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Spin-Polarization and Resonant States in Electronic
Conduction through a Correlated Magnetic Layer

Andreas Weh,* Wilhelm H. Appelt, Andreas Ostlin, Liviu Chioncel, and Ulrich Eckern

The transmission through a magnetic layer of correlated electrons sandwiched
between noninteracting normal-metal leads is studied within model calculations.
The linear regime in the framework of the Meir-Wingreen formalism is con-
sidered, according to which the transmission can be interpreted as the overlap of
the spectral function of the surface layer of the leads with that of the central
region. By analyzing these spectral functions, it is shown that a change in the
coupling parameter between the leads and the central region significantly and
nontrivially affects the conductance. The role of band structure effects for the
transmission is clarified. For a strong coupling between the leads and the central
layer, high-intensity localized states are formed outside the overlapping bands,
while for weaker coupling this high-intensity spectral weight is formed within the

Fe electrodes.!! The quantum transport
properties of such structures can be
described using model Hamiltonians,”
or density functional theory (DFT).!

By both these approaches, the spin
dependence of tunneling can be explained
by the nature of the Bloch states in the bulk
ferromagnetic leads that couple with eva-
nescent states of the complex band struc-
ture of the insulator.”® Depending on
the strength of this coupling, the major-
ity/minority conductance is expected to
be dominant, thus determining the
positive/negative spin polarization of the

leads’ continuum band around the Fermi energy. A local Coulomb interaction in
the central region modifies the high-intensity states, and therefore the trans-

mission. For the present setup, the major effect of the local interaction consists in
shifts of the band structure because any sharp features are weakened due to the

macroscopic extension of the layers.

1. Introduction

The transport properties of inhomogeneous electronic systems,
including charge, spin, and heat flow, have been intensely stud-
ied for several years,'™ in particular, in view of the enormous
application potential of such devices. As a specific example, we
wish to mention experimental investigations of the tunneling
magnetoresistance effect in Fe/MgO/Fe magnetic tunnel junc-
tions, which were created by depositing MgO epitaxially between
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conductance. The interface bonding
between leads and the insulating region
is considered to be responsible for the
formation of interface states,”) which
significantly affect the conduction spin
polarization; their existence was experi-
mentally confirmed® through spin-
dependent tunneling measurements.

Interfaces between ferromagnetic and
nonmagnetic metals have also been of recent interest because
they are important for current-perpendicular-to-plane giant mag-
netoresistance (CPP-GMR) experiments. Initially, the magnetic
and the nonmagnetic spacer layers were mainly composed of
transition metals such as Co/Ag, as in the pioneering work of
Pratt et al;'! however, recently more complex Heusler
alloys!'>"*! have also been investigated due to their high spin
polarization.

In the theory of the CPP-GMR," spin-asymmetric scattering
plays an important role: the larger the asymmetry, the larger is
the possible spin polarization of the current. To achieve a high
spin asymmetry at the interface, it was proposed™ that materials
should be used where the electronic band structure of the major-
ity spin of the ferromagnetic layer matches as closely as possible
the band structure of the nonmagnetic layer. At the same time,
the matching between band structures should be poor for the
minority spin channel.

Current theories of spin-dependent tunneling hardly empha-
size electronic correlations, neither in the leads nor in the scat-
tering region. In this context, we have studied within the
framework of DFT the ballistic conduction through transition
metal heterostructures,'® and more recently Heusler-based sys-
tems such as Au/NiMnSb/Au.l'"”) For this system, we modeled
electronic correlations for the Mn atoms via the Hubbard model,
which was solved within dynamical mean-field theory
(DMFT)."*2% We obtained a significant reduction of the spin
polarization in the density of states which is not apparent in
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the spin polarization of the conduction electron transmission,
and concluded that the interface states hybridized with the
many-body induced states are localized.

In the current work, we revisit our recent studies using a sim-
plified single-band model Hamiltonian on the one hand, but a
more advanced many-body solver to treat electronic correlations
on the other hand. Within this model, we discuss the nature of
the electronic states in the interacting region which determine
the transmission. We show that a modification of the coupling
between leads and the central region, as well as electronic corre-
lations, may strongly affect the spectral functions and therefore
the conductance. Our focus is on a ferromagnetic metal as the
central layer, coupled to noninteracting normal-metal leads.
We show, in particular, that electronic interactions may
enhance the spin polarization of the spectral function in the
interacting region, as well as of the transmission through the
entire system.

