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Probing the screening of the Casimir interaction with optical tweezers
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We measure the colloidal interaction between two silica microspheres in an aqueous solution in the distance
range from 0.2 to 0.5 μm with the help of optical tweezers. When employing a sample with a low salt
concentration, the resulting interaction is dominated by the repulsive double-layer interaction which is fully
characterized. The double-layer interaction is suppressed when adding 0.22 M of salt to our sample, thus
leading to a purely attractive Casimir signal. When analyzing the experimental data for the potential energy
and force, we find good agreement with theoretical results based on the scattering approach. At the distance
range probed experimentally, the interaction arises mainly from the unscreened transverse magnetic contribution
in the zero-frequency limit, with nonzero Matsubara frequencies providing a negligible contribution. In contrast,
such unscreened contribution is not included by the standard theoretical model of the Casimir interaction in
electrolyte solutions, in which the zero-frequency term is treated separately as an electrostatic fluctuational
effect. As a consequence, the resulting attraction is too weak in this standard model, by approximately one
order of magnitude, to explain the experimental data. Overall, our experimental results shed light on the nature
of the thermal zero-frequency contribution and indicate that the Casimir attraction across polar liquids has a
longer range than previously predicted.

DOI: 10.1103/PhysRevResearch.3.033037

I. INTRODUCTION

The van der Waals (vdW) interaction plays a key role in
several systems at the intersection between cell and molecular
biology, chemistry and physics, such as biological membranes
and colloids, among others [1,2]. The general theoretical
framework for the vdW force was laid down by Lifshitz [3],
whose work was later extended to allow for an intervening ma-
terial medium between the interacting surfaces [4]. The vdW
interaction across an electrolyte solution is a key ingredient of
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the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory
of colloidal interactions [5]. Electrodynamic retardation leads
to a reduction of the contribution from nonzero Matsubara
frequencies as the distance increases beyond the nanometric
scale. The vdW interaction is often referred to as Casimir
interaction [6] in this range, and several experiments with
metallic surfaces either in vacuum [7–15] or in air [16,17]
have been reported (see Refs. [18,19] for recent reviews).

In many situations of interest, the asymptotic long-distance
Casimir interaction arises from the Matsubara zero frequency,
which provides a purely thermal contribution proportional
to the temperature T . However, when considering surfaces
separated by an electrolyte solution, screening by movable
ions (partly) suppresses the zero-frequency contribution over
the characteristic Debye screening length [20], while leaving
the contribution of nonzero frequencies unchanged [21].

The screening of the vdW interaction has been demon-
strated for complex systems such as lipid bilayers [22], for
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which a direct comparison with ab initio theoretical models
is not available. We have employed optical tweezers [23–25]
to probe the interaction between silica microspheres across an
aqueous solution at surface-to-surface distances L � 0.2 μm
such that the thermal zero-frequency contribution dominates
the Casimir signal. Under such conditions, the Casimir inter-
action is extremely sensitive to the strength of ionic screening.
In addition, the simplicity of our setup allows for a direct
comparison with theoretical descriptions of screening.

At such distances, the magnitude of the Casimir force
between dielectric surfaces is in the femtonewton (fN) range,
thus requiring the use of very soft tweezers, with a stiffness
of the order of fN/nm and long measurement times. Such
force sensitivity was achieved by carefully mitigating the laser
and microscope stage drifts, nonthermal noises and spurious
measurement signals arising from perturbations of the optical
potential by the presence of the additional interacting micro-
sphere.

A much stronger interaction is obtained by replacing di-
electric surfaces by metallic ones. Experiments with different
intervening liquids were implemented in the distance range
close to ∼0.1 μm [26–30]. However, in this case the zero-
frequency contribution becomes dominant only at distances
above the micrometer range. Thus it would be extremely dif-
ficult to probe the screening effect with metallic surfaces. In
contrast, screening is relevant already in the nanometer range
when considering several examples of dielectric surfaces in-
teracting across an aqueous medium. Indeed, in this case the
zero-frequency contribution typically stands out as the dom-
inant term already at relatively short distances, of the order
of ∼0.1 μm, due to the near index-matching at nonzero Mat-
subara frequencies [5,31]. For instance, the vdW interaction
between lipid membranes in the nanometer range is strongly
modified by changing the salt concentration and the resulting
screening length [22]. Thus optical tweezers are ideally suited
for probing the Casimir screening as it allows for weak trap-
ping of dielectric particles in aqueous solution as long as the
requirement of near index matching is satisfied [32], which is
precisely the condition for making the zero-frequency Casimir
contribution dominant in the submicrometer range.

Previously, optical tweezers were employed as force trans-
ducers to probe colloidal forces [33–39] and the nonadditivity
of the critical Casimir interaction [40]. Alternatively, one can
use blinking optical tweezers to control the initial distance be-
tween interacting dielectric microspheres [41–45]. Recently,
femtonewton force sensitivity was achieved using an opti-
cally trapped metallic nanosphere as the probe [46]. When
combined with total internal reflection microscopy (TIRM)
[47], optical tweezers allow for subfemtonewton measure-
ments [48] when reflection of the probe laser at the planar
interface between the aqueous medium and the substrate is
reduced [49]. Potential energy measurements of the critical
[50] and electrodynamic [51–53] Casimir interactions were
implemented using TIRM. Atomic force microscopy (AFM)
is usually the method of choice when probing at shorter
distances (see [54] for a recent review). Typically, AFM can-
tilevers with stiffness ∼pN/nm allow to measure piconewton
forces at distances in the nanometer range [55].

With the notable exceptions of Refs. [37,39], mea-
surements with dielectric surfaces separated by distances

�0.1 μm are typically made with low or intermediate salt
concentrations, with the electrostatic double layer repulsive
force providing a significant fraction of the total interaction.
We have probed samples with low and high salt concentra-
tions. For the latter, the electrostatic double-layer force is
completely suppressed, thus allowing for a direct blind com-
parison between the experimental data and theoretical models
for the Casimir effect. Measuring at such conditions at dis-
tances �0.2 μm is challenging not only because the signal is
weak, but also because the steep attractive Casimir potential
leads to frequent jump-into-contact events.

We compare our experimental results with two different
models of screening of the Casimir interaction. In the first
one, the zero-frequency contribution is considered separately
within the realm of fluctuational electrostatics taking the ions
into account with the help of the linear Poisson-Boltzmann
equation [56–58]. Similarly to the double-layer interaction be-
tween charged surfaces, the resulting interaction is suppressed
over the screening length.

The second model is based on a recent extension [21] of
the scattering approach for parallel planar surfaces [59,60]
to include longitudinal channels. In contrast to the former
standard model [56–58], a single formalism is applied to all
Matsubara frequencies, and the zero-frequency contribution
is obtained as a limit of the result for an arbitrary frequency.
Movable ions in solution give rise to a nonlocal response
(spatial dispersion), which in turn allows for the existence of
longitudinal modes in addition to the usual transverse ones
[61].

The effect of the nonlocal ionic response is shown to be
negligible at nonzero Matsubara frequencies, because they
are much larger than the plasma frequency associated to ions
in solution [21]. As for the zero-frequency contribution, the
known screened term of Refs. [56–58] is rederived as the
contribution of longitudinal channels. However, an additional
unscreened contribution is also obtained within the scattering
model, resulting from transverse magnetic (TM) modes in
the zero-frequency limit. As a result of the TM contribution,
the Casimir interaction across a salt solution is predicted to
be of a much longer range than previously thought, corre-
sponding to a universal long-distance asymptotic Hamaker
constant ∼0.9 kBT in the case of parallel planar surfaces (kB =
Boltzmann constant). Our experimental data at a high salt con-
centration allow us to check for the existence of this additional
TM contribution, which is one order of magnitude larger than
the contribution of nonzero frequencies in the probed distance
range L > 0.2 μm.

The paper is organized as follows. Section II presents the
basic ingredients for the theoretical description of the col-
loidal interaction between dielectric microspheres. Section III
starts with a description of the experiment and then presents a
detailed comparison between results and theoretical models.
Section IV contains the conclusions and the final remarks.
More technical aspects of the experimental methods and addi-
tional data are presented in Appendices A to E.

