg] := preg +1
preg := N

retry_me_else rule
if code(preg,dbg) = retry_me_else(N)
then ereg := e[breg]
cpreg := cp[breg]
ctreg := ct[breg]
subreg := sub[breg]
plbreg] := N
preg := preg +1

switch_on_constant rule
let act = subreg ~; rent/(calllit(code(cpreg —1, dby)), ereg, vi)
if code(preg, dbg) = switch_on_constant(i, tabsize, table)
then let x; = arg(act, i)
preg := hashc(table, tabsize, constsym(x;), dby);
if preg = failcode then backtrack

switch_on_structure rule
let act = subreg ~; rent/(calllit(code(cpreg —1, dby)), ereg, vi)
if code(preg, dbg) = switch_on_structure(i, tabsize, table)
then let x; = arg(act, i)
preg := hashs(table, tabsize, funct(x;), arity(x;), dby);
if preg = failcode then backtrack

switch_on_term rule
let act = subreg ~; rent/(calllit(code(cpreg —1, dby)), ereg, vi)
if code(preg, dbg) = switch_on_term(i, Ny, N., N,, N;)
then let x; = arg(act, i)
if is_struct(x;) then preg := Ny else
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if is_const(x;) then preg := N, else
if is_var(x;) then preg := N,, else
if is_list(x;) then preg := Ny;

if preg = failcode then backtrack

true rule
if code(preg,dbg) = call(true)
then preg := preg +1

trust rule

if code(preg,dbg) = trust(N)

then ereg := e[breg]
cpreg := cplbreg]
ctreg := ct[breg]
subreg := sub[breg]
breg := b[breg]
preg := N

trust_me rule

if code(preg,dbg) = trust_me

then ereg := e[breg]
cpreg := cp[breg]
ctreg := ct[breg]
subreg := sub[breg]
breg := b[breg]
preg := preg +1

try rule

if code(preg,dbg) = try(N)

then let tmp = max(ereg,breg)++
b[tmp] := breg
e[tmp] := ereg
cp[tmp] := cpreg
sub[tmp] := subreg
p[tmp] := preg +1

breg := tmp
ct[tmp] := ctreg
preg := N

try_me rule
if code(preg,dbg) = try_me_else(N)
then let tmp = max(ereg,breg)++
b[tmp] := breg
e[tmp] := ereg
cp[tmp := cpreg
sub[tmp] := subreg
p[tmp] := N
breg := tmp
ct[tmp] := ctreg
preg := preg +1

17.2 Equivalence Proof 8/9

For the equivalence proof of ASM8 and ASM9 we have used the theorem for iterated refinement
described in Sect. 6.5 for the first time. Instead of encoding all information into the coupling
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invariant IN Vgg, we first derived a machine invariant MINVg from the coupling invariant INV7g.
Since all diagrams in the refinement 7/8 are n:1 diagrams (we can set INVNOWS; to be true), it
is sufficient to show

INVzs — MINVy

to make MIN Vs usable as a precondition for all commuting diagrams. To have a machine invariant
for the next refinement, we have also defined the predicate INVNO Wy, that characterized the states
of ASM9, in which the coupling invariant holds. Now, in the refinement 8/9 all rules are refined
with 1:1 diagrams, except for enter and goal success rule, which are refined with allocate unify
resp. deallocate proceed. The coupling invariant therefore does not hold only in the middle states
of these 1:2 diagrams and we can set

INVNOWQ (preg’,dbg)
= code(preg’,dbg) # proceed A — is_unify(code(preg’,dbyg))

The proof obligations for the two 1:2 diagrams are the special case with j := 2 and i := 1 of
the proof obligations (6.32) from Sect. 6.5:

INVgg A stop = run A stop’ = run
A MINVg A is_clause(code(preg,dbr))
— (RULEg) (= INVNOW,(preg',dbg)
A (RULEy) (RULEg)
(INV89 A INVNOWQ (preg’,dbg))

INVgy A stop = run A stop’ = run
A MINVg A is_clause(code(preg,dbr))
— (RULEg) ( — INVNOWy(preg',dby)
A (RULEg) (RULEg)
(INVgg A INVNOW, (preg’,dbg))

For the definition of the coupling invariant we found the following 4 main problems:

Correct Treatment of Termination In our first proof attempts, we tried to follow [BR95].
Thereby we found the problems already described in the previous section: first, we had to correct
the choice of diagrams (a special diagram was necessary for the empty query, and a 2:2 diagram
was necessary for goal success, query success in ASMS8 vs. deallocate query success in ASM9).
Then the proof for the equivalence of the cut rules failed, since the cut rule of ASM9 does not
modify epreg. This failure resulted in the correction of query success in ASM9.

No Instantiation of the Literal in Call Rule In the is_user_defined tests as well as in the
selection of the leading predicate symbol in the call rules all ASMs until ASM8 have used the
instantiated activator. ASM9 now uses instead the uninstantiated literal L from the instruction
call(L). For the computation of the leading predicate symbol we have anticipated the modification
from the refinement 9/10. This was done to free the already complex verification from unnecessary
additional problems.

Verification now showed, that when using the uninstantiated literal, we must restrict the
accepted Prolog language: ASMs 1-8 gave a positive answer to the query 7- p(q) ., given the
clauses p(X) :- X. and q.. ASM9 can not deal with such a query, since the leading predicate
symbol of an uninstantiated variable X is not defined. Given a query ?- p(!) (and the same
program), ASM9 in [BR95] even tries incorrectly to compute a leading predicate symbol instead
of executing the cut. The difficulty of defining a leading predicate symbol also occurs, when the
body literals are lists. Since usual Prolog implementation do not have a “list predicate”, and
instead interpret such a literal as a command to load a file, we define
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Compiler Assumption for the Refinement 8/9: No literal of
the query and no literal in any clause of the prolog may be a variable
or a list.

Of course all ASMs up to now could not “meaningfully” solve a query ?7- X., since there is no
meaningful definition of the leading predicate symbol for a variable. But this was irrelevant for
correctness, since however the selection function was defined for the case of a variable, all ASMs
behaved in the same way. The core of the problem therefore is, that the semantic definition of
Prolog is incomplete for this case.

If we would define the compiler assumption for the refinement 8/9 as above, this would result in
additional formulas in the coupling invariant. For all literals, for which from the machine invariant
MINVg for ASMS it is already known, that they are not renamed, we would now additionally
need, that they are no variables and no lists. This would mean that we would have to compute
the chains, from which the literals are selected, twice, once in MIN Vg and once in INVgg. To avoid
this, we have strengthened the predicate ¢l <.,; vireg used in compiler assumption 7/8 to include
the compiler assumption for 8/9, i.e. that ¢l does not have literals which are just variables or
lists. This does not change the proofs for the refinement 7/8 (since we have just strengthened the
assumptions), and the assumptions that we have no variables or lists as literals, is now covered
already by MIN V3.

Moving Renaming of the Activator to its Actual Use Since goals are no longer stored
explicitly in a register in ASM9, but are only referenced by a pointer to the clause code, the
renaming index necessary to rename clause variables before unification must now be stored in the
environment and its use is postponed until the literal is actually used. To reconstruct a goal from
a pointer to code we use the procedure UNLOADREC# from the compiler assumption. For the
actual renaming of goal variables, we first defined a function reng, that renames all variables of a
goal with some index (reng is homomorphic to the function rename defined earlier for renaming
of clauses). In [BR95] collection of literals and application of the renaming is merged together
in the function g defined on p. 34f. The assumption goalreg = g(Ptr,vireg) therefore reads in our
notation:

(UNLOADREC#(Ptr,dbg;goal)) goalreg = reng(goalreg,vireg)

Verification revealed, that this assumption is not correct in the case where goalreg is a part of
the initial query, since the query must not be renamed. It turns out, that in the coupling invariant
this case corresponds to an attempt to compute wvireg as the unspecified vilereg] for ereqg = L.
We have specified the exceptional case explicitly, using a function reng (goalreg,ereg,vi) with the
axioms

reng' (goalreg, | ,vi) = goalreg
ereg # 1 — reng'(goalreg, 1 ,vi) = reng(goalreg,vilereg])

An alternative would have been to initialize vi[1] in such a way that application of this renaming
has no effect (e.g. initialization of vi[ L] with 0, of vireg with 1, and definition of reng(goalreg,0)
as goalreg).

Reconstruction of goalreg from ASMS8 Using Data from ASM9 The central point in the
definition of the coupling invariant for 8/9 is to reconstruct the goals stored explicitly in ASMS,
that are only implicitly represented by pointers to code in ASM9. The main task in doing this
was to give a precise definition of the “Continuation Pointer Constraint” ([BR95], p. 34) and to
give a precise formalization of how the registers of ASM9 can be reconstructed from the data of
ASM9. We found that the uniform reconstruction as given in [BR95], p. 35 was not possible.
Instead three cases had to be defined:
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In the first case ASMS is in a state where preg = start, and goalreg is reconstructed by

(UNLOADREC# (preg’, dbg, ereg’ # L ; goalregp) end)
( reng'(goalregy, ereg’, vi) = goalreg
A nonvargoal(goalregy))

The postcondition nonvargoal(goalregy) encodes the compiler assumptions that the literals of
goalreg are neither renamed, nor variables or lists.

In the second case both ASMs are before a retry-, retry_me-, trust- or trust_me instruction.
In this case no goalreg must be reconstructed (the instruction will set it from the choicepoint).
For this case it has also to be noted, that the two environment registers ereg and ereg’ may be
different: When an enter with backtracking is executed in ASMS, ereg is unchanged, while the
corresponding allocate in ASM9 will modify ereg’.

The continuation pointer constraint is not needed in the first two cases, but in the remaining
third case. In this case we have preg’ = C[preg] and goalreg is computed with cpreg —1:

(UNLOADREC#(cpreg —1, dbyg, ereg’ # L; goalregy) end)
( reng'(goalregy, ereg’, vi) = goalreg
A nonvargoal(goalregy))

When we tried to determine how exactly this formula should look like, we tried several proof
attempts with ce/[ered] instead of ereg’, since otherwise we could not verify the refinement of
the enter rule to allocate unify. After some analysis of failed proof attempts we found, that the
problem was the renaming index used in the unify rule. In [BR95] this renaming index for the
activator act is defined indirectly via the abbreviation goal as wvi[ereg]. This is correct for the
switching rules and the call rule, but not for the unify rule, since immediately before the allocate
rule already pushes a new renaming index onto the environment stack. This new index should be
used for the new goal that would be pushed onto the environment stack on successful unification.
The correct renaming index therefore is found at vi[ce[ereg]], when ce[ereg] # L. Therefore the
corrected unify rule calls the function rent’ with ce[ereg].

Putting all things together we reached after 3 weeks and 8 iterations the following coupling
invariant was

INVgg =
vireg = vireg’ A stop = stop’ A breg = breg’ A ctreg = ctreg’ A sub = sub’
A subreg = subreg’ Act =ct' Ab=Db' Ae=1¢€ Acutpt/[L] =L
A ( stop = run
— = is_unify(code(preg’, dbg)) A code(preg’, dbg) # proceed
A ( preg = start
D ereg = ereg’
A (UNLOADREC#(preg’, dby, ereg’ # L; goalregg))
reng’ (goalregy, ereg’, vi) = goalreg A nonvargoal(goalregy);
- is_call(code(preg’, dby))
A code(preg’, dbg) # deallocate
A preg’ = C[preg]
A —is_ret(code(preg, dbr))
—  ereg = ereg’
A (UNLOADREC#H(cpreg—1, dbg, ereg’ # L; goalregy))
reng’ (goalregy,ereg’,vi)=goalreg A nonvargoal(goalregy))
A (STACK# (ereg, ce; estack))
Vn. n € estack
—  ce[n] = ce'[n] A cutpt[n] = cutpt/[n]
A (UNLOADREC#(cp[n], dbg, ce[n] # L; goalregp))
reng'(goalregp, ce[n], vi) = cg[n] A nonvargoal(goalregg)
A (STACK#(breg, b; stack))
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Vn. n € stack
S o[l = Clpl]
A (STACK#(e[n], ce; estack))
V ng. ng € estack
—  ce[ng] = ce'[ng] A cutpt[ng] = cutpt’[no]
A (UNLOADREC# (cp[no], dby,
celno] # L; goalrego))
reng’ (goalregp, ce[ng], vi) = cg[no)
A nonvargoal(goalregy)
A (UNLOADREC# (cp[n] — 1, dby, e[n] # L; goalregp))
reng’(goalregp,e[n],vi) = goal[n] A nonvargoal(goalregp)
A eqcode(dbr, dbg, C)
A eqpdt(procdeftabyr, procdeftabg, C))

The invariant, and so the number of conjuncts to prove, would have been about twice the size

without using the technique for iterated refinements, as can be seen from the machine invariant
MINVg for ASMS:

MINVg =
stop = run
—  (preg # start — goalreg # []) A ce[L] = L A cutpt[Ll] = L
A ( is_retry_me(code(preg, dbsg)) V is_retry(code(preg, dbg))
V is_trust_me(code(preg, dbg)) V is_trust(code(preg, dbs))
— breg # L A preg = p[breg])
A ( preg # start
A = isretry_me(code(preg, dbg)) A — is_retry(code(preg, dbg))
A — is_trust_me(code(preg, dbg)) A = is_trust(code(preg, dbs))
— (S-CHAIN-REC#(subreg ~; car(goalreg), preg, dbs; col))
mapcode(col, dbg) <ery; 0)
A (STACK# (breg, b; stack))
(b-list# (ereg, ce; estack))
( ( preg = start
V = is_retry_me(code(preg, dbg))
— cutptlereg] € stack V cutptlereg] = 1)
A ordered(stack) A ordered(estack) A disjoint(stack, estack)
A (Vn. n € stack
— e[n] € n A goal[n] # []
A (STACK#(e[n], ce; estack))
( disjoint(estack, stack from n)
A ordered(estack))
A (S-CHAIN-RET#(sub[n] ", car(goaln]),
p[n], dbg; col))
mapcode(col, dbg) <c: 0))

MINVg encodes properties of ASM8, that were already proved in the refinement 7/8, like
disjointness of the environment and the choicepoint stack. These properties could be assumed for
8/9, and had not to be proved anew.



Chapter 18

9/10: Compilation of Terms

This chapter describes our current work on the first refinement from Chapter 4 in [BR95]. Besides
the refinement 5/7 this seems to be the most complex refinement. Although we were not successful
to verify it completely in the course of this work, our attempts to formalize the refinement and
first proof attempts have nevertheless uncovered a number of problems. One part of the problems
resulted from misunderstanding several aspects of the refinement, another part was due to the
fact, that the correctness assertions in [BR95] are given only very informally. We will therefore
not give a complete detailed description of the refinement, but only sketch some of the problems
we found in the refinement and sketch some approaches how to solve them.

