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1 INTRODUCTION

The dynamics and determinants of asset prices have long been fascinating for both academics
and practitioners. Even after extensive research and practical experience since the advent of
financial stock markets hundreds of years ago, they still have not lost their attraction. On the
contrary, the interest in the advancement of their theoretical and practical foundation has been

growing over time.

This dissertation departs to new frontiers and demonstrates that with progress in time, new
aspects need to be incorporated in asset pricing theory and finance practice to effectively
account for advancements and changes in societal values and beliefs. More specifically, it
scrutinizes underlying model assumptions and captures and analyzes the interconnection
between asset pricing theory and an emerging new societal and political mindset arising from
sustainability considerations. In addition, it does not stop at theoretical modelling but identifies
implications for finance practice. In this manner, the dissertation enhances both the
understanding of price formation processes and sustainability in the market and thus enables

financial market participants to reallocate capital based on more informed investment decisions.

The remainder of this dissertation is structured as follows: Subchapter 1.1 starts with a
description of the traditional conceptual framework of financial economics and asset pricing in
particular. Moreover, this subchapter explains the implications for asset pricing caused by
sustainability considerations. Subchapter 1.2 presents the aim and objectives of the dissertation
on the basis of merging the traditional framework of asset pricing with the impacts of
sustainability considerations. It relates all articles part of this dissertation to the components of
the framework. Subchapter 1.3 gives a tabulated overview of the articles included and briefly
summarizes each of them. The subsequent chapters present all articles in full length. Finally,

Chapter 8 provides some concluding remarks and further guidance for future research.
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1.1 Theoretical background

The beginnings of financial economics date back to the rise of stock trading in Amsterdam in
the 1600s. In its early days, trading was limited to the shares of one company — The Dutch East
India Company (Vereenigde Oostindische Compagnie, VOC), which was founded for
executing long-distance trading expeditions to Asia (Fratianni, 2009). To finance the fitting of
the ship voyages, the VOC needed large amounts of funds. These funds were tied up for several
years until trading round trips were completed, so that investors faced large liquidity risks. For
this reason, shares of the VOC were made transferable in ownership and thus a secondary
market in VOC shares emerged to ensure liquidity for shareholders (Gelderblom and Jonker,

2004).

The initial purpose of stock trading was to raise capital for the business needs of the VOC
(Ehrenberg, 1896, p. 293). In contrast, investors rather followed their self-interests while
participating in the market. By far the liveliest and most prominent description of the scenery
of the stock markets in Amsterdam is given by de la VVega (1688). He begins in explaining that
stock trading is an “enigmatic business which is at once the fairest and most deceitful in Europe,
the noblest and the most infamous in the world, the finest and the most vulgar on earth.” (de la
Vega, 1688, p. 3). He implies with this statement that participants on the exchange were

obsessed with making profit at any price (or loss) leading to speculative behavior.

In essence, the transactions of investors were based on decisions on how to allocate and
deploy capital in the stock market. Following their aim of making profits, investors searched
for superior information and assessed to what extent new information sets were going to
influence stock prices. The first stock traders perceived movements in stock prices as
explicable, in that they mirrored three influencing factors: business conditions, political
developments, and the opinion on the stock exchange (de la Vega, 1688, p. 9; Ehrenberg, 1892).

However, information was costly to obtain and far from being reliable (de la Vega, 1688, p. 9).
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In addition, the perception and appraisal of information were highly subjective and different
expectations on price movements induced different investment behavior (de la VVega, 1688, p.

15). Overall, decisions on capital allocation were made in an uncertain environment.

This anecdotal evidence illustrates that decisions on the appropriate allocation of capital
are highly influenced by time aspects, uncertainty (risk), and information (Merton, 1998). To
capture these influencing factors, asset pricing theory has developed as a means to understand
how asset prices evolve and thus gives guidance on more profound allocation decisions

(Cochrane, 2005, p. xiii).

One of the underlying asset pricing theories states that under ideal conditions, stock prices
should provide accurate signals about the true intrinsic value of a stock and therefore enable
effective resource allocation. In this sense, stock prices fully reflect all available information
on the market, in other words: the market is efficient (Fama, 1970). This theory is known as the
Efficient Market Hypothesis (EMH). The first stock traders somehow believed in the existence
of an efficient capital market by explaining stock movements via the above mentioned
influencing factors. Nevertheless, early traders also believed in their ability to outperform the
market — a trait we still observe today for market participants and which is recognized as the
overconfidence bias (Daniel et al., 1998). However, according to the EMH, investors cannot
generate consistently higher expected returns than the market average given the same
information set (Fama, 1970; Malkiel, 2003). This leads to the question who might be mistaken

— investors confident in their abilities to consistently gain higher returns or the EMH.

Since the EMH cannot be empirically tested per se, a model for price formation has to be
defined to infer whether all available information is actually reflected in prices (Fama, 1970;
O’Sullivan, 2018). Fama (1970) explicitly suggests the capital asset pricing model (CAPM) of

Sharpe (1964) and Lintner (1965) as the underlying return generating process. The CAPM
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establishes a linear relationship between the expected return of an asset and its systematic risk
in market equilibrium. The model is based on the Portfolio Selection Theory (PST) of
Markowitz (1952), which explains that portfolio selection should come with maximizing
expected return and diversifying risk (maximum expected return and minimum variance). The
CAPM assumes that investors act rationally and maximize their utility function based on the
PST. In addition, they have homogeneous expectations about risk and return parameters and

can borrow or lend funds at the same risk-free interest rate (Sharpe, 1964).

Soon after the introduction of the CAPM, studies revealed misspecifications of the model.
For example, Banz (1981) discovers the size effect, the circumstance that smaller stocks have
higher risk-adjusted returns not explained by the model. Reinganum (1981) encounters an
earnings-to-price ratio anomaly in returns. Rosenberg et al. (1985) find that a book-to-market
long-short strategy leads to statistically significant abnormal returns. The implications of such
return anomalies, however, are obscured: either a wrong pricing model has been taken as basis
or markets do not operate efficiently. This is known as the joint-hypothesis problem (Fama,

1991).

Ross (1976, 1977) introduces an alternative pricing model, the Arbitrage Pricing Theory
(APT), which imposes less restrictive assumptions on the model. Ross (1976, 1982) shows that
the CAPM does not only hold in an equilibrium condition, but essentially is an arbitrage
relation. In addition, the market portfolio does not take on a special role: including multiple
factors in the return generating model leads to the same theorems as a single-factor model (Ross,
1976). Even though the APT is based on the assumption of homogeneous expectations, it does
not require homogeneous anticipations about the asset pricing model. The model still holds if
market participants have the same ex ante expectations about returns and beta coefficients and
disagree on the underlying distributions of factors (Ross, 1976; 1977). Crucial to the

understanding of the APT is a precise determination of the relevant factor set (Ross, 1977). In
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recent years, this has given rise to the emergence of a “factor zoo” (Cochrane, 2011). Besides
the size and value factors of Fama and French (1993), several other anomalies are captured in
additional factors. These include but are not restricted to: momentum (Jegadeesh and Titman,
1993; Carhart, 1997), liquidity (Pastor and Stambaugh, 2003), the low-beta anomaly (Frazzini
and Pedersen, 2014), profitability and investment (Fama and French, 2015; Hou et al., 2015),

and quality characteristics (Asness et al., 2019).

Currently, studies are concerned with assessing the importance of factors and choosing the
most effective return generating model (Cooper et al., 2020; Feng et al., 2020; Fama and French,
2018; Barillas and Shanken, 2017). Agreement on the right factor set seems far from being
reachable. The crucial question, however, remains why asset prices move. Cochrane (2011)
presents various theories thereof including macroeconomic, behavioral, and finance theories.
All of these theories are based on market participants’ expectations in one way or another
(rational expectations as model assumptions for the macroeconomic and finance theories, and

perception of risk for behavioral theories).

The cohesive concept of financial economics and asset pricing theory described so far can
be summarized in a conceptual framework (see Figure 1). The final part derives investment
strategies and implements tools based on the insights gained from asset pricing theory and

models. In this step, decisions on the allocation and deployment of capital are made.

Asset Pricing
Investor perspective

Financial Economics
Capital Allocation

Determinants

S Market expectations Theories Price formation

« Rationality « EMH + CAPM
* Perception of risk « PST « APT

Finance practice

+ Strategies and tools
* Investment decisions

 Uncertainty
* Information

Figure 1
Traditional conceptual framework of financial economics
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In the course of time, human expectations are subject to change when new information arises
that is likely to affect future asset performance (Fama, 1995; O’Sullivan, 2018). When investors
critically revise their view on how expectations are formed, new foundations for price formation
are set requiring a factor model to be adapted to such changing expectations. During the last
years, climate change and sustainability have evolved as two of the prevailing topics in society

and thus qualify as new influencing factors for the fundamental considerations of investors.

The impacts of global warming are devastating: sea-level rise; changing land and ocean
biodiversity and ecosystems including species loss and extinction; climate-related risks to
health, livelihoods, food security, and economic growth (IPCC, 2018). The combat against
climate change has not only united society but also politics. In 2015, more than 195 nations
agreed to limit global warming to well below 2°C above pre-industrial levels (the United
Nations Paris Agreement; United Nations, 2015a). The combat of climate change primarily
targets the reduction of greenhouse gas emissions, as there is scientific consensus that
anthropogenic greenhouse gas emissions are one of the dominant causes for rising temperatures

(IPCC, 2014). The transition from a carbon-based to a low-carbon economy gains momentum.

Besides the Paris Agreement, United Nations member states adopted the 2030 Agenda for
Sustainable Development in 2015. The Agenda is established based on 17 Sustainable
Development Goals (SDGs) to alleviate poverty, protect the planet, and improve living
conditions worldwide (United Nations, 2015b). It thus encompasses environmental, social, and
economic dimensions of a sustainable development and should serve as a guidance for making

decisions in the upcoming years (United Nations, 2015b).

Since climate change mitigation and sustainable development do not come without costs,
finance flows should be made consistent with a pathway towards a more sustainable economy

(European Commission, 2018; United Nations, 2015a). In Europe, the role of the financial
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industry is refined in the EU Action Plan on Financing Sustainable Growth that presents
measures for aligning finance with the specific needs of the economy for a sustainable

development (European Commission, 2018).

Political and financial initiatives targeted at a sustainable development coupled with
societal pressure and changing preferences lead to revised market expectations about return and
risk exposures of firms and their financial assets. These modified expectations of capital market
participants on how sustainability considerations systematically determine the price formation
process have to be incorporated in theoretical foundations and existing models to enhance their
accuracy (e.g., Pedersen et al., 2020; Péastor et al., 2020). More accurate model foundations and
aligned investment strategies and tools lead to more informed investment decisions and
eventually to a reallocation of capital based on a more profound understanding of sustainability

in the market (see Figure 2).

Financial Economics Reallocation of capital
Capital Allocation

Asset Pricing
Investor perspective

Revised market

New determinants ; Ehanging Enhanced model Aligned strategies
« Sustainability expectations foundations for price SIS gand tools s

considerations * Preferences formation

« Perception of risk

Figure 2
Implications of sustainability considerations

1.2 Aim and objectives

The aim of this dissertation is to effectively capture the impacts of sustainability considerations
on asset pricing theory and finance practice. For this purpose, it first scrutinizes underlying
model assumptions and derives necessary modifications for traditional models. In a second step,

implications for finance practice (i.e., strategies and tools) are assessed. The interconnection
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between financial economics and sustainability is illustrated in Figure 3 and constitutes the

framework of this dissertation.

Financial Economics Reallocation of capital
Capital Allocation

Asset Pricing
Investor perspective

Determinants ) i
- Time ; Theories and price Finance practice

 Uncertainty Market expectations oarrign ol « Strategies and tools
« Information * Investment decisions

I 1] 1\ \Y Vi

A Revised market Enhanced model Aligned strategies
Sustainability .
. : expectations setups and tools
considerations
Scrutinize and modify Assess implications for
traditional approach finance practice

Figure 3
Conceptual framework of dissertation scope and related articles (Roman numerals)

The dissertation includes six articles that address different components within this framework.
Articles I to III scrutinize and modify the traditional approach, while Articles IV to VI assess
practical implications. Apart from Article I that is embedded in the traditional context, the
remaining articles are based on the implications of revised market expectations resulting from

sustainability considerations.

The first two articles reappraise underlying assumptions of traditional price formation
models. Article T demonstrates that prices do not necessarily instantaneously adjust to
information in the market as suggested by the EMH. This shortcoming has to be taken care of
when striving for higher accuracy in the definition of return generating processes. Article II
focuses on the assumption of rational investor behavior in return generating models such as the
CAPM and APT. Investors do not necessarily act rationally under uncertainty but are

confronted with behavioral biases (e.g., Kahneman and Tversky, 1979; De Bondt and Thaler,
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1995). One such bias is herding behavior, i.e., investors follow the decisions taken by others
regardless of their own information set (Scharfstein and Stein, 1990; Banerjee, 1992).
Specifically, the article studies the interconnection between sustainability and herding behavior
of investors in light of the emerging decarbonization movement. Article III integrates
sustainability considerations into price formation models. It thus accounts for changing market
expectations about risk and return determinants and quantifies carbon risk in an asset pricing
framework while enhancing the model accuracy. Furthermore, it provides a means for market
participants to measure carbon risk exposure without the need for extensive carbon- and

transition-related data.

Implications of aligned investment strategies taking account of sustainability-related risks
and enhanced models are analyzed for portfolio and risk management (Article IV) and stock
analyses (Article V). In the last step, sustainable investment tools are reviewed. Article VI
develops a new framework for evaluating one of the top monitoring and benchmarking
solutions for integrating sustainability aspects in investment decisions: sustainable market
indices. It focuses especially on the measurement and implications of their sustainability-related

characteristics and exposures.

In summary, all articles increase the understanding of price formation processes and
resulting investment practices. By capturing the impacts of sustainability considerations
throughout the framework of asset pricing, this dissertation is at the forefront of defining a
holistic concept for sustainability integration in asset pricing theory and finance practice.
Eventually, it contributes to more informed decision-making processes and thus drives a more

profound reallocation of capital flows.
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Table 1
Overview of articles included in the dissertation
Title of article Co-authors Publication status Date
I  Delayed price adjustment and the Working Paper, 2020
estimation of risk — empirical University of Augsburg
evidence from European stock
markets
II  Herds on green meadows: the Lukas Benz Published 2020
decarbonization of institutional  Stefan Paulus Journal of Asset Management,
portfolios Marco Wilkens 21 (1), 13-311
I Carbon Risk Maximilian Gorgen Revise and resubmit 2020
Martin Nerlinger  Journal of Corporate Finance?
Ryan Riordan
Martin Rohleder
Marco Wilkens
IV Get Green or Die Trying? Carbon  Maximilian Goérgen Published 2021
Risk Integration into Portfolio  Martin Nerlinger Journal of Portfolio Management,
Management 47 (3), 77-93°
V  Investors’ delight? Climate risk in ~ Martin Nerlinger Working Paper, 2021
stock valuation during COVID-19 University of Augsburg and
and beyond University of St. Gallen
VI What drives sustainable indices?  Marco Wilkens Working Paper, 2021
A framework for analyzing the University of Augsburg
sustainable index landscape
1.3.1 Article I: Delayed price adjustment and the estimation of systematic risk —

empirical evidence from European stock markets

Asset prices might not instantaneously adjust to information in the market as theories for price

formation suggest. So-called price adjustment delays influence the statistical properties of daily

returns and impair the accuracy of return generating models. Using a daily European stock

sample, the article first analyzes in how far returns are affected by delayed price adjustments.

For this purpose, stocks are sorted into portfolios based on characteristics that mirror the

sensitivity towards price adjustment delays. Portfolios which are more sensitive towards price

adjustment delays display significantly higher cross-correlations with the lagged market return

1 VHB-JOURQUALS3: B; DOI: 10.1057/s41260-019-00147-z.
2VHB-JOURQUALS3: B.
¥ VHB-JOURQUALZ3: B; DOI: 10.3905/jpm.2020.1.200.



INTRODUCTION |11

than portfolios less affected by delayed information integration into prices. Due to the biased

covariance structures, the CAPM delivers biased estimations of systematic risk.

These estimation biases can be overcome by implementing beta adjustment techniques for
nonsynchronous trading following Scholes and Williams (1977) and Dimson (1979). The
results are robust when controlling for the estimation error following Vasicek (1973) and further
factors known to influence variation in returns in the form of a multifactor model. Overall, the
article shows how to effectively account for biases caused by price adjustment delays and thus
increases the accuracy of price formation models and in turn systematic risk estimates in

portfolio and risk management.

1.3.2 Article I1: Herds on green meadows: the decarbonization of institutional portfolios

The second article focuses on the interconnection between sustainability and rational investor
behavior and therefore addresses another assumption of traditional return generating models.
Using the Refinitiv ownership database and environmental firm ratings, the article analyzes the
decarbonization trend in institutional portfolio management. The article finds that investors
engage in herding behavior. More specifically, they are inclined to follow their own previous
trades (self-herding) or those of other investors (following-herding) in consecutive quarters.
Herding measurement takes place analogous to the methodologies of Sias (2004) and Popescu
and Xu (2018). The herding measure as correlation between trades in a security this quarter and
trades in the security last quarter additionally is split into decarbonization and carbonization
herding. For decarbonization herding, the triggering trades are the purchase of green and the

sale of brown stocks and vice versa for carbonization herding.

The empirical results show that investors tend to follow their own trades and those of other
investors in the sense of decarbonization. The major part of this herding behavior is driven by

following-herding rather than self-herding. By aggregating these results on investor type level,
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investment advisors and hedge funds turn out to be the major drivers of decarbonization herding
in the financial market. This is in line with the expectation that sophisticated investor groups
are considered as well-informed, inducing other investors to follow their lead (Eichengreen et
al., 1998). In addition, these investor types often act on behalf of reputational concerns
(Scharfstein and Stein, 1990; Dasgupta et al., 2011) or are bound by social norms (Hong and

Kacperczyk, 2009; Bolton and Kacperczyk, 2020).

1.3.3 Article I11: Carbon risk

Revised market expectations based on sustainability-related considerations entail changing
foundations for price formation processes, which have to be mirrored in adjusted asset pricing
models. The article addresses carbon risk that arises from the uncertainty about the pace and
direction of the transition process towards a low-carbon economy. It first analyzes the
interconnection between a stock’s fundamental carbon risk exposure and expected returns to
verify reassessments in price formation processes. By making use of four industry-standard
databases for capturing carbon- and transition-related information on stock level, a scoring
approach determines a stock’s fundamental brownness or greenness by calculating the Brown-
Green-Score (BGS). Panel regressions show that brown stocks earn higher expected returns,
whereas stocks becoming unexpectedly browner are penalized with lower returns. Hence, even
though brown stocks earn higher expected returns, green stocks are able to outperform them
when becoming unexpectedly greener. Since both expected and unexpected components are of
comparable magnitudes, the market has not yet arrived in developing clear-cut propositions on

the influence of a stock’s fundamental carbon risk exposure on returns.

The second part of the article focuses on enhancing asset pricing models following Fama
and French (1993) and builds a factor mimicking portfolio for carbon risk, the Brown-Minus-
Green (BMG) factor. Classical and modern asset pricing tests following Gibbons et al. (1989),

Hou et al. (2015), Fama and French (2016), and Barillas and Shanken (2017) confirm the
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validity of BMG in explaining systematic variation in stock returns. Additionally, the
estimation of the BMG beta provides a means to calculate the carbon risk exposure of any asset

without the knowledge of carbon- and transition-related information.

Cross-sectional tests in the fashion of Fama and MacBeth (1973) lead to the conclusion
that the BMG factor is not priced, i.e., it does not command a risk premium in the financial
market. A risk decomposition approach following Campbell (1991) and Campbell and
Vuolteenaho (2004) shows that stocks with high absolute BMG betas are more exposed to
fundamental re-evaluations of firm values than to discount-rate changes. However, in the
sample period, investors demanded a premium for the latter. This serves as explanation for the

missing carbon risk premium for cash-flow driven absolute high BMG beta stocks.

This article and its underlying concept have received remarkable attention in the academic
and practitioner world. The article was presented at high-ranked international academic
conferences and workshops with influential institutions such as the European Commission and
the Bundesanstalt fir Finanzdienstleistungsaufsicht (BaFin). Furthermore, it received two
research prizes. Detailed information can be found in Chapter 4. Due to the practical relevance,
a manual for practitioners with an accompanying Excel tool and an article in the Occasional
Papers series of the Network of Central Banks and Supervisors for Greening the Financial
System (NGFS) were published (Wilkens et al., 2019; Gorgen et al., 2020a). In addition, an
article about carbon risks in asset management appeared in a practitioner journal (Wilkens and
Jacob, 2020).

1.3.4 Article IV: Get green or die trying? Carbon risk integration into portfolio

management

This article studies the implications of aligning investment strategies with carbon risk

considerations using a global stock sample. Each stock’s carbon risk exposure, the carbon beta,
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is determined by the factor-based methodology following Goérgen et al. (2020b). Quintile

portfolios are formed based on a stock’s carbon beta and rebalanced quarterly.

Even though mean returns increase for higher carbon beta portfolios, risk-adjusted
performance measures are lower for the margin portfolios (i.e., high absolute carbon beta
portfolios). By construction, these extreme portfolios have higher risk measures. However,
investors are not compensated for their higher risk exposure. In addition, the carbon beta
portfolios display differences in common factor exposures, which influence their return
patterns. For comparative purposes, the analysis proceeds with constructing a different set of
portfolios based on a more fundamental measure of carbon risk — the MSCI carbon emissions
score. A comparison of carbon beta exposures reveals that the fundamental score is not able to

distinguish green stocks as distinctly as the carbon beta measure.

As part of the empirical analysis, common sustainable investment strategies are
implemented. Both extreme positive (brown) and negative (green) screening techniques based
on carbon betas lead to lower risk-adjusted performance than the neutral benchmark case. Best-
in-class portfolios on sector level focus on integrating a certain carbon risk exposure without
excluding carbon-intensive sectors such as Energy and Materials. European best-in-country
portfolios turn out to be on average greener than North American portfolios. For Europe, both
green and brown portfolios display a low risk-adjusted performance, whereas for North
America, the greenest portfolio seems to be remunerated for its higher risk exposure.

1.3.5 Article V: Investors’ delight? Climate risk in stock valuation during COVID-19
and beyond

This article takes on the analysts’ perspective on sustainability integration and analyzes to
which extent carbon intensity as a measure for climate risk exposure has entered and established
itself in the valuation process of global stocks. Investors drastically change their stock valuation

processes in unprecedented and extreme situations. In this way, the beginning of the COVID-19
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period in early 2020 constitutes an exogenous shock event to assess investors’ preferences
towards carbon-related characteristics while holding carbon intensity levels unaffected of firm-
specific changes. Moreover, the subsequent recovery period allows an analysis of the impact of

carbon intensity in more stable times.

Cross-sectional regressions with cumulative daily returns and abnormal returns as
dependent variables reveal that during the COVID-19 period in early 2020, carbon intensity
had a significantly negative impact on returns. The higher the carbon intensity level the higher
this negative effect materialized. Furthermore, a difference-in-differences setup based on daily
returns and abnormal returns confirms that this effect was unique to the crisis period compared
to the pre-crisis period. During the following post-crisis period, however, carbon-intensive

stocks could recoup some of their additional incurred losses relative to the pre-crisis period.

Risk measures, in contrast, were not significantly driven by carbon intensity in the
COVID-19 period. Nevertheless, high-emitting stocks displayed significantly higher risk
relative to low-emitting stocks. In the post-COVID-19 period, carbon intensity ultimately
influenced stock risk significantly positively. This is in line with expectations on higher risk
exposures of carbon-intensive stocks towards stranded assets and climate policy uncertainty.

1.3.6 Article VI: What drives sustainable indices? A framework for analyzing the

sustainable index landscape

The last article approaches the integration of sustainability in investment tools, namely
sustainable market indices. The lack of harmonization in methodologies and the missing
transparency on the pursued objectives of sustainable indices impede their effective adoption
(EU Technical Expert Group, 2019). This article increases the understanding on the
composition and strategy of sustainable indices by developing a customizable framework for
their evaluation. It especially emphasizes the measurement and impact of their sustainability-

related characteristics and exposures to account for their predefined scope. By incorporating
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sustainability-related aspects into traditional methods and models, the framework can be easily

integrated into existing investment processes.

