
Flashix: Modular Verification of a Concurrent
and Crash-Safe Flash File System?

Stefan Bodenmüller, Gerhard Schellhorn, Martin Bitterlich, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg, Germany

{stefan.bodenmueller,schellhorn,martin.bitterlich,reif}
@informatik.uni-augsburg.de

Abstract. The Flashix project has developed the first realistic verified
file system for Flash memory. This paper gives an overview over the
project and the theory used. Specification is based on modular compo-
nents and subcomponents, which may have concurrent implementations
connected via refinement. Functional correctness and crash-safety of each
component is verified separately. We highlight some components that
were recently added to improve efficiency, such as file caches and concur-
rent garbage collection. The project generates 18K of C code that runs
under Linux. We evaluate how efficiency has improved and compare to
UBIFS, the most recent flash file system implementation available for
the Linux kernel.

1 Introduction

Modular software development based on refinement has always been a core con-
cern of our Formal Methods group.

One of the constant positive and inspiring influences on our work has al-
ways been Prof. Börger’s research on the formalism of Abstract State Machines
(ASMs) [7].

The earliest starting point of this has been the Prolog Compiler specified
in [6] that describes compilation to the Warren Abstract Machine as stepwise
ASM refinement. Mechanized verification of this refinement tower was posed by
him as a challenge in a DFG priority program. Our solution to this case study
led to a formalization of the ASM refinement theory [5] proposed there [33] and
later on to a completeness proof [34]. Using this theory we managed to do a
mechanized verification of the compiler [35] using our theorem prover KIV [15].
The work led to the PhD of one of the authors of this paper [32], with Prof.
Börger being one of the reviewers.

It was also Prof. Börger who pointed us to the Mondex challenge [10, 41],
which consists of mechanizing the proofs of a security protocol for Mondex elec-
tronic purses. Among other groups [25] we verified the original protocol [21],

? Partly supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von
Flash-Dateisystemen” (grants RE828/13-1 and RE828/13-2).

but also proposed an improvement that would avoid a weakness. We extended
the case study to the development of a suitable cryptographic protocol and to
the verification of a Java implementation [19]. The Java calculus [40] we used in
KIV was influenced by the semantics of Prof. Börger’s book [39]. The work also
influenced our work on the development of a systematic development of security
protocols using UML specifications [20].

Since then, we have tackled our most ambitious case study: Development of
a fully verified, realistic file system for flash memory, called Flashix.

In a first phase of the project we had to develop the necessary theory that
allowed to manage the complexity of such an undertaking. A concept of com-
ponents and subcomponents was developed that are connected by refinement.
This allowed modular software development as well as modular verification of
proof obligations for each component. Together the proofs of this refinement
tower guarantee functional correctness as well as crash-safety of the resulting
implementation. An overview was given in [17]. The generated code from this
first phase is a sequential implementation that can be run in Linux.

This paper gives an overview of the second phase of the project, where we
tackled aspects crucial for efficiency: we enhanced the theory with a concept
that allows to add concurrency incrementally to a refinement tower. We now
also allow caches for files, which lead to a new crash-safety criterion called write-
prefix crash consistency. We summarize the concepts and the theory in Section 2
and give an overview over the structure of Flashix in Section 3.

We then highlight two of the new features of Flashix. File content is now
cached as described in Section 4, and write-prefix crash consistency has been
proved [4]. Like wear leveling (described in [36]) garbage collection is now con-
current (Section 5).

The specifications of the Flashix file system implementation uses a language
of abstract programs similar to the rules of Turbo-ASMs [7], although the concept
for concurrency is based on interleaving [37]. We generate Scala- as well as C-
Code from such abstract programs. Currently the generated C-Code has 18k loc,
which can be used in Linux either with the Fuse library [42] or integrated in the
kernel.

Section 6 evaluates the performance of our implementation. Since the con-
cepts of UBIFS (the newest implementation of a file system in the Linux kernel)
served as a blue-print for the concepts we used and verified in Flashix, we also
compare efficiency to UBIFS.

Finally Section 7 gives related work, and Section 8 concludes the paper.

2 Methodology

This section gives an informal summary of the methodology. It consists of three
core concepts that together establish that the top-level specification of POSIX
is correctly implemented having crash-safe and linearizable behavior. The three
concepts detailed in the following subsections are

– State-based components with specifications of operations. These are refined
to implementations which are components, too. The implementations may
call operations of other subcomponent specifications.

– Refinement from specifications comes in two flavors: (a form of) data re-
finement that allows to exchange abstract data structures (e.g. a set) with
more efficient, concrete ones (e.g. a red-black tree) and atomicity refinement,
which replaces an atomic operation with the non-atomic steps of a program,
which allows concurrent execution.

– A concept for verifying crash-safety.

2.1 Components

A component is similar to an ASM. We distinguish between specification and
implementation components, although they are specified using the same syntax.

A component specifies a number of state variables that store values of data
types like numbers, lists, sets, arrays, maps, or tuples. Data types themselves are
axiomatized using simply-typed lambda calculus. Most axioms use many-sorted
first-order logic only, but there are exceptions like infinite sequences which use
function variables (which represent dynamic functions as used in ASMs).

The operations of a component are given by a precondition, inputs and out-
puts, together with an imperative program that modifies the state. Programs
contain assignments (function updates are possible), conditionals, loops and re-
cursion. Using non-deterministic choose is allowed in specifications. Thereby
an arbitrary postcondition can be established, simply by choosing a state that
satisfies the predicate. Implementations allow specific versions only for which
executable code can be generated. Two common cases are the allocation of a
new reference for a heap-based data structure and choosing an element from a
set.

There are two distinguished operations: Initialization, which computes initial
states, and recovery, which is called after a crash when remounting to re-initialize
the state.

Specification components are used to describe parts of the file system in
an abstract and simple way, mainly by specifying functionality algebraically.
Implementation components, on the other hand, implement functionality pro-
grammatically using low-level data structures.

For example, in Flashix we use a specification component to access a set of
ordered elements. The component provides interface operations to add or delete
an element. Another operation returns the greatest element below some given
threshold. The precondition of this operation requires the set to be non-empty.
The programs for these operations typically consist of a single assignment as the
functionality is axiomatized over algebraic sets.

The corresponding implementation component gives an efficient realization of
the interface using a red-black tree defined as a heap-based pointer structure. The
separation into specification and implementation components allows to generate
high-performance code from implementations while client components do not

have to deal with their complexity but can rely on their abstract specification
instead.

The semantics of a specification component is always that of a data type as in
data refinement: it is a set of traces (also called histories). A trace is a sequence of
matching pairs [inv(in1, op1), ret(op1, out1), . . . , inv(inn, opn), ret(opn, outn)]
of invoke events inv(ini, opi) and return events ret(opi, outi). The first corre-
sponds to invoking the operation opi with input ini, the second to the call re-
turning with output outi. Such a trace corresponds to a client sequentially calling
operations op1, . . . , opn that execute atomically. Note that we immediately use
a pair instead of a single call event to simplify the description of concurrency
and crash-safety. The trace is observable (i.e. an element of the semantics) if
there is a suitable sequence of states [s0, . . . , sn] (the run of the ASM) which
is hidden from the client. State s0 must be initial, and if calling operation opi
in state si−1 with input ini has a valid precondition, then it must have an ex-
ecution that terminates and leads to state si with output outi. Since the client
is responsible for calling an operation only, when its precondition is satisfied,
observations after calling an operation with violated precondition are arbitrary:
the called operation should behave chaotically, yielding an arbitrary (even an
illegal) successor state or none at all by non-termination.

