
Mode Profile Shaping with 2D Periodic Array of
Metallic Patches on Electrodes in SAW Resonators

Jiman Yoon∗†1, Markus Mayer†2, Thomas Ebner†3, Karl Wagner†4, Achim Wixforth∗5
∗ Experimental Physics I, University of Augsburg

Universitatsstr. 1 D-86159 Augsburg, Germany

Email: 1Jiman.Yoon.external@epcos.com, 1Ji.man.Yoon@student.uni-augsburg.de
5Achim.Wixforth@physik.uni-augsburg.de

† Advanced Development Discretes, TDK Corporation,

P.O. Box 80 17 09, 81617 Munich, Germany

Email:2Markus.Mayer@epcos.com, 3Thomas.Ebner@epcos.com, and 4Karl.Wagner@epcos.com

Abstract—Periodic arrays of metallic patches on the electrodes
of a Rayleigh-type SAW resonator are investigated to suppress
undesired modes above resonance frequency. Both, the metalliza-
tion ratio(ηt ) and the period(p

T
) of the patches in transversal

direction, were varied. Simulations were performed employing
the well established 2D P-matrix model. A well-designed periodic
array is capable to suppress all transversal modes within a
certain frequency band. The individual transversal modes are
well characterized by evaluating the overlap integral of the
transversal excitation and mode profile as well as the field
strength. From these evaluations it is also possible to understand
the mechanism of mode suppression. It has been demonstrated
that the modification of the higher symmetric modes caused by
patches is responsible for strong spurious peaks in the resonator’s
frequency response. These results provide insight how the Δv/v
waveguide, formed by the areas with and without patches, can
be engineered to suppress bound and leaky continuum modes.

Keywords— Periodic Array, Spurious Mode, Waveguide, Ex-
citation Strength

I. INTRODUCTION

SAW resonator filters are widely used in the field of

telecommunications [1], [2]. Due to the finite aperture of

the acoustic track of a resonator, various diffraction effects

may occur. Acoustic tracks forming good waveguides show

transversal modes propagating under certain angles with re-

spect to the main propagation direction giving rise to undesired

peaks in the pass- and the stopband [3], [4]. This inherent

attribute deteriorates the characteristics of the frequency re-

sponse in SAW filters. Various methods have been reported

to suppress transversal modes. Aperture weighting can be

used to smoothen the transversal mode peaks but this requires

additional space and the transversal modes are still excited and

the corresponding loss is still existing. A Piston Mode Design

fully suppresses all but the fundamental mode [5]. Recently,

so-called Phononic Crystals have been proposed for mode

suppression in SAW devices [6]. A perfect 2D phononic crystal

has a stopband in all directions of the filter surface. Whereas

phononic crystals on a macroscopic scale were successfully

fabricated, they are not easy to be realized on the micrometer

scale [7]. In this work, we investigated 2D periodic arrays of

metallic patches on the electrodes in a Rayleigh-type SAW

Fig. 1. Y12 of a reference one port resonator, Simulation (black) and mea-
surement (red) are in excellent agreement if model parameters for simulation
are accurate.

resonator. Both, the metallization ratio and the period of the

patches in transversal direction were varied and the resulting

effect on the mode spectrum was investigated. Simulations

were performed employing the well established 2D P-matrix

model. The 2D P-matrix model describes waveguiding and

reflection in SAW filters by discretizing acoustic tracks into

longitudinal and transversal sections, where free waveguide

propagation is assumed within a longitudinal section and

reflection is assumed to be concentrated at section boundaries

[8], [9], [10]. In Section II, the method of analysis is intro-

duced as well as the principle of mode suppression. In section

III, the modal decomposition of the excitation strength is dealt

with to analyse spurious mode suppression.

II. APPROACH

It is well known that the excitation of the transversal

spurious modes originates from the different shapes of the

transversal electroacoustic transduction profile and the fun-

damental symmetric mode [5], [11]. The former is usually

rectangular-like, while the latter differs from case to case.

