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Abstract: Persuasive argumentation depends on multiple aspects, which include not
only the content of the individual arguments, but also the way they are presented. The
presentation of arguments is crucial - in particular in the context of dialogical
argumentation. However, the effects of different discussion styles on the listener are hard
to isolate in human dialogues. In order to demonstrate and investigate various styles of
argumentation, we propose a multi-agent system in which different aspects of persuasion
can be modelled and investigated separately. Our system utilizes argument structures
extracted from text-based reviews for which a minimal bias of the user can be assumed.
The persuasive dialogue is modelled as a dialogue game for argumentation that was
motivated by the objective to enable both natural and flexible interactions between the
agents. In order to support a comparison of factual against affective persuasion
approaches, we implemented two fundamentally different strategies for both agents: The
logical policy utilizes deep Reinforcement Learning in a multi-agent setup to optimize
the strategy with respect to the game formalism and the available argument. In contrast,
the emotional policy selects the next move in compliance with an agent emotion that is
adapted to user feedback to persuade on an emotional level. The resulting interaction is
presented to the user via virtual avatars and can be rated through an intuitive interface.

ACM CCS: Human-centered computing → Human computer interaction (HCI)
→Interactive systems and tools; Human-centered computing → Human computer
interaction (HCI) → HCI design and evaluation methods
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1 Introduction

How does persuasion work? This question was addres-
sed in many different fields, including philosophy [12],
psychology [19] and computational argumentation [37].
Despite the differences in all these approaches, it has be-
come clear that the process of persuading a person inclu-
des an interplay of multiple different aspects. Especially
in the case of dialogical persuasion, it involves not just
the rational arrangement of suitable arguments, but also
a presentation that is emotionally appealing to the inter-
locutor. However, isolating and investigating the contri-
bution of these individual aspects is difficult in human
dialogues, as humans usually act and react intuitively
in a conversation. To address this issue, we introdu-
ce a new version EVA 2.0 of the multi-agent system
proposed in [42] in which different persuasion strategies

can be displayed and compared. To this end, each agent
is represented by a virtual avatar that interacts with
its counterpart through synthetic voice and multimodal
emotions. In addition, each agent selects utterances in
compliance with either an emotional or rational argu-
mentation strategy.

The rational part of argumentation has recently gained
a lot of interest in the field of computational argumenta-
tion and argumentative conversational systems in mul-
tiple domains have been introduced. Examples for are-
as of application range from full scale debates against
a human debater1 over persuasive dialogue [24; 29] up
to customer support [8]. Besides, the field of argument
mining [13] has shown remarkable progress in the task

1 https://www.research.ibm.com/artificial-
intelligence/project-debater/
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of analyzing argument structures automatically. On the
other hand, the role of different presentation styles was
addressed in the field of human-robot interaction and
included aspects like linguistic styles [28] and speech
emotions [2].

Within this work, we include both aspects into a sepa-
rate agent strategy, which enables us to compare their
persuasive effectiveness and investigate subliminal bia-
ses. The presented version of our system extends the
previous one [42] in multiple ways. First, we utilize a
modified version of the interaction model that is moti-
vated by enabling more natural and intuitive persuasive
dialogues between the virtual agents [26]. Second, we
extend the range of topics that can be discussed by the
systems and include argument structures extracted from
hotel and restaurant reviews. This choice is motivated
by the goal to have a minimal bias of the user in evalua-
tion studies. Moreover, the use of reviews ensures that
arguments with different emotions are included, as they
are based on subjective customer opinions. Finally, we
include a conceptual extension to the decision making of
the system: Whereas the original system separated the
emotion the system is supposed to convey from the se-
lection of the next dialogue utterance and treated them
as individual problems, we herein combine both aspects
into a new emotional policy that is adapted in real-time
with respect to the individual user response. The next
utterance is then selected in compliance with the ad-
apted emotion and based on the emotional wording of
the arguments. In addition, we include an updated ver-
sion of the original rational strategy which is optimized
prior to the interaction in self-play with respect to the
new formal framework by means of deep Reinforcement
Learning (RL). Consequently, the system allows for a
direct comparison of the two argumentation strategies.

The remainder of this paper is as follows: Section 2 sum-
marizes related work from the fields of argumentative
dialogue systems and persuasion theory. The argument
acquisition, including argument structure, discussion of
the data, and extraction of arguments is discussed in
Section 3. In Section 4, the interaction model is cover-
ed, followed by a description of the overall system in
Section 5. Subsequently, we discuss the rational policy
in Section 6 and the emotional policy in Section 7. A
summary of the work, including discussion and outlook
on future research, is given in Section 8.

2 Related Work

This section provides an overview of relevant related
work from two perspectives: We start by discussing the
role of emotions in the context of persuasion and sub-
sequently summarize related systems and technologies
from the field of computational argumentation.

