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We report a comprehensive study of CeIn3�xSnx (0:55 � x � 0:8) single crystals close to the
antiferromagnetic quantum-critical point (QCP) at xc � 0:67 by means of the low-temperature thermal
expansion and Grüneisen parameter. This system represents the first example for a cubic heavy fermion in
which TN can be suppressed continuously down to T � 0. A characteristic sign change of the Grüneisen
parameter between the antiferromagnetic and paramagnetic states indicates the accumulation of entropy
close to the QCP. The observed quantum-critical behavior is compatible with the predictions of the
itinerant theory for three-dimensional critical spin fluctuations. This has important implications for the
role of the dimensionality in heavy-fermion QCPs.
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Non-Fermi-liquid (NFL) properties are observed in
many heavy-fermion (HF) systems and frequently attrib-
uted to a nearby quantum-critical point (QCP) [1]. A QCP
can arise by continuously suppressing the transition tem-
perature TN of an antiferromagnetic (AF) phase to zero,
e.g., by chemical or applied pressure or an external mag-
netic field. QCPs are of great current interest due to their
singular ability to influence the finite temperature proper-
ties of materials. Heavy-fermion metals have played the
key role in the study of AF QCPs. The essential question is
how the heavy quasiparticles evolve if these materials are
tuned from the paramagnetic into the AF ordered state. The
traditional picture describes a spin-density-wave (SDW)
transition and related, a mean-field type of quantum-
critical behavior. Here the quasiparticles retain their itin-
erant character [2,3]. Unconventional quantum criticality,
which qualitatively differs from the standard theory of the
T � 0 SDW transition, may arise due to a destruction of
Kondo screening. Here the quasiparticles break up into
their components: conduction electrons and local 4f mo-
ments forming magnetic order [4,5]. This locally critical
picture leads to a number of distinct properties, including
stronger than logarithmic mass divergence, !=T scaling in
the dynamical susceptibility, and a large reconstruction of
the Fermi surface. Such behavior has been found at least in
some HF systems [6–8]. The central question is to identify
the crucial parameter leading to the different types of
QCPs. Of particular importance should be the dimension-
ality of the magnetic fluctuations, which could be reduced
by the presence of frustration. It is proposed in Ref. [4] that
for magnetically three-dimensional (3D) systems without
frustration the itinerant SDW picture should apply. On the
other hand, 2D magnetic systems should be described by a
locally quantum-critical picture [4]. However, systems
currently under investigation are either tetragonal, e.g.,
CeNi2Ge2, YbRh2�Si1�xGex�2 [9], and CeCu2Si2 [10],
hexagonal, e.g., YbAgGe [11], or monoclinic, e.g.,
CeCu6�xAux [6], and the lower crystallographic symmetry

could result in fluctuations with reduced dimensionality.
Therefore, the dimensionality of the critical spin fluctua-
tions clearly needs to be substantiated by inelastic neutron
scattering experiments. In order to avoid this constraint,
experiments on cubic systems close to QCPs are particular
interesting. CeIn3�xSnx, with a cubic point symmetry of Ce
atoms in the Cu3Au structure (compare the inset in Fig. 1),
is thus an excellent candidate for such a study, as here low-
dimensional spin fluctuations can be ruled out. Thus, the
interesting question arises whether the mechanism of NFL
behavior in this system can be described by an itinerant
3D-SDW theory.

In this Letter, we present thermal-expansion measure-
ments and a Grüneisen ratio analysis performed on single-
crystalline samples of the cubic system CeIn3�xSnx close
to the critical concentration xc � 0:67, where TN is sup-
pressed to zero by doping. Recently, it has been shown that
the thermal volume expansion � � V�1�dV=dT� (V: sam-
ple volume) is particularly suited to probe quantum-critical
behavior, since, compared to the specific heat, it is much
more singular in the approach to the QCP [12]. As a
consequence, the Grüneisen ratio �� �=C of thermal
expansion ��T� to specific heat C�T� is divergent as T
goes to zero at any pressure-sensitive QCP, and the asso-
ciated critical exponent can be used to distinguish between
the different types of QCPs. In the itinerant scenario, the
divergence � / 1=T� is given by � � 1=�z [12], with � the
critical exponent for the correlation length � / jrj� (r:
distance from the QCP) and z the dynamical critical ex-
ponent in the divergence of the correlation time �c / �z.
For a 3D AF QCP, � � 1=2 and z � 2, yielding � � 1.
Thus, a study of the Grüneisen ratio can prove the validity
of the 3D-SDW picture in the title system provided that
� � 1.

