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Abstract. Information on soil properties is crucial for soil preservation, the improvement of food security, and
the provision of ecosystem services. In particular, for the African continent, spatially explicit information on soils
and their ability to sustain these services is still scarce. To address data gaps, infrared spectroscopy has achieved
great success as a cost-effective solution to quantify soil properties in recent decades. Here, we present a mid-
infrared soil spectral library (SSL) for central Africa (CSSL) that can predict key soil properties, allowing for
future soil estimates with a minimal need for expensive and time-consuming wet chemistry. Currently, our CSSL
contains over 1800 soil samples from 10 distinct geoclimatic regions throughout the Congo Basin and along the
Albertine Rift. For the analysis, we selected six regions from the CSSL, for which we built predictive models for
total carbon (TC) and total nitrogen (TN) using an existing continental SSL (African Soil Information Service,
AfSIS SSL; n =1902) that does not include central African soils. Using memory-based learning (MBL), we
explored three different strategies at decreasing degrees of geographic extrapolation, using models built with
(1) the AfSIS SSL only, (2) AfSIS SSL combined with the five remaining central African regions, and (3) a
combination of AfSIS SSL, the remaining five regions, and selected samples from the target region (spiking).
For this last strategy we introduce a method for spiking MBL models. We found that when using the AfSIS
SSL only to predict the six central African regions, the root mean square error of the predictions (RMSEeq)
was between 3.85-8.74 and 0.40-1.66 gkg™! for TC and TN, respectively. The ratio of performance to the
interquartile distance (RPIQpeq) ranged between 0.96-3.95 for TC and 0.59-2.86 for TN. While the effect of
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the second strategy compared to the first strategy was mixed, the third strategy, spiking with samples from the
target regions, could clearly reduce the RMSEeq to 3.19-7.32 gkg™! for TC and 0.24-0.89 gkg~! for TN.
RPIQpeq values were increased to ranges of 1.43-5.48 and 1.62-4.45 for TC and TN, respectively. In general,
predicted TC and TN for soils of each of the six regions were accurate; the effect of spiking and avoiding
geographical extrapolation was noticeably large. We conclude that our CSSL adds valuable soil diversity that
can improve predictions for the Congo Basin region compared to using the continental AfSIS SSL alone; thus,
analyses of other soils in central Africa will be able to profit from a more diverse spectral feature space. Given
these promising results, the library comprises an important tool to facilitate economical soil analyses and predict
soil properties in an understudied yet critical region of Africa. Our SSL is openly available for application and
for enlargement with more spectral and reference data to further improve soil diagnostic accuracy and cost-

effectiveness.

1 Introduction

Soil health is critical to crop nutrition, agricultural produc-
tion, food security, erosion prevention, and climate change
mitigation via carbon storage. Global climate change and
soil degradation by deforestation and soil mismanagement
critically threaten these soil ecosystem services (Birgé et al.,
2016). In particular, the humid tropics are a front line for
these anthropogenic impacts. For example, increasing tem-
peratures and accelerating deforestation in the humid trop-
ics are estimated to enhance greenhouse gas emissions (Don
et al., 2011; Cox et al., 2013) but also to significantly reduce
soil functions and ecosystem services such as plant nutri-
ent supply, water storage and filtration capabilities, and ero-
sion protection (Veldkamp et al., 2020). Despite the expected
severity of these impacts, our understanding of the effects on
soils in the humid tropics of Africa is limited by sparse data
and uneven distribution of low-latitude research. Within the
tropics, both the future impacts and data gaps are most se-
vere in the Congo Basin, which contains the second largest
tropical forest ecosystem on Earth, represents a consider-
able reservoir of soil carbon, and is critically endangered
by fast deforestation (Hansen et al., 2013). Thereby, forest
loss in central Africa is mainly driven by smallholder farmers
practicing shifting cultivation (Tyukavina et al., 2018; Curtis
et al., 2018) and cropland expansion to feed a fast-growing
population. For example, the human population in Uganda,
Rwanda, and the DRC is projected to more than double in the
coming 80 years (Vollset et al., 2020). Such dramatic growth
will likely contribute to further conversion of forest to agri-
cultural land. As a result of these current and future impacts,
more spatially explicit soil information is urgently needed in
many research fields ranging from agricultural to soil biogeo-
chemistry and climate sciences. In recent decades, improve-
ments have been made carrying out soil surveys and creating
soil databases and maps for central Africa (Goyens et al.,
2007), for Rwanda (Imerzoukene and Van Ranst, 2002), and
for the DRC (Baert et al., 2013). Unfortunately, accessibil-
ity of such data is limited, and gaps are still large in central
Africa (Van Ranst et al., 2010), in part due to the high cost
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of specialized equipment and chemicals for analyses, limited
accessibility to sampling areas, and lack of infrastructure.

Diffuse reflectance infrared Fourier transform (DRIFT)
spectroscopy has gained attention as a cost-effective and
rapid method for soil analyses (e.g., Nocita et al., 2015).
Many soil minerals, as well as functional groups of soil or-
ganic matter, show distinct energy absorption features in the
infrared (IR) region of the electromagnetic spectrum. These
relationships can be empirically modeled to quantify soil
properties relevant for soil quality, such as carbon (C), ni-
trogen (N), and other crop nutrients (e.g., Janik et al., 1998;
Soriano-Disla et al., 2014). Due to its simple handling, quick
measurements, low costs, and minimal need for chemical
consumables, IR spectroscopy is an important tool for soil
analyses that further allows for high reproducibility and cov-
erage of spatial soil heterogeneity. Especially in developing
countries, where practices are often hampered by the pro-
hibitive costs of conventional soil analyses, IR spectroscopy
has great potential (Shepherd and Walsh, 2007; Ramirez-
Lopez et al., 2019).

Partial least squares (PLS) is a projection-based regression
method which can be considered as the most widely used tool
to calibrate models that translate spectral data into mean-
ingful chemical and/or physical information. The method
is especially useful in noncomplex contexts, where the re-
lationships between spectra and response variables are es-
sentially linear (e.g., spectral models developed for a small
field where soil-forming factors are relatively constant). One
of the main aims of establishing large-scale soil spectral li-
braries (SSLs) is to minimize the need for future wet chemi-
cal analyses (e.g., Stevens et al., 2013; Shi et al., 2014; Vis-
carra Rossel et al., 2016; Dematté et al., 2019). However,
these libraries often span vast geographical areas that include
different soil types and climate zones, which comprise com-
plex soil organic carbon forms and mineral compositions.
Due to this heterogeneity, predictions rendered by global lin-
ear regression models are often unfeasible for new local soil
property assessments at a regional, field, or plot scale, espe-
cially when the new set covers a different geographical do-
main to the library. Despite the abundance of literature on
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the calibration of quantitative models of soil properties us-
ing both mid-infrared (MIR) and near-infrared (NIR) data,
there is still a lack of simple and efficient modeling strate-
gies that could bring SSLs to an operational level. Padarian
et al. (2019) could considerably improve prediction accura-
cies for a new local set when using a compositionally related
subset from a large-scale SSL, together with a small number
of local reference analyses. Thus, a cost—accuracy trade-off
can be met when the accuracy of the library-based predic-
tion is similar to the one made when applying a local but
more costly calibration strategy. Several data-driven methods
have proven to be successful to overcome this issue, for ex-
ample RS-LOCAL (Lobsey et al., 2017) and memory-based
learning (a.k.a. local learning, e.g., Naes et al., 1990; Shenk
et al., 1997; Ramirez-Lopez et al., 2013a). In addition, other
promising approaches have also been proposed, although
they require more research (e.g., deep learning, Ng et al.,
2019; fuzzy rule-based systems, Tsakiridis et al., 2019).
Memory-based learning (MBL), for example, searches for
each new spectral observation, a subset of similar observa-
tions in a spectral library, which are then used to fit a custom
predictive model for every new observation. This method has
shown promising results when applied to extremely complex
SSLs such as the MIR library of the United States (Dangal
et al., 2019) and in one developed for the European continent
(Tsakiridis et al., 2019). Spiking of libraries with samples
from the target site has also shown to improve prediction
accuracy (e.g., Guerrero et al., 2010; Wetterlind and Sten-
berg, 2010; Seidel et al., 2019; Barthes et al., 2020). So far,
SSLs have mainly been used for predictions of soil samples
originating from the same geographical domain. Studies have
shown that subsetting large-scale libraries for new spectra by
their geographical zones can result in good prediction accu-
racy (Nocita et al., 2014; Shi et al., 2015). These geograph-
ical restrictions could allow for extrapolation to new areas
that contain similar soils.