The article is organized as follows. In Section 2, we present the
tight-binding model to be used in this work. Section 3 is devoted
to our results, and Section 4 to the summary and conclusions.

2. Generic Transport Model

The electronic transport through a device can be conveniently
addressed by applying scattering theory, which was pioneered
by Landauer™?? and Biittiker,****! and worked out in detail
by Meir and Wingreen.” In this approach (see, e.g., Rammer
and Smith,”® one typically considers a mesoscopic system
(say, a molecule or a quantum dot) coupled to ideal leads.
These leads act as charge reservoirs which are so large that they
can be described by equilibrium distributions. Therefore, the cor-
responding left (L) and right (R) leads are characterized by the
equilibrium Fermi distribution functions f| (@). For the deri-
vation, one assumes that in the infinite past the various subsys-
tems (microscopic contact, or central region; and the leads) are
separated and in equilibrium, albeit at their respective chemical
potentials and temperatures. The couplings are then turned on
adiabatically, assuming time-reversal invariance.””*® In the fol-
lowing, we apply the Meir-Wingreen approach®! to our
heterostructure setup, in which electronic correlations are con-
sidered in the scattering region only, i.e., in the central layer.
This layer and all others are of macroscopic extent in the
x-y-planes; we consider transport along the z-axis, i.e., perpendic-
ular to the layers.

Recently, we have described®”! how to take into account
local interactions when computing the transmission of correlated
heterostructures. In comparison with the previous DFT+DMFT
approach, in the present tight-binding Hamiltonian the compu-
tation of the transmission becomes even more transparent. In
particular, using the Meir-Wingreen formalism, we can replace
the scattering region Green’s function directly by its interacting
counterpart, in which electronic correlations are taken into
account by the local self-energy ¥(w). This latter quantity is com-
puted using the recently developed fork tensor-product states
(FTPS) solver®®; we used this method recently to describe the
spectral properties of heterostructures containing half-metals.*”

As is well known, the Meir-Wingreen approach!*®! can be con-
siderably simplified for noninteracting systems, or when the
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coupling matrices are proportional to each other. We emphasize
that the latter is fulfilled for our setup, as long as the central
region consists of just one interacting layer. On the contrary,
for two or more interacting layers, the lesser Green’s function
will be needed.

Figure 1 shows the geometry of the system: noninteracting
leads, left (L) and right (R), separated by the central region
(C). Both leads consist of a semiinfinite stack of square-lattice
planes. The hopping amplitude between the layers in the left
(right) lead is t; (tr), and the on-site energy is €, (ep,); the elec-
tron dispersion within the layers is of Bloch type because of 2D
translation invariance. The wave vector parallel to the layers,
kj = (ky, k), is a good quantum number, and the in-plane dis-
persion of the electrons is denoted as & . The complete
Hamiltonian thus can be written as

H =y + Hc + Hy 1

where F contains the coupling between leads and central
region. To be definite, the Hamiltonians for the semiinfinite left
and right leads read

Hy = Z (e15 + 1 ) Pro — Z (tLézT,lkH,;élkHa + tfé;ku,;él—lk”o)

1<0kjo 1<0kjo
2)
o R o A A
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Figure 1. Schematic graph of the model setup. The layers are labeled with
I, such that | < 0 corresponds to the left, and | > 0 to the right lead. The
central layer is | = 0. In the present setup, the z-direction, here labeled by |,
is the direction of transport. The transverse (w.r.t. the transport direction)
wave vector, k” = (kx,ky), is a good quantum number.
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where ¢ = j:% labels the spin. In the following, we consider the
leads to be identical, but keep the notation “L” which henceforth
refers to “lead.” For the central region, just one layer, we have

He = *Z(klo@ilkw%k‘a +he)+ ) (eor + e ok o
oo oo

+ UOZﬁOilﬁOiT - Z(tmégk”gélk”a + hc) (4)
i

kjo

The amplitudes describing the hybridization between the cen-
tral region and the leads, t_;, and ty;, are chosen to be real and
positive, and equal to each other. The hopping amplitudes in the
transport direction are also assumed to be real, t; = #], without
loss of generality. In addition, &y, = &, + ohy is the on-site
energy, ho the magnetic splitting, and U, the on-site Hubbard
interaction in the central layer. As the central region is just a sin-
gle layer, the effect of the leads is characterized by the scalar level-
width function

It (o, £y) = =2t *Im gf (0T — e, — ex,) (5)

where ot = w + 10", with the leads’ surface Green’s function

8~ gop (1— J1- (@)) ©)

