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Abstract: We consider the Casimir interaction energy between a plane and a sphere of radius R
at finite temperature T as a function of the distance of closest approach L. Typical experimental
conditions are such that the thermal wavelength λT = h̄c/kBT satisfies the condition L� λT � R.
We derive the leading correction to the proximity-force approximation valid for such intermediate
temperatures by developing the scattering formula in the plane-wave basis. Our analytical result
captures the joint effect of the spherical geometry and temperature and is written as a sum of
temperature-dependent logarithmic terms. Surprisingly, two of the logarithmic terms arise from the
Matsubara zero-frequency contribution.

Keywords: Casimir effect; scattering approach; plane-sphere geometry; thermal corrections

1. Introduction

The Casimir effect is a striking consequence of the zero-point energy of the quan-
tum electromagnetic field. The geometry studied by Casimir himself was given by two
planar perfectly-reflecting plates in vacuum, which experience an attractive force [1,2].
However, due to parallelism issues, most experiments are performed using either a
plane-sphere [3–10] or a sphere-sphere [11–13] geometry (for reviews see [14–18]).

In contrast to the well understood plane-plane geometry, an exact theoretical formal-
ism for the plane-sphere [19,20] and the sphere-sphere [21] geometries became available
only with the advent of the scattering approach [22,23]. However, experimental data for
the Casimir force continued to be compared with theoretical results obtained within the
proximity-force approximation (PFA) due to Derjaguin [24] as numerical implementations
of the scattering formula for experimentally relevant geometrical aspect ratios were not
available until very recently [25–28]. Within the PFA, the Casimir energy is obtained from
Lifshitz’s formula for parallel planes [29–32] by averaging over the local surface-to-surface
distance [33].

Starting from the exact scattering approach for spherical surfaces, the PFA result was
obtained [34] as the leading asymptotics for large sphere radius R from a WKB saddle-
point contribution [35–38]. The saddle point has a direct physical interpretation in terms
of specular reflection at the points of closest approach on each interacting surface [34].
Carrying out the semiclassical approximation up to the next-to-leading order, the zero-
temperature leading order correction to PFA [39,40] was re-derived and shown to be mostly
due to corrections to the WKB approximation for the Mie scattering amplitudes [41].

Investigations of the leading-order correction to PFA became particularly relevant
on account of recent experiments [13,42–45] probing larger aspect ratios L/R where L
represents the distance of closest approach. In those experiments, thermal effects have to
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be considered since the contribution from thermal photons becomes more important as
the distance L is increased [46–50], especially when modelling experiments with colloidal
suspensions [11,12] with a near index matching at non-zero Matsubara frequencies [51].
Thus, a theoretical approach taking into account both thermal and beyond-PFA geometrical
effects is required in most cases where a measurable deviation from PFA is expected.

In this paper, we derive the analytical leading-order correction to the PFA result for
intermediate temperatures satisfying L � λT � R, where λT = h̄c/kBT is the thermal
wavelength. Such condition holds in typical Casimir experiments as λT ≈ 7.6µm at
T = 300 K. We consider the plane-sphere setup within the perfectly-reflecting model
for simplicity. However, our method based on a semiclassical expansion developed in
the plane-wave basis [34,41] can also be applied to the sphere-sphere geometry and to
real materials.

The non-trivial interplay between geometrical and thermal corrections was numeri-
cally demonstrated for a scalar field model within the worldline approach [52,53]. Finite-
temperature numerical implementations of the scattering approach based either on spheri-
cal multipoles [25,26,54–58] or plane waves [28] provided further evidence that the thermal
and curvature effects are strongly correlated. The high-temperature limit is amenable to
analytical [59] and numerical [60,61] calculations based on bispherical coordinates. In the
case of perfect reflectors, the leading-order corrections to PFA for low temperature [62],
L � R � λT , and high temperatures [60], λT � L � R, were derived analytically by
considering the asymptotic limit of the scattering matrices in the multipolar spherical basis.

The derivative expansion provides yet another method to obtain the leading-order cor-
rection to PFA [40,63]. It relies on a re-summation of the perturbative expansion around the
parallel-planes geometry [64]. The derivative expansion is implemented by approximating
the perturbative kernel by its power series up to second order in the momentum variable k.
For a scalar field satisfying Neumann boundary conditions, the finite-temperature kernel
is not analytical at k = 0 in the case of three spatial dimensions, and then the derivative
expansion breaks down [65]. This is also the case for the electromagnetic Casimir effect
in three dimensions when considering perfectly-reflecting or plasma mirrors [66]. The
singular behavior of the perturbative kernel indicates that the correction to PFA is of a
nonlocal nature at finite temperatures.

Such non-analytical and nonlocal behavior translates into a correction to PFA con-
taining powers of log(L/R), as first discussed in connection with the high-temperature
regime [67]. We show that Bimonte’s log2(L/R) leading correction arising from the Matsub-
ara zero-frequency contribution [60], which is usually associated to the high-temperature
regime, should also be kept when L� λT � R. By developing the scattering formula in
the plane-wave basis, we re-derive Bimonte’s result as well as the next-to-leading order
correction proportional to log(L/R). The latter turns out to be also required for an accurate
description of experimentally relevant aspect ratios. For the contribution of the non-zero
Matsubara frequencies, we derive a correction proportional to log2(L/λT) by employing
the Euler-Maclaurin sum formula.

The paper is organized as follows. Section 2 presents in a first part the basic tools and
notations required to expand the scattering formula in the plane-wave basis. A second part
discusses the asymptotic expansion in powers of the inverse sphere radius and introduces
general expressions for the leading-order correction to PFA. Section 3 is devoted to an explicit
evaluation of the leading-order correction for individual Matsubara frequencies. A particular
focus will be put on the special case of the zero Matsubara frequency. The results from
this section will be used in Section 4 to derive the leading-order correction to PFA valid for
intermediate temperatures. In the analysis, we will distinguish between the contributions
arising from the geometric optical WKB approximation and from its diffraction correction.
Concluding remarks are presented in Section 5. Appendix A presents the derivation of
the WKB expansion for the Mie scattering amplitudes at nonzero imaginary frequencies,
which is a key ingredient in our approach. A review of the next-to-leading term for the
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saddle-point approximation for the one-dimensional case together with the results for the
multidimensional generalization is given in Appendix B.