The aim of the present work was to propose three strate-
gies that leverage the use of a large soil infrared spectral li-
brary to accurately predict soil properties in regions which
are poorly covered by it. Furthermore, here we describe a
convenient method for spiking MBL or local models. Here,
we also present the first SSL for central Africa (CSSL),
which can be used to enlarge the existing continental library
of African soils (a.k.a. African Soil Information Service, Af-
SIS). This effort represents an important first step towards
fulfilling the need for spatially explicit and high-resolution
soil data in an important yet understudied region in the hu-
mid tropics of Africa, promoting vital soil information that is
critical to the future of the region.
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2 Methods

2.1 Site descriptions

Soil samples were collected from past projects in the Congo
Basin and along the Albertine Rift, the western branch of the
East African Rift System. Table 1 gives an overview of cor-
responding data sources and data contributors to the different
sample sets and denotes the origin, the number of samples,
and sampling layers used for our CSSL. The sample loca-
tions of the entire library are clustered over a large geograph-
ical area of central Africa, from a latitude of 2.8 to —11.6°
and a longitude of 12.9 to 30.4°. From our entire library, six
clustered regions were identified, which contained at least 80
samples to allow for reliable analysis. Therefore, this sub-
set will be further presented in the paper (see Tables Al and
A2 in the Appendix for information on the entire library).
Four of the selected regions are located in the Democratic
Republic of the Congo (Haut-Katanga, South Kivu, Tshopo,
Tshuapa), while the other two are located in Rwanda (Ibu-
rengerazuba) and in Uganda (Kabarole), respectively (Figs. 1
and Al). Site-specific characteristics, coordinate ranges, al-
titudes, average climate, and dominant soil types are sum-
marized in Table 2. Annual precipitation ranges from about
1200 mm in Haut-Katanga to over 2000 mm in the tropi-
cal forest of Tshuapa. Mean annual temperature varies from
17.6°C in the high altitudes of Iburengerazuba and South
Kivu to 24.9°C in Tshopo (Fick and Hijmans, 2017). The
study elevations range from 380ma.s.l. in Tshuapa and
Tshopo to high altitudes of 2300 ma.s.l. in South Kivu along
the rift valley (Jarvis et al., 2008). Soil types are primar-
ily Ferralsols, Acrisols, or Nitisols (Jones et al., 2013; TUSS
Working Group WRB, 2015). The different regions contain
multiple Koppen—Geiger climatic zones: The three regions
located close to the Equator (Tshuapa, Tshopo, Kabarole) are
classified as Af (tropical rainforest), while the eastern DRC
and western Rwanda are classified as a mixture of climate
zones Cfb (temperate, without dry season, warm summer),
Csb (temperate, dry summer, warm summer), Aw (tropical
savannah), and Cwb (temperate, dry winter, warm summer).
The regions along the rift valley (South Kivu, Iburenger-
azuba, Kabarole) are partially also classified as Am (tropical
monsoon). Finally, the southeast of the DRC is classified as
Cwa (temperate, dry winter, hot summer) (Beck et al., 2018).

2.2 Laboratory soil analyses

In preparation for total carbon (TC) and total nitrogen (TN)
analyses, all soil samples were sieved through a 2 mm mesh
and either air-dried or oven-dried at temperatures of 50 or
60 °C. After sieving and drying, soil samples were ground
to a powder (< 50 um) using a ball mill. TC and TN were
analyzed via dry combustion using either a LECO 628 el-
emental analyzer (LECO Corporation, USA), an ANCA-
SL automated nitrogen carbon analyzer (SerCon, UK), or
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Figure 1. Locations and spectra of soil samples from the central African spectral library (CSSL) and the continental soil spectral library
from the African Soil Information Service (AfSIS SSL). The samples from the six regions from the CSSL further analyzed in this study are
presented with a o symbol, the remaining samples of CSSL with a v symbol, and the AfSIS SSL with a 00 symbol. The average resampled
spectrum of each library is shown (bold line), along with the individual resampled sample spectra (transparent lines). Base map of Africa

created using Natural Earth.

a vario EL cube CNS elemental analyzer (Elementar, Ger-
many). In order to ensure data quality and facilitate the har-
monization of all TC and TN data, a subset of these sam-
ples was remeasured on the LECO. This performance com-
parison demonstrated high comparability of TC and TN data
across all three instruments (R2 =0.99 for TC and TN, re-
sults not shown). The large majority of the soil samples orig-
inate from highly weathered and acidic soils and do not
contain any carbonates, and therefore, TC contents corre-
spond to total organic carbon contents. Only in a few sam-
ples from termite mounds in the subtropical Haut-Katanga
province has calcium carbonate been detected where pH val-
ues are > 8 (Mujinya, 2012). Moreover, the widely used
slash-and-burn practices could additionally have influenced
soil TC contents, even when visible charcoal pieces were re-
moved prior to any measurement. Additionally, soil pH (ei-
ther in H,O, KCI or CaCl,, depending on the study), tex-
ture (laser diffraction particle size analyzer), and aqua-regia-
extractable macro-/micronutrients (Al, Fe, Ca, Mg, Mn, Na,
P, and K; inductively coupled plasma-optical emission spec-
troscopy) were analyzed for a subset of samples. The chem-
ical and MIR prediction results for these soil characteristics
are not presented in this paper but were carried out using the
same methods and are available on our GitHub repository at
https://doi.org/10.5281/zenodo.4351254 (last access: 20 De-
cember 2020).
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2.3 MIR spectral libraries

2.3.1 Central African spectral library

In order to determine the MIR reflectance, all ground soil
samples were measured with a VERTEX70 Fourier trans-
form IR (FT-IR) spectrometer with a high-throughput screen-
ing extension (HTS-XT) (Bruker Optics GmbH, Germany).
Spectra were acquired at a resolution of 2cm™! within a
range of 7500 to 600 cm™!, which corresponds to a wave-
length range of 1333 to 16 667 nm. A gold coated reflectance
standard (Infragold NIR-MIR Reflectance Coating, Lab-
sphere) was used as a background material for all measured
soils in order to normalize the sample spectra. Reflectance
was transformed into absorbance using log(l/reflectance)
prior to further processing and subsequent modeling. Two
replicates per sample were filled into the cups of a 24-
well plate, and the surface was flattened without compres-
sion using a spatula. For each replicate, 32 co-added in-
ternal measurements were averaged and corrected for CO,
and H>O using OPUS spectrometer software (Bruker Optics
GmbH, Germany). This library is denoted as C = {Yc, Xc}’l”
throughout the rest of the paper, where Yc is the matrix con-
taining the two response variables (TC and TN), Xc is the
matrix of spectra, and m is the total number of samples in the
library.