Applying the Meir-Wingreen formalism'®! to the present,
highly symmetric heterostructure, we obtain a particularly sim-
ple expression for the charge current perpendicular to the
layers

=M Y [ dolfi@) - fuo)
X / derH(e”)F,L,(a),EH)ImGOO,,(aﬁ,eH) (7)

where Gy, is the Green’s function of the central region,
Goos (2, &) = ((éok”a\égk””»(z), and Nj the number of sites
within a layer. The layer density of states is given by

pile) = Ni“zé(.eu ~e) = = K(1— €/ D7) ®
(

where the last equality is valid for |g| < D. For the square lat-

tice,*!! it can be written in terms of the complete elliptic integral
of the first kind

K(m) = /0 2 Q1 — m sin? (5] 12 9)

From the aforementioned quantities, the normalized trans-
mission for the spin channel ¢ can be computed as follows

T,(w) = — / deypy (€))7 (@, &) TmGog, (" €/) (10)

Within DMFT, the local self-energy of the central region,
3,(2), is included in the central region Green’s function
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1
Z—= EH — & — Z,,—(Z) — 2‘t01|2gi(2 — €15 — &‘H)

Gooo(z»fu) =
(11)

The DMFT self-energy X, (z) is obtained by numerically solving a
self-consistently determined reference system, which is interact-
ing but local (see Section 3.2).

In the next section, we discuss the behavior of the spin depen-
dency of the spectral functions, and contrast it with the spin-
dependent transmissions, when varying the hopping to/from
the central region, as well as the strength of the local interaction
on the central layer.

3. Results

We consider the setup as shown in Figure 1. As discussed earlier,
our model consists of nonmagnetic (nonspin-polarized) metallic
leads in contact with a single layer of a ferromagnetic metal.
The Hamiltonian describing the leads (at half-filling) is specified
by the on-site energies, &1, = 0, and the electrons’ hopping matrix
elements #; in the direction of transport. The latter are fixed at
t; = 0.25D, where D denotes the parallel half-bandwidth. In addi-
tion, the square-lattice parallel hopping matrix elements, ¢, are
assumed to have the same value. From now on, D (= 4¢)) will
be our energy unit, i.e., formally D =1, and #; =t = 0.25.

According to Equation (10), the transmission is determined by
the product of the surface spectral functions of the uncoupled
leads and that of the central region. The surface Green’s function
is given earlier (Equation (6)). The corresponding spectral function
Al(w—g)) = f%Imgs(wJr —¢)) (12)
has a semicircular shape and vanishes at the band edges,
42|t | = £0.5. The lead spectral function A§ is independent of
the parameters of the central layer; we focus on the spectral func-
tion of the latter in the following.

First, we present our results for the noninteracting case, i.e.,
we discuss how the spectral function of the central region and the
transmission depend on the parameters on-site energy (&o,) and
coupling (t;) (cf. Figure 2—4). In the second part of this section,
we discuss the modifications induced by a local interaction (Up)
within the central layer: we vary t,; for fixed Uy (see Figure 5) as
well as U, for fixed ty, (see Figure 6).

3.1. Noninteracting Central Layer

In the noninteracting case, the Green’s function depends only on
the difference  between frequency and dispersion,
Gooo (@, £x) = Goos (@ — €, ). The corresponding spectral func-

tion 1is

1 1
Agpo(w —g)) = —=Im (13)

T 0 — e — g, — 2tul’gi (0T —¢))

In addition, the spin directions are decoupled. We define &, as the
(generally complex) root of the denominator of the r.h.s. of
Equation (13), i.e.
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50‘ — €06 — 2|t01|2gi(§ﬁ) =0 (14)
which leads to
(1 —2r)& — 2(1 — 1)eg,&,s + 856 +4r% )P =0 (15)

where r = |ty;/t,|* characterizes the hopping to the central
region relative to the hopping in the leads. First, we consider
energies outside the lead band, |w — ¢g)| > 2|t;| = 0.5. Then
the lead Green’s function g is real, implying that the spectral
function is a sum over delta functions

Agos(@ — ) 25 —e —&) (16)
The corresponding &, solutions are
goi_ — (1 —-r 80(7 r\/806 ]' — Zr)ltle (17)

1-2r

Note that this expression also contains spurious solutions belong-
ing to the unphysical branch of the square root in g (z). On the
o — g)| < 2Jt;| = 0.5, the denom-
inator has an imaginary part, yielding the spectral function

1 Hw—¢) (MZELE‘H)Z -1
71 =2r)(o—¢))? —2(1—1)(0 — ) )eq, + €}, + 47|t
(18)

Agos =

Therefore within the band we do not get any divergences. The
real part of the roots, Equation (17), indicates resonances of
increased amplitude in the spectrum.

