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Abstract. A general theoretical framework for the con- 
struction of maximally complex, yet analytically 
tractable mean-field theories for quantum-mechanical 
models is presented. These mean-field theories fulfil sev- 
eral strict conditions which are derived from analogous 
theories in classical statistical mechanics. In particular, 
they are thermodynamically consistent, conserving ap- 
proximations and provide exact bounds on the free ener- 
gy of the original model. The formalism is used to con- 
struct a mean-field theory for the Hubbard model in the 
strong-coupling limit. 

1. Introduction 

Theoretical investigations of quantum-mechanical many- 
body systems are made difficult by the non-trivial algebra 
needed to describe these systems and their complicated 
dynamics. This is particularly evident in the case of 
strongly interacting systems. In the absence of exact 
methods there is therefore a great need for reliable, con- 
trolled approximation schemes. However, even the con- 
struction of approximate schemes is a difficult matter in 
this case. In fact, for quantum-mechanical lattice models 
with itinerant degrees of freedom even the familiar con- 
cept of a mean-field theory (MFT) is considerably more 
delicate than in the case of most classical systems. In 
classical statistical mechanics MFTs usually have very 
comprehensive properties: (i) they represent conserving 
and thermodynamically consistent approximations, i.e. 
there exists an explicit free energy functional that is valid 
for the entire range of input parameters, (ii) the free 
energy contains a set of variational parameters which may 
be used to optimize the energy, (iii) the approximations 
become exact in one or more particular limits, i.e. there 
exists one (or more) external small parameter which may 
be used to improve the MFT systematically by expanding 
around the mean-field solution. One of the best-known 

classical MFTs with the above properties is the Weiss 
molecular field theory for the Ising model. It is a pro- 
totypical single-site theory which becomes exact for in- 
finite-range interaction, as well as in the limit of high 
spatial dimensions d (or, more generally, for high coor- 
dination number Z) [1]. In the latter case the quantity 
1/d (or 1/Z) is a small parameter which can be used to 
improve the MFT systematically. The Weiss MFT con- 
tains no unphysical singularities and is diagrammatically 
controlled. 

Itinerant quantum-mechanical models, such as the 
Hubbard model and its generalizations, are naturally 
much more complicated than classical, Ising-type models. 
This is mainly due to the additional energy transfer be- 
tween the particles. Consequently, the construction of a 
MFT with the comprehensive properties of the Weiss 
MFT for the Ising model will necessarily be much more 
complicated, too. There do exist various useful mean- 
field-type approximation schemes, e.g. Hartree-Fock, 
random phase approximation, saddle-point evaluation of 
path integrals, decoupling of operators etc.. However, 
none of them provides a reliable, global description of a 
given model (e. g. the phase diagram or thermodynamics) 
in the entire range of input parameters. In this situation 
the investigation of itinerant quantum-mechanical 
models in the limit d-- oc [2, 3] proves to be a very helpful 
approach. Indeed, the exact solution of such a model in 
this limit provides, in principle, an ideal MFT, which has 
all the desired features of a comprehensive MFT dis- 
cussed above. Unfortunately, for the Hubbard model this 
solution cannot, at present, be obtained analytically in 
closed form: while the spatial properties greatly simplify 
in the limit d ~  oe [2], the energy exchange between par- 
ticles with a purely local interaction, i.e. the actual dy- 
namics of the system, does not simplify at all [4]. Hence 
one is led to an effective single-site problem with a highly 
complicated dynamics [5-10] where the free energy con- 
tains infinitely many coupled complex parameters (the 
self-energies for different Matsubara-frequencies) which 
all have to be determined self-consistently. In this situ- 
ation one has to rely on numerical solutions of the d=  oe 
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self-consistency problem; however, they only provide de- 
tailed information about the properties of such a MFT 
at finite temperatures [7-9, 11-13]. It would clearly be 
highly desirable to gain detailed analytic insight, too, in 
particular at low temperatures, since only an analytic 
theory is able to give a complete picture of the properties 
and possible singularities of a given model. 

