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Exact results, both old and new, on the stability of saturated ferromagnetism in the 
Hubbard model and its extensions are discussed. For the Hubbard model with all 
nearest-neighbor interactions a new set of rigorous criteria, valid at half filling, is 
derived and a generalization of Nagaoka's theorem to finite interactions is presented. 
Of all coupling parameters only the on-site and the exchange interaction are found 
to be essential. At strong coupling comparison with the effective t -  J model is made. 
Further extensions, e.g. to the band-degenerate case, are discussed. 

PACS numbers: 71.27.+a, 75.10.Lp 

1. I N T R O D U C T I O N  

Of all cooperative electronic phenomena ferromagnetism is perhaps the one 
longest known to mankind. Already more than 2800 years ago the unusual prop- 
erties of magnetite were described and ever since explanations of its origin were 
offered. A fascinating survey of the history of magnetism can be found in Mattis '  
book. 1 

A modern microscopic theory of ferromagnetism has to take into account two 
basic facts: (i) Magnetic phenomena are quantum mechanical by nature, and (it) 
magnetic phenomena require electronic interactions. The first is a consequence 
of the Bohr-van-Leeuwen theorem which proves that within classical theory the 
magnetization of a system in thermodynamic equilibrium is zero, and the second 
follows essentially from the Pauli principle which implies that  for non-interacting 
electrons the ground state energy obeys E(S)  < E ( S +  1), regardless of the external 
potential, where S is the total spin of the system. 2 As to the interaction responsible 
for ferromagnetism it is well-known that the perhaps most obvious candidate - the 
interaction between the magnetic moments of the electrons - is not able to explain 
ferromagnetism in the transition metals Co, Ni, Fe. The energy of the dipole-dipole 
interaction is of the order of Edipole ~ ~2(ao/r)3Ryd ~ 10-%V, where c~ is the fine- 
structure constant, ao is the Bohr radius and r is the average separation between 
the electrons. This corresponds to a temperature Tdipole ~ 0.1K, which is obviously 
by a factor 104 too low to explain the onset of ferromagnetism in transition metals 
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where the Curie temperature is of the order of electrostatic energies, i.e. Tc,r~ = 
1043K, To,co = 1388K, Tc,Ni = 627K. This was already known to Heisenberg 3 who 
therefore proposed that it is the spin-independent Coulomb interaction which, in 
conjunction with the Pauli-principle, gives rise to an "effective interaction" between 
electronic spins (which he assumed to be localized). Bloch 4 stressed that electrons 
in transition metals are not localized but are mobile. Clearly, the ensueing problem 
of i t inerant  electrons interacting via a Coulomb interaction leads to an even harder 
quantum mechanical many-body problem than that for localized spins. This makes 
it necessary to introduce approximations. In particular, the Hartree-Fock mean 
field approach and its extensions that take into account the explicit band structure. 
such as the "local (spin)-density approximation", have led to many approximate 
and often surprisingly good results for the ground state properties of ferromagnetic 
transition metals. 5,6 However, in view of the neglect of genuine correlation effects 
within Hartree-Fock and the fact that it violates the important SU(2) invariance of 
non-relativistic Hamiltonians under rotations of the spin or the angular momentums 
(finite-temperature) mean-field results must be taken with caution In spite of its 
undisputable success Hartree-Fock theory and its extensions is per se not able so 
answer conclusively the question whether or not the Coulomb interaction is the 
origin of ferromagnetism in real materials; for a discussion of this fundamental 
point see ref. 7. 