2. Asymptotic Expansion of the Casimir Free Energy in the Plane-Wave Basis
2.1. Casimir Free Energy for Plane-Sphere Geometry

We consider a spherical surface of radius R close to a plate as illustrated in Figure 1 and
assume both surfaces to be perfectly reflecting. The plate lies in the xy–plane and the z-axis
perpendicular to it goes through the sphere center. The closest distance between plate and
sphere is denoted by L.

z

R

L

S

P

Figure 1. Sphere (S) of radius R and plate (P) separated by a distance L.

Within the scattering approach [22], the Casimir free energy is written as a sum over
the Matsubara frequencies ξn = 2πnkBT/h̄

F =
∞

∑
n=0

′Fn (1)

with
Fn = kBT tr log

[
1−M(ξn)

]
(2)

and where the prime indicates that the term n = 0 is multiplied by one-half. The operator
M(ξn) describes the round trip of an electromagnetic wave in the empty gap between the
two interacting surfaces. For the geometry shown in Figure 1, the round-trip operator is
decomposed as

M(ξn) = TPSRSTSPRP . (3)

RS and RP are the reflection operators for sphere and plate taken with respect to refer-
ence points at the sphere center and at the intersection between the z-axis and the plate
surface, respectively. TPS describes the translation from the first to the second reference
point over a distance L + R along the z-axis, while TSP accounts for the translation in the
opposite direction.

We expand the logarithm in (2) in powers of the round-trip operatorM(ξn):

Fn = −kBT
∞

∑
r=1

1
r

trM(ξn)
r . (4)

The summation variable r in (4) represents the number of round trips between the two
interacting surfaces. Thus, the Casimir free energy collects all the contributions from one
to infinitely many round trips within the empty cavity bounded by the reflecting surfaces.

We evaluate the trace in (4) in the plane-wave basis {|k, φ, p〉} as defined by the
angular spectral representation [68]. Here, k denotes the projection of the wave vector
onto the xy–plane, φ = ±1 defines the sense of propagation along the z-axis in upwards or
downwards direction, respectively, and the polarization p is either transverse electric (TE)
or transverse magnetic (TM). The projected wave vector k and the Matsubara frequency ξn
jointly define the Wick-rotated axial component of the three-dimensional wave vector
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κ =

√
ξ2

n
c2 + k2 . (5)

The translation operators TPS and TSP are diagonal in the plane-wave basis with
eigenvalues e−κ(R+L). The action of the reflection operator at the planar surface

RP|k,−, p〉 = rp|k,+, p〉 , (6)

conserves the projected wave vector k as well as the polarization p. Here, rp are the
standard Fresnel coefficients for specular reflection which, for the case of perfect reflectors,
are given by rTM = 1 and rTE = −1.

In contrast, k and p are not conserved during a reflection at the spherical surface.
The contribution corresponding to r round-trips in (4) apart from the trace thus implies
an integration over r− 1 intermediate wave vectors k1, . . . , kr−1 and a summation over
intermediate polarizations p1, . . . , pr−1 taking values TE or TM

trM(ξn)
r = ∑

p0,...,pr−1

∫ r−1

∏
j=0

dkj

(2π)2 e−2κj(L+R)rpj〈kj+1,−, pj+1|RS|kj,+, pj〉 . (7)

We use a cyclic index convention such that j = r is equivalent to j = 0. The matrix elements
of the reflection operator RS appearing in (7) can be written in terms of the standard
Mie scattering amplitudes together with coefficients describing the change between the
Fresnel and the scattering polarization basis [34,41]. For the evaluation of the leading-order
(LO) PFA result and its LO correction for the perfectly reflectors case, the relevant matrix
elements effectively reduce to [41]

〈kj,−, TM|RS|ki,+, TM〉 = 2πc
ξκj

S2

〈kj,−, TE|RS|ki,+, TE〉 = 2πc
ξκj

S1

(8)

while the matrix elements involving the coupling between different polarizations do
not contribute, i.e., 〈kj, TM|RS|ki, TE〉 = 〈kj, TE|RS|ki, TM〉 = 0. The Mie scattering
amplitudes S1 and S2 in (8) are given by (A1) of Appendix A. They are functions of the
imaginary size parameter ξR/c and the scattering angle Θ defined through

cos(Θ) = − c2

ξ2 (κiκj + ki · kj) . (9)

As discussed in Appendix A, the Mie scattering amplitudes can be expanded for large
R as [35–38]

Sp = SWKB
p

(
1 +

1
R

sp + O
(

R−2
))

. (10)

with the leading-order contribution given by the WKB expression

SWKB
p = (−1)p ξR

2c
exp

[
2ξR

c
sin
(

Θ
2

)]
(11)

and

s1 =
c

2ξ

cos(Θ)

sin3(Θ/2)
= −

√
2(κiκj + ki · kj)

(ξ2/c2 + κiκj + ki · kj)3/2 (12)

s2 = − c
2ξ

1
sin3(Θ/2)

= −
√

2ξ2/c2

(ξ2/c2 + κiκj + ki · kj)3/2 . (13)
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describing the leading-order corrections.

2.2. Asymptotic Expansion

Evaluating the trace (7) within the lowest-order saddle-point approximation (LO-SPA)
together with the WKB expression (11) for the Mie scattering amplitudes, one obtains by
means of (1) and (4) the Casimir free energy within the proximity-force approximation [34].
This result constitutes the leading term in an asymptotic expansion for large sphere radius
R and can be entirely understood in terms of geometrical optics.

