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Abstract. - The influence of local disorder on the thermodynamics of interacting electrons is 
studied within the infinite-dimensional disordered Hubbard model. Using a finite-temperature 
quantum Monte Carlo method, the averaged local moment and staggered susceptibility are 
calculated and the magnetic phase diagram at half-filling is constructed. From the averaged 
compressibility in the paramagnetic and antiferromagnetic phase we determine the metal- 
insulator transitions of the system. A rich transition scenario is revealed. Quite unexpectedly the 
disorder is found to stabilize the magnetic order in the strong-coupling limit. 

Randomness can significantly influence the low-temperature behaviour of interacting 
systems. In particular, it may lead to new phases which have no analogue in non-random 
systems [l]. In the case of electrons, the simplest lattice model including both interactions 
and random potentials is the disordered Hubbard model. It is now known that even in the 
.mean-field. limit d + CQ [2,3] the Hubbard interaction remains dynamical [4] and leads to a 
highly non-trivial single-site problem with infinitely many coupled quantum degrees of 
freedom[5]. This problem is, in fact, equivalent to an Anderson impurity model comple- 
mented by a self-consistency condition [6] and is thus amenable to numerical 
investigations [7] within a finite-temperature quantum Monte Carlo approach [81. In the 
absence of disorder this technique was already used by several groups to investigate the 
magnetic phase diagram [7,9], the Mott-Hubbard transition [lo, 111 and lately also 
superconductivity in a two-band version [12] of the Hubbard model in d = C Q ;  thereby 
important new insight was gained. 

In this letter we wish to concentrate on the combined effect of disorder and interaction. 
We will study the effect of diagonal disorder on the low-temperature properties of the 
Hubbard model in d = CQ , in particular the competition between correlation-induced 
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long-range order and the disordered-induced metal-insulator transition (I). To this end, the 
averaged local moment, staggered susceptibility and compressibility are derived using the 
exact averaged free energy of the model [14] and are evaluated iteratively by quantum Monte 
Carlo (2). The model is given by 

where p is the chemical potential, ci  are random atomic energies and d is the dimension. 
The thermodygamics of (1) is determined by the averaged free energy Oav = - p-' * 

.(ln tr exp [ where ( . . .)av is the configurational average over the random energies c i  . 
In d = m the averaging involves only a single site Ri (where the electrons encounter both a 
Hubbard interaction and the random energy c i )  surrounded by a homogeneous effective 
medium described by a dynamical potential E(w)  [14]; E contains the full information about 
the physical processes taking place at all other sites. These processes may, for example, lead 
to antiferromagnetic (AJ?) long-range order in the system as in the non-random model. 
Hence, we must allow for breaking of translational symmetry in E(w). For simplicity, we only 
consider bipartite lattices, in which case the symmetry breaking is caused by a staggered 
field ah, with a = ? 1 on A- and B-sites, respectively, with h as a magnetic field. In d = m , 
0, then takes the form [14] 

~ P Q ~ V / L =  - U , ,  C I ~ E N ( E ) ~ ~ [ ( ~ ~ , + ~ A - ~ , , , ) ( ~ ~ , + ~ B - E B , ~ ) - E ~ I  + 

+ 2 In GLk - C(1n Z,{G, E ,  ci})av , ( 2 )  

where L is the number of lattice sites, N(E)  is the density of states of the non-interacting 
electrons, p a  p + ah, and 0, = ( 2 n  + 1) xT are Matsubara frequencies. The quantities 
E,,, Ecro( iwn)  and G,,, specify the potential of the medium and the local part of the 
averaged propagator of the (non-interacting!) electrons moving in this potential, 
respectively (3). Here 

12, 5, n 

Z,{G, E ,  ~ i }= 

r 3 1 

is the partition function for electrons from the medium which encounter a Hubbard 
interaction U and a random energy c i  at Ri. The fields +u, (z )  and are Grassmann 
variables in imaginary times and frequency, respectively. The previously unspecified 
potential, E,,, , is determined by the thermodynamic consistency condition SO, /6Ze,, = 
= 0 [5,14]. 

(I) In the limit d = m the metal-insulator transition occurs only by band splitting, since there is no 
Anderson localization (cf. [13,14]). 

('1 The Hubbard model with separable of-diagonal disorder was recently examined by V. 
Dobrosavljevib and G. Kotliar (preprint) for a Bethe lattice with infinite connectivity. They studied the 
one-electron spectral function within a renormalized perturbation scheme from which they deduced a 
scenario for local-moment formation and Mott transition. 

plays the role of the self-energy for the electrons, but is not the averaged 
self-energy of the random, interacting system (see ref. [14]). 