The magnetic �x; T� phase diagram of polycrystalline
CeIn3�xSnx has been widely studied for 0 � x � 1 by
susceptibility [13], specific-heat [14], and resistivity mea-
surements [15,16] (see Fig. 1). Whereas TN for undoped
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CeIn3 vanishes discontinuously below 3 K under hydro-
static pressure [17], it can be traced down to 0.1 K for
CeIn3�xSnx, and an additional first-order phase transition
TI has been found for 0:25< x< 0:5 inside the AF state
[14]. These differences are related to the change of the
electronic structure induced by Sn doping. Beyond a pos-
sible tetracritical point at x � 0:4 [14], an almost linear
dependence of TN�x� is observed. This is in contrast to
TN / �xc � x�2=3 predicted by the 3D-SDW theory [2].
Thus, the origin of the NFL behavior in this system re-
mains an open question, and further thermodynamic stud-
ies are needed to shed light on the nature of the QCP.

The CeIn3�xSnx single crystals investigated here
(0:55 � x � 0:80) were grown by a Bridgman-type tech-
nique. Large single crystals with a mass of 15 g were
produced, analyzed by x-ray powder diffraction, and found
to be of single phase with the proper cubic structure.
Within the �2% accuracy of the x-ray diffraction, no
impurity phases were resolvable. Thin bars with a length
2 � l � 6 mm, suitable for the dilatometric investigations,
were cut out. The thermal expansion has been measured in
a dilution refrigerator using an ultrahigh resolution capaci-
tive dilatometer with a maximum sensitivity corresponding
to �l=l � 10�11.

Figure 2(a) shows the volume thermal expansion � of
single-crystalline CeIn3�xSnx with x � 0:55, 0.65, 0.7, and
0.8 plotted as ��T�=T vs logT. The volume-expansion
coefficient � is given by � � 3	 �, with � being the
linear thermal-expansion coefficient. For x � 0:55, the
broadened steplike decrease in �=T at TN � 0:6 K marks
the AF phase transition, in perfect agreement with specific-
heat measurements on the same single crystal [18]. Upon
increasing the concentration, we find for x � 0:65 and 0.7
diverging behavior over nearly two decades in T down to

80 mK. These data suggest that TN is suppressed at a
critical concentration xc � 0:67� 0:03, also consistent
with specific-heat measurements performed on the same
samples [18]. Finally, for x � 0:8 we recover Fermi-liquid
behavior ��T�=T � const for T ! 0.

In the following, we will analyze the observed NFL
behavior and make a comparison with the predictions of
the itinerant SDW scenario [12]. A best-fit description of
the x � 0:65 data in the entire temperature range 0:08 K �
T � 6 K according to �=T � a0 
 a1T

a2 reveals a2 �
�0:4� 0:01 [see the dashed line in Fig. 2(a)]. However,
as shown in the upper part of Fig. 2(b), the deviation
between the data and this fit shows several broad bumps,
indicating that the fit does not properly describe the data.
We therefore tried best power-law fits for 0:08 K � T �
Tmax with varying Tmax. For Tmax � 1 K, the fit is of
excellent quality [cf. solid line in Fig. 2(a) and lowest
part of Fig. 2(b)] and the resulting exponent equals �0:5,
i.e., the value predicted by the 3D-SDW scenario [12].

