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ABSTRACT

Human pose estimation (HPE) is a commonly used technique
to determine derived parameters that are important to im-
prove the performance of athletes in many sports disciplines.
This paper proposes two methods to fine-tune a HPE system
trained on general poses to a sports discipline specific HPE
model using only a few labeled images. We show that 50
labeled 2D poses and additionally unlabeled videos are suffi-
cient to achieve a Percentage of Correct Kexpoints (PCK) of
88.6% at a threshold of 0.1 in the disciplines of triple and long
jump, closing the gap between the supervised fine-tuning on
the same 50 images and the fully supervised training on 60×
more images by 60%. The first proposed method uses pseudo
labels as a self-supervised training technique together with a
filtering method of the pseudo labels. Furthermore, this pa-
per shows that a mean teacher approach, which is based on
consistency between a teacher and a student model, can also
improve the results.

Index Terms— computer vision, sports, human pose es-
timation, self-supervised learning, pseudo labels

1. INTRODUCTION

In many sports disciplines, human pose estimation (HPE) is
an important method for performance analysis and improve-
ment of athletes. For example, the poses of soccer players are
tracked and evaluated throughout a game [1]. Long and triple
jump athletes use HPE for automated detection of landing,
jump and stride events [2]. Or, ski jumpers use keypoint de-
tection on their body and their skis to derive flight parameters
such as ski angle, lower body angle and upper body angle to
perfect their body posture during the flight phase and achieve
long flight distances [3]. This paper uses the domain of triple
and long jump as an example sports domain but our approach
is also easily adaptable to any other discipline. An example
for estimated poses during a triple jump is shown in Figure 1.

Annotating a large amount of 2D poses in many images by
hand is enormously time consuming, especially when lots of
keypoints are necessary. In many sports disciplines, coaches
do not have enough time to select images from training or
competition videos and annotate them for the purpose of mea-
suring the athletes’ performance. Hence, HPE systems based
on convolutional neural networks generate a large benefit as

they automatically detect the needed keypoints in a fraction
of time. However, to train a deep neural network capable
of achieving an acceptable performance on images from the
desired sports domain, lots of annotations are needed. This
paper proposes two techniques that need only a few anno-
tated images and some videos from the sports domain to train
a neural network with superior performance based on self-
supervised training.

Fig. 1: Human pose estimation for triple jump analysis.

2. RELATED WORK

Human pose estimation is a field of active interest in com-
puter vision. The currently best scoring approaches on com-
mon benchmarks like COCO [4] or MPII Human Pose [5]
are based on convolutional neural networks [6, 7]. In con-
trast to multi-stage approaches like Mask R-CNN [8] which
find person bounding boxes at first and detect one keypoint
of each type in the second step, these recent approaches find
all keypoints in a single step. The underlying backbone used
in many recent models like [6, 7] is the High Resolution Net
(HRNet) [9] and its variants for human pose estimation, e.g.
[10]. This kind of backbone, which we also use in our exper-
iments, maintains several branches of different resolutions,
keeping the highest resolution from the beginning to the end
of the network and providing data exchange between the dif-
ferent resolutions.

Computer vision is a popular technique to analyze athletes
in various sport disciplines. [11] propose an interactive gen-
erative method for estimating and tracking athlete poses from
monocular TV sports footage and evaluate it on hurdles and
triple jump videos. An approach for automated detection of
events like landing and jump in triple and long jump videos
is proposed by [2]. Based on the trajectories of basketball
players, [12] predict the location of the ball from monocular
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video footage, no matter if it is visible or not. [3] predict the
poses of ski jumpers during their flight phase and use robust
estimation techniques to determine the flight angles per cam-
era view. Based on independently detected 2D poses from
multiple camera views of e.g., soccer videos, [1] create 3D
poses and trackings of the athletes. In order to detect poses
of swimmers, [13] propose a convolutional neural network
which takes sequences of frames and the swimming style as
an input. This additional information and a pose refinement
over time improve their detection results.

