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Besides electricity, many industrial production processes require other energy sources such as steam or pressure.
To transform primary or secondary energy sources into the required energy sources, manufacturing companies
often operate their own on-site energy conversion system. Most important parameters determining a conversion
systems’ overall degree of efficiency are the dimension of its conversion units (CUs) and the design point
(nominal load) at which a CU operates with maximum efficiency. In addition, conversion efficiencies at part load
are particularly important because strongly varying energy demands from production processes frequently
forcing an operation different from the nominal load. The (mostly) nonlinear relationship between part load
operation and conversion efficiency makes an adequate consideration of this relationship essential.

To address these factors, we present a new conversion system design approach aligned for manufacturing
companies. To maximize energy efficiency, we propose a heuristic and a mixed-integer nonlinear program. In the
experimental analysis, we analyze different types of companies, several CU parameter settings, the influence of
nonlinear and linear efficiency modelling, and the influence of different machine scheduling objectives on the
conversion system design. The results show that all these factors can remarkably influence the design and the

energy efficiency of a conversion system.

1. Introduction

The sustainable development of a society is strongly related to the
sustainable development of its manufacturing companies (Jovane et al.,
2008; Haapala et al., 2013) and their overall energy demand (in 2017,
industry accounted for approximately 24.6% of the total energy con-
sumption in the European Union; Eurostat, 2019). However, the
execution of manufacturing processes is inevitably paired with the
application of energy and there is no option to abandon manufacturing
for the sake of lowering energy demands. Instead, improving energy
efficiency, i.e., the ratio between energy input and the desired output of
a production process (for a more specific definition of energy efficiency,
see e.g. Fysikopoulos, Pastras, Alexopoulos, and Chryssolouris, 2014), is
an effective measure to guarantee a desired production output at a
minimum energy demand.

Improving the energy efficiency of manufacturing companies can be
achieved by various measures on different decision levels: e.g., in the
short-term, by energy-efficient scheduling (cf., e.g., Biel and Glock,
2016) or in the long-term, by the design of energy conversion systems
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(cf., e.g., Sun & Liu, 2015). This paper focuses on the long-term decision
level with the goal to improve the energy efficiency of manufacturing
companies by optimizing the design of on-site operated energy conver-
sion systems (ECSs). To that, we propose a new flexible approach for ECS
dimensioning, i.e., for determining the size (maximum capacity) and
related parameters of its conversion units (CUs). The most important of
these related parameters is the nominal load, i.e., the load at which the
CU operates with maximum efficiency (also called design point). This
long-term decision is addressed because an appropriate dimensioning
can remarkably reduce conversion inefficiencies. To carve out starting
points for avoiding inefficiencies, technical characteristics of ECSs and
its CUs are particularly analyzed with regard to manufacturing com-
panies where two special aspects must be considered: First, the energy
demand arising from the production system is highly dynamic and can
strongly vary from period to period (e.g., minute to minute). Second, we
have the opportunity to directly influence the course of the energy de-
mand by scheduling production processes (cf., Gahm, Denz, Dirr, and
Tuma, 2016). Our paper makes the following contribution to literature:
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Energy conversion system
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Final energy sources
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“Hill” energy demand

incMaxIL*°V  Incumbent maximum load of the LCU (used by the TEH)
incNomLF®Y  Incumbent nominal load of the FCU (used by the TEH)
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Set of machines

Number of levels in an energy demand time series
Indices of energy demand levels

Last time slice of an aggregation interval

IbMaxL°V Lower bound for the maximum load of the LCU
IbNomLFcU Lower bound for the nominal load of the FCU
IbTFESANT  Lower bound for the total final energy sources used by the

Antigone solver
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by the SCIP solver

Large scale conversion unit

Longest processing time (dispatching rule)

Large range energy variability

Number of machines

Production system size: medium

Sufficiently large number

Maximum load at which a CU can operate (i.e., its
dimension or maximum capacity)

Continuous variable for the maximum load of the FCU
Continuous variable for the maximum load of the LCU
Minimum load at which a CU can operate

Continuous variable for the minimum load of the FCU
Continuous variable for the minimum load of the LCU
Mixed-integer nonlinear program

Many simple products

Number of jobs

Number of data point represented by an energy demand
level

Approximate number of jobs

Nonlinear part-load efficiency model

Nominal load at which a CU operates with maximum
efficiency

Continuous variable for the nominal load of the FCU
Continuous variable for the nominal load of the LCU
Indices of processing time

Assumed mean processing time

Actual mean processing time

Processing time of job j

Production system
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Production unit

Piecewise linear part-load efficiency model
Indices of an aggregation interval

Relative number of periods the LCU must operate at
nominal load

Indices of time series

Production system size: small

Set of available time series

Incumbent solution (used by the TEH)

Best known solution (used by the TEH)

Small range of energy variability

Shortest processing time (dispatching rule)
Number of time slices in time series s

Indices of time

“Target” planning horizon of scheduling instances
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Total flow time (scheduling objective)




ubMaxI**V Upper bound of the maximum load of the LCU
ubNomLF¢Y Upper bound of the nominal load of the FCU

X, Binary variable with X, = 1 indicating that the FCU is
required and X; = 0 otherwise

v Decrement value (parameter of the TEH)

yrev Binary variables with Y7V = 1 indicating that the load of

the FCU in period ¢ is between the nominal load and the

maximum load and Y7V = 0 otherwise

yiev Binary variables with Y2V = 1 indicating that the load of
the LCU in period ¢ is between the nominal load and the
maximum load and Y€V = 0 otherwise

¢ Upper bound offset (parameter of the TEH)

Z Sufficiently small number

- A flexible ECS design approach which is suitable for almost any type
of energy and which is not limited to specific CUs. We achieve this
flexibility by considering common CU characteristics.

- Regarding CU characteristics, the explicit consideration of a CU’s
part-load behavior combined with nonlinear part-load efficiencies,
which is rarely done in literature but very important in the context of
manufacturing companies (due to the highly dynamic energy
demands).

- In addition, we consider the hierarchical relationship between the
production system (scheduling) and the ECS during the ECS dimen-
sioning by particularly analyzing the influence of production
scheduling objectives on the ECS design.

- Finally, a robust ECS design with regard to uncertain future energy
demands is ensured by the consideration of energy demand time
series containing the data of a complete production year with 240
production days.

Because the proposed design approach is very different to existing
approaches, we would also like to gain insights on the solvability of the
ECS design problem at hand and thus, aim at calculating optimum so-
lutions. Accordingly, we present a mixed-integer nonlinear program
(MINLP) and a tailor-made heuristic to calculate initial solutions used by
the MINLP.

From the perspective of a manufacturing company’s decision-maker,
the results of our ECS design approach (suitable CU dimensions and
several basic parameters) can be used to pre-select the most suitable
energy type-specific CUs based on CU-producer data. Then, the pre-
selected CUs can be used as input for energy type-specific planning
approaches (e.g., based on superstructures) from the literature. From the
perspective of a CU-producer, our results can be used by CU-engineers to
develop more appropriate CUs for specific production processes and/or
manufacturing companies. To that, we elaborate insights into the most
important CU parameters and further planning factors influencing the
ECS design for manufacturing companies.

The structure of the paper is as follows: The analysis of the organi-
zational and technical background of ECS design and the most relevant
literature is depicted in section 2. The new ECS design approach is
described in Section 3 and the developed solution methods are presented
in section 4. In Section 5, we specify the experimental design before we
analyze the influences of several planning parameters (e.g., CU char-
acteristics or scheduling objectives) on the energy efficiency of an ECS in
section 6. Conclusions are drawn in section 7.

2. Background and related work

To provide a general understanding of the organizational and tech-
nical backgrounds, we first discuss the interdependencies between the
energy-demanding production system (PS) and the ECS and then the
most important technical characteristics of CUs. After discussing addi-
tional aspects, the section closes with a table that compares existing ECS
design approaches and highlights the research gap filled by this paper.

2.1. On the interdependencies between PS and ECS

In manufacturing companies, different energy sources (carriers) are

used to run production processes executed by the production units (PUs;
e.g., machines or chemical reactors) of the production system (PS).
Hereby, energy sources that are directly applied by production units are
named applied energy sources (AES). For ease of reading, we will
generally use the term energy instead of applied energy sources in the
following. According to Gahm et al. (2016), a production system’s en-
ergy demand is either supplied directly by an external energy provider
or it is converted and supplied by an internally operated conversion
(utility) system. In the latter cases, on-site energy conversion systems
consisting of one or more CUs supply the production system with a
specific energy (e.g., steam or pressure) by converting other energy
sources (e.g., coal, fuel, or electricity). As soon as the ownership of en-
ergy sources is transferred to the manufacturing company (the final
energy user), energy sources are referred to as final energy sources (FES;
Gahm et al. 2016).

