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Abstract 

We derive the exact ground state energy of the asymmetric periodic Anderson model for d = 1 in several differen, 
parameter regimes. for example in the Kondo limit, and find that exponentially small terms do nit exist. Obviously the 
appearance of a low, Kondo-like energy scale is not generic for the periodic Anderson model. The exact ground state 
energy is compared with the results obtained from slave-boson mean-field theory acl the G-rzwiller apprnuimation. 

The periodic Anderson modei (PAM) is commonly 
used to investigate. and understand, basic properties of 
heavy-fermion and intermediate valence systems. Its 
Hamiltonia,l 

k.n k.n k.n 

describes a band of non-interacting conduction electrons 
with dispersion E;, a narrow band of f-electrons with 
dispersion I::, a hybridization VA between c and f-elec- 
trons and a strong, repulsive Hubbard interaction be- 
tween the f-electrons. In Eq. (1) wave vectors are denoted 
by k and lattice sites by i. The spin index CJ = 1,. . . N 
defines dn angular momentum quantum number which 
combines the orbital angular momentum and the actual 
spin. Typical y, the maximal f-degeneracy is IV = 14; it is 
reduced to 4 = 6.5 by spin orbit interaction [I). In 

a tight-binding approximation the dispersions nre given 
by 

with t, t’ Z 0 and lattice spacing a = 1. The orbit& of c- 
and f-electrons have a different symmetry with respect to 
pat ity operations; hence t and t’ enter with different signs. 
The matrix element I’ is much smaller than t and, there- 
fore, is often neglected altogether. One should note, how- 
ever. that the symmetry property of the orbitals does not 
permit a purely local hybridization [2]. This fact is often 
ignored and r/, is set constant ( vk = V = const.). Taking 
the symmetry property Intc account one has. for 
example, for a hypercubic lattice, F’,, = IL’Cf_- 1 sin li,. 
The partlJe d e n s ity  is  g iv e n  b y  tz  =  n C  - r i’;  i i i  g C iiC h d . 

0 ‘ f IIf . 

F t w as  recen tly  & o w n  b ?  o n e  o f U s  [3 ] th a t fo r d  =  1 
and in the limit I/’ = XC the ground state energy of Eq. 
( i ) cala & &;:;!a:~:! pydy kr gr.hifrar_~~ spin degeneracy 
in a CKrtain S:tbsi)acC - cf the fu!l parameter s&-ace-spanned 
by (I ;‘.E,. 13. This is achieved by calcularing upper ;ind 
lower hou I& on the energy \vhich coincide in a certain 
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parameter range, The method was previously applied t o  

the Hubbard model and the PAM with N = 2 in the case 
of special Perovskite-like lattices [4] and recently to 
a general Hubbard model on lattices with arbitrary eo- 
ordit~ation number [5]. It ma~ also be used in the case of 
the Lmery modcl in d = 1 [3]. 

As shown in Ref, [3], the exact ground state energy of 
(1) in d = 1, Em may be obtained for the parameter range 

V2 V a 
t ' = - - ,  E t = 2 t - 2 N ~ ,  n = N ,  (3) 

t t 

with arbitrary N; in this case, one finds 
Es -- - 2N L VZ/t, where L is the number of lattice sites. 
qhe corresponding ground star: wave function is non- 
magnetic, since it can be written as z product over the 
spin index. We note that for N = 8 this solution applies 
in the case of t =  leV, V=0 .4eV,  E r =  - 0 . 5 6 e V ,  
t' -- 0.16 eV, which appears to be a physically reasonable 
choice. In particular, setting V =  V*/x/r-N, the limit 
N ~ oe may be performed. It yields the nontrivial result 
E~, = -2LV*a/ t ;  in this case F , - - ? r -  2V*Z/t and 
f - - 0 .  

Using the above exact result we are in a position 
to evaluate and qualify previously obtained approximate 
results for the PAM, e.g. results from slave-boson mean- 
field theory (SBMFT) [1], and the Gutzwiller approx- 
imation (GA} for the appropriate correlated wave 
function [6,7]. For N ~ ~ and in the parameter range 
(3) both mean-field methods yield an energy EMF = E~, 
i.e. they become exact• How about finite N? For N ~< oe 
the energy renormalization factor q is given by 
q = i - n f and q = (1 - nf)/(1 - rrf/N) within SBMFT 
[ I ]  and GA [6,7], respectively. The results coincide for 
N --, ~ .  However. so far, it was not possible to decide 
which one of the two approximations gives a better 
description of the ground state for finite N. Within the 
parameter range (3), we are able to provide an exact 
answer for d = 1. In this case the GA can be evaluated 
analytically for arbitrary N. It leads precisely to an en- 
ergy E~,,c;a = E,v, i,e. the GA yields the exact result for 
the ground state energy of the PAM for arbitrary N. The 
results from the SBMFT have to be evaluated numer- 
icaUy. A comparison between the exact result, GA and 
SBMFT for 'g = 2 and t', Er given by Eq. (3) is shown in 
Fig, 1. Obviously, the results from the SBMFT differ 
from those of the GA and hence from the exact result. 
This is true for all values of N we investigated. For large 
N and/or small V this difference decreases. This is clear in 
thecase of N ---, oc when the q-factors become equal. For 
V--, 0 the local f-level, El, ,s close to 2t, the upper band 
edge of the conduction band, and hence n f ---, 0, such that 
the q-factors become equal, too. 

Finally there is an interesting, controversial point con- 
cerning the existence of exponentially sn/ql energy scales 

..J 

LO 

0 L • , • I I I I I | 

N,,2 

- -  exact result v 
o OA ~ .  
v SBMFT 

-4 
o i .e .; 1.0 

V/ t  
Fig. !, Ground state energy of the PAM in d = I. 

in the ground state energy of the PAM. For the asymmet- 
ric PAM with U = ov both the SBMFT [1] and the GA 
[7] lead to such non-analytic, Kondo-like contributions 
( ~ exp[  - 0ff(~ F -I- [Er[)/VZ]) which have the form 
known from the single-impurity Kondo problem (here 
t~ is the Fermi energy). In the exact solution discussed 
above they do not appear at all for any N, although for 
large N, Er = 2t - 2N Vz/t lies far below the Fermi en- 
ergy (Kondo regime). From this one might conclude that 
the exponential contributions are due to the approxima- 
tions. However, we saw that in the parameter range (3) 
the GA did not lead to exponentially small terms, while 
such terms appeared in the GA used in Refs. [6,7]. We 
note that the approximations finding such terms always 
made use of a purely local hybridization, a constant 
density of states for the conduction electrons and f' = 0. 
By contrast, we worked with a (physically more reason- 
able) nearest-neighbor hybridization, a cosine conduc- 
tion band and a small but finite dispersion for the f- 
electrons. For  this more general case our exact solution 
shows that such terms do not exist, At present it is not 
clear whether in the exact solution the exponential terms 
are absent even outside the parameter range (3). 
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