For the noninteracting case, the two spin directions are inde-
pendent and can be discussed separately. The results are shown
in Figure 2 which shows the spectral function, Equation (13), as a
function of the energy and the coupling, ty;. Note that in this

o =025

0.5
0.
0.
0.
0.
0.0

to1
w >~

N

—

. . 1.0 —1.0 —0.5
(JJ—EH

w—EH
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representation the spectral function does not depend on the lat-
tice structure of the layers, as the horizontal axis refers to @ — .

The representative feature of the spectral function is a contin-
uum band in the energy range of [—-2t;, 4+ 2t;] = [-0.5, + 0.5],
which corresponds to the band of the leads. The left graph in the
figure (g9, = 0) includes the homogeneous “bulk” case, namely,
the setup in which ty; = t; (= 0.25), i.e., all hopping parameters
as well as the on-site energies in each layer are the same, ¢y, = .
(= 0). The homogeneous case, &y, = 0, t; = 0.25, is the point
where the white lines touch the continuum.

In addition to the continuum, the spectral function displays a
set of up to two high-intensity lines. The existence of these states
entails an enhancement of the spectral function, and corre-
sponds to bound and resonance states generated by the coupling
of the semiinfinite leads and the central region. We note that a
similar distinction between bound and resonance states can be
made within the single impurity Anderson model.*>** The anal-
ysis of bound versus resonance states can also be based on the
assessment of the poles of the spectral function (Equation (13)).

For larger values of the coupling, |to|® > |t]2/2 — €3,/8,
bound states are located outside the continuum (white line).
As the transmission is determined by the overlap of the spectral
functions of the leads with that of the central region, the bound
states outside the continuum do not contribute to transmission.
With decreasing ty; values, the high-intensity states approach the
continuum, and depending on the on-site energy &, they may
enter the continuum region. This leads to an enhancement
of the transmission, as is apparent in Figure 3, where we show
the transmission for a given on-site energy of ¢, = 0.25 in the
central square-lattice layer. Up to ty ~ 0.1, the maximum
of the transmission is given by the position of the resonance,
which is given by the black line with red dots which is
T,(w = Re&,(tn), to1) as a function of ty;.

Based on these findings, we can discuss the model parameters
for which the investigated setup acts as an efficient spin filter.
Clearly, choosing an on-site energy &y, within the continuum
for one spin channel and outside the continuum for the other,

- = 0.75

1.0 —1.0 —0.5 .
w—EH

Figure 2. Dependence of the spectral function of the central region, Ay, (@, €| ), on to; for a selection of eq,. The parameters are ¢, = 0, t, = 0.25, and

Uo = 0. For a noninteracting system, the spectral function is a function of @ — ¢ only: Agy, (@, ¢)

= Agos (@ — ¢). The white line indicates the position of

the delta peak outside the band, | — €| > 2t,, while the red-dotted line is determined by the real part of &, within the band |w —¢)| < 2t,,
@ — €| = Re&,, resulting in an enhanced spectral intensity (cf., Equation (17)).
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Figure 3. Transmission T,(w) versus frequency w for various values of ty
for eg, = 0.25, corresponding to the central plot of Figure 2. The black line
with red dots is the transmission at the position of the resonance (red
dotted line in Figure 2). For small coupling, up to ty; = 0.1, the maximum
of transmission corresponds to the position of the resonance.

a high spin polarization of the transmission can be achieved due
to the resonant states only present in one spin channel. As an
example, we consider the parameters ¢y = 0.5 and hy = 0.5
(607 = 0.25,9; = 0.75). In passing, we note that these are the
same values as investigated recently®” for interacting bilayers.
Therefore, despite a finite spectral weight at the Fermi level
for the down-spin, for very small values of £, we obtain a com-
plete spin polarization in transmission, albeit with a small mag-
nitude. Thus, mediated by the resonant state, an enhancement of
the transmission spin polarization is found. This finding is evi-
dent from Figure 4 which shows the k-resolved spectral function
for the lead and the central region at @ = 0 for a square lattice.
The left (right) graph corresponds to ty; = 0.05 (to; = 0.25), the
upper (lower) part of each graph shows the spectral function of
the up-spins (down-spins), and the left (right) part of each graph
displays the lead (central region) spectral function, respectively.
lead lead

