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Critical currents in both superfluid 3He-A and 3He-B are calculated within a 
weak coupling model. The Fermi liquid correction is explicitly included. As  a 
by-product we obtain the nonlinear superfluid densities in 3He-A and 3He-B, 
which depend strongly on the current. 

1. I N T R O D U C T I O N  

The superfluidity l"z is certainly one of the most  remarkable  charac- 
teristics of the new phases in liquid 3He below 3 mK. In the present  paper  
we will study theoretically the current -dependent  features of superfluid 
3He when a (large) uniform current (with flow velocity vs ~ 10-3-10 -2 vF) is 
applied to the system. In particular we will show that superfluidity can be 
completely destroyed by a large current (i.e., a current larger than the 
depairing critical current), although to our knowledge experiments in the 
presence of such large a current have not been done yet. However ,  we find 
that even a small current affects significantly the quasiparticle energy gap 
as well as the superfluid density. Therefore ,  it is certainly of practical 
interest to study the effects of a uniform current on the propert ies of the 
superfluid phases of 3He, since even a small tempera ture  gradient intro- 
duces an appreciable superflow in liquid 3He. It may be of importance to 
distinguish f rom the outset  two kinds of critical currents; the " textural"  
critical currents 3 and the depairing critical currents. The former  is defined 
as the current that induces a drastic modification in textures associated with 
the condensate.  The associated critical velocity is of the order  of f~A/pv in 
3He-A, where ~A is the Leggett  dipolar shift in N M R  frequencies of 
3He-A and pv is the Fermi momentum.  On the other hand, the depairing 
critical current  is of the order of A(T)/pF, where A(T) is the quasipartiele 
energy gap. 
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Therefore  the depairing critical current is roughly by a factor 10 2 
larger than the textural critical current in 3He-A. In such a large current we 
expect a variety of nonlinear effects as in the case of superconductivity. 4"5 
The analogy is particularly useful for 3He-B. In spite of the difference 
between the singlet pairing in the BCS superconductor and the triplet 
pairing in the Bal ian-Werthamer  state, 6 which characterizes the conden- 
sate of 3He-B, we have the same expressions for the energy gap and the 
superfluid density in both cases, except that in superfluid 3He the Fermi 
liquid correction is significant and has to be included in the theoretical 
analysis. 

An advantage of considering such a large current is that we are now 
most likely dealing with a uniform texture (see, e.g., Ref. 7); in particular in 
3He-A, we may assume that vsllt, where /' indicates the direction of the 
symmetry axis of the energy gap in 3He-A. However,  recently Hall and 
Hook  8 suggested (based on their numerical analysis) that uniform /" tex- 
tures are unstable under large superfluid current. We have looked into this 
possibility. However,  contrary to them the uniform texture in the bulk 
appears to be stable at least in the vicinity of the transition temperature 
even under large current (see also Bhattacharyya et al.9). Furthermore,  in 
contrast to the case of a superconductor,  a uniform current situation 
appears quite natural in superfluid 3He, especially when the current is 
relatively large. In the following we will calculate the quasiparticle energy 
gap A(T) and the superfluid density in the presence of a uniform current in 
both 3He-A (with Vs[lt) and 3He-B. 

Following the formalism developed by Maki and Tsuneto, 5 we intro- 
duce the effect of a uniform current as a frequency shift in the single- 
particle Green 's  function. The effects of the Fermi liquid correction are 
then included by renormalizing the quasiparticle mass and the superfluid 
velocity as done by Leggett. 1~ Furthermore,  we adopt the weak coupling 
model for simplicity, since the results can be comparable to experiments at 
least at semiquantitative levels. In order to have some insight into the 
qualitative features, the weak coupling model is quite adequate, except 
possibly for the stability question of the axial state, la In particular in the 
zero current limit (Vs = 0) the superfluid densities obtained agree with the 
previous results by Combescot.  1~ 