In this paper we wish to construct an analytically trac- 
table MFT for general quantum-mechanical lattice mod- 
els with itinerant degrees of freedom, including Hubbard- 
type models, with particular emphasis on the strong- 
coupling limit. For this to be possible it is obviously 
necessary to approximate the dynamics of the particles 
generated by the interaction in these models. There exists 
no unique prescription of how to reduce the energy (i. e. 
frequency) correlations generated by the quantum inter- 
action. We may, however, set up conditions which have 
to be fulfilled for a MFT to be as comprehensive as pos- 
sible and still be analytically tractable. As discussed above 
it appears that, at present, such a MFT cannot have all 
the comprehensive properties of MFTs in classical sta- 
tistical mechanics listed earlier. Hence we have to reduce 
our demands, e.g. by limiting the parameter range for 
which the MFT is supposed to provide reliable results. 
Here we may take Hartree-Fock theory as a guiding light. 
Hartree-Fock is a highly useful MFT which has all the 
properties of a comprehensive MFT listed above, except 
one: there exists no small external parameter (e.g. l/d) 
which may be used to improve the theory globally for all 
values of the input parameters. By construction Hartree- 
Fock is based on a product wave function and is thus 
only reliable in the limit of weak interactions and/or low 
densities, where genuine two-particle correlations can be 
neglected. In fact, Hartree-Fock does not contain the 
important atomic solution (i.e. the limit where only di- 
agonal matrix elements contribute) at all. Nevertheless it 
provides a rigorous upper bound on the exact ground 
state energy for all U-values. 

So far there does not exist a MFT for itinerant quan- 
tum systems which has the properties of Hartree-Fock 
theory but is complementary in its range of applicability, 
i.e. is valid in the strong-coupling limit. It is our intention 
in this paper to formulate such a theory. For this MFT 
to have as many comprehensive properties as possible we 
formulate the following conditions in close analogy to 
the properties of MFTs in classical statistical mechanics: 

1. There must be a free energy functional which yields 
explicit, thermodynamically consistent results in the en- 
tire range of input parameters (e. g. density n, interaction 
strength U, temperature T, magnetic field H). 
2. The theory must have variational character. Hence the 
model under consideration will be treated on a mean- 
field level: the spatial properties are evaluated within a 
self-consistent, single-site approximation, while the dy- 
namics, i.e. the dynamical exchange between particles, is 
approximated in terms of a few variational energy pa- 
rameters. 
3. The free energy thus obtained must provide exact 
bounds on the free energy of the original model. 
4. It must be possible to expand around the mean-field 
solution to calculate corrections. 

In Sect. 2 we present the general formalism for the con- 
struction of variational MFTs based on the decomposi- 
tion of a Hamiltonian into solvable sub-Hamiltonians. In 
Sect. 3 this formalism is applied and worked out in detail 
for the Hubbard model, with particular emphasis on the 
strong-coupling limit. A MFT is derived which fulfils all 
four conditions. The results are discussed in Sect. 4. In 
the following paper a quantitative analysis of this MFT 
will be presented. We will construct a mean-field phase 
diagram for the Hubbard model in d--oo and will 
evaluate the bounds on the ground state energy. 

2. General formalism for the construction 
of variational mean-field theories 

We consider a quantum-mechanical model described by 
a Hamiltonian/-2r which is defined on a Hilbert space • ;  
we assume that, as usual, an exact solution of the problem 
is not available. Our construction of a comprehensive 
mean-field-type theory for the problem under consider- 
ation is based on a decomposition of ~ into a set of 
simplified Hamiltonians whose dynamics can be calcu- 
lated analytically within a self-consistent single-site ap- 
proximation. The dynamical exchange between the sim- 
plified subsystems will be approximated on a mean-field 
level, too, in terms of a few variational ("mean-field") 
energy parameters. These parameters are determined by 
optimizing the resulting mean-field energy, i.e. by max- 
imizing or minimizing this energy, depending on whether 
it provides a lower or an upper bound on the exact energy, 
respectively. 

We first wish to construct a lower bound. For this we 
write 

l 

2q= y (1) 

where X~ are real numbers and the sub-Hamiltonians/~ 
need not be specified yet. Denoting the free energy func- 
tional by 

F{B} = - fl - '  In r r ~  exp { - fiR} (2) 

and constraining the ~ in (1) to 
l 

~, 2~=1 ,  ; ~ 0  (3) 

the convexity property [14] of F leads to a lower bound 
on F{/~} 

l 

~, A~ F{H~} <F{/~}. (4) 

The 1.h.s. of (4) becomes a genuine mean-field theory if 
the n~ contain a set of variational ("mean-field") param- 
eters which will be used to maximize the lower bound. 
The parameters 2~ should be determined in the same way. 