center center

™
10!
3 7
2 10°
S0
10!
-3 !
1072
—Tr
us s us T
- -3 0 5 m—n —5 0 5 ™ 10-3
kg Ky

Figure 4. Spectral functions of the noninteracting setup at frequency
® = 0. The left-hand- side, k, € [—7,0), of each graph shows the surface
spectral function of the uncoupled lead, A} (0 — ekH), and the right-hand
side, k, € (0, + 7], shows the spectral function of the central region,
Agos (0 — &), respectively. The top half, k, € (0, + ], and the bottom
half, k, € [-,0), parts correspond to the respective spin directions, as
indicated. Left graph: weak coupling, to; = 0.05; right graph: strong cou-
pling, to; = 0.25. Other parameters are gy = 0.5, hy = 0.5.
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The Brillouin zone (BZ) extends from [—z, x]; the plots are taken
in one of the four (identical) quadrants of the BZ.

The surface spectral function of the leads, Aj(w — ¢y ) (left
half of each graph), is identical for up- and down-spin because
the leads are nonmagnetic. As the lead spectral function is cal-
culated for the case where the lead is decoupled from the central
layer, it is independent of t,;. The right half of each graph in
Figure 4 shows the momentum resolved spectral function in
the central region, which is calculated in the presence of the leads
and thus changes with t;.

For ty; = 0.05, the maximum intensity of the spectral function
is located within the continuum for ¢ =T, respectively, outside the
continuum for the ¢ =| electrons. Despite a significant spectral
weight in the local Green’s function, the transmission for the
down-spin almost vanishes, as the spectral weight comes from
the bound states which do not contribute to the current. Thus,
we obtain a high polarization over a large frequency range.

Increasing the coupling strength to ty; = 0.25, we find that the
spectrum of the central region significantly changes. The high-
intensity states of the spin-up electrons are shifted out of the con-
tinuum, becoming sharp delta peaks. Similarly, the sharp states
(white line) in the down-spin channel are repelled by the contin-
uum and shift toward the edge of the BZ. Now for both spin
channels only the continuous spectrum contributes, which is
of similar magnitude for both spins.

This analysis shows that a change in the hopping amplitude
between leads and central region, ty;, significantly affects the cen-
tral region spectral function and consequently modifies the trans-
mission qualitatively, beyond a mere change of the prefactor in
Equation (10). In real materials such a situation is likely to hap-
pen as electronic states are significantly influenced by structural
reconstructions at the surfaces and the chemical bonding.

3.2. Local Electronic Interaction in the Central Region

We model the local electronic interaction in the central layer
using DMFT."®2% As was shown a while ago,'® the
Hubbard model simplifies considerably in the limit of infinite
spatial dimensions. However, DMFT provides a reliable (and
nontrivial) approximation also for two and three dimensions
for a large range of model parameters. Within this approach,
the Hubbard model is self-consistently mapped onto the
single-impurity Anderson model (SIAM), thereby allowing the
use of various methods that are available for impurity
problems. %34

In combination with materials-specific input, we have previ-
ously applied the DFT+DMFT?* technique to heterostructures,
more recently using supercells.’®”) While these studies were
based on a perturbative impurity solver, in the current work
we use the recently developed FTPS solver,”?® which is nonper-
turbative and allows to accurately compute spectral functions.*"
We emphasize that this solver works at zero temperature, and
that there is no need to perform an analytic continuation of
the spectral function which is otherwise a difficult technical
issue.*>* The hybridization function of the SIAM is discretized
using a large number of bath sites, in our case 249 sites per spin.
We calculate the ground state of the finite-size impurity problem
using the density matrix renormalization group (DMRG).?**!
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Subsequently, we perform the time evolution using the time-
dependent variational principle (TDVP)??~*2! to obtain the local
Green’s function. For the time evolution, we choose time-steps
At = 0.1, and a maximal time of ¢t = 250.

Presently, we perform the scheme outlined earlier for the
setup described in Section 2, including the Hubbard term U
in the central region (see Equation (4)). Again, we consider
square lattices in-plane, nonmagnetic half-filled leads, ¢, = 0,
with hopping #; = 0.25; in the central layer, we assume
ey =10.5 and hy; = 0.5.