II. THEORY OF COLLOIDAL INTERACTIONS

Here we consider the interaction between two silica micro-
spheres. While the probe microsphere (radius R1) is optically
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FIG. 1. (a) Sketch of two interacting silica microspheres sepa-
rated by a distance L. We measure the Brownian fluctuations of
the smaller one (radius R1), which is optically trapped at a height
h from the coverslip. The larger microsphere (radius R2) is ad-
hered to the coverslip at a distance D from the laser beam axis.
(b) Experimental scheme for trapping, stabilization and position
measurement: (F) optical fiber; (HWP) half-wave plate; (PBS) polar-
ising beam splitter; (BD) beam dump; (M) dielectric mirror; (NDF)
neutral density filter; (QWP) quarter-wave plate; (BS) balanced
beam splitter; (DM) dichroic mirror; (L) lens; (Obj) water-immersion
objective lens; (Cond) condenser lens; (CMOS) complementary
metal-oxide-semiconductor camera; (CCD) charged-coupled device
camera; (CPU) central processing unit. (c) A typical optical image
captured by the CMOS camera. In this case, L corresponds to a few
hundred nanometers. The green contour indicates the area used to
detect the position of the trapped microsphere. The yellow dots are
used to fit a circumference whose center represents the position. The
scale bar corresponds to 4 μm.

trapped, a larger one (radius R2) is adhered to the coverslip,
as illustrated by Fig. 1(a). They are separated by a surface-to-
surface distance L in an aqueous solution of permittivity ε at
temperature T . For the distance range L � 0.2 μm probed in
our experiment, non-DLVO short-range interactions such as
solvation forces are negligible [62], and the total interaction
energy between the microspheres reads

Uint (L) = UDL(L) + UC(L), (1)

where UDL and UC are the double layer and Casimir interac-
tion energies, respectively. The Debye screening length [1,2]

λD =
√

εkBT

2(Ze)2n∞
(2)

is the characteristic thickness of the ionic double layer around
each particle. Here, kB denotes the Boltzmann constant, Z
is the ion atomic number and e is the elementary charge.
The Debye length and hence the screening intensity can be
controlled by changing the bulk salt concentration n∞.

In the regime of long distances, the double layer around
each microsphere is approximately unperturbed by the other
one. Within the linear superposition approximation (LSA),
the ionic charge density is then taken as the sum of separate
solutions of the linear Poisson-Boltzmann (Debye-Hückel)
equation for isolated microspheres [63]. Indeed, the relative
difference between the LSA result and the exact solution
of the linear Poisson-Boltzmann equation for two spheres

is negligibly small given our experimental conditions [64].
As charge regulation is also negligible at distances L > λD

[65,66], we consider a constant charge model, with the same
fixed surface charge density σ on both silica microspheres.
The resulting screened Coulomb interaction energy is then
given by [67]

UDL(L) = 4πσ 2R1R2

ε
(
1 + R1

λD

)(
1 + R2

λD

) Reff(
1 + L

R1+R2

)e−L/λD , (3)

where Reff ≡ R1R2/(R1 + R2) is the effective radius.
The Casimir interaction is analyzed within the scattering

approach to nontrivial geometries [68,69], which allows the
derivation of exact results for the spherical geometry in terms
of the corresponding Mie scattering operators [70–73] devel-
oped in the plane-wave basis [74]. Our approach also accounts
for electrodynamic retardation and thermal effects. As the
distance increases, deviations from the standard proximity
force approximation (PFA), also known as Derjaguin approx-
imation [75], become increasingly important [71,76–82].

The Casimir free energy is then given as a sum over the
Matsubara frequencies

ξn = 2π n kBT/h̄, n = 0, 1, 2, . . . (4)

that reads

UC(L) = kBT
∞∑

n=0

′ log det [1 − M(ξn)]. (5)

The prime stands for the multiplication by a factor 1/2
when considering the zero-frequency (n = 0) contribution.
The round-trip operator

M(ξn) = T12R2T21R1 (6)

contains the reflection (Mie) operators R1 and R2 of the probe
and adhered microsphere, respectively. They are calculated
with respect to reference points located at their corresponding
centers. The operator T21 carries out the translation from the
center of microsphere 1 to the one of microsphere 2 along the
x direction. Likewise, T12 implements the opposite translation
from microsphere 2 to 1, also across the center-to-center dis-
tance L + R1 + R2, as illustrated by Fig. 1(a).

We follow Ref. [74] and develop the scattering formula (5)
in the plane-wave basis with the help of a discrete Fourier
transform. We take the dielectric functions of silica and water
from Ref. [29]. The contribution to the medium dielectric
function arising from ions in solution is considered within
the Drude model, and is non-negligible only for the zero-
frequency contribution.

As discussed in the previous section, the screening of the
Casimir interaction by movable ions in solution is the central
focus of the present paper. For the simpler geometry of planar
parallel surfaces, the scattering formula for the Casimir inter-
action across an electrolyte solution was recently developed
in terms of the nonlocal electrodynamic response of the in-
tervening medium [21]. Only the zero-frequency contribution
is modified by ions in solution, as the corresponding plasma
frequency is much smaller than kBT/h̄. Two separate contri-
butions were found at the zero-frequency limit: The first one,
accounting for longitudinal modes, coincides with the result
of previous derivations based on the linear Poisson-Boltzmann
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equation [56–58]. Alongside the screened longitudinal term,
the scattering approach of Ref. [21] leads to an additional,
unscreened contribution arising from TM modes in the zero-
frequency limit.

The main purpose of the present study is to investigate
whether such additional contribution is found experimentally.
We compare our data with the full Mie calculation based on
the scattering formula (5) for spherical particles instead of
directly applying the results of Ref. [21] or Refs. [56–58]
for parallel planar surfaces. Since we probe distances L �
λD, the zero-frequency contribution in (5) is completely sup-
pressed if we follow the general scheme of Refs. [56–58].
Indeed, in this case, the zero-frequency contribution is con-
sidered separately as an electrostatic effect derived from the
linear Poisson-Boltzmann equation, and then all multipole
contributions are screened over the Debye length λD [83].
On the other hand, when taking the zero-frequency contri-
bution as a limit of the general scattering formalism, an
additional unscreened TM contribution provides the long-
distance asymptotic value of the Casimir attraction, as the
contribution of nonzero Matsubara frequencies becomes neg-
ligible at the distances L � 0.2 μm probed in our experiment.
Such asymptotic result is of a universal nature as it does
not depend on the details of the dielectric functions of the
materials involved in the experiment [21]. In short, given
our experimental conditions, the two alternative approaches
amount to suppress or include the unscreened zero-frequency
contribution in (5).

In the next section, we present our measurements and com-
pare the results for the interaction energy and force with the
theoretical models discussed above.

III. INTERACTION MEASUREMENTS AND COMPARISON
WITH THEORETICAL MODELS

We employ a standard optical tweezers setup to probe
the colloidal interactions between two silica microspheres of
different radii. Figure 1 presents a sketch of the experimental
setup. While the larger microsphere is adhered to the cov-
erslip, the smaller one is optically trapped, as illustrated by
panel (a). In order to align the two microsphere centers along
the z axis with a precision δz ∼ 100 nm, we follow Ref. [38]
and use the information from defocusing microscopy [84,85]
to drive the microscope stage with our nano-positioning sys-
tem. The experimental scheme is shown in panel (b), while
panel (c) presents a typical optical image of the two interact-
ing microspheres. Details regarding the experimental setup,
sample preparation and characterization of the microspheres
can be found in Appendices A, B, and C, respectively.

The interaction is carried out under two conditions cor-
responding to very different values of the Debye screening
length λD. A specific experimental protocol is implemented
to each of these two conditions, as detailed in the next two
sections. We first present the methodologies which are com-
mon to both situations. We measure the position of both
microspheres by applying an edge detection method [86,87],
as outlined in Fig. 1(c) for the smaller microsphere (see Ap-
pendix D for details). The resulting time series (X1(t ),Y1(t ))
and (X2(t ),Y2(t )) for the smaller and larger microsphere, re-

spectively, are the main ingredients for the analysis leading to
the experimental energy and force data.