2.1 Influence of Emotions on Persuasion

It is well-known that persuasion depends on far more
than just the content of a persuasive message but also
the emotions with which a message is conveyed. Psy-
chological models distinguish between central and peri-
pheral processing. While central processing focuses on
the content of a message, peripheral processing focuses
on non-verbal cues, own opinions, experiences, status,
and overall expression of the persuader [19; 4]. An ea-
sy way to influence people is via (appropriate usage of)
emotional subtones. We have seen a lot of examples in
recent political history, such as Brexit and the Ameri-
can Election, both of which were driven by a specific
emotional atmosphere. A theory, namely EASI theory
(Emotions As Social Influence), developed by van Kleef
[35] states that not only the emotions of the persuader
have an impact on the persuasive outcome but also the
emotions of the recipient itself. The strength of the im-
pact is defined by the recipient’s epistemic motivation,
which describes the ratio between inference and affecti-
ve reaction. Studies have proven this theory that people
subconsciously use the source’s emotion to form their
own opinion [36]. In addition to that, DeSteno et al.
[6] showed that persuasive messages are more successful
when framed with the emotional state of the recipient.
Therefore, it seems reasonable to generate dialogues con-
veying a specific emotional tone adapted to the recipi-
ent’s emotional state to increase the persuasive effect.

2.2 Persuasive Dialogue Systems

As for argumentative systems, a variety of different ap-
proaches and related tasks were addressed in recent
works. The IBM debater discusses controversial topics
with a human in a debate setup with fixed speaking
times and turn-taking and by means of natural langua-
ge. The persuasive system in [29] uses arguments en-
coded in a weighted bipolar argumentation framework
generated from an annotated corpus of human discus-
sion. The strategy optimization is then formalized as a
Partially Observable Markov Decision Process and ad-
dressed employing Monte-Carlo planning. Also, different
approaches to argumentative chatbots were investiga-
ted: Rakshit et al. [27] proposed a system that retrieves
counterarguments from a corpus by means of a seman-
tic similarity measure, whereas Le et al. [14] compared a
similar retrieval approach to a generative model. Moreo-
ver, Chalaguine and Hunter [5] introduced a persuasive
chatbot that utilizes a crowd-sourced argument graph
and recognizes user concerns to increase its persuasive
effectiveness. The idea of a user-adaptive persuasive dia-
logue system was also explored in [38], where the authors
collected a corpus of human-human dialogues and anno-
tated it with different persuasion strategies. Moreover,
approaches to estimate the annotated strategies and the
interplay between the psychological background of hu-
man users and the different persuasion strategies were

2



investigated. The role of emotions in persuasive dialogue
systems was addressed by Asai et al. [2] through the col-
lection of a corpus with emotional speech for the use in
persuasive robots. The emotional text of the utterances
was collected in a crowd-sourcing setup and the emotio-
nal speech was recorded by a voice actor. Whereas all the
approaches discussed so far investigate human-machine
persuasion, we propose a multi-agent setup to model and
investigate different aspects of persuasion. Also along
the line of multi-agent argumentation, Alahmari et al.
[1] introduced an approach to optimize agent strategies
in a dialogue game for argumentation using Reinforce-
ment Learning. The learning agent in the proposed se-
tup optimizes its argumentation strategy against two
pre-defined baseline agents. In contrast, we utilize RL
approaches that are independent of pre-defined oppo-
nent strategies.

3 Argument Acquisition from Reviews

The first component of our system is the knowledge ba-
se of arguments that is accessible for both agents. It
comprises argument components and relations between
them that are encoded according to the argument anno-
tation scheme introduced in [33]. The annotation sche-
me distinguishes three different component types (Major
Claim, Claim and Premise) and two directed relations
between them (support, attack). The Major Claim is
the overall topic of the discussion and the only com-
ponent in the structure that does not target another
component with a relation. A Claim is a general state-
ment regarding the Major Claim and can therefore on-
ly target the Major Claim with a relation. Finally, a
Premise provides evidence or additional information re-
garding another component and can hence target every
other component type with a relation. Throughout this
work, argument components are denoted as ϕ and if a
component ϕi targets another component ϕj with a re-
lation, ϕj is called the target of ϕi. Each component
has exactly one target but can be the target of multiple
other components. Since the formal difference between
the components is only their allowed target component
types and due to the unique target of each component,
the resulting structure can be represented as a tree with
components as nodes and relations as edges.

As in [41], we focus on argument components extracted
from hotel and restaurant reviews since we can assume a
minimal bias of the user in this domain which is necessa-
ry for evaluation studies. At the same time, reviews also
include a wide range of emotional text, which is requi-
red for the emotional policy. The argument components
were extracted from annotated reviews in the SemEval-
2015 Task 12 Test Datasets [20]. The data includes sen-
tences from reviews annotated with the following labels:

• An aspect category consisting of an entity (e.g. Loca-
tion, Service) and an attribute (e.g. Price, Quality).

• A polarity (positive, negative, neutral).
• An opinion target expression within the annotated

sentence that explicitly refers to the entity.

We utilize the semi-automatic procedure introduced
in [41] to generate argument structures based on the-
se annotations. We generate one structure per ho-
tel/restaurant and start with the definition of a Major
Claim component with the textual representation This
hotel/restaurant is worth a visit. Afterwards, a Claim
is included into the structure for each entity in the an-
notation scheme. Its relation towards the Major Claim
is determined based on the ratio of positive and ne-
gative sentences concerned with the corresponding ho-
tel/restaurant and annotated with this entity. The tex-
tual representation of each Claim is of the form The
<ENTITY> is/are good/bad. Afterwards, each sentence
is included that has consistent polarity annotations, a
target expression, and is not marked as ’OutOfScope’.
We assume that sentences with the same entity label wi-
thin the same review build on each other and therefore
connect them in order of appearance. The first sentence
is connected to the corresponding Claim. Afterwards,
standalone sentences are connected to the Claim with
the same entity, unless their target expression matches a
previous component. In this case, the new component is
connected to this one. All relations are determined based
on the polarity annotation, meaning that a component
supports its target if they have the same polarity and
attacks it otherwise. So far, the procedure is completely
automatic. However, as we want to utilize the annotated
sentences directly in the interaction, we manually cor-
rect language errors in the sentences, merge components
with the same content and separate sentences with mul-
tiple different entity labels into standalone components
(one per annotated entity). We extracted four argument
structures and use the one utilized in [41] with 43 com-
ponents for examples and testing.