The PUs require specific energy sources to fulfil the process tasks
defined by the working plans and as soon as the tasks are scheduled on
the PUs, the energy demand per time unit can be determined for most
production processes. If several PUs demand for the same type of energy,
a cumulated energy demand arises. Fig. 1 a) shows a production
schedule with task executions on four PUs. In this Gantt-chart, tasks with
a light grey background indicate an energy demand of one unit, whereas
tasks with a dark grey background indicate an energy demand of two
units. According to these energy demands, the production schedule
leads to the cumulated energy demands depicted in Fig. 1 b). In spite of
the illustrated interdependency between the PS and the ECS, this
interdependency has currently only been considered by energy-efficient
scheduling approaches (e.g., by Moon & Park, 2014; Rager, Gahm, &
Denz, 2015; Schulz, Neufeld, & Buscher, 2019, or Liu et al., 2020) and
ECS operation planning approaches (e.g., by Mignon & Hermia, 1996;
Agha, Théry, Hetreux, Hait, & Le Lann, 2010; Zhang, Luo, Chen, & Chen,
2013, or Zulkafli & Kopanos, 2017). To the best of our knowledge, only
Denz (2015) considers this relationship in terms of ECS design.

Almost all ECS design approaches in literature solely take the in-
terdependencies between the long-term design and the short-term
operation of conversion systems into account but neglect the in-
terdependencies to the production system (cf. Table 1). Such approaches
are sufficient for ECS designs related to district heating, building supply,
or power generation for grids, but should be adapted in the case of ECS
design for manufacturing companies.

The relationship between the long-term design and the short-term
operation of ECS is a central aspect for ECS design because the long-
term ECS design sets the constraints on the attainable efficiency in the
short-term (e.g., Gamou, Yokoyama, & Ito, 2002 or Wakui & Yokoyama,
2014). Regarding this relationship, the design approaches in literature
can be differentiated according to the way they consider ECS operation.
Some approaches consider the top-down relationship by first fixing the
ECS design and then evaluating its operational performance with and
without operation optimization (e.g., Forough & Roshandel, 2018 or
Alirahmi, Dabbagh, Ahmadi, & Wongwises, 2020). In contrast to the
top-down approaches, an integrated, iterative top-down approach
explicitly uses feedback from ECS operations to influence the subsequent
design decisions (e.g., Benam, Madani, Alavi, & Ehsan, 2015 or Amusat
et al.,, 2017). Most design approaches consider ECS operation by inte-
grating some operational characteristics and thus, anticipate an ECS’s
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Fig. 1. Interdependencies between PS and the cumulated energy demand to be
supplied by the ECS.

operational behavior. Hereby, the ECS operation can be integrated
passively, i.e., conversion operations are derived based on design de-
cisions (e.g., by control strategies; cf. Ghadimi et al., 2014 or Andiappan
& Ng, 2016) or can be integrated actively, i.e., operation decisions are
actively made (e.g., Aguilar et al., 2008 or Gibson et al., 2013).

2.2. Technical characteristics of conversion units

An energy conversion process is always associated with losses of
useful energy and the magnitude of these losses depends on the technical
characteristics of the conversion units. One of the most important
technical CU characteristics is the energy conversion efficiency. This
energy conversion efficiency of a CU is strongly related to its part-load
utilization (also called off-design loads), i.e., any load different from
the nominal load, because the efficiency of most CU’s suffers in part load
(cf., e.g., Théry, Hetreux, Agha, Hait, & Le Lann, 2012 or Darrow, Tid-
ball, Wang, & Hampson, 2017). In principle, literature agrees (for most
types of CUs) that conversion efficiencies are lower at part load and that
the more the load deviates from the nominal load, the lower the con-
version efficiency (cf., e.g., Voll, Lampe, Wrobel, & Bardow, 2012 or Li,
Mu, Li, & Ma, 2016). This effect of efficiency loss is particularly relevant
for ECSs at manufacturing sites. Because of their varying energy de-
mands, these ECSs will operate at part load for most of the time (e.g.,
Varbanov, Doyle, & Smith, 2004). The dependency between part-load
operation and conversion efficiency is illustrated in Fig. 2 (section
3.1). Although literature in principle agrees on efficiency losses in part-

load operation (for most CUs) and on the importance of an appropriate
modelling of the part-load behavior (cf., e.g., Azit and Nor, 2009 or
Arcuri, Beraldi, Florio, and Fragiacomo, 2015), the efficiency modelling
is very heterogeneous. Some authors even consider constant efficiencies
(e.g., Andiappan & Ng, 2016) or discrete efficiencies (e.g., Gibson et al.,
2013). Other authors like Arcuri et al. (2015) or Li et al. (2016) use a
nonlinear modelling approach to achieve a most accurate part-load
behavior representation. This most accurate modelling comes at the
expense of a higher problem complexity as in linear optimization
models. To reduce the complexity, some authors use piecewise linear
approximations (e.g., Voll, Klaffke, Hennen, & Bardow, 2013 or Destro,
Benato, Stoppato, & Mirandola, 2016). Furthermore, authors use linear
approximations and claim that the errors are neglectable. For instance
Aguilar, Perry, Kim, and Smith (2007) state that “it is possible to fit
linear equations representing equipment performance with enough ac-
curacy for preliminary design purposes (i.e., a normal error range of +
5%)” (Aguilar et al., 2007, p.1137). Varbanov et al. (2004) report
maximum linearization errors of 3.8% and a mean error less than 1% for
steam turbines. However, both authors investigate the errors isolated for
specific CUs but do not investigate the influence on the ECS design and
its efficiency. To the best of our knowledge, there exists no contribution
analyzing the influence of the different part-load efficiency modelling
approaches on the ECS design. To fill this research gap, we perform a
comparative analysis by comparing nonlinear part-load efficiency
modelling with linear part-load efficiency modelling.

Another aspect related to part-load operation is load transition, i.e.,
the switching from one load to another. Along with load transitions, two
facts must be considered: CUs are not able to execute arbitrarily large
load transitions within short time and load transitions always cause ef-
ficiency losses (cf., Rager et al., 2015). To handle the former issue, load
ramp-ups or ramp-downs can be restricted by so-called ramping con-
straints or minimum equal load durations are specified. Such constraints
are rarely used by ECS design approaches (cf., Pruitt, Braun, & Newman,
2013) but more frequently in the context of ECS operation (e.g., Carrion
and Arroyo, 2006 or Mitra et al., 2013). Due to the complexity of the
interdependencies between basic conversion processes, CU characteris-
tics, and transition parameters (e.g., start load, direction, and magni-
tude), efficiency losses due to load transitions are difficult to measure at
all and very challenging to consider during ECS design.

2.3. Further aspects

Another aspect in literature is the development of robust ECS design
approaches tackling uncertainties such as variations in energy demand
(e.g., Yokoyama, Fujiwara, Ohkura, & Wakui, 2014), varying prices (e.
g., Gibson et al., 2013), or equipment failures (e.g., Andiappan & Ng,
2016). Most approaches considering uncertainty at all, focus on energy
demand uncertainty and use scenario-based robust design approaches
(e.g., Aguilar et al., 2008). Stochastic modelling is seldom used (e.g.,
Benam et al., 2015). To achieve a robust ECS design with regard to
variations in energy demand, we generally follow the scenario-based
approach but do not optimize the ECS design for several scenarios
individually and then derive a most suitable ECS design, but we inte-
grate the demand scenarios of one year with 240 production days into
one energy demand time series and calculate the optimal ECS design for
all the integrated scenarios simultaneously.

Many ECS design approaches in the literature are related to specific
types of ECSs (cf., Table 1), mostly cogeneration systems typically
combining heat and power (e.g., Ghadimi et al., 2014 or Kazi,
Mohammed, AlNouss, and Eljack, 2015) and trigeneration systems
typically combining cooling, heat, and power (e.g., Kavvadias & Mar-
oulis, 2010 or Wang, Jing, & Zhang, 2010). These approaches have been
developed for specific environments but lack some generality and flex-
ibility as any of these approaches formulate a selection decision based on



Table 1
Literature analysis.