The main aspect of the refinement 9/10 is the representation of terms by pointer structures
on the heap (introduced in the refinement), and the compilation of literals to instructions, that
create and unify such pointer structures. Unfortunately this is not the only modification that is
done to ASM9. Several other aspects of the WAM are also introduced in the refinement:

e The implementation of ASM10 does not have an occur check. But how can we formalize the
condition “ASM9 does not call an occur check”?

e Instead of storing substitutions, ASM10 now uses another stack, the trail, to store variable
bindings. When, due to backtracking, an old substitution is needed, variable bindings are
undone destructively.

e The stack of environments and choicepoints in ASM10 is “flat”. It has no internal struc-
ture anymore as the previous one. The different components are now stored in successive
addresses, and accessed uniformly with a function wval.

e ASMI10 in [BR95] does not consider the cut. The cut is reintroduced at the end of Chapter
4.

e Variable renaming is now done by allocation of a variables at a new address instead of using
a renaming index. The allocate instruction suggests that the new address allocated may be a
locally new address of the environment stack, not a globally new heap address. But it turned
out, that this assumption is wrong (which does not mean, that the ASM given in [BR95]
is wrong, see below). The temporary use of locally new heap addresses rises the problem,
how a correct mapping between globally renamed variables in ASM9 to locations in ASM10
should look like.

e It turns out, that the substitutions stored in ASM9 do not correspond to those stored in
ASM10. Instead certain variable bindings, that are no longer relevant, are discarded earlier
than in ASM9.

Only the first four aspects mentioned above are discussed explicitly in [BR95]. To reduce the
complexity of verification, we have tried to remove all aspects from the refinement that are not
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coupled to the introduction of term representation. Therefore, as a first step, we have kept the
structure of environments and choicepoints. Storing variables in an environment is done in our
ASM10 with a function z : env x nat — node: the result of z(ereg,m) is the mth variable of the
current environment (the sort node is now simply the sort of memory addresses, a super sort of
env). The structure of main memory in the WAM assumes, that heap addresses are lower than
stack addresses. This gives a complex ordering < on memory addresses, for which the axioms

1+ m; < x(L+ my,m3)
x(L+ mg,m;) € x(L+ mg,m3) <> mpg < my V mpg € my A my; < ms

hold. The function val: heap — termrep is used only to determine the content of heap locations
(heap now is also a subsort of node).

As a second measure, we have kept the cut, which is easily possible, since we have kept
the structure of stacks (an instruction to remove variable bindings from the stacks is of course
necessary; otherwise we simply keep the registers of the previous ASM).

Third, we have kept the occur check of unification. The “Meta Theorem”, which says, that
if occur check is not called, it can be removed holds trivially for ASM10, too. Also keeping the
occur check has allowed us to falsify the statement, made in [AK91], p. 14 as well as in [BR95],
p- 39, that occur check should be simply integrated into the bind routine: an occur check is also
necessary in the unify_value instruction.

Fourth, we have tried to change the strategy of variable renaming already on the term level.
The idea was, that renaming a variable X with the current renaming index can be replaced by
using a new stack address z(ereg,m). The transition from a globally new variable to a variable
that is relatively new to the stack is suggested by the allocate instruction of ASM10 in [BR95],
which allocates the new variable in just this way. Therefore we defined a variant ASM9a of ASM9,
that used new stack locations instead of a renaming index. But after some verification efforts, an
attempt to verify the equivalence of the deallocate rules failed, because the deallocated variables
can still occur in computed substitutions, that are needed later on. The bindings of these variables
would be overwritten, when a new environment is allocated.

This would suppose at first glance, that ASM10 is incorrect. But a thorough analysis shows,
that although a new variable X in ASM10 is first allocated on the stack, it is moved to the heap
when it occurs in the variables of some term 7' (X € wars(T')) that is bound to some other variable
(by the instructions unify_variable and unify_local_value). Therefore in some cases variables in the
WAM are renamed several times.

Of some help to understand how renaming really works was [AK91]. The first variant of the
WAM that is given there does not allocate variables with an allocate instruction on the stack.
Instead when the variable first occurs, it is allocated in the heap. Still there is one exception:
if the variable is bound to a term on its first occurrence (in the instruction get_variable, that is
generated for a variable X in a clause head p (X)) it is easy to see, that it can be allocated in the
stack, since it will not play any role in the further computation.

The optimizations shown in [AK91] as well as in [BR95] (especially “last call optimization”
LCO) are tightly coupled with the question, under which circumstances variables can be allocated
in the stack instead of the heap. Therefore we think that this question should not be addressed
in the refinement 9/10. It should be easier to move variables from the heap to the stack in one
separate refinement, which also changes the relevant constraints for address allocation (“heap
variables constraint” and “stack variables constraint”).

Using a separate refinement also seems to be desirable, since the main theorems of the re-
finement 9/10, which are the “Getting Lemma” and the “Putting Lemma” depend on the exact
definition of these constraints: it is impossible to first prove putting and getting lemma, as [BR95]
suggests, and then to verify that heap and stack variables constraints as invariants of the getting
and putting instructions. Instead, we have found, that both constraints are necessary precondi-
tions for getting and putting lemma. Ultimately both constraints become a central part of the
coupling invariant for the refinement 9/10.

Each modification in the definition of both constraints (especially each modification of the
allocation of variables in the heap or the stack) therefore means, that its invariance in the putting
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and getting instructions has to be proved anew. Therefore we currently use the first definition of
[AKO91] for our refinement. This definition has an inefficient put_variable instruction (that allocates
the variable in the heap), no unify_local_value instruction, and instead of initializing all variables
in allocate variables are initialized on their first occurrence, like this is done in [BR95] later on (p.
58f).

This version of ASM10 allows to define a very simple heap and stack variables constraint, that
says, that each pointer structure representing a term has to be completely in the heap, except for
the leading cell. The leading cell may be stored on the stack or in a register, if it is not a reference
to itself (i.e. a representation of a variable). The ordering on addresses is not relevant for this
version of the constraints. We currently think, that it should be possible to define a dynamic
function, that is a bijection between the variables of ASM9 that are renamed with a global wvireg,
and the new heap variables of ASM10. Like function F in the refinement 1/2 (see section 11.2)
this function should be modified each time an instruction is encountered, that corresponds to the
first occurrence of a variable (other modifications should be unnecessary).

We will then try to do the shifting of variables from the heap to stack (and the introduction
of stronger constraints, the definition of temporary and permanent variables and the addition of
new instructions like put_unsafe_value etc.) in one separate refinement.

Even when using the ASM10 as defined in [AK91] it is unavoidable to store fewer variable
bindings than in ASM9. Our current assumption is, that the (implicit) deallocation of variable
bindings that is done when the environment ereg is deallocated in ASM10, corresponds exactly to
an explicit deallocation of all bindings for variables renamed with wi[ereg] from subreg in ASM9.
According to our philosophy, to remove as much burden from the refinement 9/10 as possible, we
have therefore defined a function remove(subreg,viereg]) and verified separately, that modifying
the deallocate rule of ASM9 to

deallocate rule
if code(preg,dbg) = deallocate
then cpreg := cplereg]
ereg := celereg]
preg := preg +1
subreg := remove(subreg,vilereg])

does not have a significant consequence on the result of ASM9: if the computation terminates,
the substitution computed by the modified ASM (ASM9a) still has the same effect on the query.
We could verify the equivalence of ASM9 and ASM9a in 2 weeks with 3 iterations. The coupling
invariant IN Vg9, and the machine invariant MINVy for ASM9 are

INVgga =
stop = stop’ A breg = breg’ A ctreg = ctreg’ A cpreg = cpreg
A ereg = ereg’ A preg = preg’ A vireg = vireg’ A c¢cp = cp’
Ap=p Ab=b Ae=¢e Ace=ce Act =ct' Avi=vi
A cutpt = cutpt’ A cutpt[L] = L A ce[l] = L
A subreg <,; vireg A subreg’ <g,; vireg
A (V 1it. lit <4y; 0 — subreg ~; lit = subreg’ =, lit)
A (STACK# (ereg, ce; estack))
( slnodups(estack) A nlnodups(vilist(vi, estack))
A (= is_ret(code(preg, dbg)) A stop = run
— vilist(vi, estack) <,; vireg)
A (Vn, lit. 1t <4; 0 A n € estack
— subreg ~¢ rent(lit, vi[n]) = subreg’ ~; rent(lit, vi[n])))
A (STACK# (breg, b; stack))
Vn, lit.  lit <z4; 0 A n € stack
—  sub[n] " rent’(lit, e[n], vi) = sub’[n] ~¢ rent’(lit, e[n], vi)
A sub[n] ~ lit = sub’[n] ~ lit
A subn] <g,; vireg A sub’[n] <g,; vireg

!
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A (STACK#(e[n], ce; estacko))
( vilist(vi, estacky) <y vireg
A slnodups(estackg) A nlnodups(vilist(vi, estackg))
A (V¥ np. ng € estackg
—  sub[n] ¢ rent(lit, vi[ng])
= sub’[n] ~; rent(lit, vi[ng])))

MINV, =
stop = run
— - is_unify(code(preg, dbg)) A code(preg, dbg) # proceed
A ( is_try(code(preg, dbg)) V is_try_me(code(preg, dby))
V code(preg, dbg) = allocate V is_sw_const(code(preg, dby))
V is_sw_term(code(preg, dbg)) V is_sw_struct(code(preg, dbg))
V code(preg, dbg) = allocate
D (C-CHAIN-REC#(subreg ~; rent’(calllit(code(cpreg—1), dbyg)),
ereg, vi), preg, dbg; cli)) cli <.; O
A (UNLOADRECH(cpreg — 1, dbg, ereg # L; goalreg))
(goalreg # [] A nonvargoal(goalreg)) ;
is_ret(code(preg, dbg)) D breg # L A preg = p[breg] ;
(UNLOADREC# (preg, dbg, ereg # L; goalreg))
nonvargoal(goalreg))
A (STACK#(breg, b; stack))
(STACK# (is_ret(code(preg, dbg)) D e[breg] ; ereg, ce; estack))
( ordered(estack) A ordered(stack) A disjoint(estack, stack)
A (- —is_ret(code(preg, dbg))
— cutptlereg] € stack V cutptlereg] = 1)
A (Vn. n € estack
— (UNLOADREC# (cp[n], dbg, ce[n] # L; goalreg))
nonvargoal(goalreg))
A (Vn. n € stack
— en]<Kn
A (STACK#(e[n], ce; estackg))
( disjoint(estacky, stack from n)
A ordered (estacko)
A (V ng. ng € estacky
— <UNLOADREC#(CP[H0], dbg,
ce[ng] # L; goalreg))
nonvargoal(goalreg)))
A (UNLOADREC#(cp[n] — 1,dbg, e[n] # L; goalreg))
(goalreg # [] A nonvargoal(goalreg))
A (C-CHAIN-RET#(
sub[n] ~; rent’(calllit(code(cp[n] — 1, dby)),
e[n]a Vi)a p[n]a de; Ch))
cli <epwi 0))
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Statistics

The following table gives an overview over the efforts needed for the Prolog-WAM case study. For
each refinement the number of necessary proof steps and interactions and the number of theorems
proved are listed. These numbers have been extracted from the current KIV version 4. The
number of iterations, that were necessary to reach the final coupling invariant, and the time that
was needed to successfully verify the refinement refer to version of KIV in which the refinements
were verified originally (for 1/2 and 4/5 KIV version 1, for 2/3,3/4,5/6 and 5/7 KIV version 3).

1/2 | 2/3 | 3/4 | 4/5 | 5/6 5/7 | 7/8 | 8/9 | 9/9%
Proof steps || 1074 | 1760 | 2546 | 1722 | 5341 ||Proof steps || 7558 | 3445 | 4295 | 3045
Interactions|| 161 | 124 | 300 | 87 | 672 ||Interactions|| 1383 | 336 | 377 | 426
Theorems 15 13 22 17 42 || Theorems 39 21 19 19
Iterations 12 8 5 9 8 ||Iterations 17 12 8 4
Verif. time (|2 Mo.|2 Wo.|1 Wo.|1 Mo.|2 Wo.||Verif. time [|2 Mo.|1 Mo.|3 Wo. |2 Wo.
Size of INV || 20 25 25 14 53 ||Size of INV|| 36 36 |23+17|18+23

Altogether the verification effort is currently about 9 man months, which includes the verifica-
tion of 1771 auxiliary first-order lemmas, that required 17458 proof steps and 3393 interactions.
Here are some more statistical data:

e The number of auxiliary first-order lemmas is now four times the number that were nec-
essary until refinement 5/7. The main reason is, that starting from refinement 8/9 a lot
of lemmas are necessary for unification, renaming and substitution. Some of these lemmas
required elaborate proofs due to the complex termination ordering of substitution (up to
20 interactions), in contrast to all lemmas proved previously (usually 0-2 interactions). A
second reason is, that for ASM10 a large number of simple lemmas for the representation of
terms by pointers, that have already been proved.

e Compared to the number given in [SA97], which referred to KIV version 3, there have
been some major improvements. The most significant is the reduction of the size of the
coupling invariant for 5/7 from 97 to 36 lines by a modification of the proof technique
(see Sect. 15.2). In the refinements 2/3 and 3/4 we have now used the generation of proof
obligations according to the modularization theorem. In [SA97] the generic proof for the
modularization theorem was still done was done for every instance anew (de facto the proofs
for the instances lead to the discovery of the general theory presented here).

e The improvements in the deduction support and in the automation of the KIV system
(without the improvements that result from the use of the modularization theorem) during
the course of the case study can be shown clearly for the verification of the first refinement,
since it contains 1:1 diagrams only: While in KIV version 1 378 interactions were necessary,
this number dropped to 246 in version 3. In KIV version 4 it is now 161.
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e Refinement 1/2 also gives a good measure for the the time needed to become familiar with
KIV, since the verification in KIV version 3 was done by Harald Vogt, a student that had
attended a one-semester practical course on KIV and had no prior knowledge of the case
study. It required him 80 hours of work to port the proofs for the refinement from version
1 to version 3 (porting the proofs from version 3 to 4 required about a day of work).

e The size of the interpreters starts with 120 lines of imperative (Pseudo-PASCAL-)code and
reaches 300 lines for ASM9. Since it contains a lot of new instructions, ASM10 (nearly
identical to the WAM) is much larger with 950 lines of code.
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Related Case Studies

There is a huge amount of research in the literature, that considers compiler correctness in papers.
For an overview see e.g. [Joy90]. Large efforts on the topic were e.g. the VLISP ([GRW95]) and
the PROCOS ([BLH93]) project.

Most of the work falls (just like our work) in the category, that deals with the correctness of
the compilation (“compiling correctness”). The efficient implementation of compilers (“compiler
correctness”) was treated rarely, but is currently researched in the Verifix project ([GDG96]).

Work on system supported, formal verification of compilers is much rarer. The most elaborate
work in this field is the formal verification of a compiler, that translates code of the imperative
programming language Gypsy first to assembler code and then into native machine code of the
FM8502 processor ([Moo88], [You88]).