The spectral function of the central region is given by the
imaginary part of Equation (11) on the real axis, z = @™. This
requires the knowledge of the many-body self-energy for the var-
ious coupling strengths ty; for a fixed interaction strength, here
Uy = 2. We calculate the self-energy for steps of Aty = 0.05 and
linearly interpolate in-between to obtain a continuous function.
Figure 5 shows the spectral function. We contrast this with the
noninteracting case by plotting the delta peak outside the band
(white line) and the resonance in the band (red dotted line) for
Uy = 0, which are given by the real part of Equation (17). We
observe that the resonance in the up-spin is hardly affected by
the interaction. In the regime of small ty;, the down-spin is
almost depleted, consequently there are only small interaction
effects for the up-spin. The bound states, however, change in
slope compared with the noninteracting case. For the down-spin,
we observe a shift of the bound-states to higher frequencies o,
and a considerable broadening.

Figure 6 shows the local spectral functions of the central
region, Ay, () (bottom), as well as the transmission polarization
(top) for weak, ty; = 0.05 (left column), and strong, ty; = 0.25
(right column), coupling between leads and central region, for
various interaction strengths Up. The local Coulomb interaction
in the central region increases the polarization of the spectral
function because the minority spin states are shifted toward
higher energies. For U, > 2 the decoupled central region
to; = 0 is fully polarized, which means that it is a half-metallic

&= 0.0

&= 0.5

10t
10°
107!
1072
1073
0 0.5 10 0.5 1
(.4)76“ W*E“

Figure 5. Dependence of the spectral function of the central region,
Agos(@,€)), on ty. The parameters are e, =0, t =025 D=1,
€o = 0.5, hy = 0.5, and Uy = 2. The red dotted line corresponds to the
real part of Equation (17) within the band of the leads for the noninter-
acting system Uy = 0.
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Figure 6. Polarization of the transmission (top row) and local spectral
function (bottom row) for an interacting central layer with varying on-site
interaction Up. Left column: small coupling, to; = 0.05; right column:
intermediate coupling, to; = 0.25. The spectral function for the down-spin
varies strongly with Uy at the Fermi level @ = 0; the polarization of trans-
mission, on the other hand, varies strongly only for to; = 0.25.

ferromagnet.*” While for larger values of ty; the leads induce
states for minority electrons in the central region, the spectral
functions remain strongly polarized. For both couplings,
to; = 0.05 and t;; = 0.25, the majority spectral function remains
largely unchanged in the presence of the interaction. This is a
consequence of the almost depleted spin-down channel. Away
from the Fermi energy tails of the spectral functions are formed,
which are contributing to the high-energy satellite discussed
previously.*%

The polarization of the transmission, however, shows a behav-
ior different from that of the local spectral function. For
ty; = 0.05, despite the significant change of the minority spectral
function at the Fermi energy (w = 0), the polarization remains
above 95% for all values of Uy, and changes only by a few percent.
In this regime, the transmission of the majority spin is domi-
nated by the resonance, while the spectral weight in the minority
spin derives from the bound state which does not contribute to
the current. For ty; = 0.25, on the contrary, the polarization of
transmission follows the interaction-induced change in the local
spectral function. It increases from =~ 50% at U, = 0 to &~ 70% at
Uy = 4.

4, Conclusion

In the current work, we study a one-band generic model to dis-
cuss the physics of transmission through metallic hetero-struc-
tures. This model consists of two noninteracting leads
sandwiching a central region that can be subject to local
Coulomb interactions. The spin-dependent transmission is com-
puted within the Meir—Wingreen formalism. The left and right
leads in our model are assumed to be identical, and the central
region consists only of a single layer, therefore the transmission
decomposes into a product of the spectral function of the central
region and the surface spectral function of the uncoupled leads.
Independent of the presence of the local electronic interaction,
small variations of the on-site energies and the hopping
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amplitude between leads and central region may strongly affect
the shape of the spectral functions in the central region, and
hence the conductance.

We identify bound and resonant states that may appear in this
model, depending on the coupling strength between the leads and
the central region. Generally speaking, resonance phenomena
reveal themselves in the electronic conduction of mesoscopic con-
densed matter systems; however, a direct characterization of the res-
onance energy and the line width remains nontrivial. Bound and
resonant states correspond to poles of the scattering matrix
(S-matrix), which relates the initial to the final state of a physical
system undergoing a scattering process.[*) For a bound state,
the binding energy is directly given by a real eigenvalue, while
the resonance energy and the line width are obtained from the com-
plex eigenvalues. By analyzing the pole structure of the Green’s
function corresponding to the embedded central region, we identify
the bound and the resonant states for the present setup. As a result,
for a large coupling between the leads and the central region bound
states are formed outside the continuum spectrum of the leads.
These states do not contribute to the transmission; thus, we expect
them to be localized. In contrast, for the weak-coupling resonant
state, the complex poles of the Green’s function entail an enhance-
ment of the spin polarization of the transmission.