Four Environmental, Social, and Governance (ESG) and four carbon indices of MSCI
serve as a representative test environment of the sustainable index landscape to exemplify the
approach. These indices all rely on the MSCI World Index as parent index but differ in their
methodology and thematic focus for integrating sustainability aspects. The first step of the
framework compares traditional return and risk indicators among the sustainable indices and
with their parent index. In the second step, the ESG performance and carbon exposure are
measured while addressing the challenge of ESG rating disagreement discussed in literature
(e.g., Dimson et al., 2020; Berg et al., 2020; Gibson et al., 2020). Even though divergence in
ESG ratings persists on index level, inferences drawn based on the ESG profile remain
consistent regardless of the underlying ESG definition. In addition, carbon indices show
remarkable reductions in their carbon exposure compared to the conventional parent index. The
third step investigates the return and risk drivers based on a return generating model that
integrates sustainability-related factors. Index-specific returns and risk of sustainable indices
are predominantly driven by their designated thematic focus. In the last step, a performance
attribution analysis dissects the different index construction methodologies. Stock selection
criteria turn out to be more important for ESG indices, whereas systematic re-weighting of

carbon classes is more dominant for carbon indices.
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Abstract. Even though technological advancement and global interconnected markets lead to
persistent information flows and higher trading activity, price adjustment delays still arise as
frictions in the financial market. This paper demonstrates that price adjustment delays influence
the statistical properties of European daily stock returns. Cross-correlations in returns lead to
biased estimation of systematic risk, i.e., the market beta. Traditional adjustment techniques for
nonsynchronous trading effects take account of this shortcoming and effectively improve beta
estimation. Especially portfolios sorted on stock characteristics known to be sensitive towards
price adjustment delays profit from a more defined beta estimation technique. This study
demonstrates how to derive an accurate estimation of systematic risk and thus enables more

informed decision making in risk and portfolio management.
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2.1 Introduction

The velocity on financial markets and of information flows has steadily increased in recent
years. Reasons for this development are growing interrelations due to globalization, market
participation, and technological advancement. Chordia et al. (2011) find in their study that share
turnover has risen dramatically predominantly driven by institutional trades. Further, they
assume that decreasing trading costs fueled trading volume. As a main finding, they show that
higher trading activity has been a main driver of market efficiency during the last years.
Additionally, Chordia et al. (2008) prove that liquidity enhances market efficiency. Overall,
this leads to the conclusion that we face more efficient market structures, thus mitigating
microstructure noise. However, some phenomena impeding the rise of efficient markets cannot
be eliminated by higher frequency in trades or more efficient technological structures. This
paper demonstrates that frictions in the market still lead to inefficiencies inhibiting accurate
return modelling. In specific, the analyses give evidence on the presence of price adjustment
delays in modern stock markets. More importantly, these delays lead to wrong assumptions
about price determination and thus bias the estimation of systematic risk in a return generating
model. | provide a means to overcome biases in the estimation of systematic risk by applying

seemingly old-fashioned yet timeliness and effective adjustment techniques.

Price adjustment delays describe the circumstance that information is not reflected
immediately in stock prices, so that the latter mirror outdated information. Cohen et al. (1980)
as well as Kadlec and Patterson (1999) list the following causes for price adjustment delays.
First, official closing prices at the end of a trading day are not necessarily obtained by a
transaction occurring at the exact closing time of a stock exchange. Transactions rather occur
at a random point in time, thus not guaranteeing that prices are recorded in synchronous
intervals and all available information on the market is reflected in the determined closing price

(Campbell et al., 1997). Second, individual traders might assess information on a non-
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continuous basis due to transaction costs. As a result, limit orders might turn stale since they
are not updated and hence, prices contain outdated information as well. Third, the intervention
of specialists, i.e., market makers, often impedes adjustment of prices, as they take measures to
maintain continuity and liquidity on stock exchanges. Another reason for price adjustment
delays is straightforward: the non-synchronicity of trading times across exchanges allows some
prices to adjust faster to upcoming information while others cannot adjust immediately due to

closed trading venues (Eun and Shim, 1989).

All these causes arise as frictions in the market process and thus have influence on stock
prices and their underlying properties. More specifically, price adjustment delays lead to
positive autocorrelation in equal-weighted portfolios or market returns, respectively, as well as
significant positive cross-correlations between portfolio returns and the market return (Lo and
MacKinlay, 1990). In addition, such effects of price adjustment delays diminish when the
differencing interval of returns is lengthened, as information has more time to be evaluated and
recognized (Lo and MacKinlay, 1990; Dimson, 1979). These effects should be especially taken
note of when estimating systematic risk exposures. Cross-correlations between returns and the
market factor lead to wrong assumptions about covariances and thus biased beta estimations
(Scholes and Williams, 1977; Dimson, 1979). Misestimating systematic risk can lead to far-
reaching consequences in risk and portfolio management, thus emphasizing the need to account

for price adjustment delays in empirical analyses.

| find that all of the aforementioned effects of price adjustment delays are present in daily
returns for European stock markets. Consequently, traditional estimation of systematic risk
turns out to be biased. Hence, | apply the traditional adjustment techniques of Scholes and
Williams (1977) and Dimson (1979). | show that adjustments are important for portfolios with

characteristics known to be prone to price adjustment delays.
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Several papers study the sources for autocorrelations in (portfolio) returns. Atchinson et
al. (1987) and Lo and MacKinlay (1990) conclude that nonsynchronous trading accounts for
part of the autocorrelation structure but cannot be the only source for it. Both papers assume
other frictional sources responsible for the unexplained positive autocorrelation structure in
returns. A more recent study of Kadlec and Patterson (1999) gives more importance to the
influence of nonsynchronous trading on autocorrelation but also recognizes the importance of
other influencing factors. In this vein, Anderson et al. (2013) find that partial price adjustment

Is an important source of autocorrelation when eliminating the nonsynchronous trading effect.

The following studies determine stock characteristics that can approximate for the
sensitivity towards price adjustment delays. Cohen et al. (1980) derive the size of a stock or
portfolio as one determinant of autocorrelation. Since larger stocks are covered by more
analysts and information may run more fluently, their prices adjust faster to incoming
information than for smaller stocks. Campbell et al. (1993) find that daily return autocorrelation
is inversely related to trading volume of stocks or indices. In addition, Chordia and
Swaminathan (2000) show that low volume portfolios respond more slowly to information in
market returns, so that trading volume constitutes a significant determinant of lead-lag cross-

autocorrelations in stock returns.

Nonsynchronous trading is also considered when determining price and volatility spillover
effects for exchanges in different time zones or with differing trading hours. Martens and Poon
(2001) find that nonsynchronous data has substantial impact on correlation estimates. Schotman
and Zalewska (2006) conclude that time mismatch influences estimations on market

integration.

Due to the importance of estimating systematic risk, i.e., the market beta, various studies
have emerged that focus on differences in beta estimation techniques. Hollstein and Prokopczuk

(2016) provide a comprehensive comparison of different beta estimation techniques including
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historical models, time-series-models, and option-implied techniques. Cohen et al. (1983a)
derive a consistent estimate of beta since frictions in the trading process lead to biases in beta
estimation. Hollstein et al. (2019) describe differences in beta estimation due to varying
sampling frequencies, estimation windows, forecast adjustments, and forecast combinations.
The authors state that nonsynchronous adjustment techniques yield high prediction errors
compared to a historical estimate. Sercu et al. (2008) analyze different adjustment techniques
and conclude that less bias in beta estimations comes with higher standard error, i.e., prediction
error. Further studies explicitly investigate the so-called intervalling effect in beta estimation,
I.e., that beta estimations vary across return frequencies (Hawawini, 1983; Gilbert et al., 2014).
Hawawini (1983) explains the shifts in beta estimation with nonsynchronous trading effects.
Cohen et al. (1983b) and Fung et al. (1985) show that lower return frequencies decrease biases
in beta estimations that arise due to price adjustment delays. Gilbert et al. (2014) provide
evidence on how the ability of stocks to respond to systematic news influences shifts in beta

estimations across varying return frequencies.

Since studies predominantly focus on daily returns or higher frequency returns, the
traditional adjustments of Scholes and Williams (1977) and Dimson (1979) remain in use for
the major part of research. Some prominent examples of their application in literature are: Fama
and French (1992), Chordia et al. (2001), Amihud (2002), Bollerslev and Zhang (2003), and
Liu et al. (2018). Often, their usage is not justified, so that the intention of their use and

relevance remain hidden or unnoticed.

In this paper, | consciously turn the spotlight on price adjustment delays, their effects and
consequences, and present the easy-to-use adjustment methods mentioned above to overcome
any obstacles. Daily returns of European stocks obviously suffer from positive cross-
correlations and hence, biased estimations for systematic risk. | point to the need of adjusting

beta estimations for portfolios that are especially prone to price adjustment delays based on



ARTICLE I: DELAYED PRICE ADJUSTMENT AND THE ESTIMATION OF SYSTEMATIC RISK |29

certain stock characteristics. The results remain robust when controlling for estimation error
and other common risk factors in a multifactor model. This study improves the basis for
decision making in risk and portfolio management, i.e., the accurate determination of systematic

risk.

The remainder of the paper is structured as follows. The next section describes the
consequences of price adjustment delays for returns data and explains the methodology of the
adjustment techniques to overcome the consequences of these effects. Section 2.3 presents the
European stock sample and highlights on why closing prices on modern stock exchanges are
prone to delays in price adjustment. The proof of the existence of price adjustment delay effects
IS set out in Section 2.4. Section 2.5 summarizes OLS and adjusted estimates for systematic risk
and derives important insights on their influence. Their robustness is checked in the following

section, whereas the final section concludes.

2.2 Theoretical background and methodology

2.2.1 Effects of price adjustment delays

Prices reflecting out-of-date information on financial markets still arise even though
technological trading systems and interrelated global structures enhance the speed of
information delivery. Different trading times and behavior of both institutional and individual
market participants lead to frictions in the trading process and thus price adjustment delays.
Such frictions do not come without consequences for the return properties of stocks and
portfolios since their returns are based on prices affected by these frictions. This circumstance
leads to problems in statistical models with the assumption that returns are set simultaneously,
whereas, in fact, true returns are set on a nonsynchronous basis and are thus not observable. To
be more specific, stocks that delay to price in information compared to a market portfolio, for

example, display serial autocorrelations and their covariances with the market portfolio are
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underestimated. In specific, their true return interval overlaps with the market’s lagged return
interval leading to positive cross-correlations (Lo and MacKinlay, 1990; Scholes and Williams,
1977). Portfolios of stocks experiencing price adjustment delays will exhibit positive
autocorrelations as stocks within that portfolio demonstrate high cross-correlations. This
implies that an equal-weighted portfolio has higher positive autocorrelation than a value-
weighted portfolio, which gives higher weight on assumingly more synchronous stocks (Cohen
et al., 1980). Cross-correlations and underestimated covariance structures between stocks and
market returns imply that models of a return generating process such as the CAPM deliver
biased estimates (Scholes and Williams, 1977; Dimson, 1979). All of these effects are mitigated
when the frequency of return measurement is decreased and thus, information has more time to

be included in the price determination process (Cohen et al., 1980).

Overall, if these empirical phenomena of nonsynchronous price adjustment appear in
returns data, estimations for systematic risk following a statistical return generating process,
such as the CAPM, have to be treated with caution — or nonsynchronous trading effects have to

be taken into account in a reasonable way.

2.2.2 Adjustment techniques of nonsynchronous trading effects

| apply two common techniques for adjusting for nonsynchronous trading effects: the Scholes
and Williams (1977) and the Dimson (1979) model. Both models have gained reasonable
attention and still find use in empirical analyses, thus demonstrating their timeliness character.
As underlying assumption, returns are generated by a linear relationship to market returns

following the CAPM of Sharpe (1964), Lintner (1965), and Mossin (1966):

ket
eris = Qi+ ﬂ;nt eryt &y, 1)
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where er;, is the excess return of asset i at time t, er),, the excess market return at time t,
and ﬁ;”tk’ the parameters of the regression model, and ¢; , the asset-specific error term with zero

mean.

Scholes and Williams (1977) obtain a consistent estimator for systematic risk by running

additional two independent regressions:
_ + mkt,-1 + 2
€rit = Gy ﬂi.t €M1 it s (2)

_ mbkt,+1
erip = ot erymt €y 3)

where ery; .1 (ery,+1) is the lagged (lead) excess market return.

The authors explain that stocks trading less frequently than the market (more prone to price

adjustment delays) display higher cross-correlations towards the lagged market return and thus

mkt,-1
it

have a higher g than more frequently traded stocks. Stocks trading more frequently than

mkt,+1

the market in turn display higher g7 values. In both cases, the usual OLS beta estimation

obtained by Equation (1) is biased downward. For determining the adjusted systematic risk

estimator, Scholes and Williams (1977) derive Equation (4):
w mkt,-1 mki mkt,+1
ﬂft B (ﬂi,tt + i,tt +’Bi,tt+ )/(Hsz)’ 4)

where p, - corresponds to the autocorrelation of the market factor.

Dimson (1979) establishes the aggregated coefficients method with Equation (5):

n
eri,t = ai,t+ Zk Z;kt,keth+k + 6‘” s (5)
=-n
where er, . stands for the excess market return at time t-+Kk.
The author derives that a return’s covariance with the contemporaneous market return is
positively related to trading frequency. Hence, stocks experiencing higher price adjustment
delays than the market have an OLS beta estimate biased downwards and more frequently

traded stocks an OLS beta estimate biased upwards. The relation between trading frequency
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and lagged and lead beta values follow the same direction as proposed by Scholes and Williams
(1977). The true systematic risk according to Dimson (1979) is obtained by summing all

estimated beta coefficients:

ﬂ?tim n_ z IBZttkt,k . (6)
k=-n

The number of leads and lags (n) included in the Dimson (1979) model is not specified. This
means the researcher can decide on the timely structure of the applied model. | implement both
aone and five lead-and-lag structure for the empirical analyses since these cases are often found
in literature. In addition, Equation (5) can be augmented by further factors influencing the return
generating process. This property will be exploited in one of the robustness tests summarized

in Section 2.6.

2.3 Data and price structure

The focus of this study is on European stocks primarily traded on exchanges within the euro
zone. | extract all stocks fulfilling this criterion from the MSCI All Country Europe All Cap
Index. All selected stocks must have available data for return, market capitalization, and trading
volume. Financial data is obtained from Refinitiv Datastream and noted in EUR. | focus on
daily data since this frequency is primarily used in financial economics. The time period
covered goes from December 2007 to October 2019. For the regressions, | calculate the market

factor as value-weighted average of all stocks in the sample.*

Returns are based on official closing prices assuming that dividends are re-invested. Price
determination on the stock exchanges in this sample follows the market model of continuous
trading with auctions. The official closing price is determined at the closing auction at the end

of the trading day. The system sets the price for which the highest volume is going to be

L In this way, it is easier to evaluate biased estimation results since on average, a beta of 1.0 should be obtained
when regressing stocks on their value-weighted average.
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executed while ensuring the lowest surplus for demand or offerings, respectively. Prices either
follow limit orders or are set in accordance with the reference price, i.e., the last official trading
price of a stock within the continuous trading phase. In each of the possible cases for price
determination, we find either the influence of the last trading price (which might occur
nonsynchronously and contain out-of-date information) or the influence of market participants’
rationale (specialist interventions or stale orders, for example).? This circumstance illustrates

the appearance of price adjustment delays even in modern interconnected times.

The impact of nonsynchronous price adjustments is most evident in portfolio returns (Lo
and MacKinlay, 1990; Campbell et al., 1997). For this reason, | construct portfolios based on
variables approximating for the sensitivity towards price adjustment delays. The first portfolio
group is based on turnover ratio, approximating for a stock’s trading frequency. The higher its
turnover ratio, the less prone to price adjustment delays a stock is said to be (Chordia and
Swaminathan, 2000; Scholes and Williams, 1977). Each month, | sort stocks into quintiles
based on their turnover ratio of the preceding month and compute a quintile’s return as value-
weighted average of the returns of the underlying stocks. I repeat this procedure with a stock’s
size as sorting criterion. Larger stocks face higher analyst coverage and fluent information
flows, so that they are less exposed to delays in price adjustments (Cohen et al., 1980; Dimson,
1979). Further, 1 sort stocks into quintiles based on the relative bid-ask spread of the previous
month. The bid-ask spread is a measure for transaction costs and thus liquidity (Amihud and
Mendelson, 1986). Stocks with a high bid-ask spread are less liquid or face higher transaction
costs. Hence, investors assess relevant information for these stocks less continuously and might
restrain orders due to high transaction costs, which leads to higher price adjustment delays

(Cohen et al., 1980). Last, stocks are assigned to the exchanges on which they are mostly traded

2 For a more detailed description of price determination on stock exchanges, see, e.g., https://www.xetra.com/xetra-
en/trading/trading-models.


https://www.xetra.com/xetra-en/trading/trading-models
https://www.xetra.com/xetra-en/trading/trading-models

ARTICLE I: DELAYED PRICE ADJUSTMENT AND THE ESTIMATION OF SYSTEMATIC RISK |34

on in terms of number of shares traded. Thus, | can address differences in trading hours more
effectively. In the results section, only exchanges with a sufficient number of underlying stocks
are displayed.® It is notable that trading hours on European stock exchanges do not differ by a
large extent. In a separate analyses focusing on synchronized stock exchanges, | still find effects
of delayed price adjustments in the data, so | conclude that nonsynchronous opening hours of

trading venues are not a prevailing issue in Europe.

Table 1 displays summary statistics for the whole sample.* Daily returns are on average
close to zero and zero at the median. The market value reveals that the sample covers the full
range of size categories from EUR 500,000 to a maximum of EUR 198.79 billion. On average,

the sample covers around 253 stocks per day.
[Insert Table 1 here.]

2.4  Effects of price adjustment delays on European stock returns

In this chapter, | analyze the three aforementioned effects of price adjustment delays for the
European stock sample: autocorrelation structure of portfolio returns, cross-correlations

between portfolio and market returns, and the intervalling effect in beta estimations.

2.4.1 Autocorrelation structure in the market portfolio

Following Cohen et al. (1980) and Dimson (1979), | find that the market factor constructed as
simple average from all available stocks in the sample displays a significant positive
autocorrelation for its first lag of 0.1669 (see Table 2). When stocks are weighted by their
market capitalization, the first order autocorrelation becomes smaller and loses significance. In
line with literature, this pattern accounts for the fact that value-weighted portfolios overweigh

large stocks, i.e., stocks that are less prone to price adjustment delays. Thus, cross-correlations

3 Abbreviations of exchange codes and their trading opening hours can be found in Appendix A.
4 Summary statistics on portfolio level are displayed in Appendix B.
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among the stocks in the portfolio and in turn the first order autocorrelation are lower.
Autocorrelations of higher orders lack significance for both equal- and value-weighted market
portfolios. The pattern observed in Table 2 points to the existence of nonsynchronous price

adjustments in the returns of the European stock sample.

[Insert Table 2 here.]

2.4.2 Cross-correlations of portfolio returns and market returns

Scholes and Williams (1977) as well as Dimson (1979) assert that stocks with higher probability
of delayed price adjustment show higher correlations with the lagged market factor and lower
correlations with the lead market factor compared to stocks with lower probability of price
adjustment delays. These hypotheses are analyzed in Table 3 for the four portfolio groups in
the sample. To test whether correlations between the extreme portfolios (portfolio 1 and 5) are
significantly different from each other, I use the test of correlated correlations following Meng
et al. (1992). The test statistic is displayed in the last column. Since portfolio returns are
obtained as value-weighted average of the underlying stocks’ return, I use the value-weighted

market factor.

[Insert Table 3 here.]

Panel A displays the results for the turnover quintile portfolios. Frequently traded stocks
(portfolio 5) have significantly lower correlations with the lagged market return than less
frequently traded stocks (portfolio 1). Cross-correlations are monotonically decreasing with
increasing trading frequency. In addition, | also find a significant positive difference at the 10%
significance level for the lead market return as literature suggests. For the size portfolios, the
same pattern emerges (Panel B). In Panel C, stocks exposed to high illiquidity and transaction
costs (portfolio 5) have a higher correlation towards the lagged market return than the more

liquid portfolio (portfolio 1). For the lead market factor, | do not find significant differences.
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When considering stocks on exchange level, | note that cross-correlations are independent of
trading times. For example, even though the Frankfurt Stock Exchange has the longest trading
hours, it displays the largest correlation towards the lagged market return of 0.2118. | find that
stocks assigned to the Frankfurt venue are less traded in terms of their turnover ratio compared
to stocks at the remaining exchanges (see Table B.1 in Appendix B). Thus, patterns for
exchange portfolios are rather driven by stock characteristics than by nonsynchronous trading

times.

Overall, the cross-correlation patterns suggest that all portfolios are prone to
nonsynchronous price adjustments. In specific, the underlying proxy variables capture the
effects of price adjustment delays in the direction forecasted by the stated hypotheses in

literature.

2.4.3 Intervalling effect in beta estimations

The intervalling effect states that biases in beta estimation diminish when the return
measurement interval increases (Cohen et al., 1980; Perron et al., 2013). To prove this
hypothesis, | estimate constant betas over the sample period following Equation (1) with
varying return frequencies. Since | use the same sample of stocks and weighting for
constructing the market factor, the OLS betas must average 1.0 cross-sectionally absent any

beta biases (Mclnish and Wood, 1986).

As assumed by Dimson (1979), betas for less frequently traded stocks are biased downward
(0.7940) and for more frequently traded stocks biased upward (1.1233) using daily returns (see
Panel A of Table 4). | also note that the goodness-of-fit increases for more frequently traded
stocks as measured by the adjusted R? and root-mean-square error (RMSE) of the regression.
These patterns are valid for all return frequencies, i.e., daily, weekly, and monthly returns.

However, the spread between portfolio 5 and 1 diminishes with diminishing data frequency
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(from 0.3294 for daily returns to 0.1420 for monthly returns). A closer look at the portfolios
reveals that especially the low turnover portfolio betas are adjusted upwards with increasing
return intervals. This hints at the assumption that especially the low turnover portfolios are
prone to price adjustment delays and need respective adjustment techniques to overcome the

estimation bias.

[Insert Table 4 here.]

The intervalling effect for size portfolios seems to be even more pronounced (Panel B). The
beta spread between large and small portfolios decreases from 0.5525 for daily returns
to -0.0635 for monthly returns. Again, especially OLS beta estimates for small portfolios differ
across frequencies. For example, the beta estimate for portfolio 1 increases from 0.4675 (daily
return frequency) to 0.6323 (1.0566) for the weekly (monthly) interval length. In Panel C, | find
the same patterns for the bid-ask spread quintiles. Portfolio 5, i.e., the illiquid portfolio, shows
the largest deltas between return frequencies. In addition, the difference in the goodness-of-fit
measures almost disappears with an increasing return measurement interval. Panel D illustrates
that exchanges with less frequently traded stocks such as Frankfurt (FRA) and Athens (ATH)
face higher deltas in beta estimations across frequencies than exchanges with more frequently

traded stocks such as Milan (MIL) and Xetra (XET).

The occurrence of the intervalling effect in these portfolios, especially the diminishing
spread between the extreme portfolios, is a sign that some of the variation in betas is due to

price adjustment delays (Dimson, 1979).

Overall, this section gives evidence on the existence of delayed price adjustment in
European stock returns. As a result, their thus induced properties lead to biases in the beta

estimation using the CAPM, which has to be taken into account.
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2.5 Empirical regression analyses and beta adjustments

In this section, | review estimations of systematic risk based on OLS and the adjustment
techniques of Scholes and Williams (1977) and Dimson (1979), respectively. Table 5
summarizes all results for each portfolio group. Regressions are run on daily returns for each

year.® The displayed results are the time-series averages of all regressions in the sample period.
[Insert Table 5 here.]