Self-supervised learning is a highly attractive research
field in computer vision. Its goal is to enhance neural net-
works by exploiting additional unlabeled data for training
such that the resulting model performs better than a super-
vised training using labeled data only. Most common ap-
proaches use consistency regularization or pseudo labeling. A
survey can be found in [14]. Consistency regularized methods
are based on the idea that models should generate consistent
predictions under different perturbations such as noise [15]
or stronger augmentations [16]. In the domain of 2D HPE,
[16] propose cutting out joints to simulate occlusion as a hard
augmentation. [15] further uses a model ensemble as a target,
as a model ensemble produces better predictions compared
to a single model. Other approaches utilize pseudo labels,
which means that network predictions are used as annotations
[17]. [18] prove that this method is effective for the ImageNet
classification task. Furthermore, [19] show that the usage of
pseudo labels enhances their joint 2D/3D HPE pipeline for
multi-person keypoint detection in operating rooms.

Our contributions: We show that self-supervised learn-
ing raises the detection performance of 2D HPE systems fine-
tuned for specific sports disciplines with a small labeled train-
ing dataset. We propose two different methods, whereby the
first leverages pseudo labels in an iterative process to increase
network performance. We introduce a pseudo label selection
method that selects the most accurate predictions across var-
ious augmentations as pseudo labels. Furthermore, we intro-
duce mean teacher training for HPE, a single-step consistency
based approach. We show that 50 labeled training images and
122 unlabeled videos are sufficient to generate superior detec-
tion results in the domain of long and triple jump.

3. METHODOLOGY

We use HigherHRNet [10] as a backbone network, which
achieves state-of-the-art performance on HPE benchmarks.
As the goal of this paper is to achieve superior performance in
keypoint detection of athletes from a given sports discipline
with only a few labeled images from that sports domain, we
start of with pretrained weights from COCO [4]. As the key-
point definition of long and triple jump athletes is different
from the COCO keypoint definition (details can be found in
Section 4.1), we load only the backbone weights and not those
from the network head.

3.1. Training with Pseudo Labels

3.1.1. Training Procedure

At the beginning, a fully supervised training on a small, in-
domain labeled dataset Dlabeled is executed. Early stopping
is used to select the weights of the epoch with the best score
on the validation set. The next step is the generation of
pseudo labels, which means that the labels are not annota-
tions by hand but created from the network itself. Based on
the selected weights, pseudo labels are generated for all unla-
beled images of the training set, resulting in the pseudo label
dataset DPL,1 for the first iteration. Details on the genera-
tion process are described in the next section. Afterwards, the
first self-supervised training iteration is started by training a
new network on the generated pseudo label dataset DPL,1,
starting from pretrained weights from COCO. Hence, the net-
work sees only images different from the labeled training set
Dlabeled. Again, the best weights according to the validation
score are selected. In the next step, fine-tuning based on the
selected weights is executed with Dlabeled. The best weights
according to the validation results are determined and used to
generate updated pseudo labels DPL,2. Then, the next self-
supervised training iterations are executed analogous to the
first one. Figure 2 visualizes the training procedure. Xie et
al. [18] show that this iterative process performs well on Im-
ageNet image classification. This paper uses this approach
adapted to human pose estimation.
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Fig. 2: Training procedure for pseudo label training.

3.1.2. Pseudo Label Selection

In order to improve the network performance with pseudo
labels, the selection of the pseudo labels is crucial. The
most obvious possibility is to choose the labels based on
the network confidence score, keeping all labels with a score
larger than a certain threshold. The problem of this method
is the non-equal distribution of the pseudo labels across the
joints. Hence, the detection performance of joints with a lot of
pseudo labels increases, while the scores of joints with fewer
labels stagnate. A solution to this imbalance problem is to
take the labels with the best p% confidence scores of each
joint, but we found that this method does not output the best
labels based on the distance to the ground truth as there is no
direct relation between the network confidence score and the
distance between the predicted and the ground truth keypoint.
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Fig. 3: Pseudo label selection method. Green arrows indi-
cate that the base prediction is the prediction of the unlabeled
image. The transformation T is randomly selected from the
augmentations described in Section 4.2.