Implementation components differ from specification components in two as-
pects. First, they may call operations from one or more subcomponents. Second,
their semantics can be either atomic or interleaved. In the first case, its se-
mantics is the same as the one of a specification component. In the latter case
the semantics of the implementation are interleaved runs of the programs. The
semantics then is similar to a control-state ASM, where the control-state is en-
coded implicitly in the program structure. To accommodate the fact, that we can
have an arbitrary number of threads (or agents in ASMs), the events in traces
are now generalized (as in [22]) to consist of matching pairs of invt(ini, opi) and
rett(opi, outi) events that are indexed with a thread t. Matching pairs of different
threads may now overlap in a history, corresponding to interleaved runs of the
programs. The atomic steps of executing an operation are now: first, the invoking
step (where the invocation event is observed), then the execution of individual
instructions of the program like assignments, conditionals, and subcomponent
calls, and finally a returning step (if the program terminates). The execution of
operations of several threads are now interleaved. Formally, a concurrent history
is legal if the projection to events of each thread t gives a sequence of matching
pairs, possibly ending with an invoke event of a still running (pending) operation.

2.2 Refinement

Refinement of a specification component to an implementation component with
atomic semantics is done using the contract approach to data refinement (see
[13] for proof obligations in Z and the history of the approach) adapted to our
operational specification of contracts, with proof obligations in wp-calculus, as
detailed in [17].

All our refinements in the first phase of the Flashix project were such se-
quential refinements. Adding concurrency by replacing an atomic implementa-
tion with a thread-safe implementation with interleaved runs typically requires
to add locks and ownership concepts, together with information which lock pro-
tects which data structure. Details of this process of ‘shifting the refinement
tower’ are described in [36].

In the second phase of the Flashix project we have now added concurrency in
all three places, where this is useful: The implementation of the top-level POSIX
specification is now thread-safe, as mentioned in Section 3. Wear leveling and
garbage collection (see Section 5) are now executed concurrent to regular POSIX
operations called by the user of the file system.

Fig. 1: Refimenent to a
concurrent implementa-
tion.

Proving an implementation with interleaved se-
mantics to be correct can be done in one step, prov-
ing linearizability [22] (progress aspects such as ter-
mination and deadlock-freedom must additionally be
proved).

Our approach uses two steps, using the implemen-
tation with atomic semantics (denoted by) as an
intermediate level, see Figure 1. This allows to have
an upper refinement that (ideally) is the same as be-
fore and can be reused. In practice it is often necessary
to add auxiliary operations that acquire/release own-
ership to specifications, as indicated by the O in the
figure. These additional operations do not generate
code, but they ensure that the client of the specifica-
tion (the machine that uses this machine as a subma-
chine) will not use arbitrary concurrent calls, but only ones that adhere to a
certain discipline, as detailed in [36]. This leads to additional proof obligations
for the refinement as well as for the client, which must call acquire/release to
signal adherence to the discipline.

The lower atomicity refinement shows that the interleaved implementation
(denoted by) behaves exactly as if the whole code of the implementation
would be executed atomically at some point in between the invoking step and
the returning step. This point is usually called the linearization point. Correct
atomicity refinement (and linearizability in general) can be expressed as re-
ordering the events of the concurrent history H to a sequential history S (i.e. a
sequence of matching pairs that do not interleave) that is correct in terms of the
atomic semantics. The (total) order of matching pairs in the sequential history is
determined from the order of linearization points. It preserves the partial order
(called the real-time order) of operations in the concurrent history. If an oper-
ation is pending in the concurrent history, the corresponding sequential history
may be completed in two ways: either the invoke event can be dropped, when
the operation has not linearized, or a matching return can be added, when it
has.

The proof method for proving atomicity refinement uses Lipton’s theory of
commuting operations [26] and borrows ideas from [14].

The proof has two phases, which may be alternated. In the first phase, we
verify that specific assertions hold at all program points using a rely-guarantee
approach. Thos proof also guarantees termination and deadlock freedom with a
calculus similar to the one in [43]. Essentially, the steps must satisfy two condi-
tions: First, assertions before and after a step must satisfy the usual conditions
of Hoare’s calculus for total correctness. Second, all assertions must be stable
with respect to a rely condition that is proven to abstract the steps of other
threads.

The second phase is to iteratively show that two sequential steps of one
thread can be combined into a single atomic step. This is done by showing that
the first step commutes (leaves the same final state, if it is a returning step it
must also produce the same output) with every step of another thread to the
right (the step is a right mover), or dually that the second step is a left mover.

We found that this proof technique is suitable for locking-based algorithms,
where locking/unlocking instructions are simple cases of right/left movers. If
a data structure is written in a section of the code, where the thread holds a
suitable lock, then the operation is both a left as well as a right mover (a both
mover).

Note that the assertions proven for program points play an essential role
in proving such commutativity properties, since they are often incompatible,
resulting in trivial commutativity. Usually writing a data structure does not
commute with writing it in another thread. But if it is asserted that the updating
thread holds a lock that protects it, then they trivially commute, since the two
assertions that the lock is held by both threads contradict each other.

Combining steps into larger steps can be iterated. It typically leads to the
innermost locking range to be contracted to one atomic instruction. Repeating
the first phase, we can now prove that the lock is free at all times, which again
allows new instructions to become left or right movers in phase two. Alternating
phases ends, when all instructions of the program have been combined into a
single, atomic step.

The approach so far guarantees functional correctness. For our instance this
says that our concurrent implementation of the POSIX standard (which com-
bines the code from all implementation components) has the same behavior (in
the sense of linearizability [22]) as atomically executing POSIX operations. In
particular, all operations terminate and there are no deadlocks.

To prove that this is the case, we have to show that refinement is compatible
with the use of subcomponents: If C refines A, then implementation M that calls
operations of A, is refined by machine M, calling their implementation from C,
as shown in Figure 2.

This is a folklore theorem (“substitutivity”) that should hold for all mean-
ingful definitions of refinement. For data refinement we are aware of the formal
proof in [12], for linearizability it is informally stated in [22]. We have not given
a detailed proof yet, the sequential case (including crash-safety, see below) is

Fig. 2: Substitutivity of Refinement.

proven in [17]. For the concurrent case we recently found an elegant proof in
terms of combining IO-Automata [3], though this proof does not yet take into
account non-terminating behavior of operations. Like for other refinement defi-
nitions (see e.g. [13] for data refinement or [34] for ASM refinement) the proof
would have to be lifted to a scenario where states include a bottom element that
represents non-termination.

2.3 Crash Safety

In addition to functional correctness, crash-safety is the second important aspect
for a file system to work correctly. Informally it guarantees that when a crash
happens (typically a power failure), the file system can be rebooted to a state
that is consistent and does not contain any surprises: files and directories that
have not been modified before the crash still should keep their content. Files
where a write operation was running should not have modified content outside
the range that was overwritten, and data within the range should be either old
or new data, but nothing else.

A first observation relevant for crash-safety is that the only persistent state
of the file system that is left unchanged by a crash is flash memory, which is the
state of the lowest-level MTD interface. All other state variables are state, stored
in RAM, that is deleted by a crash. Meaningful values for these states are con-
structed by running the recovery operations of all implementation components
bottom-up.

A second, crucial observation is that if a running operation (on any level of
the hierarchy) is aborted in the middle due to a crash, the resulting state can
also be reached by crashing in a state after the operation has completed. The
reason is that the flash hardware can always (nondeterministically) refuse any
writes due to being worn out. Therefore, the alternative run that leads to the
same state as the one with the crash is the one where all flash modifications fail
after the point of the crash in the original one and the crash happens at the end.
Proving this can be reduced to the simple proof obligation (expressible in wp-
calculus) that all implementations of operations have a run such that running
crash and recovery in the initial and final state yields the same state.

As a consequence, the question whether crashes at any time are guaranteed
to lead to a consistent state can be reduced to the question whether crashes in
between operations lead to a consistent state. Again, the latter gives a simple
proof obligation in wp-calculus for the recovery program.

However, this does not specify how the final state looks in comparison to the
final state of the original run, so we still might see an unexpected result.