As mentioned in the previous section, popular methods to

control spurious modes are Aperture Weighting, where the

average excitation profile resembles the fundamental mode and
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Fig. 2. Excitation strengths of transversal modes. Only symmetric modes
are shown on the bar plot since the anti symmetric mode cancel out.

a Piston Mode device, where a rectangular fundamental mode,

ψ1, is enforced [11]. In principle, the 2D P-matrix method

allows to represent the conductance as the sum of modal

contributions [9]. However, this method is a bit complicated to

be interpreted directly. A simple scheme to guess the position

of peaks originating from higher transversal modes is the

assumption of sinusoidal modes in a velocity profile with

infinitely high walls, [4], where the parabolic approximation

is assumed and mode coupling by reflection is not considered,

i.e.,

k2x + k2y(1 + γ) = k20 (1)

where kx =
π

p
L

, the wave number of longitudinal periodicity

(p
L

) of active fingers, ky =
π

A
·m, and A is the aperture of

the waveguide. γ is the anisotropy coefficient and is assumed

to be constant. k0 =
2πfm
v
0

is the wave number in x-direction,

where v0 is the velocity in x-direction and fmis the frequency

of mode m. By solving the above equation for fm we obtain;

fm = f0

√
1 +

(p
L
m

A

)2

(1 + γ), (2)

where f0 =
v0

2p
L

is the resonance frequency for the one

dimensional case. Since the coupling is neglected in this

simple approximation, deviations from the peak positions

become larger the higher the mode numbers are (Fig 1). For

the low lying transversal modes, contrarily, the positions of

the peaks are predicted quite precisely.

To investigate the symmetric modal contribution of the ob-

served peaks, we have to look at the excitation strength of

each mode. The excitation strength of the kthmode is the

scalar product of excitation profile and mode profile over the

transversal direction [11], i.e.,

Ek = 〈e(y)|ψk(y)〉 =
∫ A

2

−
A

2

e(y) · ψk(y)dy, (3)

where e(y) and ψk(y) are the transversal excitation and

mode profile of the kth mode, respectively. Both functions,

e(y) and ψk(y), are normalized. Since antisymmetric modes

Fig. 3. Field strength over the complete frequency range (top) and con-
ductance frequency response (bottom). Supplementary vertical lines indicate
spurious peaks.

are cancelled out, only the symmetric transversal modes are

visible in the spectrum. Hence, only the symmetric modes are

indicated in Fig 1.

III. ANALYSIS

We study the effect of 2D periodic patches on electrodes for

one port resonators with 5 different periods for the patch and 6

different patch metallization ratios. A one-port resonator with-

out patches serves as reference structure. 128◦Y -X LiNbO3

is chosen as a substrate material, where the surface of the

substrate is coated with SiO2. For the electrodes and patches,

the same kind of metallization is used. Here, we mainly discuss

the analysis of two resonators; one is the reference and the

other one is the case with the optimum mode suppression.

The comparison is good enough to grasp the principle of

mode suppression by the periodic array. First we consider the

reference structure.

A. One Port Resonator: Reference Structure

Over the entire active aperture, the transversal metallization

ratio is homogeneous. Therefore the transversal excitation

profile is given by;

e =

⎧⎨
⎩e0 y ∈

[
−A

2
,
A

2

]
0 else

. (4)

However, in general, the excitation profile is frequency

dependent and can be obtained from 2D P-matrix computation

[11]. In the calculation of modal contributions to admittance,

Eq. (3) and (4) are used and the frequency dependency of the

excitation and mode profile is considered (Fig. 2). In Fig. 1, the

fundamental mode dominates the conductance characteristics.

The 1stsymmetric mode is very close to the fundamental mode

and nearly fully covered by it. Although the subsequent modes

have lower and lower excitation strength, they are better visible

in the conductance since they are located at frequencies with
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Fig. 4. Excitation profile of the structure with patches (blue) and the averaged
excitation profile (green) of it, velocity profile (red), and the 19th mode profile
(black). Each of them is scaled for ease of comparison.

lower conductance level of the fundamental mode.

On the other hand, the simulation based on the 2D P-matrix is

capable to compute the field strength. In this model, a unit cell

is defined with 2 strips, which then is infinitely cascaded taking

into account reflection and diffraction [8], [9], [10]. The field

strength over the complete frequency range is visualized in

Fig. 3. Interestingly, in Fig. 3 top, the number of nodes in the

field strength increases as the frequency increases. Spurious

peaks are located at frequencies, where the number of nodes

starts to change. Therefore Fig. 3 provides us with the insight

of the responsible transversal mode for the peaks (Fig. 3

bottom).

B. Resonator with 2D Periodic Array

We now turn to the investigation of a resonator with 11

patches in the active track region. The excitation profile of

the resonator with the 2D periodic patches on the electrodes

is no longer homogeneous over the entire transversal aperture

unlike the reference resonator (Fig. 4 blue line). Therefore the

excitation profile is given by

e =

⎧⎪⎨
⎪⎩
e
0

y ∈ T

e
1

y ∈ P

0 else

, (5)

where T and P are the regular region and the region with

patches, respectively. In addition, the velocity profile over the

transversal aperture is also not homogeneous owing to the

patches. As a result, the mode profile for the kth mode is

also changed. The contribution of the kth transversal mode

to the conductance is computed now by Eq. (3) using Eq.