We now turn to the Grüneisen parameter defined as � �
�Vm=�T���=C�, where the constants Vm and �T denote the
molar volume and isothermal compressibility, respectively.
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FIG. 2. (a) Volume thermal-expansion coefficient � of
CeIn3�xSnx single crystals as �=T vs logT. The gray solid and
black dashed lines indicate T�0:5 and T�0:4 dependencies, re-
spectively. The arrow indicates AF phase transition.
(b) Deviation of �=T data for a x � 0:65 sample from best
power-law fits for T � 1 K (squares), T � 2 K (circles), and
T � 6 K (triangles), respectively, as ��=T� � �a0 
 a1T

a2 � vs
logT. For clarity, the three data sets have been shifted by
different amounts vertically.
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FIG. 1. Magnetic phase diagram for cubic CeIn3�xSnx (x �
1). The solid circles and diamonds indicate TN , determined from
specific-heat [14] and electrical resisitivity [15] measurements,
respectively. The open diamonds mark T?, the upper limit of
Landau Fermi-liquid behavior, e.g., ���T� / T2 [16]. The open
triangles indicate first-order transition TI [14].
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The specific heat has been studied in the temperature range
40 mK � T � 4 K on the same CeIn3�xSnx samples used
for thermal expansion [18,19]. Here the nuclear quadru-
pole contribution of indium which becomes important
below 150 mK has been subtracted. Figure 3 shows a
comparison of ��T� for all samples studied in thermal
expansion. Since the temperature dependence of specific
heat is much weaker compared to that of thermal expan-
sion, its influence to the Grüneisen parameter is rather
small. Therefore, the variation of ��T� for the different
CeIn3�xSnx samples is very similar to that found in �=T
(compare Fig. 2). Both single crystals closest to xc, x �
0:65 and x � 0:7, show a divergent behavior down to the
lowest accessible temperature with very large � values at
0.1 K which are of similar size as found for other quantum-
critical HF systems [9,20]. On the other hand, saturation
is observed for x � 0:55 and x � 0:8 being located in the
AF ordered and the Fermi-liquid regime, respectively. The
fact that the divergence of ��T� in the quantum-critical
regime is stronger than logarithmic (compare the double-
logarithmic representation of the x � 0:65 data presented
in the inset in Fig. 3) provides clear evidence for a well
defined (pressure-sensitive) QCP in the system. If the
disorder present in the system would lead to a ‘‘smeared’’
quantum-critical regime, ��T� could diverge at most loga-
rithmically [12].

Another indication for a QCP is the sign change of the
Grüneisen parameter between the ordered and the disor-
dered regime. As discussed in Ref. [21], it is directly

related to the entropy accumulation near the QCP. The
different signs of � in the AF and paramagnetic regions
reflect the opposite pressure dependencies of the respective
characteristic energy scales. Below TN , the effective AF
intersite interaction dominates, whose negative pressure
dependence gives rise to a negative Grüneisen parameter
�< 0. On the other hand, the positive Grüneisen ratio in
the paramagnetic state is compatible with the positive
pressure dependence of the Kondo temperature in Ce-
based HF systems.

In order to compare our results for the x � 0:65 sample
which is located closest to the QCP with the theoretical
predictions for an itinerant AF QCP [12], we need to
calculate the critical Grüneisen ratio �cr�T� / �cr=Ccr of
critical contributions to thermal expansion and specific
heat. For thermal expansion, �cr�T� � ��T� � a0T, with
a0 � 0:3	 10�6 K�2 as determined from the best fit up to
1 K; see above. Within the itinerant theory for the 3D AF
case, the critical contribution to specific heat is subleading
[12]: Ccr�T� � C�T� � 	0T, with Ccr < 0, Ccr=T ! 0 for
T ! 0, and 	0 � C=TjT�0. For 	0, we use the value
0:851 Jmol�1 K�2 obtained in Ref. [18] from fitting the
low-temperature electronic specific heat in a restricted
temperature range 0:3 K � T � 1:4 K according to
C=T � 	0�1� a0

����

T
p
�. Figure 3 displays a log-log plot of

�cr�T� versus temperature. We find �cr / T��, with an
exponent � � 1:1� 0:1 which is very close to 1, predicted
by the itinerant theory. Note that this exponent is rather
insensitive of 	0 subtracted from the specific-heat data:
Using 	0 � 0:9 and 0:95 Jmol�1 K�2 results in � � 1:07
and 1.02, respectively. Interestingly, the exponent for the
critical Grüneisen ratio, which theoretically equals the
dimension of the most relevant operator that is coupled
to pressure [12], holds over a much larger temperature
range than the respective 3D-SDW dependencies in spe-
cific heat [18] and thermal expansion (cf. Fig. 2). A similar
observation has also been made for CeNi2Ge2 [9].