A simple idea to specify the effect of a crash would be to specify a (total)
Crash relation between states before and after the crash. However, this becomes
intractable for higher levels of the refinement tower, due to the use of write-back
caches. Such caches are used in all file system implementations for efficiency,
since RAM access is significantly faster than writing or reading from persistent
memory. In our flash file system such a cache, called the write buffer, is even
necessary, since a page can only be written as a whole, and can not be overwrit-
ten. The write buffer therefore collects data until full page size is reached before
writing the page to flash memory. The write buffer follows a queue discipline, it
persists data first that was received first. We call such a buffer order-preserving
and allow arbitrary use of such order-preserving caches on any level of an im-
plementation.

The use of a cache makes it difficult to just specify a crash relation, since on
higher level specifications, the information which part of the data is still in cache
is no longer present. After all, the top-level POSIX specification specifies a di-
rectory tree and file contents with no information which parts are still cached. In
principle, such information can be added as auxiliary data (used for verification
only, deleted in the running code), but we found such an encoding to become
intractable.

Instead we specify the effect of crashes mainly in an operational style, where
the effect of a crash is to construct an alternative run that explains the resulting
state after the crash. This alternative run mainly retracts a final piece of the
original run with the intuition that the results of the retracted operations are
still in the cache. We found that this is compatible with order-preserving caches,
where losing the content of a queue corresponds to losing the effects of some of
the final operations.

In addition to undoing part of the run it is however necessary that operations
(one in a sequential setting, several in concurrent implementations) that are
running at the time of the crash may be executed with a different result: when
writing some bytes to a file crashes, an initial piece of the data may have persisted
while the remaining bytes have not. Constructing an alternative run that writes
fewer bytes is consistent with POSIX: A top-level write is allowed to return
having only written a prefix of the data to the file (the number of written bytes
is returned). The alternative run will therefore have a different completion of the
write operation with fewer bytes written.

Therefore, in addition to undoing a final part of the run, we allow all run-
ning operations (which have a pending invoke in the shortened history) to be
completed differently in the replacement run.

Two more considerations are necessary to ensure that crashes do not give
surprising results. First, POSIX offers a sync operation that empties all cached
data. This leads to synchronized states, which we specify on all levels of the
refinement hierarchy. Operations that lead to a synchronized state are then for-
bidden to be retracted in the alternative run.

Finally, we still need a crash relation on all levels to specify an additional
residual effect of the crash on RAM state. For the top-level of POSIX this is
obvious, since even when no operation is running, a crash will at least close all
open files and remove the resulting orphaned files (files that were removed in the
directory tree, but are still open).

In summary, the effect of a crash after a run that went through states
(s1, . . . , sn) will be a (consistent) final state s′ of an alternative run, which exe-
cutes an initial piece of the original run, say up to si, then completes operations
that are running at this point to reach a state s′′. Finally, the crash relation is
applied and the recovery program is executed to reach s′.

The proof obligations resulting from this concept were formally verified to
imply this crash-safety criterion for a sequential setting in [17]. However, it is
applicable without changes in a concurrent setting, too. Note that it is again
crucial that all operations that run at the point where a crash happens have an
alternative run without any more changes to the persistent flash memory. Thus,
when proving linearizability by reordering steps according to Lipton’s theory, we
can already consider a run with completed operations to show that an equivalent
sequential execution exists where all programs execute atomically.

The theory given here must be extended when caching the data of individual
files is considered as retracting a part of the run is no longer sufficient. We
consider an appropriate extension in in Section 4.

3 The Flashix File System – Overview

The Flashix file system is structured into a deep hierarchy of incremental refine-
ments as shown in Fig. 3. Boxes represent formal models that can be connected
via refinements (dashed lines) and can call operations of their subcomponents
through a well-defined interface (). We distinguish between specification
components in white and implementation components in gray. Combining all
implementation components then results in the final implementation of the file
system.

The top layer of Fig. 3a is a formal specification of the POSIX standard [31].
It defines the interface and the functional correctness requirements of the file
system. Here, the state of the file system is given by a directory tree where
leaves store file identifiers, and a mapping of file identifiers to the corresponding
file contents, represented by a sequence of bytes. An indirection between file
identifiers and file content is necessary to allow hard links, where the same
file is present in several directories. Structural operations, i.e. operations that
modify the directory tree like creating/deleting directories or (un)linking files,
are defined on paths. Content operations, such as reading or writing parts of the
content of a file, work directly on file identifiers.

The bottom layer of the hierarchy in Fig. 3b is a formal specification of the
Linux MTD Interface (Memory Technology Devices). It acts as a lower boundary
of the file system and provides low-level operations to erase flash blocks and to
read and write single pages within flash blocks. Preconditions ensure that calls

(a) Upper layers of Flashix. (b) Lower layers of Flashix.

Fig. 3: Component hierarchy of the Flashix file system.

to these operations comply with the characteristics of flash memory, i.e. that
pages are only written as a whole and that pages are only written sequentially
within a block. Additionally, it formalizes assumptions about hardware failures
or the behavior of the flash device in the event of a crash.

In a first refinement step, the POSIX model is refined by a Virtual Filesystem
Switch (VFS) that uses an abstract specification of the core file system (AFS).
Similar to the Linux Virtual Filesystem, the VFS component implements the
resolution of paths to individual file system objects, permission checks, and the
management of open files. Basically, the AFS provides an interface analogous to
the POSIX interface but on the level of file system objects instead of paths. This
specification abstracts completely from any flash-specific concepts and thus the
VFS is not limited to be used exclusively with flash file systems. Details of the
POSIX specification as well as the sequential refinement to VFS and AFS can
be found in [18].

Recently, we worked on a locking concept for the VFS that allows concurrent
calls to the file system interface. The approach taken focuses on enabling parallel
access to file contents, in particular we want to allow arbitrary concurrent reads
as well as concurrent writes to different files. Therefore, we chose a fine-grained
locking strategy for files, whereas we applied a coarse-grained strategy for the
directory tree. This means that each file is protected by an individual reader-
writer lock while a single reader-writer lock is used for the entire directory tree.
It should be noted, that parallel traversal of the directory tree is still possible
as long as no structural operation is performed. Thus, we think this is a good
trade-off between development or verification effort and performance gain. We
augmented the existing sequential versions of VFS and AFS with locks and own-
erships respectively and proved that the interleaved implementation of VFS is

linearizable and deadlock-free using atomicity refinement as explained in Sec. 2.
The verification showed that a strict order for acquiring and releasing locks is
beneficial for our approach.

AFS is refined by the actual Flash File System (FFS). Additionally, AFS is
refined by a Cache component that caches data structures used at the interface
of the core file system. The Cache is integrated as a decorator, i.e. it wraps
around the AFS in the sense that it uses AFS as a subcomponent and also
implements the interface of AFS. This allows the file system to be used both with
and without Cache. The main goal of this integration was to allow write-back
caching of content operations. However, write-back caching can have significant
effects on the crash behavior of a system. In [4] we presented a novel correctness
criterion for this sort of file system caches and proved that Flashix complies with
it. We sketch the most important concepts of this addition and the proof idea
in Sec. 4.

The FFS was the layer at which we started the development of the Flashix
file system in [38]. It introduces concepts specific to flash memory and to log-
structured file systems. Updates to file system objects must be performed out-
of-place and atomically. For this purpose, the FFS is built upon an efficient
Index, implemented by a wandering B+-Tree, and a transactional Journal. Both
are specified abstractly in the component FFS-Core. New versions of file system
objects are encapsulated in nodes and grouped into transactions that are then
written to a log. To keep track of the latest versions of objects, the locations
of them on the flash memory are stored in the Index. The Index exists in two
versions, one persisted on flash and one in RAM. Updates on the Index are
initially performed only in RAM in order to improve performance as these update
are quite costly to perform on flash. Only during commits that are executed
regularly, the latest version of the Index is written to flash. The transactional
Journal ensures that, in the event of a crash, the latest version of the RAM Index
can be reconstructed. This can be done by replaying the uncommitted entries
in the log starting from the persisted Index on flash. In doing so, incomplete
transactions are discarded to comply to the atomicity properties expected by
the VFS.