Hierarchical integration Part load Conversion efficiency modelling Consi Uncertainty Basic ECS type Solution methods
PS  ECS operation consideration MMMMMM_H
consi Top- Top- Antici  Antici Dis Conti Not Con Dis Linear Piece Non tran Dynamic Uncer Uncer Equip Single Cogene Tri- and Flexi Mixed- Mixed- Exact Heu Meta Other
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Kazi et al. X X X X
(2015)
Andiappan and X X X X X
Ng (2016)
Emadi and X X X X
Mahmoudi
mehr (2019)
Wang et al. X X X X X
(2010)
Carvalho et al. X X X X X
(2014)
Maleki, Khajeh, X X X X X X
and Ameri
(2016)
Amusat et al. X X X X X X
(2017)
Gamou et al. X X X X X X X
(2002)
Chicco and X X X X X X
Mancarella
(2007)
Carpaneto, X X X X X X X X
Chicco,
Mancarella,
and Russo
(2011a)
Carpaneto, X X X X X X X X
Chicco,
Mancarella,
and Russo
(2011b)
Benam et al. X X X X X X X
(2015)
Sun and Liu X X X X X X X X
(2015)
Forough and X X X X X X
Roshandel
(2018)
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Table 1 (continued)

Hierarchical integration Part load Conversion efficiency modelling Consi Uncertainty Basic ECS type Solution methods
PS  EGS operation consideration MMMMMME
consi Top- Top- Antici Antici Dis Conti Not Con Dis Linear Piece Non tran Dynamic Uncer Uncer Equip Single Cogene Tri- and Flexi Mixed- Mixed- Exact Heu Meta Other
dera down down pation pation crete nuous further stant crete wise linear sitions  Cher8Y tain tain ment gene ration Polyge ble integer integer solution ristics heuris (e.g.,
tion with  (passive) (active) specified linear demand energy prices failures ration neration linear non methods tics  simu
feed de pro linear (e.g., lation)
back mand gram  pro B&B)
gram
Gibson et al. X X X X X X X
(2013)
Aguilar et al. X X X X X X X X
(2008)
Yokoyama et al. X X X X X X X
(2014)
Yokoyama, X X X X X X X
Shinano,
Taniguchi,
Ohkura, and
Wakui (2015)
Rad, X X X X X X X b'd X
Khoshgoftar
Manesh,
Rosen,
Amidpour,
and Hamedi
(2016)
Voll et al. X X X X X X X
(2013)
Ghadimi et al. X X X X X X
(2014)
Frangopoulos X X X X X X X
(2004)
Sanaye, X X X X X X
Meybodi, and
Shokrollahi
(2008)
Azit and Nor X X X X X X
(2009)
Kavvadias and X X X X X X
Maroulis
(2010)
Voll et al. X X X X X X X
(2012)
Arcuri et al. X X X X X X
(2015)
Li et al. (2016) X X X X X X

This paper X X X X X X X X X X




specific CUs with given characteristics or superstructures (e.g., Shiun,
Hashim, Manan, & Alwi, 2012 or Carvalho, Romero, Shields, & Millar,
2014). Only a few approaches are independent regarding the type of
energy and provide some flexibility (e.g., Voll et al., 2012).

2.4. Summary

To summarize the current state of literature tackling similar planning
problems like the one addressed in this contribution, we analyzed the
literature according to all the aspects previously discussed and addi-
tionally regarding applied solution methods. Table 1 depicts this
analysis.

Based on the analysis of planning backgrounds and most relevant
literature (cf., Table 1), we conclude that —to the best of our knowl-
edge— there exists no flexible and robust ECS dimensioning approach
addressing the specific needs of manufacturing companies, i.e., that
considers the (hierarchical) interdependencies between the ECS design,
the ECS operation, and the PS. In our approach, we particularly account
for the highly varying energy demands of manufacturing companies by
directly integrating part-load operations combined with nonlinear part-
load efficiencies. In addition, we account for load transitions by their
approximate anticipation within the data preparation phase. Further-
more, there exists no contribution that considers nonlinear part-load
efficiencies and formulates a nonlinear model to be optimized by a
standard solver.

3. A new flexible approach for ECS dimensioning

In this section, we first present our new and comprehensive decision
model for ECS dimensioning with the objective to maximize the ECS’
energy efficiency while considering the most relevant technical aspects
regarding manufacturing companies as examined in the previous sec-
tion. Afterwards, we describe the necessary data of energy demand per
period (AESD) as used by the decision model and also the aggregation
process for preparing the data. The source of the data preparation are
cumulated energy demands originating from historical data of the pro-
duction system or from “simulative” scheduling (cf. section 3.4).

3.1. The model for maximizing the CS’ energy efficiency

The basic task of ECS dimensioning, as defined in this contribution, is
to determine the dimension (MaxL) and the nominal load (NomL) of two
CUs. The composition of the ECS by more than one CU is appropriate
whenever (strongly) varying energy demands are present. When energy
demands vary, a distinction can be made between the so-called “base-
load” and the “peak-load” energy share. To handle these two basic load
types, we propose to install complementary CUs with different charac-
teristics: Large scale conversion units (LCUs) to cover “constant” base
loads with a high efficiency; And flexible conversion units (FCUs) with a
large operational range to cover peak loads and/or strongly varying
loads. For both types of CUs, Fig. 2 illustrates the dependencies between
load and conversion efficiency based on the parameters minimum load
MinL, nominal load NomL, and maximum load MaxL as well as the
corresponding efficiency parameters .1 » Nyraxr» @A Nyomz - NOte that for
these three load points, the efficiencies can be obtained easily in most
cases (e.g., with technical documentations or literature; cf., e.g., Pruitt
etal., 2013): Fig. 2 a) exemplarily depicts loads, operational ranges, and
the load-efficiency curve of an LCU and Fig. 2 b) of an FCU. Fig. 2 il-
lustrates that LCUs have a smaller operational range (defined by
MaxL —MinL) and a high nominal load efficiency at the expense of high
part-load efficiency losses. In contrast, FCUs have a lower maximum
load, a broad operational range, and small part-load efficiency losses at
the expense of basically lower efficiencies. The maximum load of both
CUs combined to one ECS can be very different, for instance in our
numerical study, the relative mean size of the FCUs is about 21% of the
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Fig. 2. Load-efficiency curves illustrating the relationship between part-load
operation and conversion efficiency.

size of the LCUs.

Note that the minimum load greater than zero of LCU and FCU could
cause the provisioning of unnecessary energy if the required energy is
lower than the minimum load. Thus, the overall efficiency of the LCU
and FCU could decrease. The influences of operational ranges and
related efficiencies on the ECS design are analyzed in Section 6.2.

In this contribution, to keep the analyses manageable, we limit the
composition of the ECS to one LCU and one FCU. Nevertheless, an
extension to consider several FCUs would be possible (but using multiple
LCUs for covering the base-load share is not common in literature and
practice). To specify the planning problem at hand most precisely, we
present the main aspects by mathematical equations that are also part of
the optimization model to be completed in section 4.1.

One part of the decisions to be made are the dimensions of both CUs:
MaxIL**U and MaxLFCV., These dimensions must be determined in a way
covered by the two CUs while the ECS’ energy efficiency is maximized.
As we use two CUs to cover the complete energy demand and the LCU
operates with the ECS* maximum efficiency at NomL!V, we would like
to run the LCU at its nominal load point for most of the time. To



accomplish this, the FCU is dimensioned related to NomL‘V (not to
MaxI'°V) and AESDMAX (cf. Fig. 3).

MaxL"V = AESD"X — NomL"V D)

Note that if more than one FCU should be integrated in the ECS, the
MaxL Y must be divided between these FCUs.

Generally, we assume that the nominal load of a CU is different from
the maximum load and that for the LCU, the nominal load is given
relative to its maximum load. Thus, the nominal load of the LCU is

defined by the parameter ALY, :

NomLLCU — M[leLCU'ALCU (2)

NomL

For the FCU, we assume that a given degree of freedom to determine
a most sufficient nominal load exists. Thus, we can decide on the
nominal load NomL™V within given bounds (ubNomL™V, [bNomL"V)
related to the FCU‘s dimension (on feasible regions, cf., Mavromatis and
Kokossis, 1998 or Mitra et al., 2013). These bounds are relatively
defined by Aubl.l, and ALY, . The NomLFVis bounded as follows:

NomL Y <ubNomLFCY 3)
with ubNomL™V = MaxL"V-(1 — Aubj"))
NomL U 21bNomLFV
)

with IbNomL'®Y = MinLFCU‘(l + AlbﬁggL)

This second approach for determining the nominal load of a CU could
also be used for the LCU if it is technically realizable for large CU of a
specific energy type. However, this additional degree of freedom in-
creases problem complexity.

Two main differences between LCUs and FCUs are their operational
ranges and the related part-load behavior (cf., Fig. 2). The operational
range of both CU types is defined by their maximum load MaxL, which is
part of the design decision, and their minimum load MinL, which is a
parameter either given by an absolute value (e.g., Azit and Nor, 2009) or
a relative value with regard to the maximum load (e.g., Sun & Liu,
2015). Here, we follow the relative approach and use the two parame-
ters AKIU and ALZY for determining MinL*V and MinL Y, respectively:

MinL*Y = MaxL"V. ALY 5)
MinL"Y = MaxI*V- ALY (6)

The assumptions and conditions described so far are illustrated by
Fig. 3. Fig. 3 depicts a load duration curve representing the varying
energy demands (sorted non-increasing), the main decisions about
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Fig. 3. Main decisions and depending decisions illustrated by a load dura-
tion curve.

maximum and nominal loads, and the depending decisions.

In addition, Fig. 3 shows the separation of load shares assigned to
both CUs. The light grey area (restricted by the dotted line) represents
the energy demands allocated to the FCU and the dark grey area
(restricted by the dashed line) the energy demands allocated to the LCU.
In consequence of the decision on both dimensions, we have to decide
for each time period t € {1, ..., T} which CU provides how much of the
required energy (AESDSS). As we would like to run the LCU at its
nominal load for most of the time and to reduce problem complexity by
avoiding the operational decision on the load separation, we propose the
following approach for load separation: Whenever AESDSS is larger than
NomlI!CY the LCU operates at NomL'“Y. The remaining demand is pro-
vided by the FCU, except in the case in which the complete energy de-
mand can be provided by the LCU only. In this case, the LCU provides
the total energy demand and the FCU load is zero. This approach of load
separation between CUs can also be applied if more than one FCU should
be integrated in the ECS design.