First, the results for the whole sample are shown for comparative purposes. Due to construction,
the OLS CAPM estimate is 1.0 and all the lead and lag coefficients are not statistically different
from zero. In Panel A, portfolio 1 with less frequently traded stocks has an underestimated beta
in the OLS case, whereas the beta increases monotonically across the frequency portfolios.
Portfolio 5 seems to be overestimated with a beta value of 1.1429. The Scholes and Williams

models with the lead and lagged market returns display the expected pattern: less frequently

traded stocks have a significantly higher /3;”"”'1 in the amount of 0.0639 than more frequently

traded stocks. The pattern in "'

shows the right direction but is not statistically significant.
The results are confirmed when using the Dimson model of Equation (5) both for a one and five
lead-and-lag structure. Besides, the calculated adjusted beta values for Scholes and Williams
/4 : Dim1 imS - - : :
(ﬁf ) and Dimson (8; and ﬂf) , respectively) correct the OLS estimates in the predicted
direction: for portfolio 1, the OLS estimate of 0.7579 is corrected upwards to 0.8287 for the
Scholes and Williams (1977) method, to 0.8280 for the Dimson (1979) one lead-and-lag
adjustment, and to 0.8835 for the five lead-and-lag model. Hence, the estimation in systematic

risk improves in that the beta is tilted towards 1.0.% For the most frequently traded stocks, the

® Hollstein et al. (2019) derive that a historical estimator based on daily data over a 12-month horizon yields the
most accurate predictions. Hence, we focus on yearly estimations based on daily return data.

® I do not expect all single portfolio betas to equal 1.0 since other effects besides price adjustment delays might
drive their systematic risk. However, adjustment techniques can alleviate potential biases. For the inclusion of
other determinants of systematic risk, see Section 2.6.
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beta is adjusted downwards, from an OLS estimate of 1.1429 to 1.1140 for the Dimson five

lead-and-lag model.

In effect, | can decide between three adjusted beta values — £, g™, and > — for

each portfolio. How should one recognize the “right” value? Calculating the value-weighted
mean of a beta value across all portfolios should lead to a value of 1.0 in the best case absent
any beta biases (Mclnish and Wood, 1986). In the last row of Panel A, a comparison of the
value-weighted means shows that the Dimson five lead-and-lag model has a value closest to
1.0. However, | also find that all values are close to each other. When having a closer look at
the differences between OLS estimates and adjusted values, it is notable that especially the
portfolios most prone to price adjustment delays, i.e., lower quintile portfolios, show significant
and relevant delta values. Thus, adjustments are especially worthwhile for portfolios most
sensitive towards delayed price adjustments. However, the value-weighted mean underweights
these portfolios, so that their remarkable deltas carry less weight than the negligible deltas of

higher portfolio groups.

For the size portfolios, | derive basically the same results (see Panel B of Table 5).
Adjustments are high for small portfolios and rather low for large portfolios. For the Dimson
five lead-and-lag model, | obtain an ideal value-weighted mean of 1.0. For this method, the beta
for the small portfolio is adjusted upwards by 0.3014 and for the large portfolio downwards by
—0.0132. Even though the value-weighted mean is close to 1.0 in all cases, the results show how
important adjustments are for small stocks: instead of predicting their systematic risk to 0.4442
by using OLS estimation, the adjusted systematic risk is instead estimated at 0.7456. One can
imagine that this change in risk estimation has far-reaching consequences in portfolio and risk

management.
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For the relative bid-ask spread portfolios, the Scholes and Williams (1977) model turns out
best (see Panel C). Again, deltas are higher for stocks more sensitive towards price adjustment
delays, i.e., the higher bid-ask-spread portfolios. For the Scholes and Williams case, portfolio
5 exhibits a significant delta value of 0.0749, whereas portfolio 1 has a lower adjusted beta

estimate of 0.0140 compared to the OLS beta.

Exchange portfolios (Panel D) improve their value-weighted mean in beta estimation from
0.8700 to 0.9684. The highest delta for this combination can be found for the Frankfurt Stock
Exchange (FRA), where the OLS beta of 0.5146 is adjusted to 0.8246. As already mentioned
above, stocks assigned to the Frankfurt Stock Exchange in this sample are low-frequently traded
stocks, thus emphasizing their need for a beta adjustment technique. Stocks of the Madrid
exchange (MAD), on the contrary, do not display any significant differences between OLS and

adjusted beta estimates.

2.6 Robustness tests

2.6.1 Intervalling effect for adjusted beta values

The intervalling effect should be less pronounced in adjusted beta estimations since it is the aim
of the adjustment techniques to alleviate price adjustment delays present in higher frequency
data. Table 6 presents the beta calculations across all estimation techniques for different return
frequencies. More specifically, | report the values for the difference portfolio 5-1 of each
quintile-sorting characteristic. For the daily and weekly frequency, adjustment techniques
deliver a more appropriate beta estimation result in the sense of lower beta spreads between
portfolio 5 and 1. This points to the ability of the Scholes and Williams (1977) and the Dimson
(1979) techniques to account for price adjustment delays in an efficient way as stated in the
main analysis of this paper. With monthly returns, adjustment techniques are necessary to a

lesser extent. For the size spread portfolio, the CAPM turns out to be more effective than the
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adjustment models. Thus, for this portfolio, prices adjust more accurately during the course of
one month rendering beta adjustments for delayed information integration redundant. For
turnover and bid-ask spread portfolios, a one lead-and-lag structure is more efficient than
including five leads and lags when using monthly return data. Overall, a monthly return
frequency requires less leads and lags than daily or weekly return intervals. This confirms the

validity of beta adjustment techniques.
[Insert Table 6 here.]

2.6.2 Model-specific robustness tests

As mentioned in literature, both adjustment procedures are prone to estimation error. For this
reason, | control for the estimation error by applying the Vasicek (1973) adjustment to the
estimated beta values. As prior information, | assume beta to be adjusted towards 1.0 and 0,
respectively, for the lead and lagged beta coefficients as proposed by Dimson (1979). In
untabulated results, | find the same implications as without controlling for the estimation error.
The Scholes and Williams (1977) adjusted beta is more prone to changes due to the Vasicek

(1973) adjustment, but still close to the Dimson (1979) estimate.

In a second robustness test, I control for further characteristics known to influence the
return generating process of stocks and portfolios. | implement the Fama and French (1993)
model and thus control for the size and value effect. As suggested by Sercu et al. (2008), the
market, SMB, and HML factors are all adjusted for nonsynchronous price adjustment since all
common risk factors face the same delays in information integration. 1 make use of the
European versions of SMB and HML provided by AQR Capital Management. Basically, the

patterns in the beta estimations remain stable.” Thus, even controlling for further factors that

7 Results for the Fama and French (1993) model can be found in Appendix C.
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systematically determine variation in returns does not alter the influence of price adjustment

delays and the functioning of traditional adjustment techniques.

2.6.3 Further robustness tests

I conduct further tests based on little changes in the analysis. First, | use USD returns and
financial data instead of EUR data. Second, for the Fama and French (1993) model, I redo the
Fama and French (1993) analyses with the European factors provided by Kenneth R. French in
his data library. Last, I construct equal-weighted portfolios instead of value-weighted
portfolios. For this case, | use the equal-weighted market factor in the regression analyses. For
all modifications, the results remain basically unchanged.® The patterns prove to be more
pronounced for the equal-weighted setup. Since in literature and practice value-weighted

portfolios are of higher relevance, | chose to report this case.

2.7 Conclusion

This paper reveals that price adjustment delays are an important influencing factor for daily
stock returns on European stock exchanges. When estimating systematic risk based on daily
returns, the effects of delayed price adjustment have to be kept in mind as they cause biased
beta estimations. This study shows that traditional beta adjustment techniques controlling for
nonsynchronous price adjustments can alleviate beta biases effectively. In detail, especially
portfolios based on characteristics known to be sensitive towards price adjustment delays can
profit from better risk estimation using adjustment techniques. These findings are robust even
when additionally adjusting for estimation error in beta following Vasicek (1973) or
implementing a multifactor model and thus controlling for common risk factors known to

influence variation in returns.

8 Results are available upon request.
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This paper and its analyses are predominantly relevant for portfolio and risk management.
One of the most common risk measures in portfolio management is the market beta. Thus,
investors and portfolio managers base their investment decisions and strategic orientation on it.
If beta suffers from biases, decisions are made on a wrong basis, which might lead to unknown
increased risk taking. As shown in this study, especially portfolios tilted towards certain stock
characteristics, such as small market capitalization, exhibit biases in beta estimation. Since
portfolios specialized on certain characteristics face an upward trend in demand, this finding is
of relevance for both portfolio managers and investors. This study provides an easy
implementable way of considering biases caused by price adjustment delays and thus enables

better and more informed decision making in investing.
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Table 2
Autocorrelations of market portfolios
lag 1 lag 2 lag 3 lag 4 lag 5
market equal-weighted 0.1669 0.0655 0.0191 0.0093 -0.0315
(5.15) (1.64) (0.65) (0.31) (-0.90)
market value-weighted 0.0215 -0.0401 -0.0413 0.0097 -0.0709
(0.87) (-1.16) (-1.58) (0.32) (-2.15)

The nth-order autocorrelation is obtained as the slope in the following regression: 7., =a+p, ), (Campbell et

al., 1993). The market portfolio is the equal-weighted (value-weighted) mean of all stocks in the sample. T-
statistics are shown in parentheses and based on Newey-West standard errors.
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Appendix A

Table A1

Abbreviation of exchange codes

AMS Euronext Amsterdam
ATH Athens Stock Exchange
BRU Euronext Brussels

DUB Euronext Dublin

FRA Frankfurt Stock Exchange
HEL Nasdaq Helsinki

LIS Euronext Lishon

MAD Madrid Stock Exchange
MIL Borsa Italiana Milan
PAR Euronext Paris

WBO Vienna Stock Exchange
XET Deutsche Borse Xetra

This table displays the abbreviation codes for the stock exchanges referred to in this paper.
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3 ARTICLE II: HERDS ON GREEN MEADOWS — THE DECARBONIZATION OF

INSTITUTIONAL PORTFOLIOS
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Journal of Asset Management, 21 (1), February 2020, 13-31.
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(VHB-JOURQUALS3: B)

Abstract. We analyze an emerging sustainable trend in asset management: the decarbonization
of institutional portfolios. By using broad institutional ownership data we show that investors
exhibit herding behavior in the sense of decarbonization. They are inclined to follow their own
or other investors’ buys in green stocks and sales in brown stocks over adjacent quarters.
Beyond that, we find that Hedge Funds as well as Investment Advisors lead the herd by
executing trades in the sense of decarbonization. This is in line with expectations that
sophisticated investors, who integrate environmental aspects into their investment decision
process, are able to attract imitators. For the aspired achievement of market-wide
decarbonization, investors leading the herd should be encouraged to further decarbonize their

portfolios in order to trigger follow-up trades.
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4.1 Introduction

The scientific consensus (NASA, 2019 and IPCC, 2014) points towards a clear relationship
between human activities and a warming planet. Firms contribute to global warming by emitting
greenhouse gases (GHG) that increase global temperatures and temperature variability, when
producing and delivering goods and services for consumption. To try to reduce GHG emissions
and avoid the risks associated with a warming planet, numerous jurisdictions have introduced
carbon pricing and many more are expected to introduce carbon pricing in the future.?
Simultaneously, the EU is developing a taxonomy for sustainable climate change mitigation
activities and also climate benchmarks to provide investors with better information on the
carbon footprint of their investments. As a result of this entire process, institutional investors
have committed to divesting $11 trillion USD in assets of fossil fuel firms.? A price to emit
carbon, with expectations of future increases coupled with institutional divestment, should lead
to lower equity prices and higher expected returns for carbon-intensive firms to compensate for
their additional risk: carbon risk. Generally, this new kind of risk includes all positive and
negative impacts on firm values that arise from uncertainty in the transition process from a
brown to a green economy. Measuring carbon risk is thus not limited to measuring carbon
emissions and so-called “stranded assets” (Carbon Tracker Initiative, 2011; Mercure et al.,
2018), but a firm’s overall strategic and operational exposure to unexpected changes in the
transition process towards a green economy. Despite the aforementioned facts, few studies have

found a relationship between firms’ returns and carbon risk.

In this paper, we study the relationship between carbon risk and equity prices. In the first
part of the paper, we determine the greenness or brownness of a firm — the Brown-Green-Score

(BGS) — as a fundamental measure for carbon risk. In the second part, we study carbon risk in

L World Bank Group (2020) - https://carbonpricingdashboard.worldbank.org.
2 https://350.0rg/11-trillion-divested/.
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equity prices through the lens of a factor-based asset pricing model by constructing the Brown-
Minus-Green (BMG) portfolio. In the last part, we conduct a formalized test for a priced carbon

risk premium.

We start by computing individual carbon emissions-related measures using four
comprehensive ESG databases from 2010 to 2017 to determine the greenness or brownness of
a firm. We compile three subscores: (1) value chain, (2) public perception, and (3) adaptability
of firms with respect to carbon and transition-related issues. The subscores capture different
aspects of carbon risk. The value chain captures current emissions related to the production of
goods and services. Public perception represents how the public views a firm with respect to
carbon emissions. Adaptability is related to the ability of firms to transition from a brown to a
green economy. We combine these three subscores into a Brown-Green-Score (BGS) for each

of the 1,657 firms in our final sample.

We show that the BGS has been falling over time suggesting that firms are becoming
greener. We regress returns onto a decomposition of the BGS into a level and a difference
component and variables known to explain returns in the cross-section. The BGS level is
associated with positive returns, meaning that on average brown firms, as identified using the
BGS, outperform green firms. In a subsequent paper, Bolton and Kacperczyk (2020) document
a similar relationship. In contrast, the change in BGS from one year to the next is associated
with a negative return. This suggests that firms perform worse if they surprise markets by

becoming browner compared to the previous year.

A recent theoretical paper (Pastor et al., 2020) models the environmental, social, and
governance (ESG) preferences of investors and their impact on asset prices in equilibrium.
Investors vary in their ESG preference and invest in a long short ESG portfolio according to
their preferences. In their model, the greener the asset the lower the expected returns. Ex-ante

and ex-post asset prices are impacted via unexpected changes in ESG concerns through an
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investor and a customer channel. The authors introduce the concept of an ESG factor, which is
driven by both channels, and show that positive realizations increase green-asset returns even
though brown assets earn higher expected returns. In turn, the ESG factor lowers expected
returns for brown assets. Overall, ESG risk exposure might be a reason why green assets

outperform brown ones.

Our return-related results are consistent with the model of ESG factor risk and asset prices
with this theoretical model. The expected BGS should be positively associated with returns. The
unexpected component of BGS should be negatively associated with returns as they increase
when firms perform unexpectedly well by emitting less carbon or by publicly announcing
carbon abatement plans. Over time as the markets develop a better understanding of carbon risk
and the unexpected component falls relative to the expected component, we should expect a
positive relationship between returns and carbon risk. If the unexpected component remains
consistently large over some period of time, the positive expected return component for the
high BGS may be masked by the negative return component related to unexpected changes. We
find that in our sample period, these two components are similarly large in terms of their

contribution to returns, suggesting an ambiguous relationship between carbon risk and returns.

To better understand whether or not differences between brown and green firms can help
to explain the carbon risk and return relationship, we calculate differences in all the variables
we used to construct the BGS, the subscores, and BGS over our sample period. We find that
overall, firms are becoming greener and that this is mostly driven by green firms becoming
significantly greener than brown firms. For instance, green firms reduce their average carbon
intensity by roughly 16% annually versus roughly 2% annually for brown firms. The increased
reduction for green firms holds for the BGS score, all of the BGS subscore components, and all

but one (environmental innovation) of the individual variables. In our data, green firms
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becoming significantly greener is associated with a larger increase in their respective stock

return than for brown firms, consistent with the theoretical model.

We continue studying the role of carbon risk in equity prices using classical and recent
asset pricing tests. Asset pricing models generally have two components (Fama and French,
1993). The first component includes the formation of a portfolio that successfully describes
systematic variation in returns. These factor mimicking portfolios can be formed for any firm
characteristic. For instance, the book-to-market ratio, firm size, firm liquidity, or profitability
have all been used as potential factors that describe systematic variation in returns. For factor
mimicking portfolios, that only represent the trading related component of an economic risk, to
be valid they should be correlated with the underlying economic risk (Daniel and Titman, 1997;
Pukthuanthong et al., 2019). The second component of asset pricing models implies that the
factor explains differences in returns across assets. The difference in returns is generally
referred to as the risk premium associated with a factor and represents the additional

compensation expected by investors for bearing risk associated with the factor.

For analyzing the carbon risk exposure of stocks, we use the BGS to place firms into
terciles. The highest BGS tercile represents “brown” firms and the lowest BGS tercile represents
“green” firms. We form a zero-cost portfolio that is long brown stocks and short green stocks
(BMG). The BMG portfolio thus mimics a factor related to carbon risk. The factor should be
correlated with the risk associated with current, future, and perceived carbon emissions and
asset pricing tests should provide evidence on whether or not carbon is a source of systematic
variation in returns and whether or not investors require a risk premium for bearing this risk.
We find insignificant, but negative realized returns for the BMG portfolio, inconsistent with the
expectation that brown firms will outperform green firms. However, the results are consistent
with the previous results that show a positive return association for the level of BGS and a

negative association for unexpected changes in BGS. While the prices of both brown and green
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firms have appreciated from 2010 to 2017, the prices of green firms have appreciated faster.
The cumulative difference between brown and green firms is roughly 14%. These two opposing
effects generate an insignificant relationship between carbon risk and returns in asset pricing

tests during our sample period.

An important contribution of our paper is related to data. Comprehensive firm level data
is available for roughly 1,600 firms since 2010. Asset-pricing exercises depend on long time-
series and a broad cross-section of test assets. Using the BMG factor, we can expand the set of
test assets via simple returns regressions. We regress the returns for 25,000 firms on the BMG
factor and other factors known to be correlated with returns, and generate a BMG beta for each.
The BMG beta analysis extends our insight into countries for which no carbon risk data is
available. The insight depends on the ability of market participants to impound information on

carbon risk into prices not immediately obvious to the econometrician.

We show that the BMG factor describes variation in global stock returns of more than
25,000 firms. In general, the BMG factor is minimally correlated with other common risk
factors pointing to the fact that it possesses unique return-influencing characteristics. In line
with expectations, the BMG factor enhances the explanatory power of common factor models
in BGS sorted quintile portfolios. Moreover, the BMG factor is of similar (or even greater)
magnitude and adds explanatory power when compared to other known sources of variations
in single stock returns. For instance, the explanatory power of common asset pricing models
increases when adding the BMG factor. Finally, the BMG factor passes latest asset pricing tests
when applied to common test assets, such as the 25 size and value sorted portfolios. Overall,
our results indicate that the BMG factor is of relevance for asset pricing models and thus able

to support market participants in their assessment of carbon risk in equity prices.

In a formalized test for a priced risk premium (Fama and MacBeth, 1973; Pukthuanthong

et al., 2019), we show that the BMG factor is associated with a statistically insignificantly
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monthly negative risk premium of —0.097%. This suggests that investors may not require
compensation for bearing carbon risk, perhaps because they are able to hedge this risk through
non-traded assets. This may also be the case because investors are not fully aware of the
financial risks associated with carbon or that the available data and corresponding forecasting
models are not sufficiently well-developed to accurately explain and predict carbon risk. This
final explanation is consistent with our findings on BGS levels and changes and with differences

in green and brown firms.

To understand the missing carbon risk premium the Campbell variance decomposition
(Campbell, 1991) is used in a further test. By breaking down the variance of the BMG factor
into a cash-flow news and a discount-rate news component, we show that its variance is
primarily dominated by the former. The BMG factor price is more sensitive to changes in
technologies (investments) and customer preferences for goods and services (revenues) than to
changes in the discount rate that investors apply to these cash flows. In a next step, we
decompose the market betas of BMG beta sorted portfolios as in Campbell and Vuolteenaho
(2004). We find that the cash-flow beta is higher than the discount-rate beta for all of the BMG
beta sorted portfolios. This confirms that during our sample period, returns are rather driven by
fundamental re-evaluations of investor expectations about cash-flow news than by discount-
rate changes. Following the theory of Pastor et al. (2020), green stocks show a high market beta
that is affected by carbon risk through the customer channel (cash-flow news). We argue further
that we do not only observe “green shocks” but also unexpected changes towards a brown
economy, which raise the market beta of brown stocks. As it turns out, brown stocks are prone
to the same risk driver as green stocks, i.e., cash-flow news. In our sample period, there exists
a premium for discount-rate news, i.e., especially brown and green firms are not remunerated

for their cash-flow risk driver, leading to an insignificant risk premium for the BMG beta.
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To deepen the results, we conduct additional robustness checks. We provide evidence on
the regional distribution of brown and green firms. Since the beta of the BMG factor can be
estimated for any listed stock regardless of the availability of carbon and transition-related
information, we use a global sample to distinguish between brown and green firms. This also
allows us to test for carbon risk premia in different regions. Our results for the United States,

Europe, and Asia reinforce our hypothesis that there is currently no carbon risk premium.

Our paper is related to nascent but growing literature on the relationship between climate
change and asset prices. Physical climate risks impact asset prices, are costly to hedge, and
systematic (Engle et al., 2020; Lanfear et al., 2019) making understanding them central to the
pricing of assets. Hong et al. (2019) demonstrate that food firms exposed to physical risks
underperform in the long-run, whereas Huynh et al. (2020) show that droughts increase the cost
of equity capital. Barnett et al. (2020) demonstrate theoretically how climate uncertainty,
including physical risks, can be priced in a dynamic stochastic equilibrium model. Bolton and
Kacperczyk (2020) provide insights if and how investors do care about carbon risk measured
by different carbon emission intensity scopes. Choi et al. (2020) show that high-carbon firms
underperform low-carbon firms during extreme heat events. Oestreich and Tsiakas (2015)
construct European country-specific “dirty-minus-clean” portfolios based on the number of free
emission allowances during the first two phases of the EU Emissions Trading Scheme (ETS)
which display positive returns during those time periods. From a bank’s perspective, Delis et
al. (2020) show that banks price climate policy risks in their charged loan rates and they have
started to develop broader policies on the financing of brown businesses (e.g., Rainforest Action
Network et al., 2019). In bond markets, Baker et al. (2018) analyze the pricing and ownership
of U.S. Green Bonds and Tang and Zhang (2020) document a positive response of stock prices
on the announcement of green bond issuances. Several papers report a link between climate

change and property values, e.g., Bakkensen and Barrage (2018), Baldauf et al. (2020),
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Bernstein et al. (2019), Giglio et al. (2018), Ortega and Taspinar (2018), and Rehse et al. (2019).
From an investor’s perspective, Krueger et al. (2020) and Nofsinger et al. (2019) suggest that
environmental concerns are important factors in the investment decisions of institutional
investors, while Monasterolo and De Angelis (2020) explore investors’ demand for a risk
premium for carbon-intensive assets and Alok et al. (2020) examine the misestimation of
climatic disaster risk of fund managers. Other related studies show the influence of carbon
emissions on downside risk in options (llhan et al., 2021), firm-value effects of carbon
disclosure (Matsumura et al., 2014) or corporate environmental performance (De Haan et al.,
2012), and the impact of carbon emissions on a firm’s cost of capital or capital structure

(Nguyen and Phan, 2020; Chava, 2014; Humphrey et al., 2012; El Ghoul et al., 2011).

The remainder of this paper is structured as follows. Section 4.2 presents the data sources.
Section 4.3 contains our methodology for carbon risk measurement and panel regressions to
infer the relationship between carbon risk and equity prices. Section 4.4 contains tests to
determine the relevance of the carbon risk factor in an asset pricing context. Section 4.5
analyzes the missing carbon risk premium followed by some robustness tests in Section 4.6.

Section 4.7 concludes.

4.2 Data

Following the sample construction of other papers such as Hou et al. (2011), Ince and Porter
(2006), and Schmidt et al. (2019), we compile global stock data from Thomson Reuters
Datastream. We apply common screening techniques introduced in Ince and Porter (2006) and
exclude all firms that are not identified as equity or which are not primary listed. We delete all
observations of zero returns at the end of a stock’s time series. Moreover, we include only
stocks that account for approximately 99.5% of a country’s market capitalization to reduce
liquidity biases. This leaves us a global stock data sample of 26,664 unique stocks for our

sample period from January 2010 to December 2017. For this sample, we obtain financial data



ARTICLE IIT: CARBON RISK |78

from the Worldscope database and Datastream. We apply further data screens for monthly

returns following Ince and Porter (2006) and Schmidt et al. (2019).