Another crucial mechanism implemented in this layer is garbage collection.
Due to their out-of-place nature, updates to the file system leave garbage data
behind. This data must first be deleted before the storage space it occupies can
be used again. But since flash blocks can only be erased as a whole, garbage
collection chooses suitable blocks for deletion (preferably blocks with a high per-
centage of garbage), transfers remaining valid data of that block to another one,
and finally triggers the erasure of the block. This mechanism is not triggered
explicitly by calls to the file system, instead it must be performed periodically
to ensure that the file system does not run out of space. Hence we extracted
garbage collection into a separate thread, we give more details on this concur-
rency extension in Sec. 5.

Both the transactional Journal and the B+-Tree write nodes on the flash
device. The Node Encoding component is responsible for serializing these nodes

to bytes before they can be written to flash. It also keeps track of the alloca-
tion of erase blocks and, for each block, the number of bytes still referenced
by live data, i.e. by nodes of the index or nodes that store current versions of
file system objects. This information is used to determine suitable blocks for
garbage collection. Besides that, the layer ensures that writing of nodes appears
to be atomic to the Journal and Index. It detects partially written nodes that
may occur through crashes or hardware failures and takes care of them. A more
in-depth view on these components and the garbage collection is given in [16].

All serialized nodes pass a Write Buffer. This buffer cache tackles the restric-
tion that flash pages can only be written sequentially and as a whole. It caches
all incoming writes and only issues a page write once a page-aligned write is
possible, i.e. the write requests have reached the size of one flash page in total.
Otherwise, padding nodes would have to be used in order to write partially filled
pages, which both would increase the absolute number of writes to flash and the
amount of wasted space on the flash device. Introducing such an order-preserving
write-back cache (written data leaves the cache in the same order as it entered
it) also affects the crash behavior of the file system. In [29] we give a suitable
crash-safety criterion as well as a modular verification methodology for proving
that systems satisfy this criterion.

The Superblock component is responsible for storing and accessing the in-
ternal data structures of the file system. A specific part of the flash device is
reserved for this data. They are written during a commit only, since persisting
each update would have a significant negative impact on the performance of the
file system. A critical task of this layer is to ensure that commits are performed
atomically using a data structure called superblock.

Finally, the Erase Block Manager (EBM) provides an interface similar to the
one of MTD (read, write, erase). However, the EBM introduces an indirection
of the physical blocks of the flash device to logical blocks and all of its interface
operations address logical blocks only. These logical blocks are allocated on-
demand and mapped to physical blocks. The indirection is used to move logical
blocks transparently from one physical block to another one which is necessary
to implement wear leveling. Wear leveling ensures that within some bounds all
blocks are erased the same number of times. This is necessary to maximize
the life time of the flash memory, as erasing a flash block repeatedly wears it
out, making it unusable. To ensure a bound, the number of performed erases is
stored in an erase counter. Wear leveling finds a logical block that is mapped
to a physical block with low erase count and re-maps it to a block with high
erase count. Since a logical block with low erase-count typically contains a lot
of stale data that has not been changed for some time and therefore is not likely
to change soon, the number of erases is kept at the same level and the lifetime
of the flash device increases.

The EBM uses the Header Encoding component for the serialization and
deserialization of administrative data, most important an inverse mapping stored
in the physical blocks containing the numbers of the logical blocks they are
mapped to.

Fig. 4: Representation of file content in VFS.

A sequential version of the Erase Block Manager is explained in detail in [30].
But similar to garbage collection, wear leveling has to be performed regularly
without being triggered by the user and so we adjusted the EBM to run wear
leveling in a separate thread as well. Another thread is used to perform the
erasure of blocks asynchronously, too. We illustrate this extension and the ver-
ification methodology for introducing concurrency to a refinement hierarchy on
a simplified version of the EBM in [36].

4 Crash-Safe VFS Caching

A common technique to get a highly efficient file system implementation is the
use of caching. Flashix features several caches in multiple layers: the B+-Tree
contains a write-through cache for the directory structure, the Write Buffer uses
an order-preserving write-back cache for flash pages, and lately we added a non-
order-preserving write-back cache for file contents to the VFS layer.

Since all in-memory data is lost in the event of a crash, crash-safety is a
critical aspect when integrating caches. For write-through caches this is unprob-
lematic as cached data is only a copy of persisted data on flash. In [29] we
presented a crash-safety criterion for order-preserving caches: basically a crash
has the effect of retracting a few of the last executed operations. But this cri-
terion is too strong for non-order-preserving caches and so in [4] we proposed a
more relaxed criterion and proved that our VFS caches comply with it. We will
now give an overview over the crucial aspects of this latest extension.

While file contents are represented as a finite sequences of bytes in POSIX,
VFS breaks this abstract representation down to a map of fixed-size byte arrays
(pages) and an explicit file size as shown in Fig. 4. Each box depicts a page and
is identified by a page number pno. The map offers the advantage of a sparse
representation with the convention that missing pages are filled with zeros only.
This is indicated by a white dashed box (pno-1 in the figure). A important detail
is the possibility of random data (hatched) beyond the file size sz, resulting from
prior crashes or failed operation executions. This is especially relevant when the
file size is not page-aligned and the page of sz (pno+1 in the figure) contains
actual garbage data (non-zero bytes) beyond sz.

When extending a file, such garbage data must not become visible as this
would not match the POSIX requirements. There are two ways to change the
file size: explicitly with a truncation or by writing content beyond the current

Fig. 5: Truncation to a larger size sz ≤ n (left) and to a smaller size n < sz
(right).

file size. A truncation crops the content of a file to a new size n and ensures
that all data within the file is valid. Hence, in addition to updating the size, the
actual content may also need to be updated. To increase the file size, possible
junk data in the page of sz needs to be cleared with zeros and pages beyond the
old file size are deleted (Fig. 5 on the left). On the other hand, junk data can
remain in the page of the new size when shrinking the file (Fig. 5 on the right).

The VFS breaks down a write into three steps. First, possible junk data
beyond the file size is removed. This is done by a truncation to the current
file size (n = sz in Fig. 5). Then the respective pages are written bottom up
individually. If writing a page causes an error, writing stops and hence only a
prefix of the requested bytes are written. Finally, the file size is adjusted to the
position of the last written byte if data was written beyond the old file size.

By using the decorator pattern, VFS caching could be integrated into our
refinement hierarchy without changing existing components by adding a single
new component. The component Cache refines and uses AFS at the same time
as shown by Fig. 3a. To cache content operations in a write-back manner, writes
and truncations are aggregated in local page and size caches. Additionally, write-
through caches for header nodes (containing meta data of files and directories)
and directory entries are implemented. Page writes are stored in the page cache
and truncations or size updates lead to updates in the respective size caches. We
only cache the most current file size while multiple truncations are aggregated
by caching the minimal truncation size since the last synchronization. Reading
a page tries to find a corresponding cache entry. If it does not exist in the cache,
the page is read from the Flash File System (FFS) and (if it exists) stored in
the cache.

Updating the persisted content happens only if it is triggered by a call of the
fsync operation for the respective file. A call to fsync starts the synchronization
with a single truncation of the persisted content to the minimal truncation size.
Then, similar to a VFS write, all dirty pages of the file in the cache are written
to the FFS bottom up and finally the file size is adjusted if necessary.