To indicate that the FCU is required to fulfil the energy demand for
period t, we use the auxiliary binary variable X, with X; = 1 indicating
that the FCU is required (X; = 0 otherwise) and the following sets of
disjunctive constraints (with M specifying a sufficiently large number;
M = AESDMAX):

AESDS — MaxL"V<X, M  Vt=1,...T @

MaxL"™V — AESD®K(1 - X)-M  Vi=1,...T )

Based on X, the individual load shares can be determined. To
accomplish this, two sets of auxiliary integer variables (AESD:V and
AESDfV) representing the load share for each period and the following
constraint sets (9) and (10) are used. Hereby, the constraints also
guarantee that the LCU operates at the nominal load whenever the FCU
is required.

AESD"V = X,-NomL*“Y + (1 — X,)-AESD®® Vt=1,..,T 9

AESDIV = (AESD(* — AESD/V).X, Vi=1,..,T 10)

To respect the technical restrictions of minimal loads, we update
AESD'V and AESD!V to their “current” admissible values represented
by the auxiliary integer variables cCAESD*Y and cAESD'®V. The update is
assured by the following sets of constraints (constraint set (15) assure
that the cAESD®V is equal to zero if the FCU is not required at all):

CAESDMV>AESD™Y  Vit=1,...T

CAESDFVMinl*V  Yi=1,..,T 12)
CAESDF®V>AESDFY vi=1,..,T 13)
CAESDFVeMinlFV.X,  Vt=1,..,T (14)
CAESDFUX;:M  Vi=1,..,T (15)

The technical analysis of CUs (cf., section 2.2) has shown that the
part-load and conversion efficiency characteristics are a central aspect
for the dimensioning of CUs. The relationship of the main decisions and
the resulting part loads with their corresponding conversion efficiencies
are illustrated in Fig. 4 and Fig. 5. In these figures, the solid load-
efficiency curves illustrate nonlinear part-load efficiencies whereas the
dashed curves illustrate piecewise linear approximations.

Both figures depict illustrative load-efficiency curves with the cor-
responding efficiencies for the related loads (within their operational
ranges) for the LCU and FCU, respectively. To model the increasing ef-
ficiency losses of larger deviations from the nominal load most
adequately, we use parabolic functions to determine the conversion ef-
ficiency at a specific part load (cf., e.g., Savola & Keppo, 2005; Aguilar
et al., 2007, or Agha et al., 2010). To increase model accuracy even
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more, we use two functions for each CU: one to determine the part-load
o L : NomL"™ ™ — cAESDI"<(1 = YI)M  Vi=1,..,T 19
efficiencies between the minimum and the nominal load and another ro ‘ N

one to determine the part-load efficiencies between the nominal and the
maximum load of a CU. This modelling approach is not required for all
types of CUs, but reflects the characteristics of many complex CUs. To
ensure that only one of these functions is used at one point in time, the
binary auxiliary variables Y2V and Y7V are introduced. The following
constraint sets guarantee that if cAESDI®U>NomL!“Y, then YV = 1
(otherwise, Y€V = 0) and that if CAESDFCU>NomL™V, then YU =1
(otherwise, YU = 0):

cAESD!V — NomL""V 16)
YYmMm vi=1,...T
NomL™V — cAESD!V

17
<U-Ym  vi=1,..T a7

niCU _yicu )
plev = yieu. ( Maxt, — Nomt. )2 (CAESDEY — NomL*V)? 44V, | +(1
MaxL*V —NomLFU ’
nfev =X, | yrev. ( ( ’7542151 Mo, 7 —(cAESDFU — NomLF<V) 2, ey,
MaxLFV —NomL
vi=1,...T

CAESD™™ — NomL"Ugy™™ .M Vi=1,.., a8

_ YLCU) .
! (MinLL” / — NomLV ) :

To reflect the nonlinear part-load efficiency behavior of the CUs most
accurately, for each CU, the vertex form of univariate quadratic func-
tions is used. For the LCU and the FCU, the part-load efficiencies per
period (#*°V and V) are determined based on the current load, Y-V
and Y™V, and the corresponding basic efficiencies (7> Myomes a0d
luax) At the extreme points (MinL, NomL, and MaxL). The constraint sets
(20) and (21) define the continuous auxiliary variables 7:°V and

€Y. Note that we assume “static” efficiencies for the extreme points
MinL, NomL, and MaxL that are independent of a CU’s dimension
because at these points, the efficiencies of most types of CUs only
minimally depend on the finally determined dimension (cf., e.g., effi-
ciency ranges of steam boilers listed in Bosch Thermotechnology Divi-
sion, 2014).
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Because the energy output of the ECS is defined by the PS, we
maximize the energy efficiency of the manufacturing companies’ ECS by
input minimization, i.e., the minimization of the amount of totally



required final energy sources (TFES):

r LCU
TFES =) (CAESD‘ +

Minimize iU
=1 t

FCU
CcAESD! ) @2)

FCU
m

In addition to input minimization, techno-economic evaluation ap-
proaches based on cost minimization or other monetary criteria such as
net present values (for an overview see Biezma and Cristobal, 2006)
would also be plausible. However, since we focus our analysis on
technology-related parameters, we are not using these techno-economic
approaches to avoid biases by additional (economic) parameters. The
input minimization objective is also based on the idea of developing a
flexible ECS dimensioning approach that is independent of a specific
type of energy and specific CUs. To maintain this flexibility, generic cost
parameters (e.g., for investment and operational costs) would have to be
determined, which is hardly possible to do in a reasonable manner.
However, based on the determined size of the CUs, investment costs
could be estimated by scaling functions for specific types of CUs (cf., e.g.,
Peters, Timmerhaus, & West, 2004 or Arcuri et al., 2015) and the
required FES determines the main part of the operational costs (com-
bined with corresponding cost factors).

3.2. Extension and piecewise linear part-load efficiency modelling

A further aspect that could be considered during ECS design is that,
due to economic and/or strategic reasons, it might be appropriate
(particularly for LCUs) to define a minimum number of periods at which
a CU has to operate at its nominal load. This is for example done to
achieve an absolute number of 4,500 h of nominal load operation
annually (cf. O’Brien and Bansal, 2000a). Instead of an absolute
parameter, we introduce the parameter relP defining a relative number
of periods. For instance, relP = 60% means that the LCU should operate
at its nominal load for 5,256 h (with regard to one year with 8,760 h).
Based on relP an upper bound for MaxL'“Y can be derived:

MaxL*Y <ubMaxL*“Y

AESD(|relP-T]) 23)
A LCU
'NomL

with ubMaxL'"V =

In (23), the function AESD(t) returns the energy demand of period ¢,
whereby energy demands are sorted non-increasing and T defines the
planning horizon (total number of periods). In addition to the economic
or strategic reasons, this parameter can be used to limit the solution
space of the LCU‘s maximum load. If relP is set to zero, the upper bound
would be greater than the maximum energy demand AESDMAX (as
AESD(0) = AESDMAX and ALSU < 1) and constraint (23) is not binding.

600
500 [

For the comparative analysis between nonlinear and (piecewise)
linear part-load efficiency modelling (cf., the discussion in section 2.2),
we use the following efficiency approximations:

§LoU = yLou
e (cA ESDLCU NomLLCU) e, ~INom
NomL t (MaxL*V —NomL'U)
. vt=1,..,T
+(1-1vY)
ke (CAESDLCU 7N0mLLCU) . ’ﬁvigm —’7}\/%&
NomL t (NomLIU — MinL™V)
(24)
Y= X
cu cU FCU Maoxt, — o,
| MNgwz + (cAESD{®Y —NomL"V) (MaxLFaCxU _N(:mLFCU)
vt=1,..,T

+(1-Y{)

FCU
NNomL — MMinL

FCU
(NomL™Y — MinL V) ) ]

- (ni,‘;”m + (cAESD{Y —NomL"")

(25)

Of course, using a function combining two linear functions results in
a piecewise linear function. The functions are illustrated in Fig. 4 and
Fig. 5, respectively.

To distinguish the two resulting models, each of which represents a
different approach of part-load efficiency modelling, we refer to the
optimization model using the nonlinear constraint sets (20) and (21) as
model NLM (nonlinear model) and the model using the constraint sets
(24) and (25) as model PWM (piecewise linear model) in the following.