https://doi.org/10.5194/s0il-7-693-2021


https://doi.org/10.5281/zenodo.4351254

697

L. Summerauer et al.: The central African soil spectral library

S[OSIAT'T DIq[Y ‘S[OSTIN JIPOUY ‘swezooryd dtjdeH wy QO JV  09€1 L6l YT8I-1LTI £9°0-9¥°0 LEOE-ET0E 101 ajoreqesy
s[osLoY suquin/srdey QM) ‘MY ‘98D 961 9Ll 6£61-5951 PET— 01 LY T— TT6C-S06C  LOT  eqnzerauaingy

s[os[eLIag d1deH/o1IueY IV 060C LY 8L5-68¢ 8°0-87°0 €STTY8 1T 8EL edenys,

s[os[e11o, drjdey onpuex IV 68LI 6'%C 905-08¢ £8°0-62°0 EST8YrT SlIE odoys,

S[OSLIDY OTfdel ‘S[OS[RLIO.] OLQUIN)  qMD ‘MY ‘4sD ‘D LT91 9L 01€T-L8Y1 ['C— 0 6LT— 168T9'8C  69¢ ALY Inog

s[os[eLIag d1[deH/S1poty emd €7l 9°0C €TEI-L611 6TII—OVI9TI— S8LT-8FLT 611  wSueey-ney

sad£) [10g LFpO-uaddey (W) dv (D) IVIN (W) uonesd[d (o) 9pmne’] (o) opmisuoT  u uorsoy

“(STOT ‘gIM dnorD Sunjiopy SSAI €107 e 19
SOUO[) BOLJY JO SePIV [10S 9y woj sadA) [10S pue ‘(107) ‘T8 12 Yoo WOy SuoneoyIsse[o ewr[do 1sen—uaddoy] (8007 “T& 10 SIAIR[ ‘UONNOSAI W ()6) INLYS WOy UoneAd[d ‘(L10T)
SueW(TH pue YOI WOIJ PIOINOS QI8 BIEP 9BWI[D) "SI JOJSeI WOIJ SOJRUIPIO0D [[€ J0J PAJOBNX? d1oM ele( "epued[) pue ‘epuemy ‘0Suo)) jo orqndey oneroowa( oy jo suor3ar pajdwes
ayy 10§ sedA) 108 pue ‘suonedyIsse[d Aewr[o 1Srn-uaddoy ‘(LVIA) 2Imeradwo) [enuue uesw ‘(Jy) uoneidroard [enuue ‘UOTBAS[S ‘SOIEUIPIO0d SO ‘sojdwes jo requiny ‘g ajqeL

00106 ‘0L—09 ‘0F—0¢ ‘01-0  L0€ (VD) d[oreqey] (VM) eqnzesssuaing] ‘(DY) NATY yInog (1202) "Te 32 [HapRodg
ndos ¢z1-0  ov (D¥Q) [enU) puE 03u0)) JMO] (6007) "Te 32 13ed (S661) Horg

0S-0T ‘0¥—0T ‘0c—0  LOT (D¥Q) nAry Yinos PRN-sed  2NUID ANSAI0J0ITY PO QINNOLSY [E91dOL], JO S)mnsul [eUOHEUIU]

so[yo1d punow AL, 6 (DY@ esuerey-iney (#10T “€10T “110T ‘010T) '[& 32 eAutlnA (7107) eAuilny

0€-0T ‘00 9% (D¥Q) eSueye[-INEH ‘NALY YINOS ureAnor] ap anbrjoyre)) IsIALIUN

00 IS (DY) nary ymog (0207) 1Zey-119H

0S-0T ‘070 09§ (D¥Q) edenys], (L107) Jenerowwng

02-0 €01 (D¥Q) edenys], (L107) Uiy

001-0S ‘0S—0€ ‘0€—0T ‘0201 ‘01-0  SL (O¥Q) edenys, (96107) 'Te 10 s1omegq
07-01 ‘01-S‘S—0 80T (O¥Q@) odoys, (6107) 'Te 32 USUOOIA “(1Z0T) 'T& 10 sIomeq

S0 ¢l (D¥Q@) nary yinog ‘odoysy, (e6107) ‘e 10 s1omeq

001-0S ‘0S—0€ ‘0€—0T ‘0201 ‘01-0 0¥ (O¥Q@) odoys, (L10T “€10T) T8 10 A3[s1eay]
nd [10s 001-0 ‘0€-ST ‘S1-0 ‘0TS ‘S—0  OF (O¥Q) Inayenby ‘NATY YPNOS ‘NAT] YLON youny, £30[0uyda], JO SImusu] [BIPS SSIMG
0€—SI ‘S1-0‘0T-S ‘-0 8¢ (DY@ nary yinog ‘odoysy, (0207) 'Te 30 owIESwneg (1707) T8 10 MIoIe[[eD

01-§ €€ (O¥Q@) odoysy, (L10T ‘S10T) T 10 s1omeg

(wo) pdop (10§ u uoI3oy 10INqQIIIUOD I0 90INOS vl

‘(VDQ) epued) Jo 101msIp e pue (VAY) epuemy pue (DY) 0Suo) jo orqnday] oneroouwrs(q oY) Jo saourAoid o1e SUoISal pajsi| oy [, *PaisI| ST UOIIMIISUI J0INqLIUod 9y) ‘eiep paysiqndun
K[snotaaid 10, "paoInos axom eiep Surpuodsaiiod ay) yorym woiy suonesrqnd ay) MOYS S90UIQJaI Ay, *ATeiqr] [enoads [I0S UBOLIJY [BXUAD dY) J0J pasn aAryore spduwes [10S *| ajgeL

SOIL, 7, 693-715, 2021

https://doi.org/10.5194/s0il-7-693-2021



698

2.3.2 AfSIS spectral library

We used a MIR SSL created by the World Agroforestry Cen-
tre (ICRAF) to predict soil samples of the six selected re-
gions of central Africa for their TC and TN contents. This
SSL was created as part of the Africa Soil Information Ser-
vice (AfSIS) in order to improve soil information and land
management on the continental scale of sub-Saharan Africa
(Vagen et al., 2020). For this continental library (see Fig. 1),
reference values for TC and TN were measured using a Ther-
moQuest EA 1112 elemental analyzer. The MIR spectra of
the samples were obtained by scanning them on a Tensor27
FT-IR spectrometer (Bruker Optics GmbH, Germany) with
a high-throughput screening extension. Soil samples were
measured in a wavenumber range of 4000 to 600 cm™! (2500
to 16666nm) with a spectral resolution of 2cm™'. Four
replicates per sample were measured, and an average of 32
co-added scans were used for each sample (Sila et al., 2016).
Here we denote this library as A = {Ya, Xa}/ throughout the
rest of the paper, where for all its samples (), Ya repre-
sents the matrix containing the two response variables (TC
and TN), and Xa represents the matrix of spectra.

2.4 Spectral resampling and preprocessing

All CSSL and AfSIS spectra were processed using the R
packages “prospectr” (Stevens and Ramirez-Lopez, 2020),
“simplerspec” (Baumann, 2020), and “resemble” (Ramirez-
Lopez, 2020) in the R statistical computing environment (R
Core Team, 2020). Replicates of spectral measurements were
aggregated to one average spectrum per sample. The spectra
were then resampled to a resolution of 16 cm™! and trimmed
to a spectral range of 4000-600 cm™!. Both spectral libraries
were scanned on two FT-IR Bruker spectrometers (Bruker
Optics GmbH, Germany), which use the same settings and
the same internal standards. The scanning methods of the
CSSL were adapted to the standard operating procedures of
the Soil Plant Spectral Diagnostics Laboratory at ICRAF. For
these reasons, no instrument standardization was necessary.