Measuring carbon risk in the financial market requires the knowledge of fundamental
carbon and transition-related information. For this reason, we merge this information from four
major ESG databases to our global stock data: (i) the Carbon Disclosure Project (CDP) Climate
Change questionnaire dataset, (ii) the MSCI ESG Stats and the IVA ratings, (iii) the
Sustainalytics ESG Ratings data and carbon emissions datasets, and (iv) the Thomson Reuters
ESG dataset. The use of ESG data does not come without shortcomings. ESG scores are often
based on self-reported data, even though data providers claim to conduct profound analyses on
the ESG profiles of firms. Furthermore, recent studies conclude that ESG ratings from different
data providers disagree (Dimson et al., 2020; Berg et al., 2020; Gibson et al., 2020; Christensen
et al.,, 2019; Kotsantonis and Serafeim, 2019). Sources for disagreement are based on
differences in scopes, measurements, and weights of categories (Berg et al., 2020). Since for
our analyses, the overall market perception of ESG performance is decisive, we aggregate the
scores of different data providers (as also suggested by Berg et al., 2020). With this approach,
we simultaneously minimize a potential self-reporting bias by using four ESG databases with
different approaches in collecting data including estimations by analysts. To further enhance

the measurement of carbon risk, we choose variables explicitly targeting our scope.

We select variables from a total of 785 ESG variables to measure carbon risk in stocks.
Leaving out social and governance aspects, 363 variables thereof are potentially useful for
describing environmental issues. 131 of the broader environmental variables are directly related
to carbon and climate transition issues as opposed to, e.g., waste or water pollution. Thereof,
we select ten variables that potentially have the most impact on the financial market via return
adjustments and explain the triad of value chain, public perception, and adaptability in our

concept (see Section 4.3.1). For example, we take into account carbon emissions since they are
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the main target of policy measures to mitigate climate change. They are therefore one of the
key measures for a firm’s brownness. Second, we focus on environmental pillar scores of each
of the four databases, as they are most prominent in public and thus can function as readily
available decision criteria for investors. Third, we use scores that mirror the environmental
friendliness of internal firm processes and therefore future profitability when taking climate
change into account. Choosing ten distinct variables does not only eliminate empirically
redundant data points, but also ensures to create a straightforward and easily traceable concept

for measuring the impact of climate change on the financial market.

For the construction of the BMG factor, we exclude all firms with no carbon and transition-
related information. To be more precise, we only include a firm if it is available in at least three
of the four ESG databases. Thus, we try to take account of potential biases and smooth the
effect of ESG rating disagreement across different data providers. Furthermore, we do not take
into account firms operating in the financial sector. In the transition process, these firms behave
quite differently compared to firms in other industries. For example, the current practice of
assigning carbon emissions does not apply to equity financing or lending, which makes
financial institutions appear to be less prone to carbon risk. This leaves us with a total of 1,657
stocks. The reduction in sample size from 26,664 global stocks to 1,657 stocks is due to a rather
restricted availability for carbon and transition-related data, especially when relying on
different databases contemporaneously to account for rater-specific biases. However, the

reduced sample size is not of concern in our asset pricing based setup.

Our sample spans the period from January 2010 to December 2017. Classical asset pricing
studies focus on a larger time horizon to draw inferences. In our case, there are several reasons
to stick to a shorter time frame. First of all, data availability is scarce for larger time horizons.
When going back in time, data coverage decreases drastically. Furthermore, most of the ESG

databases have started to collect encompassing firm data only in recent years. Besides, the
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awareness for climate change related topics has steadily increased since the 2000s (Engle et al.,
2020). Recent developments further suggest that carbon risk became relevant for financial
markets only in the last couple of years. Even though there were remarkable events in previous
times such as the establishment of the Kyoto Protocol in 1996, the Energy Policy Act in 2005,
the publication of the Stern Review in 2006, and the 3" IPCC assessment report in 2007, policy
actions and societal awareness have not raised great interest. Summary statistics for our data

sample are shown in Table 1.
[Insert Table 1 here.]

To avoid penalizing large firms concerning absolute carbon emissions, we standardize
emissions by a firm’s net sales. The database specific scores are ranging within a predefined

bandwidth.

To the best of our knowledge, this unique dataset with the incorporation of four major ESG
databases contains the most comprehensive carbon and transition-related information in the

climate finance research area.

4.3 Carbon risk in equity prices

In this section, we present our methodology to calculate the “Brown-Green-Score” (BGS) and
investigate the relationship between the BGS and equity prices. First, we describe how to
identify green and brown firms using the BGS via three indicators: value chain, public
perception, and adaptability. Second, we conduct panel regressions based on the BGS to analyze
if carbon risk has a positive or negative effect on returns. Since both the expected and
unexpected component of the BGS have counteracting effects on returns, we observe an

insignificant relationship between carbon risk and return.
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4.3.1 Carbon risk measurement methodology

We determine the fundamental characteristic of brown or green firms by calculating the BGS
for each individual firm. The BGS is based on three main indicators: value chain, public
perception, and adaptability, capturing the impact of the climate transition process on a firm.
Value chain accounts for the current emissions of a firm within its production, processes, and
supply chain. Public perception covers how carbon emissions and a firm’s carbon policy are
perceived by its stakeholders (e.g., customers, investors, creditors, and suppliers) expressed by
respective ratings. Adaptability captures strategies and policies that prepare a firm for changes
with respect to the price of carbon, new technologies, regulation, and future emissions reduction

and mitigation strategies.

Carbon emissions related to production processes as well as applied technologies cannot
be transformed instantly and without costs (Islegen and Reichelstein, 2011; Lyubich et al.,
2018) and thus might become stranded (Mercure et al., 2018). However, regulatory
interventions may provide support for required technological changes (Acemoglu et al., 2012)
and prevent carbon leakage (Martin et al., 2014). Worldwide supply chains and their
environmental impact are difficult to analyze, highly interrelated, and therefore extraordinarily
vulnerable to climate-related risk sources (Faruk et al., 2001; Xu et al., 2017). Therefore, a
firm’s value is highly affected by the level and the changes of its carbon emissions within its

value chain.

Furthermore, the firm’s public perception with regard to the transition process can affect
its valuation. For instance, value can be created by establishing a comprehensive reporting
system (Krueger, 2015). Value of firms with low social capital or trust can be destroyed during
a crisis or during negative events in the form of reputational risks (Lins et al., 2017).
Environmental strengths increase product market perception and thus firm value (Bardos et al.,

2020). In addition, firms may be valued higher if they can demonstrate that their activities



ARTICLE ITI: CARBON RISK |82

support climate change mitigation and are thus able to make use of positive media coverage
(Cahan et al., 2015; Byun and Oh, 2018). Even the impact of carbon emissions on stock returns
may depend on people’s different beliefs about climate change, e.g., when experiencing
abnormal temperatures (Choi et al., 2020). In general, ratings are in the focus of most firms’
stakeholders (e.g., Liang and Renneboog, 2017; Hartzmark and Sussman, 2019) and provide an
external assessment about a firm’s transition process related performance. Thus, public
perception of a firm’s support of the transition process evaluated by ratings may impact its

respective value.

Finally, a firm’s ability to adapt quickly to changes in the transition process may prevent
underperformance due to risks in its own value chain or public perception (Lins et al., 2017).
Investors already value environmental corporate policies as a necessary risk prevention measure
(Fernando et al., 2017). Nevertheless, stock markets seem to underreact to firms' climate
sensitivity (Kumar et al., 2019) creating uncertainty. A firm’s adaptability is therefore an
additional indicator whether and to what extent it is affected by unexpected changes in the
transition process (Deng et al., 2013; Fatemi et al., 2015). Taking all of these theories into

account, BGS approximates for carbon risk.

To compute the BGS we use ten variables containing firm specific information related to
one of the three broader indicators described above.® For each variable, we assign zero to firms
below the median in a given year and one to firms above the median. In the next step, we
average the ten values assigned to a firm in a given year separately within the three indicators
which results in subscores for value chain, public perception, and adaptablity. Finally, we
calculate the BGS for each firm i in each year t by combining the subscores using Equation (1).

BGS;;=0.70 Value Chain;, + 0.15 Public Perception, +0.15 Adaptability, . 1)

3 For a full list of variables and their mapping to the risk indicators see Internet Appendix Table A.2.
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The value chain subscore has a weight of 70% in the BGS to reflect its relative importance.*
The public perception and adaptability subscore carries each 15% weight in the BGS.> As a
result, the BGS ranges between zero and one, where zero denotes a green and one denotes a

brown firm.

The final selection of variables, the mapping of the proxy variables to the risk indicators,
and the aggregation of the subscores are the result of two workshops hosted for this purpose
with acknowledged sustainability and finance experts from international institutions,
consultancies, universities, asset managers, and NGOs. The variable selection was also subject
to data availability and statistical analyses. The weighting scheme has been tested for robustness

and our results remain economically similar.

4.3.2 Panel regressions

We regress global stock returns onto a decomposition of the BGS into a level and a difference
component and further variables known to explain returns in the cross-section. Since BGS is
based on yearly data, we conduct yearly panel regressions following Equation (2):

riy=0o;+ B, BGS, B, (BGS, — BGS, ;) + 0; controls, , 2)
with r;, being the yearly return, BGS, and (BGS, — BGS,.,) the level and difference component
of BGS, respectively, and controls, a vector of common control variables.® We also include

different types of fixed effects (country, industry, time, and firm).’

4 We assume value chain to be the most important indicator since production, processes, and supply chain
management constitute the core of a firm. Moreover, governmental climate change related regulations are focused
predominantly on current emissions. The existence of numerous studies dealing only with carbon emissions
confirms the importance of the value chain subscore.

S Our results remain robust to changes in predefined weights. In addition, we conducted a more systematic
approach in deriving the BGS by principal components analysis (PCA). The results remain basically the same.

® Basically, BGS, contains firm information of t—1 since ESG ratings are made public with a lag of around 6
months.

7 In untabulated results, we also cluster standard errors on country, industry, firm, and time level. Even though t-
statistics become smaller, the direction of the results remains stable.
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Table 2 displays the results. Both the BGS level and difference component have a
significant effect on stock returns for (almost) all combinations of fixed effects. In general, the
level component is a proxy for the expected carbon risk of a firm, whereas the difference
component represents unexpected effects. The expected BGS shows a positive association with
stock returns with a coefficient of, e.g., 0.068 (last model specification) indicating that brown
firms have higher returns. On the contrary, becoming greener is rewarded with higher returns

as suggested by the negative coefficient of the BGS difference component (—0.065).

These results are consistent with the theoretical model of sustainable investing introduced
by Pastor et al. (2020). Brown stocks show higher expected returns, whereas unexpected
changes towards a green economy are favorable for returns of green stocks. If firms surprise
with positive realizations of the BGS (lower BGS) by, e.g., emitting less carbon or publicly
announcing carbon abatement plans, they still can outperform brown stocks. Both the expected
and unexpected component show similar effects in magnitude measured by their estimated
coefficient, thus confounding clear-cut effects on stock returns. However, the observed level is
by nature higher than the observed unexpected (difference) component, so that the positive level
effect rather outweighs the negative effect of the unexpected component. Over time as the
unexpected component falls or becomes smaller in magnitude relative to the expected effects,
we should observe a significant positive relationship. This equilibrium, however, can be
achieved solely when markets develop a better understanding of carbon risk, which is not yet

the case.

[Insert Table 2 here.]

To better understand differences in brown and green firms, we calculate average annual changes
in all variables used to construct the BGS, the respective subscores, and the BGS itself. Table 3
demonstrates that both brown and green firms have become greener over our sample period

from 2010 to 2017. However, green firms have become significantly greener than brown firms.
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For instance, green firms reduced their carbon intensity on average by 15.95%, whereas brown
firms reduced their carbon intensity by solely 1.90% per year. This remarkable difference is
mirrored in the value chain subscore with a difference of 14.06% between the changes of brown
and green firms. All variables except the Environmental Innovation Score show the same

pattern. Overall, green firms have reduced their BGS by 4.00% more than brown firms.

For our sample period, this means that green firms becoming greener is associated with a
larger increase in their respective stock return than for brown firms. In other words, the
unexpected component of BGS dominates the expected level component. However, the
expected and unexpected component confound their respective single effect on stock returns

due to their opposing relationship with returns.
[Insert Table 3 here.]

4.4 Relevance of the carbon risk factor BMG

To strengthen the understanding of the relationship between equity prices and carbon risk, we
make use of asset pricing theory. Many factor and factor mimicking portfolio papers in the asset
pricing literature are seen critically regarding their future impact and relevance. Even though
we propose a new factor, we do not want to end up being perceived as another animal of the
factor zoo (Cochrane, 2011).8 Our aim is to develop a framework for measuring and
understanding carbon risk in equity prices. Thus, we show the construction and relevance of
the BMG factor by following common composition methods and latest asset pricing tests.
Importantly, this capital-market based approach allows measuring carbon risk exposure for any

asset without the need for carbon and transition-related data.

8 For a comprehensive overview of the discussion about past factors, we suggest reading Harvey and Liu (2020)
and Feng et al. (2020).
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4.4.1 The BMG factor — A mimicking factor portfolio for carbon risk

The BMG portfolio is constructed to mimic a factor related to carbon risk similar in intuition to
the Fama and French (1993) size and book-to-market factors. For the construction of the BMG
portfolio, we determine the annual BGS for each firm. Subsequently, each year we
unconditionally allocate all firms into six portfolios based on their market equity (size) and the
BGS using the median and terciles as breakpoints, respectively. We use the value-weighted
average monthly returns of the four portfolios “small/high BGS” (SH), “big/high BGS” (BH),
“small/low BGS” (SL), and “big/low BGS” (BL) to calculate the BMG factor following Equation
(3). Thus, BMGt is the return in month t of a zero-cost portfolio that is long in brown firms and
short in green firms:

BMG, = 0.5 (SH,+ BH,)) — 0.5 (SL,+ BL,) . (3)
Figure 1 plots cumulative returns of the BMG factor and the corresponding long and short
portfolios for the sample period from January 2010 to December 2017. The figure shows a
contrast in the performance of the brown and the green portfolio over time. While the
cumulative return of the BMG factor is slightly positive in the period from 2010 to the end of
2012, the effect reverses in the period from 2013 to the end of 2015, in which the cumulative
return of the BMG factor drops from around +3% to around —23%, followed by an increase to
around —11% in 2017. Hence, brown firms performed on average worse than green firms did

during our sample period.

Following the reasoning of Pastor et al. (2020), this development might point to the fact
that especially since 2013, we experienced a strengthening in unexpected changes towards a
green economy which induced green stocks to outperform brown stocks. In other words, the
unexpected favorable development of framework conditions for green stocks is able to

overcome the expected negative return effect.

[Insert Figure 1 here.]
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Table 4 reports summary statistics and correlations with the global factors of a Carhart (1997)
four-factor model in Panel A and the global factors of the Fama and French (2015) five-factor
model in Panel B during our sample period. The average monthly return of the BMG factor is
negative at —0.11%; the standard deviation is 1.70%. The correlations between the BMG factor
and the factors of the Carhart model market, size, value, and momentum are relatively low. The
same applies to the factors of the Fama and French 5F model.® This suggests that the BMG
factor possesses unique return-influencing characteristics that are able to enhance the

explanatory power of common factor models.°
[Insert Table 4 here.]

4.4.2 BGS quintile portfolio analysis

We construct BGS sorted portfolios to test if the BMG factor is able to enhance the explanatory
power of common factor models. We sort firms according to their BGS into annually rebalanced
quintiles such that quintile 1 contains the firms with the lowest BGS, i.e., the greenest firms,
and quintile 5 contains the firms with the highest BGS, i.e., the brownest firms. We then run
time-series regressions of the quintiles’ equal-weighted monthly excess returns on the global
Carhart model and on the Carhart + BMG model (see Equation 4).1

er, = a; + B eryy, + B SMB, + B HML, + B WML, + 29 BMG, + ;. ()
The results of the global BGS quintile analysis are shown in Table 5. The market betas are
significant and close to one for all quintiles. To test whether the BMG factor is able to
significantly increase the explanation of the variation in excess stock returns we apply an F-test

on nested models (Kutner et al., 2005). For additional details on the BGS quintiles, all

® We also conducted correlation and regression analyses on potentially related influencing factors including the oil
price (oil spot and futures prices) as well as oil industry equity and commodity indices and carbon price (carbon
certificates and respective derivatives). There are no remarkable results affecting our factor.

10 Nevertheless, to completely exclude a potential influence of other risk factors, we conduct an analysis with
democratically orthogonalized factors in Internet Appendix C.

11 value-weighted quintile portfolios show the same patterns, therefore our results remain robust.
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differences in the coefficients compared to the Carhart model are reported on the right-hand

side of the table.
[Insert Table 5 here.]

A comparison of the adjusted R? and the results of the F-test confirm that the BMG factor
significantly enhances the explanatory power of the Carhart model, especially for the high BGS
portfolios. In the case of BGS quintile 5, the adjusted R? increases by more than 12 percentage
points. The table reports BMG beta loadings that increase strictly monotonically from the low
BGS quintile, which displays a significantly negative loading of —-0.30, to the high BGS quintile
with a significantly positive loading of 0.98. Quintiles 2 and 3 show BMG betas close to zero.
Tendentially, firms with high BGS show the anticipated high carbon risk exposure and vice
versa. Overall, the BMG factor delivers the expected results and significantly enhances the

explanatory power of common factor models in BGS sorted quintile portfolios.

4.4.3 Comparison of common factor models

To reinforce the results of the previous section on a larger basis, we compare the results of
global common factor models with and without the BMG factor. Panel A of Table 6 shows the
results of more than 25,000 single stock regressions. The first two models compare how (1)
SMB and HML versus (2) BMG change the explanatory power of the CAPM. The average
increase of model (1) in the adj. R? is 1.32 percentage points. This increase is significant for
15.00% of the firms in the sample. In comparison, the BMG factor alone increases the adj. R?
by 0.86 percentage points and significantly for 13.54% of the regressions. The following two
models contrast how (3) WML vs. (4) BMG changes the explanatory power of the Fama and
French model. This comparison shows a more than three times higher increase in the adj. R? for
the BMG factor than for WML. Finally, the models (5) and (6) provide further evidence that the

BMG factor increases the explanatory power of common factor models, for example the Carhart
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model and the Fama and French 5F model. Overall, the inclusion of the BMG factor decreases

the average RMSE.
[Insert Table 6 here.]

For a more detailed assessment of the impact of the BMG factor on the stock returns of single
firms, Panel B of Table 6 reports the number of significant factor betas from the Carhart + BMG
model. Based on two-sided t-tests, 3,708 firms (14.67%) show a significant BMG beta on a 5%
significance level. This is comparable to the number of significant SMB betas (3,756) and higher
than the number of significant HML (2,174) and WML betas (1,893). The average BMG beta is
positive at 0.173. Overall, compared to common factors, the BMG factor performs well

highlighting its relative importance for explaining variation in global stock returns.*?

4.4.4 Asset pricing tests

One of the most common asset pricing tests is the GRS test by Gibbons et al. (1989). It tests
whether the intercepts are indistinguishable from zero in the time-series regression for a set of
test assets’ excess returns on the model’s factor returns (Ho: @i = 0 V i). It is furthermore a test
that shows if a linear combination of the factor portfolios is on the minimum variance boundary

or if each factor portfolio is the multifactor minimum variance in an S state variable world.

We also provide new insights into alpha by combining the BMG factor with various
common asset pricing and test asset portfolios by applying latest asset pricing tests following
Hou et al. (2015), Fama and French (2016), and Barillas and Shanken (2017). To evaluate alpha,
we calculate the average absolute regression intercept for each test asset portfolio. Furthermore,
the average adjusted coefficient of determination provides information about the validity of a

model in general.

2 To demonstrate that BMG is a relevant factor, we also implement the methodology of Pukthuanthong et al.
(2019). Results can be found in Internet Appendix B (Tables B.2 and B.3).
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Another approach by Barillas and Shanken (2017) and Fama and French (2018) promises
a ranking of models that can be achieved by analyzing the Sharpe ratio rather than «. This
assumption is based on previous research by Gibbons et al. (1989). They were the first
expressing the difference between two maximum squared Sharpe ratios, the one with the
combination of IT (excess returns of all assets) and f (all factors of a model) and the one with
only the latter, as the following Equation (5) displays:
o'S " o=Sh* (IT) — SK*(f) . (5)
They show that differences in the vector of intercepts («) from the regression of I7 on f and the
residual covariance matrix (2') for different models are only driven by Si2 (7). Therefore, we
can find the best fitting model by the largest maximum squared Sharpe ratio of the model’s
factors. We choose different common models, e.g., the CAPM, the Fama and French model,
the Carhart model, and the Fama and French 5F model as well as the latter one including WML,
and calculate the described measures with and without the BMG factor. We repeat this process
for two main global test asset portfolios, the 25 size and value sorted portfolios and the 25 size
and momentum portfolios from French.™® In Table 7, we show the best value according to the

respective test statistic in bold.
[Insert Table 7 here.]

Starting with the evaluation of the best model of 25 size and value portfolios, we obtain
promising results. The Fama and French 6F + BMG model has overall the lowest GRS test
statistic, the highest adjusted R? and the lowest average absolute alpha. Furthermore, any
previous pairwise model comparison prefers the model with the BMG factor. Considering the

Sharpe ratio approach, we can determine the Fama and French model as the best fitting model,

13 We thank Kenneth French for providing test asset portfolios in such an extensive diversity.
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. In addition to the reported results, we
also use industry portfolios as test assets. Results are available upon request.
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followed by the Fama and French model with the BMG factor. These findings indicate that the
BMG factor is able to explain the returns of these test asset portfolios. We obtain even better
results with the 25 portfolios constructed on size and momentum. Any model with the BMG
factor has a lower GRS test statistic than a respective model without the BMG factor and it
produces a higher adjusted R?, a lower average absolute alpha, and a lower Sharpe ratio. This

leads to assume that the BMG factor can explain these assets better than common models.*

4.5 The missing carbon risk premium

For a factor to command a risk premium, it should explain differences in cross-sectional stock
returns. We perform cross-sectional regressions following the Fama and MacBeth (1973)
methodology as well as a modification introduced by Pukthuanthong et al. (2019). In these
analyses, we find that there is no significant carbon risk premium. We show that brown and
green portfolios are rather driven by cash-flow news than discount-rate news. Since there is a
risk premium for the latter in our sample period, both types of portfolios do not receive a risk
premium for their dominant risk driver, leading to an insignificant risk premium of the BMG

factor.

45.1 Cross-sectional regressions

This section tests whether the BMG factor is a priced risk factor. We run a cross-sectional
regression using the methodology of Fama and MacBeth (1973) on single stock level. For this
purpose, we estimate 36-month-rolling-window coefficients in the first step, and then regress
individual stock returns on the estimated coefficient values. Since the Fama and MacBeth
(1973) procedure is prone to the errors-in-variables (EIV) problem, we follow the EIV

correction of Pukthuanthong et al. (2019). We thus use the returns of double-sorted portfolios

14 We also conducted further asset pricing tests like, e.g., excluded factor regressions in Internet Appendix B (Table
B.1).
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as dependent variable.® First, each year in June, we sort all stocks based on their market
capitalization into deciles. Second, within each size decile, we sort the respective stocks further
into deciles based on their estimated OLS beta of each factor resulting in 100 size/beta
portfolios for each factor. Then, for example, the average market beta of each size/beta portfolio
is assigned to all stocks in the respective portfolio. This procedure is repeated for all of the other
factor betas. Cross-sectional regressions are run with individual stock returns on the left hand

side and the assigned beta values on the right hand side.

We re-run both regression models with industry fixed effects. Results of the cross-sectional
regressions can be found in Table 8. All factors lack significant risk premia, except for SMB in
the non-ElV-corrected models. The BMG factor is slightly negative, but far from being
statistically significant. These results are inconsistent with expectations that brown firms
command a positive risk premium. The carbon risk premium amounts to —0.097% in the
standard Fama and MacBeth (1973) regression. Correcting for the EIV problem, we obtain a
risk premium estimate of —0.218, but still statistically insignificant. This suggests that investors
are not fully aware of the financial risks associated with carbon emissions. In the next analyses,

we provide more intuition and a new framework for understanding these risks better.
[Insert Table 8 here.]