Our aim is to go beyond the proximity-force approximation and to determine the
corrections which are smaller by a factor 1/R. Two corrections need to be taken into
account. Firstly, in the evaluation of the trace (7) one needs to go one order beyond the
LO-SPA. We refer to this correction as next-to-leading order saddle-point approximation
(NTLO-SPA). Since this correction is not as widely known as the LO-SPA, we give some
details in Appendix B. In the evaluation of the NTLO-SPA, the Mie scattering amplitudes
are still to be taken within the WKB approximation and we are thus still within the realm
of geometrical optics. A second contribution to the correction to the proximity-force
approximation arises from the leading correction to the WKB Mie scattering amplitudes as
specified by (10) together with (12) and (13). This contribution takes diffraction into account.
For this second contribution, it is sufficient to evaluate the integrals in (7) within LO-SPA.

Inserting (10) in (7), allows us to express the trace over the r-th round trip in the form

trM(ξn)
r '

(
R

4π

)r ∫
dk0 . . . dkr−1 g(k0, . . . , kr−1)e−R f (k0,...,kr−1) (14)

with

g(k0, . . . , kr−1) = ∑
p=1,2

r−1

∏
j=0

e−2κj L

κj

(
1 +

1
R

sp

)
(15)

and

f (k0, . . . , kr−1) =
r−1

∑
j=0

(
κj + κj+1 −

[
2
(

ξ2
n/c2 + κjκj+1 + kj · kj+1

)]1/2
)

. (16)

Note that sp in (15) depends on the indices j and j + 1 through the respective wave vectors.
The 2r-dimensional integral in (14) is suitable for a saddle-point approximation where

R plays the role of the large parameter. It is straightforward to show that there exists a
continuous family of saddle points

k0 = · · · = kr−1 ≡ ksp (17)

parameterized by ksp. While the saddle-point approximation can be applied in the direc-
tions orthogonal to the saddle-point manifold, in the end we will be left with an integral
over the saddle-point manifold which needs to be evaluated exactly.

As a consequence of the existence of a continuous family of saddle points, the Hessian
matrix of (16) is singular with two vanishing eigenvalues in view of the two-dimensional
character of ksp. In order to cope with the vanishing eigenvalues, it is convenient to
transform the Hessian matrix into its eigenbasis as described in Ref. [41]. For completeness,
we review in the following the basic steps.

On the saddle-point manifold (17), the Hessian matrix can be brought into block-
diagonal form

H =

(
Hxx 0

0 Hyy

)
(18)

with the matrix elements (
Hxx

)
ij =

∂2 f
∂ki,x∂k j,x

∣∣∣∣∣
sp

(19)
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and a corresponding expression for Hyy.
The blocks of the Hessian matrix can be expressed as Hxx = Hyy = (1/2κsp)Γr in

terms of the r× r circulant matrix

Γr =



2 −1 −1
−1 2 −1

−1
. . . . . .
. . . . . . −1

−1 −1 2

 (20)

for r ≥ 3 and where the matrix elements not shown are zero. In the case of two round trips

Γ2 =

(
2 −2
−2 2

)
(21)

(note that the corresponding expression in [41] is missing a factor of 2) while for r = 1
f ≡ 0.

It is now convenient to introduce transformed variables v through

k j,x =
r−1

∑
l=0

Wjlvl,x (22)

with the Fourier matrix

Wjl =
1√
r

exp
(

2πi
r

jl
)

(23)

and correspondingly for the y-direction.
After the transformation, the two blocks of the Hessian matrix are of counter-diagonal form(

WTHxxW
)

jl = λjδj,r−l (24)

with the eigenvalues

λj =
2

κsp
sin2

(
π j
r

)
(25)

and j = 0, 1, . . . , r− 1. As expected, one eigenvalue (j = 0) vanishes for each block and the
variables v0,x and v0,y parametrize the two-dimensional saddle-point manifold.

Applying the saddle-point approximation (A14) with (A16) and (A18), (14) can now
be expressed as [41]

trM(ξn)
r =

R
2r

∫ ∞

ξn/c
dκsp κr

sp

[
F0 +

1
R

F1 + o
(

R−1
)]

, (26)

where we have transformed the variables v0,x and v0,y back to the wave vector at the saddle
point. Note that in contrast to the big-O symbol used earlier, the little-o symbol is used to
denote terms which change asymptotically faster than indicated by the argument [69]. Here,
the last term collects all terms decaying faster than R−1 for large radii without specifying
the precise dependency on R.

The first and second terms in the integrand of (26) correspond to the LO-SPA and
NTLO-SPA, respectively, and are given by

F0 = g|sp (27)

and

F1 = g|sp

(
∑
ijk

fijk f ī j̄ k̄

12λiλjλk
−∑

ij

fiīj j̄

8λiλj

)
+ ∑

i

giī
2λi

(28)
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where we have introduced the shorthand notation ī = r− i. The summation runs over the
indices from 1 to r− 1 and implies also a summation over the corresponding components
x and y. The indices at the functions f and g denote derivatives with respect to the
corresponding components of the variables v evaluated at the saddle point. Note that in
comparison with (A18) the second and the fourth term are missing which were shown in
Ref. [41] not to contribute to (28).

3. Leading-Order Correction for Individual Matsubara Frequencies

For an asymptotic expansion in powers of the inverse sphere radius, the radius R has
to be compared with the other length scales of the problem. While the radius can be chosen
larger than c/ξn for all n > 0, the zero Matsubara frequency ξ0 may require special care.
Interestingly, it turns out that the leading order terms for the matrix elements (8) and as a
consequence for the trace (7) hold for all Matsubara frequencies. The expressions for the
zero Matsubara frequency can thus be obtained by taking the zero-frequency limit of the
results for positive Matsubara frequencies. Therefore, the PFA result holds for arbitrary
temperatures including the high-temperature limit determined by the contribution of the
zero Matsubara frequency [34].