4 Dialogue Game for Argumentation

Next, we discuss the formal model of the agent-agent in-
teraction that regulates aspects like allowed replies and
turn-taking. We focus on dialogue games for argumen-
tation as an approach to formally model persuasive dia-
logue and ensure a logically coherent discussion. The
herein applied model is a modification of the dialogue
game for argumentation introduced in [21; 22] that is
motivated by enabling natural interactions while at the
same time preserving the logical consistency [26]. We
will discuss the formal notion of dialogue games for ar-
gumentation alongside the original and the modified fra-
mework in detail throughout the following subsections.

4.1 Original Framework

Within this work, we follow the formalism introduced
in [22] that defines a dialogue game for argumentation
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as tuple (L, D). The logic for defeasible argumentation
L includes arguments in the form of AND-trees. Each
argument is comprised of elements out of a logical lan-
guage Lt (nodes) that are connected by instantiations
of inference rules R defined over Lt (links). The root of
an argument Φi is called conclusion and denoted with
conc(Φi) whereas the set of leaves is called premises
and denoted with prem(Φi). For example, an argument
Φi = b, e⇒ c has the premises prem(Φi) = {b, e} and
the conclusion conc(Φi) = c with b, e, c ∈ Lt. An argu-
ment Φi is called an extension of another argument Φj ,
if conc(Φi) ∈ prem(Φj). Finally, binary defeat relations
→ are defined over the set of all arguments Args. Con-
sequently, the formal notation of the logic for defeasible
argumentation is L = (Lt, R,Args,→).

Within this work, L is derived from the argument (tree)
structure described in Section 3. Therefore, each argu-
ment has a single premise and the form Φj = ϕj ⇒ ϕi
(if ϕj supports ϕi) or Φj = ϕj ⇒ ¬ϕi (if ϕj attacks ϕi).
An argument Φi defeats another argument Φj , if the
conclusion of Φi contradicts the premise of Φj . Conver-
sely, an argument Φi extends another argument Φj , if
the conclusion of Φi equals the premise of Φj . The gene-
ration of arguments and the implications in L regarding
defeat and extensions are summarized in Table 1.

Arg Structure Args L

ϕj supports ϕi Φj = ϕj ⇒ ϕi -
ϕl attacks ϕj Φl = ϕl ⇒ ¬ϕj Φl defeats Φj
ϕh supports ϕj Φh = ϕh ⇒ ϕj Φh extends Φl

Table 1: Arguments in Args generated from the argument
structure (Arg. Structure) and implications in the logic for de-
feasible argumentation L.

The dialogue system proper D encodes the communica-
tion language Lc, the game protocol P and commitment
rules C and is hence given as D = (Lc, P, C). The com-
munication language Lc includes the speech acts and
an explicit reply structure between them whereas the
game protocol P regulates turn-taking, allowed replies,
and the outcome of the game. The commitment rules
C regulate implications and obligations that arise for a
player of the game from his or her previous utterances.
The communication language for the herein discussed
framework is shown in Table 2. A game is played turn-
wise and each turn can include one or more game moves.
Each move mk consists of a temporal identifier, a single
speech act out of Lc, an identifier of the corresponding
player and a target, which is the temporal identifier of
the previous move the current one replies to. As a direct
consequence, each move (except for the opening move)
replies to exactly one previous move. The set of all moves
is denoted with M and a temporarily ordered sequence
of moves is called a dialogue d = m0,m1, ...,mn.

The protocol P determines the set of legal movesMd ⊂
M for each dialogue based on a relevance criterion that

Speech Act Attacks Surrenders

claim(ϕi) why(ϕi) concede(ϕi)
why(ϕi) argue(ϕj ⇒ ϕi) retract(ϕi)

concede(ϕi) - -
retract(ϕi) - -

argue(ϕj ⇒ ϕi) why(ϕj),
argue(ϕl ⇒ ¬ϕj)

concede(ϕj)

Table 2: Communication language Lc of the original frame-
work [22] for arguments of the herein considered form.

determines if a move in d can be addressed by the cur-
rent player to move. The relevance criterion is based on
a binary status of each move that defines it as either in
or out. A move mk is out, if d includes an attacking reply
to it that is in. If no such attack is included in d, mk

is in. If an attacking reply on a move mk would change
the status of the initial move m0, mk is called a relevant
target and only relevant targets can be addressed by the
player to move. A player has to play additional moves
until the status of m0 is switched in his or her favour,
meaning that each turn consists of a varying number of
surrendering replies, followed by a single attack. The ga-
me ends if the player to move is not able to play another
move and he or she loses the game.