Showing functional correctness of this addition can be done by a single data
refinement and will not be considered further here. However, proving crash-
safety is quite difficult. If a crash occurs, all data in the volatile state of the
Cache component is lost such that unsynchronized writes and truncations have
not taken place. To ensure crash-safety, it must be shown that each crash results

Fig. 6: Write-Prefix Crash Consistency: prefix writes for a crash during the syn-
chronization of a file just before syncing byte k.

in a consistent state. Normally, the effect of a crash would be described by
an explicit change of state. But this is usually not practicable for write-back
caches and the crash-safety criterion introduced in [29] is not suitable for non-
order-preserving caches, too. So we use a new criterion called Write-Prefix Crash
Consistency (WPCC). It states that for any file a crash has the effect of retracting
all write and truncate operations since the last synchronization of that file and
re-executing them, potentially resulting in writing prefixes of the original runs [4].

This follows from the effects of a crash during persisting a cached file as shown
in Fig. 6 for the POSIX data representation. On the left, there is shown how
multiple overlapping writes combine to a sequence of written bytes. Since cached
pages are written bottom up during synchronization, a crash in the middle of
fsync results in a prefix of these bytes being persisted (on the bottom right
in Fig. 6). If the crash occurs just before persisting the byte at position k, the
resulting state can be explained by writing prefixes of the original instructions
(namely those prefixes that have written exactly the bytes beyond k). This can
result in complete writes (write 1 in Fig. 6), partial writes (write 3), or writes
that are completely lost (write 2). To archive this behavior it is essential that
VFS writes as well as synchronizations are performed bottom up and that writes
can fail after writing a arbitrary number of bytes.

Informally, the criterion describes the effects of a crash by finding an alter-
native run where loosing cached data has no noticeable effect. These alternative
runs may differ at most from their original runs in that writes since the last
synchronization have written prefixes of their original runs. Because such an al-
ternative run is a valid run and hence results in a consistent state, the original
crashing run yields a consistent state as well.

The main effort for proving crash-safety is to show that such alternative
runs exist for any possible occurrence of a crash. While finding suitable runs
for crashes outside of fsync is unproblematic (if nothing was persisted, failed
executions of cached operations can be chosen), this is especially hard for crashes
within fsync. One particular challenge is to show that the aggregation of multiple
truncate operations matches WPCC if the minimal truncation was executed but
the final file size was not yet synchronized at the event of the crash. This can
lead to slightly different junk data in the write-prefix run such that on the level

of AFS the contents of the crashed run and the write-prefix run differ beyond
the file size. However, this junk data is only visible in AFS as the abstraction
to POSIX ignores all bytes beyond the file size. Hence an alternative run can
be found on the level of POSIX, but this required to extend the proof work to
another layer of abstraction. More details on the difficulties and the concrete
proof strategy involving multiple commuting diagrams can be found in [4].

5 Concurrent Garbage Collection

Besides allowing concurrent calls to the file system interface as briefly outlined
in Sec. 3, moving certain internal mechanisms into separate threads also intro-
duces additional concurrency to the file system. Hence the affected models have
to be modified in order to avoid conflicts resulting from parallel executions of
operations.

The expansion with concurrent garbage collection ranges from the FFS layer
to the Journal layer. In the FFS the concurrent operation for garbage collection
is introduced (Fig. 8). This operation is not part of the interface (it refines
skip, i.e. it has no visible effect for clients). Hence, it can not be called by any
client components. Instead it will be repeated infinitely within its own thread.
To ensure that garbage collection is not performed continuously, especially when
no more space can be regained, a condition variable gc cond is used 1. At the
beginning of each iteration the thread blocks at the condition wait call until it
is signaled by another thread to start. The concrete garbage collection algorithm
is specified in the FFS-Core and implemented in the Journal component, so after
being signaled the operation ffs core gc is called.

Signaling takes place in all FFS operations that may modify the file system
state in the sense that either entries are written to the log and hence space on
the flash device is allocated or garbage is introduced by invalidating allocated
space. Such operations, as shown generically in Fig. 7, emit a signal to gc cond
after they have updated the index.

The implementation of ffs core gc in the Journal component then first
checks whether there is a block which is suitable for garbage collection. If that
is the case, all still referenced nodes of this block are collected, these nodes are
then written to the journal, and their new addresses are updated in the index
accordingly. Finally, if the referenced data was successfully copied, the block can
be marked for erasure.

As an additional thread is introduced in the FFS, established ownerships
in the VFS/AFS layer are not sufficient to prevent data races between the
garbage collection thread and other threads. For this reason the reader-writer
lock core lock is added to the FFS component. It is used to acquire exclusive

1 Note that condition variables are always coupled to a mutex. Here gc cond is cou-
pled to gc mutex . Signaling a condition requires to hold the corresponding mutex.
Starting to wait for a signal requires to hold the mutex as well, however, the mutex
is released during waiting. As soon as a signal was emitted and the mutex is free,
the waiting thread acquires the mutex and continues its execution.

ffs operation(...) {
...
nd1 := inodenode(key1 , ...);
...
rwlock wlock(; core lock);
ffs core wacquire();
ffs core journal add(nd1 , ... ; adr1 , ... ; err);
if err = ESUCCESS then {

ffs core index store(key1 ; adr1);
...
mutex lock(; gc mutex);
condition signal(; gc cond, gc mutex);
mutex unlock(; gc mutex);
};
ffs core release();
rwlock wunlock(; core lock);
...
}

Fig. 7: General operation scheme of
modifying FFS operations.

ffs gc() {
mutex lock(; gc mutex);
condition wait(; gc cond, gc mutex);
mutex unlock(; gc mutex);

rwlock wlock(; core lock);
ffs core wacquire();
ffs core gc();
ffs core release();
rwlock wunlock(; core lock);
}

Fig. 8: FFS garbage collection op-
eration.

or shared ownership for the journal and index data structures. We did not head
for a more fine-grained locking approach since usually updates affect nearly all
parts of the state of FFS-Core anyway. However, using reader-writer locks still
allows for concurrent read accesses to the Journal.

Fig. 9: Refinement hierarchy ex-
tended by concurrent garbage col-
lection.

Modifying operations in the FFS as
shown in Fig. 7 always follow the same
scheme. First, all new or updated data
objects are wrappend into nodes (nd1 , ...)
with an unique key (key1 , ...). Depend-
ing on the concrete operation, nodes for
inodes, dentries, and pages are created.
Then these nodes are grouped into trans-
actions and appended to the log using the
ffs core journal add operation. If suc-
cessful, i.e. the operation returns the code
ESUCCESS, the operation returns the ad-
dresses (adr1 , ...) where the passed nodes
have been written to. Finally, the in-
dex is updated by storing the new ad-
dresses of the affected keys via the op-
eration ffs core index store2. It is cru-
cial that garbage collection is never per-
formed between these calls since this could result in a loss of updates (e.g. if
garbage collection moves nodes updated by the operation), potentially yield-
ing an inconsistent file system state. Hence, the locking range must include the
ffs core journal add as well as all ffs core index store calls.

To prove that this locking strategy is in fact correct, i.e. that the interleaved
components are linearizable, we again apply atomicity refinement. This results

2 Some operations also update the index by removing entries from it.

journal operation(...) {
...
mutex lock(; idx lock);
index operationi(...);
mutex unlock(; idx lock);
...
mutex lock(; idx lock);
index operationj(...);
mutex unlock(; idx lock);
...
}

journal operation(...) {
...
atomic {

mutex lock(; idx lock);
index operationi(...);
mutex unlock(; idx lock);
}
...
atomic {

mutex lock(; idx lock);
index operationj(...);
mutex unlock(; idx lock);
}
...
}

journal operation(...) {
atomic {

...
mutex lock(; idx lock);
index operationi(...);
mutex unlock(; idx lock);
...
mutex lock(; idx lock);
index operationj(...);
mutex unlock(; idx lock);
...
}
}

Fig. 10: Reduction steps of a Journal operation (from left to right).

in the expansion of the refinement hierarchy shown in Fig. 9. Usually, atomicity
refinement would have to be applied to all layers below Index, too, but we did
not put any effort in making a interleaved version of the B+-Tree yet. Instead
we locked the interface of the Index (depicted by). This means that each
call to an Index operations index operation requires the current thread to
be an exclusive owner of the Index component. In the Journal this is realized
by surrounding these calls with a mutex idx lock as shown in Fig. 10 on the
left. Owning a subcomponent exclusively ensures that the subcomponent is only
called sequentially and hence allows to directly use the unaltered sequential
version of the subcomponent and its refinements (denoted by in Fig. 9).