The situation is different when the next-to-leading order term is considered. In
contrast to the contributions due to positive Matsubara frequencies, the zero-frequency
contribution cannot be obtained from the known diffraction correction [35–38] to the
WKB Mie scattering amplitudes (11). Proceeding on that basis would yield an infrared
divergence in the corresponding integral (26) over ksp.

We will start by discussing the case of positive Matsubara frequencies in Section 3.1
where we make use of results obtained earlier in Ref. [41]. In Section 3.2, we will then derive
the asymptotic expansion of the zero-frequency contribution to obtain both the NTLO and
the next-to-next-to-leading order (NNTLO) terms. The latter turns out to be non-negligible
for experimentally relevant aspect ratios and then should be kept alongside the former,
which was first derived in Ref. [60] by the multipolar approach. In Section 3.2, we focus on
the TE zero-frequency contribution, as the TM correction can be more easily derived from
an exact analytical representation obtained either by using bispherical coordinates [59] or
by developing the plane-wave basis representation (7) [70].

3.1. Positive Matsubara Frequencies

We first turn to the discussion of Matsubara frequencies ξn with n > 0 and consider
the two contributions to the integrand in (26). The leading-order term (27) is obtained by
evaluating (15) at the saddle point and can be decomposed into contributions from the two
polarizations as

F0 = gTE + gTM (29)

with

gTE =
e−2rκspL

κr
sp

(
1 +

r(ξ2
n − 2c2κ2

sp)

2c2κ3
spR

)

gTM =
e−2rκspL

κr
sp

(
1− rξ2

n
2c2κ3

spR

)
.

(30)

The evaluation of the next-order term (28) is more involved. We refer the reader to
Appendix A in [41] for details. There, it was found that

F1 = −
(r2 − 1)

(
rLκsp(c2κ2

sp + ξ2
n) + ξ2

n

)
6rc2κ3

sp

e−2rκspL

κr
sp

. (31)

The leading term in the 1/R expansion corresponding to the PFA result is determined
entirely by local scattering channels describing specular reflection at the point of closest
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approach on the spherical surface. It can thus be completely understood in terms of
geometrical optics. In contrast, the NTLO term consists of two contributions

[trM(ξn)
r]NTLO = ∑

p=TE,TM

(
[trM(ξn)

r]
p
d + [trM(ξn)

r]
p
go

)
(32)

of different physical origin. The first term carrying the subscript “d” captures the effect
of diffraction as it arises from the LO correction to the WKB approximation for the Mie
scattering amplitudes taken at the LO-SPA. The second term with subscript “go” is still
calculated within the LO geometric optical WKB approximation and contains the NTLO-
SPA. Physically, it amounts to displacing the point where specular reflection takes place
from the point of closest approach between the two surfaces. Note that taking the diffraction
contribution (which is already a NTLO term) into account within the NTLO-SPA would
lead to a higher order contribution which can be neglected here.

In correspondence with the zero-temperature results derived in Ref. [41], the different
NTLO contributions obtained from the expansion of (7) for an individual Matsubara
frequency are given by

[trM(ξn)
r]TE

d =
1
8
[
(u2 − 4)E1(u)− (u− 1)e−u] (33)

[trM(ξn)
r]TM

d = −1
8
[
u2E1(u)− (u− 1)e−u] (34)

[trM(ξn)
r]

p
go = − (r2 − 1)e−u

12r2 , p = TE, TM . (35)

Here, E1 denotes the exponential integral function [71] and u = 2Lrξn/c. The two polariza-
tions provide identical contributions to the geometrical optics term.

After inserting (33)–(35) into the contribution (4) of an individual Matsubara frequency
to the Casimir free energy, we sum over multiple round-trips to find the NTLO contribution
for any non-zero Matsubara frequency

[Fn]NTLO = [Fn]
TE
d + [Fn]

TM
d + [Fn]go (n 6= 0) (36)

consisting of the contributions from diffraction

[Fn]
TE
d = −[Fn]

TM
d − h̄c

2λT

∫ ∞

1
dt

log(1− e−4πτnt)

t
(37)

[Fn]
TM
d =

h̄c
8λT

[
(4πτn)2

∫ ∞

1
dt

e−4πτnt

t(1− e−4πτnt)2 − 4πτn
e−4πτn

1− e−4πτn − log(1− e−4πτn)

]
(38)

and from geometrical optics

[Fn]
p
go = − h̄c

12λT

[
Li3
(

e−4πτn
)
+ log

(
1− e−4πτn

)]
, p = TE, TM , (39)

where Li3 denotes the trilogarithm [71]. These results are valid for arbitrary values of
the ratio τ = L/λT as long as R � L, λT . In Section 4, when considering the case of
intermediate temperatures R� λT � L, we will expand (37)–(39) for τ � 1.

3.2. Zero Matsubara Frequency

We now turn to the zero-frequency contribution F0 to the Casimir free energy and
determine the corrections to the PFA result. At vanishing frequency, the reflection matrix
elements of the sphere are diagonal with respect to polarization [34]. For the TM contribu-
tion, the plane-wave approach allows for the derivation of an exact analytic expression in
the more general case of two spheres of arbitrary radii [70]. The previously known result
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for the plane-sphere geometry [59] is recovered as a particular case. The leading order PFA
correction is then found to be proportional to log(L/R)

FTM
0 ' − kBT

4

[
ζ(3)

x
− 1

6
log(x) + o(log(x))

]
, (40)

where we have introduced the dimensionless quantity x = L/R and ζ(3) ≈ 1.202 denotes
a particular value of the Riemann zeta function [71]. In the remaining part of this section,
we focus on the asymptotic expansion of the TE contribution to F0 when the sphere radius
R becomes large compared to the surface-to-surface distance L.