4.2 Preliminary Evaluation and Natural
Language Generation

We utilized this formalism in [25] to generate artificial
discussions between two virtual agents (Alice and Bob)
and assessed the interplay between the argument struc-
ture discussed in Section 3 and the dialogue game for-
malism. To this end, we generated Natural Language
Generation (NLG) templates for all speech act types
that do not include an argument (why, concede, retract)
and used the sentences in the employed argument struc-
ture as formulation for the remaining ones (argue and
claim). In case an argue move referred directly to its
predecessor, the conclusion of the corresponding argu-
ment was left implicit. If the current move did not refer
to its immediate predecessor, a formulation to indicate
this topic switch was included and the referenced com-
ponent was explicitly repeated in the utterance. In the
case of an argue move this reference component was the
argument’s conclusion. The explicit formulation was se-
lected from the NLG templates randomly. Moreover, the
agent policies within the dialogue game framework were
based on probabilistic rules for the first evaluation.

The artificial dialogues were compared to human-
generated ones in a user survey [25]. Each participant
assessed the transcript of one dialogue by answering se-
veral questions regarding logical consistency and natu-
ralness of the shown dialogue as well as the argumenta-
tion strategies of the transcribed speakers. The results
showed that the artificial dialogues are logically consi-
stent but on the other hand not perceived as natural. To
understand the reason behind this perception, we look
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Player Utterance Speech Acts

Alice You should visit this hotel. claim(ϕ0)

Bob Why do you think that? why(ϕ0)

Alice From my perspective the ho-
tel is very good in general.

argue(ϕ4 ⇒ ϕ0)

Bob Could you please elaborate? why(ϕ4)

Alice This property has really im-
proved since our last stay.

argue(ϕ5 ⇒ ϕ4)

Table 3: Artificial dialogue between the agents Alice and Bob
generated with the original framework.

at the example of an artificial discussion in Table 3. We
see that Bob assumes a passive role and is merely as-
king for further information, whereas Alice is providing
her arguments step by step. This structure is enforced
by the dialogue game protocol since the explicit reply
structure demands an explicit request for further infor-
mation (why reply) before supporting arguments can
be used. To address this issue, we discuss an extension
of the dialogue game framework that allows players to
chain multiple arguments in an utterance in Section 4.3.

4.3 Extended Framework

To include chained arguments into the game we
proposed an extension of the communication lan-
guage Lc that introduces an additional speech act
argue extend(Φi) [26]. In terms of attacking and surren-
dering replies, it has the same properties as an argue(Φi)
speech act (see Table 2) but does not end the turn of the
current player. A move with an argue extend(Φi) speech
act can only be played if Args includes and argument Φj

that extends Φi. Further, an extended attack has to in-
clude another argument, meaning that an argue extend
move has to be succeeded by another argue( extend) mo-
ve. A series of argue( extend) moves is called an argu-
ment chain and anticipates why replies by addressing
them in advance.

The protocol determines the relevance of moves in a
chain again through the binary status (in/out) of the
original framework discussed in the previous subsection.
When introduced, all moves in the chain have the status
in, as there is no attacking reply on them in d. However,
only the first move in a chain is a relevant target, since
an attack on it switches the status of the initial move.
Hence, the freedom of choices for the players is increased
whereas the logical consistency of the dialogue ensured
by the relevance criterion is preserved. An example dia-
logue for the new framework is shown in Table 4.

To evaluate the modification and verify the assumed in-
crease in the naturalness of the dialogues, we conduc-
ted an additional survey in [26]. To compare the re-
sults with our previous work, the setup was as similar
as possible to the one described in [25]. We used the
same questionnaire, the same policy, and the same ar-

Player Utterance Speech Acts

Alice You should visit this hotel. claim(ϕ0)

Bob In my opinion the facilities
are bad.

argue ex(ϕ1 ⇒
¬ϕ0)

They promised a lot of ser-
vices which was not provided.

argue(ϕ9 ⇒ ϕ1)

Alice I think the Restaurant was
great.

argue ex(ϕ2 ⇒
¬ϕ1)

The restaurant downstairs is
the best kept secret in the
area!

argue(ϕ3 ⇒ ϕ2)

Table 4: Artificial dialogue between the agents Alice and Bob
generated with the new framework.

gument structure and compared the ratings to the ones
from the original study for the unmodified framework.
Regarding the NLG, additional templates for the new
combinations of moves within a turn were included. We
found a significant improvement in the naturalness of
the dialogues generated with the modified framework
whereas their logical consistency did not change signi-
ficantly [26]. Consequently, we herein use the modified
framework to model the interaction between the agents.

4.4 Winning Criteria

The formal winning criterion defines that the player who
first runs out of moves loses the game. Although this is
reasonable from a purely logical point of view, it encou-
rages strategies that are not considered to be optimal by
humans. This is best understood in view of Bob’s stra-
tegy in the example in Table 3. If Bob challenges the
previous argument of Alice in each turn and does not
present own arguments, Alice always runs out of moves
eventually. Although this is clearly not an optimal stra-
tegy, we used this winning criterion as proof of principle
setup to test the RL approach.