FFS-Core is augmented with ownership ghost state matching the reader-
writer lock core lock of FFS. The FFS operations acquire and release this own-
ership according to the locking ranges (see Fig. 7 and Fig. 8). While the owner-
ship granularity of AFS (owned directory tree, owned files, ...) does not match
the state of the FFS-Core or the Journal, the information about which files etc.
are owned when an operation is called (encoded in the preconditions) is still
relevant for the FFS in order to preserve functional correctness. For example, an
owned file must not be removed from the index while its metadata is updated.
Therefore, ownership ghost state is added to FFS analogously to AFS and cor-
responding ownership properties are established. This is sufficient to prove that
the interleaved FFS can be reduced to an atomic FFS via atomicity refinement.
The data refinement of the atomic AFS to the atomic FFS is basically identical
to the original sequential refinement, in addition, it must only be shown that
their respective ownerships match.

When proving the atomicity refinement of the Journal, it is apparent that
Index operations together with their surrounding lock calls form atomic blocks
like in the center of Fig. 10. But as most operations have multiple calls to the
Index, this is not sufficient to reduce these operations to completely atomic
ones. It remains to show that these blocks as well as statements that access
the local state of the Journal move appropriately (usually they have to be both
mover). To prove this, the ownership information of the FFS-Core component
can be used. The Journal is augmented with ownership properties, operations

and preconditions that match those of the FFS-Core and so accesses to the
local state can be inferred to be both movers. The information that a certain
ownership is acquired at the calls of Index operations and their associated locking
operations allows to prove that these blocks in fact are movers and hence to
further reduce the operations to be atomic (Fig. 10 on the right). Although the
proofs are simple, this is quite elaborate since many commutations have to be
considered. The data refinement of FFS-Core to the atomic Journal then again
is basically identical to the sequential refinement.

6 Evaluation

FA FB FC UBIFS
0

0.5

1

1.5

0.005

1.028 1.06 1.078
1.169

0.068 0.028 0.005

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

big write

sync

FA FB FC UBIFS
0

5

10

0.125

1.266

1.241 1.05

11.636

2.04

0.159 0.026

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

small writes

sync

Fig. 11: Nano write benchmarks on Flashix and UBIFS: big write (left) and small
writes (right). Flashix was used in three different configurations: sequentially
without VFS cache (FA), sequentially with VFS cache (FB), and with VFS
cache and concurrent wear leveling and garbage collection (FC).

To evaluate the performance of the Flashix file system we perform a collection
of microbenchmarks. This gives us some insight in whether the expansions we
have made, especially those described in Sec. 4 and Sec. 5 or in [4, 36], have an
impact on the performance. Furthermore, we want to compare the performance
of Flashix with state-of-the-art flash file systems like UBIFS [23].

All benchmarks were run within a virtualized Linux Mint 19.3 distribution,
using 3 Cores of a Intel Core i5-7300HQ CPU and 4,8 GB of RAM. The flash
device was simulated in RAM using the NAND simulator (nandsim) integrated
into the Linux kernel [27]. The numbers shown in the following represent the
mean of 5 benchmark runs in which the mean standard deviation across all runs
is below 4.5% (this translates to a mean deviation in runtime of less than 0.16
seconds).

We chose some small workloads that represent everyday usage of file systems:
copying and creating/extracting archives. Copying an archive to the file system

FA FB FC UBIFS
0

2

4

6

8
0.008

6.76
6.913

6.434
7.204

0.47
0.123 0.021

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

big write

sync

FA FB FC UBIFS
0

50

100

150

1.423

9.081

8.839
6.484

128.754

19.316 2.1
0.236

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

small writes

sync

Fig. 12: Vim write benchmarks on Flashix and UBIFS: big write (left) and small
writes (right). Flashix was used in three different configurations: sequentially
without VFS cache (FA), sequentially with VFS cache (FB), and with VFS
cache and concurrent wear leveling and garbage collection (FC).

results in the creation of a file and writing the content of that one file. Anal-
ogously, copying an archive from the file system yields in reading the content
of the file. Hence, we call these workloads big write and big read respectively.
On the other hand, extracting an archive results in the creation of a directory
structure containing many files. The contents of the created files are written as
well, however, these are multiple smaller writes compared to the single big write
when copying. Creating an archive from a directory structure on the file system
requires to read all directories and files. Hence, we call such workloads small
writes and small reads respectively. As sample data we used archives of the text
editors Nano3 and Vim4.

Fig. 11 shows the results of the write benchmarks with Nano. When com-
paring the uncached configuration (FA) with the cached configuration (FB) of
Flashix, one can see that adding the VFS cache has indeed a significant impact
on write times (depicted in blue). But as these times do not include persisting
the cached data to flash, we enforced synchronization directly afterwards via
sync calls (depicted in red). For big writes the combined runtime of the cached
configuration is similar to the uncached one. For small writes though, the com-
bined runtime of FB is substantially faster since repeated reads to directory and
file nodes during path traversal can be handled by the cache.

Moving wear leveling and garbage collection into separate threads (FC) fur-
ther improves the performance. This is especially noticeable in the small writes
workload where the write time can be reduced by about one order of magnitude.
In the sequential configurations (FA and FB), after each toplevel operation it
was checked whether garbage collection or wear leveling should be performed.

3 nano-2.4.2.tar: approx. 220 elements, 6.7 MB
4 vim-7.4.tar: approx. 2570 elements, 40.9 MB

FA FB FC UBIFS

0

2

4

6

8
7.089

0.248
0.02 0.006

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

big read

FA FB FC UBIFS

0

10

20

30

34.016

6.014

0.837 0.745

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

small reads

(a) Vim read benchmarks with with hot caches.

FA FB FC UBIFS

0

2

4

6

8

10

7.9 7.849
7.647

7.11

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

big read

FA FB FC UBIFS

0

10

20

30

40

35.203

16.15

11.79

9.4

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

small reads

(b) Vim read benchmarks with with cold caches.

Fig. 13: Vim read benchmarks on Flashix and UBIFS: big read (left) and small
reads (right). Flashix was used in three different configurations: sequentially
without VFS cache (FA), sequentially with VFS cache (FB), and with VFS
cache and concurrent wear leveling and garbage collection (FC).

big read small readsbig write small writes

0

1

2

0.019

0.709

0.13

2.02

0.007
0.069

0.019

0.184

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

Flashix

UBIFS

Fig. 14: Vim benchmarks on Flashix and UBIFS without flash delays.

During these checks and potential subsequent executions of the algorithms, other
POSIX operation calls were blocked. In the concurrent configuration (FC) these
blocked time can be eliminated for the most part since writing to the cache does
not interfere with garbage collection or wear leveling. As small writes trigger
considerably more toplevel operation calls, this effect is much more noticeable
than with big write workloads.

Compared to UBIFS, the current version of Flashix performs as expected.
Runtimes of the FC configuration are always within the same order of magnitude
of those of UBIFS. This also applies for running the benchmarks with a larger
archive like Vim shown in Fig. 12.