To construct an upper bound on F{~} we use an 
arbitrary decomposition 

/~-- ~ + A/qr, l<_~_<l, (5) 
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with AH~ = / ~ - / t ~ .  The H~ in (5) need not be those 
chosen in (1). Application of the Gibbs-Bogoliubov in- 
equality yields 

F{H} =< F{/4~ } + <A/~ )~ (6) 

Here the bracket <...)~ denotes the average with respect 
to the weight exp { -BH~}. Multiplication of (6) with an 

arbitrary factorp~ > 0, ~, p~ -- 1, and summation of both 

sides of the inequality over ~ then leads to 

l 

F{/;r}g ~, p~ [F{/t~}+(A/]~)~]. (7) 

Equation (7) is a general upper bound on the free energy 
F{/~} using sub-Hamiltonians n~, As in the case of the 
2~ in (4) the factors p~ may be used as variational pa- 
rameters to optimize the bound (7) (i.e. minimize the 
upper bound). 

For the inequalities (4), (7) to be of use at all, it is 
essential that the exact free energies (or at least the 
ground-state energies) of the sub-Hamiltonians H~ can 
be obtained analytically (at least in certain limits, e.g. 
d~o0,  or/3--,o0 etc.). However, solving only H~ means 
that the energy exchange between these sub-Hamiltoni- 
ans, which is present in the full Hamiltonian H, is ne- 
glected, i.e. the full partition function for /q in (1) is 
factorized as 

l 

Tre-Pn--* ]-~ Tre -p~'& . (8) 

The missing energy exchange now has to be implemented 
on an analytically tractable, approximate level. Namely, 
it can be simulated by employing a (small)set of varia- 
tional mean-field parameters which enter H~ as external 
parameters. The latter are determined in such a way that 
they optimize the bounds in (4) and (7); in this way the 
parameters become dynamical variables. It is clear that 
the quality of the approximation obtained thereby de- 
pends on the decomposition of H: on one hand, the sub- 
Hamiltonians/4~, should contain as much of the essential 
physics described by the full Hamiltonian ~ as possible, 
so that the approximation of the dynamical exchange 
between them introduces as little an error as possible; on 
the other hand the sub-Hamiltonians have to be analyti- 
cally solvable within a self-consistent single-site approx- 
imation (e.g. in d =  o0). Clearly the decomposition de- 
pends on the Hamiltonian under consideration. 

We note that a suitably parametrized decomposition 
of /4  as in (1), with factorized dynamics (8), indeed fulfils 
the first three conditions imposed by us on the construc- 
tion scheme for a MFT. We will now show that it also 
fulfils the fourth condition, i.e. that it is possible to con- 
struct an expansion around the MFT in terms of the 
perturbation AH~ in (6) for all 1 _<~ _< l. Changing to the 
interaction picture we define 

A/t~ (r)-= e~&A/~ (O)e - ~ :  (9) 

where 0 < r < B  and A/4~ ( 0 ) = / t - / t ~ .  For the decom- 
positions in (5) the thermodynamic potential F{/t} can 
then be written exactly as 

l 

F{fI}=FMF--I? -~ ~, P~ 

I  10, 
l 

where FMF= ~ p~F{ft~} and 3- is  the time-ordering 

operator on (0,/3). Although there is no small parameter 
governing the perturbation expansion of the exponential 
in (10), there is a dimensionless parameter (still a function 
of the input parameters) which estimates the leading- 
order fluctuations around the free energy FMF. This 
parameter is given by g2 = A / ] E01, where 

! B 
A 2 -  ~, p~ ~ drdr'<g(A/]~(r)A/-~r~ (r ')))~ (11) 

~ = 1  0 

is the averaged sum of the square of the perturbations 
l 

A/4~ with respect to /4~, and E" 0 -  2 P~<~)~ is the 

averaged energy of the unperturbed Hamiltonian. Ifg 2 ~ 1 
we expect the dynamics of the unperturbed Hamiltonian 
to simulate the dynamics of the full Hamiltonian/t  rather 
well. It should, however, be noted that the expansion of 
the exponential in (10) is not governed by g2 alone. 
Higher-order averaged cumulant products of the pertur- 

B 
bation operators ~ drA/4~ (r) determine new parameters, 

o 
unless the H~ are quadratic (non-interacting) Hamilto- 
nians. Hence the smallness of the parameter ga cannot 
generally exclude large fluctuations caused by higher- 
order cumulants. 