In order to learn a more natural strategy, we introduce a
modification of the winning criterion based on a scoring
system that assigns points for playing certain moves. At
the end of the game, these points are summed up and
the player with the most points wins. The game is still
terminated by the player who is to move and has no
move left. The possibilities of gaining points including a
short motivation are as follows: Providing an argument
(playing an argue( extend) or claim move) always incre-
ases the score by two points to encourage the exchange
of arguments. Conceding to a move increases the score
by one point as reasonable acceptance of arguments is
a cornerstone of argumentation. The player who drives
the opponent into a situation where no move is left gains
4 points. This reflects the idea that the final agreement
on the discussed issue should be considered in the game.
Nevertheless, it is now possible to agree to the stance of
the opponent and still win the game.
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Figure 1: Conceptual overview of the EVA 2.0 system with two arguing virtual agents Alice (left) and Bob (right) allowing the user
to give feedback using the three feedback buttons (convincing, neither, not convincing) at the bottom.

5 System

Throughout this section, we discuss the complete EVA
2.0 system which is comprised of 5 different modules as
can be seen in Figure 1. The dialogue game module re-
gulates the interaction and keeps track of the dialogue
history, following the formalism introduced in Section 4.
At each stage of the interaction, it provides a set of
available game moves from which the dialogue mana-
ger selects one in compliance with the currently utilized
policy. All selected moves that correspond to a turn in
the dialogue game are transformed by the NLG module
(described in Section 4.2) into a system utterance. Each
utterance is presented by the avatar of the correspon-
ding agent with synthetic speech and emotion in the
interface. As in the prototype version [42], the interface
is based on the Charamel™ avatar2 and utilizes Nuan-
ce TTS in combination with Amazon Polly Voices3. In
addition to both avatars, the interface also includes but-
tons that enable users to assess the presented turn if it
includes an argument. This feedback is then used by the
RL module to update the emotion conveyed by the sy-
stem which is then used by the emotional policy in the
next turn. Regarding the avatars, we selected one ma-
le and one female avatar for demonstration purposes.
In practice, different avatars (male and female) can be
chosen in compliance with the desired setup. This al-
so allows for an investigation of gender effects on the
perceived persuasive effectiveness [32].

The selection of the next game move in the dialogue
manager and the update of the emotion conveyed by
the system in the RL module are both decision making
problems, meaning that the agents have to select the
option in each state of the interaction that supports
their goal best. This can be addressed as Reinforcement
Learning [34] task, where the agents receive feedback
in the form of a Reward for each action and optimi-
ze their strategies to maximize the overall return (sum

2 https://www.charamel.com/competence/avatare
3 https://docs.aws.amazon.com/polly/latest/dg/voicelist

of all Rewards). The problem is formally described as
a Markov Game [3] with two players (I,S,A,R,T ).
Here, I denotes the set of players (the two agents), S
defines the state space, A := ×p∈IAp the joint action
space and R := ×p∈IRp the joint reward function with
Rp : S ×A × S → R the reward function for player p.
Finally, T : S × A × S → [0, 1] denotes the transition
function that determines the next state of an agent. The
strategy of each agent is encoded in a policy function π
which is a mapping from the state space to either the
action space or a probability distribution over the action
space (depending on the utilized learning method). The
two different policies addressed throughout this work
alongside the exact definition of the underlying Markov
Games are discussed separately in the following sections.

6 Rational Dialogue: Policy πrational

In the following, we address the optimization of the ra-
tional policy, i.e. a policy based solely on the objective
winning criteria within the dialogue game formalism. As
we discussed in [23], every dialogue game for argumenta-
tion that adheres to the general structure in Section 4.1
can be formulated as Markov Game. We herein build on
these results and apply the introduced formalization to
the modified dialogue game.

6.1 Formalization

To reduce the state space S to a reasonable size, we on-
ly include information about the played moves (and not
their order in the dialogue). This is possible as the pro-
tocol determines the legal moves based on the relevance
of moves and not on their temporal order.

Definition 1 (Rational State Space) ∀ speech acts
βj ∈ Lc let σtβj ∈ {0, 1} be a binary integer that is 1 if
there is a move in dt that includes βj and 0 otherwi-
se. Then the state of an agent p at time t is given as
stp = (σtβ1

, ..., σtβN ).
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Since the dialogue game defines legal moves on the basis
of the current dialogue d, the set of actions available to
an agent p in a state st is defined as follows:

Definition 2 (Rational Action Space) Let S be the
state space as defined above, M≤∞ the set of all finite-
length dialogues in the dialogue game, ∆ : S →M≤∞ a
function that maps each state to a corresponding legal
dialogue and P :M≤∞ → 2M the protocol of the dia-
logue game. The set of available actions for an agent p
in state stp is then defined as A(stp) = P (∆(stp)).

Consequently, each action corresponds to a legal move
in the dialogue game. The transition function in this
case is deterministic and updates the state based on the
speech act in the selected action. As for the reward, we
assign a +20 reward to the winning agent and a −20
reward to the losing agent at the end of the game based
on the utilized winning criterion of the dialogue game.
Although the reformulation is formally analogue to the
referenced work, the addition of a new speech act in the
modified framework increases the state and the action
space and thus requires an advanced learning algorithm.