In 1963 the simplest lattice model for correlated electrons, the single-band Hub- 
bard model, was introduced in a modern attempt to clarify the conditions for the 
occurrence of ferromagnetism in transition metals, s-l~ These metals are character- 
ized by correlation-induced, narrow (degenerate) energy bands. It soon turned out. 
however, that this model does not provide the hoped-for answer. In fact. we now 
know that the single-band Hubbard model is a generic model for the description 
of a correlation-induced metal-insulator transition, as well as for the formation of 
antiferromagnetic order, but not for ferromagnetism. Apparently the on-site inter- 
action, which is totally independent of any lattice properties, does not easily provide 
a mechanism for the generation of ferromagnetism. In the Hubbard model the lat- 
tice structure enters only via the kinetic energy due to nearest-neighbor hopping. 
It is therefore perhaps not surprising that the rigorous proofs of the stability of 
ferromagnetism in this model by Nagaoka. 11 Lieb, 12 Mielke 13 and Tasaki 14 apply 
under conditions which are more specific with regard to the lattice s tructure than 
the values of the interaction.  Indeed, the saturated ferromagnetic state (Nagaoka 
state) was proved to be stable either at U = oo (in the case of a single hole moving 
on certain lattices with loops in dimensions d >_ 2) 11 or else for all U > 0 (in the 
ease of special ("decorated") lattices where the single-electron ground state has bulk 
degeneracy) at sufficiently large filling. 7 For details we refer to the reeem reviews 
by Lieb 15 and Mielke and Tasaki. 7 

Nagaoka's proof for the stability of ferromagnetism is not applicable in the ther- 
modynamic limit and it has not been possible so far to generalize it to a finite density 
of holes, 6 > 0. Therefore an opposite route was taken by trying to determine the 
critical hole density, 6or, above which the Nagaoka state is definitely unstable. One 
method is to use suitable variational ("spin flip") wave functions. By building-in 
local correlations around the flipped spin Mfiller-Hartmann and collaborators 1617 
were recently able to bring 6c~ down to 6or = 0.29 for a square lattice in the ther- 
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modynamic limit; this coincides with the result obtained by vonde r  Linden and 
Edwards is for finite lattices using a more general ansatz. Exact diagonalization 
studies 19 suggest that 5r is even lower, Hence at present it cannot be ruled out 
that  for bipartite lattices, e.g. simple cubic and bcc, 5c~ = 0 (as in the case of the 
hypereubic lattice in infinite dimensions2~ i.e. that the fully polarized ferromag- 
netic state is never stable for such lattices. By constrast, for non-bipartite lattices, 
e.g. hcp and fcc, the Nagaoka state appears to be stable for 5 > 0 and t < 0 (t is the 
hopping amplitude), or 5 < 0 and t > 0.16 As pointed out by Miiller-Hartmann et 
al. 16 such a lattice-dependence of the stability of the fully polarized ferromagnetic 
state is indeed observed in transition metals: while in their ferromagnetic phase Co 
(hcp structure) and Ni (fcc structure) are fully polarized, Fe (bcc structure) is not. 
In view of the utter simplicity of the underlying single-band Hubbard model this 
agreement is quite surprising. 

For one-dimensional systems a theorem by Lieb and Mattis 2 puts strong lim- 
itations on the stability of ferromagnetism. They proved that for any real and 
particle-symmetric, but otherwise arbitrary interaction the ground state is unmag- 
netized. The theorem extends to single-band lattice systems in d = 1 without 
change, provided (i) the hopping is only between nearest neighbors, and (ii) the 
interaction involves only densities. Both conditions are fulfilled in the case of the 
Hubbard model, whose ground state in d = 1 can therefore not be ferromagnetic. 

The rigorous investigations of the single-band Hubbard model described above 
cannot - and are not expected to - explain experimentally relevant details of ferro- 
magnetism in transition metals. Their only intention is to provide secure knowledge 
about preconditions and possible mechanisms for the formation of electronic ferro- 
magnetism. The price one has to pay is that the models under investigation are 
usually quite simple and/or that answers are rather limited. The more details one 
puts into a model to come as close as possible to the physics of real materials (band 
degeneracy, lattice structure, filling, atomic structure etc.) the more approximate 
the solution of the many-body correlation problem will necessarily have to be, and 
the more difficult it becomes to distinguish between various physical effects. There 
is a marked complementarity here - not only, but also in the case of metallic ferro- 
magnetism. For a review of the progress made in the "realistic" theory of metallic 
magnetism in the 3d-transition series see ref. 21. - 