4.5.2 A risk decomposition of the BMG factor and beta portfolios

To further evaluate the non-existence of a risk premium, we analyze the economic mechanisms
driving the BMG factor and the market beta of BMG beta sorted portfolios. We follow the

decomposition approaches of Campbell (1991) and Campbell and Vuolteenaho (2004).1° The

15 There is a lively debate in literature on which left-hand-side assets to use in cross-sectional regressions (see,
e.g., Lo and MacKinlay, 1990; Daniel and Titman, 2012; Harvey and Liu, 2020; Jegadeesh et al., 2019). To account
for both sides, we conducted our analyses on individual stock level as well as various characteristic-sorted
portfolios. Our results remain unchanged.

16 Technical details can be found in Internet Appendix D.
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analysis is geared towards understanding whether changes in expectations about firm cash flows

or changes in discount rates are driving the BMG factor and BMG beta sorted portfolios.

The methodology is based on a simple discounted cash flow model, where changes of firm
values result from changing expectations regarding cash flows and discount rates. Cash-flow
changes have permanent wealth effects and may therefore be interpreted as fundamental re-
evaluations towards a new equilibrium. In contrast, discount-rate changes have temporary

wealth effects on the aggregate stock market driven by investor sentiment.

We use the VAR methodology introduced by Campbell (1991) to decompose the BMG
factor and assume that the data are generated by a first-order vector autoregression (VAR)
model. For the variance decomposition, we modify Campbell’s (1991) approach using the BMG
factor time series as the first state variable. We use global versions of the Shiller PE-ratio, the
term spread, and the small stock value spread as additional state variables as in Campbell and
Vuolteenaho (2004). In Table 9, we report the absolute and normalized results of the variance
decomposition of the BMG factor as well as correlations between the components. 14.04% of
the total BMG factor variance can be attributed to discount-rate news whereas the remaining
85.96% are driven by cash-flow news. This suggests that the BMG factor is mainly determined
by expectations about future cash flows and not about changes in the discount rate that investors
apply to these cash flows. This is consistent with the transition process of the economy that is
highly sensitive to changes in technologies (investments) and customers’ preferences for goods

and services (revenues).

[Insert Table 9 here.]

In a second test, we follow Campbell and Vuolteenaho (2004) more closely and decompose
market betas of BMG beta sorted portfolios into a cash-flow and a discount-rate beta. In their

original paper, the authors apply this approach to Fama and French’s 25 size/book-to-market
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sorted portfolios to explain the value anomaly in stock returns. To adopt their methodology, we
construct 40 BMG beta and size sorted test asset portfolios by sorting all stocks into 20 5%-
quantiles based on their individual BMG beta and splitting each portfolio by the stocks’ median

market capitalization.

[Insert Figure 2 here.]

As shown in Figure 2, the cash-flow beta is higher than the discount-rate beta for all portfolios.
This confirms that, during our sample period, returns are driven by fundamental re-evaluations
of investor expectations about cash-flow news rather than about discount rates. Furthermore,
the discount-rate beta is virtually the same for all 40 portfolios, whereas the cash-flow beta
shows a more pronounced U-shaped pattern. This suggests that extreme portfolios, i.e., high
absolute BMG beta firms, have higher cash-flow betas and are thus more exposed to

fundamental re-evaluations of firm values than to discount-rate changes.

According to the theoretical model of Pastor et al. (2020) green stocks should display a
higher market beta due to their ESG factor risk exposure. We argue that ESG risk — or carbon
risk in our case — works in both directions, i.e., there exist unexpected changes towards a green
economy favoring green stocks and unexpected changes towards a brown economy favoring
brown stocks. As a result, both brown and green stocks have a high carbon risk exposure and a
high market beta. Our analysis confirms this hypothesis. In addition, those high market betas
of both kinds of stocks are driven by the customer channel (cash-flow news) and not the investor

channel (discount-rate news).

We evaluate the prices of cash-flow and discount-rate beta risk following Campbell and
Vuolteenaho (2004). Rational investors should demand higher compensation for fundamental
and therefore permanent cash-flow shocks (“bad beta”) than for transitory discount-rate shocks

(“good beta”). In Table 10, we apply the asset pricing models described in Campbell and
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Vuolteenaho (2004) to our 40 BMG beta/size sorted test asset portfolios to analyze this
hypothesis. We show results of an unrestricted factor model and a two-factor ICAPM that
restricts the price of the discount-rate beta to the variance of the market return. Like Campbell
and Vuolteenaho (2004), we estimate both models with and without a constant to account for
different assumptions about the risk-free rate. For our sample period, the price for cash-flow
beta risk amounts to —26.61% per year for the unrestricted factor model. The price for discount-
rate beta risk is 76.53% per year. Hence, for our sample period, the “good beta” demands a risk
premium compared to the “bad beta”.}” This result remains stable for the restricted factor model
and the unrestricted two-beta ICAPM. The restricted two-beta ICAPM shows a bad fit for our

sample period (R? of —0.694) and thus should not be given great importance.
[Insert Table 10 here.]

As seen in Figure 2, especially green and brown portfolios are predominantly prone to cash-
flow news. Since the cash-flow risk is not remunerated in the market for this time period, both
brown and green firms do not receive a remarkable premium for their risk driver. In turn, this
might explain the missing carbon risk premium for BMG beta, as both factor legs are driven

towards the same risk driver, i.e., cash-flow induced risks.

As the market moves towards an equilibrium state concerning the transition to a green
economy, the effect on the market betas of green and brown stocks should diverge clearly

resulting in a distinct difference between them.

17 Due to the sample period, our results are contrary to Campbell and Vuolteenaho (2004) and more recent studies
are hard to find. However, Maio (2013) shows that cash-flow price of risk has a long-term and a time-varying
component. The latter is negatively correlated with business cycle. Since our time period starts in the recovery
phase, we hypothesize that consistent with Maio (2013), the time-varying component has a negative effect on the
price for cash-flow risk which outweighs the positive long-term component, so that discount-rate risk displays a
higher price. In addition, Campbell et al. (2013) show that after the financial crisis in 2008, there were much
stronger good cash-flow news observable, which might point to the fact that investors did not require a premium
for cash-flow risk in our period.
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4.6 Robustness tests

To demonstrate the validity of our results, we conduct further robustness checks. The advantage
of our factor-based model is that a stock’s exposure to carbon risk can be measured via the
estimation of the BMG beta. This means that no carbon and transition-related information on
the stock or its BGS, respectively, has to be available to judge its carbon risk exposure. In turn,

we can evaluate the global risk based on a wide cross-section of stocks.

[Insert Table 11 here.]

Table 11 provides a BMG beta landscape and descriptive statistics of the BMG beta distribution
globally. First, we calculate the average BMG beta for each country with at least 30 firms within
our sample. Second, we assign all countries according to their BMG beta into terciles (brown,
neutral, and green) to create the figure in Panel A. Brown countries are mainly fossil and
resource dominated economies like, e.g., Canada, Brazil, South Africa, Russia, Australia, or
China. In contrast, European countries are mainly green having on average low BMG betas,
whereas the United States, Poland, Turkey, or Argentina are neutral countries with BMG betas
around zero. Panel B provides further information on the average BMG beta for major countries.
It is particularly interesting that all countries have green and brown firms according to the BMG
beta, the distribution differs, however. This leads to the question whether we can find a carbon

risk premium in different regions.

Therefore, we examine the existence of the carbon risk premium for three regions, i.e., the
USA, Europe, and Asia. Table 12 contains the results for cross-sectional EIV-corrected
regressions for the different regions. All regions show premium estimates on the BMG beta of
similar magnitude (-0.211, —0.246, and —0.181% for USA, Europe, and Asia, respectively).

These estimates are comparable to the global sample (—0.192). Regardless of the region, the
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carbon risk premium remains statistically insignificant.’® Hence, our results point to the fact
that carbon risk is relevant for explaining variation in returns, but is not priced in our sample

period.
[Insert Table 12 here.]

In an additional test, we back-cast carbon and transition-related information to 2002 to test our
results for a longer time horizon. We show that the BMG factor remains a relevant factor for

the larger time period, however, we still do not find a significant carbon risk premium.*°

4.7 Conclusion

The scientific consensus is clear on the link between greenhouse gas emissions and climate
change. Investors, firms, regulators, and the general public have been slow to recognize the
financial risks associated with climate change despite the seemingly obvious relationship
between human activities and a warming planet. Our paper takes a step towards quantifying

carbon risk for a broad cross-section of firms across the globe and time.

Our BMG factor explains systematic variation in returns as well as other common risk
factors. Surprisingly, we find no evidence of a risk premium associated with carbon risk. This
is the case for a number of reasons. First, carbon risk may not be priced because investors are
unable to adequately predict or quantify carbon risk. We show that brown firms are associated
with higher returns and that when firms become relatively browner their returns are lower.
Second, we show that green firms are becoming greener faster that brown firms, leading green
firms to outperform brown firms. We also show that green and brown firm carbon risk is better

explained by unpriced fundamental re-evaluations of firm cash flows than by priced discount-

18When considering non-EIV-corrected cross-sectional regressions, the carbon risk premium remains unverified.
19 We provide results upon request.
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rate changes. These results are in line with the theoretical model of Pastor et al. (2020) and adds

to the understanding of the functioning of carbon risk.

Our results and methodology can be used to expand the set of test assets and our
understanding of carbon risk, absent carbon and transition-related data. We extend our results
to firms without carbon-related data. We show that our factor continues to explain systematic
return variation well and that carbon risk does not appear to be priced in the broader cross-

section.

The results and methodology herein can be used by investors, regulators, and data
providers to better understand the role carbon risk and climate change play in a global asset
pricing context. As one might expect, a carbon risk premium requires firms, investor
expectations, data, and models to be in an equilibrium where most market participants
understand and agree on the source and the quantification of the risk. As jurisdictions
contemplate and introduce carbon pricing, the public mobilizes behind climate action, and
institutional investors divest from carbon-intensive industries, the markets may quickly develop
a common understanding of carbon risk. This paper will serve as a guide in understanding future

developments in sustainable and climate finance.
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Table 1

Descriptive statistics of variables

Variable N Mean SD Median
Panel A. Raw BGS Data

Value Chain

Emissions Intensity (CDP) 5,462 328.15 770.83 58.46
Emissions Intensity (Thomson Reuters) 6,195 369.69 907.67 56.58
Emissions Intensity (Sustainalytics) 6,189 341.53 745.69 59.86
Emissions Intensity (Combined) 6,968 368.88 883.01 58.31
Public Perception

Environmental Score 7,130 16.78 20.54 7.47
Environmental Pillar Score 7,170 4.34 1.98 4.40
Performance Band 5,681 4.28 2.02 4.17
Environmental Score 6,875 36.32 12.10 36.00
Adaptability

Environmental Innovation Score 7,141 38.66 25.84 35.29
Carbon Emissions Score 6,385 2.77 2.36 2.50
Preparedness 6,875 4.55 0.57 4.67
Panel B. Scored BGS Data

Value Chain Score 7,195 0.50 0.50 0.50
Public Perception Score 7,195 0.56 0.28 0.54
Adaptability Scores 7,195 0.51 0.34 0.50
Brown-Green-Score BGS 7,195 0.51 0.37 0.54
Panel C. Financial Data

Returns 7,171 0.12 0.35 0.10
Market Capitalization 7,195 19,771.43 38,513.42 7,862.32
Net Sales 7,195 17,228.58 32,721.70 7,084.00
Total Assets 7,195 24,369.15 46,441.11 9,248.30
Book-to-Market Ratio 7,195 5.59 4.46 4.64
Leverage Ratio 7,194 25.88 16.06 24.46
Invest/Total Assets Ratio 7,189 0.15 0.73 0.10
Property, Plant, and Equipment 7,194 8,288.05 18,910.92 2,383.65
Market Beta 7,165 0.98 0.50 0.95
Idiosyncratic Volatility 7,167 1.71 0.72 1.57

This table reports the descriptive statistics for all financial, carbon and transition-related variables in the data
sample grouped in categories (Panels A—C) for the period from January 2010 to December 2017. All scored
variables are scaled in such a way that higher values denote browner firms. All accounting variables are denoted
in million USD. A country and sector breakdown can be found in Internet Appendix Table A.1 and a short

description of each raw BGS variable can be found in Table A.2.
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Table 2
Panel regressions
1) ) ®) (4)
BGS 0.044™ 0.062"" 0.054™" 0.068"
(3.18) (4.55) (3.69) (1.67)
BGS Difference -0.040 -0.070™" -0.064"" -0.065™
(-1.55) (-2.90) (-2.63) (-2.05)
Log Total Assets 0.063™" 0.059™" 0.065™" 0.36™"
(10.83) (10.50) (11.26) (21.56)
Book-to-Market Ratio 0.341™ 0.047 0.105 1.795™"
(2.76) (0.38) (0.89) (7.79)
Leverage Ratio 0.000 0.000 0.000 0.001
(0.32) (0.79) (0.03) (1.35)
Invest/Total Assets Ratio 0.022 0.32 0.28 0.023
(0.04) (0.61) (0.54) (0.04)
Log PPE -0.040™" -0.040™" -0.036™" -0.25™
(-9.28) (-9.60) (-8.28) (-13.57)
Beta 0.044™ 0.062"" 0.037™ 0.036™
(4.86) (5.65) (4.16) (2.16)
Idiosyncratic Volatility -2.91™ -0.73 -0.17 11.17
(-3.77) (-0.90) (-0.23) (7.80)
Constant -0.34™
(-4.75)
Country fixed effects no yes no no
Industry fixed effects no no yes no
Firm fixed effects no no no yes
Time fixed effects no yes yes yes
R? 0.040 0.17 0.17 0.35
Within R? 0.031 0.035 0.10
N 6,055 6,053 6,055 5,871

This table shows panel regressions of yearly returns as the dependent variable on the BGS, fundamentals, and

country, industry, time, and firm fixed effects for the period from January 2010 to December 2017. 7, ™, ™ denote
significance on the 10%, 5%, and 1% level, respectively. Significance tests are based on two-sided t-tests.
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Development of brown and green firms

ARTICLE III: CARBON RISK | 109

Panel A. Development of carbon emissions of brown and green firms
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Panel B. Development of carbon and transition-related variables of brown and green firms

Mean Mean ann. change in %
Variable Brown Green Difference Brown Green Difference
BGS -1.54 -5.54 4.00
Value Chain -1.90 -15.95 14.06
Public Perception -1.88 -2.66 0.78
Adaptability -2.33 -8.01 5.68
Carbon Intensity 805.05 42.14 762.91 -1.90 -15.95 14.06
Environmental Score 22.27 8.66 13.61 -5.47 -5.82 0.35
Environmental Pillar Score 5.32 3.45 1.87 1.01 -0.46 1.47
Performance Band 4.52 4.09 0.42 0.21 -0.05 0.26
Environmental Score 41.79 30.27 11.52 -3.28 -4.33 1.06
Environ. Innovation Score 47.77 29.55 18.22 -1.52 0.00 -1.52
Carbon Emissions Score 4.21 1.58 2.63 -4.20 -22.73 18.53
Preparedness 4.71 4.36 0.35 -1.27 -1.29 0.03

This table shows in Panel A the development of carbon emissions of brown and green firms. Panel B provides
an overview of the development of carbon and transition-related variables of brown and green firms.
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Figure 1

Cumulative returns of the BMG factor and the long and short portfolios

This figure shows cumulative returns of the BMG factor and the weighted underlying long “small/high BGS”
(SH) and “big/high BGS” (BH), and short portfolios “small/low BGS” (SL) and “big/low BGS” (BL) for the
sample period from January 2010 to December 2017.



Table 4

Factor descriptive statistics and correlations
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Panel A. Carhart and BMG

Correlations

Mean
Factor Return (%)  SD (%) t-stat. BMG ery SMB HML WML
BMG -0.11 1.70 -0.65 1.00
erm 0.89 3.78 2.30 0.05 1.00
SMB 0.07 1.33 0.55 0.06 -0.02 1.00
HML -0.07 1.65 -0.41 0.29 0.17 -0.02 1.00
WML 0.51 2.37 2.09 -0.17 -0.20 0.00 -0.38 1.00
Panel B. Fama/French 5F and BMG
Mean Correlations
Factor Return (%)  SD (%) t-stat. BMG ery SMB HML RMW CMA
BMG -0.11 1.70 -0.65 1.00
erm 0.89 3.78 2.30 0.05 1.00
SMB 0.09 1.32 0.66 0.10 -0.03 1.00
HML -0.06 1.64 -0.34 0.29 0.17 0.09 1.00
RMW 0.27 1.17 2.21 -0.11 -0.44 -0.37 -0.54 1.00
CMA 0.08 0.99 0.81 0.16 -0.08 0.00 0.55 -0.15 1.00

This table displays descriptive statistics and correlations of the monthly global market (erw), size (SMB), value
(HML), momentum (WML), profitability (RMW), and investment (CMA) factors as well as the BMG factor for
the sample period from January 2010 to December 2017. The global factors ery, SMB, HML, WML, RMW, CMA,
and the risk-free rate are provided by Kenneth French.
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Table 6
Comparison of common factor models

Panel A. Significance tests for explanatory power of various models
Avg. Aadj. R?  Significantat5%  Avg. ARMSE

(%) F-test (%) (%)
(1) CAPM — Fama/French 1.32 15.00 -0.09
(2) CAPM - CAPM + BMG 0.86 13.54 -0.06
(3) Fama/French — Carhart 0.29 7.20 -0.03
(4) Fama/French — Fama/French + BMG 0.90 14.43 -0.06
(5) Carhart — Carhart + BMG 0.90 14.34 -0.06
(6) Fama/French 5F — Fama/French 5F + BMG 0.87 14.15 -0.06

Panel B. Significance tests for factor betas for the Carhart + BMG model
T-test of significance of coefficients

Avg. 10% level 5% level 1% level
coefficient # % # % # %
BMG 0.173 5,386 21.30 3,708 14.67 1,726 6.83
erm 0.946 19,284 76.27 17,478 69.13 13,788 54.53
SMB 0.784 5,854 23.15 3,756 14.86 1,436 5.68
HML 0.044 3,740 14.79 2,174 8.60 699 2.76
WML -0.181 3,309 13.09 1,893 7.49 508 2.01

This table provides comparisons of global common factor models including and excluding the BMG factor. Panel
A reports the average A adj. R? and A RMSE between different factor models run on single stocks in the sample
period from January 2010 to December 2017. Significance statistics are based on one-sided F-tests for nested
models (Ho: ﬁ?MG = 0). Panel B shows average beta coefficients as well as the absolute (#) and relative (%)
number of statistically significant beta coefficients from Carhart + BMG model regressions run on single stocks.
Statistical significance is based on two-sided t-tests.
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Table 7
Asset pricing tests

Factor model GRS p-value Mean |Alphal Mean adj. R? SR?

Panel A. 5x5 Size/Value Portfolios

CAPM 4.454 0.000 0.001 0.859 1.678
CAPM + BMG 4.351 0.000 0.001 0.862 1.673
Fama/French 4.399 0.000 0.001 0.928 1.723
Fama/French + BMG 4.314 0.000 0.001 0.929 1.721
Carhart 4.055 0.000 0.001 0.931 1.710
Carhart + BMG 3.985 0.000 0.001 0.932 1.708
Fama/French 5F 3.295 0.000 0.001 0.928 1.629
Fama/French 5F + BMG 3.186 0.000 0.001 0.929 1.616
Fama/French 6F 3.238 0.000 0.001 0.931 1.644
Fama/French 6F + BMG 3.142 0.000 0.001 0.932 1.633

Panel B. 5x5 Size/Momentum Portfolios

CAPM 4.452 0.000 0.003 0.842 1.678
CAPM + BMG 4.410 0.000 0.003 0.844 1.696
Fama/French 4.327 0.000 0.003 0.900 1.695
Fama/French + BMG 4.285 0.000 0.003 0.901 1.710
Carhart 3.883 0.000 0.002 0.933 1.637
Carhart + BMG 3.854 0.000 0.002 0.934 1.652
Fama/French 5F 3.057 0.000 0.002 0.905 1.511
Fama/French 5F + BMG 2.965 0.000 0.002 0.906 1.504
Fama/French 6F 2.969 0.000 0.002 0.934 1.508
Fama/French 6F + BMG 2.889 0.000 0.002 0.935 1.502

This table shows the results of various asset pricing tests on global test assets. We include 25 global portfolios
formed on Size/Value and Size/Momentum from the Kenneth French Data Library. Comparing various models
with and without the BMG factor, better fitted models according to the GRS test are printed in bold. The best
value according to each statistic for each test asset is also printed in bold. The sample period ranges from January
2010 to December 2017. The global factors erm, SMB, HML, WML, RMW, CMA, and the risk-free rate are
provided by Kenneth French.
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Cross-sectional regressions
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No EIV correction

EIV correction

(1) ) 3) 4
BMG -0.097 -0. 062 -0.218 -0.192
(-1.42) (-0.96) (-1.18) (-1.07)
ery -0. 240 -0. 232 -0. 015 -0. 008
(-1.09) (-1.08) (-0.04) (-0.02)
SMB -0. 115™ -0. 115™ 0. 002 -0. 003
(-2.17) (-2.28) (0.02) (-0.02)
HML 0. 085 0. 094 -0. 199 -0. 178
(1.20) (1.512) (-1.12) (-1.01)
WML -0. 062 -0. 076 0.398 0. 388
(-0.48) (-0.66) (1.59) (1.56)
Log Total Assets -0. 038 -0. 068 -0. 039 -0. 044
(-0.59) (-1.16) (-0.82) (-0.96)
Book-to-Market Ratio -317.77" -307.93™" -301.05™" -299.40""
(-6.69) (-6.76) (-8.18) (-7.99)
Leverage Ratio -0. 623" -0. 502 -0. 520" -0. 447"
(-1.85) (-1.53) (-1.95) (-1.71)
Invest/Total Assets Ratio -0. 014 -0. 014 -0.000 -0.000
(-1.15) (-1.15) (-0.03) (-0.04)
Log PPE -0. 042 0.011 -0. 017 -0. 004
(-0.80) (0.24) (-0.54) (-0.14)
Constant 2,713 2.204™ 2.133"" 1.868™"
(3.70) (2.98) (4.50) (3.65)
Industry fixed effects no yes no yes
R? (in %) 3.57 4.58 10.29 10.93
N 792,352 792,352 1,393,848 1,393,848

This table shows results of cross-sectional Fama and MacBeth (1973) regressions. We follow the implementation
of Pukthuanthong et al. (2019) and use two different methodologies. First, we simply conduct single-stock cross-
sectional regressions (no EIV correction). Second, we us double sorted portfolios as test assets. In the first step,
we run OLS regressions to estimate betas for the Carhart + BMG model. In the second step, all stocks are sorted
into size deciles in June each year. Within each size decile, stocks are further sorted into deciles based on their
estimated market beta resulting in 100 size/market beta groups. Then, the average market beta of each group is
assigned to each stock within that group. This procedure is repeated for all the other estimated betas. Afterwards,
cross-sectional regressions of monthly individual stock returns are run on the assigned beta values. The time-
series averages over all months with the respective t-values are reported in the table (EIV correction). Models (2)
and (4) include industry fixed effects. All coefficients are reported in percent. *, ™, and ™" denote statistical

significance at the 10%, 5%, and 1% level, respectively.
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Table 9
Variance decomposition

Variance components

Var(Ncp) Var(NDR) -2 COV(NCF, NDR) COI’I’(NCF, NDR)
Absolute (%) 0.0428 0.0040 -0.0183 70.05
(0.00) (0.00) (0.00) (0.00)
Normalized (%) 150.32 14.04 -64.36
(0.21) (0.02) (0.06)

This table shows the results of the variance decomposition of the BMG factor for the sample period from January
2010 to December 2017 following the methodology of Campbell (1991). We report both the absolute and
normalized values of variances and covariance of the cash-flow news and discount-rate news for the BMG factor.
The standard errors in parentheses are calculated using a jackknife method.
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Figure 2

Beta decomposition of 40 BMG beta sorted portfolios

This figure shows the beta decomposition of 40 test assets built in the period from January 2010 to December
2017 following the methodology of Campbell and Vuolteenaho (2004). The 40 test assets are constructed by
sorting all stocks into 20 5%-quantiles based on their BMG beta (portfolio group) and splitting each portfolio by
the stocks’ median market capitalization.
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Table 10
Pricing cash-flow and discount-rate betas
Factor model Two-beta ICAPM