The calculated superfluid densities in 3He-A and 3He-B are strongly 
nonlinear in the superfluid velocity Vs mostly due to the large Fermi liquid 
correction. The results appear to be readily accessible experimentally. For  
example, it may be seen as the amplitude dependence of the fourth-sound 
velocity c4. Furthermore,  although the calculated critical currents vary 
monotonically as functions of temperature,  the calculated (depairing) cri- 
tical velocities Vsc exhibit nonmonotonic  temperature dependence in both 
3He-A and 3He-B, again due to the Fermi liquid correction. (In the 
absence of the Fermi liquid correction, the critical velocities behave 
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monotonically though!) This could probably be seen in the ion mobility 
experiments, since we expect that the ion mobility should change drama- 
tically when the ion velocity exceeds the depairing critical velocity. In the 
experimental  data on negative ion mobilities in 3He-A and 3He-B pub- 
lished by Ahonen  et al. 13 there is no indication of such a nonmonotonic  
behavior. However ,  we hope that experiments on the ion mobilities at 
lower temperatures will soon resolve this question. 

2. FORMULATION 

The single-particle Green 's  function for superfluid 3He-A and 3He-B 
in the absence of currents is given in the Nambu representation by 

G0(p, ton) = [iron - ~:p3 - o'IA(plP2-/~2P~)] -1 (1) 

and 

Go(p, ton)= [icon - ~ p 3 -  o'2p~ A(~  9 or)] -1 (2) 

respectively, where 

= ( 1 / 2 r n * ) p  2 -  tz, ~ = P/PF, at = (O~ 0"2, 00303) (3) 

A is the order  parameter  (which we will refer simply to the energy gap); m* 
and/.~ are the effective mass of the quasiparticle and the chemical poten- 
tial; and 001 and p~ are Pauli matrices operating on the ordinary spin space 
and the particle-hole space, respectively. 

Following Maki and Tsuneto, 5 the effect of a uniform current is 
introduced into the above Green 's  function by replacing iron by iron +v ,   9 p, 
where v, is the superfluid velocity and p is the quasiparticle momentum. 
This replacement gives the correct Green 's  function in the absence of the 
Fermi liquid correction and follows from a gaugelike transformation of the 
condensate order  parameter  A(r)--> e~'A(r) with d~ = 2mrs . r ,  where rn is 
the mass of the 3He atom. 

In the presence of the interaction between quasiparticles the effect of 
the current will be reduced by (1 + 89 -1 due to the polarization of the 
liquid.i~ The above coefficient describes a mean-field screening of the effect 
of the velocity v,, where & will be determined later. Therefore  in this more 
general situation the effect of the current is introduced into the Green 's  
function by replacing iron by iron +v*  9 p, where 

Vs* ~--- (1 -I- 1 F l ~ ) - l v s  (4) 

Then the Green 's  functions in the presence of a uniform current are given 
by 

G(P, ton)= Go(p, ton - i s  cos 0) 
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with 
s = (1 + l F 1 q ~ ) - l I J s P F  (5) 

where Go(p, to,) is given by Eqs. (1) and (2) for the axial and the isotropic 
states, respectively. Here  O is the angle between vs and p. 

Within the weak coupling limit the gap equation is given by 
3 r I d p , , ,  

Ai(P) = - 3 g l T  2 ~ - ~ ( p  " P') 

x  88 Tr  [o-2(pa + ip2)otiGo(p', ton --  is cos 0')] (6) 

for both 3He-A and 3He-B. The above equation is further simplified to 

n = O  ~ 

x Re {[(to. - is cos 0)2+A 2 sin 2 0] -1/2} (7) 

and 
-o f d f ~  

I=2~-AT ~ 7--{Re[(to,,-iscosO)Z+A2] -1/2} (8) 
n = 0  147~- 

for the axial and the isotropic states, respectively, where in the axial state 
we assumed that /i' is parallel to vs. Here  h =N(0)lgl] ,  toc =to~o = 
27rT(no+ 1/2) is the cutoff frequency as in the BCS case, and N(0)  is the 
density of states at the Fermi level. In the weak coupling limit the cutoff 
frequency toc as well as the coupling constant a can be eliminated from 
Eqs. (7) and (8) by subtracting the corresponding equations at T = To, the 
transition temperature,  or those at T = 0. In this case the energy is scaled 
by Tc or Aoo, the energy gap at T = 0 and s = 0. 