One of the obvious features missing in the single-band Hubbard model is band 
degeneracy - a characteristic of all ferromagnetic metals. Already in 1936/37 
Slater 2~ suggested that the forces leading to "Hund's rule atomic magnetism" on 
an individual atom, might also be responsible for bulk ferromagnetism. 1 That is, 
the coupling of individually ordered atoms, mediated by the hopping of electrons or 
holes between these atoms, might lead to a coherent alignment and hence trigger 
bulk ordering. In 1964 Hubbard 23 proposed an extension of his one-band model 9 
applicable to narrow degenerate electron bands, where electronic interactions within 
and between different orbitals only take place on the same atom. This model is still 
the basis of many present-day investigations. In view of the difficulties that rig- 
orous investigations encounter already in the much simpler single-band model it is 
perhaps not surprising that almost no results exist for the degenerate-band model. 
An exception is the one-dimensional case at infinite coupling for certain fillings. 24 

In the following we will derive precise conditions for the stability of saturated 
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ferromagnetism in a generalized single-band Hubbard model, where longer-range 
than on-site interactions are explicitly taken into account. The multi-band case can 
be studied by the same method, leading to explicit results, too (see sect. 6), which 
will be discussed in detail elsewhere. 2~ 

2. T H E  H U B B A R D  M O D E L  W I T H  ALL N E A R E S T - N E I G H B O R  
I N T E R A C T I O N S  

Although the on-site interaction between electrons with opposite spin can be 
expected to dominate quantitatively, 9 the neglect of all nearest-neighbor (NN) in- 
teractions in the single-band Hubbard model is certainly a drastic simplification. 
There remains the question about the qualitative importance of NN terms even if 
they are weak. After all, in the limit n = 1, U = c~ for example, the ground state 
has a macroscopic degeneracy which may naturally be lifted even by an arbitrarily 
weak NN interaction. Besides that, the Heisenberg interaction, i.e. the direct quan- 
tum mechanical exchange interaction between NN-sites, should be able to lead to 
ferromagnetism in a rather straightforward way even in the case of itinerant elec- 
trons. In a series of papers this question was recently taken up by Hirsch. 2~ who 
supplemented the Hubbard model by a NN Coulomb exchange interaction and a 
pair hopping term; see also Tang and Hirsch. 27 On the basis of a mean-field decou- 
pling approximation, as well as numerical investigations in d = 1, he found that. 
at half-filling, this single-band model can have a ferromagnetic ground state. The 
proposition by Hirsch 26 that the ferromagnetic state found in his model can explain 
metallic ferromagnetism in real solids was called in question by Campbell et al. 2s 

The above discussion shows that, in spite of some remarkable progress, the 
conditions for the stability of ferromagnetism in itinerant electron systems are 
not yet clear. For example, one would like to know reliably how important NN- 
interactions are in comparison with the Hubbard repulsion in a three-dimensional 
system, whether among the NN interactions the exchange contribution real]y domi- 
nates, whether interactions beyond NN matter, how important band degeneracy is. 
etc.. 

Below we will show that it is possible to give an answer to at least some of these 
questions. Namely, we will derive 29 detailed, rigorous criteria for the stability of 
saturated ferromagnetism in an extended Hubbard model where all NN-interactions 
are included, at half filling. These criteria are valid for arbitrary transtationally 
invariant lattices (e.g. with or without loops, bipartite or not) with L sites and 
coordination number Z. The model has the form 9,~6,2s,29 

= B~+gv +gv +~x +~F+9~,  

( i , j ) ,a  i ( i , j )  

+ X E -':'+A 
(i,j),o 

+ F E ~ ~ ^ ~ F~ c,,cja,c,a,cjq + E / ~ ' +  ~-,~ia~i_a ~j_~ c'j~ + h.c.) (1) 
{i,j),~,,,' (i,D,~, 
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where operators are indicated by a hat. Here nia = c~(aFia, ni = ~-:~a nia and the 
summat ion extends over NN-bonds. While U parametrizes the on-site interaction 
and V describes the usual interaction between charges (=  densities) at NN-sites, 
the remaining interactions are off-diagonal. Hence X corresponds to a density- 
dependent hopping between NN-sites. Noting that  HF  may be written as 

- ( 2 )  
(i j )  

with spin operator  Si, we see that  F is just  the familiar Heisenberg exchange inte- 
gral, while F ~ generates hopping of doubly occupied sites. 

