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A mean-field theory for the Hubbard model at strong-coupling is presented. It extends the well-known, 
but ad hoc, alloy-analogy approximation and puts it on a firm, thermodynamically consistent basis. The 
magnetic ordering is studied and the mean-field phase diagram in the U - n plane is determined for 
T = 0. The investigation of the spectral properties away from half filling reveals a sequence of magnetic 
and metal-insulator transitions for increasing U. 

The Hubbard model is the generic model for 
strongly correlated electrons. The first step to- 
wards a dynamical mean-field theory (MFT) for 
the Hubbard model was due to Hubbard himself 
[1]. The socalled "Hubbard-III solution" is a self- 
consistent single-site approximation that repro- 
duces the weak-coupling limit (on-site interaction 
U --* 0) and the atomic limit (hopping constant 
t = 0) correctly. This approximation corresponds 
to the coherent potential approximation for static 
disorder. Unfortunately it has serious deficien- 
cies; in particular, it is not a thermodynamic the- 
ory, i.e. there exists no generating functional and 
thus it is diagrammatically uncontrolled. More- 
over, the Hubbard-III solution does not allow for 
any magnetic order and does not describe the 
Heisenberg limit (n = 1, T --* 0, U >> t). In- 
stead it yields a paramagnetic phase without low- 
lying quasiparticle states. There have been nu- 
merous at tempts  in the past to remove the defi- 
ciencies of this approximation [2]. However, none 
of these at tempts  resulted in a thermodynami- 
cMly consistent approximation scheme. Only re- 
cently, by using the limit of high dimension for 
fermionic lattice systems [3], has it become pos- 
sible to put the Hubbard-III solution on a firm, 
thermodynamically consistent and diagrammati- 
cally controlled basis [4]. This seems worthwhile 
since even for d = c~ the solution of the Hub- 
bard model is not analytically tractable. Solar 
only a simplified model, where one of the spin 
species remains static ("spinless Falicov-Kimball 
model") is analytically solvable in d = c~ [5-7]. In 
this case the self-energy of the itinerant electrons 
in the homogeneous phase coincides with that  in 

the Hubbard-III solution. Thus one may utilize 
the exact (i.e. thermodynamically consistent) so- 
lution of the Falicov-Kimball model in d = c~ to 
construct an analytically tractable MFT for the 
Hubbard model at strong coupling [4,8]. In the 
paramagnetic phase of this MFT the frequency- 
dependent self-energy Eo (w) for e-electrons is de- 
termined by the single-site equation 

Ga(w) = Go(w)[1-n_o+n_o/(1-UGo(w))] ( la)  

-- G°(w - Eo(w) - E / )  ( lb)  

where 6~(w) = [(G~(w)) -1 +E~(w)] -1 and G°(w) 
is the local (i. e. diagonal) element of the Green 
function of non-interacting electrons with spin a 
and density ha. The energy E~ describes the ef- 
fective ("mean-field") energy of the localized a- 
electrons and enters as a dynamical quantity. It 
has to be determined so that  the corresponding 
free energy functional is maximal w.r.t, varia- 
tions of E~. Hence E~ is determined by [8] 

= 1 - ~ e  ~(e-" -~-~)[1 + x_oe ~{e~-~'-~-v)] n o  

where xo = ha~(1 - no) and 

(3) 
--1- ~T~le~($1+gi-E~-E~-U) 

is the partition function of a renormalized atomic 
problem with 

(4) 
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as the energy shift of the static electrons in the 
Falicov-Kimball model due to the interaction with 
the itinerant electrons, where f ( w ) =  [exp(flw)+ 
1] -1. Eqs. (1-4) contain the essence of our MFT 
for strongly interacting electrons. They differ from 
the Hubbard-III solution due to the existence of 
the dynamical variables E~ t which are thus seen 
to play a key r61e: they introduce the energy ex- 
change between up and down-electrons which is 
missing in the Hubbard-III solution and make the 
theory thermodynamically consistent. The MFT 
defined by (1) -(4) has the following properties 
[4,8]: (i) it is based on an explicit free-energy 
functional ~2MF, (it) the ground state energy is 
a rigorous lower bound on the exact ground state 
energy of the Hubbard model in d = cx~, (iii) mag- 
netic long-range order is possible, (iv) at T = 0, 
n = 1 and U >> t the Heisenberg limit comes out 
correctly. 

Eqs. (1) - (4) may be used to construct a 
magnetic phase diagram for the Hubbard model. 
Here we restrict ourselves to ferromagnetic and 
antiferromagnetic (AF) phases in the ground state. 
The phase boundary of the paramagnetic phase 
is determined from the divergence of the corre- 
sponding susceptibility. We found an AF but no 
ferromagnetic instability. The U - n phase dia- 
gram at T = 0 is shown in Fig. 1 (U is measured 
in units of t* = tx/~-d). It confirmes the expecta- 
tions concerning AF ordering at strong coupling. 
The absence of AF order for n = 1 at weak cou- 
pling is a deficiency whose origin is the same as 
in the Hubbard-III solution, i. e. is due to the 
separation of the dynamics of up and down spins 
[9]. Only at large U does the scattering of mobile 
e-electrons by static (-cr)-electrons give an es- 
sentially correct description of the physical mech- 
anism responsible for AF ordering. Hence, due to 
its very construction, our MFT is expected to be 
reliable in the intermediate and strong-coupling 
regime, but not at weak coupling and small dop- 
ing (shaded region in Fig. 1). 

The ordered phase can be further investigated 
with respect to its spectral properties. Depending 
on whether the DOS is finite or zero at ~ = 0, the 
phase is a metal or an insulator, respectively. One 
finds that  the AF phase remains metallic even 
across the magnetic transition. However, as U 
is increased at fixed density the order parameter 

increases and the DOS decreases until, at a crit- 
ical value of U, a metal-insulator transition oc- 
curs. The estimated phase boundary within the 
AF regime is plotted in Fig. 1. It shows that,  
away from half-filling, the Hubbard model dis- 
plays a rather subtle sequence of magnetic and 
metal-insulator transitions for increasing U. 
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Fig.1 : Mean-field phase diagram for the Hub- 

bard model at T = 0. I: AF insulator, II: 
AF metal, III: paramagnetic metal. 
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