DMEFT is used to solve the interacting problem in the central
region. The recently developed FTPS solver provides accurate
results for the spectral functions and for the position of the
bound and resonant states. For a certain set of parameters, elec-
tronic interactions lead to an enhanced spin polarization of the
spectral function, as the minority electrons are shifted away from
the Fermi level. As a consequence, a reduction of electronic cor-
relations for the majority spins is found. For the bound states
outside the continuum of the leads’ spectral function, electronic
correlations lead to a significant broadening.

Finally, we wish to emphasize that the results of the current
study may significantly advance computational endeavors
directed at the transport properties of (generally interacting) elec-
tronic systems coupled to leads. As discussed earlier, for a central
region sandwiched between noninteracting leads, the effect of
local electronic correlations on the resonant and bound states
in the central region can be studied by including the self-energy
produced by the real-space DMFT into the Meir—Wingreen
approach. In addition, the relevance of the coupling between
the leads and the central region, and the relation between bound
and resonant states and the continuum beyond the noninteract-
ing picture, certainly requires further investigations, as well as its
dependence on model parameters. A particular interesting
question concerns the nature of the quasiparticle states in the
central region. Furthermore, departures from the Fermi liquid
description could be relevant.*® The current approach also
can be extended to multiorbitals models, which are predestined
to generate further challenges at the numerical level, as well as to
nonlinear (e.g., finite voltage) transport properties./****!

Acknowledgements

The authors thank Michael Dzierzawa for critically reading the manuscript.
Financial support by the Deutsche Forschungsgemeinschaft (project num-
ber 107745057, TRR 80) is gratefully acknowledged.

Open access funding enabled and organized by Projekt DEAL.

Phys. Status Solidi B 2022, 259, 2100157 2100157 (7 of 8)

www.pss-b.com

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are openly available in
Zenodo at http://doi.org/10.5281/zenodo.5023997.

Keywords

electronic transport, heterostructures, model studies,

transmission

spintronics,

Received: April 15, 2021
Revised: June 25, 2021
Published online: July 29, 2021

[1] ). R. Heath, Annu. Rev. Mater. Res. 2009, 39, 1.

[2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, |. M. Daughton,
S. von Molndr, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger,
Science 2001, 294, 1488.

[3] Y. Dubi, M. Di Ventra, Rev. Mod. Phys. 2011, 83, 131.

[4] ). S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey, Phys. Rev. Lett.
1995, 74, 3273.

[5] J. Mathon, A. Umerski, Phys. Rev. B 2001, 63, 220403.

[6] W.H. Butler, X.-G. Zhang, T. C. Schulthess, J. M. MacLaren, Phys. Rev.
B 2001, 63, 054416.

[7] ). M. MacLaren, X.-G. Zhang, W. H. Butler, X. Wang, Phys. Rev. B
1999, 59, 5470.

[8] P. Mavropoulos, N. Papanikolaou, P. H. Dederichs, Phys. Rev. Lett.
2000, 85, 1088.

[9] E. Y. Tsymbal, D. G. Pettifor, J. Phys. Condens. Matter 1997, 9, LA11.

[10] C. Tiusan, ). Faure-Vincent, C. Bellouard, M. Hehn, E. Jouguelet,
A. Schuhl, Phys. Rev. Lett. 2004, 93, 106602.

[17] W. P. Pratt, S.-F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder,
J. Bass, Phys. Rev. Lett. 1991, 66, 3060.

[12] Z. Q. Bai, Y. H. Lu, L. Shen, V. Ko, G. C. Han, Y. P. Feng, J. Appl. Phys.
2012, 111, 093911.

[13] W. Rotjanapittayakul, J. Prasongkit, |. Rungger, S. Sanvito,
W. Pijitrojana, T. Archer, Phys. Rev. B 2018, 98, 054425.

[14] T. Valet, A. Fert, Phys. Rev. B 1993, 48, 7099.

[15] K. Nikolaev, P. Kolbo, T. Pokhil, X. Peng, Y. Chen, T. Ambrose,
O. Mryasov, Appl. Phys. Lett. 2009, 94, 222501.

[16] L. Chioncel, C. Morari, A. Ostlin, W. H. Appelt, A. Droghetti,
M. M. Radonji¢, I. Rungger, L. Vitos, U. Eckern, A. V. Postnikov,
Phys. Rev. B 2015, 92, 054431.