Considerable simplifications occur if X = t, since in this case the hopping 
processes interfere in such a way that  the number of doubly occupied sites stays 
constant. In this limit and F = F '  = 0, we recently showed that  the exact ground 
state solution may be obtained in a wide range of the parameters U, V. 3~ The ground 
state is either a highly degenerate state with singly occupied sites, or corresponds 
to a charge-density wave. The range of parameters where these states are stable 
was extended by Ovehinnikov. 31 At the point t = X = - V  = - F  = - F  ~ = 
1, U ---+ U - Z one obtains the exactly solvable supersymmetric  model  of Essler 
et al. 32 which exhibits a particular kind of superconductivi ty where Cooper-pairs 
are purely local ("~-pairing").  We note that  for X = t and n = 1 there exists a 
one-to-one correspondence (via a particle-hole transformation only for up-spins 33) 
between saturated ferromagnetism and r]-pairing and, hence, between the rigorous 
conditions for their stability. 34 

In this context one should also mention the NN-model introduced by Castellani 
et al. 3s some time ago to investigate the metal-insulator transit ion in systems like 
1/203. They suggested to start  with the Hubbard model on a bipart i te  lattice at 
half  filling, and to construct an effective NN-Hamiltonian H~j,~, by a decimation 
procedure defined by a partial trace over the degrees of freedom on one of the 
sublattices. In view of the symmetry properties of the Hubbard model, [Iely must 
be invariant under uniform rotations in spin and charge space, separately. This 
implies the form 

A ^ ^ A ~ 2  ~ 2  

{i,j} {i,j) (i , j} 
~ 2  

i (i,j),o 

where ~i is a vector of charge operators, ~ /  = c~iTc~il,Pi = ci tciT,~ = flit + n i l -  1, 
and the factor of 2 in the definition of Si in ref. 3~ was taken into account. This 
effective model  is a generalization of the Blume-Emery-Griffi ths model for aHe- 
4He mixtures 36 and contains a 6- and 8-Fermion term (the K-term).  For K = 0, 
however, (3) is a special limit of the Hubbard model with all NN interactions at 
X = t. Therefore, as noted by Castellani et al., 3z the model of Essler et al. 32 is also 
a particular case of (3). 
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3. D E R I V A T I O N  O F  R I G O R O U S  C R I T E R I A  F O R  
F E R R O M A G N E T I S M  

We wish to know for which coupling parameters in (1) the saturated ferromag- 
netic state 

I~F} = 1-[ c,~ 10} (4) 
/ 

is the unique ground state of H. To find an answer we (i) transform (1) into a sum 
of positive-semidefinite operators, i.e. construct a lower bound Ez on the ground 
state energy (this is the hard part), (ii) show that I CF} is an eigenstate of (1), 
i.e. obtain an upper bound E~, (iii) determine the conditions for El = E~, (iv) 
prove the uniqueness of I ~F) .  This strategy for searching for eigenstates with the 
lowest eigenvalue appears rather natural. It was recently introduced by Brandt and 
Giesekus as into the investigation of the Hubbard model and was used by them to 
derive exact ground state energies for this model at U = oo on special lattices. 
Subsequently Strack a9 adapted it to the U = oc limit of the periodic Anderson 
model in d = 1 and the Emery model in d = 1,2; for a restricted parameter range 
he calculated the exact ground state energy which has a simple algebraic structure, 
i. e. exponentially small terms do not enter. 4~ 

We now recast (1). Introducing the non-local operators 29 

Pij,o = (1 - ni-o)(?io + Alc'j,)(1 - ~ j - , )  
A 

where ~1 = *g'~(0,  "~2 = , g n ( X  - t ) ,  "~a = s g n ( F '  - o , - ~ l X  - el) ,  a n d  o, # 0 is r~a~_ 
but otherwise arbitrary, and rewriting (5) by use of the operator identity 

(fi+X + S,+5) = ((~5+ + . -*X+) (~5  + ~- 'X)) - ~ ( 5 + f i )  - ~-=(~+~) (6) 

which holds for all a # 0, it can be verified that 

( i , j }  a 

( i , j }  ( i , j )  