For  example, at T = 0, Eqs. (7) and (8) are further reduced to 

- I n  (A/Aoo) = l l n  [1 +(s/A)2]-- 89 2) (9) 

and* 
- In  (a /aoo)  = 0(s - A)[In {(s/A) + [(s/A) 2 -  111/2} 

--  [1 - ( a / s ) 2 ]  ~/2] ( 1 0 )  

for the axial and the istropic states, respectively, where O(x) is the step 
function 

O(x)= 1 f o r x - > 0  
(111 

= 0  f o r x < 0  

Here  Aoo = 21-eS/6ABcs(0) and Aoo = ABcs(0) for the axial and the isotropic 
states, respectively. [Note: ABcs(0)= (zr/y)Tc ~ 1.76T,.] In general, Eqs. 
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(7) and (8) determine the energy gap (or more precisely the order 
parameter)  in the presence of a uniform current. 

The superfluid mass current Is, due to the superfluid velocity v~ is 
given by 

with 

J~ = m N v ~  - J,, (12) 

~3 
~-~-~p~ Tr [Go(p, 

which reduces to 

f l  d z  
[Jsl = 21rTN(O)pF ,,~=o J-i  T z Re 

and 

oo f l d z  IJsl = 27rTN(0)pv ,,~=o J-x T z Re 

o)n - is cos 0)1 (13) 

iO)n + SZ 
[(to. - isz  ) 2 + A2(1 - zZ)] 1/2 (14) 

iron + SZ 
[(~,, - isz)2 + A2] 1/2 (15) 

for the axial and the isotropic states, respectively, where z = cos 0. In 
particular, at T = 0 K, Eqs. (14) and (15) are simplified further to 

where 

and 

Or* J, = p ,  , (16)  

0 P s / P  = A2/(A 2 + s 2) (17) 

0 p s / p  = 1 - O(s - A)[1 - (A/s )2]  3/2 (18) 

for the axial and isotropic states, respectively. Here  P = m N  is the (mass) 
density of liquid 3He. 

In terms of 0~ we can now define r introduced in Eq. (4) as 

o~  =- 1 - r  (19) 

Therefore  Eq. (16) may be rewritten as 

Js = psVs 

with 

p , / p  = (1 - r  + 1F1r  (20) 

which is a natural generalization of a similar expression in the linear 
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regime. 12 At T = 0 K, Eq. (19) indicates that ~b is given by 
= s /(a2 + s2) 

and 4 

~) = O(S -- m)[1  -- ( A / s )2] 3/2 

for the axial and the isotropic states, respectively. 

(17') 

(18') 

3. LIMITING CASES 

In general Eq. (7) [or Eq. (8)] has to be solved for given s. Then, 
making use of A thus determined, we can extract ~b(s) from Eq. (14) [or Eq. 
(15)], which enables us to calculate vs as well as J~ (or pJp). Besides the 
zero-temperature case described above, there are a few instances where we 
have relatively simple expressions, although in general the above program 
can be excuted only numerically. We will discuss briefly these simple cases. 

3.1. T << Tc 

First let us consider the case of 3He-A. Since the quasiparticle spectrum is 
gapless in 3He-A, we expect that both A(T) and ~b(s, T) can be expanded in 
some powers of T, the temperature. The gap equation (7) can be trans- 
formed as 

no ,[I 
l = 2 ~ r a T  • dz  88  ~) 

n=O-  1 

x Re {[(w. - isz) 2 + Az(1 - z2 ) ]  -1/2} 

n o 
=2r Y. IA(W.) (21) 

n=0 

where 

3 1 [1 1 A 2
IA(t"On)='2 ( A 2 + S 2 )  1/2 { 2 A2-'I-S 2 "1 

1 A 2 - 2 s  2 ] +$ / 

1 (2s 2 - Abo, .q 
2 (AZ+s2) z J c~ (A 2 --1- $2)  1/2 

Then, making use of the Euler-Maclaurin formula, we can evaluate the 
right-hand side of Eq. (21) as 

wc 5 1 

O)n 

(22) 
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o r  

with 

(A 2+s2) 1/2 1 1 r 2 2 7 2 2 2 ] 
In = -  2Ls  - s  ~ + - ~ ( a  - s  ),7+ +oC+ Aoo 2 A 2 + s J 

rl:~ = ( z rT )2 / ( s  2 + A 2) 