For those two systems for which an unconventional QCP
has been proposed, YbRh2Si2 and CeCu6�xMx (M � Au,
Ag), distinctly different temperature dependences have
been observed: �cr / T�0:7 in the former [9] and �cr /
logT [20] in the latter case. It is proposed in Ref. [4] that
for magnetically 3D systems without frustration the SDW
picture should apply. This is consistent with our Grüneisen
ratio analysis.

For the 3D AF case, the itinerant theory predicts an
asymptotic T3=2 dependence for the temperature dependent
part to the electrical resistivity [2,3]. As discussed in
Ref. [22], the interplay between strongly anisotropic scat-
tering due to the critical spin fluctuations and isotropic
impurity scattering can lead at elevated temperature to
temperature exponents of the resistivity between 1 and
1.5, depending on the amount of disorder. Systematic
��T� studies down to mK temperatures on polycrystalline
CeIn3�xSnx revealed an almost linear temperature depen-
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FIG. 3. Temperature dependence of the Grüneisen parameter
� � �Vm=�T���=C� of several CeIn3�xSnx single crystals as
��T� vs logT. Vm � 6:25	 10�5 m3 mol�1 and �T � 1:49	
10�11 Pa�1 [26] are the molar volume and isothermal compres-
sibility, respectively. The arrow indicates AF phase transition.
The inset displays data for x � 0:65 in a double-logarithmic plot.
The dotted line indicates the power-law dependence � / T�0:31.
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dence in the quantum-critical regime [15]. Similar behav-
ior is observed for single-crystalline CeIn2:35Sn0:65 as well;
see the inset in Fig. 4. However, due to the high Sn doping
needed to tune the system towards the QCP, the resistivity
ratio �300 K=�0 is of the order of 1 and the temperature
variation amounts to a few percent of �0 only, making the
comparison with theoretical predictions very difficult. This
indicates that transport experiments alone are not sufficient
to characterize quantum criticality in disordered systems.
Possibly, also the slope of TN�x� differs from the 3D-SDW
prediction because disorder is not constant but increases
with increasing x. However, the algebraic divergence of
��T� for T ! 0 at x � xc proves a pressure-sensitive QCP
in the system and excludes disorder-driven scenarios for
the observed NFL behavior [12].

In conclusion, our study on CeIn3�xSnx single crystals
by means of the low-temperature thermal expansion and
Grüneisen parameter has proven the applicability of the
itinerant theory for 3D critical spin fluctuations in this
cubic system. Since strong contradictions to this theory
have been found in systems such as CeCu5:9Au0:1 [6] or
YbRh2�Si1�xGex�2 [7] with lower crystallographic sym-
metry and, at least in the case of the former system,
strongly anisotropic quantum-critical fluctuations, the pa-
rameter dimensionality obviously plays an important role
for the nature of HF QCPs. We tentatively classify the

different HF systems studied by Grüneisen analysis at their
respective QCPs as follows: (i) CeIn3�xSnx and CeNi2Ge2

[9], for which the latter system neutron scattering mea-
surements revealed 3D low-energy magnetic fluctuations
[23], show thermodynamic behavior compatible with the
3D itinerant theory, whereas for (ii) YbRh2�Si1�xGex�2 [9]
and CeCu5:8Ag0:2 [20] strong contradictions to this model
(for both 2D and 3D critical spin fluctuations) are ob-
served. Neutron scattering has proven 2D quantum-critical
fluctuations in CeCu5:9Au0:1 [24], while for YbRh2Si2 a
complicated behavior with competing AF and ferromag-
netic quantum-critical fluctuations has been observed [25].
The comparison with our results on CeIn3�xSnx suggests
that a destruction of Kondo screening causing unconven-
tional quantum criticality is prevented in magnetically 3D
systems.
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