[17] C. Morari, W. H. Appelt, A. Ostlin, A.  Prinz-Zwick,
U. Schwingenschlégl, U. Eckern, L. Chioncel, Phys. Rev. B 2017,
96, 205137.

[18] W. Metzner, D. Vollhardt, Phys. Rev. Lett. 1989, 62, 324.

[19] A. Georges, G. Kotliar, W. Krauth, M. . Rozenberg, Rev. Mod. Phys.
1996, 68, 13.

[20] G. Kotliar, D. Vollhardt, Phys. Today 2004, 57, 53.

[21] R. Landauer, IBM J. Res. Dev. 1957, 1, 223.

[22] R. Landauer, IBM J. Res. Dev. 1988, 32, 306.

[23] M. Buttiker, Phys. Rev. Lett. 1986, 57, 1761.

[24] M. Buttiker, IBM J. Res. Dev. 1988, 32, 317.

[25] Y. Meir, N. S. Wingreen, Phys. Rev. Lett. 1992, 68, 2512.

[26] ). Rammer, H. Smith, Rev. Mod. Phys. 1986, 58, 323.

© 2021 The Authors. physica status solidi (b) basic solid state physics
published by Wiley-VCH GmbH


http://doi.org/10.5281/zenodo.5023997
http://www.advancedsciencenews.com
http://www.pss-b.com

ADVANCED
SCIENCE NEWS

e
O

S S°

k1 (7

physica

www.advancedsciencenews.com

[27] C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C Solid
State Phys. 1971, 4, 916.

[28] C. Caroli, R. Combescot, D. Lederer, P. Nozieres, D. Saint-James, J.
Phys. C Solid State Phys. 1971, 4, 2598.

[29] D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn, H. G. Evertz, Phys.
Rev. X 2017, 7, 031013.

[30] A.Webh, ). Otsuki, H. Schnait, H. G. Evertz, U. Eckern, A. I. Lichtenstein,
L. Chioncel, Phys. Rev. Res. 2020, 2, 043263.

[31] E. N.Economou, Green’s Functions in Quantum Physics, Springer Series
in Solid-State Sciences, Springer-Verlag, Berlin, Heidelberg 2006.

[32] A. Hewson, The Kondo Problem to Heavy Fermions, Cambridge
University Press, Cambridge 1993.

[33] N. Vogiatzis, ). M. Rorison, Phys. Status Solidi A 2008, 205, 120.

[34] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet,
C. A. Marianetti, Rev. Mod. Phys. 2006, 78, 865.

[35] A. Ostlin, L. Chioncel, L. Vitos, Phys. Rev. B 2012, 86, 235107.

Phys. Status Solidi B 2022, 259, 2100157 2100157 (8 of 8)

www.pss-b.com

[36] A. Ostlin, L. Vitos, L. Chioncel, Phys. Rev. B 2017, 96, 125156.

[37] S. R. White, Phys. Rev. Lett. 1992, 69, 2863.

[38] U. Schollwéck, Rev. Mod. Phys. 2005, 77, 259.

[39] J. Haegeman, J. I. Cirac, T. J. Osborne, I. PiZzorn, H. Verschelde,
F. Verstraete, Phys. Rev. Lett. 2011, 107, 070601.

[40] C. Lubich, I. V. Oseledets, B. Vandereycken, SIAM J. Numer. Anal.
2015, 53, 917.

[41] ). Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, F. Verstraete,
Phys. Rev. B 2016, 94, 165116.

[42] D. Bauernfeind, M. Aichhorn, SciPost Phys. 2020, 8, 24.

[43] P. Markos, C. M. Soukoulis, Wave Propagation. From Electrons to
Photonic Crystals and Left-Handed Materials, Princeton University
Press, Princeton 2008.

[44] W. H. Appelt, A. Droghetti, L. Chioncel, M. M. Radonjic, E. Mufioz,
S. Kirchner, D. Vollhardt, I. Rungger, Nanoscale 2018, 10, 17738.

[45] U. Eckern, K. I. Wysokiriski, New J. Phys. 2020, 22, 013045.

© 2021 The Authors. physica status solidi (b) basic solid state physics
published by Wiley-VCH GmbH


http://www.advancedsciencenews.com
http://www.pss-b.com

	Spin-Polarization and Resonant States in Electronic Conduction through a Correlated Magnetic Layer
	1. Introduction
	2. Generic Transport Model
	3. Results
	3.1. Noninteracting Central Layer
	3.2. Local Electronic Interaction in the Central Region

	4. Conclusion