[7/_ appears in Eqs. (33) and (34)]. 
Similarly, the, expression for ~b can be transformed as 

1 - ~ ( s )  =2r ~ Ja(con) 
S n=0 

with 

(23) 

(24) 

/ 2 7 r T \ l / 2 A T r  s T 
( ~ ) - s  sinh e -a / r  ~b = 3 ~ T  ) 7tcosh (28) 

In the second regime, A - s  < 0, the energy spectrum is gapless. Then we 
can exploit a similar method used for deriving A and ~b in SHe-A; Eqs. (8) 
and (15) reduce to 

1 =2~rAT ~ IB(o~.) (29) 
n=0 

and 

3 S A2 2 2 +  2 J~(~,.) = ia2,+s2)5/2[(a +s 3,0.) 

x cot-1 ((A2 +s"2)1/2) - 3oJn (A2 + s2)1/2 ] (25) 

The summation over the Matsubara frequency ton yields 

S 2 A 2
~b (s)= ~---~s2 + ~--T~S2(r/+--7 ~/2+- 1-~57/3+- 0~/4+) (26, 

In SHe-B, on the other hand, we have to consider two regions separately at 
T = 0 K .  For A - s > 0 ,  the quasiparticle spectrum has a nonvanishing 
energy gap and the temperature-dependent corrections are exponentially 
small; we have for the order parameter and ~b 

A =  Aoo[1 - / 2 1 r T '  l / 2 T  e -A/T] ~--~--) s sinh (T )  (27) 
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and  

with 

and  

1 -& = (2rrT/s) ~ JB(eo.) (30) 
/ 1 = 0  

IB(t~ lm ( sinh-' is~t~ S (31) 

/-X--Lt--X-)fw"+isr/aJ"-is\2 , i2 i s -  Im +1] -sinh-' . w:} (32) 

respect ively.  
Then ,  mak ing  use of the E u l e r - M a c l a u r i n  fo rmu la  again,  we  obta in  for  

T << Tc (and for  s > A) 

_ ln  ~oo = c o s h _ l ( ~ ) A  o _ [  1 _ ( ~ _ ) 2 ] x / 2 1 1 - 6 n - + 3 - - - ~ 1  7 s2---r-S~ r / - 2 s 2 +  A 2 2 + 0 n 3  ] 

(33) 

1,0 I I I I I I I I Fi=O 

-- -- -- F I = 6.04 
T/T c = 0 ...... F i = 15.66 _ -~.~ ~ ~ 

o .z .4 .6 .8 i .o l.a 1.4 1.6 
So~I + F,/3) 

Fig. 1. The order parameter A of 3He-A v. So/(1 +~F1) for several reduced tempera- 
tures. The solid curves are for F1 = 0 (no Fermi liquid correction). The dashed curves 
are for F1 = 6.04 and F1 = 15.66 with T/Tc = 0, 0.8, and 0.95. 
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and 

~b = [ 1 -  (~)2] 3/2-I-[ 1 -  (~)2] x/2r/-[ lq" 607 4S2- ~2 r /-+ 0 Y / 2 - ] S 2  _ A 2  (34) 

respectively, where ~/_ has already been defined in Eq. (23). 
In both 3He-A and 3He-B, the temperature-dependent corrections 

start with T 2, as it should be in the gapless regime. 

3.2. T----To 
In the vicinity of the transition temperature (i.e., the Ginzburg- 

Landau regime), we can expand Eqs. (7), (8), (14), and (15) in powers of A, 
the order parameter. In 3He-A we have then 

A2 ---- A 21T~ot )-21s2 (35) 

and 

where 

14 A 2 T 7 3 s 2 

[ 10 1" (1 T~ '/2 

is the energy gap in the absence of the current. 
Similarly, in 3He-B we have 

A2= A0~(r)-~s 2 
and 

(36) 

(37) 

(38) 

where 

14 3 / s \ z  
1 - r  = 7~'(3)(2~T)2 = 2(\ 1-T~Tr -3-if()~2~T~) (39) 

Ao(T)= [ 7~(3)]x/2(1-~c) l/2(q'rTc) (40) 