As spectral pretreatments have a marked impact on the
performance of quantitative infrared models (Rinnan, 2014;
Seybold et al.,, 2019), the preprocessing procedure was
specifically optimized for the MIR spectra of the central
African samples. This procedure was based on the PLS
method (Wold et al., 1984), which is also known as pro-
jection to latent structures and is widely used for regression
analysis in infrared spectroscopy. However, it is also useful
for projecting the spectral data onto a low-dimensional (and
therefore less complex) subspace containing all the meaning-
ful information of the original data. The projection model can
be expressed as

X=SP +E, 1

where X is the original spectral matrix of n x d dimen-
sions, S is the PLS score matrix of n x [ dimensions (where

SOIL, 7, 693-715, 2021

L. Summerauer et al.: The central African soil spectral library

| < min(n, d)) which contains the extracted variables, and P
is the matrix of loadings of d x/ dimensions which cap-
tures the spectral variability across observations. E is an error
term. For spectral data with high collinearity, the optimal /
(or the number of PLS factors) is usually small, which means
that only a few PLS factors or latent variables are enough to
properly represent the original variability of X. An important
aspect of this type of projection is that it is obtained in such a
way that the covariance between S and an external set of one
or more variables is maximized. For a detailed description on
PLS we refer the reader to Wold et al. (2001). In PLS, P can
be used on new spectral observations to project them onto the
lower dimensional subspace:

Snew = Xnewp_1 . (2)

The spectral reconstruction residuals of the projection
model can then be computed by back-transforming the ma-
trix of scores to a spectral matrix and comparing it against
the original spectral matrix as follows:

Enew = Xpew — SnewP/- (3)

Finally, the spectral reconstruction error (also known as
the Q statistic) is computed as the sum of squares of Epey:

Qnew = Epew E/new~ (4)

The Q statistic indicates how well a given new sample is
represented by the PLS model (Wise and Gallagher, 1996;
Ballabio and Consonni, 2013). This statistic is widely used
in chemometrics for outlier identification and uncertainty as-
sessment (Wise and Roginski, 2015).

In summary, our approach offers a data-driven solution to
the selection of the spectral preprocessing steps which are
optimized for the target/prediction set. The optimal set of
steps is defined as the one that minimizes the Q statistic.
This approach does not require prior knowledge of the re-
sponse values of the target set and therefore is well suited
for preprocessing optimization. It assumes that PLS models
that cannot account for the spectral variability in the target
set may also fail at producing accurate predictions of the re-
sponse variable. In other words, as suggested by Wise and
Roginski (2015), large Q values can be used as proxies for
large prediction errors, and therefore Q values can be used to
judge the suitability of a set of preprocessing steps. To find
an optimal combination of spectral pretreatments, we defined
a set of different pretreatments {h, h7, ..., h,}, where h; rep-
resents one pretreatment or a sequence of pretreatments (with
unique parameter values) to be applied on the spectral data.
For this purpose, a projection model was built with the Af-
SIS spectra (using TC and TN as external variables) for each
combination of spectral pretreatments:

hi(Xa) = Sa(i)Pa’(i). 5)

This model was then used on the CSSL pretreated spectra
with reconstruction residuals (Ec) computed as follows:

Ec = h;(Xc) — [h;(Xc)Pa~'ScPa’(i)], (6)
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where Pa denotes the loadings corresponding to the PLS
model built with the AfSIS library and Sc the projected
scores of the central African Library.

For this analysis we fixed the number of PLS factors to 20
because projected variables beyond this dimension did not
capture a sufficient amount of the original spectral variance.
For example, PLS variable 21 amounted to less than 0.01 %
of the original variance in all the cases. The mean Q value
(Q) for the ith set of pretreatments was obtained by

— . 1 & ,
Q(z)zﬁ;Echcj, @)

where m and d are the number of samples and the number
of spectral variables in the CSSL respectively. To allow for
comparisons across the reconstruction errors obtained for the
different pretreatments, @ was standardized as follows:

0(i)
max(h; (Xc)) — min(h;(Xc))

sQ) = ®)

Tested pretreatments included different combinations of
standard normal variate, multiplicative scatter correction,
spectral detrending, first and second derivatives, and window
sizes from 3 to 35 points in increments of 2. Minimal spec-
tral reconstruction error was achieved with a Savitzky—Golay
filter with a second-order derivative using a second-order
polynomial approximation with a window size of 17 cm™!
(Savitzky and Golay, 1964), and a subsequent multiplicative
scatter correction. This pretreatment was then applied to the
spectra prior to MBL.

2.5 Principal component analysis data visualization

To analyze the difference between the two spectral libraries
and to visualize the similarities between soil samples, a prin-
cipal component analysis (PCA) was conducted on the pre-
processed spectra of both libraries. The PCA was performed
with centering but without scaling of the absorbance values.

2.6 Modeling approach

In the following we describe the method we used to assess
the performance of MBL for predicting TC and TN for six
distinct regions at different scenarios of regional soil extrap-
olation. Three specific modeling strategies were tested on
the selected regional sets which we call validation sets (see
Sect. 2.6.2). With the regional analysis we demonstrate how
predictions of soil properties within new sites from distinct
regions — which are compositionally less variable than the
available SSLs — perform and profit from knowledge present
in the AfSIS SSL. The analysis also demonstrates the added
value of our new CSSL in addition to the AfSIS SSL alone.
Doing so, the aims of the modeling scenarios were (1) to
minimize the costs and time for traditional methods by opti-
mizing the transfer of stored spectral information to the new
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region of interest and (2) to test different levels of geograph-
ical extrapolations for new regions, when no chemical anal-
yses of local samples are available.

2.6.1 Modeling and prediction data
We used two main data sources and subsets as follows:

1. The AfSIS data set (A). The continental SSL from sub-
Saharan Africa includes 1902 soil samples with both
MIR spectra data and analytical reference data (Fig. 1).

2. The central African data set (C). The central African
set comprises a total of 1578 soil samples which origi-
nate from six regions (G;), namely Haut-Katanga (119
samples), South Kivu (367 samples), Tshopo (134 sam-
ples), Tshuapa (738 samples), Iburengerazuba (104
samples), and Kabarole (100 samples), after the removal
of one outlier sample from South Kivu with a large
Mahalanobis distance to the AfSIS SSL and therefore
high prediction uncertainties (distance > 3; results not
shown). Each regional set was split up into a regional
validation set (G; \ K;) and a spiking set (K;). For this
work we differentiated between three different subsets
which are defined as follows:

(a) the union of the six regional subsets C:

c=Jas: ©)

1

(b) regional validation subsets, which are the regional
sets without the spiking samples G; \ K;;

(c) six representative regional spiking subsets Kj,
which were selected from each regional set G;, us-
ing the k-means sampling method, which selects
one sample per cluster calculated on a principal
component analysis as described in Nas (1987)
(for examples on k-means sampling in soil spec-
troscopy, we refer the reader to Ramirez-Lopez
et al. (2014); Vohland et al. (2016); Viscarra Rossel
and Brus (2018)); a size of 20 samples per region
was selected to show a pronounced effect of spik-
ing that avoided any geographical extrapolation.

2.6.2 Modeling strategies

Three different scenarios were compared which are related
to the degree of the geographical extrapolation:

— Strategy 1. MBL predictions for the regional validation
subsets (G; \K;) were computed from models built only
with A. This scenario represents an extreme case of
extrapolation (from the geographical perspective) be-
cause no samples from the entire central African area
are present in the AfSIS set (Fig. 1), which is the only
data used to build the predictive models.
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— Strategy 2. Predictions for every G;\K; are computed
using MBL models built from the pooled AfSIS data A
together with the data from the remaining five regions
C;,i.e., AUC;, where

6
ci=UGj\K,. (10)
j=1
Jéi
Strategy 2 evokes less pronounced geographical extrap-
olation than strategy 1.