We choose a very soft transverse trap stiffness kx ∼
1 fN/nm so as to allow for femtonewton force measure-
ments given the nanometric precision of our position detection
method (see Appendix D). A major obstacle limiting the min-
imum distance that we can probe is the sharp increase of the
Brownian correlation time τC = γ /kx (γ = Stokes drag coef-
ficient) as the distance L between the microspheres decreases
for a fixed stiffness. Indeed, a longer measurement time would
be needed to obtain the same amount of statistically indepen-
dent values of (X1(t ),Y1(t )) when probing at shorter distances.
From the analysis of the position fluctuations, we measure the
correlation time of the trapped particle under typical experi-
mental conditions to be τC ∼ 100 ms for an average distance
L ∼ 1 μm. This is in agreement with the theoretical modeling
of the drag coefficient γ in the sphere-sphere geometry [88]
when taking into account the Faxén correction [89] arising
from the coverslip for an average height h ∼ 12 μm. We pre-
dict a fourfold increase of τC as the distance is reduced down
to the minimum value L ∼ 0.2 μm probed in our experiment
due to the variation of the drag coefficient γ [88]. At distances
shorter than this minimum value, the Brownian motion be-
comes too slow, making it impractical to probe the potential
landscape.

To overcome the challenge imposed by the large correla-
tion time, we measure the positions over a very long time,
T = 500 s. Such a long measurement time requires mitigation
of environmental noises and drifts so as to have a thermally
limited system over a time of the order of T or longer. In Ap-
pendix E, we discuss the methodologies employed to render
our system more stable over longer times, and how we have
characterized and tested its stability. In particular, we show
that our system is thermally limited at least up to a time ≈2T ,

by analyzing the Allan deviation of the position variable X1.

In view of the magnitude of the correlation time, we
choose a sampling interval 1/ fs = 100 ms ( fs = sampling
rate) to avoid storing correlated data, although the data be-
come increasingly more correlated as the distance decreases.
In addition, we take a short exposure time W = 2 ms � τC

to avoid the blur effect arising from Brownian fluctuations
while an individual frame is captured [90]. The latter allows
us to take the raw data for the position time series without
introducing any model-dependent correction.

For each experimental run, 5000 frames are converted
into the time series (X1(t ),Y1(t )) and (X2(t ),Y2(t )) while a
feedback stabilization loop, shown in Fig. 1 and discussed
in detail in Appendix E 2, keeps the microscope stage at a
fixed position within 10 nm, which is the range of variation
of (X2(t ),Y2(t )). Discrete binning is then implemented for the
position of the optically trapped microsphere, with a bin size
of 4 nm comparable to our position resolution. As indicated
by Fig. 1(a), the distance between the microspheres for a given
bin i is given by

L(i) = X 2 − X (i)
1 − (R1 + R2), (7)

where X 2 corresponds to the average position of the ad-
hered microsphere and X (i)

1 is the position of the optically
trapped one. The microsphere radius R1 = (2.35 ± 0.02) μm
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is measured by scanning electron microscopy (SEM), with
the error given by the standard deviation (see Appendix C 1).
Since our batch of the large silica microspheres presented
an important size dispersion, we determined their radii from
the correlation of optical and SEM images, as discussed
in Appendix C 2. We found R2 = (12.76 ± 0.06) μm and
R2 = (11.74 ± 0.06) μm for the microspheres used with low
(Sec. III A) and high (Sec. III B) salt concentrations, respec-
tively. While the error of the center-to-center distance X 2 −
X (i)

1 is in the nanometer range, the global offset arising from
the subtraction of R1 + R2 has a higher error which is not
written explicitly as it does not change the relative values of
L(i).

The binned data for each experimental run lead to a
frequency histogram from which we obtain the probability
distribution p(L(i) ). Since our system remains in thermal equi-
librium over a time scale longer than the total measurement
time T , we associate p(L(i) ) to a Boltzmann distribution
[40,91] at the measured temperature T = (296 ± 1) K. For
each salt concentration, we choose a reference distance Lref

with a high number of occurrences for all different runs so as
to be able to accurately determine p(Lref ) from the available
data. We then infer the total potential energy U (L(i) ) from

U (L(i) ) − U (Lref ) = −kBT [log p(L(i) ) − log p(Lref )], (8)

where kB is the Boltzmann constant.
Equation (8) determines the potential energy from the

probability distribution p(L(i) ) apart from an arbitrary off-
set as expected on physical grounds. After subtracting the
optical potential Uopt (L(i) ), which, as discussed below, is de-
termined by measurements when the two microspheres are
sufficiently apart, we average the results for the interaction
energy Uint (L(i) ) = U (L(i) ) − Uopt (L(i) ) from different runs.
From now on, we will omit the bin index i.

In addition to the environmental noise discussed in detail
in Appendix E, one important concern is the modification
of the optical force as the adhered microsphere is brought
closer to the laser focal spot. We expect the reverberation
of the laser beam between the interacting microspheres to be
negligible since their refractive index nbead = 1.4146 is close
to the refractive index of the host medium nwater = 1.3242 (see
Appendix E 3 for details). Indeed, the corresponding Fresnel
reflectivity is as small as 0.1% for normal incidence. In ad-
dition, the optical reverberation between the trapped particle
and the coverslip [92] is unimportant in our experiment as the
former is kept at a fixed height with respect to the latter.

Yet optical perturbations might still be present as part of the
trapping beam is refracted through the adhered microsphere
before reaching the focal plane. In contrast to the reverber-
ation effect, such perturbation does not involve interference
and is thus expected to depend only on the relative refractive
index and the geometrical aspect ratio D/R2, where D is
the distance between the (unperturbed) focal point lying along
the optical symmetry axis and the center of the adhered sphere
as indicated in Fig. 1(a). Preliminary theoretical results [93]
indicate a total displacement of the optical equilibrium po-
sition along the x axis of a few tens of nanometers and a
variation of stiffness of a few percent as the adhered sphere
is brought from infinity to a distance of closest approach of a
few hundred nanometers.

In view of the above results, we measure the optical equi-
librium position X opt

1,eq and the trap stiffnesses kx and ky (see
Appendix E 2), characterizing the optical potential Uopt (L),
at intermediate distances D such that the surface-to-surface
distance at optical equilibrium Lopt

eq lies in the interval from
480 nm to 800 nm. In this range, colloidal interactions in
our system are negligible and then X opt

1,eq is obtained from the
average position. More importantly, our calibration of the op-
tical equilibrium position already takes the beam perturbation
into account. As the geometrical aspect ratio D/R2 changes by
only ∼2.5% within this interval, we expect the optical poten-
tial to be approximately independent of D. We have verified,
experimentally, that kx, ky, and X opt

1,eq (see Appendix E 1) are
indeed independent of D within the experimental error in this
range of distances.

In order to push further into the interaction region, we
reduce the distance D between the adhered sphere and the
optical symmetry axis by up to ∼150 nm with respect to the
smallest value of D employed when characterizing the optical
potential. We assume that X opt

1,eq and kx are still constant in
this case. This is verified by measuring ky (see Appendix E 3),
while the total stiffness kx − ∂xFint and the equilibrium posi-
tion change due to the colloidal interactions. To further verify
that our interaction measurements are not contaminated by
perturbations of the optical force, we perform measurements
at different laser powers, as discussed in the next section.

A. Low salt concentration

In this section, we present the results for the colloidal
interaction and discuss some additional experimental details
which are specific to the experiment with no added salt. In
this case, the double-layer force is dominant and the total
force is repulsive over the entire probed range of distances.
In order to overcome the repulsive interaction and adhere the
larger microsphere to the coverslip as indicated in Fig. 1(a),
we coated the latter with poly-L-lysine (see Appendix C 1).