As a consequence, we use a different approach to se-
lect the best labels, not relying completely on the network
confidence scores. As a base prediction, we use the predic-
tions generated with the raw, not augmented input image. We
add prediction results of a horizontally flipped image and re-
sults from some randomly chosen augmentations (described
in Section 4.2) to our prediction set. Predictions with a very
low confidence score (below threshold tscore) are discarded.
The mean squared error (MSE) in pixels between the base
prediction and the augmented predictions is calculated. Now,
we select the predictions with the lowest p% MSE for the
pseudo label dataset per keypoint, resulting in an equal num-
ber of predictions for each keypoint. As pseudo labels, the
base predictions are used instead of the mean over all predic-
tions, as single outliers could shift the mean enormously and
the predictions on augmented images are less accurate as they
are harder for the model. Figure 3 illustrates the pseudo label
selection steps.

3.2. Mean Teacher Training

Apart from using pseudo labels, we considered another self-
supervised training method based on consistency between a
teacher and a student model. Figure 4 visualizes the training
steps. At first, the student and the teacher backbone are ini-
tialized with pretrained weights from COCO, while all other
weights are initialized randomly. Both models are nearly
identical with the single difference that we add dropout in
all fusion layers of the HRNet backbone (see [9]) in the stu-
dent model. During a warm-up period, only the supervised
training steps are executed based on Dlabeled, visualized in
green in Figure 4. After the warm-up period, the consistency
loss is taken into account as well. Unlabeled images are fed
into the teacher network to generate predictions, this process
is marked with (1) in Figure 4. The same images are now
augmented (see Section 4.2 for details) with a transforma-
tion T and given to the student network as an input (marked
with (2)). The student predictions are transformed back to the
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Fig. 4: Mean teacher training. The supervised training part is
visualized with green arrows, the consistency regularization
part is illustrated in blue. The teacher weights are updated
after each training step, symbolized by the red arrow.

original image with the inverse transformation T−1. The con-
sistency loss is now calculated as the MSE of the predicted
poses from the student and the teacher model. The loss is
masked if the teacher confidence is too low (below threshold
tscore). Throughout the complete training process, the teacher
weights are updated after each training step to be the expo-
nential moving average (EMA) weights of the student model,
visualized in red in Figure 4. A step consists of both super-
vised and consistency loss updates. For inference, the student
model is used. Tarvainen et al. [15] show that this method
leads to great improvements on common image classification
benchmarks. We adapt this approach for the usage in HPE.

4. EVALUATION

4.1. Dataset

The dataset used in this paper contains video recordings of
long and triple jump athletes. It consists of 4,522 labeled im-
ages from 186 video sequences, whereby 3,154 images from
122 videos are used for training, 200 images from 18 videos
for validation and the remaining 1,062 images from 46 videos
as the test set. All 3,154 annotated images are only used in
the supervised training scenario for comparison. In our self-
supervised approach we use a subset of only 50 labeled im-
ages for training. The recordings were taken during compe-
titions or training and show various sports sites and athletes.
The recordings have a constant frame rate of 200Hz and a
length between 670 and 1900 frames. All videos are anno-
tated with 20 keypoints (r./l. eye, r./l. ear, nose, neck, r./l.
shoulder, r./l. elbow, r./l.wrist, mid hip, r./l. hip, r./l. knee, r./l.
ankle, r./l. big toe, r./l. small toe, r./l. heel), see Figure 1 and
Figure 5 for examples.

4.2. Data Augmention and Training Settings

During supervised training, finetuning and pseudo label train-
ing, we use common augmentation methods: random hori-
zontal flip, random rotation of up to 30◦, random translation
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of up to 40 pixels (using an input image size of 512 × 512),
random scale in the range [0.75, 1.5] and color jitter. These
augmentations are also used during pseudo label generation.

For our experiments, we use 50 randomly selected ground
truth labels for our training dataset Dlabeled. During pseudo
label creation, we set the score threshold tscore = 0.1 and
we evaluate 10 different augmentations to compute the MSE.
We train for 3 iterations and use the best 60%, 70% and 90%
pseudo labels in the first, second and third iteration, respec-
tively. As the quality of the pseudo labels improves in each
iteration, we increase the number of pseudo labels that we
use. In each iteration, we train for 10k steps with the pseudo
labels and execute the finetuning for 250 steps. For mean
teacher training, we use the same score threshold tscore of
0.1 to mask the consistency loss. The EMA momentum is set
to 0.999 and our warm-up period lasts for 1,500 steps. The
dropout rate of the student model is set to 0.2.