In a more general situation Eqs. (7), (8), (14), and (15) are evaluated 
numerically. The results are shown in Figs. 1 and 2 for 3He-A and Figs. 4 
and 5 for 3He-B. In Fig. 1 the energy gap A (or more precisely the order 
parameter) is plotted as a function of So/(l+~F1) for several reduced 
temperatures T~ To, where So = v~pv/Aoo. The solid curves are calculated for 
F1 = 0 (no Fermi liquid correction) while the results for F1 = 6.04 and 
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.2 .4 .6 ,8 1.0 h2 1,4 1.6 
So/(i + F,/3) 
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'i 
x c . .  o 

0,1 F I = 6 , 0 4  
0 , 2  

i 
o .z .4 .6 .B I.o 1.2 1.4 1.6 

So/ I  + F,/3) 
Fig. 2. The superfluid density p, of 3He-A v. So/(1 + l F t )  for several reduced tempera- 
tures and for F1 = 0 (no Fermi liquid correction), F t  = 6.04 (corresponding to zero 
pressure), and F1 = 15.66 (corresponding to melting pressure). 
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,.el I I I I I I I I 

TIT c = 0 

.8 I _ .  F~ : 15 . 6s  ~~, i0 '1  
,6 

% 

o .a .4  .6 .a i .o ~.2 
so/ ( i  + ~ , / 3 )  

Fig. 2. Continued. 

1.4 1.6 

F1 = 15.66 are shown only for T/Tc = 0, 0.8, and 0.95 for compar ison.  The  
above  F1 cor respond  to the case P = 0 and the case at the mel t ing curve,  
respectively.  TM 

If A is p lo t ted  against So/(l+ 89 the effect of  the Fermi  liquid 
correc t ion is significant only at low tempera tures .  In  the h igh- t empera tu re  
regime (i.e., T/Tc > 0.9) the  effect of  the Fermi  liquid correc t ion can be 
accoun ted  for  by simply replacing vs by v J ( 1  + 89 (i.e., the Fermi  liquid 
correc t ion with ~b = 1). In  Fig. 2 the  superfluid density p~ is p lo t ted  again as 

A v s =0 vs> O, v s I1# 

Fig. 3. Aniso~ropic energy gap of 3I-Ie-A in the presence of a current for 
v, = 0 and v~ :> 0, respectively. 
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t 
-...~ ~ 0.4 

\ \ \i,  ,lll 
.2 5 

I | I | I I I f I I II I III 

i i I 

- - - -  F ,  = 6 .o4  
. . . . . .  F I = 15 ,66  

I I 
0 .2 .4 ,6  ,8  1.0 1.2 1,4 1.6 

So/I + ~13) 
Fig. 4. T h e  o r d e r  p a r a m e t e r  A of 3I--Ie-B v. s0 / (1  +  89 T h e  so l id  curves  a re  for F1 = 0, 
w h i l e  the  d a s h e d  curves  a re  for  F1 = 6 .04  a n d  15.66.  

a function of s0/(1 + 89 for F1 = 0, 6.04, and 15.66. We can see immedi-  
ately that the Fermi liquid correction has a significant effect on ps. In the 
presence of the Fermi liquid correction, ps at lower temperatures  decreases 
rapidly as s0/(1 + 89 increases. Such a strong nonlinearity in So appears  
readily accessible experimentally.  We note further that A and ps vary 
smoothly as v~ increases. This can be understood by looking at the 
quasiparticle energy gap of 3He-A in the presence of a uniform current (see 
Fig. 3). In 3He-A the energy gap is anisotropic and the pair-breaking starts 
continuously f rom vs = 0, implying continuous reductions of A and p~ even 
for very small vs. 

In Fig. 4 the order  pa ramete r  A in 3He-B is shown as a function of 
so~(1 + 89 for several reduced temperatures .  As in Fig. 1, the solid curves 
are drawn for the case F1 = 0, while results for F1 = 6.04 and 15.66 are 
shown only for T/Tc = 0 ,  0.8, and 6.95 for comparison.  At  low tempera-  
tures A as a function of So has a sharp break where the system becomes 
gapless. In such regimes the Fermi liquid correction has a rather  significant 
effect on the v~ dependence of the energy gap. At  high temperatures  (say 
T/Tc > 0 . 9 )  the effect of the Fermi liquid correction can be included by 
reducing vs by a factor (1 +~F1) -1 as in the case of 3He-A. In Fig. 5, the 
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superfluid density ps is shown as a function of So/(1 + 89 for F1 = 0, 6.04, 
and 15.66, respectively. 