We performed 25 interaction runs for the same pair of
microspheres, each run corresponding to fixed values for the
distance D and the laser power. We employed three different
values for D and several values for the laser power, with the
resulting kx ranging from 1.2 to 2.5 fN/nm [see Fig. 8(a) of
Appendix E for details]. In addition, we performed four cali-
bration measurements, employing a larger distance D, in order
to determine the optical equilibrium position X opt

1,eq, which was

such as to correspond to a surface-to-surface separation Lopt
eq =

480 nm. After subtracting the optical potential Uopt (L) from
the total potential energy U (L), we find no systematic effect
of the laser power on the measured interaction energy, as the
data for Uint (L) coming from different runs are compatible
with each other and do not split according to the laser power.
Indeed, any additional perturbation of the optical potential
as the adhered microsphere is brought closer to the trapped
one would result in the contamination of Uint (L) by a residual
optical potential proportional to the laser power after subtrac-
tion of the unperturbed optical potential. Thus our analysis
indicates that such additional perturbation is negligible when
compared to our experimental sensitivity.

We average the data for Uint (L) from the 25 runs, com-
bining different laser powers and values of D, and plot the
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FIG. 2. Interaction energy in units of kBT versus distance for the
sample with a low salt concentration: experiment (points with error
bars representing the standard error of the mean), and theoretical fits
based on two different theoretical models of the Casimir interaction,
either with (black) or without (red) the unscreened contribution from
TM modes in the limit of zero frequency. The latter is displaced
by 2 kBT and the same experimental data is plotted twice for better
visualization. For both models, the double-layer repulsive interaction
is calculated within the linear superposition approximation in terms
of two fitting parameters: the squared charge density σ 2 and the
Debye screening length λD. In the inset, we plot the total energy
versus distance for two individual runs. The purple and green plots
correspond to the adhered microsphere placed further and closer
to the laser beam axis, respectively. In both plots, the solid line
represents the optical potential.

results in Fig. 2. The error bars represent the standard error
of the mean of the combined set of data and the common
reference distance is Lref = 0.27 μm [94]. For the purpose
of illustrating how those results are obtained, we also plot
the total energy U (L) corresponding to two individual runs
in the inset. While the purple points correspond to the cali-
bration configuration used to characterize Uopt (L), the green
ones represent a single interaction run with a smaller D and
the same laser power taken here as a typical example. We
determine the optical equilibrium position X opt

1,eq as the position
average given the probability distribution corresponding to the
purple points (no interaction). The surface-to-surface optical
equilibrium position Lopt

eq = 480 nm is then obtained from
X opt

1,eq by using Eq. (7). The optical stiffness kx is derived from
the experimental calibration methods described in Appendix
E 3. The resulting optical potential Uopt (L) = kx(L − Lopt

eq )2/2
is represented by the solid purple curve, which is also a good
quadratic fit of the purple points as expected. Finally, the green
solid curve is the optical potential with the same stiffness
and X opt

1,eq but with a different value of Lopt
eq as determined by

Eq. (7), since it corresponds to a smaller value X̄2 for the
position of the adhered microsphere. The resulting displaced
curve represents the optical potential Uopt (L) in the interaction
run taken as example. When compared to the experimental
curve for U (L) (green points), it makes more apparent the
skewness of the latter, which indicates the repulsive nature of
the colloidal interaction. Finally, the data for Uint (L) coming

TABLE I. Parameters employed for the curve fit of the measured
interaction energy: charge density σ and Debye screening length
λD. In addition to the double-layer interaction energy (3), we also
consider the Casimir interaction either with or without the zero-
frequency TM contribution.

Casimir model σ (mC/m2) λD (nm)

n = 1, 2, . . . −1.7 ± 0.3 25.0 ± 0.9
n = 0, 1, 2, . . . −0.8 ± 0.1 29.3 ± 0.6

from this specific run is then the difference between the green
points and the green solid curve shown in the inset.

In order to allow for comparison with two distinct theoret-
ical models of Casimir screening, we plot in Fig. 2 the same
experimental results for Uint (L) twice for better visualization,
with the red points shifted by 2 kBT with respect to the black
ones. The curve fits are then based on two distinct models
of the Casimir attractive interaction, either with (black) or
without (red) the contribution arising from TM channels in
the zero-frequency limit (see Sec. II for details). In both cases,
the double-layer repulsive interaction is calculated within the
LSA and obtained from Eq. (3) in terms of two fitting param-
eters: the squared charge density σ 2 and the Debye screening
length λD. We fit over the interval Lmin � L � 440 nm and
take values for Lmin between 190 and 210 nm. We also con-
sider different data sets obtained by changing the reference
distance Lref by a few tens of nanometers (not shown in the
plot). In Table I, we show the average of the fitted values of σ

and λD with the errors representing the standard deviation.
The red curve in Fig. 2 corresponds to a repulsive colloidal

potential over the entire range of distances probed in our
experiment. On the other hand, the black solid line exhibits
a very weak attraction for distances L � 0.35 μm, since in
this range the TM zero-frequency contribution is much larger
than the combined contribution of all nonzero Matsubara
frequencies. However, such smooth variation is below our
experimental sensitivity. Thus both models fit our data equally
well, although the fitting parameters are more stable with
respect to the fitting range when the zero-frequency TM con-
tribution is included, as indicated by the standard deviations
shown in Table I.

The results for λD shown in Table I differ by merely ∼20%.

They correspond to a salt concentration n∞ ∼ 0.2 mM, which
is compatible with sample contaminations arising, for in-
stance, from the poly-L-lysine coating employed to adhere
the larger microsphere to the coverslip. The slightly larger
value of λD obtained when including the zero-frequency TM
contribution is required to yield a double-layer repulsion with
a longer range that compensates for the stronger Casimir at-
traction in this case (see Sec. III B). As indicated in Table I, the
corresponding charge density σ is then lowered by a factor ∼2
in order to also fit at shorter distances. We conclude that the
fitted value of σ depends strongly on the theoretical model of
the Casimir interaction even in the distance range L > 0.1 μm
where it is clearly subdominant. Model-dependent results for
colloidal parameters were also reported in Ref. [52].

Usually, the surface charge density is obtained by fit-
ting the interaction force at much shorter distances, L �
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20 nm, by considering a Casimir (vdW) model without the
zero-frequency TM contribution. Available results for the sil-
ica charge density for several symmetric inorganic salts at
∼0.2 mM tend to cluster, for a pH = 5.6, at σ ∼ −4 mC/m2

[54]. Since the magnitude of the silica charge density in-
creases with an increasing pH [95], the discrepancy with
respect to the values shown in Table I cannot be attributed
to the higher pH of our sample (pH = 6.8). Theoretical mod-
eling of silica charging [95] seems to favor the values shown
in Table I, and especially the one found when including the
TM zero-frequency contribution.

The two models of Casimir screening can hardly be distin-
guished in experiments with low salt concentrations, since the
Casimir interaction is sub-dominant over the entire distance
range probed experimentally. In order to isolate the Casimir
interaction from the electrostatic double-layer signal, we per-
formed an experiment with a much higher salt concentration
as presented in the next section.

B. High salt concentration

When the double-layer interaction is totally suppressed by
ionic screening, the force signal at distances L � 0.2 μm is
considerably weaker, making it harder to measure. Moreover,
the equilibrium position of the probe particle becomes more
unstable, due to the sharp increase of the attractive Casimir
force at short distances. Experimentally, it is difficult to con-
trol the distance D between the adhered microsphere and the
laser beam so as to hit the narrow range of distances in which
the Casimir attraction is measurable and yet not strong enough
to make the probe jump into contact in the beginning of the
run.

We prepare a sample with a NaI concentration of n∞ =
0.22 M, corresponding to λD = 0.64 nm according to Eq. (2).
Such value for the Debye screening length is sufficiently small
to produce a complete suppression of the double-layer inter-
action for L � 0.2 μm. The interaction runs are performed for
average separations of the order of L ∼ 0.4 μm. To determine
the parameters of the optical potential alone, we take 8 differ-
ent average separations in the range 0.5 μm < L < 0.9 μm.

Those calibration measurements are repeated before and after
every two interaction measurements. In all cases, we find vari-
ations of the optical equilibrium position and trap stiffnesses
kx and ky comparable to the corresponding experimental er-
rors. The laser drift is negligible during each run and also
from one run to the next, as discussed in Appendix E 1. In
order to combine all interaction runs, we take Lref = 455 nm
as the reference separation. All measurements are performed
with the same laser power.