— Strategy 3. This time, strategy 2 was repeated, but ex-
trapolation was avoided using the spiking samples from
the same geographical region. Each regional set G;\K;
was predicted by the pooled AfSIS data, the data of the
remaining regions, and the respective spiking set, i.e.,
AUC; UK;.

2.7 Predictive modeling

We used MBL as our predictive modeling approach. In the
chemometrics literature, MBL is also known as local model-
ing, which describes a family of (nonlinear) machine learn-
ing methods designed to handle complex spectral data sets
(Ramirez-Lopez et al., 2013b). This type of learning method
does not attempt to fit a general (global) predictive function
using all available data. Instead, a new and unique function
( f,-) is built on demand, every time a new prediction for a
given response variable is required. This new function is built
using only a subset of relevant observations from a refer-
ence set that are queried through a k-nearest neighbor search.
The MBL method implemented for this study uses a spectral
nearest neighbor search based on a moving window correla-
tion dissimilarity. To measure the dissimilarity (r) between
two spectra (X; and X;), the following equation was used:

1 d—w
X, Xjiw) = ) 1= oK pekru), X k) (1)
k=1

where d is the number of spectral variables, p represents the
Pearson’s correlation function, and w is the size of a moving
window. This window size was optimized based on a spec-
tral nearest-neighbor search within the AfSIS library. For ev-
ery sample in the AfSIS library, its closest sample (in the
spectral space) was identified. Then, samples were compared
against their closest neighbors in terms of TC and TN and
root mean squared differences (RMSDs), computed accord-
ing to the following equations:

j(i) = NN(xa;, Xa™) (12)
1 n 2
RMSD = | — > “(ya; ;, — ya ;) ), (13)
2m =
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where NN(xa;, Xa™') represents a function to obtain the in-
dex of the nearest neighbor of the ith observation found in
Xa (excluding the ith observation), and yc; j is the value of
the ith observation for the hth property variable (either TC
or TN). In total 10 window sizes were evaluated using this
approach (from 31 up to 121 in steps of 10), and according
to the RMSD, an optimal window size w of 71 was chosen.

After nearest neighbor retrieval, our MBL method fits a
local model using the weighted average partial least squares
(WA-PLS) regression algorithm proposed by Shenk et al.
(1997). In this WA-PLS, the final prediction is a weighted av-
erage of multiple predictions generated by PLS models built
from different PLS factors. A range of latent variables from
5 to 30 in increments of 1 was used for the WA-PLS cal-
culations. The weight for each component is calculated as
follows:

wj = ;, (14)
S1:j X 8

where s1.; is the root mean square of the spectral residuals
of the new observation when a total of j PLS components
are used (i.e., all the components from the first one to the
Jjth one), and g; is the root mean square of the regression
coefficients corresponding to the jth PLS component (see
Shenk et al., 1997, for more details).

The number of neighbors that needed to be retrieved
was optimized using nearest neighbor (NN) cross-validation
(Ramirez-Lopez et al., 2013b). Using this method, for each
observation to be predicted, its nearest neighbor was ex-
cluded from the group of neighbors, and then a WA-PLS
model is fitted using the remaining ones. This model is then
used to predict the value of the response variable of the near-
est observation. Predicted values are finally cross-validated
with the actual values (see Ramirez-Lopez et al., 2013b,
for additional details). For the optimization of the nearest
neighbor search, i.e., the nearest neighbor cross-validation,
a grouping factor was used to avoid overfitting: keeping the
nearest neighbor out, the model was trained with the remain-
ing neighbors which were not from the same region as the
hold-out neighbor (region corresponds to the sentinel sites
within the AfSIS SSL). The minimum number of available
neighbors was tested for each region prior to training the re-
spective final models, which were then trained with neigh-
borhood sizes varying from 150 to 500 neighbors in incre-
ments of 10. The best model and the optimal number of
neighbors were determined by the minimal RMSE (Eq. 15)
of the nearest neighbor cross-validation, where n is the num-
ber of neighbors used for the model, y; is the measured value
of the hold-out neighbor, and y; is the value predicted by the
remaining neighbors.

Subsequently, independent from their distances to the vali-
dation set, 1 to 20 spiking samples were added from the target
region and forced into the neighborhood of every observation
and thus used in the predictive models. Our approach differs
from previous studies using local modeling methods in com-
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bination with spiking, where the samples were not forced into
the neighborhoods (e.g. Barthes et al., 2020; Lobsey et al.,
2017). Our approach guarantees that the spiking set (which
is assumed to carry important information) is fully used.

Stepwise spiking was applied to test the effect of spiking in
general and to find the smallest number of samples required
for satisfying model performances. This was necessary since
soil samples from the same geographical region are usually
governed by very similar formation processes (spatial auto-
correlation; Fortin et al., 2016), and MIR spectra partially
reflect the compositional characteristics of these samples.
Moreover, it is widely accepted that the most accurate predic-
tions can be achieved by models built with samples originat-
ing from the same region because large nonlinear complexity
is avoided (e.g., Tziolas et al., 2019).

2.8 Model validation and prediction accuracy

For model validation, the RMSE statistics of the nearest
neighbor cross-validation described in the previous section
were used. Prediction accuracy of the predicted vs. the mea-
sured values was also calculated using RMSE (Eq. 15),
where in this case y; is the actual measured reference value
and y; the prediction of the final model.

RMSE =

1 & .
—Z(J’i -Yi) (15)
i3

Model validation and prediction performance were addi-
tionally evaluated using the mean error (ME; mean of the ab-
solute difference between predicted and observed values) and
the ratio of performance to the interquartile distance (RPIQ;
Bellon-Maurel et al., 2010). For calculating RPIQ, the in-
terquartile range of the observed reference data is divided
by the RMSE of the nearest neighbor validation or by the
RMSE of the prediction (RMSEpeq). This is particularly use-
ful since RPIQ does not make any assumptions about the dis-
tribution of the reference data.

3 Results

The samples that comprise the CSSL exhibited a wide range
of TC and TN contents (Fig. 2). Validation and spiking sets
for four of the six regions (Haut-Katanga, Tshopo, Tshuapa,
Kabarole) had mean TC and TN of 9.30-18.10 and 0.95-
1.74 gkg™!, respectively. Maximum TC and TN values for
these four regions were 56.69 and 5.05 gkg ™!, respectively.
The other two regions, South Kivu in the eastern DRC and
Iburengerazuba in western Rwanda, had considerably higher
TC and TN contents, with mean values of 23.55-35.43 and
1.34-3.07 gkg ™!, respectively. The AfSIS SSL had generally
lower mean TC and TN contents of 12.37 and 0.82gkg™!,
respectively.
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3.1 Principal components and spectral variability in the
two libraries

The first three principal components accounted for 85 % of
the spectral variability (Fig. 3). These components indicate
that the majority of CSSL samples lie within the spectral do-
mains of the AfSIS SSL as their PCA scores overlap. This
overlapping is, however, less evident for the spectra of the
South Kivu region and, to a lesser extent, for the samples of
the Iburengerazuba and Tshuapa regions, which suggests that
the type of soils in these regions may not be well represented
by the AfSIS SSL compared to the other regions.

3.2 Predictive performance of the three strategies

In general, MBL retrieved accurate TC and TN predictions
for all the strategies (with RMSEeq values below 9 gkg’1
for TC and below 1.7 gkg™! for TN). South Kivu and Ibu-
rengerazuba regions showed the highest RMSEeq, which
was mainly due to the high TC and TN ranges (Fig. 2).
Prediction errors for Haut-Katanga, Tshopo, and Tshuapa
were comparably smaller; however, the RPIQpeq values were
among the smallest across regions as well (RPIQpeq 0.59-
2.72). Relative to their TC and TN ranges, predictions for
these three regions were less accurate than for South Kivu
and Iburengerazuba (PRIQpreq 1.10-4.45). The TC and TN
predictions in Kabarole were the most accurate compared
with the other five regions (RPIQpreq 2.65-5.48 for TC and
TN and all strategies; Table 3).