Verification of the compilation of Prolog to the WAM was besides [BR95], on which our work
is based, also discussed in [Rus92]. This work makes some simplifications (it does neither consider
the cut nor switching), and does not structure the proof into several refinements. An attempt to
formalize the proof failed because of its complexity. Therefore V. Austel tried to do a structured
proof in [Aus98] with the HOL system ([Gor88]). His proof attempt tries to refine the term
representation before the control structure and is in our opinion nearly incomprehensible. The
work required one man year of effort, and according to the author at least another year would be
necessary to complete it.

The most interesting point in this work is the thesis, that a major problem, that [BR95] only
treats insuffiently, is the introduction of the term representation in one single refinement (9/10).
Now our consideration in Sect. 18 have shown, that the introduction of term representation (and
all other concepts) in a single step must indeed be decomposed into several steps in order to make a
clear verification possible. Nevertheless we think, that the decomposition as we currently propose
it, will do this, and we do not see any fundamental problems.

Another work done parallel to this one is the formal treatment of the compilation of Prolog to
the WAM by C. Pusch ([Pus96]) with the Isabelle system ([Pau94]). Her specification is based on
inductively defined relations over the vector of state variables. Using polymorphism and pattern
matching makes the notation in Isabelle much more compact (but for an untrained reader also more
cryptic) than ASM notation (and even more than our PASCAL-like notation in the translation to
DL).

The starting point of her work is based on a definition of an interpreter that already uses
stacks of choicepoints, not search trees. Stacks are modeled as lists, in contrast to our pointer
structure. This avoids the necessity to collect choicepoints with the procedure STACK#. This
results in some simplification for the proofs at the cost, that a pointer structure would have to
be introduced (and verified) at latest in ASM8, when the stack of choicepoints and the stack of
environments are merged.

Four refinements were verified: the first introduces cutpoints (i.e. positions in the stack). These
were represented as sublists of the current stack in the first interpreter. The second refinement
shows, that instead of using all clauses as candidates a procdef function can be used, that gives all
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clauses with the same leading predicate symbol. The ASM that results from the second refinement
is (modulo notation) equivalent to our ASM2, and the last two refinements verified in Isabelle
are identical to our refinements 2/3 and 3/4 (except that the constructs ¢rue and fail were not
considered, therefore the problem discussed in 14.2 we found in the fail rule could not be found).

The verification effort for the four refinements is given in [Pus96] as 6 person months and 3500
interactions. The major part of this effort was necessary for the refinements 2/3 and 3/4, as can
be seen from the proof scripts. These figures are more than twice the ones we achieved. There
are two main reasons for this: First, no proof technique for m:n diagrams, as they appear in 2/3
and 3/4, was developed. Instead, diagrams were decomposed into 1:n diagrams, as we sketched
in Sect. 6.2.3, p. 28. This resulted in a drastic increase of the size of the invariants. Second,
two separate, asymmetric proofs were done for correctness and completeness of each refinements.
The asymmetry of the proofs seems one hand to be due to the use of abstraction functions, that
required additionally the definition of their domain (with config-ok), but asymmetrically, not
definition of their codomain. On the other hand it is the determinism of the state based system,
that is essential for the fact, that only one proof is necessary. In our encoding of the ASM in the
calculus of Dynamic Logic determinism is syntactically supported by the axiom

(@) p=[a] ¢

for deterministic programs « (this axiom is used in our correctness proof of the modularization
theorem). In the formalization of the ASM as an inductive relation a similar axiom has to be
proved individually for each a by induction over its structure.
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Summary of Part 11

In the second part of this work we have investigated the practical usefulness of the theory developed
in part 1. The case study we used for this purpose is from compiler verification. With 9 months
of effort for the verification, the case study is a very large one.

The content of the case study was the formal verification of 8 of the 12 refinements given in
[BR95], that compile a Prolog program to assembler code of the Warren Abstract Machine. The
case study contained a large number of typical problems from compiler verification, e.g. intro-
duction of registers, stacks, environments (stack frames), the optimization of control structures
(switching) or the translation of abstract datatypes to pointer structures. These problems should
also be relevant for other programming languages.

The case study showed, that due to a large number of implicit assumptions, the fully formal
correctness proof of a refinement is much more expensive than one could estimate by looking at
the already elaborate mathematical analysis done in [BR95]. The additional effort payed off in
the sense, that a number of small errors, that were left open in the mathematical analysis, could
be found and removed.

To make the verification of the refinements tractable, the full theory developed in the first part
was necessary as well as a very powerful tool for verification. The KIV system, that was used in
the case study, has been significantly improved during the work on this case study.

Finally the comparison with two case studies on the same topic done with other systems (HOL,
Isabelle) in parallel to this work shows, that the developed theory allowed the necessary effort to
be significantly smaller.
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Chapter 22

Outlook

The case study done in this work does not yet completely show the correctness of the compilation
of Prolog to the WAM. There are still 4 refinements until full WAM code is reached. The first
two refinements will be relatively complex to verify, while the other two (environment trimming
and removal of the structure of environments and choicepoints) should be easy. Altogether, we
estimate the effort to complete the verification to be about 2-3 months.

To get a verified Prolog compiler from the case study, then a compiler could be implemented,
that fulfills the compiler assumptions. This should be easy for an simple variant with recursively
defined DL programs, since the compiler assumptions are (with the exception of switching) already
algorithmic.

More interesting than to use imperative programs for the implementation would be to take
up the ideas from the Verifix project [GDGT96] and to use Prolog itself as the implementation
language of the compiler. This would give the possibility to get an efficient compiler by compiling
the compiler with itself (“bootstrapping”).

The definition of a Prolog compiler in Prolog would be a list of clauses for a predicate compile
with two arguments. A query would be of the form compile(t, X'), where ¢ would be a Prolog
program encoded as a term. X would be the output variable, whose result value at the end of the
computation would be generated WAM instructions, again encoded in a term.

To connect programs and WAM instruction lists to terms (“reflection”), two conversion func-
tions clauselist-to-term and term-to-instructionlist are necessary. They are easy to define here,
since Prolog is an untyped language (the programming language with the simplest reflection prin-
ciple, namely the “quote” operation, is LISP, since programs and data structures are identical;
for typed languages reflection is a much harder problem). Subsequently the Prolog code dbcompile
of the Prolog compiler could be verified, by showing that execution of ASM1 with a query com-
pile(t, X) results for each program 4 (encoded as a term) in a list of instructions, which fulfill the
compiler assumptions. Formally, we have to prove

t = clauselist-to-term(db)
A (ASM1(dbeompite, compile(t,X); subst)) subst = [X  t']
— CompAssum(db, term-to-instructionlist(t’)

With this approach a compiler would result, whose correctness depends only on the fact, that
ASM1 is a correct semantic definition of Prolog, the (trivial) correctness of the conversion functions
and of course the correctness of the verification tool.

For the bootstrapping of the compiler with itself (to get a compiler implemented in WAM
code) there would be three choices: Either the WAM code could be got by replacing db with
dbcompile in the theorem above and symbolic execution of ASM1. This would be ideal, since then
only the correctness of the verification tool would be relevant for correct WAM code. Experience
of my colleague Kurt Stenzel with a Java ASM show, that this is very expensive (space and time
consuming) and could turn out to be impossible with the resources available. A second possibility
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would be to do the bootstrapping with one (or several) available Prolog compilers. A last possibility
would be to use the code generation facility of KIV, that generates LISP programs for the abstract
programs of ASM1. The resulting code could also be used to do the bootstrapping. The last two
methods are from a theoretical viewpoint not quite as safe as the first one, since they require the
correctness of another compiler (at least for the considered program of the Prolog compiler), but if
both methods result in the same code, the probability of an error should nevertheless be de facto
equal to zero.



Appendix A

Used Notations

This section gives the basic notations used in this work.

For a set S we denote with P(S) the power set of S, with P“(S) the set of all finite subsets of
S. S™ is the set of all n-tuples over S (n > 0). We write z; ..., and (zi,...,2,) for n-tuples.
If n is clear from the context or arbitrary, we also write z. S* is the union of all S™ for n > 0.
This set also contains the empty tuple, written (). ST is S* without the empty tuple. S is the
set of all duplicate free n-tuples: x1...xz, € S™iff x; # z; forall 1 < i < j < n. S* is the
union of all S™. We use the notation M = U sesM; for a family of sets M, indexed with the
elements of S. It is always assumed that the sets M, of the family are pairwise disjoint. M, . s,
abbreviates Mg, x ... x M, and Mslx...xsn is the same as Mg, X ... x Mg, N M™. For two

tuples (z1,...,2,) € S™ and (z'1,...,2' ) € S™ we define their concatenation (z1,...,z,) :
(@'1,..., 2" ) as (T1, .., T, ', .., @' ) € ST We identify S with S, so z : (z1,...,2,) is
the same as (z,21,...,7,) € S

If a function f : M — N is given, then we assume, that the homomorphic extension to a
function on tuples from M™ is defined by f((z1,..., ,)) := (f(z1),..., f(zn)) The homomorphic
extension of f to subsets of M is defined analogously.
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Appendix B

Syntax and Semantics of Dynamic
Logic

B.1 Syntax of Dynamic Logic

Definition 4 Signatures
A (many-sorted) signature SIG = (S,OP, X, P) consists of a finite set of sorts S, a family OP =
U ses+.57e5OPs,s of operations (with argument sorts s and target sort s'), a family X = J ¢ X

of countably many variables for each sort, and a family P = | J P; ¢ of procedure names

s€S*,s'€S* 1 5,8
with value parameters of sorts s and reference parameters of sorts s’ (procedure names are used
in programs).

It is assumed, that S contains at least the sorts bool and nat, as well as the usual operations
on these sorts (true,false,\,V,—, <»,—, 0,41,—1,4).

Definition 5 DL Ezxpressions
For a many-sorted signature SIG, the set DLEXPR = |J ,.¢DLEXPR; of expressions, and the
set PROG of programs are defined to be the smallest sets with

e X, C DLEXPR; for every s € S

e If f € OP,, and t € DLEXPR, then f(t) € DLEXPR,

e If pe FMA and z € )A(ithen‘v’g.go € FMA

o If p € FMA and z € X, then 3 2.9 € FMA

e If t,t' € DLEXPR, then t =t' € FMA

e If p € FMA and t,t' € DLEXPR,, then (p D t;t') € DLEXPR,
eIfzec X,andtc Us, where U; = T U {?}, then z :=t € PROG
e If « € PROG, x € X,and te€ Us, where Us = T U {?}, then var 2 =t in o € PROG
e skip,abort € PROG

e If o, € PROG, then o; 3 € PROG

e If ¢, € PROG and ¢ € BXP, then if € then « else § € PROG
e If « € PROG and ¢ € BXP then while € do a € PROG

o If « € PROG and k € T4 then loop a times k € PROG
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e Ifpe Py, teTs,z€ Xsr and k € Tyat then p(t; ) € PROG and procbound & in p(t; z) €
PROG. The latter program is a call to p with maximal recursion depth bounded by k.

The definition uses FMA (formulas) to abbreviate DLEXPRyo01. The set Ty (Terms of sort s)
is the subset of DLEXPR,, that does neither contain quantifiers nor programs. BXP (boolean
expressions) is Thool-

Remark 1 Like in Pascal we use begin ...end as brackets around programs. if £ then « is
used as an abbreviation for if £ then « else skip.

Remark 2 The tests of while loops and conditionals must be boolean expressions in the definition
above (¢ € BXP). This is necessary for application programs. For proof obligations and in proofs
it is sometimes convenient to use arbitrary formulas. This extension does not pose any problems,
everything that follows holds for arbitrary ¢ € FMA too.

Definition 6 Assigned Variables
The set asgu(a) of assigned variables in a programs « is defined by:

e asgv(skip) = asgv(abort) = {)
e asgv(a; ) = asgv(a) U asgv(p)
e asgv(if € then « else §) = asgv(a) U asgv(f)

e asgv(while € do a) = asgv(a)

(
(
(
(
(
(va
(
(

e asgv(loop a times k) = asgv(a)
e asgv(var z =t in a) = asgv(a) \ z
o asgv(p(t;z)) =

e asgv(procbound p(t;z) times k) = x

Definition 7 Called Procedures
calledprocs(a) is the set of all procedures that are called in a program a.

Definition 8 Procedure Declarations and Procedur Declaration Lists

The setPD of procedure declarations is the set of all p(z;var y).a with p € Py o z,y € X§7§/,

a € PROG and asgv(a) C x U y. a must not contain procedure calls with bounded recursion

depth. p is the procedure defined with the procedure declaration, a is the body of the procedure.
PDL is the set of all lists of Procedure declarations, such that the called procedures in their

bodies are a subset of the set of all defined procedures.

B.2 Semantics of Dynamic Logic

Definition 9 Algebra
An Algebra A over a signature SIG consists of a nonempty carrier set A, for every sort s and a
function f4 : A; = Ay for every f € OP, o . For every procedure p € P, o and every n € IN the
algebra A contains a relation [p] An O0 Ag s (which is the semantics of p when the maximal
recursion depth is bounded by n). [p] 4 , must be the empty relation. [p] 4 denotes the semantics
of the procedure and is defined as the union of all [p], ,. The semantics defines a relation
between the initial values of value and reference parameters and the result values of the reference
parameters.

It is assumed that Aheo = {tt,[f }, Anat = IN, and that the operationen on booleans and natural
numbers have their usual semantics.
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Definition 10 States/Valuations

For a signature SIG and an algebra A over this signature a state (or synonymously, a valuation)
z € STy, is defined as a function, that maps the variables of sort s to values in A;. The state
z[z + a] is the state, which results from z by modifying the values at variables z with a.

Definition 11 Semantics of Expressions
For an algebra A and a valuation z the semantics [e], € A; of a DL expresion e € DLEXPR,
and the semantics z[a]z’ of a program (a relation on states, written infix) are defined by:

o [z], = 2(2)
[F®], = fa(lt],) for f € OP; o and t € Ty

[V z.e], = tt with z € X iff [el,;. « o = tt for all values a € Ay

[3 z.e], = tt with z € X iff [¢] o = tt for some values a € Ay

z[z

[(e D ese)], is [el,, if [e], = tt, and [e], otherwise.

o z[skip]z’ iff z = 7'

e [abort] is the empty relation

o z[x:=t]z' iff z' = z[x + [t],], where each [?], is some arbitrary value.
e z[a; f]Z' iff there is a z" with z[a]z"” and z"[(]z’

e z[if £ then «a else § ]z’ iff
either [¢], = ¢t and z[a]z’ or [¢], = ff and z[f5]Z’

e z[loop « times ]z’ iff
there are states zg := z,%1,...,%, = 2’ with n:= [£], such that
z;—1[a]z; for every 1 <i<mn

e z[while ¢ do o]z’ iff
there are states zg := z,%1, ...,%, := z' with
z;_1[a]z; for 1 <i < n,
lel,, = tt for 1 <i<nand [e], = ff

e z[var z =t in a]z’ iff z[z + d][e]z" and z' = z"[z + [z],] where a; = [¢;] for t;#7 and
otherwise a; is arbitrary.

o z[p(t, 2)]z" iff z(1),2(z), 7' (z) € [p] and z(y) = 2'(y) for all y ¢ z

e z[procbound « in p(t,z)]z" iff z(t),z(z),2'(z) € [p],, where n = [«],, and z(y) = 2z'(y)
forally & z

o [(a) @], = tt iff there is a z' with z[a]z' and [¢], = t¢
o [[o] ¢], = tt iff for all 2’ with z[a]z": [¢], =it

Remark 3 The semantics of expressions and programs is defined unambiguously, since each case
reduces the number of elementary statements in the expression/program considered.