We subtract the optical potential from the total potential
and plot the resulting Casimir energy versus distance in Fig. 3.
We compare the experimental data (points) with the two
different screening models for the Casimir interaction: with
(black solid line) and without (red solid line) the unscreened
contribution from TM modes in the limit of zero frequency.
No fitting procedure is implemented here, as the theoretical
Casimir energy is obtained exclusively from the known di-
electric functions of silica and water [29]. Because of the near
index-matching between silica and water at nonzero Matsub-
ara frequencies, the standard procedure [58] of disregarding

FIG. 3. Casimir energy in units of kBT versus distance for the
sample with a high salt concentration: experiment (points with error
bars representing the standard error of the mean) and theory either
with (black) or without (red) the unscreened contribution from TM
modes in the limit of zero frequency. The salt concentration of
n∞ = 0.22 M, corresponding to a screening length λD = 0.64 nm,
is such that the double-layer interaction is completely suppressed in
the distance range probed experimentally.

TM scattering channels in the zero-frequency limit leads to a
negligibly small interaction energy, which cannot explain our
data as indicated in Fig. 3, even if one takes the distance offset
as a fitting parameter. On the other hand, a blind comparison
with the full scattering theory shows a good agreement with
the experimental data.

In addition to the interaction energy, we also probe the
interaction force Fint = kx (Lint

eq − Lopt
eq ), with negative sign de-

noting attraction, by measuring the equilibrium distance Lint
eq .

The equilibrium distance does not necessarily coincide with
the average distance L̄ because the probability distribution
p(L) has a negative skewness that results from the nonlinear
Casimir attraction. More specifically, using a quadratic poly-
nomial to fit the potential U (L) overestimates the magnitude
of the force as L̄ < Lint

eq in the case of negative skew. Thus
we determine Lint

eq by fitting the potential with a cubic poly-
nomial when considering experimental runs corresponding to
asymmetric probability distributions. On the other hand, using
the cubic polynomial for the runs with the largest values of D
leads to overfitting. Indeed, the potential is expected to be ap-
proximately quadratic as the interaction is negligible when the
adhered microsphere is placed far from the laser beam. We use
the absolute value of the skewness |μ3| ≡ |[(L(i) − L̄)/σx]3|
(σx = standard deviation) of the probability distribution for
each experimental run (corresponding to a fixed distance D)
to define which polynomial degree is taken in the fitting pro-
cedure: quadratic for |μ3| � 0.05, and cubic otherwise. All
measured values of μ3 are compatible with theoretical predic-
tions for the second derivative of the Casimir force provided
that the TM zero-frequency contribution is included.

In Fig. 4, we plot the interaction force as a function of the
separation distance L = Lint

eq in equilibrium. In contrast with
the potential energy plots of Figs. 2 and 3, here each data
point is the result of a fit of the entire potential obtained from
a given run corresponding to a fixed value of D. The shaded
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FIG. 4. Casimir force versus distance: experiment (points with
error bars) and theory either with (black) or without (red) the un-
screened contribution from TM modes in the limit of zero frequency.
The dashed curve corresponds to the proximity force approximation
with TM zero-frequency modes included. The light blue band in-
dicates the experimental sensitivity for force measurements in our
setup.

area indicates the sensitivity 2 fN of our force measurement,
which is determined by the error of the equilibrium position
as discussed in Appendix E 1. As in the case of the Casimir
potential shown in Fig. 3, we find agreement only with the
theoretical prediction including the contribution of TM chan-
nels in the zero-frequency limit (solid black line). The contri-
bution of nonzero Matsubara frequencies (red) is smaller by
about one order of magnitude and cannot describe our data.
Previous experiments under similar conditions [37,39] also
found a signal larger than predicted by the standard theoretical
model that excludes TM modes in the zero-frequency limit.

We also plot the theoretical results (dashed) obtained by
considering the spherical geometry within PFA [75], with the
TM zero-frequency contribution included. The PFA provides
a direct connection between the spherical geometry and the
parallel-planes one considered in Ref. [21] and is asymptoti-
cally valid for large aspect ratios Reff/L � 1 [96]. Although
PFA overestimates the exact Mie scattering results for the
force by ∼50% for the parameters corresponding to Fig. 4,
our data do not allow for a discrimination between the two
theoretical models that include the TM channels in the zero-
frequency limit.

IV. CONCLUSION

We developed a protocol for using optical tweezers to
measure the surface interaction between silica microspheres
separated by distances above 0.2 μm in aqueous solution.
For the sample with the highest salt concentration, the mea-
sured potential energy corresponds to an attractive Casimir
force in the femtonewton range. We find good agreement (no
fitting) between our experimental data and the scattering the-
ory which contains the unscreened contribution of transverse
magnetic modes in the zero-frequency limit. Such contribu-
tion dominates the total Casimir signal by roughly one order
of magnitude and is not included in the standard description
of the van der Waals interaction across ionic solutions.

When measuring the surface interaction at lower salt con-
centrations, the theoretical description of the Casimir effect
has an impact on the characterization of the repulsive double-
layer interaction, particularly on the fitted value for the surface
charge density.

The higher salt concentration employed in the Casimir
experiment is comparable to typical values found in living
cells [97]. Thus the indication that the Casimir interaction is
stronger and of a longer range under such conditions might
have important implications in the fields of cell and molecular
biology.
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APPENDIX A: EXPERIMENTAL SETUP

A schematic of our experiment is shown in Fig. 1(b) of
the main text. A 1064 nm laser beam (YLR-5-1064LP, IPG
Photonics) exits an optical fiber and is divided using a half
wave plate and a polarized beam splitter. While the transmit-
ted laser light is blocked, the reflected one is directed towards
alignment mirrors, an attenuation neutral density filter, and
a quarter-wave plate, fitted to change the laser beam well-
defined linear polarization into circular polarization. In fact,
this procedure is important in order to produce equal optical
trap stiffnesses along the x and y axes in the plane orthogonal
to the beam propagation axis z. The laser beam is then di-
vided again by a balanced nonpolarized beam splitter, which
halves the light into a power meter (1936C and 918D-UV-
OD3R, Newport) and towards the microscope (Eclipse Ti-S,
Nikon). Under the microscope, the laser beam hits a dichroic
mirror (ZT532rdc-NIR-R725-1100-UF2, Chroma) with high
reflectance for 1064 nm and high transmittance for visible
light.

A 60× water-immersion objective (CFI60 Plan Apochro-
mat VC, Nikon) with a numerical aperture of NA = 1.2
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focuses the laser light on the sample. The objective corrects
the spherical aberration introduced by the index mismatch at
the glass-water interface, then allowing reliable optical trap-
ping and imaging at heights of dozens of micrometers above
the coverslip. In comparison with oil-immersion objectives,
water-immersion also requires shorter stabilization times, as
water is less viscous than common immersion oils, conse-
quently decreasing systematic errors associated with image
drifts.

For brightfield illumination, we used a 470-nm wavelength
light produced by a high-power mounted LED (M470L3,
Thorlabs), chosen to also avoid heating effects in the sample.
After passing through a NA = 0.85 condenser lens, the light
traverses the sample and is gathered by the objective lens.
Transmitted afterwards by the dichroic mirror, the light is
then recollected by the tube lens and directed into a CMOS
(Orca-flash 2.8, C11440-10C, Hamamatsu) camera for mea-
surements and visualization, and into a CCD camera for
active feedback stabilization. The displacements in the sam-
ple are controlled by a digital piezoelectric controller (E710,
Physik Instrumente) connected to the microscope stage, in
which the sample chamber is attached. All the optical ele-
ments are mounted on an optical breadboard (M-SG-30x60-4,
Newport), placed on a conventional optical table (RS-2000
Newport).