3.3. Data preparation and aggregation

Basic data of our ECS dimensioning approach for manufacturing
companies are discrete time series of cumulated energy demands orig-
inating from the PS. Each time series s € S (with set S of all available
time series) represents a production period subdivided into a number of
time slices 9 with a given duration 6 (i.e., 5" defines the level of
detail for all the time series). The cumulated energy demand per time
slice originating from the PS is then given by AESDFS. Sources of the time
series could be historical data from manufacturing execution (O’Brien
and Bansal, 2000b) but also the result of “simulative scheduling”
(planning predictions) that will be discussed in section 3.4. Both sources
can be used alone or in combination. Each time series represents an
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energy demand scenario representing one production day. When an
appropriate number of time series (scenarios) is used during ECS design,
the resulting design will be robust with regard to uncertain energy de-
mands. To that, we propose using a set S of time series representing the
number of production periods within one year (e.g., |S| = 240 time se-
ries, each representing one working day with 480 min: ™= 480).

To integrate load transition characteristics of the ECS (cf., section
2.2) without further increasing problem complexity, we use an
approximate anticipation approach in form of an “aggregation” model
(cf., Ghadimi et al., 2014). In doing so, we consider load transition
characteristics (e.g., maximum or minimum ramping restrictions, min-
imum durations, and efficiency losses) by estimating their impact and
aggregate the original energy demands per time slice (AESDFS) accord-
ingly. To that, we use a time slice aggregation factor of aggh®s = 10
(minutes) to reflect the varying energy demand on the one side and load
transition characteristics on the other side. Within a time-slice interval r
that comprises 10 min and is enclosed by a first time slice f, and a last
time slice I, we aggregate the energy demand for r to the maximum
energy demand between f, and [.. This maximum is used to guarantee
demand fulfilment and to account for conversion efficiency losses during
load transitions. The aggregated energy demand (AESDS) per time slice
within interval r is calculated as follows:
maxy ;. 11 {AESD?®}, with Vt € [f;, . Fig. 6 illustrates, for one pro-
duction day, the relationship between the original cumulated energy
demand (grey dashed line) and the aggregated energy demands (black
solid line) that anticipate load transitions.

Note that consecutive intervals that do not have any energy demands
in each of their time slices and that are at the end of a time series are
excluded from further considerations. Of course, intervals not at the end
of a time series are not excluded.

3.4. Simulative scheduling

Due to the strong relationship between the ECS and the PS of a
manufacturing company, our ECS design approach incorporates the
opportunity to consider energy demand time series based on simulative
(machine) scheduling besides historical energy demands. It is called
simulative because the calculated schedules are not used for actual
production execution planning but to generate a comprehensive data
basis for the ECS dimensioning. In this context, simulative scheduling
could mean that historical scheduling problem instances are solved by
considering new constraints and/or objectives (variant a.), that antici-
pated scheduling problem instances are solved by considering existing
(traditional) constraints and/or objectives (b.), or that anticipated
scheduling problem instances are solved by considering new constraints
and/or objectives (c.). In this paper, we use simulative scheduling
variant b. This means that we generate new scheduling instances for a
specific production system (with identical parallel machines) and use
two traditional objectives (makespan and total flow time minimization).
More details on the scheduling environment and the scheduling instance
generation are described in sections 5.1 and 5.2.

e
P;
Constant
max __ P
.
min
e -
Iterating P

AESDSS =

Table 2
LCU parameter settings.
LCU-0 LCU-1 LCU-2 LCU-3 LCU-4 LCU-5
qﬁf&_ 87.0% 87.0% 85.0% 85.0% 80.0% 91.0%
q}ﬁ)}fi 95.0% 95.0% 95.0% 93.0% 97.0% 93.0%
”IL\'gr[{L 82.0% 82.0% 80.0% 80.0% 75.0% 86.0%
Akeu 0.95 0.90 0.90 0.90 0.95 0.95
Agfu‘& 0.70 0.60 0.60 0.60 0.70 0.70
Table 3
FCU parameter settings.
FCU-0 FCU-1 FCU-2 FCU-3 FCU-4
ey, 65.0% 65.0% 65.0% 60.0% 70.0%
iy, 84.0% 84.0% 82.0% 86.0% 82.0%
nkey, 60.0% 60.0% 60.0% 55.0% 65.0%
AubfeU, 0.15 0.05 0.05 0.15 0.15
AIBESY, 0.30 0.10 0.10 0.30 0.30

4. Solution method

For solving the planning problem at hand, we present a mixed-
integer nonlinear program (MINLP) and evaluate several standard
solvers to identify the most suitable one (in terms of solution quality and
computation time). To support the solution process, we additionally
propose a lower bound on the objective value (TFES, cf., (22)) and a new
truncated enumeration heuristic (TEH) to provide initial solutions and
upper bounds on the objective value. The main course of action is as
follows (explanations of the different steps are given in the following
sections):

1. Prepare energy demand levels
II. Lower bound determination
1.1 Approximate lower bound IbTFESAP?
11.2 Solve the MINLP with the SCIP solver to get lower bound
IbTFESSCP
1.3 Select best lower bound IBTFESANT = max{ IbTFESA??,
IbTFESSCIP}
II. Calculate initial solution S and upper bound ubTFES™Hwith
heuristic TEH
IV. Solve the MINLP with solver ANTIGONE using S, IbTFES*NT, and
ubTFESTEH

Note that the application of this solution procedure is abbreviated by
ANT in the remainder of this paper.

4.1. Mixed-integer nonlinear program and standard solver

The developed MINLP forms the core of our solution method and is
generally specified by the equations (1) to (23) presented in section 3.1

Erratic p;

Fig. 7. Energy demand course types.



and section 3.2.

According to section 3.3, energy demand time series are the basis for
ECS design. To reduce computational efforts, we combine all data points
of a time series having identical energy demands to energy demand
levels (indexed by | = 1, ..., L). These energy demands levels AESD,
combined with the number of aggregated data points per energy de-
mand level (n)) reduce the number of variables without affecting the
result. In consequence, the parameter AESDSS must be replaced
byAESD;, all indices ¢t must be replaced by [ and the objective function
must slightly be adapted to account for the totally required FES:

L LCU
cAESD
Z ( Lr,‘U] +X

= m

CAESDFCV
el + ¢

Minimize ) -n-agg”™> e (26)

In (26), the parameter X; (with X; = 1 indicating that the FCU is
required) and the sufficiently small parameter z are only required for
solver related, technical reasons (z = 1E - 20).

To identify a most suitable solver, we investigated solvers that are
capable to solve general mixed-integer nonlinear programs and have
shown a good performance in the analysis of Kronqvist, Bernal, Lundell,
and Grossmann (2019). Preliminary tests, based on eight randomly
selected problem instances, have shown that the solver ANTIGONE
outperforms the solvers BARON, DICOPT, and SCIP in terms of solution
quality (all solvers are provided within GAMS 24.4.5). Consequently, all
experimental results are calculated with ANTIGONE.

The preliminary tests have also shown that the maximum load of the
LCU should be larger than 30% of AESDMAX, Thus, we introduce a lower
bound for the dimension of the LCU to reduce the solution space and
decrease the computational effort:

M(IXLLCUZ”)MGXLLCU

with IbMaxL'V = min{AESD"**.0.3, ubMaxL'V} @7

Note that the minimum function in (27) is used to guarantee
feasibility.

In consequence of this additional constraint, the nonlinear model
NLM is specified by objective function (26) combined with the adapted
constraint sets to (1) to (23) and (27). In the piecewise linear model
PWM, constraint sets (20) and (21) are replaced by the constraint sets
and (24) and (25). Both models are completely provided in the supple-
mentary material.

4.2. Lower bounds

To provide a basic lower bound (IbTFES#??) on the objective value
(TFES), we assume that the total energy demand could be provided with
maximum efficiency of the ECS (755Y,) and use the following approxi-

mation: [bTFESAPP = (ZZLZIAESDl-nl-aggP SCS) /nkEY. . Furthermore, as

SCIP has shown the capability to provide good lower bounds (IbTFESS¢F)
in a short time, we use this solver to provide an improved lower bound
(IbTFES*NT) for ANTIGONE: IbTFESANT = max{ IbTFES**?, IbTFESSC® }

4.3. Truncated enumeration heuristic

The developed heuristic to determine initial solutions is based on a
truncated enumeration scheme and is called truncated enumeration
heuristic (TEH). It consists of two phases: The first phase determines the
capacity of the LCU (MaxL*‘Y) and the second phase determines the
nominal load of the FCU

(NomLF¢Y). The following pseudo code illustrates the two phases:

TEH(AESD[1], n[l], agg™, v, &, x)

// init reference solution
S" := getSolutionByMINLP (ubMaxL"°V,
IbNomL"V, AESD[1], n[1], agg™ )

(continued on next column)
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(continued)

TEH(AESD(1], n[l], agg’>s, v, , &)