6.2 Deep Actor-Critic Reinforcement Learning

Actor-Critic methods [34] aim at combining the strong
points of both value-based and policy-based RL methods
by utilizing a value or Q-function as a Critic to update
a parametrized policy (Actor). In the present case, the
agent encodes the Q-function and the policy function
within neural networks. The Critic estimates the para-
meters ω of the Q-function network to minimize the
mean-squared error

L(ω) = Eπθ [(Qπθ (s, a)−Q(s, a,ω))2] (1)

where Qπθ is the Q-function under policy πθ which has
to be estimated with observed rewards. The Actor upda-
tes the parameters θ of the policy network in the directi-
on suggested by the Critic with the policy gradient [34]

∇θJ(θ) = Eπθ [∇θlogπθ(a|s,θ)Q(s, a,ω)] (2)

The training of the rational policy faces two major pro-
blems: First, since no data is available to initialize the
networks it has to be collected solely from interactions
between the agents. Second, winning dialogues for an
agent become rare at the later stage of the training and
the frequent negative reward therefore outweighs the po-
sitive. To mitigate the first problem, we use experience
replay (ER) [15] to learn from samples collected in past
interactions. To do so, we save each past dialogue ex-
perience into a replay memory. At each training step,
a mini-batch of past dialogue experiences is randomly
sampled from the replay memory to update the parame-
ters. To address the rare occurrence of successful dialo-
gues in the later stage of training, we use a prioritized

ER approach which keeps track of dialogues in pools of
different priorities. Rare transitions that provide positi-
ve rewards are assigned with higher priority and have
higher chances to be sampled by the learning agent.

Throughout this work, we used the Actor-Critic
with Experience Replay (ACER) algorithm proposed
by Wang et al. [39] due to its high sample-efficiency
and stability. In addition to the techniques discussed
above, ACER also utilizes several optimizations, such
as the Retrace algorithm for Q-function estimation [17],
importance weight truncation to increase learning sta-
bility, and Trust Region Policy Optimization [31].

6.3 Experimental Results

During training, the agents are divided into a training-
agent and a reference-agent. A game stage is defined as
a period during which the training-agent keeps optimi-
zing its policy until it has a superior policy against its
opponent while the policy of the reference-agent remains
unchanged. At the beginning of each stage, the policy of
the reference-agent is updated with the training-agent’s
policy. This ensures that for each stage, the training-
agent learns a policy that can beat its previous one. In
case both policies are optimal against each other, this
is called a Nash equilibrium. Although the existence of
such an equilibrium is guaranteed for games of the herein
discussed kind [16], it should be noted that convergence
to this equilibrium can not be guaranteed in our setup.

We evaluated the ACER algorithm in different testing
scenarios with the original dialogue game in Section 4
and the original winning criterion for which the opti-
mal policy is known in [44]. The performance of the
algorithm was tested on randomized argument structu-
res with different sizes and on an annotated argument
structure with 72 components on the topic Marriage is
an outdated institution [25]. The results showed that
an optimal policy could be found for argument struc-
tures of all investigated sizes, although convergence to
local optima occurred for argument structures with mo-
re than 30 arguments and more frequently with an in-
creasing number of arguments in the structure. For the
sake of illustration, the training process has been di-
vided into super-iterations, each consisting of 400 dia-
logue episodes. Every 100 episodes we calculated the
overall average reward and the average reward in stance
B (Bob). Figure 2 shows the average reward as a func-
tion of super-iterations for an example argument struc-
ture with 20 arguments. It can be seen that from the
8th super-iteration, the overall average reward dropped
to 0, meanwhile, the average reward of stance B remai-
ned +20, indicating that any agent with stance B won
the game. This convergence indicates a Nash equilibri-
um where both policies are optimal against each other,
which was confirmed in test games against the (known)
optimal rule-based strategy. In addition, we applied the
ACER algorithm to the modified dialogue game with
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Figure 2: Average reward for the training agent as a function of
super-iterations. The average over both stances is shown green,
the average when assigned stance B is shown red.

Player Utterance Speech Acts

Alice You should visit this hotel. claim(ϕ0)

Bob From my perspective the faci-
lities are bad.

argue(ϕ1 ⇒ ¬ϕ0)

Alice It seems to me that the Re-
staurant was great.

argue ex(ϕ2 ⇒
¬ϕ1)

The restaurant downstairs is
the best-kept secret in the
area!

argue(ϕ3 ⇒ ϕ2)

Bob Hm, pardon the topic switch
but I’m still thinking about
one of our earlier points. You
said that you should visit this
hotel. What makes you so su-
re?

why(ϕ0)

Alice From my perspective the ho-
tel is very good in general.

argue ex(ϕ4 ⇒
ϕ0)

This property has really im-
proved since our last stay.

argue ex(ϕ5 ⇒
ϕ4)

All in all it is a nice and af-
fordable spot for sightseeing
in the area.

argue(ϕ6 ⇒ ϕ5)

Bob It’s hard to disagree with
that. I see your point there.

concede(ϕ4)

I’m still thinking about your
general claim. From my per-
spective the rooms are bad.

argue ex(ϕ7 ⇒
¬ϕ0)

All 4 lower rooms were 80 de-
grees and above.

argue(ϕ8 ⇒ ϕ7)

Table 5: Artificial dialogue between the agents Alice and Bob
with the rational policy trained with the ACER algorithm on
the modified winning criterion.

both the original as well as the modified winning crite-
rion. We used 5 randomized argument structures with
20 arguments and the original winning criterion again
as a proof-of-principle setup and trained the final ratio-
nal policy for the hotel structure on the modified one.
For the proof-of-principle setup we report that in all in-
vestigated instances, the optimal policy could be found
and was confirmed in test games against the rule-based
strategy. An excerpt of a dialogue generated with the
optimized rational policy and the new winning criterion
is shown in Table 5.