APPENDIX B: SAMPLE PREPARATION

Our sample is composed of a dispersion of two sets
of uncoated silica microspheres with nominal manufactured
radii of R̄1 = 2.5 μm (Cat#24332, Polysciences, Inc.) and
R̄2 = 10 μm (DNG-B020, DiagNanoTM) diluted in an ultra-
pure water solution (Millipore). A 1:1 salt (Sodium Iodate,
Scientific NaI-Exodus) is added in the case of high salt
concentration measurements. The prepared solution is then
introduced inside the sample chamber composed of a rubber
O-ring between two cleaned coverslips (24 mm × 60 mm and
24 mm × 32 mm, Knittel Glass) and properly sealed with sil-
icone grease. For the calibration runs, the sample temperature
is monitored by a thermocouple (5TC-TT-T-30-36, Omega)
immersed in solution and connected to a thermometer (DP24-
T, Omega). Over the range of laser powers (∼mW) used in
the interaction and calibration experiments, the temperature is
given by T = (296 ± 1) K and no changes are observed.

APPENDIX C: CHARACTERIZATION OF
MICROSPHERES

1. Scanning electron microscopy (SEM)

Knowing the radii of the microspheres is crucial to de-
termine the distance offset from the relation L = X 2 − X1 −
(R1 + R2) [see Figs. 1(a) and 1(c)]. To perform this task, high
resolution scanning electron microscopy (SEM) is applied on
test samples containing separately one of the two sets of silica
microspheres. A glass coverslip (Paul Marienfeld GmbH &
Co. KG, Germany) previously coated with 0.01% poly-L-
lysine (Sigma-Aldrich, Darmstadt, Germany) and containing
the targeted microspheres is firstly fixed upon a metallic SEM
stub using a conductive carbon tape (Pelco TabsTM, Stansted,
Essex, UK). The glass coverslip is then dried with a weak jet

FIG. 5. Typical SEM images for characterization of the sil-
ica microspheres employed in our measurements. (a), (b) and (c),
(d) correspond to batches with nominal radii R̄1 = 2.5 μm and R̄2 =
10 μm, respectively. Scale bars are shown in each panel.

of nitrogen gas to avoid contamination, and afterwards coated
with a 4–5 nm thick platinum layer using a sputtering device
(Leica EM SCD 500, Wetzlar, Germany). Finally, the sample
is characterized using a scanning electron microscope (Quanta
450TM FEG, FEI Company, USA) operating at 5 kV.

Typical SEM images are shown in Fig. 5. Panels (a) and
(b) correspond to the set of small silica microspheres, while
(c) and (d) show images from the set of large ones. Figure 5(a)
shows that the first group exhibits a small size dispersion, with
radius of R1 = (2.35 ± 0.02) μm. The standard deviation is
calculated from the analysis of 10 microspheres. In contrast
to the first group, the batch of large microspheres displays a
much wider size dispersion, as illustrated by Fig. 5(c). Thus
for this group we cannot infer the radii of the specific mi-
crospheres employed in the interaction measurements directly
from the SEM ensemble characterization. We follow instead
the correlative microscopy procedure [98,99] outlined in the
next section.

Although SEM is not the optimal technique for surface
roughness characterization, it is worthwhile to estimate the
two length scales controlling the magnitude of the roughness
correction to the Casimir interaction [51,100–105]: the trans-
verse correlation length �C and the rms roughness amplitude
a. The effect of roughness of silica particles is extremely im-
portant when probing shorter distances, L � 10 nm [55,106].
From images like the one shown in Fig. 5(b), we estimate
�C < 50 nm and a � 10 nm for the first set of microspheres,
with the highest spikes in the range close to ∼100 nm. Since
the roughness correction to the Casimir interaction typically
scales as (a/L)2 [107–109], we expect corrections ∼1% or
smaller over the distance range probed in our experiment,
also because the condition �C < L reduces the corrections
even further [110–113]. Although the presence of long spikes
might produce additional roughness corrections beyond the
perturbation regime [114,115], they have been neglected when
modeling the Casimir interaction given that our precision is at
the level of ∼10%. In addition, the good agreement with our
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FIG. 6. Optical images of the (a) microspheres employed in the interaction measurement and (b) taken as a reference for the method of
correlative microscopy. The SEM image of the same reference microsphere (b) is shown in (c). Each image is analyzed in terms of the grey
level contrast along the diameters indicated by yellow lines. [(d)–(f)] Contrast vs position for each corresponding image shown on the top line.
The edge regions (light red) are zoomed in the insets. The edge positions DL are then determined by appropriate fits (see text for details).

data indicates that roughness does not play a major role in our
experiment.

Overall, the surfaces of the microspheres from the second
set look more smooth in the SEM images. However, they
present defects in the form of protrusions and depressions,
as shown in Fig. 5(c). As they are big enough to be visible
in the optical microscope, they can be avoided during the
experimental runs.

2. Correlative microscopy

Since it is not possible to carry out SEM on the specific
large microsphere used in the experiment, a reliable mea-
surement of its radius is achieved by correlative microscopy
[98,99]. In a nutshell, this technique consists of inferring
the radius of that specific microsphere by correlating optical
and SEM images of microspheres from a different sample.
Figure 6(a) shows the optical image of the two microspheres
employed in the measurement with low salt concentration.
Similar images are obtained for the pair of microspheres used
in the experiment with added salt. Since the size dispersion of
the set of small microspheres is negligible, we focus on the
image of the large one. We prepare a sample from the set of
large microspheres and tag one specific microsphere whose
optical image, shown in Fig. 6(b), is similar to the image
of the probed one. In addition, we displace the microscope
stage along the z axis until its optical image resembles more
closely the image 6(a) corresponding to the measurement run.
The same microsphere shown in Fig. 6(b) is then analyzed
with SEM and the resulting image is shown in Fig. 6(c). In
Figs. 6(d)–6(f), we plot the contrast C = I/I0 − 1 measured
along the straight (yellow) lines along the microsphere diam-
eter shown in panels (a)–(c). They are calculated for each
corresponding image shown on top. Here, I and I0 are the

grey levels at a given image point and at the background,
respectively.

Figure 6(d) shows that the contrast vanishes across the
central region and then displays a sharp variation at the mi-
crosphere edge, which is blurred by diffraction. We define the
optical edge as the point where the contrast vanishes inside
the edge region highlighted in light red. The inset is a zoom
illustrating the determination of the optical edge coordinate
DL on the lefthand side by a linear fit. Such point is not an
indication of the actual physical edge [85]. Nevertheless, it is
a useful reference that can be measured with an excellent pre-
cision from the variation of the contrast. The same procedure
is implemented in Fig. 6(e) for the optical image of the tagged
microsphere to be compared with the SEM image. In both
cases, the optical radius is defined as Ropt = 1

2 (DR − DL),
where DR is the coordinate of the optical edge on the opposite
side of the image.

The key requirement in correlative microscopy is to pro-
duce a SEM image of the same microsphere that was optically
imaged in Fig. 6(b). A rectangular mark made in the central
region of the coverslip with a diamond-tipped pen is used
as a reference to identify each single microsphere, and in
particular the one selected for the optical image Fig. 6(b).
After capturing the optical image, the preparation for SEM
is implemented as described in Appendix C 1.

The next step is to analyze the SEM image of the tagged
microsphere. As shown in Fig. 6(c), the edge of each mi-
crosphere is sharp and not blurred by diffraction. Thus it
is possible to directly access the physical radius R2 from
the SEM image. We fit a hyperbolic tangent function to the
contrast function plotted in Fig. 6(f). The inset is a zoom of
the edge region revealing the edge position DL as derived
from SEM. The physical radius R2 is then determined from
DL and the position of the opposite edge located across the
microsphere diameter.
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The final step consists of correlating the optical and SEM
images of the same microsphere in order to derive the scale
factor rc = Ropt/R2. The entire procedure is repeated for three
distinct tagged microspheres. After averaging the results, we
find rc = 1.041 ± 0.005, where the uncertainty corresponds
to the standard error of the mean. Knowing rc, the physical
radius R2 of a particular microsphere in interaction can be
directly inferred by measuring the corresponding optical ra-
dius Ropt. The results for the microspheres employed in the
measurement runs are indicated in Sec. III.