Here D = ~ i  h i ,n i l  is the number operator for doubly occupied sites and 

P' = P ' -  I x -  t l /~  ~, 
= F -  o? IX  - tl ,  

1 
~ = v -  ~ (F  + ,~= IX  - t l )  - 2lti, 

= u - z [21t l  + IVI  + IX  - tllo? + I~ '1] .  (8) 
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Except for the U- and /7-term all terms in (7) are positive-semidefinite. Further- 
more, for n = 1 it is seen that Ik~r) is an eigenstate of ~r : (i) the P, Q, A, B-terms 
have zero eigenvalue and hence ] ~ , )  even represents a ground state of these terms; 
(ii) from 5[k~r2 = 0 it follows that, for U >  0, Ik~F} is also a ground state of this 
term; (iii) the V-term has eigenvalues LZIV t for ~" > 0 and zero for ~" < 0 - since 
these values coincide with the lower bound of that term obtained by application of 
the Schwarz inequality [@F) is a ground state of the V- term, too; (iv) I~ r )  is the 
unique ground state of the Heisenberg term provided F > 0. For F > 0 it is then 
clear that I@F) is the unique ground state of (7). That  this is true even for F = 0, 
provided X r t, can be proved by induction. 29 

Hence for n = 1, arbitrary c~ r 0 and in the parameter regime 

F > 0, f o r X = t  

F > o:2 lX- t l ,  otherwise 

U _> 2[tl+ V-2l t [  F+~21X-tl2 + IX-tls___V__ + F'-IX-tL~-5 r ( 9 ) ]  

the unique ground state of the Hamiltonian (1) is a fully polarized ferromagnetic 
state. The ground state energy is given by E : 1LZ(V - F).  This rigorous result 
holds for arbitrary translationally invariant lattices, i.e. even in d = 1 ( as discussed 
in the Introduction the theorem of Lieb and Mattis ~ on the absence of ferromag- 
netism in d = 1 does not apply when X, F, F I ~ 0). Note that these are sufficient 
conditions, i.e. they do not rule out the stability of saturated ferromagnetism out- 
side the above parameter range, e.g. in models where F is put to zero as in the 
Hubbard model. 

For F = F I : 0 and X = t (9) reduces to a result which was derived earlier as a 
condition for the stability of a 2L-fold degenerate ground state with singly occupied 
sites. 3~ We now see that for F > 0 this degeneracy is lifted. 

If (9) is taken as an equality c~ may be eliminated from (9); the parameter 
restriction for the stability of the saturated ferromagnet is then given by 

U > 21tl + V - 2It I - F + (X - t)_._._.~ ~ - t)~ z -  F + r' (X~ ] (10) 
with F > 0. For a fcc-lattice this condition can be further improved , i.e. Z can 
essentially be replaced by v ~ .  We observe that of all interaction parameters two 
are most important for the stabilization of ferromagnetism: the on-site repulsion 
U and the exchange coupling F.  As long as F is non-zero (as in real physical 
systems), even if arbitrarily small, there exists a critical value of U above which 
the fully polarized state is stable. This was already concluded earlier by Hirsch 26 
in his mean-field and numerical investigations of the Hubbard model plus NN- 
exchange (the F- term in (1)), with and without the F ' - term.  Our results, where 
all NN-interactions are included rigorously, give qualitative support to his findings. 
Note, however, that the X-contribution is quantitatively important,  too. In our 
approach the interdependence of U and F is caused by the operator Aij, (5), and 
the invariance property of the operator identity (6) under changes of c~. For a cubic 
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lattice (Z = 6) and Hubbards 9 estimated values V = 2eV. X =  89 F = F ~ = 
4A6eV eq. (10) yields a critical value of U = 1 2 e V  for t = 0 . 5 e V .  which is within 
the range of realistic energies. This value depends sensitively on t, X and F in 
the limit V = X = F '  = 0, F --, 0 +, i.e. approaching the Hubbard model, the 
required U-value becomes arbitrarily large; this is already reminiscent of the result 
by Nagaoka 11 for the Hubbard model at U = oo with a single hole (see next section). 
We note that by a different decomposition It] in (10) may be replaced by It - 2 X I .  4a 

Eq. (10) provides a rigorous upper  bound on the critical value of U (or F) that 
is necessary to stabilize the fully polarized ferromagnet. This leads to the question 
of how the saturated state can become unstable. Generalizing the single spin-flip 
analysis discussed earlier in the literature 41 to the Hubbard model with all NN 
interactions, van Dongen and Jani~ 42 recently determined l ower  bounds on U. In 
fact, unless the transition is of first order these bounds are necessary and sufficient. 