7 Emotional Dialogue: Policy πemotional

In the following section, we describe the (learning of the)
emotional policy πemotional in detail. We recently pro-

posed an approach, in which the emotional policy was
adapted without taking the emotional content of the ar-
gument into account but following the rational policy
πrational and only considering argument-related infor-
mation, such as stance and relation, to determine the
most-effective emotional tone [41; 42]. However, there
is evidence that non-verbal inconsistencies lead to poor
first impressions [43], which is in line with [35] who sho-
wed the importance of appropriateness of emotions.

Therefore, we focus on generating an emotion-based dia-
logue d = m0,m1, ...,mn conveying the most-influencing
emotional tone by learning a policy πemotional during
interaction with the user. While the rational policy
πrational is trained beforehand, the emotional policy
is adapted to the user during interaction without pre-
training. This approach is motivated by several rea-
sons: i) The effectiveness of emotions is highly subjec-
tive [18; 10], ii) adaptation of the strategy should be
the main focus at an individual level [7] and iii) there is
evidence that persuasive messages are more successful
when framed with the emotional state of the recipient
[6]. As per DeSteno et al. [6] this is mediated by biases
induced by the own emotions of the recipient. Thus, we
focus on learning the most effective affective state by
modifying the agents’ pleasure (valence) and arousal di-
mensions [30], which are used for selecting the next move
mk ∈Md of all available moves at dialog time step k.
To allow for adaptation in real-time, RL is used since it
is an effective tool for real-time adaptation [28; 40].

7.1 Formalization

In the following we give a formal description of the
emotion-based strategy. As in [42], the decision making
is described as Markov Game as follows:

Definition 3 (Emotional State Space) Let stp ∈ S
be a state at time step t for player p ∈ I. Fur-
ther let ρtp(ϕ0) ∈ [0, 1] be a prediction that defines
how persuasive agent p is compared to the oppo-
nent (see below), then the state is defined as: stp :=
(arousal, valence, ρtp(ϕ0)), where arousal and valence
are discrete values ∈ [−1, 1].

The prediction model of the persuasive effectiveness has
been proposed and evaluated in [41] showing high ac-
curacy and F1-Score for the herein used argument da-
taset. The persuasive effectiveness is based on bipolar-
weighted argument graphs (BWAG) that assigns a user
feedback f i ∈ [0, 1] to each ϕi ∈ Lt, which is used for
computing the component’s effectiveness ρ(ϕi) conside-
ring the effectiveness of its child nodes in the argument
structure. If no feedback exists for a component ϕi, then
f i = 0.5 by default. In practice, we assign user feedback
given through the interface described in Section 5 to
argue( extend) moves to the premise of the correspon-
ding argument. Including the persuasive effectiveness in
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the state space allows for obtaining performance infor-
mation with respect to the opponent’s performance and
allows for switching to an alternative strategy if neces-
sary. Moreover, it is an intuitive metric to reward one
agent taking its performance (change) into account [42].

Definition 4 (Emotional Action Space) The acti-
on space Ap for player p ∈ I consists of an INCREASE
and DECREASE action both for valence and arousal
and an action NONE that leaves the state stp unchan-
ged. Consequently, there are five different actions.

Definition 5 (Emotional Reward Function) Let
ρtp be the prediction at time step t for p ∈ I. As in
[41; 42] the reward Rtp is defined as the change of the
persuasive prediction, i.e. Rtp := ρtp - ρtp−1.

7.2 Real-Time Adaptation of Policy πemotional

To enable the agents to learn the emotional policy, we
employ a linear function approximator along with a Fou-
rier Basis transformation [11], which is an effective way
to adapt to the user quickly [42]. At every learning step
t, the agent p ∈ I selects one of the available actions
atp ∈ A according to the current player’s state stp ∈ S
and policy πemotional (ε−greedy with ε = 0.05), modi-
fies its current emotional state stp+1 and selects the
next move(s) as follows: Let f :M→ [−1, 1] × [−1, 1]
be the function that maps any component mk ∈M into
the 2d valence-arousal space. For that, we employ DE-
VA, a text analysis tool designed for mapping any given
sentence into the VA space (precision 82%, recall 78%,
[9]). For any move mk that includes an argue extend(Φi)
speech act, f(mk) := 1/2(f(mk)+f(ml)) where mk inclu-
des argue(Φi), ml includes argue(Φj) and Φj extends Φi.
Further, let g : S → [−1, 1] × [−1, 1] be the respective
function for the state space. The agent uses the emotio-
nal state stp+1 to select the next move mk that is closest
to the agent’s state using the L2 norm:

mk = min
m∈Md

‖f(m)− g(stp+1)‖
2

(3)

The obtained feedback signal f is used to compute the
current effectiveness level ρtp and with that the reward
signal Rtp , which is used to update the policy. Howe-
ver, relying on the distance metric only leads to several
issues, one of which is sketched in Table 6. Because an
affect state of (-0.5, 0.5) is used, Alice concedes imme-
diately after Bob’s first argument. This seems odd at
first glance, but has some good reasons:

1. The second quadrant of the VA space only contains
two arguments, but only one argument (Φ1 = ϕ1 ⇒
¬ϕ0) is allowed to be played by Bob.