3. Distance upon contact

When performing the experiment with high salt concentra-
tion, in most experimental runs we observed that the probed
particle eventually jumps into contact with the adhered mi-
crosphere. By measuring the center-to-center distance (X̄2 −
X̄1)cont upon contact, one can determine the distance upon
contact L0 = (X̄2 − X̄1)cont − (R1 + R2) thus providing infor-
mation on the scale of the highest peaks of the rough silica
surfaces [116].

Averaging over three contact events, we find L0 = (0.2 ±
0.1) μm. Such value is compatible with the estimation for
the highest asperities based on the SEM images discussed in
Appendix C 1. The total experimental error is determined by
the error of R1 + R2 only, as the uncertainty of the center-to-
center distance upon contact is much smaller.

The high peaks associated to the distance upon contact
are usually sparse and thus provide a small correction to
the Casimir interaction in the distance range probed in our
experiments [114]. Given our limited experimental precision,
we have neglected the contribution of such rare peaks.

APPENDIX D: POSITION DETECTION

We measure the position of the microsphere center by
employing the edge detection algorithm of Refs. [86,87].
This method is particularly suitable when considering two
microspheres at close distance, since it allows to exclude the
region where the images of the microspheres overlap, pro-
ducing a nontrivial diffraction pattern. Hence we determine
the microsphere edge only within the region indicated by the
green contour shown in Fig. 1(c). The yellow dots indicate the
positions used to fit a circumference, whose center is identi-
fied as the position of the trapped microsphere. An analogous
procedure is implemented for the microsphere adhered to the
coverslip.

To test the precision of the position detection method, a
silica microsphere of nominal radius R̄ = 10 μm is attached
to the coverslip and then displaced by nominal steps of 5 nm
every 2 s by employing a piezoelectric nanopositioning sys-
tem to drive the microscope stage along the x direction (see
Appendix A for details). In Fig. 7, we plot the variation of the
microsphere position with time. The averaged standard devi-
ation for the steps shown in the figure is (0.80 ± 0.04) nm,
proving our ability to detect nanometric displacements on the
xy plane. The average separation between consecutive steps
is (5.4 ± 0.2) nm. We also validate our position detection
method by comparing results for the optical trap stiffness
from three different methods: position fluctuations, Stokes

FIG. 7. Microsphere position versus time. A silica microsphere
is adhered to the cover slip, which is driven laterally by 5 nm every
2 s with the help of a piezoelectric nanopositioning system.

calibration and modeling based on the Mie-Debye theory of
optical tweezers [117] as discussed in Appendix E 3.

APPENDIX E: ENVIRONMENTAL NOISE

Both the stiffness calibration and the interaction mea-
surements critically depend on the assumption of thermal
equilibrium [33,90,118]. Environmental noise such as air-
currents, temperature gradients, mechanical vibrations, drifts
on the laser and on the microscope stage can easily drive
the system far out of thermal equilibrium, creating awkward
systematic measurement artifacts. For instance, extra fluctu-
ations on the trapped microsphere are responsible for trap
stiffness underestimation; directional drifts can change the
relative position of both optically trapped and attached mi-
crospheres, drastically changing the interaction among them.
As a result, carrying out careful experimental preparation,
environmental noise characterization and mitigation actions
are crucial to guarantee a thermally limited system leading to
accurate stiffness calibration and interaction measurements.

Let us address each of the environmental noise sources and
the actions which have been taken to mitigate them. Air cur-
rents and temperature gradients are reduced by symmetrically
positioning the air conditioners in the laboratory room, and
more importantly covering all the laser optical path, all the
optical devices and the optical microscope with a home-made
enclosure made of cardboard with a few layers of bubblewrap
foil. Mechanical noise is reduced by mounting all of the
optical elements in small optical posts attached on an optical
breadboard placed on a conventional optical table as discussed
in Appendix A.

1. Laser drift

Laser drifting is cautiously characterized during all interac-
tion experiments. Figure 8(a) shows the long time dependence
(temporal scale of ∼hours) of the position deviation �x from
the average initial position of the optically trapped micro-
sphere, when no salt was added to the solution (see Sec. III A).
Each dot represents the mean position of the optically trapped
microsphere over an experimental run of T = 500 s, with
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FIG. 8. (a) Center of mass position deviation �x of the opti-
cally trapped microsphere as a function of time for the experimental
runs with (a) low and (b) high salt concentrations. Blue data points
correspond to the situation with no interaction (large distance D),
while orange ones represent the position deviation in the presence of
colloidal interactions. The solid line in (a) is a linear fit of the blue
points indicating a laser drift of ∼0.1 nm/min.

the exposure time W = 2 ms. The blue dots correspond to
the situation with no interaction as the average separation
between the microspheres is large: L � 500 nm (see Fig. 1
of the main text). On the other hand, the orange plateaux
correspond to distances L < 400 nm such that the interaction
is non-negligible. The figure shows that as the microspheres
are moved closer and further away, the optically trapped mi-
crosphere has not returned back to its original position, being
slowly carried by a laser drift. Repeating this back and forth
protocol and fitting a straight line to the set of isolation points,
we find a laser drift of ∼0.1 nm/min, which was used as a
correction for the unperturbed equilibrium position Lopt

eq (see
section III A) in the experiment with low salt concentration.

In Fig. 8(b), �x as a function of time is shown for the
experiment with high salt concentration (see Sec. III B). In the
case of interaction (orange points), the position deviations are
along the positive x axis, indicating attraction as expected [see
Fig. 1(a)]. In contrast to the low-concentration experiment
shown in Fig. 8(a), here no substantial laser drift takes place,
as indicated by the blue dots corresponding to large distances
L � 500 nm. We hypothesize that this behavior is due to
different environmental conditions between the two experi-
mental rounds, since they were conducted on distinct days.
As indicated by Fig. 8(b), the blue dots are scattered around
zero with a standard deviation σdrift ∼ 2 nm, which allows
us to estimate the experimental error in our force interaction

measurements. For a trap stiffness k ∼ 1 fN/nm, we then have
a force error δF ≈ kσdrift ∼ 2 fN, which is shown in Fig. 4 as
a shaded region and also represents the minimum detectable
interaction force of our experimental setup.

2. Microscope stage drift

Microscope stage drifts were mitigated by active control
stabilization using a feedback loop [119] simultaneously in
the three x, y, and z axis. As shown in Fig. 1(b) and described
in Sec. A, the attached microsphere’s position is continuously
monitored by a CCD camera taking position measurements
at a sampling rate of 32 fps and averaging over 20 frames,
thus giving an effective sampling rate of rfeed = 1.6 fps. Each
measurement is then returned back as a feedback signal to the
digital piezoelectric controller, which performs the position
corrections, thus enabling to keep the position variations along
the three axes below 10 nm for each experimental run of 500 s.

3. Trap stiffness calibration

Stiffness calibration is carried out by applying the two
well-known methods of potential energy fitting [91,118,120]
and drag force counterbalance [118,121]. In the former proto-
col, which is entirely based on thermal fluctuations analysis
[122–124], the energy potential landscape of an optically
trapped microsphere is constructed by monitoring the dif-
fusive Brownian motion of the microsphere along the y
direction, which is orthogonal to the interaction force as in-
dicated by Fig. 1(c). The corresponding trap stiffness is then
obtained by fitting a quadratic function to the potential en-
ergy. In the latter protocol, the optically trapped microsphere
experiences a viscous drag force by creating a fluid flowing
in its surroundings. By counterbalancing that hydrodynamical
force, which is described by the Stokes-Faxén law [33,125–
127], to the optical tweezers’ restoring force, the desired stiff-
ness along the direction of the fluid flow is obtained.