// phase 1
incMaxL'*V : = ubMaxL*“Y
Loop
incNomLFV := max{IbNomL™V, ubNomLF<V.;}
// cf. (4) and (3)
S’ := getSolutionByMINLP (incMaxL"V,
incNomLFY, AESD[1], n[l], agg’>5)
If (TFES(S') < TFES(S")then §* = §'
incMaxL*V := incMaxL*Y — v
Until incMaxL'*U<IbMaxL*Y  // cf. (27)
Or (TFES(S') — TFES(S") )/TFES(S") >
MaxL*V :=getMaxLoadOfLCU (S*)
// phase 2
incNomLFV := ubNomLFY
Loop
S’ :=getSolutionByMINLP (MaxL-V,
incNomLFV, AESD[1], n[l], agg">®5)
If (TFES(S') < TFES(S")then S = §'
incNomLFeV := incNomLFV — p
Until incMaxI:U<IbNomLFV 7/ cf. (4)
Or (TFES(S') — TFES(S™))/TFES(S") > «
Return S’

// cf. (23)

// cf. (3)

In the first phase, we start with an incumbent maximum load
incMaxL*“V = ubMaxL'“Y (cf., (23)

) and iteratively decrement it by parameter v until IbMaxL'*U (cf.,
(27)) is reached. For the NomLf®V, a “fixed” incumbent nominal load
incNomLF¢V =max{IbNomLF¢Y ubNomLF¢U.¢} is used in the first phase
(cf., (3) and (4)). The parameter ¢ defines an offset from the upper
bound. Based on this decision, all other variables and the objective value
are determined according to the MINLP described above (getSolu-
tionByMINLP()). To avoid inefficient iterations, the first phase termi-
nates before incMaxL'UsIbMaxL'®V if the relative objective value
degradation of the incumbent solution S’ (with regard to the best known
solution S") becomes larger than a given parameter:
(TFES(S') — TFES(S"))/TFES(S") > k. After the termination of the first
phase, MaxI}V of the best solution so far S* (i.e., with the minimum
TFES) is fixed. Thereafter, the second phase starts with incNomL¢V =
ubNomLF¢V and iteratively decrements incNomL™V by v until IbNomL"U
is reached. The heuristic terminates early if the relative degradation
becomes larger than «.

The parametersv = 0.5, =0.33, and x = 0.1 have revealed the best
results (regarding the trade-off between solution quality and computa-
tion time) in preliminary tests.

5. Experimental design

To analyze the interdependencies between the basic planning pa-
rameters and their influence on the energy efficiency of an ECS, an
appropriate experimental design is necessary.

5.1. The scheduling problem

Because we follow the simulative scheduling variant b. in our anal-
ysis (cf., section 3.4), we have to anticipate scheduling problem in-
stances for the simulative scheduling. To keep the analysis straight, we
limit the analysis to a production system consisting of identical (unre-
lated) parallel machines, as we can assume that machines of this type
have the same energy characteristics and thus, that the total required
energy demand is independent of the job to machine allocation. The
basic scheduling task for such a production system is the allocation and
sequencing of a set of jobs J (with indicesj =1, ...,n) on a set of identical
parallel machines K (with indices k =1, ...,m). The processing time of a
jobj is depicted by p;. Each job can only be processed by one machine at



one time, and each machine can only process one job at one time. All
jobs are available at time zero, and the preemption of jobs is prohibited.
To represent the energy demand of a job, we follow the approaches of
Artigues, Lopez, and Hait (2013) and Rager et al. (2015) and use discrete
energy demand profiles. Therefore, the energy demand of job j is defined
by a sequence of energy demands ej, (withp =1,...,p;). Usually, p; and
¢ are defined as integers.

To solve the scheduling problem with regard to the two standard
scheduling objectives makespan (Cmax) and total flow time (TFT), we
use the list scheduling approaches LPT (longest processing time) for
Cmax and SPT (shortest processing time) for TFT, as these approaches
are very efficient and provide a sufficient solution quality (or even the
optimum) for these objectives (cf., Baker and Trietsch, 2009, page 204
and 214).

5.2. Scheduling instances and scenarios

To provide a broad testing environment for our analysis, we consider
different types of companies to generate company related, anticipated
scheduling problem instances. We distinguish companies according to
the following production-related parameters: production system size (i.
e., the number of machines), job size (i.e., the mean processing times)
and variability (i.e., the processing time distribution), energy demand
type (i.e., the energy demand course), and energy demand variability (i.
e., the energy demand distribution).

With respect to the production system size, we differentiate between
two basic settings: small (S) and medium (M). The small (medium) type
consists of four (twelve) machines, and for half of the production days,
only three (ten) machines are in use (due to less jobs and cost savings, e.
g., the cost of machine operators). Each of these company types can
produce either many simple (MS) products (with an assumed mean
processing time p = 30 minutes and processing times that are randomly
drawn from a discrete uniform distribution restricted by [24, 36]) or few
complex (FC) products (with p = 80 and a discrete uniform distribution
restricted by [64, 96]). Altogether, the introduced production parame-
ters define four basic settings (S-MS, S-FC, M—MS, and M—FC) with two
types of production days.

Because the energy demand time series represent individual pro-
duction days with one eight-hour shift, we assume a “target” planning
horizon 5 = 480. This planning horizon together with the actual mean

processing time p = (Z;:l pj) /n and the number of available machines

m is used to approximate the maximum number of jobs n™> =
[ (% /p)-m| to be processed within 7. Then, based on n™, the number
of jobs n per problem instance is randomly chosen from a discrete uni-
form distribution restricted by [[n™® — 1.5m], n™*].

In addition to the basic production system parameters, companies
and their production processes can be further separated due to their
energy demand characteristics (for a detailed overview see Gahm et al.,
2016). Within our analysis, we concentrate on “job related” and “vary-
ing job related” demands and differentiate companies by their job-
related energy demand type and their energy demand variability.
With respect to the energy demand type, we use four different courses
(cf., Fig. 7): constant (C), hill (H), iterating (I), and erratic (E). Each of
these types represents a specific production process (e.g., the iterating
demand course can be found in the dyeing process in the textile in-
dustries; see Rager et al., 2015). To represent different energy demand

variabilities, we use two different intervals for representing a small
range of variability (SR) and a large range of variability (LR).

For the constant demand course, the intervals for the two ranges SR
and LR are restricted by [80, 120] and [20, 180], respectively, and only
a single constant energy demand e; has to be drawn from the corre-
sponding discrete uniform distribution.

For the types H and I, we first have to determine e}"i" and ¢/ and use
the following intervals e}"i” € [80, 90] and €™ € [110,120] for SR and
eJ’.""” € [0, 90] and €™ € [110,200] for LR. These intervals are used to
guarantee that e}"i"szo +€/** and thus, to differentiate those types from
type C. For type I, we additionally draw the number of periods with an
identical energy demand in sequence from a discrete uniform distribu-
tion limited by [1, |p;/2]] and all jobs start with an energy demand
equal to e"*. With these interval borders, we can guarantee at least one

change between e}"i" and e and thus, a minimum difference to type C.
For type H, we use the function ¢;, = [a:(p —p;/2 — 0.5)%* + €], with
a=—4(ef'™ — e}"i") /pj2 to determine the energy demand profile. These
formulas were identified by experiments. For type E, we individually
draw e;, from discrete uniform distributions restricted by [80, 120] and
[0, 200] for SR and LR, respectively.

Altogether, the four basic production environments (S-MS, S-FC,
M-MS, and M—FC) combined with the eight energy settings (C-SR, C-
LR, H-SR, H-LR, I-SR, I-LR, E-SR, and E-LR) represent 32 company types.
Since our ECS design approach is based on time series which cover one
year with 240 production days, a corresponding set of scheduling in-
stances for each company type must be generated. Furthermore, to
analyze the scheduling objectives‘ influence on the ECS efficiency, two
sets of time series are calculated for each company type (one with the
scheduling objective Cmax and one with TFT). The combination of one
company type and one scheduling objective defines the content of a so-
called PS-scenario. Altogether, a total of 15,360 schedules has to be
calculated to provide the 240 time series for the 64 desired PS-scenarios.
The complete set of energy demand time series is publicly accessible at
Mendeley Data (Gahm, 2020).

5.3. CU parameter settings and ECSD scenarios

In addition to PS-scenarios, CU parameters are required to
completely define an experiment. To create a traceable planning
parameter analysis, we use a basic parameter setting for each CU (i.e.,
LCU-0 and FCU-0) and vary these settings according to the goals of the
analysis. The LCU and FCU parameter settings described in Tables 2 and
3 are then combined to form CS-settings (e.g., LCU-0 and FCU-3 are
combined to form CS-0-3) used for analyzing different aspects: The in-
fluence of the operational range of LCUs is examined on its own (CS-1-0)
and in combination with efficiency losses (CS-2-0 and CS-3-0). Addi-
tionally, different LCU efficiency parameters are solely considered (CS-
4-0 and CS-5-0). The influence of the bounds restricting the nominal
load of FCUs is investigated on its own (CS-0-1) and in combination with
efficiency losses (CS-0-2). Again, different efficiency parameters are
solely investigated (CS-0-3 and CS-0-4). The complete LCU and FCU
parameter settings are listed in Table 2 and Table 3, respectively
(changes compared to the basic parameter settings are marked bold).
Note that the efficiencies of both CUs considered in our experiments are
generally based on boiler data from the literature (cf., Chicco and

Table 4
Aggregated relative percentage differences.
ATFES AMaxL*<V ANomLFeU
Max Mean Std Dev Min Max Mean Std Dev Min Max Mean Std Dev Min
Cmax 215 0.01 0.28 —0.87 10.21 —2.32 4.11 -15.63 78.71 -5.27 4.11 —83.63
TFT 3.50 0.01 0.28 —0.97 34.70 —2.50 3.89 -22.58 83.78 11.23 4.88 —82.98
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Table 5
Relative numbers of periods LCUs operate at nominal load.
Cmax TFT
Mean 57.61% 58.80%
Variance 0.74% 0.87%
Table 6
Relative load share of LCUs.
Cmax TFT
Mean 88.91% 88.12%
Variance 0.29% 0.36%
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Mancarella, 2007 and Kavvadias and Maroulis, 2010).