As in the case. of 3He-A, the Fermi liquid correction suppresses p~ very 
rapidly as vs increases. Compared with the case of SHe-A, A and p~ stay 
constant at T = 0 until vs exceeds Ao0/PF. This is easily seen from Fig. 6. At  
T = 0, as long as vs < Aoo/PF, no pair-breaking takes place due to the 
current. Only when vs exceeds this critical value are the quasiparticles 
excited across the energy gap, drastically reducing bofh A and ps. 

4. D E P A I R I N G  CRITICAL C U R R E N T  

So far we have considered A and Ps as functions of vs. The superflow is 
given in terms of Ps as 

~s =psvs (41) 

Since p~ decreases monotonically as vs increases, Js takes the maximal 
value for v~ defined by 

OJs/Ov~ = 0 (42) 

where Js = [Js[ and vs = Ivs]. Making use of Eq. (20), we find that Eq. (42) is 
reduced to 

dd~/ds = ( l / s ) (1  - r  (43) 

which determines the critical velocity vsc. 
At T = 0 K, Eq. (43) is solved explicitly. For 3He-A, Eq. (43) together 

with Eqs. (9) and (17') yields 

~b = x / 2 - 1 ,  or s = (x/2-1)i/2{exp [ 89 1)]}Aoo (44) 

This can be solved for vsc as 

v~c = [1 +  89 [ 89 1)]}Aoi~/pF (45) 

and the critical current 

Jsc = ~ ( ' / 2 -  1)s/2"{exp [ 89 1)]}Aoop~lo (46) 

It may be of interest to note that the critical current is independent  of the 
Fermi liquid correction, while the critical superflow velocity does depend 
on Fx. For  SHe-B, a similar analysis yields 

~b = (21/3 - 1) 3, or s = 2-1/3[exp (21/3 - 1)]Aoo (47) 

This gives 

Vsc = [1 + 1(21/3 -- 1)3Vll2-1/3[exp (21/3 -- 1)]Aoo/Pv (48) 
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T / T  c = 0 1.0 Fj = 6 . 0 4  ~ 0.1 

0,3  
o8-- 

0,4  

,6 
- 0 ,5  

, 4 -  O. 

0 .7  
,2 

0 , 8  

0 .2 ,4 .6 .8 f.O 1.2 1,4 1,6 
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Fig. 5. The  superfluid densi ty Ps of 3He-B v. s0/(1 + 89 for F1 = 0, 6.04, and 15.66. 
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' I 1 I I I I I I i 

3 1,0 T/Tc = 0
C).I 

i ~~ / ~_~~  F I = 15,66 

Q.. 

.2 
0 .2 .4 .6 .8 1,0 1.2 1.4 1.6 

S o / l  + F,/3) 
Fig. 5. Continued. 

and 

J~c = [1 - (21/3 - 1)312-1/3[exp (2 ~/3 - 1)] AooPvlp (49) 

Again  we find that  Jsc is i ndependen t  of the Fermi  liquid correct ion,  while 
vsc depends  on/71. 

v s = 0 v s = a o J P ~  v s > Aoo/P~ @@@ 
Fig. 6. The energy gap of 3He-B in the presence of current for v~ = 0, 
vs  = A .oo /PF,  and vs > Aoo/PF, respectively. 
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In the  vicinity of  the  t ransi t ion t e m p e r a t u r e  we can also solve Eq.  (43). 
For  3 H e - A  we have  then  

5 ~1/2 ,  1/2 

/ 1 \ /  5 \a/21 T \  1/2 2zrT~ (51) 
vs~-~l + ~ F 1 ) 1 2 - ] - ~ )  I 1 - - ~ )  PF 

and 
2 5 ,/2 3/2 

Similarly,  for  3He-B we have  

s = [7#(3)]- t /z(1 - T/T~)'/z2~-T~ 

v~c = (1 +  89 - T~ T~)~/22~rTcpF ~ 
and 

Jsc = 417((3)]-1/2(1 - T~ Tc)3/221rTcpFlp 

(52) 