(3) Note that 
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To determine the thermodynamic stability of various phases, we calculate the suscep- 
tibilities Xav = - L -' 8zQav/axz, which correspond to  the averaged compressibility IC, and 
staggered susceptibility xav for x = p, h, respectively. In the paramagnetic phase the number 
of independent parameters can be reduced by setting ZAn = ZAt It = E B J  , , Z:Bn = Z B t  ,, = 
= ZAJ and similarly for G,,, and t$ao.  Using (2) Xav may be expressed in terms of a two-particle 
irreducible vertex function I' as 

with (. . .)T as the thermal average defined by the partition functionZa, (3) (4). The dynamical 
response function yz, obeys the integral equation 

p- '?  ?(j@m,L,Rtn + r Z ' l , n , n ) y : , n ,  =f:R:n 7 (6) 

where R:, = [GA2 - (G&)- ' ] - ' ,  with (GL) = /dEN(E)[iw, + p - E u n  -El-', and Rk = 
= [GA2 - ( iw,  + p - Z a n )  G,' I - ' .  Since I' is a purely local quantity, the information about 
long-range correlations in the system is contained in y. Physically speaking, y measures the 
response of the effective medium to an infinitesimal change of the field x. In the 
antiferromagnetic phase (4) and (5) do not change, but (6) acquires a more complicated 
dependence on the index a. 

Equations (4)-(6) form the basis for the numerical evaluation of IC, and xav . The numerical 
calculations were performed with a semi-elliptic density of states (DOS) ( 5 )  with bandwidth 
W = 4t*, i.e. N ( E )  = ( 2 / z t * ) [ 1  - (E /2 t* )2 ] ' /2  (in the following t* = 1). Due to its finite, 
algebraic band edges, this DOS resembles the DOS of lattices in d = 3 better than does the 
Gaussian DOS [2] for a hypercubic lattice in d = W .  We now have to specify the local 
randomness in the model. Here we choose the distribution of a binary alloy. To be able to 
study the competition between magnetic order caused by the electronic interactions and the 
disordering effects due to the random potential, we work with an average band filling n = 1. 
To this end we put = ? A/2 with equal probability. We can then fix the chemical potential 
at p = U/2. We are thus left with three energy scales: the interaction U, the disorder 
strength A and the temperature T (here kB = 1). For the numerical evaluation of the 
functional integral (3) we employ the algorithm of Hirsch and Fye [8] .  We discretize the time 
variable, i.e. p = A AT, with 0.125 S AT S 0.5, and then extrapolate the quantities under 
investigation to AT + 0 (6). Exact summations over spin variables in the discrete Hubbard- 
Stratonovich transformation were used whenever possible, i.e. for A S 22. We note that in 
d = and for a binary alloy the number of independent random configurations is reduced to 

u n  

(4) Note that, for x = h, X,, corresponds to the averaged longitudinal staggered susceptibility 
which, in the case of spin-rotation invariance, yields the same results as the transverse quantity used in 
ref. [7]. 

( 5 )  This DOS is exact for a Bethe lattice with infinite connectivity. 
(6) For all relevant two-particle quantities X(Ar)  we observed 6x(Az): = X ( 0 )  - X(Ar)  cc AT for 

small AT; hence we extrapolated with a linear fit. 
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two. After 4-6 iterations an accuracy of and was reached in the exact summations 
and in the Monte Carlo sampling with lo4 sweeps per iteration, respectively. 

We first study the influence of disorder on the formation of AF order. The latter arises 
from correlations between local magnetic moments whose static average, ma, , is- defined by 
rn;, s L -'E (((Gir - nil )2))T)av = 1 - 2d,. Here d,, = L -' ctRav/dU is the average double 
occupancy of lattice sites. The results for m;, as a function of U are shown in fig. 1 for 
A = 0 ,2 ,4 ,8  at T = 1/8. The disorder is seen to have two main effects: 1) at small U the 
moments are reduced as the disorder is increased. For a discrete spectrum of random 
energies and lattices with a finite bandwidth there always exists a critical value U,"'! ' ( A )  2 0 
where, at T = 0 and for sufficiently large A, the moments disappear completely (9 At this 
point a metal-insulator transition (MIT) occurs. 2) For increasing U the moments grow 
monotonically and start to saturate at UbA. 

Next, we study the spatial correlations between the local moments. For this we evaluate 
the staggered susceptibility xav, (4). In particular, t o  detect the instability of the 
paramagnetic phase with respect to AF fluctuations, we look for a divergence of xav. To 
determine T,  we plotted [xav(T; At)]-' ws. T for different time slicing A t  S 0.5. At 
sufficiently large U a Curie law with a mean-field critical exponent v = 1.0 is observed to fit 
the data very well, in agreement with ref. [7,91 (fig. 2). For these values of U one may safely 
extrapolate [xav(T; At)]-' to zero to determine the critical temperature T,  ( A t ) .  However, 
for values U S A ,  the low-temperature behaviour of xG1 no longer follows a Curie law and 
hence an extrapolation t o  2;' = 0 becomes ambiguous. For the temperatures investigated 
here (T 2 l /S )  we observe two regimes: i) U - A: here xi' still decreases monotonically for 
decreasing T ,  but an extrapolation would suggest T,(At) c 0, i.e. a paramagnetic state; 
ii) U S A :  here x;' begins to increase again (fig. 2). The latter behaviour is a direct 

2 

Fig. 1. Fig. 2. 
Fig. 1. - Averaged quadratic local moment, mtv, vs. interaction U for disorder strengths A = 0 (01, 
2 (o), 4 (m), 8 (0) at temperature T = 1 /8; all energies in units of t*. Here and in the following figures 
the dashed lines are guides for the eye only. Error bars are of the size of the plotting symbols unless 
shown explicitly. 
Fig. 2. - Inverse averaged staggered susceptibility, x i ' ,  vs. T for U = 2,3.5,4.5,6 at A = 4 and 
AT = 0.125. 