The combination of a PS-scenario with a CS-setting defines a com-
plete experiment and is called an ECS-scenario in the following.

For the segregated parameter influence analysis, we use a subset out
of all possible CS-settings and define the basic ECS-scenario set BECS
with 640 experiments (based on 64 PS-scenarios and the ten CS-settings:
C$-0-0, CS-1-0, CS-2-0, CS-3-0, CS-4-0, CS-5-0, CS-0-1, CS-0-2, CS-
0-3, andCS-0-4).

The (optional) parameter relP is fixed to 40% in our experiments
because this value defines a loose upper bound for the maximum load
and thus does not restrict the optimum solution but only the solution
space (to reduce computational efforts). The parameter AJCY = 0.15 is
fixed for all experiments.



All experiments have been executed on workstations with an Intel®
Xeon® CPU with 3.00 GHz and 64 GB RAM. SCIP was executed with the
following settings: limits/gap = 1E-12, limits/time = 600 (seconds),
gams/mipstart = true (an initial solution provided by TEH is used), and
misc/printreason = TRUE (checks the feasibility of the initial solution).
ANTIGONE was executed with CPLEX (threads = 1) for solving re-
laxations, CONOPT for finding feasible points, a relative stopping
tolerance (rel_opt_tol = 1E-9), and a time limit of 10 h (reslim = 36000
s).

6. Experimental results

In the first part of our analysis, we compare the two part-load effi-
ciency modelling approaches. In part two, we investigate the influences
of the CU parameters on the total FES demand and in the last part, we
analyze the most preferable CU parameters per company type, the in-
fluence of scheduling objectives, and the effect of decreasing conversion
efficiencies on the total FES demand.

Note that although the relative differences between objective values
seem to be small, the impacts on the ECSs’ efficiency should not be
underestimated as the absolute objective values (i.e., the final energy
demand of one year) vary between 39,551,151 to 193,720,091 units.

6.1. Nonlinear vs. Linear part-load efficiency modelling

To analyze and compare the influence of both part-load efficiency
modelling approaches on the ECS’s design, we optimize all instances
using ANT and the models NLM and PWM and afterwards evaluate the
solutions calculated by PWM with the more accurate but more complex
NLM model. The consequences of the simplified piecewise linear
modelling of part-load efficiencies are then measured in terms of the
required TFES: i.e., TFES(NLM) vs. TFES(PWM). To that, we use the
relative percentage difference of the TFES achieved with both ap-
proaches: ATFES = [(TFES(PWM) - TFES(NLM)) / TFES(NLM)]-100. In
addition, we analyze the influence of both part-load modelling ap-
proaches on the main decisions, i.e., the maximum load of the LCUs
(MaxL"®U(NLM) vs. MaxL'®U(PWM)) and the nominal load of the FCUs
(NomLf¢Y (NLM) vs. NomLF¢U (PWM)) by the relative percentage differ-
ences AMaxI'¢U and ANomLFCU (defined like for ATFES).

Table 4 shows the maximum, mean, standard deviation, and mini-
mum relative percentage differences per scheduling objective, aggre-
gated with regard to the 32 company types and the ten

CS-settings used in BECS (positive values mark that TFES(NLM),
AMaxL**V(NLM), or ANomLFCU(NLM) is smaller than TEFS(PWM),
AMaxL**V(PWM), or ANomL"Y(PWM), respectively).

In Fig. 8, the influence of the two part-load efficiency modelling
approaches on TFES, MaxL'V, and NomLFCV is illustrated by violin plots
(note the different scaling of the three parts).

On the one hand, Fig. 8 and the values in Table 4 show that the TFES
values calculated with the nonlinear modelling approach can be
remarkably lower (positive ATFES) for some cases and are also slightly
lower on average. On the other hand, the values also indicate that the
ECS designs determined with the linear modelling approach can be
better (in terms of solution quality). The latter effect can be traced back
to the fact that the optimization of model NLM is more complex
compared to model PWM, which was not accounted for in the experi-
ments (because both models had the same time limit for computation).
This drawback of the nonlinear modelling approach can be eliminated or
at least weakened by extending the computation time limits or by using
more efficient solution methods. However, possible savings up to 3.5%
are not insubstantial. In addition, it must be considered that the ECS
design approach forces the LCU to operate at the nominal load level for
most of the time. If relaxing this assumption during ECS operation, the
appropriate modeling of part-load efficiencies becomes even more
important. The (remarkably) high differences of TFES, MaxL'‘V, and
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NomLFCU (cf., Fig. 8 and Table 4) between both modelling approaches
substantiate the previous finding that the way of modelling part-load
efficiencies has a not neglectable influence on the ECS’s design and
therefore, the way of modelling must be chosen wisely.

6.2. Influences of CU parameters

Goal of the ten CS-parameter settings in scenario set BECS is to
analyze the influence of different CU parameters on the ECS’s efficiency.
To that, Fig. 9 illustrates the relative percentage deviation of TFES
achieved with each CS-setting compared to the TFES achieved with the
reference setting CS-0-0. Note that negative values indicate a lower,
improved TFES and that positive values indicate a higher, worsened
TFES. The box-and-whisker plot illustrates the aggregated values for the
32 company types with regard to CS-setting and scheduling objective.

The results in Fig. 9 show that the effects of CU-parameters seem to
be almost independent of the scheduling objectives. Furthermore, the
results show a larger operational range for LCUs to be preferable (CS-
1-0), even if the boundary load efficiencies (¢, and ni(Y; ) decrease
(CS-2-0), but that a simultaneous decrease of the nominal load effi-
ciency cannot be compensated (CS-3-0). Fig. 9 also reveals a high pos-
itive influence of an increased nominal load efficiency (CS-4-0) and a
high negative influence if boundary load efficiency increases come along
with nominal load efficiency decreases (CS-5-0) for LCUs.

Both effects and thus the importance of the nominal load efficiency
of an LCU can easily be explained, as the LCU is designed to operate at
the nominal load for most of the time (cf., section 3.1, Fig. 3, and
Table 5).

As seen by the results of Fig. 9, a greater degree of freedom for the
determination of the nominal load of the FCU only slightly increases the
CS’s efficiency (cf., CS-0-1 and CS-0-2). In contrast to LCUs, for the
FCUs, increasing the nominal load efficiency seems less preferable than
increasing the boundary load efficiencies (7559 and 75¢Y; ) as can be seen
by comparing CS-0-3 and CS-0-4.

Generally, we can report that compared to FCU parameters, LCU
parameters have a greater influence. This can be traced back to the
larger amount of energy provided by the LCUs (cf., Table 6).

6.3. Most suitable planning parameters per company type

To finally evaluate the influence of the basic planning parameters,
we report in Table 7 for each company type the most preferable com-
bination of scheduling objective, LCU parameters, and FCU parameters
(here we evaluated all possible compositions of non-dominated CS-set-
tings). For comparing the influence of both scheduling objectives, we
depict in column five the relative percentage difference between the
most suitable objective and the other objective. In addition, we report
the results of a sensitivity analysis simulating decreasing conversion
efficiencies (e.g., due to unit aging or other stochastic influences; cf., e.
g., Guinot et al., 2015). To that, efficiencies of the most preferable

CS-settings are adapted after 5 and 10 years (nominal load effi-
ciencies are decreased by 0.6 per “year” and minimum and maximum
load efficiencies by 0.4 per “year”) and for each company type, further
ECS designs are calculated with the reduced CU efficiencies. The
resulting relative percentage changes of the (additional) TFES, MaxL"‘Y,
and NomLf®U (compared to ECSs with the original efficiencies) are
depicted in the last six columns of Table 7.

Regarding the FCU settings, FCU-3 is most preferable for almost all
company types (29 of 32). Nevertheless, a higher degree of freedom to
determine the nominal load of the FCU (FCU-1, 3 times) is more suitable
for specific company types. Accordingly, the nominal load efficiency is
important, but not the only important parameter for FCUs (cf., Table 3).
For the same reasoning as in Section 6.2, LCU-5 is not preferable due to
its lower nominal load efficiency (cf., Table 2). However, although LCU-
4 has the highest nominal load efficiency, LCU-1 with its larger



Table 7
Most preferable parameters by company type (sensitivity analysis).