Definition 12 Semantics of Procedure Declaration Lists

If § is a procedure declaration list, then A |= ¢ iff for every procedure declaration p(z;y).c
contained in ¢ and every K =0+ 1...+ 1 (representing a number n > 0) the following property
holds:

[procbound & + 1 in p(z;y)] = [procbound & in «f



144 SYNTAX AND SEMANTICS OF DL

In the definition procbound & in « is the program, that results from replacing each procedure
call ¢(g;2) in a by procbound & in ¢(g; z) (for every procedure name q).

Remark 4 A procedure declaration list unambiguously fixes the semantics of the defined proce-
dures. The proof is by induction on n, that [p] 4 , is fixed. It is also easy to show, that the [p] 4 ,
are monotone increasing relations for the defined procedures.

Definition 13 models operator
e A,z |= ¢ holds (or is valid) for a formula ¢ iff [¢], = tt
e A |= ¢ holds iff for all states z: A,z = ¢
e | ¢ holds off for every algebra A : Al ¢
e & =1 holds iff for every algebra A: from A |= ¢ for every ¢ € ® follows A =4

Remark 5 The following properties are valid, if ¢ does neither occur in a nor in £. The first two
properties characterize while loops (they allow induction over the number of iterations). The third
property allows to avoid loops with a counter occurring in a.

e = (while € do a) ¢ +> Ji.(loop if ¢ then «a times i) (¢ A - €)
¢ = (loop a times k + 1) p < (a;loop a times k) ¢
e = (loop a times k) ¢ +» (Vi.i =k — (loop «a times i) ¢)

Remark 6 Let A be an algebra with A = § for a procedure declaration list J§, that contains a
procedure declaration p(z; var y).a. Then the following three formulas characterize the recursive
procedure (i.e. their validity is equivalent to the procedure declaration). Procedure declara-
tion lists therefore can be viewed as abbreviations for axioms. The formulas allow to induce
over the recursion depth and unfolding of procedures. The first formulas holds in every alge-
bra. In the third formula z, and Y, have to be new variables of the same sorts as z and y.
procbound « in « again is the program that is derived from a by replacing all procedure calls
q(o; z) with procbound « in ¢(g;2).

e = (p(t;2)) p « I k.(procbound « in p(t; 2)) ¢

e A= (procbound k + 1 in p(t;2)) ¢ +
(Zo: Yy 2,y == 2,¥,t,z;procbound & in a;2,y, Yy, == 2o, Y, Y52 = Y,) ¥

e ARGEG2) e
Ans (EOagoagag = gagatag;a;gayago = EOagoag;é = g0> ¥

Definition 14 (Basic) Specifications
A basic specification SPEC = (SIG, Az, GAx,PAz) consists of

a signature SIG = (S,0P,P,X).

a set of axioms Az (formulas over SIG).

a set GAz of generation clauses of the form: sy,...s, generated by fi,... f, (n,m > 0).
It is required that si,...s, € S* and all f; have a target sort in sq,...sp.

a set PAz of procedure declaration lists over SIG. If a procedure is declared in several lists,
the declarations must be identical.

Definition 15 Semantics of Specifications
An algebra A is a model of SPEC (written as A = SPEC, if it is an algebra over the signature of
the specification with
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e A= ¢ for every p € Az

e For every generation clause sy, ..., s, generated by fi,..., f,, € GAzandeveryi =1...n,
every element a € Ay, can be got as the semantics a = [t], of some term ¢ under some values
for z. The term must not contain variables of the sorts s1, ... s,, and that contains operation
symbols only from {fi,..., fm}.

e A for every § € PAx

Remark 7 For every model of a specification (SIG,Az,GAz,0) with no procedure names in its
signature, there is exactly one extension to a model (SIG U P,Ax,GAz, PAz), where P is the set
of defined procedures in PAz.

Remark 8 We write SPEC |= o, iff in every model A of SPEC' A = ¢ holds.

Theorem 11 Correctness and Completeness
The theory of basic specifications can be axiomatized correctly and completely, if we add for
every generation clause s1,...s, generated by fi, ..., fn an Omega rule: If for a formula ¢(x)
containing a free variable z from one of the sorts s, ... s, all (evtl. infinite many) formulas (t)
with terms t, which are built up with the constructors fi,... f,, and only contain variables from
sorts not in sy, ...s, can be derived, then V z.¢(x) can be derived.

The rule has infinitely many premises, so it cannot be used in a theorem prover. In the
implementation of a calculus Omega rules are replaced by structural induction principles. These
are theoretically weaker than the Omega rules but sufficient for practical application.

We do not want to prove the theorem here. The idea of the proof is to translate all DL formulas
into equivalent first-order formulas. To do this we translate every program « into a relation R,
(input: all variables of the program, output: all assigned variables of the program) This reduces
the correctness and completeness proofs to first-order specifications with generation clauses. For
these it is known that they can be correctly and completely axiomatized with an Omega rule (see
[Rei98]).
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Appendix C

Specifications and Lemmas for the
Modularization Theorem

C.1 General Specifications
Specifications for natural numbers, lists and dynamic functions can be found in appendix E.

diagtype =
data specification
diagtype = mn | On | m0;
variables c: diagtype;
end data specification

state =
specification
sorts state;
variables st: state;
end specification

f-state-state =

actualize Dynfun with parameter state by morphism
dom — state, codom — state, dynfun — f-state-state,

LoI= T,

end actualize

iterate =
enrich nat, f-state-state with

functions . ~ . : f-state-state X nat — f-state-state prio 9;
axioms

it-base-ax : (f ~ 0)[st]s = st,
it-rec-ax : (f “m +1)[st]s = f[(f ~ m)[st]s]s

end enrich
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stream =

actualize Dynfun with nat, parameter state by morphism
dom — nat, codom — state, dynfun — stream,
S I I S R I

end actualize

enrstream =
enrich stream, iterate with
functions

cons :  state X stream —  stream;
cdr :  stream —  stream;
app :  stream X nat X stream — stream;
nthedr @ stream X nat —  stream,;

axioms

cons-base-ax : cons(st, s)[0] = st,
cons-rec-ax : cons(st, s)[m +1] = s[m],
cdr-ax : cdr(s)[m] = s[m +1],
app-base-ax : app(s, 0, sg) = So,
app-rec-ax : app(s, m +1, sg) = cons(s[0], app(cdr(s), m, sp)),
nthedr-base-ax : nthedr(s, 0) = s,
nthedr-rec-ax : nthedr(s, m +1) = nthedr(cdr(s), m),
streamchoice :
(V m. 3 sty. st1 = (f - m) |-St0—|s)
= (Is. Vm. s[m] = (f ~ m)[sto]s)

end enrich

tuple =

data specification
using enrstream
tuple = mkt (. .s: stream, . .i: nat, . .j : nat);
variables tq, to, t: tuple;

end data specification

f-tup-tup =

actualize iterate with tuple by morphism
state — tuple, f-state-state — f-tup-tup, . [. ], = . [. ],
st > t, f — ft

end actualize

rule =
enrich enrstream with
predicates
Trace : stream;
final :  state;
procedures

RULE : — state; (: arbitrary procedure as ASM rule :)

axioms



C.2. REFINEMENT OF DETERMINISTIC ASMS

Trace-def :
Trace(s)
< (Vm,st. st =s[m]
— (if - final(st) then RULE(; st)) st = s[m +17),

final-def : (: rule does not terminate — final state :)
(= (RULE(; st)) true) — final(st) ,

choice : (: choice axiom for RULE :)
(V st. (if = final(st) then RULE(; st)) true)
— 3 1f. Vstg. (st := stg; if - final(st) then RULE(; st)) st = f[sto]s

end enrich

149

rule’ =
rename rule by morphism
stream — stream’, state — state’, . [ . ] — . [ . ]’, cons — cons’,

cdr — cdr’, app — app’, nthedr — nthedr’, Trace — Trace’,
final — final’, RULE — RULE’, s — s, st — st’
end rename

C.2 Refinement of Deterministic ASMs

C.2.1 Specification

detequiv =
enrich rule, rule’, diagtype with
functions
ndt : state x state’ —  diagtype;
execOn : state x state’ — nat;
execm() : state x state’ — nat;
predicates
INV : state x state’; (: coupling invariant :)
IN : state x state’; (: input relation :)
ouT : state x state’; (: output relation :)
PROP : state x state’;

variables i, j, k: nat;

axioms

init-ax : IN(st, st’) — INV(st, st’),

finboth-ax : final(st) A final’(st’) A INV(st, st’) — OUT(st, st’),
finl-ax : final(st) A INV(st, st’) A = final’(st’) — ndt(st, st’) = On,
fin2-ax : final’(st’) A INV(st, st’) A = final(st) — ndt(st, st’) = m0,

mton-ax :
INV(st, st’) A — final(st) A = final’(st’) A ndt(st, st’) = mO0
— (if - final(st) then RULE(; st) )
1. (loop if — final(st) then RULE(; st) times i)
(if = final’(st’) then RULE’(; st’) )

3 j. (loop if - final’(st’) then RULE’(; st’) times j ) INV(st, st’),

Oton-ax :
INV(st, st’) A — final’(st’) A ndt(st, st’) = On A execOn(st, st’) = k
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— (if - final’(st’) then RULE’(; st’) )
3j. (loop if = final’(st’) then RULE’(; st’) times j)
(INV(st, st’) A (= final’(st’) A ndt(st, st’) = On — execOn(st, st’) < k)),

mto0-ax :
INV(st, st’) A = final(st) A ndt(st, st’) = m0 A execmO(st, st’) = k
— (if - final(st) then RULE(; st) )
3 1. (loop if - final(st) then RULE(; st) times i)
(INV(st, st’) A (= final(st) A ndt(st, st’) = m0 — execmO(st, st’) < k)),

prop-def :
PROP (st, st’)
+ 1. (loop if — final(st) then RULE(; st) times i)
3 j. (loop if — final’(st’) then RULE’(; st’) times j) INV(st, st’)
end enrich

C.2.2 Proved Theorems
finite-Oton (the main case of lemma 2 from Sect. 6.2.3)

INV(st, st’), ndt(st, st’) = On, — final’(st’)
F (if - final’(st’) then RULE’(; st’) )
3j. (loop if = final’(st’) then RULE’(; st’) times j)
(INV(st, st’) A (final’(st’) V ndt(st, st’) # On))

e used lemmas : Oton-ax

e used by : compl-step, completeness

finite-mtoO0

INV(st, st’), ndt(st, st’) = m0, — final(st)
F (if - final(st) then RULE(; st) )
3 1. (loop if - final(st) then RULE(; st) times i)
(INV(st, st’) A (final(st) V ndt(st, st’) # m0))

e used lemmas : mto0-ax

e used by : corr-step, correctness

corr-step (Lemma 1 from Sect. 6.2.3)
PROP(st, st’) F (if = final’(st’) then RULE’(; st’)) PROP(st, st’)

e used lemmas : finite-mto0, finl-ax, Oton-ax, mton-ax, prop-def

e used by : correctness

compl-step
PROP(st, st’) F (if = final(st) then RULE(; st)) PROP(st, st’)

e used lemmas : finite-Oton, fin2-ax, mto0-ax, mton-ax, prop-def
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e used by : completeness

correctness (correctness of the refinement)

IN(st, st’)
F [while — final’(st’) do RULE’(; st’) ]
(while - final(st) do RULE(; st)) OUT(st, st’)

e used lemmas : finboth-ax, fin2-ax, finite-mto0, corr-step, init-ax, prop-def

completeness (completeness of the refinement)

IN(st, st’)
F [while — final(st) do RULE(; st)]
(while - final’(st’) do RULE’(; st’)) OUT(st, st’)

e used lemmas : finboth-ax, finl-ax, finite-Oton, compl-step, init-ax, prop-def

C.3 Refinement of Indeterministic ASMs —
Diagrams of Indeterministic Size

C.3.1 Specification

genindeteqtrace =
enrich rule, rule’, f-tup-tup, diagtype with
functions
ndt :  state x state’ —  diagtype;
execOn : state x state’ — nat;
execm( : state x state’ — nat;
predicates
INV :  state X state’;
INV’ :  state X state’;
KPROP : state x state’;
VPROP : state x state’;
IN, :  state X state’;
ouT . state x state’;
p :  stream’ x tuple X tuple;

variables i, ig, i, j, jg, k: nat;
axioms

init-ax : IN(st, st”) — INV(st, st’),

finboth-ax : final(st) A final’(st’) A INV(st, st’) — OUT(st, st’),
finl-ax : final(st) A INV(st, st’) A = final’(st’) — ndt(st, st’) = On,
fin2-ax : final’(st’) A INV(st, st’) A = final(st) — ndt(st, st’) = m0,

mton-corr-ax :
INV(st, st’) A ndt(st, st’) = m0 A Trace’(s’)
A st” = s'[0]" A = final(st) A — final’(st’)
— (if - final(st) then RULE(; st))
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3j. 3i. (loop if - final(st) then RULE(; st) times i ) INV(st, s’[j +11'),

Oton-corr-ax :
INV(st, st’) A ndt(st, st’) = On A execOn(st, st’) = k
A Trace’(s’) A st’ = s’[0]" A — final’(st’)
—3j.  INV(st, s’[j +17")
A (= final’(s’[j +11") A ndt(st, s’[j +1]") = On — execOn(st, s’[j +11") < k),

mto0-corr-ax : (: follows from mto0-comp-ax, is sufficient for trace correctness :)
INV(st, st’) A ndt(st, st’) = m0 A execmO(st, st’) = k A — final(st)
— (if - final(st) then RULE(; st))
31i. (loop if — final(st) then RULE(; st) times i)
(INV(st, st’) A (= final(st) A ndt(st, st’) = m0 — execmO(st, st’) < k)),

mton-comp-ax :
INV(st, st’) A ndt(st, st’) = m0 A Trace(s)
A st = s[0] A — final(st) A — final’(st’)
— (if - final’(st’) then RULE’(; st”))
3i. 3j. (loop if — final’(st’) then RULE’(; st’) times j ) INV(s[i +1], st’),

mto0-comp-ax :
INV(st, st’) A ndt(st, st’) = m0 A execm0(st, st’) = k A Trace(s)
A st = s[0] A - final(st)
— Ji. INV(s[i +1], st”)
A (= final(s[i +1]) A ndt(s[i +1], st’) = m0 — execmO(s[i +1], st’) < k),