4.3. Results

For evaluation, we use the Percentage of Correct Keypoints
(PCK) metric. PCK considers a keypoint as correct at a cer-
tain threshold t if the distance of the detected keypoint to the
ground truth keypoint is less or equal than t times the distance
between the left shoulder and right hip. The recall at a certain
PCK threshold tells us the percentage of the keypoints that is
considered correct at that threshold. During training, we use
this metric at a threshold of 0.1 as the performance measure
on the validation set, which corresponds to approx. 6cm.

4.3.1. Pseudo Label Results

For the first experiment, we use the subset Dlabeled with 50
labeled images for training and the remaining 3,104 images
that are also annotated as unlabeled images, hence we do not
use the labels. This has the benefit that the results are per-
fectly comparable to the fully supervised results as both net-

Fig. 5: Example images with predictions from the pseudo la-
bel model. A new model is needed as occlusions and key-
points like toetip or heel are not included in COCO. These
cases are still harder for the model. Furthermore, the dataset
contains some extreme poses.

Table 1: Recall values in % at PCK thresholds of 0.1 and
0.2 on annotated test set images for the pseudo label self-
supervised training based on the selected images (row 3) and
on every 10th video frame (row 4). The first row shows the
results for the fully supervised training and the second row
the results for the supervised training on Dlabeled for compar-
ison. Row 5 displays the mean teacher (MT) results or both
variants.

Images Run PCK 0.1 PCK 0.2(Labels)

1 3,154 supervised 91.9 96.5(3,154)

2 50 (50) supervised 83.8 90.0

3
3,154
(50)

iteration 1 87.7 93.6
iteration 2 88.0 93.9
iteration 3 88.4 94.4

4

iteration 1 87.1 93.5
17,656 iteration 2 88.0 94.2

(50) iteration 3 88.2 94.5
iteration 4 88.6 94.7

5 3,154 (50) MT 87.1 93.7
17,656 (50) MT 87.1 93.5

works have seen the exact same images during training. For
comparability to the fully supervised training, we use the full
validation set of 200 images in these experiments, but we ver-
ified that a validation set of 50 images leads to similar results.
In practice, this setup requires the coaches, apart from anno-
tating the images for Dlabeled and the validation set, to select
meaningful images from the videos that should be used for
training. This image selection process requires a lot less time
than annotating all images, but more time than just providing
videos without any further work. Table 1 shows the results for
three iterations in this training setup in row 3. Figure 5 shows
some examples for model predictions after iteration 3.

The gap between the fully supervised training and the su-
pervised training on 50 images is 8.1% at a PCK threshold of
0.1. After the first iteration, this gap can be narrowed to 4.2%.
After the third iteration, the difference shrinks to even 3.5%.
This is 40% of the original gap, with using less than 1.6%
of the labels. As we use the validation results at threshold
0.1, this threshold is also used as the main evaluation thresh-
old. But regarding PCK threshold 0.2, the gap is be narrowed
even further, from 6.5% to 2.1%, which is less than a third.

In the second experiment, we take the same 50 labels as
in the first experiment, but no pre-selection of video frames is
used. From all 122 videos belonging to the training dataset,
every 10th frame is extracted and added to the unlabeled
dataset. This results in 17,656 images. We use every 10th
frame so that two images are clearly different from each other.
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Table 1 shows the results for this experiment in row 4. We use
an additional fourth iteration with all pseudo labels here, as
further training still improves the results on the validation set,
which is not the case in the first experiment. The results after
the last iteration of this experiment are similar to the results
from the first experiment, but this experiment has slightly
better performance at PCK thresholds 0.1 and 0.2. At PCK
threshold 0.1, we could close the gap to the fully supervised
training from 8.1% to 3.3% and at threshold 0.2 from 6.5 %
to 1.8%. The table shows that the improvement from iteration
to iteration is slower than in the first experiment, therefore the
fourth iteration still gains some improvement.