Company type LCU FCU Sched. obj. Rel. TFES diff. Additional TFES after MaxL"*Vchanges after NomL™Vchanges after
[%] 5 “years” 10 “years” 5 “years” 10 “years” 5 “years” 10 “years”
[%] [%] [%] [%] [%] [%]
S-FC-C-LR LCU-1 FCU-1 Cmax 1.13 3.23 6.64 1.47 1.47 -1.14 -1.14
S-FC-C-SR LCU-1 FCU-3 Cmax 0.84 3.22 6.68 0.00 0.55 0.00 -3.11
S-FC-E-LR LCU-1 FCU-3 Cmax 0.97 3.17 6.55 0.38 1.34 0.00 0.30
S-FC-E-SR LCU-4 FCU-3 Cmax 1.35 3.20 6.62 0.00 0.00 0.00 0.00
S-FC-H-LR LCU-1 FCU-3 Cmax 0.11 3.20 6.60 3.08 4.98 —2.61 —4.69
S-FC-H-SR LCU-1 FCU-3 Cmax 0.59 3.21 6.69 0.25 1.26 —0.77 —3.64
S-FC-I-LR LCU-1 FCU-1 Cmax 0.90 3.21 6.65 0.00 1.22 0.00 -1.20
S-FC-I-SR LCU-1 FCU-3 Cmax 1.00 3.21 6.64 0.00 0.00 0.00 0.00
S-MS-C-LR LCU-1 FCU-3 Cmax 0.66 3.18 6.57 1.08 1.62 -1.62 -1.62
S-MS-C-SR LCU-4 FCU-3 Cmax 0.17 3.21 6.63 0.00 0.00 0.00 0.00
S-MS-E-LR LCU-1 FCU-3 Cmax 0.05 3.18 6.55 0.74 2.03 1.17 2.59
S-MS-E-SR LCU-4 FCU-3 TFT 0.01 3.24 6.69 0.14 0.27 —0.53 —1.47
S-MS-H-LR LCU-1 FCU-3 TFT 1.18 3.18 6.56 0.59 0.98 —0.34 —1.46
S-MS-H-SR LCU-4 FCU-3 TFT 0.46 3.22 6.65 0.00 0.00 0.00 0.00
S-MS-I-LR LCU-1 FCU-3 TFT 0.89 3.17 6.54 1.57 1.57 10.06 9.28
S-MS-I-SR LCU-4 FCU-3 TFT 0.35 3.25 6.68 0.27 0.27 —0.75 —0.75
M-FC—C—LR LCU-1 FCU-3 Cmax 1.56 3.17 6.58 0.00 3.22 0.00 12.23
M-FC—C—SR LCU-1 FCU-3 Cmax 1.42 3.21 6.69 0.00 0.97 0.00 —4.94
M-FC—E-LR LCU-1 FCU-3 Cmax 1.29 3.17 6.55 0.43 2.00 0.55 3.11
M-FC—E—SR LCU-4 FCU-3 Cmax 1.57 3.18 6.57 0.00 0.00 0.00 0.00
M-FC-H-LR LCU-1 FCU-3 TFT 0.05 3.24 6.69 1.12 2.23 -3.96 —8.18
M-FC—H-SR LCU-1 FCU-3 Cmax 1.06 3.17 6.54 0.00 0.00 0.00 0.00
M-FC—I-LR LCU-1 FCU-3 Cmax 0.79 3.18 6.56 1.10 1.86 —1.38 —2.28
M-FC—I-SR LCU-1 FCU-3 Cmax 1.10 3.19 6.55 2.01 2.01 —5.01 -5.19
M-MS—C-LR LCU-1 FCU-3 Cmax 1.13 3.16 6.53 0.00 0.00 -0.35 —0.35
M-MS—C—SR LCU-4 FCU-3 Cmax 0.65 3.20 6.63 0.00 0.27 —0.31 —2.45
M-MS—E-LR LCU-4 FCU-1 Cmax 0.30 3.18 6.57 0.00 0.00 0.00 0.00
M-MS—E-SR LCU-4 FCU-3 Cmax 0.43 3.25 6.67 0.52 0.60 -3.93 —4.72
M-MS—H-LR LCU-1 FCU-3 TFT 0.84 3.14 6.49 1.65 1.65 —2.76 -3.10
M-MS—H-SR LCU-4 FCU-3 Cmax 0.09 3.20 6.61 0.00 0.00 0.00 0.00
M-MS—I-LR LCU-1 FCU-3 TFT 1.45 3.17 6.54 1.14 2.55 1.72 3.14
M-MS—I-SR LCU-4 FCU-3 TFT 0.27 3.19 6.59 0.00 0.00 -0.23 —0.45
MAX 1.57 3.25 6.69 3.08 4.98 10.06 12.23
MEAN 0.77 3.20 6.60 0.55 1.09 —0.38 —0.63
STD 0.48 0.03 0.06 0.75 1.14 2.37 3.82

operational range is preferable for most company types (21 of 32).
Therefore, we conclude that next to the nominal load efficiency, the
operational range is a second main influencing parameter for LCUs. The
fact that the most preferable parameters by company type slightly differ
from the results of Section 6.2 indicates, that the combined design of the
LCU and FCU is important to maximize the ECS‘s overall energy
efficiency.

Analyzing the influence of the scheduling objective, the values in
Table 7 show that the makespan objective is preferable for most com-
pany types but that also the TFT objective can be superior. The com-
parison of both objectives by a two-sided pairwise t-tests (on the ten CS-
settings), used to test whether the difference of the objective values
(TFES) is statistically significant (< 0.05; with degrees-of-freedom df =
9) or not, leads to the following results: mean relative percentage dif-
ference = -0.44 (Cmax is superior), mean p-value = 0.009, mean t-value
= 28.238, and that the differences are significant for 31 of 32 company
types. This leads to the conclusion that manufacturing companies can
influence their energy efficiency by an appropriate scheduling objective
(presumably even more when an energy-oriented scheduling is per-
formed) and that this scheduling objective should be already considered
during ECS design.

The increasing TFES values resulting from the decreasing conversion
efficiencies are as expected. More interesting are the sensitivity analysis’
results concerning the decisions on the maximum load of the LCU and
the nominal load of the FCU. The results in Table 7 reveal a very robust
dimension of the LCU regarding decreasing conversion efficiencies: if
the nominal load efficiency decreases by 3% (6%), the most
suitableMaxL'‘V only increases by 0.55% (1.09%) on average
(maximum increases are 3.08% and 4.98%). Somehow more sensitive is
the nominal load of the FCU. The mean decreases of 0.38% and 0.63%
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are comparable small but for some company types, the “new” adapted
nominal load is remarkably higher (e.g., M—FC—C—LR), whereas for
other company types, the “new” adapted nominal load is remarkably
lower (e.g., M—FC—H—LR). For these cases, an appropriate adjustment
of the nominal load of the FCU is advised.

7. Conclusions

In this paper, we presented a new, flexible —energy-type
independent— approach for the dimensioning of a manufacturing
company’s ECS. Hereby, we respected the special conditions arising in
the context of manufacturing companies: highly dynamic energy de-
mands and the opportunity to directly influence the temporal course of
the energy demand by scheduling. Our approach not only considers and
anticipates the hierarchical interdependencies between ECS design and
ECS operation but additionally takes the relationship to the PS into ac-
count. To that, the simulative scheduling component of our design
approach is capable to model different types of production systems,
constraints, and objectives. In addition, as we propose to consider 240
production days during the ECS dimensioning, the resulting ECS is
robust with regard to energy demand uncertainties and also to
decreasing conversion efficiencies due to aging.

The most important characteristics defining an ECS’s energy-related
behavior (i.e., size, nominal load, and part loads with related conversion
efficiencies) are explicitly modelled by the proposed MINLP. In this
context, our experimental results have shown the advantage of the most
accurate modelling of part-load efficiencies by nonlinear functions as it
leads to a more efficient ECS design compared to piecewise linear
modelling approaches (savings up to 3.5% can be achieved). In conse-
quence of this result, we emphasize the importance of a suitable part-



load behavior modelling when designing ECSs for manufacturing com-
panies. Another essential aspect highlighted by the experiments is the
importance of operational ranges and boundary efficiencies for the ECS
design.

Based on these results, we conclude that further research should aim
on the integration of the analyzed aspects into ECS design approaches.
Particularly the consideration of nonlinear part-load efficiencies can be
important, and their integration is easily possible when applying heu-
ristic solution methods. Of course, also the development of more effec-
tive and/or efficient solution methods for the problem at hand are of
interest. Furthermore, the possibility of manufacturing companies to
directly influence the energy demand course by scheduling can be used
to improve the ECS design, ECS efficiency, and thus, a manufacturing
company’s overall efficiency. Hereby, the usage of energy-oriented
scheduling objectives or constraints is a promising research topic to
further improve energy efficiency.
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