3. Mean-field theories for the Hubbard model 

We now apply the above scheme to the Hubbard model 
which, in spite of its very simple structure, implies a highly 
complicated many-body problem for which an exact so- 
lution sofar exists only in d =  1 [15]. Using the usual 
notation the Hamiltonian has the form 

< U >  a i i ,o- 

As a first application we show that it is quite simple to 
derive the Hartree-Fock approximation within our 
scheme. For that purpose we partition H into two parts 
( l= 2), one containing the kinetic energy 

/41 = - t  2 Z e + # ~ §  (v,o-/t)fi,o (13a) 
< U )  o- i , a  

and the other containing the potential energy 

/~r2-= U •  r~i, fi,+- 2 Go fiio  9 (13b) 
i i, o" 
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Here rio represent the set of variational parameters which 
couple/~1 and/q2. They will be determined by minimizing 
the upper bound (7). Note that in our analysis the Ham- 
iltonian /~ already contains the chemical potential /t; 
hence the thermodynamic potential F{/~} is, in fact, the 
grand potential O. The parameters p~ and P2 entering in 
(7) can be optimized together with the local potentials 
v~o. It appears that p~ = i, P2 = 0 always produces the best 
upper bound since this choice minimizes the entropy. 
Hence we are left with/Jx, (13 a), which is the Hartree- 
Fock Hamiltonian. Varying the r.h.s, of (7) with respect 
to vi~ leads to vio = U(~i_~)l ,  where ( .... )1 denotes the 
average in terms of/7~, i.e. yields the unrestricted Har- 
tree-Fock approximation. For the decomposition (13) the 
general perturbation expansion (10) reduces to the per- 
turbation expansion in U around the Hartree-Fock 
ground state. - According to the preceeding section we 
may also construct a lower bound from (13). Introducing 

1 and ,~ 2 = 1 - 21 we get 

)t~ f2 { ~ / 2  ~} + ).2g2 {/-?:/2 :} __< g2 {/t}, (14) 

where v~ and 21 are now determined by maximizing the 
lower bound (14). It is easy to see that, in contrast to the 
corresponding upper bound, this lower bound is quite 
uninteresting (it is not determined by a self-consistency 
problem for the variational parameters, i.e. v~o is no 
longer given by the Hartree-Fock potential U(~_~) ) .  
Nevertheless the above derivation verifies the well-known 
fact that Hartree-Fock theory is a thermodynamically 
consistent, conserving approximation. On the other hand 
it does not contain true two-particle correlations and thus 
becomes essentially meaningless in the strong-coupling 
limit ( U ~  oo). 

To derive a MFT that is valid in the strong-coupling 
limit the sub-Hamiltonians /4~ have to be chosen in a 
more sophisticated way. In particular, we demand that 
the MFT describes the atomic limit (t = 0 in (12)) exactly. 
This implies that the on-site interaction must not be de- 
coupled. The only mean-field single-site approximation 
known to date which indeed does not decouple the Hub- 
bard interaction and leads to an analytically tractable 
problem is the d ~ o e  approach when applied to the 
Falicov-Kimball model [16, 17, 5, 18]. In this model up 
and down spins interact via the Hubbard interaction, with 
one spin species being static. The exact solution of this 
model [16, 17, 5, 18] allows us to derive a new type of 
MFT for the Hubbard model in the strong coupling limit 
which leads to the exact result for the atomic limit (t = 0 
in (12)), indicated by the subscript "at", and to explicit 
bounds on the free energy of the Hubbard model in d = oo. 
To this end we partition the Hubbard Hamiltonian as 
12I = Z ~ er I21rr + }C a t12Ia, ' (15) 

o 

where 

( U )  io-' 