Similar effects can be observed when considering read workloads as shown
in Fig. 13. Adding caches significantly speeds up both reading a single big file
and reading many small files when the caches are hot (Fig. 13a), i.e. when the
requested data is present in the caches. Likewise, moving wear leveling and
garbage collection to background processes brings down the runtime by an order
of magnitude. When reading from cold caches, i.e. when no requested data is
present in the caches, the speed up is much more subtle since the main delay
results from reading data from flash. As shown in Fig. 13b, for big reads there is
hardly any improvement from FA to FB or FC. However, both expansions have
an impact on the runtime of small read workloads for the same reasons as for
small write workloads: repeated reads to the directory structure can be handled
by the cache and blocked time for garbage collection and wear leveling can be
eliminated. With these additions one can see that Flashix is competitive with
UBIFS regarding read performance, too.

In future work we plan to further improve the performance of Flashix by
improving our code generator as the generated code is not optimal in terms of
allocating/deallocating and copying data structures. The optimization potential
becomes apparent when comparing the raw in-memory runtimes of Flashix and
UBIFS like in Fig. 14. Here we instructed nandsim to not simulate any delays

for accessing the simulated NAND memory. The results show that UBIFS is
still up to a factor of 10 faster than Flashix for the Vim microbenchmarks (the
Nano benchmarks yield similar results). First experiments show, that even simple
routines can affect performance noticeably if they are generated inefficiently. For
example, we found out that a simple optimization of a routine used in the Journal
for calculating the required space of a node-list on flash improved the runtime
by up to 30% compared to the generated code. Hence we plan to apply data
flow analysis to identify this and other locations where such optimizations can
be performed. We are optimistic that this will further close the gap to state-of-
the-art handwritten file systems.

7 Related Work

There are some other projects related to verified file systems.
Damchoom et al. [11] develop a flash file system by using incremental refine-

ment. Concurrency is verified on a similar level as AFS for reading and writing
of file content and for wear-leveling as well. Synchronization between threads
is implicit by semantics of Event-B [1] models. But this makes it difficult to
derive executable code. Amani et al. [2] design the flash file system BilbyFS to
research their tool Cogent for generating verified C code. The system can also
derive specifications for Isabelle/HOL. BilbyFS has a similar but simpler struc-
ture as Flashix. For instance it builds on top of the EBM instead of MTD. It
supports caching mechanism but not on the level of VFS. Crash-safety has not
been considered so far.

(D)FSCQ [8, 9] is a sequential implemented file system developed by Chen
et al., which is targeted for regular disks with random access, not flash memory.
Similar to our approach, structural updates to the file system tree are persisted
in order. DFSCQ also uses a page cache, however, it does not specify an order in
which cached pages are written to persistent store. Therefore, it is not provable
that a crash leads to a POSIX-conforming alternate run. Instead a weaker crash-
safety criterion is satisfied, called metadata-prefix specification: it is proved that
a consistent file system results from a crash, where some subset of the page
writes has been executed. Verification is done by using Crash Hoare Logic and
Haskell code is derived from the specification.

Our crash-safety criterion for order-preserving caches is similar to buffered
durable linearizability [24], though there are some differences: the criterion is
purely history based, it allows to construct a prefix of the history, where pending
operations can be completed anew, similar to our approach. It however allows to
complete pending operations in the shortened history even after operations that
have started after the crash. This is useful for a concurrent recovery routine, that
may restart operations that crashed. It is disallowed in our approach, since not
relevant for file systems. Buffered durable lineariability also disallows the effect
of closing open files that we specify separately with a Crash predicate.

Verification of a sophisticated locking scheme that locks inodes hand-over-
hand (lock coupling) has recently been done in the theorem prover Coq for a file

system prototype called AtomFS that is directly programmed in C and stores
data in RAM [44]. A particular challenge for the proof of linearizability solved
there was the rename operation, that moves directories (whole subtrees). The
operation has to lock both the source and target directory, but has to avoid
deadlocks. It should be possible to port this locking scheme to our file system.

Other, older related work can be found in our prior work [4, 36].

8 Conclusion

The Flashix project has developed the first realistic verified file system using a
refinement- and component-based approach that generates code at the end.

Being realistic however had the price that the individual components had to
be intertwined carefully, which caused lots of effort and was therefore substan-
tially harder than analyzing concepts individually.

We think that developing such a large system without suitable modulariza-
tion and abstraction by verifying concrete C-code directly would have been an
almost impossible task.

The use of abstract data types and components, that allows efficient verifica-
tion comes at a price, however. Since abstract data types have the semantics of
predicate logic, which is a value semantics that does not take sharing, allocation,
or destructive updates into consideration, generating correct, efficient C-code is
still a challenge.

Generating functional (non-destructive) code instead has long been done by
theorem provers, but this would be hopelessly inefficient for a file system, where
destructively updated arrays (buffers, pages, blocks) are crucial for efficiency:
we tried using Scala’s immutable type Vector once, but the generated code is
slower by at least one order of magnitude.

It is possible to refine individual pieces of the abstract code to heap-based
destructive code, and this is occasionally necessary (e.g. to represent search trees
efficiently as pointer structures), and the verification task can be supported by
using a library for separation logic, however refining all abstract data struc-
tures with pointer-structures would mean to analyze sharing manually, and to
duplicate all code.

Another alternative is to enforce a linear type system on abstract specifica-
tions, for which a code generator could be proven correct [28].

Our current code generator follows the principle of not sharing data struc-
tures in the resulting C code to have definite allocation and deallocation points,
and to allow destructive updates. This however, enforces copying x and all its
substructures to y, when executing an assignment x := y. We already do a simple
liveness check (if y is no longer used, then copying can be avoided), and some
more ad-hoc optimizations to avoid unnecessary copying.

Still, a systematic data flow analysis, that allows sharing in places where it is
harmless, and avoids copying wherever possible, should be able to close a large
part of the still existing gap between the efficiency of our generated code and
the hand-written code of UBIFS.

Implementation of such a data flow analysis is still future work, and we
also want to tackle formalization and verification of such an approach, thereby
establishing the correctness of the code generator.

References

1. J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010. doi:10.1017/CBO9781139195881.

2. S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor, J. Beeren,
Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller, T. Murray, G. Klein, and
G. Heiser. Cogent: Verifying high-assurance file system implementations. In Proc.
of ASPLOS, page 175–188. ACM, 2016.

3. E. Bila, J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim. Mod-
ularising Verification of Durable Opacity. Logical Methods in Computer Science,
2021. submitted, draft available from the authors.

4. S. Bodenmüller, G. Schellhorn, and W. Reif. Modular Integration of Crashsafe
Caching into a Verified Virtual File System Switch. In Proc. of 16th International
Conference on Integrated Formal Methods (IFM), volume 12546 of LNCS, pages
218 – 236. Springer, 2020.

5. E. Börger. The ASM Refinement Method. Formal Aspects of Computing, 15(1–
2):237–257, 2003.

6. E. Börger and D. Rosenzweig. The WAM—definition and compiler correctness.
In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and
Practical Applications, Studies in Computer Science and Artificial Intelligence 11,
pages 20–90. Elsevier, Amsterdam, 1995.

7. E. Börger and R. F. Stärk. Abstract State Machines — A Method for High-Level
System Design and Analysis. Springer, 2003.

8. H. Chen. Certifying a crash-safe file system. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, United States, 2016.

9. H. Chen, T. Chajed, A. Konradi, S. Wang, A. İleriy, A. Chlipala, M. Kaashoek,
and N. Zeldovich. Verifying a high-performance crash-safe file system using a tree
specification. In Proc. of the 26th Symposium on Operating Systems Principles
(SOSP), pages 270–286, 2017.

10. D. Cooper, S. Stepney, and J. Woodcock. Derivation of Z Refinement Proof Rules:
forwards and backwards rules incorporating input/output refinement. Technical
Report YCS-2002-347, University of York, 2002. URL: http://www-users.cs.

york.ac.uk/susan/bib/ss/z/zrules.htm.
11. K. Damchoom and M. Butler. Applying Event and Machine Decomposition to a

Flash-Based Filestore in Event-B. In Proc. of the Brazilian Symposium on Formal
Methods (SBMF), volume 5902 of LNCS, pages 134–152. Springer, 2009.