Unrestricted a=0 Unrestricted a=0
Rab less Ryr (go) 0.007 0 0.014
% pa 8.978 0 16.751
Std. error (0.004) (0.002)
ﬁCF premium (g1) -0.022 -0.028 -0.005 0.014
% pa -26.609 -33.913 -6.339 17.203
Std. error (0.008) (0.007) (0.004) (0.001)
B Premium (gz) 0.064 0.104 0.001 0.001
% pa 76.533 124.322 1.704 1.704
Std. error (0.025) (0.018) (0.000) (0.000)
R2 0.188 0.090 0.053 -0.694

This table shows premia estimated in the sample period from January 2010 to December 2017 following the
methodology of Campbell and VVuolteenaho (2004). The asset pricing models are an unrestricted two-beta model
and a two-beta ICAPM with the discount-rate beta price constrained to equal the market variance. The second
column per model shows a model with the zero-beta rate equal to the risk-free rate (o = 0). Estimates are from a
cross-sectional regression using value-weighted portfolio returns of 40 test assets conditionally sorted on BMG
beta and size. Standard errors are from the respective cross-sectional regression.
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Table 11
Global breakdown of BMG beta

Panel A. BMG beta landscape

-~
o

-3

Unterstilizt von Bing
© GeoNames, HERE, MSFT, Microsoft, Navinfo, Wikipedia

Panel B. BMG beta in major countries

Country N Mean SD Min P25 Median P75 Max
France 428 -0.51 0.74 -3.29 -0.94 -0.48 -0.09 2.46
United Kingdom 1,178 -0.32 1.14 -3.21 -0.94 -0.38 0.15 4.20
Germany 507 -0.19 0.98 -3.29 -0.71 -0.24 0.22 4.07
Japan 2,586 -0.11 0.84 -2.95 -0.61 -0.13 0.34 4.07
United States 5,215 -0.03 1.12 -3.29 -0.63 -0.06 0.51 4.19
Taiwan 993 0.01 0.77 -2.91 -0.40 0.04 0.45 4.15
India 1,045 0.23 0.91 -3.25 -0.28 0.20 0.77 4,01
China 3,177 0.32 0.88 -3.25 -0.16 0.38 0.87 3.88
Hong Kong 1,217 0.39 1.00 -3.18 -0.17 0.35 0.97 4.06
Singapore 403 0.43 0.93 -3.22 0.00 0.47 0.88 3.79
South Korea 1,057 0.55 0.92 -3.25 0.04 0.51 1.05 4.20
Australia 747 0.91 1.18 -2.99 0.26 0.75 1.51 421
Canada 1,112 1.17 1.42 -3.29 0.23 0.98 2.15 4.22

This table shows in Panel A the BMG beta across the world. We include all countries with at least 30 firms to
correct for outliers. A green color indicates a low average BMG beta of the country, whereas a brown color states
that, on average, the country’s firms have high BMG betas. A grey color denotes that a country is neutral by
having an average BMG beta near zero. Panel B provides detailed descriptive statistics about the BMG beta in
major countries sorted in ascending order by their mean BMG beta.
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Table 12
Regional cross-sectional regressions
USA Europe Asia Global
BMG -0.211 -0.246 -0.181 -0. 192
(-1.14) (-1.28) (-1.04) (-1.07)
erv -0.057 0.043 0.028 -0. 008
(-0.16) (0.11) 0.07) (-0.02)
SMB -0.018 0.004 0. 029 -0. 003
(-0.14) (0.02) (0.19) (-0.02)
HML -0.136 -0.270 -0.165 -0. 178
(-0.78) (-1.49) (-0.92) (-1.01)
WML 0.216 0.350 0.402 0. 388
(0.90) (1.42) (1.58) (1.56)
Log Total Assets 0.138™" -0.040 -0.085 -0. 044
(2.90) (-1.04) (-1.31) (-0.96)
Book-to-Market Ratio -315.87"" -98.46™" -660.85"" -299.40"
(-7.19) (-6.28) (-4.57) (-7.99)
Leverage Ratio -0.420™ -1.340™ -0.735" -0. 447"
(-2.18) (-7.15) (-1.79) (-1.71)
Invest/Total Assets Ratio -0.005 0.016 0.003 -0.000
(-0.29) (0.35) (0.05) (-0.04)
Log PPE -0.071™ 0.006 0.042 -0. 004
(-2.21) (0.22) (1.06) (-0.14)
Constant 0.482 1.429™ 2.190™" 1.868™"
(0.86) (2.61) (3.49) (3.65)
Industry fixed effects yes yes yes yes
RZ (in %) 13.75 12.52 11.24 10.93
N 240,604 232,134 769,224 1,393,848

This table shows results of cross-sectional Fama and MacBeth (1973) regressions for different regions. The last
column reports the results for the global sample already shown in Table 8 for comparative purposes. For each of
the regions, we sort stocks into double sorted portfolios as in Pukthuanthong et al. (2019). In the first step, we
run OLS regressions to estimate betas for the Carhart + BMG model. In the second step, all stocks are sorted into
size deciles in June each year. Within each size decile, stocks are further sorted into deciles based on their
estimated market beta resulting in 100 size/market beta groups. Then, the average market beta of each group is
assigned to each stock within that group. This procedure is repeated for all the other estimated factor betas.
Afterwards, cross-sectional regressions are run of monthly individual stock returns on the assigned beta values.
The time-series averages over all months with the respective t-values are reported in the table. All coefficients

*  kk

are reported in percent. 7,

denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Internet Appendix A

Further descriptive statistics

Table A.1
Geographic and sectoral breakdown of data sample
Panel A. Geographic Panel B. Sectoral

Country # % Sector TRBC # %
United States 419 25.29 Industrials 52 374 2257
Japan 231 13.94 Cyclical Consumer Goods & Services 53 281  16.96
United Kingdom 192 11.59 Basic Materials 51 242  14.60
Canada 98 5.91 Technology 57 193 11.65
Australia 74 4.47 Non-Cyclical Cons. Goods & Services 54 169  10.20
France 70 4.22 Energy 50 122 7.36
South Africa 59 3.56 Healthcare 56 108 6.52
Germany 54 3.26 Utilities 59 105 6.34
Taiwan 47 2.84 Telecommunications Services 58 63 3.80
South Korea 35 211
Other Europe 249 15.03
Other Asia 80 4.83
Other Americas 37 2.23

Other Australasia 12 0.72
Total 1,657 100 Total 1,657 100

This table shows the geographic (Panel A) and sectoral breakdown (Panel B) in absolute numbers and percentages
for the data sample for the period from January 2010 to December 2017. The sectoral breakdown is based on the
Thomson Reuters Business Classification (TRBC).

Table A.1 reports geographical (Panel A) and sectoral (Panel B) breakdowns for the data
sample. The sectoral breakdown is based on the Thomson Reuters Business Classification
(TRBC). The numbers show that our sample can be regarded as a representative global sample.
The country with the highest number of firms is the United States with 419. The second largest
region is Europe with UK, France, and Germany in the top 10. Importantly, the sector
breakdown shows that the data sample has a sound mixture of sectors and not a specific focus,

e.g., on carbon-intensive or carbon-efficient industries.
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Table A.2

Descriptions of environmental variables of the four ESG databases
Variable Description

Value Chain

Emission Intensity
(CDP)

Emission Intensity
(Thomson Reuters)

Emission Intensity
(Sustainalytics)

Emission Intensity
(Combined)

Public Perception

Environmental Score
(Thomson Reuters)

Environmental Pillar Score
(MSCI)

Performance Band
(CDP)

Environmental Score
(Sustainalytics)

Adaptability

Environmental Innovation Score
(Thomson Reuters)

Gross global Scope 1 & 2 emissions figures in metric tonnes COze divided
by net sales.

Total CO;z and CO-, equivalents emissions in metric tonnes CO2e divided by
net sales.

Absolute Scope 1 & 2 GHG emissions (reported or otherwise estimated) in
metric tonnes CO-e divided by net sales.

By taking the different data quality and estimation methods within each
emissions database into account, we combine the three emission intensity
measures using the following preference order:
CDP > Thomson Reuters > Sustainalytics.

The environmental score consists of three subscores: Resource Use Score,
Emissions Score, and Innovation Score. The Resource Use Score reflects a
company’s performance and capacity to reduce the use of materials, energy
or water, and to find more eco-efficient solutions by improving supply chain
management. The Emission Reduction Score measures a company’s
commitment and effectiveness towards reducing environmental emission in
the production and operational processes. The Innovation Score reflects a
company’s capacity to reduce the environmental costs and burdens for its
customers, thereby creating new market opportunities through new
environmental technologies and processes or eco-designed products.

The Environmental Pillar Score represents the weighted average of all Key
Issues that fall under the Environment Pillar. Among others, it contains the
following key issues: carbon emissions, product carbon footprint, financing
environmental impact, climate change vulnerability, opportunities in clean
tech, green building, and renewable energy.

The performance band represents a score which assesses progress towards
environmental stewardship as reported by a company's CDP response. The
score assesses the level of detail and comprehensiveness of the content, as
well as the company's awareness of climate change issues, management
methods, and progress towards action taken on climate change as reported in
the response.

The research framework broadly addresses three themes: Environmental,
Social, and Governance. Within these themes, the focus is placed on a set of
key ESG issues that vary by industry. The key ESG issues are the most
material areas of exposure and, therefore, define key management areas for
the company. The key ESG issues were identified based on an analysis of the
peer group and its broader value chain, a review of companies’ business
models, the identification of key activities associated with environmental
and/or social impacts, and an analysis of the business impacts that may result
from inadequate management of these factors.

The Environmental Innovation Score reflects a company’s capacity to reduce
the environmental costs and burdens for its customers, thereby creating new
market opportunities through new environmental technologies and processes
or eco-designed products

(to be continued)
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Table A.2 continued

Carbon Emissions Score This key issue is relevant to those companies with significant carbon

(MSCI) footprints. Companies that proactively invest in low-carbon technologies and
increase the carbon efficiency of their facilities score higher on this key issue.
Companies that allow legal compliance to determine product strategy, focus
exclusively on activities to influence policy setting, or rely heavily on
exploiting differences in regulatory frameworks score lower.

Preparedness Preparedness measures an issuer’s level of commitment to manage

(Sustainalytics) environmental risks. It is assessed by analyzing the quality of an issuer’s
policies, programmes, and systems to manage environmental issues
effectively.

This table provides short variable descriptions of the carbon and transition-related variables from the Thomson
Reuters ESG, Carbon Disclosure Project (CDP), MSCI ESG, and Sustainalytics ESG datasets used to construct
the firm-specific Brown-Green-Score (BGS).

Table A.2 presents all variables used to construct the BGS. A short description is compiled from

various methodology sheets of each data provider.
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Table A.3
Transition probabilities of firms

Panel A. from year t — 1 to year t

Portfolio SLt SNt SH: BL: BN BH:

SLes 94.30% 1.93% 0.19% 3.44% 0.11% 0.02%
SNe.1 1.96% 92.67% 1.91% 0.12% 3.13% 0.20%
SHt1 0.16% 1.70% 95.05% 0.01% 0.10% 2.98%
BLt1 1.64% 0.05% 0.01% 96.82% 1.31% 0.18%
BNt1 0.07% 1.98% 0.08% 1.93% 93.63% 2.31%
BHt1 0.01% 0.05% 2.02% 0.18% 2.29% 95.46%

Panel B. from year t — 5 to year t

Portfolio SL¢ SN SH; BL: BN BH:

SLis 81.93% 7.08% 0.98% 9.03% 0.88% 0.10%
SNts 7.42% 73.84% 7.96% 1.00% 8.48% 1.29%
SHts 0.70% 6.89% 82.51% 0.07% 0.88% 8.95%
BLts 3.33% 0.24% 0.04% 90.07% 5.52% 0.81%
BNts 0.35% 3.97% 0.46% 8.61% 77.48% 9.13%
BHts 0.07% 0.41% 4.33% 0.89% 9.20% 85.10%

This table provides the transition probabilites of firms between the six size/BGS sorted portfolios: “small/high
BGS” (SH), “big/high BGS” (BH), “small/low BGS” (SL), “big/low BGS” (BL), “small/neutral BGS” (SN), and
“big/neutral BGS” (BH).

Table A.3 provides the transition probabilities of firms between the six size/BGS sorted
portfolios. If a firm is placed within, e.g., the SL portfolio, it will be assigned to the same
portfolio next year with a probability of 94.30% and five years later with a probability of

81.93%.
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Internet Appendix B

Further asset pricing tests

We conduct excluded factor regression coefficient estimates for several common factor models
(Barillas and Shanken, 2017). Then, we measure the mean absolute alpha for each factor in four
different factor models. Technically, we explain in a first step each factor by a respective
reference model and determine its alpha. In a second step, we calculate the mean average alpha
considering the whole reference model under the condition that the alphas for the factors already
included in each model are zero. The mean average alpha functions as decision criteria which

factor to include in common factor models.

[Insert Table B.1 here.]

Over the period from January 2010 to December 2017, the mean absolute alpha is determined
for each factor within each panel. The results in Panel A of Table B.1 suggest that we should
first include the factor with the lowest mean absolute alpha of 0.0403, SMB, into the CAPM.
As a second factor the BMG factor should be included next into the reference model with a
value of 0.065. Over all other panels, this analysis clearly favors including the BMG factor into

common factor models.
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Table B.1
Excluded factor regression coefficient estimates for different models

Panel A. Excluded-factor regressions for the CAPM model: {Mktrf}

LHS Alpha ery Mean |Alpha]  Adj. R?

SMB 0.0806 -0.00678 0.0403 -0.010
(0.57) (-0.19)

HML -0.136 0.0750" 0.068 0.019
(-0.80) (1.69)

BMG -0.13 0.0203 0.065 -0.009
(-0.73) (0.44)

Panel B. Excluded-factor regressions for the Fama/French model: {Mktrf SMB HML}

LHS Alpha erm SMB HML Mean |Alpha]  Adj. R?

WML 0.55 -0.0880 -0.0190  -0.516™ 0.1375 0.139
(2.37) (-1.45) (-0.11) (-3.71)

BMG -0.00097  -0.00160 0.0898 0.300™" 0.0002418  0.059
(-0.56) (-0.04) (0.71) (2.89)

Panel C. Excluded-factor regressions for the Fama/French 5F model: {Mktrf SMB HML}

LHS Alpha erm SMB HML Mean |Alpha]  Adj. R?

RMW 0.377 -0.116™  -0.305™  -0.316™" 0.1885 0.514
(4.37) (-5.16) (-4.77) (-6.08)

CMA 0.148 -0.0477™  -0.0458 0.352"" 0.074 0.514
(1.71) (-2.10) (-0.72) (6.72)

BMG -0.104 0.00005 0.0903 0.293™" 0.052 0.060
(-0.60) (0.00) (0.70) (2.80)

Panel D. Excluded-factor regressions for the Fama/French 6F model: {Mktrf SMB HML RMW CMA}

LHS Alpha erm SMB HML RMW CMA  Mean |Alpha] Adj. R?

WML 0.246 0.00808 0.221 -0.639™" 0.509" 0.762™" 0.0615 0.239
(1.02) (0.12) (1.22) (-3.44) (1.92) (2.89)

BMG -0.186 0.0254 0.157 0.366™ 0.221 -0.00681 0.0465 0.050
(-0.96) (0.49) (12.09) (2.46) (1.04) (-0.03)

This table provides excluded factor regression coefficient estimates for common factor models in the sample
period from January 2010 to December 2017. The global factors ernm, SMB, HML, WML, RMW, CMA, and the
risk-free rate are provided by Kenneth French.
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In this section, we stick to the “Protocol for Factor Identification” of Pukthuanthong et al.
(2019) and follow their two-step procedure. For the first stage, we show that the BMG factor
moves asset prices systematically, i.e., that it is related to the covariance matrix of returns — a

necessary condition for a factor to be relevant. We deal with the second stage in section 4.5.1.

We extract principal components (PCs) from the returns of our global stock dataset using
the asymptotic principal components approach of Connor and Korajczyk (1988). The extracted
PCs should have an eigenvalue greater than one.?’ For our global dataset, we obtain thirteen

PCs that fulfill this requirement.

Next, we compute canonical correlations between the PCs and factors from the Carhart
(1997) model and the BMG factor. In total, we have K = 5 factors. Thus, we have two sets for
calculating canonical correlations. Let ux be the canonical scores out of the set of factors and
v; the canonical scores out of the set of PCs (with L = 13). The procedure now allows to
determine weights for the linear combinations of the factors and PCs, respectively, which
maximize the correlation between both sets. Thus, a canonical variate that maximizes the
correlation using the weights can be constructed. One then repeats this procedure to obtain
another canonical variate that is orthogonal to the previous one. In total, there are min (K, L)
canonical variates, i.e., in our case five pairs of ux and v;. The canonical correlations are
displayed in Panel A of Table B.2 sorted from the highest to the lowest correlation. We also
test the canonical correlations for significance according to Wilks’ lambda. F-statistics for each
canonical correlation are displayed in the third column of Panel A. The first canonical
correlation is large and close to one with a value of 0.924. Only the fifth correlation falls below

0.5 and is not significantly different from zero at the 5% level with an F-statistic of 0.951.

20 One could choose also other threshold values, e.g., the cumulative variance explained by the PCs. In our analysis,
the extracted PCs explain approximately 60% of global return variances. If we choose a cutoff value of 90% of
explained variance, we need more PCs, however, the results remain economically the same.
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As Pukthuanthong et al. (2019), we test the significance of each factor using the following
procedure. We use the weights for the PCs of each of the canonical pairs to construct the
weighted average PC, i.e., the canonical variate that produces the respective canonical
correlation. For each of these canonical variates, we run a regression with the variate as
dependent variable and the actual factor values as independent variables. Panel B of Table B.2
reports the average absolute t-statistic for each factor resulting from the five regressions. We
also report the mean absolute t-statistic when taking only the significant canonical correlations
into account. When the canonical correlation is statistically indistinguishable from zero, the
factors are irrelevant and using them would be overfitting. Thus, we exclude insignificant

canonical correlations in the second row of Panel B.

[Insert Table B.2 here.]

As expected, the market factor er), displays the highest mean absolute t-statistic. The BMG
factor follows with a t-statistic of 4.13 and 5.03, respectively. A factor is deemed as relevant if
the t-statistic exceeds the one-tailed 2.5% cutoff (1.96). According to this cutoff value, the BMG
factor is highly significant, but also SMB, HML, and WML show significance. From this
analysis, we conclude that the BMG factor is related to the covariance matrix of returns and

thus passes the necessary condition for being a relevant factor.
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Canonical correlations with asymptotic PCs and significance levels of factors

Panel A. Canonical correlations

Canonical variate ;??;2;?::} F-stat
1 0.924 7.902
2 0.865 4.826
3 0.560 2.193
4 0.517 1.847
5 0.307 0.951
Panel B. Significance levels for factors
Factors

ery SMB HML WML BMG
Mean absolute t-stat 5.44 2.93 3.03 2.20 4.13
Mean absolute t-stat of
significant canonical 6.69 3.54 3.33 2.05 5.03
correlation

This table shows canonical correlations between the Principal Components (PCs) and the global market factor,
SMB, HML, WML, and the BMG factor. We follow the methodology described in Pukthuanthong et al. (2019) to
derive the results of this table. Panel A reports five canonical correlations and their respective F-statistics obtained
from Wilks’ lambda test. Panel B reports the significance level for the respective factor. In order to obtain the t-
statistic, each PC canonical variate is regressed on all of the factors for the whole sample period. Since there are
five pairs of canonical variates, there are five regressions in total. Panel B reports the average absolute t-statistic
for each factor over the five regressions in the first row. The second row reports the mean absolute t-statistic
when the canonical correlation itself is statistically significant at the 5% level.
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As a further robustness test, we show that the BMG factor is a relevant factor and is related to
the covariance matrix of returns for the back-casted sample period from January 2002 to

December 2017.

[Insert Table B.3 here.]

The results remain basically unchanged. The BMG factor shows a mean absolute t-statistic of
5.62 and thus ranks second after the market factor (see Table B.3). When taking into
consideration only significant canonical correlations, the BMG factor improves and displays a
mean absolute t-statistic of 6.95. These results confirm that the BMG factor is relevant in the

explanation of the covariance structure of returns even for a longer time horizon.
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Table B.3
Canonical correlations with asymptotic PCs and significance levels of factors for the long time period

Panel A. Canonical correlations

Canonical variate ;??;2{?3:} F-stat
1 0.881 11.481
2 0.856 8.243
3 0.679 4.278
4 0.486 2.215
5 0.241 0.829

Panel B. Significance levels for factors

Factors
erm SMB HML WML BMG
Mean absolute 5.84 5.28 3.15 1.80 5.62
t-stat
Mean absolute t-stat of
significant canonical 6.84 6.56 3.78 1.47 6.95
correlation

This table shows canonical correlations between the Principal Components (PCs) and the global market factor,
SMB, HML, WML, and the BMG factor for the time period from January 2002 to December 2017. We follow the
methodology described in Pukthuanthong et al. (2019) to derive the results of this table. Panel A reports five
canonical correlations and their respective F-statistics obtained from Wilks’ lambda test. Panel B reports the
significance level for the respective factor. In order to obtain the t-statistic, each PC canonical variate is regressed
on all of the factors for the whole sample period. Since there are five pairs of canonical variates, there are five
regressions in total. Panel B reports the average absolute t-statistic for each factor over the five regressions in
the first row. The second row reports the mean absolute t-statistic when the canonical correlation itself is
statistically significant at the 5% level.
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Internet Appendix C

Orthogonalization

We are aware of the fact that the BMG factor might include effects from other risk factors.
Therefore, we perform several analyses based on a democratic orthogonalization introduced by
Klein and Chow (2013), so that our factor is perfectly uncorrelated to the other risk factors of
the Carhart (1997) model. They emphasize that an asset’s volatility does not only depend on
the sensitivities towards the risk factors, the betas, but also by the variances and covariances of
them. A simultaneous orthogonalization of all risk factors allows disentangling the uncorrelated
component from the correlated components by eliminating the covariance between factors
while maintaining the variance structure and the coefficient of determination. Thereby, we
isolate the effect the BMG factor explains excluding the effects other risk factors already

capture.

Table C.1 displays the descriptive statistics of the orthogonalized factors. As desired, the
standard deviation of the respective orthogonalized factor does not change compared to its
original counterpart. Also, the correlation between the factors is set to 0. The mean excess return
decreases in absolute values to —0.09. Nevertheless, the correlations between the non-
orthogonalized factor and the respective orthogonalized factor are still high and suggest a high
resemblance. In fact, the correlations are 0.986, 0.996, 0.999, 0.959, and 0.979 for the BMG

factor, ery;, SMB, HML, and WML, respectively.
[Insert Table C.1 here.]

Applying the orthogonalized factors to our previous analyses leads to the following
conclusions. For the BGS quintile portfolio performance, there are basically no changes in our
reasoning (Table C.2). Note that although the newly estimated beta coefficients for the

orthogonalized factors may change in magnitude and direction, the alpha and the adjusted R?
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values remain the same by construction. However, most values are very similar. In addition,
the BMG factor continues to be highly significant for the extreme portfolios and increases

monotonically from the lowest to the highest quintile.
[Insert Table C.2 here.]

Democratic orthogonalization also allows determining the specific contribution of each factor
to the variation in the dependent variable via a decomposition of a regression’s R? (see also
Klein and Chow, 2013). It thus provides a tool for identifying useless factors in the explanation
of excess returns. Table C.3 shows that in the highest BGS quintile, the orthogonalized BMG
factor explains 13.31% of variation in stock returns, whereas SMB, for example, only captures
1.15%. In general, the BMG factor is especially important for the extreme quintiles, whereas it
barely adds to the explanatory power in the middle quintiles 2 and 3. Overall, these results of
the R2-decomposition show once more that the BMG factor captures exactly what it is supposed
to — it explains a significant part of the systematic risk of firms overly sensitive to the transition

process of the economy towards a green economy.
[Insert Table C.3 here.]