(5) and the new mode profile, ψk
D(y) (Fig. 5 blue bars). In

Fig. 5, the modal contribution by the 2nd and 3rd symmetric

mode are similar to the ones on Fig. 2, respectively. In the

frequency characteristics of the conductance these modes are

fully covered by the fundamental mode and hardly visible in

both cases (Fig. 3 and 6).

The decrease of the excitation strength from the 5th sym-

metric mode to the 11th is larger than the one in Fig. 2,

which means the spurious peaks are well suppressed in this

region (Fig. 6 bottom). In Fig. 5, the modal contribution from

Fig. 5. Transversal modal contribution on spurious peaks. Computation
results with the excitation profile of the structure with patches (blue bars)
and with the averaged excitation profile (green bars) are plotted respectively.

Fig. 6. Field strength over the complete frequency range (top) and frequency
response on conductance (bottom).

the 9th symmetric mode (17th mode) to the 12th symmetric

mode (23rd mode) is strongly increased so that the spurious

peaks caused by these modes are observable in the frequency

response of conductance (Fig. 6 bottom). Especially the peak

on the 19th mode position is very strong in agreement with

Fig. 5, where the modal contribution is large.

In Fig. 6 top unlike to Fig. 3 top, up to the resonance frequency

of the 15th mode, no change in the field pattern is visible;

rather the profile resembles the fundamental mode of the struc-

ture with patches. This is consistent with a reasonable mode

suppression. The spurious peaks appear where the transitions

to the next higher modes take place.

Nevertheless, it is still unclear whether the strong peaks are

caused by the excitation profile or the modified mode profile.

To identify the primary reason, the modal contribution is

computed using the averaged excitation profile (Fig. 4 dotted

green line), Eq. (6) instead of using Eq. (5),

e =

{
eavg =

e
0
+e

1

2 y ∈ T and P

0 else
, (6)

where T and P are the regular region and the region with
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Fig. 7. Field strength for the frequency corresponding to the 19th mode
(magenta), velocity profile (red) and the 19th mode profiles for reference
(green) and the structure with patch (blue). The mode profiles are plotted in
absolute value. Each of them is scaled for ease of comparison.

patches, respectively. As can ben seen in Fig. 5, the modal

contribution (green bars) reveals qualitatively the same result

to the one with Eq. (5).

In Fig. 7, the field strength at the frequency corresponding

to the 19th mode and velocity profile of the structure with

patches, and the mode profiles for both the reference structure

and the structure with patches are respectively plotted over

transversal direction. Each of them is scaled in order to make

a comparison possible. As can be seen, the mode profile of

the structure with patches is somewhat more concentrated in

the center of the track than the mode profile of the reference.

The magnitude of the upper lobes and the corresponding lower

lobes becomes unequal. Consequently, the resulting value of

the overlap integral by Eq.(3) increases considerably. The

mode responsible for the excitation is the one which has

the same number of maxima and minima as the transversal

velocity profile produced by the periodic array of metal

patches. This equal periodicity and the velocity profile by

patches result in the modification of the 19thmode profile

and consequently the strong spurious peak in the frequency

response on conductance in Fig. 6 bottom.

Note that, at each transition point in Fig. 6 top, radiation

towards the transversal direction takes place and is especially

large for the 19th mode. It is worth noting that the frequency

position of the 19th mode agrees well with the one predicted

even if neglecting any mode conversion. This may be due to

the fact that the mode and reflection profile are very similar

and therefore little mode conversion occurs.

IV. CONCLUSION AND DISCUSSION

We have fabricated one-port resonators with 2D periodic

metal patches on the top of the electrodes. Admittances

and field distributions were computed using the 2D P-matrix

model. The individual transversal modes are well characterized

by evaluating the overlap integral of the transversal excitation

and mode profile as well as the field strength. From these

evaluations it is also possible to understand the mechanism of

mode suppression.

In this work, it is demonstrated that a 2D periodic array

can be successfully employed to suppress undesired modes

within the frequency band for ky =

[
0,

π

p
T

]
. The frequency

band can be engineered by the pitch of the transversal patch.

It is also demonstrated that the modification of the higher

symmetric modes caused by patches is responsible for strong

spurious peaks in the resonator’s frequency response. These

results provide insight how the Δv/v waveguide, formed

by the areas with and without patches, can be engineered to

suppress bound and leaky continuum modes. Alternatively it is

possible to consider other simple periodic structures resulting

in a similar waveguiding effect like patches directly on top

of the electrodes. Such alternative periodic modulations of the

transducer electrodes are presently under investigation and will

be discussed elsewhere.
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