(53) 

(54) 

(55) 

3 

8 ~ 2

I 

IJ=mo~ - - -  " . . . .  Fi= 6"04 ~, [ 

0 ,2 .4 .6 .8 ID 
T/T C 

Fig. 7. Critical velocities of 3He-A defined by (1) Js = max, (2) v~ = Ap~ 1, and (3) A = 0, 
as functions of the reduced temperature T~ To. The solid curves are for/71 = 0, while 
the dashed curves are for F1 = 6.04 and 15.66. 
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Fig. 8. Critical velocities os 3He-B defined by  (1) 3 ,  = max,  (2) v,  = &p~l ,  and (3) & = 0. 
The solid curves are for F1 = 0, whi le  the dashed curves are for F i  = 6 .04 and  15.66.  

At intermediate temperatures the critical velocity is evaluated numerically 
for 3He-A and 3He-B, and is shown in Figs. 7 and 8, respectively. In both 
figures we have included other critical velocities: the pair-breaking critical 
velocity, defined as v~ corresponding to & = s, and another critical velocity 
corresponding to & = 0. The latter critical velocity is shown only for F1 = 0, 
as & = 0 implies ~b = 1 and consequently the corresponding critical velocity 
for nonvanishing F1 is obtained by multiplying (I+~F1) by the one for 
Fj = 0. The former critical velocity behaves very similarly to the depairing 
critical velocity (for which Js has a maximum), although physically this 
critical velocity (at least iv, 3He-B) corresponds to the velocity where the 
pair creation of quasiparticles begins to take place. The latter critical 
velocity may be completely unaccessible, although the velocity gives the 
instability limit of the normal liquid against formation of the superfluid 
condensate. In Figs. 7 and 8 we include the critical depairing velocities in 
the presence of the Fermi liquid correction. In the presence of a large 
Fermi liquid correction vsc is no longer monotonic but has a broad peak 
around T/Tc = 0.56 and T/Tc = 0.7 for 3He-A and ~He-B, respectively. 
This unusal behavior of the critical velocity is uniquely due to the Fermi 
liquid correction, since, as we see from these figures, v~ is monotonic for 
FI = 0. We would like to stress here that although the critical velocity 
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behaves  n o n m o n o t o n i c a l l y  in the  p re sence  of the  F e r m i  l iquid  cor rec t ion ,  
the  cri t ical  cu r ren t  is i n d e p e n d e n t  of the  F e r m i  l iquid  co r rec t ion  (i.e., F I )  
and  is a m o n o t o n i c  func t ion  of the  t e m p e r a t u r e .  

A s  a l r e a d y  m e n t i o n e d  in the  in t roduc t ion ,  we th ink  tha t  this effect cou ld  
p r o b a b l y  be  seen  in the  ion mob i l i t y  e x p e r i m e n t ,  a l though  the  pub l i shed  
resul ts  13 on the  ion mob i l i t y  do  not  ind ica te  this unusua l  t e m p e r a t u r e  
d e p e n d e n c e .  

5. C O N C L U D I N G  R E M A R K S  

M a k i n g  use of the  G r e e n ' s  func t ion  t echn ique ,  we have  ca lcu la t ed  the  
o r d e r  p a r a m e t e r  A and  the  super f lu id  dens i ty  ps in the  p re sence  of a la rge  
cu r r en t  (Vs---10 c m / s e c )  of  3 H e - A  and  3He-B wi th in  the  weak  coupl ing  
mode l .  

W e  have  shown tha t  ps is s t rongly  non l inea r  in v~ in bo th  3 H e - A  and  
3He-B due  to the  large  F e r m i  l iquid  cor rec t ion .  W e  have  also found  tha t  
the  cri t ical  ve loc i ty  is a n o n m o n o t o n i c  func t ion  of t e m p e r a t u r e ,  which  
shou ld  have  a va r ie ty  of  in te res t ing  consequences  in the  b e h a v i o r  of 
super f lu id  3He with  a large ,  un i fo rm current .  
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