Additionally, Table C.4 shows the average decomposed-R? values of the orthogonalized factors
on single stock level. Single stock regressions are run with the orthogonalized factors of the
Carhart + BMG model. The average systematic R? sums up to 21.14% and the average
idiosyncratic variance obtained from the systematic variance is 78.86%. As expected, the
market factor er,, explains the most variation in excess returns with an average decomposed-
R? of 12.89%, while BMG" is, with an average contribution of 2.28%, approximately on the
same level as SMB* with 2.38%, and well above the level of HML* with 1.68% and WML"*
with 1.90%. Therefore, the orthogonalized BMG factor can explain a relevant amount of

variance in stock returns.
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[Insert Table C.4 here.]

Next, we again assess the importance of our factor related to the significance of its coefficient
in single stock regressions. Table C.5 displays the amount of significant coefficients based on
the 10%, 5%, and 1% significance level, respectively. The results are very similar to the results
without orthogonalized factors. The average coefficient of the orthogonalized BMG factor
slightly increases to 0.251. To sum up, we notice once again that our orthogonalized BMG

factor does not stand behind the other factors.

[Insert Table C.5 here.]



Table C.1

Descriptive statistics - orthogonalized factors
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Mean excess

Correlations

Factor return (%) SD (%) t-stat. BMG ery SMB HML WML
BMG* -0.09 1.70 -0.50 0.986
ervt 0.97 3.78 2.50 0.996
SMB* 0.08 1.33 0.60 0.999
HML* -0.01 1.65 -0.09 0.959
WML* 0.58 2.37 2.40 0.979

This table displays descriptive statistics of the monthly democratically orthogonalized factors of the global
Carhart model and the BMG factor for the sample period from January 2010 to December 2017. Correlations are
reported between the orthogonalized factors and the original factors. The original global factors erm, SMB, HML,

and WML are provided by Kenneth French.
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Table C.3
Decomposition of R?

Decomposed-R?

Idiosyncratic

Quintile eryt SMB! HML: WML BMG* Sy;ge&a)t'c Variance
(1-R?) (%)

Low 9152 0.25 0.15 1.96 1.14 95.02 4.98

2 91.39 0.77 0.01 0.97 0.12 93.25 6.75

3 92.60 0.33 0.35 1.40 0.02 94.70 5.30

4 84.77 0.41 0.84 3.26 3.91 93.18 6.82

High 76.71 115 0.11 2.39 13.31 93.69 6.31

This table shows the decomposed-R? of each democratically orthogonalized factor for the global BGS quintiles.
The systematic variance is the sum of all decomposed-R?, whereas the idiosyncratic variance equals 1—R?. The
original global factors ery, SMB, HML, and WML are provided by Kenneth French.
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Table C.4
Decomposition of R with orthogonalized factors on single stock level
Avg. decomposed-R* (%) Avg. Avg. ldiosyncratic
et SMB*  HML*  wML*  BMG*-  Systematic R*(%) Variance (1-R?) (%)
12.89 2.38 1.68 1.90 2.28 21.14 78.86

This table shows the average decomposed-R? values of orthogonalized factors. The systematic risk is decomposed
following the methodology of Klein and Chow (2013). Regressions are run based on the Carhart + BMG model
with single stocks. The overall average systematic R? and the average idiosyncratic variance obtained from the
systematic variance on single stock level are displayed.
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Table C.5
Significance tests for factor betas for the Carhart + BMG model

T-test of significance of coefficients

Avg. 10% level 5% level 1% level
coefficient # % # % # %
BMG* 0.251 4,245 20.97 2,930 14.47 1,374 6.79
eryt 0.958 15,672 77.41 14,295 70.61 11,167 55.16
SMB! 0.846 4,864 24.02 3,151 15.56 1,189 5.87
HML! 0.121 2,880 14.23 1,696 8.38 529 2.61
WMLt -0.306 3,406 16.82 2,041 10.08 691 3.41

This table provides a summary of significance tests of beta coefficients with orthogonalized risk factors.
Regressions are run based on the Carhart + BMG* model on single stock level. The average coefficients as well
as the absolute (#) and relative (%) numbers of statistically significant beta coefficients from the democratically
orthogonalized Carhart + BMG! model regressions run on single stocks in the sample period from January 2010
to December 2017 are displayed. Statistical significance is based on two-sided t-tests.
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Internet Appendix D

Further risk decomposition

For the risk decomposition, we use the VAR methodology of Campbell (1991) and assume that
the data are generated by this first-order VAR model:

G =atlz tuy, (D.1)
where z,,, is an m-by-1 state vector with BMG,. as its first element, a and I" are an m-by-1
vector and m-by-m matrix of constant parameters, and u,, is an i.i.d. m-by-1 vector of shocks.
Provided that the process in Equation (D.1) generates the data, t+1 cash-flow and discount-rate
news are linear functions of the t+1 shock vector:

Npriv1 =€l'Auyy, (D.2)

Nepgey = (el +el 2 u,.y, (D.3)

where el is a vector with the first element equal to one and the others equal to zero and

7»=pF(I—pF)'1.21

In specifying the aggregate VAR, we follow Campbell and Vuolteenaho (2004) by
choosing global proxies for the four state variables. First, we use the log return on BMG.
Second, we add the term yield spread (TY) as a weighted average of country specific interest
rates by Thomson Reuters Datastream.?? TY is computed as the yield difference between the
ten-year and the two-year treasury constant-maturity rate and denoted in percentage points. We
construct our third variable, the price-earnings ratio (PE), as the log of the price of the Thomson
Reuters Equity Global Index divided by the aggregate earnings of all firms in the index. Fourth,

the small-stock value spread (VS) is the difference between the log book-to-market value of the

2L \We set p close to one as defined in Campbell and Vuolteenaho (2004).
22 \We use the weighting scheme of the MSCI World index as of the end of our sample period.
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small high-book-to-market portfolio and the log book-to-market value of the small low-book-

to-market portfolio.?®

The unexpected return variance is decomposed into three components following

Campbell (1991):

Var(BMG, - Et_lBMGt) = Var(NCF) + Var(NDR) -2 COV(NCF, NDR) , (D4)
_ Var(Ncr) i Var(Npgr) _ Cov(Ncr. Npg) (D.5)
Var(BMG; — E,1\BMG,)  Var(BMG; — E,1BMG,) Var(BMG, — E;.1BMG,) * )

For the beta decomposition, we use the same approach, however, the first state variable equals

the excess market return (r,).

For the decomposition of the market beta into a cash-flow and a discount-rate beta we use
the computation method of Campbell and VVuolteenaho (2004):

Cov(ri‘ s N )

_ CF D.6
ﬁl’,CF Var(rys — Epiragy) ( )
Cov(r,;,, —NDR)
o[ =Np) D.7
ﬁi,DR Var(rM,t_Et-lrM,t) ’ ( )

where 7, , is the return of a specific test asset.

In addition, Figure D.1 uses the methodology described above to decompose the BMG beta
into a cash-flow and discount-rate news component. As expected, for both brown and green
extreme portfolios, the BMG beta is mainly determined by the cash-flow beta component —
solely with an opposite sign, i.e., negatively for green and positively for brown portfolios,

respectively.

23 The portfolios are constructed using all firms in the Thomson Reuters Equity Global Index following the
approach of Fama and French (1993). As suggested in Chen and Zhao (2009), we used several state variable sets
to determine the news components. Our results remain stable.
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Figure D.1
BMG Beta decomposition of 40 BMG beta sorted portfolios

This figure shows the BMG beta decomposition of the 40 test assets built out of the global sample. The 40 test
assets are constructed by sorting all stocks into 20 5%-quantiles based on their BMG beta (portfolio group) and
splitting each portfolio by the stocks’ median market capitalization. The cash-flow and discount-rate betas are
obtained by following the methodology of Campbell and Vuolteenaho (2004) with the BMG factor as the first
state variable.
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5 ARTICLE IV: GET GREEN OR DIE TRYING? CARBON RISK INTEGRATION INTO

PORTFOLIO MANAGEMENT

Maximilian Goérgen, Andrea Jacob, Martin Nerlinger
Journal of Portfolio Management, 47 (3), February 2021, 77-93.
DOI: https://doi.org/10.3905/jpm.2020.1.200.

(VHB-JOURQUALS3: B)

Abstract. Portfolio management is confronted with climate change — stronger and more rapidly
than expected. Risks arising from the transition process from a brown, carbon-based to a green,
low-carbon economy need to be integrated into portfolio and risk management. We show how
to quantify these carbon risks by using a capital markets-based approach. Our measure of
carbon risk, the carbon beta, can serve as an integral part to portfolio management practices in
a more comprehensive way than fundamental carbon risk measures. Apart from other studies,
we demonstrate that both green and brown stocks are risky per se, but there is no adequate
remuneration in the financial market. In addition, carbon risk exposure is correlated with
exposures towards other common risk factors. This requires due diligence when integrating
carbon risk in investment practices. By implementing carbon risk screening and best-in-class
approaches, we find that investors can gain a desired level of carbon risk exposure, but this does

not come without well-hidden costs.

JEL Classification: G11, Q54

Keywords: ESG investing, portfolio construction, equity portfolio management, carbon risk,

climate change
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6 ARTICLE V: INVESTORS’ DELIGHT? CLIMATE RISK IN STOCK VALUATION DURING

COVID-19 AND BEYOND

Andrea Jacob, Martin Nerlinger

Working Paper (2021), University of Augsburg and University of St. Gallen

Abstract. We use the COVID-19 pandemic period in 2020 as an exogenous shock event to
assess in how far climate risks measured by carbon exposure have entered and established
themselves in the valuation of global stocks. We find that carbon intensity affected returns
significantly negatively during a time of high uncertainty. However, carbon-intensive stocks
could make up for their additional losses in the recovery period. In line with their high risk
exposure towards stranded assets and climate policy uncertainty, carbon-intensive stocks face

higher risk levels in more stable economic times thus justifying a carbon premium.

JEL Classification: G01, G11, G12, Q54

Keywords: Climate risk, COVID-19, investment decisions, equity returns
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6.1 Introduction

Making decisions under uncertainty is one of the indispensable tasks of financial market
participants. Dealing with uncertainty involves the proper management of risk. In recent times,
investors have had to learn how to cope with a new impending risk source: climate change.
Environmental-related risks such as extreme weather events, climate action failure, and human-
made environmental damage rank among the top risks by likelihood and impact in the World
Economic Forum’s Global Risks Report 2021. Apart from physical risks, technological
innovations and climate policy measures targeted towards reaching a low-carbon economy may
result in stranded assets (Mercure et al., 2018). Governments worldwide are committed towards
combatting climate change by reducing carbon emissions (see, e.g., the Paris Agreement of
2015) and clients increasingly demand sustainable investments (Amel-Zadeh and Serafeim,
2018). Hence, climate risks have evolved as real investment risks for financial assets with an
expected reallocation of capital towards sustainable investments (Fink, 2021; Krueger et al.,

2020).

Even though investors recognize that climate risks have financial impacts on their
portfolios, the financial industry still has to elaborate on how to incorporate these risks in their
investment practices (Krueger et al., 2020). When one trusts in the reliability of the financial
market, asset prices should mirror all available information (Fama, 1970). Therefore, a re-
evaluation of assets is essential for managing climate risks. Based on a fundamental stock
analysis, the value of carbon-intensive stocks should be impacted by their high exposure
towards stranded assets, technological changes, and potential carbon emission mitigation plans
such as carbon pricing or carbon taxes (Bolton and Kacperczyk, 2020; Andersson et al., 2016;

de Jong and Nguyen, 2016; Litterman, 2011).

Financial market participants drastically revise their expectations on how to evaluate assets

when extreme situations occur. Such re-evaluations eventually become apparent in a
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consequential fall or rise in asset prices. The economic downturn at the beginning of the
COVID-19 pandemic in early 2020 constitutes such an extreme tail-risk event that has induced
investors to a re-evaluation of their holdings leading to a dramatic drop in stock market values
worldwide (e.g., Zhang et al., 2020; Shehzad et al., 2020; Lydcsa et al, 2020; Ashraf, 2021).
We use this exogenous shock to assess in how far carbon emissions have entered the valuation
process of equity prices. Such an exogenous shock that has arisen unexpectedly allows us to
analyze investors’ preferences towards carbon-related characteristics while holding carbon
intensity levels constant. Since the awareness for climate risk has intensified in recent years,
we are now at a point in time with sufficient and adequate data to test implications for stock
analyses. The recent pandemic thus provides a first opportunity to derive implications of the
integration of climate-related aspects on the stock valuation process. In this way, we gain deeper
insights into how carbon intensity establishes itself as a fundamental characteristic in stock

analysis during and after a period of heightened uncertainty and fear.

In literature, the role of carbon emissions in stock valuation is studied in different setups.
Matsumura et al. (2014) find a negative relation between carbon emissions and firm value and
an additional penalty for non-disclosure of emissions. Chava (2014) finds that firms with
climate change concerns have to bear higher cost of equity capital and debt capital. In contrast,
Delmas et al. (2015) and Busch et al. (2020) both come to the conclusion that higher carbon
emissions increase at least short-term performance while disagreeing on their impact on long-
term performance. Recent studies focus on a risk premium for holding emissions-intensive
stocks. Hsu et al. (2020) attribute the existence of a pollution premium to environmental policy
uncertainty. Bolton and Kacperczyk (2020) find a carbon premium that is related to the level of
and to changes in carbon emissions. The existence of a carbon premium is consistent with the
notion that carbon-intensive stocks face higher tail risks associated with climate policy

uncertainty (Ilhan et al., 2021).
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Studies on the relationship between stock characteristics, returns, and resilience during
crisis periods constitute another relevant strand of literature for our study. For example, Duchin
et al. (2010) find that low cash reserves and high net short-term debt led to a greater decline of
corporate investment during the Global Financial Crisis (GFC). For the COVID-19 period,
markets valued firms lower that were more exposed to international trades, higher corporate
debt, and lower cash holdings (Ramelli and Wagner, 2020). In addition, socially responsible
and sustainable funds measured by Environmental, Social, and Governance criteria (ESG) have
turned out to provide more resilience during the GFC (Lins et al., 2017) and the COVID-19

shock (Albuquerque et al., 2020).

The reasons on why markets and investors impose higher valuations on more sustainable
stocks during crisis periods are manifold. Investors have higher trust in sustainable firms (Lins
et al., 2017), are more patient, i.e., more loyal (Broadstock et al., 2021; Albuquerque et al.,
2020), meanwhile perceive sustainability as a necessity rather than a luxury good (Pastor and
Vorsatz, 2020), and have higher preferences for sustainable funds (Hartzmark and Sussman,
2019; Riedl and Smeets, 2017). Additionally, studies prove the risk mitigation potential of

sustainable stock traits (e.g., Bouslah et al., 2018; Nofsinger and Varma, 2014).

This study analyzes how climate risk enters the re-evaluation considerations of investors
in times of high uncertainty and beyond. Climate risk exposure is best approximated by carbon
emissions since they constitute the target measure of climate policies and political agreements.
Following the recommendation guidelines of the Task Force on Climate-Related Financial
Disclosures (TCFD, 2017) and thus the industry standard in disclosing carbon information for
investors, we use carbon intensity as our measure of interest. Our study is most closely related
to Wan et al. (2021) and Mukanjari and Sterner (2020). The former compare Chinese fossil fuel
and clean energy firms during the COVID-19 period, whereas the latter assess European stock

performance during the crisis period based on carbon intensities. Instead of constraining our
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study to a certain region, we employ a global stock sample. Moreover, to the best of our
knowledge, we are the first to address post-crisis implications, i.e., we investigate how investors
incorporate carbon characteristics in their valuations in more stable times following the

COVID-19 initial shock period.

A first descriptive analysis demonstrates that high-emitting stocks had significantly lower
returns and higher traditional risk measures than low-emitting stocks during the COVID-19
period. In cross-sectional regressions, we find that carbon intensity indeed influenced
cumulative returns and abnormal returns negatively during the crisis period. This impact
strengthens the higher a stock’s carbon intensity level. To infer whether the effect is unique to
the crisis period and not common to the previous, rather calm economic time, we conduct
difference-in-differences regressions on daily return measures. We confirm that high emitters
experienced a significantly lower financial performance during the COVID-19 period
compared to the pre-crisis period. Hence, investors rather shunned these stocks in times of high
economic uncertainty and drove returns of carbon-intensive stocks down. In the post-COVID-
19 period, however, high emitters achieved a significantly higher performance than in the pre-
crisis period, thus allowing them to make up for some of their additional losses incurred during

the crisis period compared to low emitters.

Cross-sectional regressions with volatility and idiosyncratic volatility as dependent
variables show that carbon intensity had no significant impact on risk during the crisis period.
The major drivers of risk in this period were other firm characteristics such as debt, profitability,
and historical volatility. However, high emitters turned out to be significantly riskier relative to
low emitters. Eventually, for the post-COVID-19 period, the effect of carbon intensity on
volatility turned significantly positive. Increasing risk for carbon-intensive stocks is in line with
their higher risk exposure towards stranded assets and climate policy regulation targeted at

reducing carbon emissions. Moreover, discussions on combining monetary economic stimulus
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packages with climate change targets might have magnified risk exposures for carbon-based
assets. Apart from that, our results in the post-crisis period, i.e., higher risk exposure and higher
returns for carbon-intensive stocks, are in line with discussions about the existence of a carbon

premium in the financial market (Bolton and Kacperczyk, 2020).

In summary, carbon-intensive stocks had to suffer from lower returns during the
unexpected COVID-19 period and displayed higher risk exposures afterwards. Our results
emphasize the importance of fully incorporating climate risks in stock valuation practices.
Climate risks constitute an unavoidable risk source and thus have to be part of sound risk
management strategies. Our analyses point to the fact that market participants have already
shunned carbon-intensive stocks during the COVID-19 shock period driving their returns
downward. In addition, increased societal and political interest in a green economic
development — exemplified by green recovery packages — imposes an ever higher risk burden
on carbon-based stocks. Overall, this study supports financial market participants in deriving
more profound forecasts and stock recommendations, constructing more resilient portfolios,

and eventually avoiding excessive risk-taking due to an unidentified risk source.

6.2 Data description

For our empirical analyses, we use a global stock sample based on stocks of the MSCI All
Countries World Investable Market Index (ACWI IMI). We obtain scope 1 and scope 2 carbon
emissions data from three sources: CDP, Refinitiv, and Sustainalytics. Since reporting of carbon
emission levels is not mandatory yet, we have to face limited data availability. To overcome
this shortcoming, we enlarge our data sample by combining the aformentioned databases. If no
CDP emissions are available for a stock, the data point is filled by Refinitiv and eventually
Sustainalytics. Emissions data refer to 2019 yearly values. In our analyses, we use carbon
intensity defined as the sum of scope 1 and 2 emissions divided by a firm’s net sales. This is a

standard approach for measuring carbon intensity in research (Bolton and Kacperczyk, 2020)
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and finance practice (TCFD, 2017). To distinguish between high and low carbon-intensive
stocks more rigidly, we label all stocks with a carbon intensity higher than the 75" percentile

as “high emitters” and the remaining stocks as “low emitters”.

We obtain daily return data from Refinitiv Datastream for the years 2019 and 2020.
Furthermore, we extract December 2019 accounting data known to influence returns, i.e., size
measured by the logarithm of market capitalization, total debt over total assets, cash holdings
over total assets, the leverage ratio, return on equity as profitability measure, expenses for
selling, general and administrative functions (SGAE), the dividends ratio, and the book value
of equity for calculating the book-to-market ratio. We additionally define historical volatility
as a stock’s daily return volatility during the year 2019. Our key variables are defined as
follows. Apart from daily raw excess returns, we calculate abnormal daily returns as the
difference between raw excess returns and CAPM-adjusted excess returns. Both for the
COVID-19 and post-COVID-19 periods, we compute cumulative returns and cumulative
abnormal returns. In addition, return volatility and idiosyncratic volatility (defined as abnormal
return volatility) during each period serve as risk measures. Overall, with these definitions, we
follow prior studies such as Ramelli and Wagner (2020), Albuquerque et al. (2020), and Lins

et al. (2017).

Descriptive statistics of all variables used in this article are summarized in Table 1. In total,
we obtain carbon intensity data for 3,247 stocks. At the intersection of all relevant data points

for our baseline analyses, we are left with 2,589 global stocks.
[Insert Table 1 here.]

In order to obtain clear-cut results for the impact of the COVID-19 pandemic, we define a more
intensive crisis period for COVID-19 from February, 24" until March, 31% in line with previous

papers (start of the “fever period” in Ramelli and Wagner (2020) and the “COVID-19 event
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date” in Albuquerque et al. (2020)). The subsequent period from April, 1% until the end of the
year 2020 is defined as the post-COVID-19 or post-crisis period. Even though the COVID-19
pandemic still defines our daily lives one year after the global outbreak, stock markets
recovered fairly well from April 2020 on. We explain this circumstance by the fact that the first
outbreak and the following lockdowns in February 2020 have been surprising and until then
unique in nature. Hence, they constituted an unforeseen shock event. After that, further waves
and consequential lockdowns have been expected and propagated by health experts and
economists. Stock analysts thus had the possibility to take potential impacts on financial assets
into account in their valuation processes. In fact, we did not observe another severe market

downturn following March 2020.

As a first motivation for our study, we have a look at the stock market performance and
the performance of the high-emitter (brown) and low-emitter (green) portfolio during 2020 in
Figure 1. For the stock market, we take the MSCI ACWI IMI as a basis and report both equal-

and value-weighted brown and green portfolios.

In line with the overall market, the decline in the portfolio performance was limited to the
COVID-19 period from February, 24" to March, 31, After that, both portfolios recovered from
this shock. Moreover, the high emitters (brown portfolio) declined more in the crisis period, but
were able to recover their additionally incurred loss in the course of the year compared to the
green portfolio. The aim of this study is to elaborate on this observation and find proof that

market participants incorporate carbon intensity in their valuation processes of assets.
[Insert Figure 1 here.]

6.3 Key characteristics of high versus low emitters

We start with a simple comparison of key performance and risk indicators during the COVID-

19 and post-COVID-19 period for high and low emitters. By construction, average carbon
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intensity levels are far higher for high emitters than low emitters (see Table 2). During the crisis
period, mean and median daily returns were significantly lower for high emitters, whereas all
volatility measures point to a higher riskiness of carbon-intensive stocks. For example, the
maximum drawdown amounted to 40.68% for high emitters in contrast to 37.36% for low
emitters. The Value at Risk (VaR) at a 95% confidence level was 1.86% significantly lower
(i.e., riskier) for carbon-intensive stocks. With 99% confidence, investors had to face an

additional worst daily loss of 2.85% for high emitters.

In line with expectations, during the post-COVID-19 period, daily returns turned positive
and risk measures were only a fraction of those during the crisis period. For example, the
maximum drawdown values reduced to a tenth of those during the COVID-19 period. This
underlines the severity of the stock market crash during February and March 2020. Levels of
daily returns were comparable among the two groups, whereas risk measures were higher for
carbon-intensive stocks taking account of their higher climate risk exposure. Solely the

maximum drawdown displayed no significant differences.
[Insert Table 2 here.]

In summary, we find significant differences in key return and risk indicators of high versus low
emitters. In the following, we analyze in how far these differences arise due to carbon intensity

having entered the valuation process of market participants.

6.4 Methodological framework

In a first step, we determine the influence of carbon intensity on daily stock returns during the
COVID-19 and post-COVID-19 period. For this purpose, we use cross-sectional regressions
following Equation (1).

ri =P, t B, carbon_int, + f3, controls; +

1)
0 ind_fixed_effects. + y country_ fixed_effects. + ¢;,
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where r; is the performance measure of stock i in the respective period, carbon_int, its carbon

intensity, and controls; a vector of firm characteristics at their 2019 values including size, debt,
profitability, cash intensity, SGAE intensity, historical volatility, dividends, and the book-to-
market ratio. By including these firm-specific characteristics, we ensure that the return-
influencing effect we attribute to carbon intensity is not driven by other factors correlated with

carbon intensity.