The low-frequency limit of the reflection operator at the sphere has been derived in [34].
With Equations (8), (A9) and (B6) of Ref. [34], the matrix elements for TE polarization read

〈kj+1,−, TE|RS|kj,+, TE〉 = 2πR
k j+1

∞

∑
`=1

`

`+ 1

y2`
j+1,j

(2`)!
(41)

with
yj+1,j = R

√
2(kj+1 · kj + k j+1k j) . (42)

For large spheres, for which all yj+1,j � 1, the asymptotics of the reflection matrix elements
(41) can be obtained by replacing the sum over ` by an integral and using Stirling’s
approximation for the factorial. The asymptotics of the integral over ` can then be found
by the leading-order saddle-point approximation with a saddle point at `sp = yj+1,j/2. For
the asymptotics of the reflection matrix elements (41), we then find

〈kj+1,−, TE|RS|kj,+, TE〉 = πR
k j+1

yj+1,j

yj+1,j + 2
eyj+1,j

(
1 + O

(
1

R2

))
. (43)

Formally, the zero-frequency limit of (10) could be reproduced by expanding the second
factor. However, we need to keep the full expression to avoid a divergence in the integrals
(45) and (52) below. When applying the saddle-point approximation to (14), the function
(15) thus has to be replaced by

g(k0, . . . , kr−1) =
r−1

∏
j=0

e−2kj L

k j

yj+1,j

yj+1,j + 2
(44)

while in (16) it is sufficent to set ξn = 0.
We now evaluate the contributions to (26) due to LO-SPA and NTLO-SPA separately.

For the LO-SPA of the trace over r round trips, we then find

[trM(0)r]TE
LO−SPA '

1
2rx

∫ ∞

0
dt
(

t
t + x

)r
e−2rt , (45)

where we have substituted t = kspL. Since the sphere radius is much larger than the
distance between plane and sphere, we can approximate the integrand in (45) for x � 1
and write

[trM(0)r]TE
LO−SPA '

1
2rx

∫ ∞

0
dt exp[−r(2t + x/t)]

=
1

r
√

2x
K1(2r

√
2x) (46)

in terms of the modified Bessel function of the second kind K1 [71]. The terms neglected
here contribute to higher order in the asymptotic expansion.

In view of (4) we need to evaluate the sum over the number r of round trips of (46)
weighted with an additional factor 1/r. The presence of the Bessel function leads us to
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employ a method based on the Mellin transformation [72]. The round-trip sum can then be
expressed as an integral

∞

∑
r=1

K1(2r
√

2x)
r2 =

1
8πi

∫ c+i∞

c−i∞
ds Γ

(
s− 1

2

)
Γ
(

s− 3
2

)
ζ(s)(2x)−s/2 (47)

where Γ(z) is the Gamma function [71] and the integration contour has to be chosen such
that c > 3. The integrand contains a single pole at s = 3, a triple pole at s = 1 and double
poles at s = −2n + 1 with n = 1, 2, . . . Keeping only the pole at s = 3 is equivalent to PFA
and the logarithmic corrections which we are interested in arise from the pole at s = 1.
Evaluating the corresponding residues and neglecting terms of order one and higher, we
find the asymptotic expansion of the free energy due to the LO-SPA as[

FTE
0

]
LO−SPA

' − kBT
4

[
ζ(3)

x
− 1

2
log2(x) + (1− log(2)) log(x) + O(1)

]
. (48)

For the NTLO-SPA, we need to evaluate (28). It turns out that we can partly use the
results obtained for finite frequencies in Ref. [41]. Thus, the expressions for the derivatives
of the function f are obtained from (A13) and (A14) of Ref. [41] by taking ξ → 0. One can
show that the contributions to F1 arising from the derivatives of f cancel out.

In the remaining term in (28), the function g defined in (44) is differentiated with
respect to vi and vr−i. This term can be decomposed into two contributions,

F1 =
D3,1 + D3,2

2
. (49)

D3,1 and D3,2 correspond to double derivatives of the two factors exp(−2k jL)/k j and
yj+1,j/(yj+1,j + 2), respectively. The contribution where a single derivative is taken of each
of those factors vanishes.

The term D3,1 can be obtained from (A15) of Ref. [41] by taking the zero-frequency
limit. We then find

D3,1 = − (r2 − 1)L
3

g|sp . (50)

In order to determine the term D3,2, we follow the procedure described in Appendix A of
Ref. [41] and find

D3,2 = − (r− 1)(3 + (r + 1)kspR)
6ksp(1 + kspR)2 g|sp . (51)

The NTLO-SPA of the trace over r round trips can then be expressed as

[trM(0)r]TE
NTLO−SPA = − r− 1

12r

∫ ∞

0
dt
[

r + 1 + x
3x + (r + 1)t

2t(x + t)2

](
t

t + x

)r
e−2rt , (52)

where we again used the substitution t = kspL. For x � 1, we can write

[trM(0)r]TE
NTLO−SPA ' −

r2 − 1
12r

∫ ∞

0
dt
[
1 +

x
2t2

]
e−r(2t+x/t)

= − r2 − 1
6r

√
2x K1(2r

√
2x) .

(53)

Note that the second term in the square bracket above needs to be kept, as it is asymptot-
ically of the same order as the first one. Performing the sum over round trips using the
method of Ref. [72], we find the NTLO saddle-point contribution to the Casimir free energy
for TE polarization as [

FTE
0

]
NTLO−SPA

' − kBT
24

log(x) . (54)
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The total TE contribution to the free energy then becomes

FTE
0 '

[
FTE

0

]
LO−SPA

+
[
FTE

0

]
NTLO−SPA

= − kBT
4

[
ζ(3)

x
− 1

2
log2(x) +

(
7
6
− log(2)

)
log(x) + o(log(x))

]
.