From (10) we see that the critical value of U increases with Z. This is contrary 
to what one expects physically: the larger Z is, the more effective the internal 
magnetic field experienced by the electrons will become, making it easier to orient 
the spins. Hence the critical U-value should decrease with Z. The conditions derived 
above do not show this behavior; in fact. they are independent of the actual lattice 
structure. This is due to the rather coarse treatment of the lattice sums m (1) 
which, on the other hand, is a precondition for our present derivation of rigorous 
upper bounds. In a similar way we also obtain rigorous criteria for the stability 
of saturated ferromagnetism in the effective model (3) of Castellani et al.: 35 they 
read 43 

12A 
J > O ,  K > _ O , - - - - ~ - > _ [ I ] + [ D I - r  I - 2 ] D I I .  (11) 

4. G E N E R A L I Z A T I O N  OF N A G A O K A ' S  T H E O R E M  TO U < oo 

Nagaoka's theorem proves that the macroscopic degeneracy of the ground state 
of the half-filled Hubbard model at U = oo may be lifted by the presence of a single 
hole, provided the underlying lattice allows for a loop-motion of the hole. In this 
case it is most favorable for the hole to move in a background of completely aligned 
spins. Solar it was not possible to generalize Nagaoka's theorem to finite U. We 
will now show that such an extension can be obtained using the approach discussed 
above.  

To derive conditions for the stability of saturated ferromagnetism in the Hub- 
bard model with all NN interactions, (1), in the presence of a single hole we inves- 
tigate instead of (4) the general Nagaoka state 

1 
L~N) = ~ ~.i~,Tl~r) (12) 

i 
following the strategy discussed in sect. 3; here ai is a yet undetermined amplitude. 
It is seen that now the P-term and the density interaction (7) in (7) require explicit 
consideration. Eq. (12) is found to be the ground state of the P-term provided 43 

a~ + sgn(t)a~ = 0 (13) 
where i and j are NN-sites. For t < 0 this requires ai = aj = cons t ,  whilet ) 0 
demands ai = - a j ,  For the latter condition to be fulfilled the lattice has to have 
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A -  B structure. Here the explicit lattice structure enters. The above conditions, as 
well as those required to prove the uniqueness of the ground state, are the same as 
those derived by Nagaoka, 11 although the proof itself is quite different. Investigation 
of the V-term then shows that the Nagaoka state is stable under a condition quite 
similar to (10), namely 43 

- I X  - t l  I X  - t l  U>21tl+/3V-2[tlz- F+~21X2 t l l+  - - a  2 + F ' -  ~-~ I (14) 
where /3 = 1 for V _> 2It I + F,  and /3 = 2 for V < 2It[ + F,  with an additional 
condition depending on the type of (translationally invariant) lattice: 

with loops : t arbitrary, F > a2IX - t  I 
biparti te without loops : t arbitrary,  F > u~IX - t] 

lattice { 
wi thloops : t < O , F >__ a 2 [ X  - t[ 

n o n - b i p a r t i t e  without loops : t < 0 ,  F > a 2 ] X - t  I 

Here a is a non-zero but  otherwise arbitrary parameter. We note that  for F > 
a21X - t] this result holds for d _> 1 since in this ease the uniqueness is guaranteed 
by the Heisenberg-term in (7), while for F = a2IX - t I it requires d > 2 as in 
Nagaoka's proof. For X = V = F ~ = 0 and F ---* 0, i. e. a ---* 0, the critical value 
of U approaches infinity. Hence (14) is a generalization of the Nagaoka theorem to 
finite U-values. 