4.3.2. Mean Teacher Results

Identical to the pseudo label evaluation, we conduct two mean
teacher experiments. One with the same images as in the fully
supervised run and one with every 10th frame from the videos
corresponding to the training set. Table 1 shows the results
for both experiments in row 5. The results are collected on all
annotated test set images using the network weights from the
step with the highest validation score (early stopping). The
table shows that the mean teacher results are slightly worse
than the pseudo label results after the final iterations, but per-
form a lot better than the supervised training on 50 images. At
a PCK threshold of 0.1, the gap to the fully supervised score
could be narrowed from 8.1% to 4.8% and at PCK threshold
0.2 from 6.5% to 2.8%, regarding the results from the first
experiment.

4.3.3. Results with more Labels

To evaluate the benefit of more labeled images, we executed
the self-supervised methods also with 100 and 250 labels. See
Table 2 for the exact results, using the 3,154 images from the
supervised training as the training dataset. For 250 labeled
images we changed the percentages of the pseudo labels to
70%, 80% and 95%, otherwise the first iteration does not have
an effect as the PCK values are already higher after the first
supervised training. The table shows that the gap between
the fully supervised result and the supervised training shrinks
from 8.1% with 50 labels to 5.9% with 100 labels and 3.5%
with 250 labels. With 50 labels, we could close 60% of the
gap, with 100 labels, this rate shrinks to 50% and with 250 la-
bels to 45%. Furthermore, after the initial supervised training
on the few labels, the difference of the PCK values between
50 and 100 labels is 2.2% and between 100 and 250 labels
2.4%. After the pseudo label training, the differences are a lot
smaller, namely 0.6% between 50 and 100 labels and 1.0%
between 100 and 250 labels.

For mean teacher training, similar results are observable.
Hence, the gain is larger for less labels and the PCK values
are closer together after both self-supervised trainings. For all
experiments, single-step mean teacher results are in the area
of the results from the first or second pseudo label iteration.

Table 2: Recall values in % at PCK threshold 0.1 on anno-
tated test set images for pseudo label and mean teacher train-
ing with different numbers of labeled images (first row). The
second row contains the results for the fully supervised train-
ing and the supervised training on Dlabeled for comparison.

Labeled Data 3,154 250 100 50

supervised 91.9 88.4 86.0 83.8

iteration 1 89.5 87.7 87.7
iteration 2 89.8 88.3 88.0
iteration 3 90.0 89.0 88.4

mean teacher 89.8 88.0 87.1

Hence, the usage of self-supervised training is more effective
with less annotated images, but it improves the results in every
case. Obviously, the highest absolute score is achieved with
the most labels, so there is a trade-off between efficiency of
the self-supervised learning and the final absolute score. This
should be taken into account when coaches decide how many
images they hand-annotate.

5. CONCLUSION AND FUTURE WORK

This paper proposes two techniques for self-supervised learn-
ing with a few labeled images in order to train a network for
human pose estimation in a new sports domain. One method
uses a mean teacher approach like in [15], with a simultane-
ous training on the labeled and the unlabeled images. The
self-supervised training part uses a consistency loss between
an EMA teacher model and a student model with dropout lay-
ers and stronger augmentation. The other method generates
pseudo labels similar to [18] and uses a selected subset of
them for the first training step and the labeled images for the
finetuning step. This iterative process is continued until con-
vergence.

The evaluation results prove the sufficiency of a train-
ing dataset containing 50 labeled images and some video se-
quences to train a deep neural network for a new sports do-
main such that it generates acceptable results. The PCK val-
ues at a threshold of 0.1 could be raised from 83.8% to 88.4%,
which closes the gap between the fully supervised training on
60× more images and the supervised training on 50 images
by more than 60%. These methods could open the usage of
human pose estimation performance measurements to a wide
range of sports disciplines in the future. The expense to col-
lect video material is very low, as it only requires a smart-
phone or small camera. Furthermore, annotating 50 images
by hand is also done quickly.

In this paper, the methods are trained and evaluated for
2D HPE, but they are not limited to this setting. Future work
could include the analysis of the methods for more sports dis-
ciplines and with other backbone models.
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