+)t~ U ~, hi, hi, (16a) 
i 

~ a t I ~ a t = 2  2a t (va t - -~ l r r ) l~ io@~ta tUs  ( 1 6 b )  
i, o- i 

with 
Ui~ ~- •at Vio- l ,  )~. o" a ,=0 .  (16c) 

o, 
The variational parameters v7s enter into the theory in 
the same way as in the Hartree-Fock case: they renor- 
realize the chemical potentials / ~ = p  + a l l  in the re- 
spective sub-Hamiltonians. The above partitioning o f / t  
is a generalization of that first discussed by Langer and 
Mattis [19] for half-filling, which is obtained from (16) 
by setting v72 = 2~t = 0, ~ = 2 t-. The Langer-Mattis decom- 
position, where the sub-Hamiltonians are not dynami- 
cally linked, provides a lower bound on the ground state 
energy of the Hubbard model. Valenti et al. [20] recently 
showed that this bound yields good quantitative results 
for d =  1, 2. In the following paper we will demonstrate 
that, by making use of the self-consistent parameters 

~' in (16), these lower bounds can be substantially im- Vi~ 
proved. 

Setting t = t * / ~  in (16), with t*--1, to obtain a 
non-trivial d ~ o o  limit [2] the grand potential t2 is a 
function of U, T and/~,,/~,. Using the inequalities (4) 
and (7) we obtain 

o~ 

<~,p~ [ l + ~ , ( p ~ - g ~ . o ) ~ @ ~ , ~ ] ~  o 

• f2~ (U, T,/~ t,U~ ,), (17) 

where e = a ,  at such that ~ p ~ = l , p , > = 0 .  The r.h.s. 
e~ 

of (7) was rewritten using the generating derivatives 
~ / ~  . . . .  with ~ , o  - ~ o  - v~, and f2~ is the exact grand 
potential of the Falicov-Kimball model with mobile o-- 
spins and static ( -  a)-spins. The inequality (17) is valid 
in any dimension d and represents the most general lower 
and upper bounds on the free energy (grand potential) 
of the Hubbard model in terms of the decomposition (16). 
Note that the upper bound in (17) is a Legendre trans- 
form of f2~, changing the variational parameters from 
energy variables v~ to their conjugates, the particle den- 
sities n~.o. 

Direct calculation (or a simple argument concerning 
minimum entropy) shows that the optimal upper bound 
is obtained for p~ = 1, p_o =p~t=0.  The upper bound 
does not depend on v72 at all in this case and is simply 
provided by the grand potential of the Falicov-Kimball 
model itself. Hence there is no dynamical coupling be- 
tween the sub-Hamiltonians. According to our conditions 
on the properties of a MFT presented in Sect. 1 the free 
energy functional on the r.h.s, of (17), giving the upper 
bound, therefore does not provide a MFT for the Hub- 
bard model. Only the free energy functional on the 1.h.s. 
of (17), providing the lower bound, may be used for the 
construction of a MFT for the Hubbard model based on 
the Falicov-Kimball model. (Note that this is sympto- 
matic for the construction of lower and upper bounds 
from a particular decomposition of a Hamiltonian: only 
one of the bounds is non-trivial, i.e. self-consistent). 
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According to our criteria for the construction of a 
MFT we will now evaluate the free energy functional sg~ 
in a single-site approximation. Since we wish to describe 
the strong-coupling limit a decoupling of the Hubbard 
interaction is not permitted. Therefore we employ the 
exact solution of/2r in d =  oo which has been derived 
only recently [16, 17, 5, 18]. In the absence of a broken 
spatial symmetry, such that #17- E~, the explicit result 
for ~ t  is given by [5] 

L-  ~ g2t (U, T, Iu,,,,~,.+) 

1 ~ d c o f ( o ) [  S dEp~(E) 

• Imln [w +pt, t -X,(co)-E+iO + ] 

[ 1 + G t (ca) 27~ (co)]1 + Im In 

- f l - l l n [ 1  + exp{fl (p~,~- $~ (18a) 

where L is the number of lattice sites, 

~ , = 1  ~ d c o f ( c o ) I m l n ( 1  UGh(co) ) 

(18b) 
is a shift of the atomic S-spin energy level with 
f (co) = [exp (rico) + 1 ] - 1, and G, (co) and X, (co) are fre- 
quency-dependent, complex functions which must satisfy 
the stationarity equations [10] 

cSG,(co)-&y,t(co) O. (19) 

Physically, G t (co) and X, (co) represent the local part of 
the one-electron Green function and the self-energy, re- 
spectively. The potential f2, is then determined analo- 
gously and the grand potential for the atomic problem is 
given by 

~,(U,T,u~,,,,U~,,,) 
= _ _ / ~  - -  11n (1 + e au~ + e au~ + e a(u~ +u~,,,- u)). 