(55)

To verify that the asymptotic expression for the zero-frequency contribution to the
Casimir free energy due to TE polarization given by (55) is correct, we compare with the
corresponding numerically exact result. In Figure 2, the difference between the asymptotics
and the numerical exact result is shown as a function of x = L/R. As this difference
is decreasing with decreasing values of x and thus subleading compared to log(x), our
numerical comparison shows that the asymptotic expansion (55) is indeed correct.

10−5 10−4 10−3 10−2 10−1

0.26

0.28

0.3

x = L/R

([
F

T
E

0
] e
x
a
c
t
−
[F

T
E

0
] a
sy

m
p
.)
/k

B
T

Figure 2. Numerical analysis of the correction to formula (55). The dots show the difference between
the numerically exact values of the zero-frequency contribution to the Casimir free energy for TE
polarization and the corresponding values according to formula (55). This difference is shown as a
function of x = L/R.

The complete asymptotic expansion for the zero-frequency contribution is obtained
by adding the contributions of the TM polarization (40) and the TE polarization (55) and
will explicitly be given and used in the next section in (60).

4. Leading-Order Correction to PFA at Intermediate Temperatures

The contribution of thermal fluctuations to the leading-order correction to the PFA
result for the Casimir free energy is derived as the difference between the Matsubara
sum of [Fn]NTLO and the corresponding integral representing the zero-temperature limit.
Such a difference is usually evaluated with the help of the Abel-Plana [73] or the Poisson
summation [50] formula. Since the zero-frequency contribution was treated separately in
the previous section, we found it more convenient to make use of the Euler-Maclaurin
formula in the form

∞

∑
n=1
Fn =

∫ ∞

1
dnFn +

F1 +F∞

2
+

∞

∑
m=1

B2m

[
F (2m−1)

∞ −F (2m−1)
1

]
(2m)!

, (56)

where F (2m−1)
n denotes the (2m − 1)-th derivative of Fn with respect to n taken as a

continuous variable and B2m are the Bernoulli numbers [71].
We apply the Euler-Maclaurin formula (56) to the sum of the NTLO Matsubara contri-

butions [Fn]NTLO given by Equations (36)–(39). These terms decay for large frequencies so
that [F∞]NTLO and all its derivatives vanish. Only the first Matsubara frequency contributes
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to the second and third terms in (56). For τ = L/λT � 1, the leading contribution to
[F1]NTLO arises from the TE diffraction term (37)

[F1]
TE
d '

h̄cτ

4L
log2(τ) . (57)

Relative to the zero-temperature NTLO result, the TE diffraction contribution is O(τ log2(τ)),
whereas both the TM diffractive contribution (38) and the geometric optical contributions (39)
are O(τ log τ). In addition, the derivatives of [F1]NTLO appearing in the Euler-Maclaurin
formula (56) are also O(τ log τ) and hence can be neglected.

In order to connect the integral appearing on the right-hand side of (56) with the
zero-temperature result, we need to account for the difference in the lower bound. Thus,
we obtain the NTLO terms from (56) as

∞

∑
n=1

[Fn]NTLO ' [F (T = 0)]NTLO −
∫ 1

0
dn [Fn]NTLO +

[F1]
TE
d

2
(58)

where [F (T = 0)]NTLO denotes the NTLO contribution to the free energy in the zero-
temperature limit. The integral subtracted on the right-hand side of (58) is of the same order
as [F1]

TE
d and its leading-order contribution also arises from the TE diffraction term (37).

We find
∞

∑
n=1

[Fn]NTLO ' [F (T = 0)]NTLO −
h̄cτ

8L
log2(τ) . (59)

Finally, it is still necessary to add the Matsubara zero-frequency contribution [F0]NTLO

to (59) in order to obtain the full NTLO Casimir free energy from (1). Naively, one could
expect that [F0]NTLO would not contribute in the limit τ � 1. However, this term is relevant
for intermediate temperatures L/R� τ � 1 as far as the correction to PFA is concerned.
In Section 3.2, we have found that the zero-frequency contribution to the Casimir free
energy with (40) and (55) reads, up to NNTLO,

F0 ' −
h̄cτ

4L

[
2ζ(3)

x
− 1

2
log2(x) + (1− log(2)) log(x) + O(1)

]
, (60)

where x = L/R was introduced at the beginning of Section 3.2. The NTLO and NNTLO
zero-frequency contributions correspond to the second and third terms on the right-hand
side of (60). They are both asymptotically larger than the thermal correction arising from
nonzero frequencies given by (59) when x � τ � 1. In practice, however, all those
contributions are comparable in the case of experimentally relevant values of τ and x, as
illustrated by the numerical example discussed below.

As we want to focus on the interplay between geometrical and thermal effects, we
first define the total thermal correction to the Casimir free energy

δF (T) = F (T)−F (T = 0). (61)

and introduce the deviation of the thermal correction from the PFA result relative to the
zero-temperature PFA free energy

∆ =
δF (T)− δFPFA(T)
FPFA(T = 0)

. (62)

After taking (59) and (60) into account, we find for intermediate temperatures x � τ � 1

∆ ' 45
π3 xτ

[
− log2(x) + 2[1− log(2)] log(x) + 2 log2(τ) + O

(
log(τ)

)]
, (63)

where the leading neglected terms arise from non-zero Matsubara frequencies.
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In Figure 3, we show the correction ∆ as a function of temperature. The geometrical
aspect ratio is chosen as x = L/R = 10−3, a typical order-of-magnitude in most Casimir
experiments [26]. In the upper panel (Figure 3a), the full Matsubara sum is considered.
The dots represent the exact correction as calculated by the numerical method presented in
Ref. [28], whereas the line corresponds to the analytical approximation (63). In contrast,
in the lower panel (Figure 3b), the contribution of the zero Matsubara frequency has been
disregarded. Note that the sign of ∆ in the two panels differs.