2. Since Φ1 = ϕ1 ⇒ ¬ϕ0 is the closest one to (-0.5, 0.5),
it is selected by Bob following the distance metric.
However, Alice does not have any argument within

Player Utterance Speech Acts

Alice You should visit this hotel. claim(ϕ0)

Bob I think the facilities are bad. argue(ϕ1 ⇒ ¬ϕ0)

Alice I concede. concede(ϕ0)

Table 6: Artificial dialogue between the agents Alice and Bob
with affect state (-0.5, 0.5).

quadrant two and the only arguments that she can
make use of are within quadrant one (Φ3, ...,Φ6).

3. Computing the distance between all available argu-
ments Φ3, ...,Φ6 and the concede move, inevitably
leads to the concede move as the closest one.

Conceding right away seems irrational. However, ratio-
nality should not be completely excluded from the emo-
tional policy but should support the emotional policy
with regard to some general rational decisions during
argumentation, such as: When is the right time...

1. ...to concede or retract an argument?

2. ...to introduce a new argument (argue)?

3. ...to request additional information (why)?

These questions can be handled by the rational policy
πrational, which decides which move type comes next,
and whenever an argue( extend) move is chosen, the
agent follows the metrics of the emotional policy (Equ.
3). The full adaptation algorithm is sketched in the fol-
lowing and an example dialogue is shown in Table 7.

Algorithm 1: Emotional Dialogue Generation

Init: tp = 0, atp , stp+1, ∀p ∈ I
foreach k = 1, ..., n do

p← active player
stp+1 ← observe stp+1 ∈ S
mk ← πrational
if mk isType(argue( extend)) then

mk ← min
m∈Md,argue

‖f(m)− g(stp+1)‖
2

apply mk

if f p then
πemotional ← update policy using f
atp+1 ← select next action.
stp+2 ← modify emotional state.
tp ← tp + 1

It should be noted that between any state transiti-
on stp → stp+1 multiple moves mk,mk+1, ...,mk+m can
be selected before the agent’s emotional state changes
again. This is a direct consequence of the herein employ-
ed framework and the communication language Lc since
only speech acts of type argue( extend) require feedback
regarding the overall perceived persuasiveness. Again,
the logical consistency of the dialogue is preserved by
the relevance criterion of the game protocol.
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Player Utterance Speech Acts

Alice You should visit this hotel. claim(ϕ0)

Bob In my opinion the rooms are
bad.

argue(ϕ7 ⇒ ¬ϕ0)

Alice I am not sure I understand
what you are getting at.

why(ϕ7)

Bob I think that’s enough for the
moment. I would rather focus
on another aspect of the to-
pic. It seems to me that the
facilities are bad.

argue ex(ϕ1 ⇒
¬ϕ0)

An elevator was broken du-
ring our last stay and it was
most annoying, but did not
greatly impact the overall ex-
perience.

argue(ϕ9 ⇒ ϕ1)

Alice I think the Restaurant was
great.

argue(ϕ2 ⇒ ¬ϕ1)

Table 7: Artificial dialogue between the agents Alice and Bob
with affect state (-0.5, -0.5) using algorithm 1.

7.3 Experimental Results

We have run multiple simulations to evaluate the adap-
tive feasibility of our proposed prototype. We considered
two scenarios:

• First, an adaptation of one agent only to verify that
it is able to increase its performance within the RL
task (S1).

• Second, an adaptation of both agents to verify that
they are able to optimize their policy with respect to
each other (S2).

We simulated 150 users (see Fig. 3) with randomly assi-
gned affective states (x, y) ∈ VA space, i.e., the affective
state that the agents had to learn, and ran multiple dia-
logues with an overall minimum length of 40 RL time
steps for each agent. For every time step tp the simu-
lated user feedback f i is defined as the normalized di-
stance between the agent’s affective state and the user’s
affective state:

f i = 1−
‖(x, y)− g(stp+1)‖

2

2
√

2
(4)

Figure 3 shows initial results of the simulation: S1)
Agent 1 is able to increase its performance with respect
to its opponent, and S2) both are able to keep the ba-
lance of their individual persuasive effectiveness.

Figure 3: Initial simulation results of S1 and S2

8 Summary and Future Work

We have introduced a fully integrated version of our
persuasive multi-agent system EVA 2.0 in which two
agents engage in a multimodal discussion. The system
utilizes argument structures extracted from reviews and
a dialogue game for argumentation to structure the in-
teraction. Besides, we have discussed two approaches to
policy optimization within the dialogue game framework
that focus on different aspects of persuasion. The ratio-
nal strategy is optimized on the objective winning cri-
terion of the dialogue game and before the interaction
by means of deep Actor-Critic RL. The emotional poli-
cy on the other hand utilizes a mapping of the available
arguments into the valence-arousal space to select argu-
ments that are close to the current emotion the system
is supposed to convey. This emotion is adapted to user
feedback to enable an individual and adaptive strategy.
The adaptation is again approached by means of RL,
although in this case the learning is done during inter-
action and in real-time. Both approaches were formally
introduced and we discussed first results that indicate
the feasibility of the proposed techniques.

In future work, we will focus on an extensive evaluation
of the individual policies within a user study. Further,
we will investigate more detailed aspects of the proposed
approaches like the effect of different winning criteria
and argument structures. Finally, we aim at combining
the rational and the emotional decision making to find
a hybrid policy that can consider and switch between
both aspects, depending on the individual user and the
current dialogue.
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