(20) 
The quantities ~,17 =p17 - E2 are appropriately shifted 
chemical potentials with a constraint on E2 

~, 217, E~.' +)%tEat=o, ~ ~17+~a, = 1. (21) 
~ r  17 

Hence there are three sets of independent variational pa- 
rameters: 217, E~ and E~. Keeping them fixed as external 
parameters the grand potentials ~2,, f2, and s are mu- 
tually independent, i.e. the partition function of the Hub- 
bard model is factorized via (8). In this case the sub- 
systems are dynamically decoupled. In particular, there 
is no energy transfer between them. The missing exchange 
is now introduced on an approximate level, i.e. varia- 
tionally, by allowing E~" and 217 to vary. By maximizing 
the lower bound in (17) these parameters establish an 
energetic balance between the sub-systems whereby an 

effective energy flow is generated. The parameters A o, 
E J" are then no longer external parameters, but dynam- 
ical variables, which depend on U, T, p and H. Hence we 
arrive at the following general mean-field free energy 
functional for the Hubbard model based on the solution 
of the Falicov-Kimball model in d = oo : 

L 1D~v(U,T,/u,,U,;)to;Eg')= ~ dcoA~ (co) 
17 

--oo 

- E +  i0 + ] + Imln [1 + Go (co)Xo (co)]] 

- J - a f t - l l n [  1 + exp{fl ((p _17--E_~17) - ~'17/A~)}]] 

- ( 1  _ ~.,_,~.,) fl-1 

•  l + ~ e x p  fl 17-~ 1 - ~ - - 2 ,  / )  
17 

+expIfl(~(P17-f2tE~+)~sE*~)-U)l ] l - 2 ~ - A  s , (22a) 

where 

=1  ~ do~f~o(co)Imln 1 \ l + G17 (co )Xo (co ) J 
(22b) 

and f ~ ( c o ) = [ e x p ( B c o / 2 o ) + l ] - ' .  The free energy 
functional f2~MF is stationary with respect to variations 
X17 and G17, i.e. 

az17 (co) = o 

and maximal with respect to variations of 417 and E2', 
i.e. 

82o - 8E~' =0  (24) 

with the stability condition 

V{~,u} s'-2~v ~ 0. (25) 

The nabla operator Via E} denotes the total differential 
with respect to the 2 and E variables. Hence we obtain 
the following inequality for the exact grand potential f2 
of the Hubbard model in d=  oo 

~r < ~'~ ___~ ~r ( 2 6 )  

For T=  0 and n = 1 the lower and upper bound on the 
free energy of the Hubbard model in (17) are found to 
coincide, i.e. reduce to zero, when the expectation value 
of the Hubbard interaction (the density of doubly oc- 
cupied sites) in the Falicov-Kimball model is zero. This 
can strictly be true only in the limit U-~ oo, in which case 
it is a rather trivial result. However, if a Brinkman-Rice- 
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type metal-insulator transition [21] could occur in the 
ground state (i. e. a transition from a paramagnetic metal 
to a paramagnetic insulator with ground state energy 
Eg = 0 at afinite U) the bounds would coincide, too, and 
the transition would be described exactly by the Falicov- 
Kimball model. 

The MFT described by (22)-(25) is a generalization 
of a MFT proposed recently by us [10]. The latter can 
be obtained from the above expressions by formally set- 
ting X~ = 1, 2~t-- - 1. In principle the resulting free en- 
ergy expression will then no longer provide a lower bound 
on the free energy of the Hubbard model since, according 
to (3), this requires all A to be positive. However, we will 
see that in the ground state the free energy derived by us 
in [10] may be expressed in terms of ~?~iv in (22) and 
hence provides a lower bound after all. Using 2~  
2a~= -- 1 or, equivalently, p~ = 1 and p ~ =  - 1 in (10) 
we are led to the exact expression for the grand potential 
of the Hubbard model 

ra (u, 

= eMv(U, r,m,u+;EL EL) 

- B -1 ~, p~ In 2,~exp - I d z A ~  (r) (27) 
0 

where again ~ = a ,  at, with 

< q )  

+ z~ [(Er-~, -- E-L,,) ~/- ~ (x) -- E J ~ o  (r)] 
i (28a) 

and 

AHa,( v ) - = - t  z~ d+ (r) 8J,, (r) 
( ijF,a 

- ~, E L h ~  (z).  (285) 
i, Cr 

Here we used the notation E~-Eff and EL-E~' where 
E~ parametrizes the mean energy transfer between mobile 
("It inerant") and fixed spins, while E L describes the 
effective mean-field energy of the fixed ("Localized") 
a-spins [10]. The grand potential ~9~v is precisely the 
mean-field grand potential derived in [ 10]. The expansion 
in (27) represents a renormalized expansion in the hop- 
ping amplitude. 