3.2.1 Strategy 1: predicted central African soils by the
large-scale continental library

The TC and TN predictions for the six regions of cen-
tral Africa were characterized by errors (RMSEpq) rang-
ing from 3.85-8.73 and 0.40-1.66 gkg™!, respectively. The
best prediction accuracies for TC were achieved for South
Kivu, Iburengerazuba, and Kabarole, where RPIQpeq values
were between 2.43-3.95, while Tshopo, Tshuapa, and Haut-
Katanga performed worse with RPIQpeq <= 1.84. For TN,
Iburengerazuba and Kabarole performed well, with RPIQpeq
above 2. However, the four other regions, Haut-Katanga,
South Kivu, Tshopo, and Tshuapa, exhibited even lower
RPIQpreq <= 1.37. For South Kivu, samples with high TC
and TN contents (> 100 gkg™! TC and > 5 gkg™! TN) de-
viated from the 1 : 1 line (Fig. 4). Moreover, TC predictions
for Haut-Katanga, Tshopo, Tshuapa and Iburengerazuba, as
well as TN predictions, in all six regions showed a clear trend
towards underestimation (Fig. 4). This can be caused by one
or a combination of the three following effects: (i) the central
African samples were poorly represented by the continental
AfSIS SSL due to the differing pedogenic features (Fig. 3);
(ii) the preprocessing methods did not completely account for
the spectral offset and/or multiplicative effects in the spec-
tra (due to instrument differences); and (iii) performance dif-
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Figure 2. Summary of the reference data for total carbon (TC) and total nitrogen (TN) of the two soil spectral libraries (SSLs): the central
African SSL (CSSL) and the continental SSL (AfSIS SSL). The CSSL is divided into the six regions (Haut-Katanga, South Kivu, Tshopo,
Tshuapa, Iburengerazuba, Kabarole). The black lines and text indicate regional validation sets, while the gray lines and text indicate the

spiking sets.

ferences exist between the conventional laboratory analyses
used to obtain TC and TN reference values.

3.2.2 Strategy 2: regional predictions by soil spectral
libraries

Compared with strategy 1, strategy 2 partially showed better
predictive performance for TC and in all the cases retrieved
better TN predictions. These improvements are exemplified
by the larger RPIQpeq and smaller RMSEjeq values in strat-
egy 2 (Table 3). The most accurate predictions for TC were
obtained for the regions Haut-Katanga, South Kivu, Ibu-
rengerazuba, and Kabarole (RPIQpeq > 2.30). The predic-
tive performances for TC of Tshopo and Tshuapa were sim-
ilar, with RPIQpeq values of 1.31 and 1.71, respectively. For
TN, the predictive performance was best for Iburengerazuba
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and Kabarole (RPIQpeq > 2). For the regions Haut-Katanga,
South Kivu, Tshopo, and Tshuapa, the RPIQeq values for
TN were between 1.49-1.88. The predictions in strategy
2 exhibited errors (RMSEpeq) ranging between 4.12-8.88
and 0.29-1.17 gkg ™! for TC and TN, respectively (Table 3).
Comparing the TC RMSEeq of each region across the first
two strategies, errors for Haut Katanga, Tshopo, and Ibu-
rengerazuba were substantially reduced in strategy 2. Two
regions performed equally well (South Kivu and Tshuapa)
in both strategies, and only one region (Kabarole) saw an
increase in errors (Table 3). For all regions, TN prediction
errors (RMSE;eq) were consistently lower in strategy 2 than
strategy 1 (Table 3). The R[2>red values of the TC and TN pre-
dictions indicate that the precision of such models was, in
general, equal or slightly better for strategy 2 than for strat-

egy l.
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Figure 3. Score plots of the first three principal components of the preprocessed MIR spectra from the central African soil spectral library
(six regions; colored) and the large-scale continental library (AfSIS SSL; gray).

Table 3. Statistics of the independent validations of the predictions of total carbon and total nitrogen for each region and three strategies.
Strategy 1: predictions of the combined six regions by the AfSIS soil spectral library (SSL); strategy 2: predictions of the individual regions
by the remaining five regions together with the AfSIS SSL; strategy 3: spiking six regional models from strategy 2 with 20 samples from
each target area.

Strategy Region Total carbon (gkg™!) ‘ Total nitrogen (gkg 1)
Npred RMSEpred szyred MEpred RPIQpred ‘ Npred RMSEpred Rgred MEpred RP IQpl’Cd
Haut-Katanga 99 5.99 0.79 4.99 1.62 99 0.81 0.31 0.70 0.59
South Kivu 347 8.61 0.94 3.50 243 348 1.66 0.85 1.32 1.10
Strategy 1 Tshopo 114 7.34 0.47 2.61 0.96 129 0.55 0.52 0.34 0.93
Tshuapa 718 3.85 0.71 2.06 1.84 718 0.40 0.68 0.29 1.37
Iburengerazuba 84 8.73 0.84 4.46 2.60 84 0.82 0.81 0.60 2.13
Kabarole 80 5.73 0.86 1.10 3.95 80 0.65 0.84 0.47 2.86
Haut-Katanga 99 4.22 0.72 1.84 2.30 99 0.32 0.59 0.02 1.50
South Kivu 347 8.88 0.95 4.72 2.36 348 1.17 0.89 0.72 1.55
Strategy 2 Tshopo 114 5.38 0.64 0.30 1.31 129 0.34 0.72 0.07 1.49
Tshuapa 718 4.12 0.78 221 1.71 718 0.29 0.77 0.12 1.88
Iburengerazuba 84 7.96 0.86 2.69 2.84 84 0.54 0.82 0.02 3.21
Kabarole 80 8.56 0.83 4.29 2.65 80 0.64 0.86 0.40 2.90
Haut-Katanga 99 3.57 0.80 1.35 2.72 99 0.26 0.71 0.06 1.87
South Kivu 347 7.32 0.95 1.53 2.86 348 0.89 0.89 0.32 2.05
Strategy 3 Tshopo 114 4.93 0.69 0.11 1.43 129 0.31 0.75 0.03 1.62
Tshuapa 718 3.19 0.80 0.90 2.22 718 0.24 0.79 0.03 2.25
Iburengerazuba 84 6.34 0.91 1.14 3.57 84 0.39 0.91 0.03 4.45
Kabarole 80 4.13 0.94 1.72 5.48 80 0.44 0.91 0.23 4.27