Oton-comp-ax : (: follows from Oton-corr-ax :)
INV(st, st’) A ndt(st, st’) = On A execOn(st, st’) = k A — final’(st’)
— (if - final’(st’) then RULE’(; st”))
3j. (loop if = final’(st’) then RULE’(; st’) times j)
(INV(st, st’) A (= final’(st’) A ndt(st, st’) = On — execOn(st, st’) < k)),

choice-ax : (: axiom of choice :)
(Vt. Fto. p(s', t, to)) — (I ft. V t. p(s', ¢, ft]t])),

diagonal-ax : (: axiom of choice :)
V m. I st. st = (ft 1 m)[mkt(sp, 0, 0)
— 3s. Vm. s[m] = ft T m[mkt(so, 0, 0)].s[m],

kprop-def :
KPROP(st, st’)
« Vs st’=5"[0] A Trace’(s’)
— 31i. (loop if — final(st) then RULE(; st) times i)
(3 m. INV(st, s’[m]")),

vprop-def :
VPROP(st, st’)
<~ Vs. st =s[0] A Trace(s)
— 3j. (loop if - final’(st’) then RULE’(; st’) times j)
(3 m. INV(s[m], st’)),

inv’-def : INV’(st, st’) <> INV(st, st’) A (final(st) > final’(st’))
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p-def : (: predicate that describes adding diagrams :)
p(S’, t, to)
< INV’(t.s[t.i], s’[t.j]") A Trace(t.s) A Trace’(s’)
—  Trace(tog.s) A (Vii. = td <iy — t.s[iy] = to.si1])
Atl< t[).i A t] < to.j A INV,(tU.SHU.i], S’|—t0.j-|l),

end enrich

C.3.2 Proved Theorems
fin-Oton

INV(st, st’), ndt(st, st’) = On, — final’(st’)
F (if - final’(st’) then RULE'(; st’))
3j. (loop if = final’(st’) then RULE'(; st’) times j)
(INV(st, st’) A (final’(st’) V ndt(st, st’) # On))

e used lemmas : Oton-comp-ax

e used by : compl-step, completeness

fin-mto0

INV(st, st’), ndt(st, st’) = m0, — final(st)
F (if - final(st) then RULE(; st))
3 1. (loop if — final(st) then RULE(; st) times i)
(INV(st, st’) A (final(st) V ndt(st, st’) # m0))

e used lemmas : mto0-corr-ax

e used by : add-diagram, corr-step, correctness, equiv-final

finite-Oton

ndt(st, st’) = On, INV(st, st’), Trace’(s’), s’[0]" = st’, = final’(st’)
F3j. INV(st, s’[j +1]") A (final’(s’[j +1]") V ndt(st, s’[j +1]") # On)

e used lemmas : Oton-corr-ax

e used by : add-diagram, equiv-final

corr-step
KPROP(st, st’) F [if = final’(st’) then RULE'(; st’)] KPROP(st, st”)
e used lemmas : fin-mto0, finl-ax, Oton-corr-ax, mton-corr-ax, kprop-def

e used by : correctness

compl-step
VPROP(st, st’) b [if - final(st) then RULE(; st)] VPROP(st, st’)
e used lemmas : fin-Oton, fin2-ax, mto0-comp-ax, mton-comp-ax, vprop-def

e used by : completeness
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correctness (correctness of the refinement)

IN(st, st’)
F [while — final’(st’) do RULE'(; st”)]
(while - final(st) do RULE(; st)) OUT(st, st’)

e used lemmas : fin-mto0, finboth-ax, fin2-ax, corr-step, init-ax, kprop-def

completeness (completeness of the refinement)

IN(st, st’)
F [while — final(st) do RULE(; st)]
(while - final’(st’) do RULE'(; st’)) OUT(st, st’)

e used lemmas : finboth-ax, finl-ax, fin-Oton, compl-step, init-ax, vprop-def

equiv-final (Lemma 3 from Sect. 6.3)

INV(st, st’), Trace’(s’), s’[0]" = st’
F 3i. (loop if — final(st) then RULE(; st) times i) (3 j. INV’(st, s’[j]"))

e used lemmas : fin2-ax, fin-mto0, finl-ax, finite-Oton, inv’-def

e used by : add-diagram

add-diagram (Lemma 4 from Sect. 6.3)

INV’(st, st’), Trace’(s’), s’[0]’ = st’
F (if - final(st) then RULE(; st))
3 1. (loop if - final(st) then RULE(; st) times i)
(Fj. INV’(st, s’[] +11"))

e used lemmas : finl-ax, Oton-corr-ax, fin-mto0, fin2-ax, mto0-corr-ax, finite-Oton,
equiv-final, mton-corr-ax, inv’-def

e used by : totality

totality (Totality of the relation that describes adding diagrams)
FV S’, t. 3 to. p(S’, t, to)

e used lemmas : inv’-def, p-def, add-diagram

e used by : choice-concl, ind-choice-concl

choice-concl (existence of a function, that adds a diagram)
F3ft. p(s), t, ftt])

e used lemmas : totality, choice-ax

ind-choice-concl (special case of choice-concl for ft + m)
F3ft. Vm. p(s, (ft T m)[t], (ft + m +1)[t])
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e used lemmas : totality, choice-ax

e used by : trace-correctness

diagonal (diagonalisation argument for m constructed diagrams)

t[) = mkt(So, 0, 0), t = (ft T m)l[to]],
Trace(sg), Trace’(s”), INV’(so[0], s’[0]"),
vk (s (6 1 9)Tto], (f6 1 k +1)[to])
F o INV(t.s[t.i], s’[t-j]")
Am < tiAm<tjA Trace(t.s)
ANVij i<jAj<m
(8t D)[toli < (6 )Tt A (1 Dlto] < (f )Tl

A ik G <m Ak < (661 )[t]d - (f6 1 )[to]s[K] = t.57K])

e used lemmas : p-def, inv’-def

e used by : trace-correctness

trace-correctness (trace correctness of the refinement)

Trace’(s’), INV’(st, s’[0]")
F 3s. Trace(s) As[0] =st A (Vm, k. 3i,j. m <iAk<jAINV(s[i],s'[i]")

e used lemmas : diagonal, diagonal-ax, ind-choice-concl, inv’-def

C.4 TIterative Refinement for
Indeterministic ASMs

C.4.1 Specification

it-indetcorr =
enrich rule, rule’, diagtype with

functions
ndt .  state x state’ — diagtype ;
execOn : state x state’ — nat ;
execm() : state x state’ — nat ;
predicates
INV :  state x state’;
IN :  state x state’;
ouT :  state x state’;
KPROP :  state x state’;
MINV 1 state; (: existing invariant for ASM :)
MINVNOW : state’;
MINV’ 1 state’; (: constructed invariant for ASM’ :)
variables i, j, j,, k: nat;
axioms
minv-ax :

IN(st, st’)

155
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— Vi. [loop if — final(st) then RULE(; st) times i] MINV(st),

init-ax : IN(st, st’) — INV(st, st’) A MINVNOW st”),

finboth-ax : final(st) A final’(st’) A INV(st, st’) A MINV(st) — OUT(st, st’),
finl-ax : final(st) A INV(st, st’) A = final’(st’) A MINV(st) — ndt(st, st’) = On,
fin2-ax : final’(st’) A INV(st, st’) A = final(st) A MINV(st) — ndt(st, st’) = mO0,

mton-corr-ax :
INV(st, st’) A MINV(st) A — final(st) A = final’(st’) A ndt(st, st’) = m0
— [if = final’(st’) then RULE’(; st’)]
3j. [loop if = final’(st’) A = MINVNOW(st’) then RULE’(; st’) times j]
( MINVNOW(st’)
A (if = final(st) then RULE(; st))
31i. (loop if - final(st) then RULE(; st) times i) INV(st, st’)),

Oton-corr-ax :
INV(st, st’) A MINV(st) A MINVNOW (st’) A — final’(st’)
A ndt(st, st’) = On A execOn(st, st”) = k
s [if - final’(st") then RULE’(; st")]
3j. [loop if = final’(st’) A = MINVNOW(st’) then RULE’(;st’) times j]
( INV(st, st’) A MINVNOW (st)
A (= final’(st’) A ndt(st, st’) = On — execOn(st, st’) < k)),

mto(-corr-ax :
INV(st, st’) A MINV(st) A MINVNOW(st’) A — final(st)
A ndt(st, st’) = m0 A execmO(st, st’) = k
— (if - final(st) then RULE(; st))
1. (loop if — final(st) then RULE(; st) times i)
(INV(st, st’) A (= final(st) A ndt(st, st’) = m0 — execmO(st, st’) < k)),

kprop-def :
KPROP(st, st’)
< Vi [loop if — final(st) then RULE(; st) times i] MINV(st)
A (3. [loop if = final’(st’) A = MINVNOW(st’)
then RULE’(; st’) times j]
( MINVNOW (st
A (3i. (loop if — final(st) then RULE(; st) times i)
INV(st, 5t)))),

minv’-def : (MINVNOW (st’) — (3 st. INV(st, st’) A MINV(st))) — MINV’(st")

end enrich

C.4.2 Proved Theorems

finite-Oton

INV(st, st’), MINV(st), ndt(st, st’) = On, = final’(st’), MINVNOW (st’)
F [if = final’(st’) then RULE'(; st’)]
3j. [loop if - final’(st’) then RULE/(; st’) times j]
(INV(st, st’) A MINVNOW(st’) A (final’(st’) V ndt(st, st’) # On))

e used lemmas : Oton-corr-ax
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finite-mtoO0

V i. [loop if - final(st) then RULE(; st) times i] MINV((st),
INV(st, st’), ndt(st, st’) = m0, - final(st), MINVNOW (st’)
F (if - final(st) then RULE(; st))
3 1. (loop if — final(st) then RULE(; st) times i)
(- INV(st, st’)
A (final(st) V ndt(st, st’) # m0)
A (Y i. [loop if — final(st) then RULE(; st) times i] MINV(st)))

e used lemmas : mtoO-corr-ax

e used by : corr-step, correctness

corr-step

KPROP(st, st’) I [if — final’(st’) then RULE'(; st’)] KPROP(st, st)
e used lemmas : finite-mto0, finl-ax, Oton-corr-ax, mton-corr-ax, kprop-def
e used by : corr-j-steps, correctness

kprop-minv’

KPROP(st, st’) F MINV’(st’)
e used lemmas : minv’-def, kprop-def

e used by : newinvariance

in-kprop
IN(st, st’) F KPROP(st, st’)
e used lemmas : init-ax, minv-ax, kprop-def

e used by : corr-j-steps, correctness, newinvariance

corr-j-steps

KPROP(st, st’)
F [loop if — final’(st’) then RULE/(; st’) times j] KPROP(st, st’)

e used lemmas : in-kprop, kprop-def, corr-step

e used by : newinvariance

correctness

IN(st, st’)
F [while — final’(st’) do RULE'(; st”)]
(while - final(st) do RULE(; st)) OUT(st, st’)

e used lemmas : finboth-ax, fin2-ax, finite-mto0, kprop-def, corr-step, in-kprop

newinvariance (Theorem 9 from Sect. 6.5)

3 st. IN(st, st’)
F Vj. [loop if = final’(st’) then RULE/(; st’) times j] MINV’(st’)

e used lemmas : kprop-minv’, in-kprop, corr-j-steps
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Appendix D

Definition of Admitted Code
Sequences (Chains)

D.1 Definition of Linear Chains

L-CHAIN#(co, dbs; var col)
begin
var instr = code(co, dbs)
in if is_try_me(instr)
then L-CHAIN-TRY-ME#(co, dbs; col)
else if is_clause(instr)
then col := [co]
else if instr = nil’
then col := []
else abort
end;

7

L-CHAIN-TRY-ME#(co, dbs; var col)
begin
var instr = code(co, dbs),
follow = code(co +1, dbs)
in if instr = try_me_else(N)
then if is_clause(follow)
then begin
L-CHAIN-RETRY-ME#(N, dbs; col);
col := [co +1 | col]
end
else abort
else abort
end;

)

L-CHAIN-RETRY-ME#(co, dbs; var col)
begin
var instr = code(co, dbs),
follow = code(co +1, dbs)
in if instr = retry_me_else(N)
then if is_clause(follow)
then begin
L-CHAIN-RETRY-ME# (where(instr), dbs; col);
col := [co +1 | col]

159
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end
else abort
else if is_trust_me(instr)

then if is_clause(follow)
then col := [co +1]
else abort

else abort

end

D.2 Definition of Nested Chains with Switching

S-ANY-CHAIN#(trm, co, dby; var col)
begin
var instr = code(co, dbr)
in if is_retry_me(instr) V is_trust_me(instr)
then S-CHAIN-RETRY-ME#(trm, co, db7; col)
else if is_retry(instr) V is_trust(instr)
then S-CHAIN-RETRY#(trm, co, dbz; col)
else S-CHAIN-REC#(trm, co, dbz; col)
end;

)

S-CHAIN#(trm, co, dbz; var col)
begin

if co = failcode then col := ||
else S-CHAIN-REC# (trm, co, dbz; col)
end;

)

S-CHAIN-REC#(trm, co, dbz; var col)

begin

var instr = code(co, dbr)

in if is_clause(instr) then col := [co] else

if instr = try(N) then var col, = []
in begin

S-CHAIN-REC#(trm, N, dbr; col);
S-CHAIN-RETRY #(trm, co +1, dbz; coly);
col := append(col, cols)

end
else
if instr = try_me_else(N) then var coly = ]
in begin
S-CHAIN-REC#(trm, co +1, dbr; col);
S-CHAIN-RETRY-ME#(trm, N, dbr; cols);
col := append(col, cols)
end
else

if - is_struct(trm) V arity(trm) < argindex(instr) then abort else
var xi = arg(trm, argindex(instr))
in if instr = switch_on_term(argindex, Ny, N., N,,, N;)
then
if is_struct(xi) then S-CHAIN# (trm, N;, dbz; col) else
if is_const(xi) then S-CHAIN# (trm, N., dbr; col) else
if is_var(xi) then S-CHAIN# (trm, N,, dbr; col) else
if is_list(xi) then S-CHAIN#(trm, N;, db7; col) else abort
else if instr = switch_on_constant(argindex, tabsize, table)
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then if is_const(xi)
then S-CHAIN#(trm, hashc(table, tabsize, constsym(xi),
db7), db7; COl)
else abort
else if instr = switch_on_structure(argindex, tabsize, table)
then if is_struct(xi)
then S-CHAIN#(trm, hashs(table, tabsize, funct(xi),
arity(xi), dbz), dbz; col)
else abort
else abort
end;

7

S-CHAIN-RETRY-ME# (trm, co, dbz; var col)
begin
var instr = code(co, dbz)
in if instr = retry_me_else(N)
then var coly = ||
in begin
S-CHAIN-REC#(trm, co +1, dby; col);
S-CHAIN-RETRY-ME#(trm, N, dbz; cols);
col := append(col,coly)
end
else if is_trust_me(instr)
then S-CHAIN-REC#(trm, co +1, dby; col)
else abort

end;