According to the results displayed in Figure 3b, the sum over nonzero frequencies is
well described by the analytical formula derived from (59) in the range of intermediate
temperatures x � τ � 1. The resulting correction is positive, thus reducing the total
correction to PFA. In contrast, the total thermal contribution to the PFA correction, with the
zero-frequency contribution included, is negative in the entire range shown in the figure.
Thus, the strength of the interaction is further reduced with respect to the PFA prediction
due to thermal effects. The zero-temperature result underestimates the total correction
to PFA by a factor of about two at τ ≈ 3× 10−2, indicating the strong interplay between
thermal and geometrical effects [52,53].

0.001 0.01 0.1 1
5 · 10−5

1 · 10−4

2 · 10−4

5 · 10−4

1 · 10−3

2 · 10−3

τ = LkBT/h̄c

∆
n
>
0

10−5

10−4

10−3

10−2

10−1

−
∆

(a)

(b)

Figure 3. Relative thermal correction (62) of the Casimir free energy as a function of temperature
for a geometrical aspect ratio of x = L/R = 10−3. (a) The dots represent the numerically exact full
Matsubara sum and the line corresponds to the analytical asymptotic expansion (63). Note that the
correction ∆ is negative. (b) Contribution ∆n>0 of the positive Matsubara frequencies n > 0. The dots
again represent the numerically exact result while the line corresponds to the analytical asymptotic
expansion derived from (59). For n > 0, the correction to the PFA result is positive.

The zero-frequency contribution plays a significant role in such interplay, as the total
PFA correction and the thermal contribution from nonzero frequencies have opposite signs
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in the entire range shown in Figure 3a. We find good agreement between the data and
our analytical formula (63) for x � τ. Since the zero-frequency contribution becomes
increasingly dominant as the temperature rises above τ ∼ 0.1, formula (63) also provides a
good description even beyond the range of intermediate temperatures.

The results obtained in this section allow for the derivation of the NTLO Casimir
entropy for intermediate temperatures. By adding formula (60) to (59) and neglecting
sub-leading contributions when taking the derivative with respect to temperature, we find

SNTLO '
kB

16

[
2 log2(τ)− log2

(
L
R

)
+ 2(1− log(2)) log

(
L
R

)]
. (64)

The first term on the right-hand side results from the contribution of nonzero frequencies.
The zero-frequency contribution, represented by the second and third terms, corresponds
to a temperature-independent, negative contribution reminiscent of the negative Casimir
entropies found for aspect ratios L/R ∼ 1 or larger [55,58].

5. Conclusions

We have analyzed the leading-order correction to PFA in the plane-sphere geometry
for intermediate temperatures satisfying the condition x = L/R � τ = LkBT/h̄c � 1,
which holds in most Casimir force experiments. Whereas the Matsubara zero frequency is
unimportant for extremely low temperatures satisfying τ � x � 1, it provides a sizeable
contribution to the correction in the case of intermediate temperatures. When considering
its asymptotic limit for R � L, we should keep not only Bimonte’s NTLO term [60],
proportional to xτ log2(x), but also the NNTLO term proportional to xτ log(x) in order to
have an accurate formula for experimentally relevant aspect ratios. We have also derived
an additional logarithmic term of the form xτ log2(τ) by considering the contribution of
nonzero frequencies. As an effect of the logarithmic terms, the zero-temperature result
grossly underestimates the correction to PFA even at the rather low temperatures τ ∼ 10−2

corresponding to typical experiments. Altogether our findings demonstrate the strong
interplay between thermal and beyond-PFA geometrical corrections.
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NTLO-SPA next-to-leading order saddle-point approximation
NNTLO next-to-next-to-leading order
TE transverse electric
TM transverse magnetic
WKB Wentzel-Kramers-Brillouin

Appendix A. Mie Scattering Amplitudes in the WKB Approximation

In this Appendix, we present the derivation of the asymptotic WKB expansion for the
Mie scattering amplitudes [75]

S1(Θ) =
∞

∑
`=1

2`+ 1
`(`+ 1)

[
a`π`

(
cos(Θ)

)
+ b`τ`

(
cos(Θ)

)]
S2(Θ) =

∞

∑
`=1

2`+ 1
`(`+ 1)

[
a`τ`

(
cos(Θ)

)
+ b`π`

(
cos(Θ)

)]
,

(A1)

for polarizations perpendicular and parallel to the scattering plane, respectively. The
angular functions π` and τ` are defined by [75]

π`(z) = P` ′(z)

τ`(z) = −(1− z2)P` ′′(z) + zP` ′(z)
(A2)

in terms of the Legendre polynomials P`, with the prime denoting a derivative with respect
to the argument z.

The Mie coefficients

a`(iξ̃) =
π

2
(−1)`+1 `I`+1/2(ξ̃)− ξ̃ I`−1/2(ξ̃)

`K`+1/2(ξ̃) + ξ̃K`−1/2(ξ̃)

b`(iξ̃) =
π

2
(−1)`+1 I`+1/2(ξ̃)

K`+1/2(ξ̃)
. (A3)

are the electric and magnetic multipole scattering amplitudes, respectively, for perfect
reflectors at imaginary frequencies. Here, I`−1/2(ξ̃) and K`−1/2(ξ̃) denote the modified
Bessel functions of the first and second kinds [71], respectively. We consider the limit of
large radius so that the size parameter ξ̃ ≡ ξR/c� 1. A separate, specific derivation for
the zero-frequency case is presented in detail in Appendix B of Ref. [34].