12. W. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods
and their Comparison, volume 47 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1998.

13. J. Derrick and E. Boiten. Refinement in Z and in Object-Z : Foundations and
Advanced Applications. FACIT. Springer, 2001. second, revised edition 2014.

14. T. Elmas, S. Qadeer, and S. Tasiran. A Calculus of Atomic Actions. In Proceeding
POPL 2009, pages 2–15. ACM, ACM, 2009.

15. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV — Overview
and VerifyThis competition. Software Tools for Technology Transfer (STTT),
17(6):677–694, 2015.

https://doi.org/10.1017/CBO9781139195881
http://www-users.cs.york.ac.uk/susan/bib/ss/z/zrules.htm
http://www-users.cs.york.ac.uk/susan/bib/ss/z/zrules.htm

16. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Inside a Verified Flash File Sys-
tem: Transactions & Garbage Collection. In Proc. of Verified Software: Theories,
Tools, Experiments (VSTTE), volume 9593 of LNCS, pages 73–93. Springer, 2015.

17. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular, Crash-Safe Refinement
for ASMs with Submachines. Science of Computer Programming, 131:3 – 21, 2016.
Abstract State Machines, Alloy, B, TLA, VDM and Z (ABZ 2014).

18. G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. Verification of a
Virtual Filesystem Switch. In Proc. of Verified Software: Theories, Tools, Experi-
ments (VSTTE), volume 8164 of LNCS, pages 242–261. Springer, 2013.

19. H. Grandy, M. Bischof, G. Schellhorn, W. Reif, and K. Stenzel. Verification of
Mondex Electronic Purses with KIV: From a Security Protocol to Verified Code.
In FM 2008: 15th Int. Symposium on Formal Methods. Springer LNCS 5014, 2008.

20. D. Haneberg, N. Moebius, W. Reif, G. Schellhorn, and K. Stenzel. Mondex: Engi-
neering a provable secure electronic purse. International Journal of Software and
Informatics, 5(1):159–184, 2011. http://www.ijsi.org.

21. D. Haneberg, G. Schellhorn, H. Grandy, and W. Reif. Verification of Mondex
Electronic Purses with KIV: From Transactions to a Security Protocol. Formal
Aspects of Computing, 20(1), January 2008.

22. M.P. Herlihy and J.M. Wing. Linearizability: A Correctness Condition for Con-
current Objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

23. A. Hunter. A brief introduction to the design of UBIFS. URL: http://www.

linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf, 2008.
24. J. Izraelevitz, H. Mendes, and M. Scott. Linearizability of Persistent Memory

Objects Under a Full-System-Crash Failure Model. In Distributed Computing,
volume 9888 of LNCS, pages 313–327. Springer, 2016.

25. C. Jones and J. Woodcock, editors. Formal Aspects of Computing, volume 20 (1).
Springer, January 2008.

26. R. J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.
Communications of the ACM, 18(12):717–721, 1975.

27. Linux MTD: NAND and NAND simulator. http://www.linux-mtd.infradead.

org/faq/nand.html.
28. L. O’Connor, Z. Chen, C. Rizkallah, S. Amani, J. Lim, T. Murray, Y. Nagashima,

T. Sewell, and G. Klein. Refinement through Restraint: Bringing down the Cost
of Verification. In Proc. of the 21st Int. Conf. on Funct. Prog. Languages (ICFP),
ICFP 2016, page 89–102, New York, NY, USA, 2016. Association for Computing
Machinery.

29. J. Pfähler, G. Ernst, S. Bodenmüller, G. Schellhorn, and W. Reif. Modular Ver-
ification of Order-Preserving Write-Back Caches. In Proc. of 13th International
Conference on Integrated Formal Methods (IFM), volume 10510 of LNCS, pages
375–390. Springer, 2017.

30. J. Pfähler, G. Ernst, G. Schellhorn, D. Haneberg, and W. Reif. Formal specification
of an Erase Block Management Layer for Flash Memory. In Haifa Verification
Conference (HVC), volume 8244 of LNCS, pages 214–229. Springer, 2013.

31. The Open Group Base Specifications Issue 7, IEEE Std 1003.1, 2018 Edition. The
IEEE and The Open Group, 2017.

32. G. Schellhorn. Verification of Abstract State Machines. PhD thesis, Universität
Ulm, Fakultät für Informatik, 1999. URL:
https://www.uni-augsburg.de/en/fakultaet/fai/isse/prof/swtse/team/

schellhorn/.

http://www.ijsi.org
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.linux-mtd.infradead.org/faq/nand.html
http://www.linux-mtd.infradead.org/faq/nand.html
https://www.uni-augsburg.de/en/fakultaet/fai/isse/prof/swtse/team/schellhorn/
https://www.uni-augsburg.de/en/fakultaet/fai/isse/prof/swtse/team/schellhorn/

33. G. Schellhorn. Verification of ASM Refinements Using Generalized Forward Sim-
ulation. Journal of Universal Computer Science (J.UCS), 7(11):952–979, 2001.
URL: http://www.jucs.org.

34. G. Schellhorn. Completeness of ASM Refinement. Electron. Notes Theor. Comput.
Sci., 214:25–49, 2008.

35. G. Schellhorn and W. Ahrendt. The WAM Case Study: Verifying Compiler Cor-
rectness for Prolog with KIV. In W. Bibel and P. Schmitt, editors, Automated
Deduction — A Basis for Applications, volume III: Applications, chapter 3: Au-
tomated Theorem Proving in Software Engineering, pages 165 – 194. Kluwer Aca-
demic Publishers, 1998.

36. G. Schellhorn, S. Bodenmüller, J. Pfähler, and W. Reif. Adding Concurrency to
a Sequential Refinement Tower. In Proc. of International Conference on Rigorous
State-Based Methods (ABZ), volume 12071 of LNCS, pages 6–23. Springer, 2020.

37. G. Schellhorn, B. Tofan, G. Ernst, J. Pfähler, and W. Reif. Rgitl: A temporal
logic framework for compositional reasoning about interleaved programs. Annals
of Mathematics and Artificial Intelligence, 71(1):131–174, 2014.

38. A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif. Abstract Specification of the
UBIFS File System for Flash Memory. In Proc. of International Symposium on
Formal Methods (FM), volume 5850 of LNCS, pages 190–206. Springer, 2009.

39. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine—
Definition, Verification, Validation. Springer-Verlag, 2001.

40. K. Stenzel. A formally verified calculus for full Java Card. In Algebraic Methodology
and Software Technology (AMAST) 2004, Proceedings. Springer LNCS 3116, 2004.

41. S. Stepney, D. Cooper, and J. Woodcock. AN ELECTRONIC PURSE Specifi-
cation, Refinement, and Proof. Technical monograph PRG-126, Oxford Univer-
sity Computing Laboratory, July 2000. URL: http://www-users.cs.york.ac.

uk/susan/bib/ss/z/monog.htm.
42. M. Szeredi. File system in user space. http://fuse.sourceforge.net.
43. Q. Xu, W.-P. de Roever, and J. He. The Rely-Guarantee Method for Verifying

Shared Variable Concurrent Programs. Formal Aspects of Computing, 9(2):149–
174, Mar 1997. doi:10.1007/BF01211617.

44. M. Zou, H. Ding, D. Du, M. Fu, R. Gu, and H. Chen. Using concurrent relational
logic with helpers for verifying the atomfs file system. In Proc. of SOSP, SOSP
’19, page 259–274. ACM, 2019.

http://www.jucs.org
http://www-users.cs.york.ac.uk/susan/bib/ss/z/monog.htm
http://www-users.cs.york.ac.uk/susan/bib/ss/z/monog.htm
http://fuse.sourceforge.net
https://doi.org/10.1007/BF01211617

	Flashix: Modular Verification of a Concurrent and Crash-Safe Flash File System