S-CHAIN-RETRY #(trm, co, db7; var col)
begin
var instr = code(co, dbr)
in if instr = retry(N)
then var coly = |]
in begin
S-CHAIN-REC# (trm, N, dbz; col);
S-CHAIN-RETRY #(trm, co +1, dbz; cols);
col := append(col, cols)
end
else if instr = trust(N)
then S-CHAIN-REC#(trm, N, db; col)
else abort

end;

S-CHAIN-RET#(trm, co, dbz; var col)
begin
var instr = code(co, dbz)
in if is_retry_me(instr) V is_trust_me(instr)
then S-CHAIN-RETRY-ME#(trm, co, db7; col)
else if is_retry(instr) V is_trust(instr)
then S-CHAIN-RETRY#(trm, co, dbz; col)
else abort
end;

)

S-APP-CHAINS-RET# (decglseq’, p, stl, db7; var col)
begin
if stl = [] then col := ]
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else var col, = []
in begin
S-CHAIN-RET# (acg[car(stl), p[car(st])], dbr; col);
S-APP-CHAINS-RET#(decglseq’, p, cdr(stl), dbr; cols);
col := append(col, cols)
end
end

D.3 Definition of the Length of Nested Chains with Switch-
ing

C-S-ANY-CHAIN#(trm, co, dbz; var m)
begin
var instr = code(co, db7) in
if is_retry_me(instr) V is_trust_me(instr) then
C-S-CHAIN-RETRY-ME# (trm, co, dbz; m)
else if is_retry(instr) V is_trust(instr) then
C-S-CHAIN-RETRY #(trm, co, db7; m)
else C-S-CHAIN-REC# (trm, co, dbz; m)

end;

C-S-CHAIN#(trm, co, dby; var m)
begin

if co = failcode then m := 0

else C-S-CHAIN-REC# (trm, co, db7; m)

end;

C-S-CHAIN-REC#(trm, co, dbr; var m)
begin
var instr = code(co, dbz)
in if is_clause(instr) then m := 0 else
if instr = try(N) then C-S-CHAIN-TRY#(trm, N, db7; m); else
if instr = try_me(N) then C-S-CHAIN-TRY-ME# (trm, N, dbz; m); else
if = is_struct(trm) V arity(trm) < argindex(instr) then abort
else var xi = arg(trm, argindex(instr)) in
if instr = switch_on_term(argindex, Ny, N., N,, N;) then
if is_struct(xi) then
if N, = failcode then m := 0
else begin C-S-CHAIN-REC# (trm, Ny, db7; m); m := m +1 end
else if is_const(xi) then
if N. = failcode then m := 0
else begin C-S-CHAIN-REC#(trm, N, db7; m); m := m +1 end
else if is_var(xi) then
if N, = failcode then m := 0
else begin C-S-CHAIN-REC#(trm, N,, db7; m); m := m +1 end
else if is list(xi) then
if N; = failcode then m := 0
else begin C-S-CHAIN-REC#(trm, N;, db7; m); m := m +1 end
else abort
else if instr = switch_on_constant(argindex, tabsize, table) then
if is_const(xi) then
var preg = hashc(table, tabsize, constsym(xi)) in
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if preg = failcode then m := 0
else begin
C-S-CHAIN-REC# (trm, preg, dbr; m);
m:=m +1
end
else abort
else if instr = switch_on_structure(argindex, tabsize, table) then
if is_struct(xi) then
var preg = hashs(table, tabsize, funct(xi)) in
if preg = failcode then m := 0
else begin
C-S-CHAIN-REC#(trm, preg, arity(xi), db7; m);
m:=m +1
end
else abort
else abort
end;

C-S-CHAIN-TRY-ME# (trm, co, db7; var m)
begin
var instr = code(co, db7) in
if instr = try_me(N) then
var mg = 0 in begin
C-S-CHAIN-REC#(trm, co +1, dbz; m);
C-S-CHAIN-RETRY-ME# (trm, N, db7; mp);
m := (m + mp) +1
end
else abort
end;

C-S-CHAIN-TRY #(trm, co, dby; var m)
begin
var instr = code(co, db7) in
if instr = try(N) then
var my = 0 in begin
C-S-CHAIN-REC#(trm, N, db7; m);
C-S-CHAIN-RETRY#(trm, co +1, dbr; my);
m := (m + mp) +1
end
else abort
end;

C-S-CHAIN-RETRY-ME#(trm, co, dby; var m)
begin
var instr = code(co, db7) in
if instr = retry_me(N) then
var mp = 0 in begin
C-S-CHAIN-REC#(trm, co +1, dbz; m);
C-S-CHAIN-RETRY-ME#(trm, N, db7; my);
m := (m + mp) +1
end
else if trust_me(instr) then
begin C-S-CHAIN-REC#(trm, co +1, db7; m); m := m +1 end
else abort
end;



164 DEFINITION OF CHAINS

C-S-CHAIN-RETRY#(trm, co, db7; var m)
begin
var instr = code(co, db7) in
if instr = retry(N) then
var mg = 0 in begin
C-S-CHAIN-REC#(trm, N, db7; m);
C-S-CHAIN-RETRY #(trm, co +1, dbr; mp);
m := (m + mp) +1
end
else if instr = trust(N) then
begin C-S-CHAIN-REC#(trm, N, dby; m); m := m +1 end
else abort

end;

C-S-CHAIN-RET#(trm, co, dbr; var m)
begin
var instr = code(co, db7) in
if is_retry_me(instr) V is_trust_me(instr) then
C-S-CHAIN-RETRY-ME# (trm, co, dbz; m)
else if is_retry(instr) V is_trust(instr) then
C-S-CHAIN-RETRY #(trm, co, db7; m)
else abort

end;

C-S-APP-CHAINS-RET#(decglseq’, p, stl, dbz; var m)

begin

if stl = [| then m := 0

else var mg = 0 in begin
C-S-CHAIN-RET# (acg[car(stl), p[car(stl)], dbr; m);
C-S-APP-CHAINS-RET#(decglseq’, p, cdr(stl), dbz; my);
m := (m + mg) +1
end

end



Appendix E

Specifications of the Prolog-WAM
Case Study

E.1 Specifications from the Library

elem =
specification

sorts elem;

variables a, b, ¢ : elem;
end specification

eleml =
rename elem by morphism

elem — elem’,a —» a’, b - b’,c — ¢’
end rename

elemlIl =
rename elem by morphism

elem — elem”,a — a”,b - b",¢c = ¢
end rename

2

pair =

generic data specification
parameter eleml + elemII
pair = { ., . ) (fst : elem’, snd : elem”);
variables p, p,, p; : pair;

end generic data specification

Generated axioms:

pair freely generated by ( ., .);

fst((a’, a”)) = @/,

snd((a’, a”)) = a”,

(a,, a77> — (a,o, a770> H a, — a70 /\ a” — a7,0,
(fst(p), snd(p)) = p

165
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vartermpair =

actualize pair with parameter node, term by morphism
elem’ — nodesort, elem” — term, pair — pairvarterm

end actualize

varvarpair =
actualize pair with parameter node by morphism

elem’ — nodesort, elem” — nodesort, pair — varvarpair
end actualize

termtermpair =
actualize pair with term by morphism

elem’ — term, elem” — term, pair — termtermpair
end actualize

decgoal =

actualize pair with goalsort, parameter node by morphism
elem’ — goalsort, elem” — nodesort, pair — decgoal

end actualize

clause =

actualize pair with term, goal by morphism
elem’ — term, elem” — goalsort,
pair — clausesort, p — cl

end actualize

ident =

actualize pair with parameter atom, nat by morphism
elem’ — atomsort, elem” — nat, pair — ident

end actualize

procdeftable =

actualize pair with ident, parameter code by morphism
elem’ — ident, elem” — codesort,
pair — procdeftable, p — pdt

end actualize

comp3result =

actualize pair

with parameter program2, procdeftable

by morphism
elem’ — program”, elem” — procdeftable, pair — comp3result
.1 —.db, .2 —.pdtab, p — co3res

end actualize

Dynfun =
generic specification
parameter sorts dom, codom;
target sorts dynfun;
functions cf : codom — dynfun;
L] : dynfun x dom — codom;
.[.+ .]: dynfun x dom x codom — dynfun;
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variables f : dynfun; x, y : dom; z : codom;
axioms cf(z) [x] = 7,
flx 7 [x] =2,
x #y = f[x < 7] [y] = f[y]
end generic specification

F-no-no =

actualize Dynfun with parameter node by morphism
dom — nodesort, codom — nodesort,
Dynfun — funnodenode, f — F

end actualize

vi =
actualize Dynfun with nat by morphism

dom — nat, codom — nodesort, Dynfun — vifun, f — vi
end actualize

F-co-co =

actualize Dynfun with parameter code by morphism
dom — codesort, codom — codesort,
Dynfun — funcodecode, f — C

end actualize

cll =

actualize Dynfun with parameter node, parameter code by morphism
dom — nodesort, codom — codesort,
Dynfun — cllfun, f — cll

end actualize

decglseq =

actualize Dynfun with decgoallist by morphism
dom — nodesort, codom — decgoallist,
Dynfun — decgoalseqfun, f — decglseq

end actualize

cands =

actualize Dynfun with nodelist by morphism
dom — nodesort, codom — nodelist,
Dynfun — candsfun, f — cands

end actualize

p =

actualize Dynfun with parameter code by morphism
dom — nodesort, codom — codesort,
Dynfun — pfun, f — p

end actualize

cg =
actualize Dynfun with goal by morphism

dom — nodesort, codom — goal, Dynfun — cgfun, f — cg
end actualize

cp =
actualize Dynfun with parameter node, parameter code by morphism
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dom — nodesort, codom — codesort,
Dynfun — cpfun, f — cp
end actualize

sub =

actualize Dynfun with substitution by morphism
dom — nodesort, codom — substitution,
Dynfun — subfun, f — sub

end actualize

goalfun =

actualize Dynfun with parameter node, goal by morphism
dom — nodesort, codom — goalsort,
Dynfun — goalfun, f — goal

end actualize

H-no-nol =

actualize Dynfun with nodelist by morphism
dom — nodesort, codom — nodelist,
Dynfun — funnodenodelist, f — H

end actualize

nat-basicl =
data specification
nat =0 |. 4+1 (. —1: nat);
variables i, j, k, m : nat;
order predicates . < . : nat X nat;
end data specification

Generated axioms:

nat freely generated by 0, +1;
i+l —-1=n,
i+l=j4+1<1=]j,

0#1i+1,

i=0VvVi=i-1+1,

-i<i,

i<jAj<k—i<k,

-1<0,
i<j4+lei=jvi<]

nat =
enrich nat-basicl with
functions . + . : nat X nat — nat;
. — . :mnat X nat — nat prio 8 left;

predicates
. <. : nat X nat;
> nat X nat;
.2 nat X nat;
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axioms
i+0=i,
i+j+1=_(+j+1,
i—0=i,
i—j+1=(>G-j-1,
i<je-j<i
i>jej<i,
i>jei<]

end enrich
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set =
generic specification
parameter elem using nat target

sorts set;
constants () : set;
functions
{.} : elem —  set;
.U. : set xset — set prio 9 left;
predicates
. €. : elem X set;
. C. : set X set;

variables s, s’ : set;
axioms

set generated by 0, { . },. U.
—|a€@,

a€ {b} < a=h,
a€esUsg’ < a€esVaeg),
s=s & (Va.a€s+acy),
sCs & (Va.aes—aces)

end generic specification

nodeset =

actualize set with parameter node by morphism
elem — nodesort, set — nodeset

end actualize

list-data =
generic data specification
parameter elem using nat
list = ]
|[.].] (car : elem, cdr : list)
variables x, y, z : list;
size functions # : list — nat ;
order predicates . < . : list x list;
end generic data specification

Generated axioms:
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list freely generated by [, [. | . ]
car([a | x]) = a,

cdr(fa | x)) = x,
[alx]=[b|y]a=bAx=y,
[ #[alx],

x =[]V x = [car(x) | cdr(x)],
#({]) =0,

#(a | x]) = #(x)+1,

- X K X,
XLKyNANYy Kz = xK 12,
~x <L ],

yLalx]ey=xVy<Kx

list =
enrich list-data with
functions
append : list x list —  list;
rmdup : list —  list;
pos : list x elem — nat;
rev o list —  list;
predicates
. €. : elem x list;
.subli. : list x list;
. subse . : list x list;
. C. : o list x list;
dups o list;
nodups o list;
axioms

append([], x) = x,

append([a | x|, y) = [a | append(x, y)],

a € x <+ (Jy, z. x = append(y, [a | 7]),

[] subli x,

= [a | x] subli [],
[a]|x]subli[b|y]+>a=bAxsubliyVa#bA][al|x]subliy,
[] subse x,

[a|x] subse y ¢» a € y A x subse y,

nodups([]),

nodups([a | x]) > = a € x A nodups(x),

dups(x) < — nodups(x),

smdup([)) = [,

a € x — rmdup([a | x]) = rmdup(x),

- a € x —» rmdup([a | x]) = [a | rmdup(x)],

x Cy ¢ #(rmdup(x)) < #(rmdup(y)) A x subse y
pos([a | ), a) = 0,

a #b — pos([a | x|, b) = pos(x, b) +1,

rev()) = [},

rev([a | x]) = append(rev(x), [a])
end enrich

substitution =
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actualize list with pairvarterm by morphism
elem — pairvarterm, list — substitution, x — su
end actualize

goal =

actualize list with term by morphism
elem — term, list — goal, x — go

end actualize

natlist =
actualize list with nat by morphism

elem — nat, list — natlist, x — nl
end actualize

varlist =

actualize list with parameter node by morphism
elem — nodesort, list — varlist, x — vl

end actualize

nodelist =

actualize list with parameter node by morphism
elem — nodesort, list — nodelist, x — stack

end actualize

codelist =

actualize list with parameter code by morphism
elem — codelist, list — codesort, x — col

end actualize

decgoallist =
actualize list with decgoal by morphism

elem — decgoal, list — decgoallist, x — dgl
end actualize

clauselist =
actualize list with clause by morphism
elem — clause, list — clauselist, x — cli

renaming =

actualize list with varvarpair by morphism
elem — varvarpair, list — renaming

end actualize

E.2 Specifications for ASM1 (PrologTree)

enrnodeset =
enrich nodeset with
functions new : nodeset — elem;

axioms
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- new(s) € s, new([]) = L

end enrich

mode =
data specification
modesort = select | call;
variables mode : modesort;
end data specification