3.2.3 Strategy 3: spiking of the regional models

For all regions, spiking the regional models with up to 20
local samples from each corresponding regional spiking set
K; consistently produced lower prediction errors (Fig. 5)
compared to strategy 1 and strategy 2. For Haut-Katanga,
Tshopo, Tshuapa, and Iburengerazuba, the RMSE;eq for TC
and TN could be reduced with 10 to 13 spiking samples and
did not change substantially thereafter (Fig. 5). In contrast,
for South Kivu and Kabarole, RMSE;eq values were mini-
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mized, with 16 or more spiking samples from each target re-
gion (Fig. 5). To present the strong and contrasting effect of
foregoing any spatial extrapolation in strategy 3, the results
for 20 spiking samples are presented in Table 3 and Fig. 4.
The strongest reduction of the RMSEeq for TC in strat-
egy 3 (with 20 spiking samples) compared to strategy 2 (no
spiking) was achieved for Kabarole (4.44 gkg™!), Iburenger-
azuba (1.62 gkg™!), and South Kivu (1.56 gkg™"), followed
by Tshuapa, Haut-Katanga, and Tshopo, which decreased
by 0.45-0.93 gkg™!. Similarly, shifting from strategy 2 to 3
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Figure 4. Predicted vs. measured total carbon (TC) and total nitrogen (TN) for soil samples of the six central African regions. Predictions for
each region were made using memory-based learning and (i) the large-scale continental soil spectral library (AfSIS SSL; strategy 1); (ii) the
remaining five central African regions together with the AfSIS SSL (strategy 2); and (iii) 20 local spiking samples from each target region,
together with the remaining five central African regions and the AfSIS SSL (strategy 3). A 1: 1 line is indicated as a visual aid.
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had the strongest effect on the RMSEeq for TN for South
Kivu (0.2gkg™!), for Kabarole (0.2gkg™!), and for Ibu-
rengerazuba (0.15 gkg™!), whereas differences were smaller
for Haut-Katanga, Tshuapa, and Tshopo (0.03-0.06 gkg™").
Strategy 3 also resulted in predictions that better represented
the measured values (consistently higher Rgred and RPIQpred
values than in strategy 1 or 2; Table 3). The Kabarole region
showed the best predictive performance for TC in strategy 3
(RPIQpyeq of 5.48), followed by Iburengerazuba, South Kivu,
Haut-Katanga, and Tshuapa (RPIQpeq 2.22-3.57). For TN,
Iburengerazuba, Kabarole, South Kivu, Tshuapa, and Haut-
Katanga showed accurate predictions (RPIQpreq of 1.87-
4.45). RPIQpreq values for the predictions of TC and TN for
Tshopo were less than 2 (RPIQpeq TC: 1.43 and RPIQpeq
TN: 1.62). However, the trend from strategy 1 to strategy 3
was a clear reduction in prediction errors and an increase in
accuracy.

4 Discussion

4.1 Strategy 1 and strategy 2: using soil spectral
libraries outside of their respective geographical
domains

Our analysis shows that TC and TN in six regions of our
CSSL can be reasonably well predicted through the use of
existing SSLs comprised of soils from completely differ-
ent geographical areas and without any local samples using
MBL methods (RMSEreq < 9 gkg™! TC and < 0.17 gkg™!
TN, Table 3). The resulting prediction errors were compa-
rable to other large-scale MIR prediction studies (e.g., Dan-
gal et al., 2019; Angelopoulou et al., 2020) and also to other
soil infrared studies, which analyzed geographical extrapo-
lation possibilities (e.g., Padarian et al., 2019; Briedis et al.,
2020; Gomez et al., 2020). The advantage of using MBL as
the method to build prediction models is that it finds sim-
ilar spectral observations for every new observation to fit
suitable models. This approach works efficiently since spec-
tral similarity is in fact reflecting the similarity between ob-
servations in terms of soil composition, information which
is largely contained in the MIR features of a sample. This
means that the predictive success of MBL models largely
depends on the quality of the spectra dissimilarity methods
used to find spectral neighbors. In other words, MBL can
be described as a method driven by compositional similarity
search. The improved prediction accuracy (lower RMSEeq
and higher RPIQpq) when reducing extrapolation (strategy
2) can be explained by the addition of more proximal central
African soil samples to the library that are more similar to
each predicted region. The continental AfSIS SSL is missing
data for most of central Africa (Fig. 1); none of the tropi-
cal forest soils with high contents of organic carbon or with
distinctive mineral-organic composition are covered by this
large-scale SSL. Naturally, this variability impacts the gen-
eralization ability of any predictive model or modeling strat-
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egy. Moreover, variance arising from instrument and refer-
ence laboratory differences was avoided through the use of
local models. However, it is not clear why Kabarole exhib-
ited higher prediction errors in strategy 2. A possible reason
could be random variance (Fig. 4) or nonlinearity. Two re-
gions (South Kivu and Tshuapa) did not show any substan-
tial changes on RMSEpreq and RPIQpreq values for TC when
comparing strategy 1 and strategy 2. Note that both South
Kivu and to some extent also Tshuapa cover a distinct score
space in Fig. 3 and therefore are not well represented by the
remaining central African regions, nor by the AfSIS SSL.

All central African regions from the CSSL show large
variability in TC and TN contents (Fig. 2) and contain sam-
ples from various land cover (forest/croplands), altitudes (Ta-
ble 2), and parent materials. These differences suggest that
soils have developed and been transformed under a vari-
ety of environmental conditions. For example, high diversity
in organic compounds and their stabilization in soils (i.e.,
organo—mineral association, complexation, aggregation) can
introduce nonlinear relationships that are difficult to predict
with locally linear calibration methods (i.e., memory-based
learning in combination with PLS regression). Thus, we con-
clude that the particularly high soil diversity in these two re-
gions, in terms of biogeochemical and physical properties,
introduces additional complexity into the soil spectral pre-
diction workflow. Similarly high RMSEs have been shown
in other studies for samples with organic carbon higher than
150 gkg ™" (Nocita et al., 2014). As in our study, these high
errors were attributed to high TC contents. To improve pre-
diction accuracies for these diverse regions, more data are
needed. The creation of subsets from large spectral libraries
via spectral similarities, for example, has been shown to be
effective to train calibration models (e.g., Wetterlind and
Stenberg, 2010; Clairotte et al., 2016; Sanderman et al.,
2020). Hence, in order to reduce uncertainties for regions
in central Africa that are diverse in terms of soil chemical
composition, in particular for the Great Lakes region, there
is a pressing need to fill the existing gaps in the continental
library by gathering more data on the ground.

4.2 Strategy 3: effect of spiking with local samples on
prediction performance

The spiking of the calibration models with local target sam-
ples had a positive effect for all included regions (Fig. 5 and
Table 3). Kabarole, Iburengerazuba, and South Kivu, which
showed the most substantial reductions of RMSEeq for TC
and TN by spiking, cover different land uses, high altitudes
along the Albertine Rift, and larger climatic ranges (Table 2).
These soils are not adequately represented by the continen-
tal AfSIS SSL, nor by the remaining central African regions,
and therefore exhibited a strong effect when spiked with lo-
cal soil data. Although the effect of spiking on RMSEeq for
TC and TN was somewhat smaller for the other included re-
gions (Haut-Katanga, Tshopo, and Tshuapa), it still produced
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Figure 5. Root mean square error of predicted total carbon (a) and total nitrogen (b; RMSEpeq) for the six regions of central Africa built
from the pooled continental library (AfSIS SSL) together with the five remaining central African regions and 0 up to 20 spiking samples.
No spiking samples represents strategy 2, and 1 up to 20 spiking samples shows strategy 3. The 20 spiking samples were selected from each
particular target area and added stepwise to the predictive models in order to find the lowest number of spiking samples that reduces the

prediction accuracy to a satisfactory tolerance level.