At T =  0 we easily find that ~Mv and ~9~F, (22), are 
related by 

f2~v (U/2, 0, u , / 2 ,  p , / 2 ;  E J , E L) 
). -OMV (U, 0 , p , , a , ,  A o = 1/2;E~,EL). (29) 

Hence the variational character of the mean-field grand 
potential DMF remains, at least at T =  0. As discussed in 
ref. [10] ~MF defines a thermodynamically consistent, 
conserving, diagrammatically controlled MFT. Its con- 
struction is conceptually similar to that of the well-known 
Hubbard-III approximation [22] without having the se- 
rious deficiencies of the latter [23]. Hence to date ~MV 

or, more generally, f2aMV provide the best analytically trac- 
table, thermodynamically consistent theory for the Hub- 
bard model that describes the atomic limit exactly. Ob- 
viously f2MF satisfies all four conditions for the construc- 
tion of a MFT for itinerant quantum systems listed in 
the Introduction and, in addition, describes the atomic 
limit correctly. Moreover, the stationarity of f~MF with 
respect to E~ 'L has a clear physical meaning: it guarantees 
that the average number of particles with a given spin a ,  
no, is identical in all the sub-systems and equal to that 
of the actual system. Because of this conservation of par- 
ticle densities we can rewrite the inequalities for the ther- 
modynamic potentials in terms of fixed no instead of fixed 
p~, i.e. apply them to the free energies F at T = 0  as 

FMv(U/2,0,n,,n+,E~,E~)<=F(U,O,n,,n,). (30) 

We thus derived a variational lower bound on the ground 
state energy of the Hubbard model for fixed band filling, 
which will be explicitly evaluated in the following paper. 
Note that the lower bounds generally rescale the inter- 
action strength of the original Hamiltonian; this is a con- 
sequence of the convexity property of the thermodynamic 
potentials [ 14]. 

4. Conclusions 

In this paper we presented a general formalism for the 
construction of analytically tractable, mean-field-type 
theories for quantum Hamiltonians of interacting par- 
ticles. The method is based on the decomposition of the 
original Hamiltonian into simpler ones that can be solved 
within a mean-field, single-site approximation (e.g. in 
d =  oo). The dynamical exchange between the sub-Ham- 
iltonians is then introduced on a variational level in terms 
of a set of mean-field energy parameters. The construc- 
tion is motivated by an effort to derive maximally com- 
plex, analytically tractable MFTs for Hubbard-type Ham- 
iltonians in analogy to the comprehensive MFTs in sta- 
tistical mechanics. To this end we formulated four "min- 
imal" criteria which any MFT should fulfil. We discussed 
two MFTs that fit into this scheme. One is the Hartree- 
Fock approximation which is based on a decomposition 
into kinetic and potential energy. It provides an upper 
bound on the free energy of  the Hubbard model in any 
dimension d. However, since Hartree-Fock theory is a 
self-consistent extrapolation of the non-interacting case 
its results are no longer reliable at large interactions and 
it does not contain the atomic limit at all. To construct 
a MFT for the Hubbard model which has the properties 
of Hartree-Fock theory and is complementary in its range 
of applicability, i.e. is valid in the strong-coupling limit, 
and becomes exact in the atomic limit, we used a decom- 
position of the Hubbard Hamiltonian into self-consis- 
tently linked Falicov-Kimball models which were evalu- 
ated in d =  oo dimensions. The free energy functional of 
this MFT can be derived in closed form and provides the 
sofar best lower bound on the ground state energy of the 
Hubbard model in d = oo. It is conceptually similar to 
the well-known Hubbard-III solution but, in contrast to 
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the latter, is a thermodynamical ly  consistent, diagram- 
matically control led theory with exact limits. Quant i ta-  
tive results, i.e. g round  state properties and the phase 
diagram, o f  this M F T  are presented in the following 
paper. 
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