Generated axioms:
modesort freely generated by select, call;

select # call,
mode = select V mode = call

stopmode =

data specification
stopmodesort = success | failure | run;
variables stop : stopmodesort;

end data specification

Generated axioms:
stopmodesort freely generated by success, failure, run;

failure # run, success # run, success # failure,
stop = success V stop = failure V stop = run

node =

specification
sorts nodesort;
constants 1 : nodesort;
variables n : nodesort;

end specification

atom =

specification
sorts atomsort;
constants cutsym , failsym, truesym : atomsort;
variables at : atomsort;

axioms
cutsym # failsym,
failsym # truesym,

truesym # cutsym

end specification
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term =
data specification
using nat, parameter atom, parameter ordnode
term = struct (funct : atomsort, args : termlist) with is_struct
| mkconst (constsym : atomsort) with is_const
| mkvar (varsym : nodesort) with is_var
| mklist (Icar : term, ledr : term) with is_list
termlist = the_one (and_only : term)
| tcons (tcar : term, tedr : termlist)

variables trm, trmg : term; trmli, trmliy : termlist;

size functions tlen : termlist — nat ;

order predicates . <y . : termlist x termlist;
end data specification

Generated axioms:

term, termlist freely generated by struct, mkconst, mkvar,
mklist, the_one, tcons;

subst =
enrich decgoallist, ident, enrterm with
functions
“4¢ . : decgoallist x substitution — decgoallist;
“sg - : substitution x goalsort —  goalsort;
Sy . substitution x term —  term;
“u4 . substitution x termlist —  termlist;
axioms

su g [ =[],

SU "gg [trm | go] = [su ", trm | su "5, gO],

suq [l =,

st~ [{go, st) | dgl] = [(su "4y g0, st} | su ¢ del,

su " struct(at, trmli) = struct(at, su "~y trmli),

su ~; mklist(trm, trmp) = mklist(su ~; trm, su ~; trmyg),

[| ~¢ mkvar(va) = mkvar(va),

[(va, trm) | su] ~; mkvar(va) = trm,

va # vag — [(vag, trm) | su] ~; mkvar(va) = su ~; mkvar(va),
su ~; mkconst(at) = mkconst(at),

su "~y the_one(trm) = the_one(su ~; trm),

su ~y tcons(trm, trmli) = tcons(su ~¢ trm, su
[] o su = su,

[(vag, trm) | su] o sug = [(vag, sug ~¢ trm) | su o sug)

=

=i

¢ trmli),

end enrich

substornil =
data specification
using subst
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substornil = oksubst(the_subst : substitution) | nil;
variables subst : substornil;
end data specification

Generated axioms:

substornil freely generated by nil, oksubst;
the_subst(oksubst(su)) = su,

oksubst(su) = oksubst(sug) <> su = suy,
oksubst(su) # nil,

subst = oksubst(the_subst(subst)) V subst = nil

enrterm =
enrich term, substornil with
constants ! : term; true : term; fail : term;

functions
. 0. :  substitution x substornil —  substitution;
. 0. :  substitution x substitution —  substitution;
arity : term —  nat;
arg ¢ term X nat —  term;
. Oy . termlist x termlist —  termlist;

predicates is_user_defined : term;
variables su, suy, sus : substitution;

axioms

the_one(trm) © trmli = tcons(trm, trmli),
tcons(trm, trmli) ®4 trmli; = tcons(trm, trmli ®y trmli;),
! = mkconst(cutsym),
true = mkconst(truesym),
fail = mkconst(failsym),
is_user_defined(trm) <> trm # true A trm # fail A trm # |,
arity(trm) = tlen(args(trm))+1,
args(trm) = the_one(trm;) — arg(trm, 0 +1) = trm;,
args(trm) = tcons(trmy, trmli)
— arg(trm, 0 +1) = trmy
A (0 < n — arg(trm, n +1) = arg(struct(funct(trm), trmli), n)),
su o oksubst(sug) = su o sug

end enrich

unify =
enrich substornil with
functions unify : term x term — substornil;

end enrich

code =
specification
sorts codesort;
constants failcode : codesort;

functions
. +1 : codesort — codesort;
. —1 : codesort — codesort;

variables co : codesort;
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axioms
co +1 —1 = co,
co—1+4+1=-co

end specification

program =
specification
sorts program,;
variables db : program,;
end specification

union0 = mode + stopmode + unify + clauselist + rename + enrnodeset +
sub + cll + subst + F-no-no + decglseq + enrterm

clausefun =
enrich clause, parameter code, parameter program with
functions clause : codesort x program — clausesort;

end enrich

procdef =
enrich term, codelist, parameter program with
functions procdef : term x program — codelist ;

end enrich

PrologTree =
enrich union0 + cands + procdef + clausefun with
functions
mapclause : codelist x program —  clauselist;
map : cllfun X nodelist —  codelist;
predicates
every :  funnodenode x nodelist X nodesort;
disjoint :  nodelist x nodelist;
disjointls : nodelist x nodeset;

variables father: funnodenode;
axioms

mapclause([], db) = ],
mapclause([co | col], db) = [clause(co, db) | mapclause(col, db)],
every(father, [|, n),
every(father, [ny | stack], n)
> father[n;] = n A every(father, stack, n),
mapf(ell, [}) = [,
map(cll, [n | stack]) = [cll[n] | map(cll, stack)],
disjoint(stack, stackg) <+ (V n. n € stack — — n € stacky),
disjointls(stack, s) <> (V n. n € stack - = n € s)

end enrich
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E.3 Specifications for ASM2 (TreetoStack)

procdef2 =
enrich term, parameter program, parameter code with
functions procdef, : term X program — codesort;

end enrich

clauseornull =

data specification
using clause
clauseornull = mkclau(the_clau : clausesort) | null;
variables cln : clauseornull;

end data specification

Generated axioms:

clauseornull freely generated by null, mkclau;
the_clau(mkclau(cl)) = cl,

mkclau(cl) = mkelau(clp) « cl = clp,
mkclau(cl) # null,

cln = mkclau(the_clau(cln)) V cln = null

clauselfun =
enrich code, clauseornull, program with
functions clause’ : codesort x program — clauseornull;

axioms
clause’(failcode, db) = null

end enrich

PrologStack =
enrich union0 + procdef2 + codelist + nodelist + clauselfun with
functions
. from . : nodelist x nodesort — nodelist prio 7;
cdr :  nodelist —  nodelist;
predicates
. cutptsin . : decgoallist x nodelist;
. ctpelem . : decgoallist x nodeset;
. C. :  nodelist x nodeset;
axioms

mapclause’([], db) = [],
mapclause’([co | col], db) = [the_clau(clause’(co, db)) | mapclause’(col, db)],
[| cutptsin stack,
[(go, n) | dgl] cutptsin stack
< (n = L1 Vn € stack) A dgl cutptsin (stack from n),
[] from n =[],
[n | stack] from n = [n | stack],
n; #n — [n; | stack] from n = stack from n,
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[] ctpelem s,
[(go, n) | dgl] ctpelem s +> n € s A dgl ctpelem s,
stack C s +» (V n. n € stack » n € s),

cdr([]) = I,

cdr([n | stack]) = stack

end enrich
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CompAssuml =

enrich PrologTree, PrologStack with
functions compile,, : program — program;
variables lit : term; db : program;

axioms

(CLLS# (procdefs (lit, compile;,(db)), compile,,(db); col))
mapclause(procdef(lit, db), db) = mapclause’(col, compile,,(db))

end enrich

Tree+Stack+F =
enrich F-no-no, PrologTree, PrologStack with
functions
Fq : funnodenode x decgoallist —  decgoallist;
Fs : funnodenode x nodeset —  nodeset;
predicates
candsdisjoint : funnodenode x candsfun x nodelist;
. injon . :  funnodenode x nodelist;
nocands . funnodenode x candsfun x nodelist;
axioms
Fa(F, ) = [,
Fa(F, [(go, n) | dgl]) = [(go, F[n]) | Fa(F, dgl)],
Fy (F7 @) = wa
Fs(F, s U {n}) = Fs(F, s) U {F[n]},

candsdisjoint(F, cands, stack)
<V n,ny. n € stack A n; € stack A n # ny
— disjoint(cands[F[n:]], cands[F[n]]),
F injon stack
< (¥n,n;. n €stack Any € [L]stack] An #n; = F[n] # F[n]),
nocands(F, cands, stack)
<V n,ny. n € stack A ny € [L | stack] = = F[n{] € cands[F[n]]

end enrich

TreetoStack = CompAssuml + Tree+Stack+F
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E.4 Specifications for ASM3 (ReuseChoicep)

rmode =

data specification
rmodesort = try | retry | enter | call;
variables rmode : rmodesort;

end data specification

Generated axioms:

rmodesort freely generated by try, retry, enter, call;

enter # call, retry # call, retry # enter,

try # call, try # enter, try # retry,

rmode = try V rmode = retry V rmode = enter V rmode = call

PrologStack+F =
enrich F-no-no, Tree+Stack+F with
functions F) : funnodenode x nodelist — nodelist;

axioms

B(F, ) =1,
Fy(F, [n | stack]) = [F[n] | F1(F, stack)]

end enrich

ReuseChoicep = PrologStack+F + rmode

E.5 Specifications for ASM4 (DetermDetect)

DetermDetect = PrologStack+F + rmode

E.6 Specifications for ASM5 (CompPredStruct)

instr+clau =
data specification
using nat, clause, varlist, parameter code
instr-or-cl = try_me_else (where : codesort) with is_try_me
| retry_me_else (where : codesort) with is_retry_me
| trust_me with is_trust_me
| try (what : codesort) with is_try
| retry (what : codesort) with is_retry
| trust (what : codesort) with is_trust
| switch_on_term (argindex : nat,
vlabel : codesort, clabel : codesort,
llabel : codesort, slabel : codesort)
with is_sw_term
| switch_on_constant (argindex : nat,
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tabsize : nat, table : codesort)
with is_sw_const
| switch_on_structure (argindex : nat,
tabsize : nat, table : codesort)
with is_sw_struct
| mkel (the_cl : clausesort) with is_clause
| mkeall (calllit : term) with is_call
| mkunify (unifylit : term) with is_unify
| allocate
| deallocate
| proceed
| null
| code_of_start

b
variables ioc : instr-or-cl;
end data specification

Generated axioms:
instr-or-cl freely generated by trust_me, allocate, deallocate, proceed, null’,

code_of _start, try_me_else, retry_me_else, try’, retry’, trust, switch_on_term,
switch_on_constant, switch_on_structure, mkcl, mkcall, mkunify;

procdef3 =
enrich term, parameter program2, parameter code with
functions procdefs : term x program” — codesort;

end enrich

codefun =

enrich parameter code, parameter program2, instr+clau with
constants start : codesort;
functions code : codesort x program” — instr-or-cl;

axioms

co = start <» code(co, dby) = code_of_start,
code(failcode, dby) = nil’

end enrich

CompAssum2 =
enrich CompAssuml, instr+clau, codefun, procdef3 with
functions
compile;s : program —  program”;
mapcode : codelist x program” — clauselist;

variables lit : term; dbs : program; dbs : program”;
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axioms

mapcode([], dbs) =[],
mapcode([co | col], dbs) = [the_cl(code(co, dbs)) | mapcode(col, dbs)],
[CLLS# (procdefs(lit, dbs), dbe; coly)]
(CHAIN-FL#(procdefs(lit, compileys (dbs)), compileys (dbz); cols))
mapcode(colz, compile,;(dbe)) = mapclause’(coly, dbs)

end enrich

CompPredStruct = CompAssum2 + PrologStack+F + rmode + p

E.7 Specifications for ASM6 (CompPredStruct?2)

hash =
enrich nat, parameter atom,
parameter code, parameter program2 with
functions
hashc : codesort x nat x atomsort x program” — codesort;
hashs : codesort x nat x atomsort x nat X program” — codesort;

end enrich

CompAssum3a =
enrich CompAssum?2, p, hash with
functions compileyq : program” — program”;

axioms

[CHAIN—FL#(procdefg (lit, db5), db5; COll)]
(CHAIN#(procdefs (lit, compiless(dbs)), compileys(dbs); cola))
mapcode(col;, dbs) = mapcode(coly, compiless(dbs))

end enrich

CompPredStruct2 = CompAssum3a + PrologStack+H + p

E.8 Specifications for ASM7 (Switching)

idfun =
enrich enrterm, ident with
functions id : term — ident;

axioms

is_struct(trm) — id(trm) = mkident(funct(trm), arity(trm)),
is_const(trm) — id(trm) = mkident(constsym(trm), 0)

end enrich
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CompAssum3 =
enrich comp3result, CompAssum2, p, hash, idfun with
functions compiley; : program” — comp3result;

axioms

[CHAIN—FL#(procdefg (lit, db5), db5; (3011)]
(S-CHAIN#(lit, compiles, (dbs).pdt[id(lit)], compiles,(dbs).db; cols))
mapcode(coly, dbs) = mapcode(cola, compiley, (dbs).db)

end enrich

PrologStack+H =
enrich PrologStack, H-no-nol with
functions
Hqy : funnodenodelist x decgoallist —  decgoallist;
H, : funnodenodelist x nodelist —  nodelist;
car : nodelist —  nodesort;
axioms
Hd(ha []) = []7
Ha(h, [(go, n) | dgl] = [(go, car(h[n])) | Hq(h, dgl)],
Hi(h, ) =[],
Hj(h, [n | stack]) = append(h[n], H;(h, stack)),
car([]) = L,
car([n | stack]) = n

end enrich

Switching =
enrich CompAssum3, PrologStack+H, p with
functions . — . : nodelist x nodelist — nodelist;
predicates
eqh : funnodenodelist x funnodenodelist x decgoallist x decgoallist;
. <=5 .:nodelist x nodelist;

axioms

eqh(h, h07 []’ [])7
- eqh(h7 h07 [<g07 Il) | dgl]a [])7
- eqh(h7 h07 []7 [<g007 Il0> | dgl[)])a

egh(h, ho, [(go, n) | dgl], [(g0g, no) | dgly])
< go = gog

/\(HZJ_DII()Eho[J_]\/IlO:J_

; ng € ho[n] A = np € cdr(hin]))

A eqh(h7 hUa dgla dgl[))a
stack <=; stacky <> stack < stacky V stack = stackg,
stack <= stackg — (stackg —4 stack) ®g stack = stackg

end enrich
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E.9 Specifications for ASMS8 (ShareCont)

ordnode =
enrich parameter node with
functions
. +1 : nodesort —  nodesort;
. —1 : nodesort —  nodesort;
max : nodesort X nodesort — nodesort;

predicates . < . : nodesort X nodesort;

axioms
n+1—-1=n,
n—1+1=n,
n<n+1,
- n<<n,

ng K nz Vng =nzVn K<ny,
n<ngAnyp<K<n —nkKng,
n; € ny — max(ng, ny) = no,
- n; € np — max(ng, ny) = ny

end enrich

rensubst =
enrich substitution, renaming with
functions
“» . ¢ renaming X term —  term;
“pi - ¢ renaming X termlist —  termlist;
axioms

rn ", struct(at, trmli) = struct(at, rn ~,; trmli),

rn ~, mklist(trm, trmg) = mklist(rn ~, trm, rn ~, trmy),

[] ~» mkvar(va) = mkvar(va),

[(vai,vaqg) | rn] =, mkvar(va;) = mkvar(vas),

va # va; — [(vaj,vas) | rn] ~, mkvar(va) = rn ~, mkvar(va),
rn ", mkconst(at) = mkconst(at),

rn ", the_one(trm) = the_one(rn =, trm),

rn ", tcons(trm, trmli) = tcons(rn ~, trm, rn ~,; trmli)

end enrich

less-vi =
enrich subst, vi, varlist, actrenterm, unify, rename with
functions

rentl : termlist X nat —  termlist;
rentl’ : termlist x nodesort x vifun — termlist;
rent’ : term X nodesort X vifun —  term;
reng’ : goalsort x nodesort x vifun — goalsort;
renv  : nodesort X nat —  nodesort;

predicates
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. <svi - . substitution X nat;

c <twi - : term X nat;

