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Quantum Monte-Carlo methods are used to study the disordered Hubbard model in infinite dimensions. 
The averaged local moment and thermodynamic compressibility are calculated at half filling to determine 
the metal-insulator transitions in the paramagnetic phase. Two transitions of different physical origin 
are found: one driven by disorder, the other one by interactions. Taking into account the additional 
paramagnet-antiferromagnet transition this simple model of interacting electrons in a random potential 
is found to have a rich phase diagram. 

One of the most fascinating physical features 
of disordered electronic systems is the appearance 
of a metal-insulator transition (MIT). It is well 
known that,  in a tight-binding description, a sys- 
tem of non-interacting electrons in a random po- 
tential may exhibit a MIT either due to Anderson 
localization or due to band-splitting [1]. Further- 
more, for a half-filled band of interacting elec- 
trons in the paramagnetic phase without disorder 
a MIT should occur at some critical interaction 
strength ("Mott-Hubbard transition"). However, 
for the paramagnetic state to be stable the lattice 
has to be non-bipartite and/or  some kind of ran- 
domness must be introduced after all. Hence the 
simultaneous presence of disorder and electronic 
interaction leads to particularly interesting, al- 
beit subtle, questions. Progress in the systematic 
investigation of this problem has recently been 
made by using the limit of infinite dimensions for 
fermionic lattice models [2]. Here we will employ 
this approach to investigate the Hubbard model 
with local disorder 
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where ei are random atomic energies and d is the 
dimension; in the following all energies are mea- 
sured in units of t* - 1. In the non-interacting 
case, U = 0, (1) reduces to Anderson's disor- 
der model [3] for which the coherent-potentiai ap- 
proximation becomes exact in d -- oo [4] (hence a 
MIT due to Anderson localization does not occur 
in this limit). On the other hand, in the non- 
random case, ei -- 0, the exact solution for d = 
oo is analytically untractrable since the on-site 

Hubbard-interaction remains dynamical, leading 
to a non-trivial single-site problem [5]. 

The thermodynamics of (1) is determined by 
12av = -/3-1 (ln t r  exp(- /3/ t ))~v,  the averaged free 
energy, where ( . . . )a ,  is the configurational aver- 
age over the random energies ei. In d = c~ the 
averaging involves only a single site RI (where the 
electrons encounter both the Hubbard interaction 
and the random energy ei) surrounded by a ho- 
mogeneous effective medium [6]. This medium is 
described by a dynamical potential E(w) which 
contains the full information about the physical 
processes taking place at sites Rj  ¢ Ri.  It must 
be determined self-consistently in such a way that  
the average scattering at site Ri of the electrons 
moving in the averaged medium is zero. The 
potential E(w) then plays the r61e of the single- 
particle self-energy of the electrons. - Here we use 
a quantum Monte-Carlo method, used previously 
in the absence of disorder [7], to calculate the 
averaged compressibility ~av = - L -  102 ~av ~Oft 2 
and the square of the averaged local magnetic 
moment m2v = 1 -  2 L - l d l 2 a v / d U  - 1 -  2day, 
where L is the number of lattice sites and day is 
the average double occupancy. These quantities 
provide information about the disorder-induced 
"split-band" and interaction-induced ("Mott")  
MITs. In particular, ~av = 0 is a convenient ther- 
modynarnic criterion for an insulating state. 

For our calculations we chose a semi-elliptic 
density of states with bandwidth W = 4 for the 
non-interacting electrons, and a binary alloy dis- 
tribution for the random energies, i e. ei = =t:A/2 
with equal probability such that  the average band 
filling nay = 1 and p = U/2.  The Monte-Carlo 
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Fig. 1: Averaged conpressiblity vs. U for disor- 
der strengths A = 0, 2, 4, 8 at T = 1/8. Er- 
ror bars are of the size of the symbols. 

evaluations were performed for temperatures be- 
tween 1/32 _< T < 1/4; they did not lead to 
substantial differences. The time slices Av were 
chosen as 1/8 _< A r  < 1//2 and the results were 
extrapolated to Av = 0. The results for aav(U) 
for disorder strengths A _-- 0, 2, 4, 8 and T -- 1/8 
are shown in Fig. 1. While for A _-- 0 gay is a 
monotonic function it develops a peak at U ~- A 
for A > 0. For sufficiently large A (here A > 2) 
Kay vanishes both at weak and strong coupling. 
Thus there exist two MITs, at U~ MI,1 and U Mx'2 ¢ 1 

due to band splitting - the first induced by disor- 
der, the second by interactions. The difference 
in origin of these MITs is also apparent from 
the results for the averaged local magnetic mo- 
ment shown in Fig. 2: the MIT at weak cou- 
pling is characterized by rn~ --+ 0, i . e .  by a 
saturation of double occupancy at its maximum 
value (day --* 1) and that  at strong coupling by 
may --* 1, i. e. the disappearance of d~.. In the 
regime Uc MI,1 < U < U~ MI'2 the system is metal- 
lic; its width increases with increasing disorder. 
In this regime m ~  is an increasing function of U 
and hence one may expect that the moments be- 
gin to order antiferromagnetically at some critical 
value U AF. By calculating the staggered suscep- 
tibility one can show that  this is indeed the case; 
the positions of u A F ( A )  are indicated in Figs. 1,2 
by arrows; details of the calculation will be re- 
ported elsewhere [8]. Hence we found that even 
in the presence of disorder there is no MIT from a 
paramagnetic metal to a paramagnetic insulator 

1.0 

0.8 

:> 0.6 

0 .4  " 

0.2 

0.0 

. I , I , I , I , I , I 

..,4,.._ : 0 . , ~ 0  .~-u 0--~ i • , , "  ~ "  t IW 

A=0 , - " / 2  ~ , ' 4  ~" 
/ / 

• . /e /t~ /s~ 
P p 

J i 

Is 
s sJ 

ps 
,=mj _e__m...~ .~" T=I /8  

' I ' I ' I ' I ' I ' I 

0 2 4 6 8 10 12 u 
Fig. 2: Averaged quadratic local moment vs. U 

for A = 0 , 2 , 4 , 8 a t T =  1/8. 

at T = 0. We also see that  the paramagnetic --~ 
antiferromagnetic transition occurs in the metal- 
lic phase so that, close to U AF, the ordered phase 
is a metal. As U is further increased the DOS at 
the Fermi level is emptied and the Mott-MIT at 
U MI,2 finally occurs in the magnetically ordered 
phase. 
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