(? For the binary-alloy distribution of disorder used here, a metal-insulator transition due to band 
splitting occurs at  A,(U) 2 2 for T = 0. Indeed, d,(O) = 2 follows from the exact analytic result for 
d = CQ provided by the coherent potential approximation; cf. ref. [13]. 
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Fig. 3. - T - U phase diagram for disorder strengths A = 0,2,4,8. Paramagnetic (antiferromagnetic) 
phase stable above (below) curves. Data points at T = 0 were obtained from the Curie law but were the 
f i rs t  points where xL1 > 0 at T = 0. Dotted lines to the left of these points indicate the regime where 
deviations from the Curie law become noticeable (see fig. 2). Below the crosses xL1 begins to increase 
with decreasing T and an AF phase can no longer be expected to form. 
Fig. 4. - Averaged compressibility vs. U for disorder strenghts A = 0,2,4,8 at T = 1/8. Arrows 
indicate the position of lJcm taken from fig. 3 where the paramagnet-antiferromagnet transition 
occurs. 

consequence of the suppression of the local moments due to the disorder as discussed above. 
For U = A there is still a possibility that x&' vanishes, e.g. non-analytically. The actual phase 
boundary between the paramagnetic and the AF phase is determined by extrapolating 
T,  (AT) t o  AT = 0. The resulting T -  U phase diagram is shown in fig. 3 for 4 = 0,2,4,8. As 
expected, the disorder suppresses the AF order for U S  A and reduces the maximal value of 
T,  . However, T,  is not a monotonically decreasing function of the disorder for all U > U," (4): 
for U b 6 the curves separating the ordered and the disordered phase are seen to cross. This 
implies that, quite unexpectedly, the disorder favours the formation of an ordered phase, i.e. 
the critical temperature T,  (4) initially increases with 4 and reaches a maximum at some value 
4,, ( U )  before it falls to zero. This raises the question about the nature of the ordered 
ground state in the strong-coupling limit of the Hubbard model with local disorder. 

For n = 1 and A = 0 the ground state of the system is an AF insulator for all U > 0. How 
does the disorder affect this property? Insight is gained from the averaged compressibility 
K ,  of the system, (4). A thermodynamic criterion for an insulating state is K ,  = 0 in both the 
paramagnetic and antiferromagnetic phases. At small U, ie. U S  U,", the disorder will 
reduce K ,  until, at  4 b U, d, = 1/2 is reached, in which case the system cannot be further 
compressed. As U is increased (at fixed 4) up to U == 4, d, decreases and K ,  may then grow. 
For even larger values of U, K ,  must again decrease due to the repulsion between the 
particles. The averaged compressibility at  T = 1 /8, calculated in the paramagnetic and 
antiferromagnetic phases (transition points indicated by arrows), is shown in fig. 4 for 
various values of 4. Below the transition the slope of K ,  becomes steeper compared to the 
result for the paramagnetic case, but this effect becomes weaker for increasing disorder. In 
the vicinity of the transition K ,  is clearly non-zero; it approaches zero only for values of U 
considerably larger than U,". We thus conclude that, at least close to the transition point 
U," > 0, the AF phase is metallic. For decreasing T the critical interaction U," decreases 
too, but never reaches zero if 4 > 0 (see fig. 3). Since at very large U (Heisenberg limit) the 
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ground state is insulating at T = 0, another MIT must occur at a value U,"', where the AF 
metal becomes an AF insulator. There is no a priori reason to expect that Up and U,"1s ever 
coincide. 

In summary, we investigated the influence of disorder on the low-temperature phase 
diagram of the Hubbard model. To do this we evaluated the averaged local moment, 
staggered susceptibility and compressibility in both the paramagnetic and antiferromagnetic 
phases in d = using quantum Monte Carlo. The competition between the kinetic energy, 
electron interaction and disorder leads t o  a rich scenario of phase transitions. Our results 
indicate that even at half-filling, for increasing U and sufficiently strong disorder, there is a 
sequence of transitions from a paramagnetic insulator to a paramagnetic metal at U,"', I, then 
to an AF metal at Up" and finally, at  t o  an AF insulator. This transition scenario, 
together with the anomalous effect of the stabilization of the ordered phase due to disorder at 
strong coupling, clearly shows that the simultaneous presence of disorder and strong 
electron- electron correlations leads to new, non-perturbative quantum many-body 
phenomena which deserve further investigations. 
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