5. E F F E C T I V E  t - J  M O D E L  

For U :>> Itl, ]VI, IXI, IFI, IF~I the condition (10) may be written as 4 Z ( X -  
t ) 2 / U -  2F  < 0. In this limit and for 5 = 1 - n << 1 the Hubbard model with all 
NN-interactions can itself be transformed into an effective t - J model by use of the 
usual canonical transformation. 44 The effective Heisenberg coupling is found as 

4 P  X 2 F U  
J = U - - [ ( 1 - T  ) - 2 - ~ ' ]  (18) 

For d = 1 this was already derived by Campbell  et al. 2s and, for X = 0, by Tang and 
Hirsch. 27 (Note that  the additional factor Z of the rigorous result is absent here). 
We see that  J has an antiferromagnetic contribution, reducing to the usual result 
4 t 2 / U  for X = O, as wel l  as a f e r r o m a g n e t i c  one, proportional to F U .  Hence there 
exists a physically important ,  dimensionless parameter A = F U / t  2 > 0 which is not 
a pr ior i  small and which may lead to ferromagnetic order for large enough F and /or  
U. In the Hubbard model, where F --- 0, A is kept zero even in the limit U --+ ~ .  
This is seen to be quite unrealistic. If t _~ X the antiferromagnetic contribution 
to the effective coupling may, in principle, be very weak even if U is not  extremely 
large. Hence, for F > 2(X - t ) 2 / U  one obtains a f e r r o m a g n e t i c  t - J model ~s,26 
which is worth studying for clear physical reasons. Most important ly  this model 
allows one to treat the more general case n < 1 and T > 0, e.g. ferromagnetic 
states without full polarization (for a square lattice see Putikka et al.45), and hence 
to make contact with experiment. 
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6. F U R T H E R  G E N E R A L I Z A T I O N S  A N D  O U T L O O K  

Rigorous conditions for the stability of ferromagnetism can even be derived for 
the most general single-band model of itinerant electrons, i.e, when a reduction of 
the general interaction matrix element vijmn to two NN-sites (leading to (1)) is not 
made. 29 The additional interactions only lead to a renormalization of t and F, but 
do not change the character of the inequality (9). 

An analysis similar to that discussed in sect. 3 and 4 can also be performed 29 
in the case of the pure Hubbard model in an external magnetic field B and the 
spinless Falicov-Kimball m o d e l y  both at half filling. In the latter case the energy 
of the static electrons, El ,  corresponds to B in the Hubbard model. For this it is 
necessary to introduce a new set of non-local operators. Then one can show that for 
any B > 0 (any E l r 0) there exists a critical value of U > 0 above which the fully 
polarized ferromagnetic state is stable (above which there are either only mobile or 
only static electrons). 

Rigorous conditions for arbitrary translationally invariant lattices may even 
be derived for the band-degenerate Hubbard model with all NN interactions at 
half filling. In this case one has interatomic as well as intraa~omic interactions 
(Hund's rule coupling), i.e. charge-charge, bond-charge, exchange and pair-hopping 
interactions on the same and between NN-sites. These conditions hinge on the 
existence of arbitrary, but finite exchange interactions (which will always be present 
in realsystems). They are given by (7) with an additional positive-semidefinite term 
(N-1)[X2o/Fo+[F~-X~o/Fo]+JVo-Fol] on the r.h.s, of(7)~ 25 Here Y is the number 
of bands and the parameters with subscript zero refer to interactions between the 
orbitals localized on a single site. Since the additional term is proportional to ( N -  1) 
the critical U-value, Ur increases with the band degeneracy. For F0 = F~ ~ leV, 46 
and assuming V0 ~- X0 -~ F0, this term leads to an additional energy of ~ 4eV. 
increasing Uc to Ur ~_ 16eV. Although this is still within a physically relevant 
range 46 an increase of Uc with increasing degeneracy is not what is commonly 
expected. Within our approach the origin of this dependence, as well as of that 
on Z which is quite analogous (see the discussion at the end of see1;. 3), is easily 
traced. We note that the conditions derived by us are sufficient and may still be 
too high for realistic materials. This would be the prize one has to pay for being 
able to obtain rigorous results on a very general electronic correlation model. 

It is clear that in spite of its long history the problem of metallic ferromagnetism 
is still not sufficiently understood - neither from a fundamental nor even from a 
pragmatic point of view. It is equally clear that this area of research, in particular 
the controlled investigation of Hubbard-type correlation models with degeneracy, 
will continue to provide exciting new insight in the future. 
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