noticeable improvements compared to strategy 1 and strat-
egy 2 (smaller RMSEeq and larger RPIQpeq values). The
TC and TN ranges of Haut-Katanga, Tshopo, and Tshuapa
were narrower, and they also seem to be better represented
by each other and by the AfSIS SSL (with the exception of a
few samples of Tshuapa; Fig. 3). In these three regions, suf-
ficiently similar spectra were available, and the MBL found
the required neighbors to build accurate models and predict
TC and TN, thus lowering the positive effect of spiking. Ad-
ditionally, the weaker influence of spiking on soils of Tshopo
(RPIQpred TC: 1.43 and RPIQpeq TN: 1.62) can be explained
by an outlier in the predictions (Fig. 4) and a slightly uneven
distribution of the reference data between the validation and
spiking sets (Fig. 2). In summary, spiking has already been
shown to improve performance (e.g., Guerrero et al., 2014;
Seidel et al., 2019; Barthes et al., 2020) and also proved its
value in our study. However, a threshold of 20 samples poses
non-negligible additional costs for laboratory reference anal-
ysis, and the benefit in terms of gain of accuracy by spik-
ing depends on the region and is not always guaranteed. In
some cases, however, a smaller number of spiking samples
can substantially reduce the RMSEpeq (€.g. Iburengerazuba
and Kabarole). The required prediction accuracy and addi-
tional investments depend hereby on the field of application.
The achieved predictions and their errors from this study are
more than satisfactory for the study of TC and TN dynam-
ics and will improve the availability of high-resolution soil
data of central Africa. Thus, spiking is recommended when
soils are highly variable and show large distances to existing
spectral libraries.
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4.3 Suggestions for building new models and extending
the existing spectral library

Our regional predictions of TC and TN show promising re-
sults when analyzing soils from geographically distinct areas
in central Africa that are not covered by the continental Af-
SIS SSL (Fig. 1). Six central African regions were predicted
for soil TC and TN with sufficient accuracy using the large-
scale AfSIS soil spectral library only. The general positive
effect of adding geographically closer samples to the AfSIS
SSL (strategy 2) underlines the usability of spectral libraries
for new regions. The generally positive effect of strategy 3,
spiking of all regional predictions for TC and TN with sam-
ples from the target area, encourages the future amendment
of currently existing libraries to improve prediction accuracy.
To improve future soil analyses and to extend the geographi-
cal area covered by an SSL, we suggest the following work-
flow:

1. Preprocessing. Different spectral preprocessing meth-
ods influence model and prediction performance. We
suggest selecting the best preprocessing strategies using
spectral projections and minimizing the reconstruction
error (see Sect. 2.4).

2. Estimation of uncertainty for new samples. When ana-
lyzing new soil samples from a region which is not cov-
ered by the existing SSL, samples with different compo-
sition and hence chemical properties are more likely to
be introduced. Samples with high distances in the score
space to the SSL cannot be predicted accurately with
a high certainty, since they are often highly divergent
from the SSL. We recommend that a preliminary graph-
ical inspection of resampled and preprocessed spectra
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can already allow for recognition of differences. A fur-
ther dimension reduction (e.g. with a PCA) with a sub-
sequent 2D or 3D visualization of the first factors pro-
vides additional insights into dissimilarity.

3. Reference analysis for independent validation. If the
new samples are from a completely new region or the
new sample set tends to differ from the SSL, a certain
number of validation samples is recommended to test
for prediction accuracy. The number is dependent on the
similarity/dissimilarity to the SSL.

4. Search for nearest neighbors and training of a model.
Run an MBL algorithm to find the nearest neighbors
of the new set and train a subsequent weighted average
PLS regression.

5. Model validation. For predicting soil TC and TN and
quantifying the error of these predictions in new geo-
graphical regions, a new model validation is required.
The nearest neighbor validation is a suitable method, as
demonstrated in this study.

6. Data and libraries made available to the community.
The created CSSL is freely available to use and build
upon at our GitHub repository at https://doi.org/10.
5281/zenodo.4351254 (last access: 20 December 2020).
As shown with the AfSIS SSL, the application of al-
ready existing libraries and the extrapolation to new re-
gions is accurate and suitable to estimate soil properties.
However, to make predictions more accurate, especially
for more diverse, heterogeneous, and complex soils,
more data are required. As demonstrated, the addition of
new geographical regions improves the overall predic-
tion accuracy when more proximal central African re-
gions were added to the large-scale library. These results
encourage the use and amendment of existing libraries,
rather than the construction of new, separate, and exten-
sive databases. Given the existing distribution of sam-
ples in the new CSSL, it is especially important to in-
crease the number of forest soils with high TC contents,
which represent a large portion of the Congo Basin. The
future enlargement of the CSSL, preferably facilitated
by our suggested workflow, is crucial to fill the gap of
soil information in this highly understudied part of the
world and can be assisted by the soil science community
by adopting a sharing-oriented open data policy.
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5 Conclusions

Our study presents the results and workflow for building the
first central African SSL for predicting soil properties (TC
and TN) using lab-based MIR spectroscopy in a crucial but
understudied area of the African continent. Extrapolations
were possible for central Africa and for all the six selected re-
gions. Our results further demonstrate how MBL algorithms
are useful to find spectral similarities and reduce the need
for spiking when a new set covers the same score space as
the existing library. These encouraging insights highlight the
utility of spectral libraries for future applications, since they
are not necessarily limited to certain geographical areas. Our
approach of augmenting a smaller SSL. with a continental
SSL, even when scanned on different instruments, leads to
reasonably accurate predictions for new regions, which al-
lows for analyses of TC and TN dynamics in soils but also
meets a competitive cost-benefit trade-off. Furthermore, the
CSSL fills an appreciable continental gap of the continental-
scale AfSIS SSL and contributes to covering an important
range of soil variability with spectral data, particularly from
tropical forests. However, in order to improve the accuracy of
predicting soil organic matter across regions, especially for
soil compartments with high TC and TN contents, our study
highlights the need to extend the existing library into new re-
gions. The inclusion of more samples and regions, in particu-
lar with more (varying) data of humid tropical forest soils, is
crucial to fill existing gaps. Combining spectral libraries will
allow for fast analyses of soil samples and provide spatially
explicit data across humid tropical Africa.
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Appendix A
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Figure A1. Locations and resampled spectra for the sampling regions (six selected central African regions with a o symbol and the remaining
four regions with a v symbol). All samples are included in the archive of the spectral library for central Africa. For the Democratic Republic
of Congo (DRC) and Rwanda (RWA), the regions correspond to provinces; for Uganda (UGA), the sampling region corresponds to a district.
The average spectra of each region are shown (bold line) along with the individual sample spectra (transparent lines). Base map created using

Natural Earth.
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Table A2. Summary of the reference data for total carbon (TC) and total nitrogen (TN) of the two soil spectral libraries for central Africa
(CSSL) and for continental sub-Saharan Africa (AfSIS SSL).

SSL Region covered TC (gkg™ 1) ‘ TN (g kg_l)
n Mean Median Min Max ‘ n Mean Median Min Max
Haut-Katanga 119 11.31 9.66 1.26 34.66 119 1.10 1.04 0.44 2.92
South Kivu 367 35.37 29.28 598 182.10 368 3.06 2.40 0.68 15.02
Tshopo 134 13.84 12.37 4.00 56.69 149 1.02 0.90 0.20 4.46
Tshuapa 738 12.64 11.64 3.71 47.42 738 0.95 0.87 0.17 3.94
CSSL Iburengerazuba 104 26.31 22.69 1.49 93.85 104 1.73 1.54 0.11 5.48
Kabarole 100 17.69 11.95 0.77 53.76 100 1.68 1.21 0.11 5.05
Equateur 12 13.17 10.19 1.24 50.53 12 0.75 0.75 0.23 1.37
Bas-Uélé 49 10.93 9.64 2.73 28.37 49 0.87 0.73 0.24 2.25
North Kivu 4 310.16 319.67 189.65 411.65 4  19.32 18.04 1196 29.24
Kongo Central 40 16.78 12.41 3.36 54.96 40 1.38 1.18 0.44 4.88

AfSIS SSL Sub-Saharan Africa 1902 12.37 7.82 0.84 112.88 | 1902 0.82 0.53 0.04 6.59
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Code and data availability. Data and R codes are available
on the GitHub repository laura-summerauer/ssl-central-africa
(https://doi.org/10.5281/zenodo.4351254, Summerauer, 2020).
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