The scattering angle (9) is of the form Θ = π + iv, with v a non-negative real number
such that cos Θ = − cosh v. According to the localization principle [37], the multipole order
scales as ` ∼ ξ̃ � 1. As a consequence, we approximate the sum over multipoles in (A1)
by an integral over λ ≡ (` + 1/2)/ξ̃. Using the uniform asymptotic expansion for large
orders [76] of the Legendre polynomials in (A2) and of the modified Bessel functions in (A3),
we find (see [77] for details)

Sp(Θ) ≈
∫ ∞

0
dλ g(p)

Mie(λ) exp
[
−ξ̃ fMie(λ)

]
, p = 1, 2 (A4)

fMie(λ) = 2λ sinh−1(λ)− 2
√

1 + λ2 − vλ (A5)

g(p)
Mie(λ) = (−1)p ξ̃3/2

(
λ

2π sinh v

)1/2 (
1 + h(p)

Mie(λ)
1
ξ̃

)
, (A6)

with the auxiliary function

h(p)
Mie(λ) =

(
1

sinh v
− 7

8
coth v

)
1
λ
+

1
4

[
1√

1 + λ2
+

(
2(−1)p +

1
3

)
λ2

(1 + λ2)3/2

]
(A7)

containing the NTLO terms in the expansion of the summand in (A1) for ξ̃ � 1.
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We evaluate (A4) within the saddle-point approximation. The saddle point λs is
determined by the condition f ′Mie(λs) = 0. From (A5), we find

λs = sinh(v/2). (A8)

A similar derivation holds for real frequencies [35–38], in which case the saddle point
has a direct physical interpretation in terms of the impact parameter leading to reflection,
according to geometrical optics, along the direction determined by the scattering angle [78].
The second derivative at the saddle point

f ′′Mie(λs) =
2

cosh(v/2)
. (A9)

is a positive real number, thus allowing for a direct application of the results for the LO-SPA
and NTLO-SPA outlined in Appendix B. We obtain Equations (10)–(13) of Section 2.1 by
expressing the final results for the scattering amplitudes in terms of the complex scattering
angle Θ.

Appendix B. Next-to-Leading-Order Correction in the Saddle-Point Approximation

In the main part of this paper, we need to asymptotically evaluate an integral of
the form

I =
∫

ddx g(x) exp
(
− R f (x)

)
(A10)

for large values R where x = (x1, . . . , xd) is a d-dimensional vector. To keep the discussion
simple, we start with the one-dimensional case and merely state the result for the multi-
dimensional case at the end. Furthermore, we will assume the existence of only a single
saddle point (sp), i.e., a point where the first derivative f ′(x) vanishes, and this point
should lie well inside the range of integration. This will be the case in our application.

Using Laplace’s method, one obtains the well-known leading order of the saddle-point
approximation (LO-SPA) of the integral (A10) as

ILO-SPA =

(
2π

R f ′′sp

)1/2

gsp exp(−R fsp) . (A11)

We assume here that the second derivative f ′′sp at the saddle point is positive. fsp and gsp
denote the value of the functions f (x) and g(x), respectively, at the saddle point.

For our purposes, we also need the next-to-leading-order term of the saddle-point
approximation (NTLO-SPA) which relative to the LO-SPA carries an additional factor 1/R
and which we will derive now. For a nonvanishing second derivative f ′′sp only a region
of width R−1/2 around the saddle point contributes to the integral (A10). We therefore
extend the Taylor expansion in the exponent up to fourth order and expand the exponential
containing the third and fourth order terms into a Taylor series. Keeping only terms
contributing to the LO-SPA and the NTLO-SPA after integration, we can approximate the
exponential by

exp
(
− R f (x)

)
≈ exp(−R fsp) exp

[
−R

2
f ′′spx2

]
×
(

1− R
6

f ′′′sp x3 − R
24

f ′′′′sp x4 +
R2

72
f ′′′sp

2x6
)

.
(A12)

Here, we have assumed for simplicity that the saddle point is located at x = 0. In addition,
we need to expand the function g(x) up to second order

g(x) ≈ gsp + g′spx +
1
2

g′′spx2 . (A13)
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Inserting (A12) and (A13) into (A10) for d = 1, the integration can be carried out and
we obtain

I = ILO-SPA +
1
R

INTLO-SPA + O(R−2) (A14)

with

INTLO-SPA = ILO-SPA

(
1
2

g′′sp

gsp f ′′sp
− 1

2

g′sp f ′′′sp

gsp f ′′sp
2 −

1
8

f ′′′′sp

f ′′sp
2 +

5
24

f ′′′sp
2

f ′′sp
3

)
. (A15)

In the multi-dimensional case, the generalization of the result (A11) for the leading
order is well-known to read

ILO-SPA =

(
2π

R

)d/2 e−R fsp

√
detH

gsp (A16)

with the Hessian matrix

H ≡
 ∂2 f

∂xi∂xj

∣∣∣∣∣
sp


i,j=1,...,d

(A17)

which is assumed to be non-singular. Proceeding along the lines explained for the one-
dimensional case, the next-to-leading term in the saddle-point approximation becomes

INTLO-SPA = ILO-SPA

[
1
2

gijH
ij

gsp
− 1

2
fijkglH

ijHkl

gsp
− 1

8
fijklH

ijHkl

+
1

24
fijk flmn

(
3HijHklHmn + 2HilHjmHkn

)]
(A18)

where the subscript “sp” denotes the evaluation of the function at x = xsp. A derivative
with respect to the i-th component of x with subsequent evaluation at the saddle-point
is represented by a lower index i: fi ≡ ∂ f /∂xi|x=xsp and equivalently for g. Likewise,
higher-order derivatives are denoted by multiple lower indices. Two upper indices denote
the matrix elements of the inverse matrix, Hij ≡ (H−1)ij, and the Einstein summation
convention is implied, i.e., indices occuring both as sub- and superscript within a term are
summed over with values running from 1 to d. The relation between the result (A18) and
the one-dimensional result (A15) is rather straightforward except for the last two terms
in (A18). They account for different index pairings and collapse into a single term in the
one-dimensional case, i.e., the last term in (A15).
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