. <gwi - & termlist X nat;

. <gvi - @ goalsort x nat;

. <dqui -+ decgoallist x nat;

. <ewi - : clausesort x nat;

. <ypi -+ nodesort X nat;
<ulvi -+ varlist X nat;

variables lit : term;
axioms

SU <gpi 1 A SUg <gpi 1 = SU O SUg <gpi 1,
SU <gyi 1 = su "¢ rent(trm, i) = rent(trm, i),
trm <gy; 1 A trmy <z 1 A unify(trm, trm;) # nil
— the_subst(unify (trm, trm;)) <gy; i,
trm <gp; 1A 1< j— trm <gy; Jj,
trm <ty; 0 — rent(trm, i) <g; 1 +1,
[] <gvi i7
[trm | o] <gpi 1 ¢ trm <y i A g0 <go; 1,
[] <dvi i:
[(go, ctpt) | dgl] <gvi 1 <> 80 <gui 1 A dgl <gui i,
(Ht, g0> <epi 14 lit <5 1 A gO <guvi 1
[] <svi 1,
[(Vao, trm) | su] <spil
< mkvar(vag) <gy; 1 A trm <gpi 1A su <gp; 1,
rent(mkvar(va), i) = mkvar(renv(va, 1)),
va <y 0 = - renv(va, 1) <ypi i,
rent(mkconst(at), i) = mkconst(at),
rent(struct(at, trmli), i) = struct(at, rentl(trmli, 1)),
rent(mklist(trm, trmp), i) = mklist(rent(trm, i), rent(trmg, 1)),
rentl(the_one(trm), i) = the_one(rent(trm, 1)),
rentl(tcons(trm, trmli), i) = tcons(rent(trm, i), rentl(trmli, 1)),
the_one(trm) <t 1 ¢ trm <yy; i,
tcons(trm, trmli) <yu; 14> trm <g; 1 A trmli <gy; i,
struct(at, trmli) <gy; 1 ¢ trmli <gp; 1,
mkconst(at) <gp; 1,
mklist(trm, trmg) <gp; 1 4> trm <gp; 1 A trmg <gy; 1,
mkvar(va) <y; 1 <> va <ypi 1,
[] <olvi i;
[Va | VI] <yrpi 1 € va <ypi 1 A V] <ypoi 1,
va <yypi 0 A vag <ypi 0
— (renv(va, i) = renv(vag, j) > va = vag A i = j),
rent]’(trmli, ctpt, vi)
= (ctpt # L D rentl(trmli, vi[ctpt]) ; trmli),
rent’(trm, ctpt, vi)
= (ctpt # L D rent(trm, vi[ctpt]) ; trm),
reng’(go, ctpt, vi)
= (ctpt # L D reng(go, vilctpt]) ; go)

end enrich

RenAssum =
enrich CompAssum3, less-vi with
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predicates
- <clwi - : clauselist, nat;
nonvargoal : goalsort;
axioms

mapclause(procdef(lit,db),db) <.; 0,
[] <clvi i,
[cl | cli] <epwi 1 > €l <epi 1 A nonvargoal(bdy(cl)) A cli <4 i,
nonvargoal([]),
nonvargoal([trm | go])
¢ = is_var(trm) A = islist(trm) A trm <z; 0 A nonvargoal(go)

end enrich

rename =
enrich nat, clause with
functions
ren :  clausesort x nat — clausesort;
rent : term X nat —  term;
reng : goalsort x nat —  goalsort;
axioms

ren(mkclause(trm, go), i) = mkclause(rent(trm, i), reng(go, 1)),

reng(([], ) = I,
reng([trm | go], i) = [rent(trm, i) | reng(go, 1)]

end enrich

ShareCont =
enrich parameter ordnode, cg, PrologStack+F,

goalfun, RenAssum with

functions

decglseqof : funnodenode x cgfun x funnodenode x nodelist
— decgoallist;
predicates
ordered : nodelist;

axioms

decglseqof(cutpt, cg, ce, []) =[],
decglseqof(cutpt, cg, ce, [n | stack])
= [(cg[n], cutpt[ce[n]]) | decglseqof(cutpt, cg, ce, stack)],
ordered({]),
ordered([n]) ++ L < n,
ordered([n | ng | stack]) <> ng < n A ordered([ng | stack])

end enrich
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E.10 Specifications for ASM9 (CompClause)

comp4result =
data specification
using procdeftable, parameter program2
compdresult = mkcodres (. .pc : codesort, . .pdtab : procdeftable,
. .dbc : program”);
variables codres : comp4result;
end data specification

Generated axioms:

compdresult freely generated by mkcodres;
mkcodres(co, procdeftab, db7).pc = co,
mkcodres(co, procdeftab, db7).pdtab = procdeftab,
mkcodres(co, procdeftab, dbr).dbc = dby,

mkcodres(co, procdeftab, dby) = mkcodres(cog, procdeftab,, db’;)
< co = copg A procdeftab = procdeftab, A dbz = db’z,
mkcodres(codres.pc, codres.pdtab, codres.dbc) = codres

CompAssum4 =
enrich CompAssum3, clauselist, comp4result, F-co-co, RenAssum with
functions compilegy : comp3result x goalsort — comp4result ;

predicates
eqpdt  : procdeftable x procdeftable x funcodecode;
eqcode : program” X program” x funcodecode;

variables pdtab : procdeftable; query, goalreg : goalsort;

axioms

(dbr, procdef;) = compile, (compile,s (compile,,(db)))
— 3 C.  eqpdt(procdef;, compilegy({db7, procdefr), goalreg).pdtab, C)
A eqcode(dby, compilegy ((dbr, procdefr), goalreg).dbc, C),

eqpdt(pdtab,, pdtab, C) < V lit. pdtab[id(lit)] = C[pdtab,[id(lit)]],

eqcode(dbr, dby, C) A code(co,dbr) = mkel(clp)
— (UNLOAD#(CJco], dbg; cl)) cl = clp

eqcode(dby, dbg, C) A code(co,dbr) = try_me_else(N)
— code(CJco], dbg) = try_me_else(C[N])

eqcode(dby, dbg, C) A code(co,dbr) = retry_me_else(N)
— code(CJco], dby) = retry_me_else(C[N])

eqcode(dbr, dbg, C) A code(co,db7) = trust_me
— code(CJco], dby) = trust.me

[c

(

[

(

[
eqcode(dby, dbg, C) A code(co,dbr) = try(N)
— code(ClJco], dbg) = try(C[N])
(
[
(
[
(

eqcode(dby, dbg, C) A code(co,dbr) = retry(N)
col, dbg) = retry(C[N])

eqcode(dby, dbg, C) A code(co,dbr) = trust(N)
col, dbg) = trust(C[N])

eqcode(dbr, dbg, C) A code(co,dbr) = failcode

— code(C

— code(C
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— code(CJco], dby) = failcode

eqcode(dby, dbg, C)
A code(co,dbr) = switch_on_term(argindex, Ng, N, N, N;))
— code(CJco], dby) = switch_on_term(argindex, C[N,], C[N.], C[N,], C[N;])

eqcode(dby, dbg, C)
A code(co,dbr) = switch_on_constant(argindex, tabsize, co)
— Jcog. code(Clco], dbg) = switch_on_constant(argindex, tabsize, cop)
A Y at.  Clhashc(co, tabsize, at, dby)]
= hashc(cog, tabsize, at, dbg))

compiles, (compile,; (compile;, (db))) = (db7, procdef;)
A nonvargoal(goalreg)
— (QUERY #(compile, (dbg, goalreg).pc, compile, (dby, goalreg).dbc; go))
go = goalreg

end enrich

CompClause = CompAssum4 + ShareCont + cp

E.11 Specifications for ASM9a (Renaming)

termvarli =
enrich varlist, enrterm with
functions
tvarli @ term —  varlist;
tlvarli : termlist —  varlist;
axioms

tvarli(mkconst(at)) = [],

tvarli(mkvar(va)) = [va | []],

tvarli(mklist(trm, trm;)) = rmdup(append(tvarli(trm), tvarli(trm;))),
tvarli(struct(at, trmli)) = tlvarli(trmli),

tlvarli(the_one(trm)) = tvarli(trm),

tlvarli(tcons(trm, trmli)) = rmdup(append(tvarli(trm), tlvarli(trmli))

end enrich

ren =
enrich natlist, termvarli, less-vi, nodelist with
functions
dom :  renaming —  varlist;
codom : renaming —  varlist;
“pv - ¢ renaming X nodesort — nodesort prio 9;
vilist :  vifun X nodelist —  natlist;

predicates . <,; . : natlist X nat;

axioms
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dom([]) =[],

dom([(va,va;) | rn]) = [va | dom(rn)],
codom([]) = [,

Eodom([(va,val) | rn]) = [va; | codom(rn)],
[(vay | vag), rn] ~p, va; = vas,

va # va; — [(va,vas) | rn] “p, va =10 ")y va,
vilist(vi, []) = [J,

vilist(vi, [st | stl]) = [vi[st] | vilist(vi, stl)],

[] <npi 1,

m|nl] <ynem<nAnl <,yn

end enrich

goalvarli =
enrich Renstack, clause with
functions
gvarli : goalsort —  varlist;
clvarli : clausesort — varlist;
axioms

gvarli([]) = [},
gvarli([trm | go]) = rmdup(append(tvarli(trm), gvarli(go))),

clvarli({trm,go)) = rmdup(append(tvarli(trm), gvarli(go)))

end enrich

enrunify =
enrich subst, unify, termtermpair, termvarli, Renstack with
functions
unifylist : termlist x termlist —  substornil,;
#, . : term —  nat;
#y - : termlist —  nat;
suv :  substitution —  varlist;
sudom :  substitution —  varlist;
sucod :  substitution —  varlist;
“rs - :  renaming X substitution — substitution prio 9;
. "psf - @ renaming X substornil —  substornil prio 9;
remove : substitution X nat —  substitution;
predicates
(: Terminierungsordnung fiir unify :)
R :  termtermpair X termtermpair;
occurs :  nodesort X term;
occurslist : nodesort x termlist;
disj : varlist x varlist;

variables trmli, trmli; : termlist; ttp, ttp; : termtermpair;

axioms

remove([], 1) = [],
remove([(va,trm) | su], 1)

= (va <pu; (i +1) A va <yp; 1 D remove(su, n); [(va,trm ) | remove(su,n)]),
tlen(trmli) = tlen(trmli;)



188

SPECIFICATIONS OF THE CASE STUDY

— unify(struct(at, trmli), struct(at, trmli;)) = unifylist(trmli, trmli, ),
at # at; — unify(struct(at, trmli), struct(aty, trmliy)) = nil,
tlen(trmli) # tlen(trmliy)
— unify(struct(at, trmli), struct(at;, trmliy)) = nil,
unify (mklist (trm, trmg), mklist(trm;, trms))
= unifylist(tcons(trm, the_one(trmy)), tcons(trm;, the_one(trms))),
at # at; — unify(mkconst(at), mkconst(aty)) = nil,
unify (mkconst(at), mkconst(at)) = oksubst([]),
unify (mkvar(va), trm)
= (occurs(va, trm) D nil; oksubst([(va,trm) | []])),
— is_var(trm)
—  unify(trm, mkvar(va))
= (occurs(va, trm) D nil; oksubst([(va,trm) | []])),
= is_var(trm) A = is_const(trm) — unify(mkconst(at), trm) = nil,

- is_var(trm) A — islist(trm) — unify (mklist(trmg, trm; ), trm) = nil,
- is_var(trm) A — is_struct(trm) — unify(struct(at, trmli), trm) = nil,
- is_var(trm) A — is_const(trm) — unify(trm, mkconst(at)) = nil,

- is_var(trm) A — islist(trm) — unify(trm, mklist(trmg, trm;)) = nil,

= is_var(trm) A = is_struct(trm) — unify(trm, struct(at, trmli)) = nil,
occurs(va, struct(at, trmli)) <> occurslist(va, trmli),
occurs(va, mklist(trm, trm;)) <> occurs(va, trm) V occurs(va, trmy),
occurs(va, mkvar(vag)) < va = vay,
= occurs(va, mkconst(at)),
occurslist(va, the_one(trm)) < occurs(va, trm),
occurslist(va, tcons(trm, trmli)) <+ occurs(va, trm) V occurslist(va, trmli),
unifylist(the_one(trm), the_one(trm;)) = unify(trm, trm;),
unify (trm, trm;) = nil
— unifylist(tcons(trm, trmli), tcons(trm;, trmli; )) = nil,
unify (trm, trm;) = oksubst(su)
A unifylist(su "y trmli, su ~ trmli;) = oksubst(su;)
— unifylist(tcons(trm, trmli), tcons(trm;, trmli; )) = oksubst(su o suy),
unify (trm, trm;) = oksubst(su)
A unifylist(su ~y trmli, su ~ trmli;) = nil
— unifylist(tcons(trm, trmli), tcons(trmy, trmli;)) = nil,

ttp < ttpy
“ #(rmdup (tvarli(mklist(ttp.t1, ttp.t2))))
< #(rmdup(tvarli(mklist(ttp, .t1, ttp;.t2))))
\Y #(rmdup(tvarli(mklist(ttp.t1, ttp.t2))))
= #(rmdup(tvarli(mklist(ttp,.t1, ttp,.t2))))

A #,(ttp.t1) < #,(ttpy.t1),
#,(mkconst(at)) = 1,
#,(mkvar(va)) = 1,
#,(struct(at, trmli)) = #,,(trmli)+1,
#,(mklist(trm, trmg)) = #,(trm) + #,(trmg)+1,
#,, (the_one(trm)) = #,(trm),
#u EE]C)ons([]trm, trmli)) = #,(trm) + #, (trmli),
suv([(va,trm) | su]) = [va | append(tvarli(trm), suv(su))],
sudom([) = [,
sudom([(va,trm) | su]) = [va | sudom(su)],
sucod([]) = [|
sucod([(va,trm) | su]) = append(tvarli(trm), sucod(su)),
disj(vl, vlp) ¢ (V va. va € vl = = va € vlp),
m s [ =],
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rn ", [(va,trm) | su] = [(rn ., va,rn ", trm) | rn ", sul,
rn “pgr nil = nil,
rn "5 oksubst(su) = oksubst(rn s su)

end enrich

Renaming = goalvarli + enrunify + CompClause
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