In Fig. 9, we plot the trap stiffness as a function of the
laser power P at the objective entrance port. We show the
results from the two calibration protocols in the same plot.
Each protocol is employed for an individual silica micro-
sphere (nominal radius R̄1 = 2.5 μm) from the same batch
(see Appendix B for details). The size dispersion within a
given batch is negligible, so we expect the results for the two
measured microspheres to agree within error bars. The black
dots are the trap stiffness ky along the y axis obtained from
the analysis of the Brownian motion of the optically trapped
microsphere in actual interaction measurement runs. This mo-
tion is monitored with an exposure time of W = 2 ms and with
a sampling rate of fs = 10 fps. Since the correlation time of
Brownian fluctuations in the optical trap is τC ∼ 100 ms, those
values for W and fs respectively avoid motion blur corrections
[90,128] and correlated data [129]. Fitting a linear function
crossing the origin to the set of calibration points gives the
angular coefficient ky/P = (0.129 ± 0.001) fN nm−1 mW−1,
where the uncertainty is obtained from the weighted fitting
procedure.

The blue dots in Fig. 9 are the results for the trap stiffness
kx along the x axis obtained by the drag force calibration
method. They are acquired with W = 2.8 ms and fs = 357 fps,
which guarantee proper relaxation and counterbalance
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FIG. 9. Optical tweezers’ stiffnesses kx (blue dots) and ky (black
dots) versus laser power P at the objective entrance port. kx and ky

are measured by the drag force and fluctuation methods, respectively.
While kx is measured for an isolated microsphere, ky is obtained from
the fluctuations in actual interaction measurement runs. We find the
same angular coefficient when fitting the two sets of data points sepa-
rately, which also agrees with an independent theoretical calculation.
The resulting best fit (dashed line) indicates the equivalence between
the two calibration protocols, as well as the isotropy of the optical
force field on the xy plane as expected for circular polarization.
Inset: Allan deviation of an isolated optically trapped microsphere’s
x position as function of time. The dashed line represents the thermal
limit deviation showing that the system is thermally limited along the
whole time interval until τ ∼ 1000 s.

monitoring. The corresponding weighted linear fit to this cal-
ibration set yields the angular coefficient kx/P = (0.129 ±
0.003) fN nm−1 mW−1, which is in excellent agreement with
the value obtained for ky/P from Brownian fluctuations. For
convenience, we have employed circularly polarized trapping
beams in all experiments reported in this paper. Thus we
expect the optical trap stiffness to be the same along all direc-
tions on the xy plane, also because the effect of residual astig-
matism on the optical force field is negligible in this size range
[130,131]. Indeed, isotropy of the optical force field on the xy
plane allows us to use the Brownian fluctuations along the y
direction, which is orthogonal to the interaction force between
the two microspheres, as a check of the optical force during
the interaction runs. The dashed straight line shown in Fig. 9,
corresponding to the best fit linear function, provides further
visual indication of the compatibility between the two calibra-
tions protocols performed along the orthogonal x and y axis.

As a third method, we have employed the Mie-Debye
theory of optical tweezers [117] to calculate the optical trap
stiffness. Such absolute calibration method [130,131] also re-
lies on an independent characterization of all input parameters
required by the theoretical model: the objective transmittance,
beam waist at the objective entrance port, microsphere radius,
and refractive indexes of the microsphere and host medium. In
addition, the known values for the laser wavelength, objective
numerical aperture and focal length ( f = 4.44 mm) are also
required (see Appendix A).

To determine the laser power at the sample region, the ob-
jective transmittance is characterized as in Ref. [132]: a laser
beam, with the same waist employed in the trapping exper-
iment, is transmitted through the water-immersion objective

and then reflected back into the objective by a mirror attached
to the microscope stage. We found a single-pass transmittance
of 0.55 ± 0.06. The method of Ref. [132] also allows for the
characterization of the beam waist w at the objective entrance
port. We found w = 2.34 mm.

We measured the radius of the trapped silica microspheres
from SEM images and found R1 = (2.35 ± 0.02) μm with
negligible size dispersion within our batch as discussed in
Appendix C 1. Two independent methods were recently em-
ployed to measure the refractive index of silica microspheres
from the same batch at λ0 = 470 nm [85]. The result is
smaller than the bulk fused silica index, which we attribute to
the porosity of the beads (see also [133] for related findings
from a mass measurement). In order to infer the refractive
index at the trapping laser wavelength λ0 = 1064 nm, we
employ the (Mie-based) extended Maxwell-Garnett (EMG)
effective medium theory [134,135] assuming that our silica
beads are filled with empty pores. From the refractive index
measured at 470 nm, we obtain a volume filling fraction
0.078, which we then employ to calculate nbead = 1.4146 ±
0.0019 from the bulk fused silica refractive index nsilica =
1.4496 at λ0 = 1064 nm [136] by employing again the EMG
theory. At this wavelength of interest, the refractive index
of distilled water at 24 ◦C is nwater = 1.3242 [137]. We take
this value as the refractive index of the host medium, since
its modification for a salt concentration of ∼0.2 mM (see
Sec. III A) is negligible (�n ∼ 10−5 according to Ref. [138]).

We assume that optical effects of refraction at the pla-
nar interface between the glass slide and the sample region
are canceled when using the water-immersion objective (see
Appendix A). Most importantly, the spherical aberration intro-
duced by the interface, which might lead to a strong reduction
of the trap stiffness [139], is corrected by the water-immersion
objective. We disregard modifications due to a possible small
astigmatism of the trapping beam, which are typically unim-
portant for radii R > λ0 [130,131]. Finally, we also neglect the
optical reverberation between the microsphere and the glass
slide [92] given the large distance (≈10 μm) between the
trapped particle and the slide. We then find kx/P = ky/P =
(0.124 ± 0.018) fN nm−1 mW−1, in very good agreement
with the measurements discussed above. Here, approximately
80% of the theoretical error originates from the objective
transmittance measurement, with the refractive index of silica
and radius uncertainties accounting for the rest.

Overall, the agreement between the three different cali-
bration methods provides further validation of our detection
method and indicates that nonthermal fluctuations in our sys-
tem are negligible given the precision of our measurements.
The latter is an essential requirement for probing the interac-
tion potential from the microsphere position fluctuations. We
provide additional evidence that our system is thermally lim-
ited by analyzing the Allan deviation in the next sub-section.

4. Allan deviation stability analysis

A successful Brownian stiffness calibration already indi-
cates that the motion of the optically trapped microsphere is
thermally limited. However, it is also important to determine
the optimal time over which it remains in that state, i.e., in the
absence of any extra nonthermal fluctuations and drifts. One
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way to quantify this stabilization time is performing an Allan-
deviation stability analysis [46,140–143]. The Allan deviation
of the position of the optically trapped microsphere along the
x axis is defined as

σ Allan
x (τ ) =

{
1

A − 1

A−1∑
j=1

1

2
[〈x j+1〉(τ ) − 〈x j〉(τ )]2

}1/2

, (E1)

where A = T /τ is the number of independent length-τ blocks
in a run of total duration T . The jth bin average 〈x j〉(τ ) is
taken over the interval [( j − 1)τ, jτ ] with fsτ points, where fs

is the sampling rate. The Allan deviation measures the average
position variation among consecutive temporal intervals of
length τ . In the absence of nonthermal noise, the longer the
interval τ , the closer the averages in consecutive intervals
will be, thus gradually decreasing the Allan deviation with
increasing τ .

In the inset of Fig. 9, we plot the Allan deviation σ Allan
x (τ )

versus time τ for an optically trapped microsphere under
the environmental conditions corresponding to the Casimir
measurement with high salt concentration [see Fig. 8(b)].
The surface-to-surface distance is L ∼ 800 nm, the total time
duration is T = 3200 s and the sampling rate is fs = 1 Hz.
The dashed line shows the thermal limit deviation σ Allan

Th (τ ) =√
2γ kBT/k2

x τ [141], where all parameters are determined in-
dependently of the Allan deviation analysis, with no fitting
procedure. We take kx = 1 fN/nm, obtained from the cali-
bration procedure described in the previous sub-section, the
Stokes friction coefficient γ = 5 × 10−7 kg/s corrected for
the proximity to the coverslip [127], and the measured tem-
perature T = (296 ± 1) K. The blind comparison between the
experimental results and σ Allan

Th (τ ) shows that our system is
stable and thermally limited out to ≈1000 s, approximately
twice the time interval of all experimental calibration and in-
teraction runs. For times τ � 1000 s, lack of statistics hinders
any analysis.
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