As performance measures, we use both the cumulative daily excess return and the
cumulative abnormal return over the respective period. We also include industry and country
fixed effects. In this way, we take into account that industries and countries were impacted
differently by the COVID-19 shock (Mazur et al., 2021; Ashraf, 2021). In addition, climate
policies targeted at the reduction of carbon emissions vary greatly among countries and have
different impacts on industries. For example, while the European Union takes over a leadership
role in the area of climate action, the USA relaxed environmental regulations under the Trump
administration rendering their climate action critically insufficient.! The inclusion of fixed

effects thus avoids that the coefficient of carbon intensity, $,, captures mere industry and

country effects.

Equation (1) serves as our baseline model. In subsequent analyses, we divide stocks into
carbon intensity quartiles and replace carbon_int, with dummies for the quartiles two to four.
The lowest quartile thus constitutes the reference group. This altered model allows us to dissect

the effects of carbon intensity in a more detailed way dependent on the level of carbon intensity.

In a second step, we estimate the effect of carbon intensity on both the total and

idiosyncratic volatility of stocks in the crisis and post-crisis period. For this purpose, we use a

! Climate Action Tracker provides a comprehensive overview and analysis of climate action by country and sector:
https://climateactiontracker.org/.
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stock’s excess return volatility and its abnormal return volatility (as idiosyncratic volatility) in

the respective time period as dependent variables in Equation (1).

For the validity of our study, it is important that the influence of carbon intensity
significantly changed during the crisis or post-crisis period compared to the pre-crisis period.
Under this circumstance, we can conclude that investors incorporate carbon intensity as a
fundamental characteristic in their asset re-evaluations during shock periods and beyond and

attribute value-influencing traits to carbon emissions.

To infer whether investors evaluate carbon intensity significantly differently during
extreme shock periods and pre- and post-shock times, we make use of a difference-in-
differences model following Lins et al. (2017), Bouslah et al. (2018), and Albuquerque et al.
(2020):

riy = P, treated; x COVID, + B, treated; x Post-COVID, +
B treated; + B, COVID, + B, Post-COVID, + B, controls; + 2
0 ind_fixed_effects. + y country_ fixed_effects. +¢;,

where r; , is the daily excess return or abnormal return of stock i at time t, treated, is a dummy
variable equal to one for stocks in the highest quartile measured by carbon intensity, COVID, a
dummy variable equal to one for all days between February, 24" and March, 31%, and
Post-COVID, a dummy that identifies days between April 2020 and December 2020. The
regression is run based on observations from January 2020 to December 2020. Therefore, we
also capture a pre-crisis period with this setup. Furthermore, we include the same control
variables as in Equation (1) and industry and country fixed effects. Hence, our results are not
distorted by firm-specific, industry, or country effects. Standard errors are clustered at the firm

level.



ARTICLE V: INVESTORS’ DELIGHT? CLIMATE RISK IN STOCK VALUATION | 155

Our main measures of interest are the coefficients of the interaction terms. The coefficient

B, (B,) describes the additional return effect high emitters had to face explicitly during the
COVID-19 (post-COVID-19) period. If 8, (8,) is significantly different from zero, we observe

a significant difference between the pre-crisis and the COVID-19 period (post-crisis period) for

high emitters. 8, captures the return effect for high emitters compared to low emitters in the
pre-crisis period. 8, and B, mirror performance impacts of the crisis and post-crisis period,
respectively. The total return effect for high emitters in the crisis period amounts to g, + f, +

B, and for the post-crisis period to g, + g, + f..

6.5 The interconnection between carbon intensity and performance

Table 3 summarizes the results of our baseline model. During the COVID-19 period, carbon
intensity had a significant negative effect on both raw and abnormal cumulative returns. To be
more specific, an increase of one standard deviation in carbon intensity (1.3581) decreased
cumulative daily (abnormal) returns by 0.3667% (1.3581x0.0027) and 0.4482%, respectively.
Hence, carbon intensity had a higher impact on stock-specific abnormal returns compared to
cumulative returns. Even though the return impacts appear small in nature, we have to bear in
mind that this effect realizes for only 27 trading days (the COVID-19 period). The annual return
loss would amount to around 3.40% and 4.15% for a one-standard deviation increase in carbon

intensity, which emphasizes its economic significance.?

Besides that, we can confirm results of previous studies that lower debt and higher cash
had a significant positive influence on returns during the pandemic period (Ramelli and
Wagner, 2020; Albuquerque et al., 2020). In addition, larger and more profitable firms achieved

significantly higher performance during COVID-19 (in line with Ramelli and Wagner, 2020;

2 As an approximation, we break down the effect during the COVID-19 period on one day and subsequently scale
it to 250 trading days.
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Albuquerque et al., 2020). High historical volatility impacted cumulative returns negatively,
but had a reverse effect on abnormal returns. This shows a stock’s high dependence on

systematic risk exposures.
[Insert Table 3 here.]

After the exogenous shock, the significant impact of carbon intensity vanishes (columns (3) and
(4)). Our results point to the fact that investors facing a period of high uncertainty are more
aware of long-term risks and increase their stakes in potentially safe haven stocks. The COVID-
19 pandemic has proven that a highly improbable risk can suddenly materialize. Climate risks,
in contrast, are far from being improbable to occur — they will materialize either in form of
physical impacts or policy regulations. Thus, investors might have drawn the conclusion to
withdraw their funds from riskier and potential stranded assets driving the performance of such
assets downwards. In the recovery period, however, there was no reversal or multiplier effect
of carbon intensity on returns because investors had already revised their stock valuations

during the crisis period.

In our second analysis for the relationship between carbon intensity and financial
performance, we dissect this effect further. We re-run our baseline model and replace the carbon
intensity measure with dummy variables indicating the quartile group of stocks based on their
carbon intensity. We exclude the dummy variable for quartile one, so that all effects are

estimated relative to our lowest emitting group.

High emitters achieved a 2.8% lower cumulative return in the COVID-19 period compared
to low emitters (Table 4, column (1)). The return difference to low emitters decreases the more
similar stocks become with regard to their carbon intensity measure. Medium emitters have a
1.9% lower return than low emitters, whereas there are no significant differences between the

two lowest emitting quartiles. We find an even more pronounced pattern for abnormal
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cumulative returns (column (2)). High emitters lost a significant 3.6% in abnormal returns
compared to low-emitting stocks. This return difference diminishes to 1.9% for lower emitting

stocks.

In the post-COVID-19 period, the effect reverses but is not statistically significant
anymore. Hence, during the calmer post-COVID-19 period, there was no significant difference
between the carbon groups. In other words, during the recovery phase, the level of carbon
intensity did not drive return patterns. This result reinforces our conclusions drawn from Table
3. Overall, this analysis emphasizes that the higher the carbon intensity of stocks, the higher

their performance loss during the shock period.

[Insert Table 4 here.]

Following Lins et al. (2017) and Albuquerque et al. (2020), we conduct a difference-in-
differences regression to investigate whether our return effect is uniquely found for the
COVID-19 period or common to most periods. Table 5 contains the results both for daily excess
and abnormal returns. The treated variable equals 1 for high emitters, i.e., stocks with a carbon

intensity in the highest quartile.

[Insert Table 5 here.]

Compared to the pre-COVID-19 period, stocks lost 0.96% in performance during COVID-109.
In contrast, returns in the post-COVID-19 period were higher by 0.31%. This mirrors the fast
recovery of the overall stock market during the course of the year 2020. High emitters lost an
additional 0.099% in return compared to low emitters in the pre-crisis period. More importantly,
high emitters had to forgo an additional 0.17% in performance compared to low emitters in the
COVID-19 period. This effect is statistically significant, so that we conclude that high emitters
had to suffer significantly more during the shock period compared to the more stable pre-crisis

period. In the post-COVID-19 period, in contrast, high emitters gained an additional significant



ARTICLE V: INVESTORS’ DELIGHT? CLIMATE RISK IN STOCK VALUATION | 158

0.15% compared to the pre-crisis period. Hence, even the post-crisis period differed
significantly from the pre-crisis period in that carbon-intensive stocks recovered faster. In
summary, the total return effect for high emitters in the COVID-19 (post COVID-19) period

amounted to —1.229% (0.361%), which is significantly different to the pre-crisis period.

This reinforces our previous results that investors modified their valuations of carbon-
intensive stocks and valued them lower in times of high uncertainty. In the post-COVID-19
time, however, carbon-intensive stocks could recover more than low emitters. Higher returns
also speak for the fact that investors might demand a premium for holding carbon-risky stocks

as suggested by Bolton and Kacperczyk (2020), for example.

In order to assess in how far the relevance of carbon intensity for returns changed over
time, we plot the evolution of the coefficient of carbon intensity obtained in a recursive window
regression with daily excess returns as dependent variable and the control variables of Equation
(1) as further independent variables (similar to Ramelli and Wagner, 2020). For the first
estimation at the beginning of the year 2020, we use data for all trading days during 2019 and

for each further day, we add the additional day to our estimation window.

We note that the coefficient remains negative throughout the year (see Figure 2). However,
sensitivities towards carbon intensity are especially pronounced in the COVID-19 period. The
relevance of carbon intensity thus intensified during the uncertain crisis period confirming our
previous results. In the post-COVID-19 period, the coefficient is absolutely lower and less

volatile but keeps its negative influence on returns.

[Insert Figure 2 here.]

6.6 The impact of carbon intensity on risk

In the previous section, we found that investors re-evaluated especially carbon-intensive stocks

during the market downturn. Now, we focus on their risk profile during and after the pandemic
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period. Table 6 repeats the cross-sectional regressions of Table 3 with volatility and
idiosyncratic volatility as dependent variables. In columns (1) and (2), we find that carbon
intensity had no significant impact on stock risk during the crisis period. Risk was rather driven
by other fundamentals such as debt, profitability, SGAE intensity, historical volatility, and
dividends. The pattern changes in the post-COVID-19 period (columns (3) and (4)). Carbon
intensity influenced stock volatility and idiosyncratic volatility significantly positive. In more
stable times, carbon intensity drives stock risk. This is in line with the argumentation that
carbon-intensive stocks face higher long-term risks. Furthermore, in the aftermath of the first
lockdown, discussions heightened on whether to use economic stimulus packages to drive the
long-term transition towards a low-carbon economy (Andrijevic et al., 2020; Mukanjari and
Sterner, 2020). Shan et al. (2021) state that fiscal stimulus plans can either be a threat to global
climate change mitigation or a jumpstart to achieve emission targets. For example, as of March
2021, the Energy Policy Tracker estimates that around 36% of monetary commitments for the
energy sector in G20 countries are targeted towards the production and consumption of fossil
fuels (Energy Policy Tracker, 2021). Investing in carbon-intensive assets increases the risk of
incurring more stranded assets in the future (Andrijevic et al., 2020). In either case — support
for carbon-intensive assets or green stimulus packages — carbon-intensive stocks have to face

higher climate risk exposures.
[Insert Table 6 here.]

For our last analysis, we repeat the regressions of Table 4 with risk measures as dependent
variables. When focusing on emitter groups, we find important differences between high and
low emitters (see Table 7). Returns of high emitters are significantly more volatile than low
emitters irrespective of the time period in question. For example, high emitters faced a 0.24%
higher idiosyncratic volatility than low emitters during the COVID-19 period (column (2)). In

the post-COVID-19 period, this effect decreased to 0.18% but remained significant. These
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results emphasize that extremely carbon-intensive stocks have to suffer from higher risk
exposures than low-carbon stocks. Even during the crisis period, high emitters prove to be
relatively riskier than their cleaner counterparts. This is in line with our argumentation that high

emitters face high climate risks due to stranded assets and climate policy uncertainty.
[Insert Table 7 here.]

6.7 Robustness tests

To ensure the validity of our results, we conducted several robustness test.® First, we enlarged
the COVID-19 period and focused on the first quarter of 2020 as a crisis period. Thus, we take
into consideration that the COVID-19 pandemic has already started to spread as early as January
2020. In fact, the World Health Organization was first informed of cases of pneumonia of
unknown cause in China on 31 December 2019 (World Health Organization, 2020). From this
date on, events accelerated justifying the definition of a larger crisis period. The results for the

first quarter 2020 are comparable to our more focused COVID-19 period.

Second, we conducted the cross-sectional regressions of Equation (1) without fixed effects.
For the difference-in-differences specification, we replaced the control variables for firm

characteristics with firm fixed effects. All results remained stable.

Last, instead of relying on carbon intensity, we conducted all analyses based on absolute
carbon emissions. Bolton and Kacperczyk (2020) discover that the carbon premium is related
to absolute emissions levels but not to carbon intensity. They justify their finding with the
explanation that climate regulations target activities with high emissions levels. Taking absolute

carbon emissions levels as our variable of interest does not alter our findings.

3 All results are available upon request from the authors.
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6.8 Conclusion

In recent years, climate risks have materialized as investment risks for financial assets (Fink,
2021). Financial market participants are thus expected to incorporate this impending risk source
in their stock valuation processes. We use the downturn of the stock market during the
COVID-19 period in early 2020 as an exogenous shock to assess in how far market participants
incorporated carbon intensity (as measure for climate risk exposure) in their re-evaluation
considerations of stocks during and after the crisis period. The COVID-19 period constituted a
time of heightened uncertainty and fear leading investors to re-evaluate their assets and
preferences. It thus provides an opportunity to measure the impact of carbon intensity on stock
returns and risk while holding carbon intensity levels constant. Furthermore, we analyze the
subsequent recovery period to infer to what extent carbon intensity has established itself as a

fundamental stock characteristic in stock analysis.

In a first descriptive analysis, high emitting stocks had lower returns and higher risk
measures during the COVID-19 period. In cross-sectional regressions, we find that carbon
intensity had a significantly negative impact on returns and abnormal returns during the crisis
period. This effect was more pronounced the higher the carbon intensity level was. Furthermore,
carbon-intensive stocks gained significantly more in the post-COVID-19 recovery period
compared to the pre-crisis period. Hence, they could make up for their additional losses incurred

during the crisis period compared to low-emitting stocks.

Focusing on the risk perspective, carbon intensity did not have a significant effect in the
COVID-19 period. Risk was rather driven by other firm characteristics such as debt and
profitability. However, high emitters were still significantly riskier than low emitters. For the
post-crisis period, the relationship between carbon intensity and risk turned significantly
positive. Discussions on green economic stimulus packages and long-term risk exposures to

stranded assets might have reinforced the riskiness of carbon-based assets. Higher risk and
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higher returns in the recovery period are also in line with the discussion on the existence of a

carbon premium in stock markets (Bolton and Kacperczyk, 2020).

Our results clearly show that market participants incorporate carbon intensity in their stock
valuation considerations. More importantly, our results point to the assumption that high
emitters are perceived as riskier and thus are more prone to being shunned by investors
especially during times of high economic and societal uncertainty. With our study, we reinforce
the need to account for climate risks in investment decisions. Their integral assessment allows
more profound risk management strategies, more accurate stock analyses with more precise
forecasts and stock recommendations, and thus might impede huge losses in unforeseen crisis
periods. With the COVID-19 pandemic, we had to learn that improbable risks can materialize
quickly and have huge impacts on our portfolios. Hedging highly probable climate risks thus

can turn out as a winning strategy in the future avoiding a rude awakening.
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Tables and Figures

Table 1

Descriptive statistics

Variable N Mean SD P25 Median P75
Carbon Intensity 3,247 0.3374 1.3581 0.0088 0.0371 0.2025
Cum. Ret. COVID-19 3,234 -0.2789 0.1536 -0.3830 -0.2697 -0.1678
Cum. Ret. post-COVID-19 3,230 0.6401 0.5086 0.2554 0.5291 0.8811
Cum. AR COVID-19 3,245 -0.1127 0.1859 -0.2393 -0.1114 0.0207
Cum. AR post-COVID-19 3,230 0.1626 0.4123 -0.1292 0.0653 0.3615
Volatility COVID-19 3,245 0.0584 0.0208 0.0424 0.0549 0.0703
Volatility post-COVID-19 3,245 0.0493 0.0178 0.0361 0.0453 0.0587
Idio. Volatility COVID-19 3,230 0.0276 0.0093 0.0206 0.0258 0.0326
Idio. Volatility post-COVID-19 3,230 0.0255 0.0089 0.0188 0.0238 0.0300
Size 2,977 15.5062 1.3882 14.4591 15.4784 16.5134
Debt 2,916 0.2837 0.1656 0.1506 0.2783 0.4046
Profitability 2,862 0.1093 0.1105 0.0473 0.1005 0.1625
Cash Intensity 2,724 0.0860 0.0729 0.0283 0.0653 0.1238
SGAE Intensity 3,247 0.0921 0.1077 0.0000 0.0487 0.1492
Historical Volatility 3,247 0.0184 0.0059 0.0137 0.0175 0.0222
Dividends 3,247 0.7989 1.3879 0.0193 0.0653 0.8850
BTM 3,180 0.6905 0.4949 0.3003 0.5780 0.9524
Daily Return 826,568 0.0538 3.2432 -1.3899 0.0118 1.4601
Daily Abnormal Return 826,568 -0.0030 2.8618 -1.3690 -0.0678 1.2658

This table provides descriptive statistics of all variables used in this study. The (abnormal) cumulative return and
(idiosyncratic) volatility are given for each respective period. Carbon intensity is defined as the sum of scope 1
and 2 emissions over net sales. Control variables are defined as follows: size is measured as the natural logarithm
of the market capitalization. Debt represents total debt over total assets. Profitability is measured by the return
on equity calculated as net income less preferred dividend requirements over the average of last year's and current
year’s common equity. Cash intensity represents cash holdings over total assets. SGAE intensity represents the
expenses for selling, general, and administrative functions over total assets. The historical volatility is the daily
return volatility of a firm during 2019. Dividends are measured as a ratio to the stock price. The book-to-market
ratio (BTM) is calculated as a firm’s book value over its market value. Daily (abnormal) return is given in percent.
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Figure 1
Stock performance during the year 2020

This figure plots the development of the MSCI ACWI IMI and four stock portfolios from 01/01/2020 to
12/31/2020. The brownish (greenish) color indicates portfolios consisting of high (low) emitting firms. The
vertical lines enclose the COVID-19 period as defined in the text.
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Table 2
Comparison of key characteristics between high and low carbon emitters during and after the COVID-
19 period

COVID-19 Post-COVID-19
(1) ) €)) 4
High Emitters Low Emitters High Emitters Low Emitters
Carbon Intensity 0.7306 0.0369 0.7333 0.0371
(0.6937") (0.6961™)
Mean Daily Return -0.0132 -0.0107 0.0033 0.0025
(-0.0025™™) (0.0008™)
Median Daily Return -0.0146 -0.0128 0.0013 0.0012
(-0.0018™) (0.0001)
Volatility 0.0684 0.0571 0.0321 0.027
(0.0113™) (0.0051™)
VaR 25% -0.0509 -0.0426 -0.0147 -0.0128
(-0.0082"™) (-0.0020™)
VaR 10% -0.0968 -0.0818 -0.0311 -0.0271
(-0.0150™™) (-0.0039™™)
VaR 5% -0.1188 -0.1001 -0.043 -0.0376
(-0.0186™) (-0.0054™)
VaR 1% -0.1619 -0.1334 -0.0769 -0.0662
(-0.0285™™) (-0.0106™)
Maximum Drawdown 0.4068 0.3736 0.0428 0.0441
(0.0332) (-0.0014)
Observations 811 2,433 807 2,423

This table provides a comparison of different key characteristics for high and low carbon emitters in the COVID-
19 period (02/24/2020 to 03/31/2020) and the post-COVID-19 period (04/01/2020 to 12/31/2020). High Emitters
represent high carbon intensity firms in the last carbon intensity quartile, and Low Emitters represent low carbon
intensity firms in the first to third carbon intensity quartiles. Return, volatility, VaR, and maximum drawdown
measures are given in absolute values. Differences (high emitters — low emitters) and their significance levels are

displayed in parentheses. *, ™, and ™" indicate significance at the 10%, 5%, and 1% level, respectively.
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;rnitl)LIJeer?ce of carbon intensity on financial performance during and after the COVID-19 period
COVID-19 Post-COVID-19
1) ) ®) (4)
Return Abnormal Return Return Abnormal Return
Carbon Intensity -0.0027"" -0.0033™ -0.0039 -0.0032
(-2.85) (-2.52) (-0.81) (-0.67)
Size 0.0074™" 0.030™ 0.012 -0.043™"
(3.57) (10.57) (1.53) (-6.30)
Debt -0.068"" -0.063"" 0.071 0.063
(-4.76) (-3.09) (1.22) (1.26)
Profitability 0.15™ 0.19™ -0.17 -0.40™"
(5.99) (5.29) (-1.64) (-4.72)
Cash Intensity 0.15™ 0.29™" 0.057 -0.088
(4.53) (6.08) (0.41) (-0.74)
SGAE Intensity -0.0031 0.062 0.11 0.15"
(-0.12) (1.64) (1.00) (1.73)
Historical Volatility -5.80™" 1.52™ 34.6™ 7577
(-10.83) (2.01) (15.57) (4.07)
Dividends -0.0054" -0.0020 -0.015 -0.0083
(-1.76) (-0.48) (-1.33) (-0.83)
BTM -0.0090 0.049™ -0.0055 0.070™"
(-1.46) (5.52) (-0.20) (2.95)
Industry fixed effects Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Observations 2,589 2,589 2,587 2,587
Adjusted R? 0.4937 0.3329 0.3544 0.2689

This table provides the results of cross-sectional regressions for the COVID-19 period (02/24/2020 to
03/31/2020) and the post-COVID-19 period (04/01/2020 to 12/31/2020). The dependent variable is defined as
the (abnormal) cumulative return during the respective period. All variables are as defined in Table 1. Industry
and country fixed effects are included in all specifications and heteroscedasticity-robust standard errors are
estimated. T-statistics are provided in parentheses. *, ™, and ™" indicate significance at the 10%, 5%, and 1%

level, respectively.



ARTICLE V: INVESTORS’ DELIGHT? CLIMATE RISK IN STOCK VALUATION | 171

;rnitl)LIJee:ce of carbon intensity quartiles on financial performance during and after the COVID-19 period
COVID-19 Post-COVID-19
1) ) ®) (4)
Return Abnormal Return Return Abnormal Return
High Emitter -0.028"™" -0.036™" 0.045 0.045
(-3.18) (-2.84) (1.27) (1.48)
Medium Emitter -0.019™" -0.022" 0.011 0.013
(-2.68) (-2.24) (0.40) (0.54)
Lower Emitter -0.0090 -0.019™ -0.0055 0.015
(-1.29) (-2.01) (-0.21) (0.67)
Size 0.0080™" 0.031™ 0.011 -0.044™
(3.87) (10.89) (1.46) (-6.39)
Debt -0.063™" -0.056™" 0.065 0.058
(-4.37) (-2.77) (1.12) (1.16)
Profitability 0.15™ 0.18™ -0.16 -0.39™
(5.91) (5.26) (-1.57) (-4.68)
Cash Intensity 0.14™ 0.27™ 0.074 -0.073
(4.21) (5.86) (0.53) (-0.61)
SGAE Intensity -0.013 0.052 0.12 0.17"
(-0.50) (1.34) 1.17) (1.86)
Historical Volatility -5.75™" 1.59™ 34.6™ 7.54™
(-10.77) (2.12) (15.56) (4.05)
Dividends -0.0052" -0.0017 -0.015 -0.0089
(-1.70) (-0.40) (-1.35) (-0.89)
BTM -0.0068 0.052™" -0.0097 0.066™"
(-1.10) (5.79) (-0.35) (2.79)
Industry fixed effects Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Observations 2,589 2,589 2,587 2,587
Adjusted R? 0.4951 0.3342 0.3546 0.2690

This table provides the results of cross-sectional regressions for the COVID-19 period (02/24/2020 to
03/31/2020) and the post-COVID-19 period (04/01/2020 to 12/31/2020). The dependent variable is defined as
the (abnormal) cumulative return during the respective period. We use dummy variables for carbon intensity
quartiles such that High Emitter takes the value of one if the firm is in the last carbon intensity quartile and zero
otherwise, Medium Emitter takes the value of one if the firm is in the third carbon intensity quartile and zero
otherwise, and Lower Emitter takes the value of one if the firm is in the second carbon intensity quartile and zero
otherwise. Control variables are as defined in Table 1. Industry and country fixed effects are included in all
specifications and heteroscedasticity-robust standard errors are estimated. T-statistics are provided in

parentheses. ", ™, and ™ indicate significance at the 10%, 5%, and 1% level, respectively.
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Table 5
Difference-in-differences model results
1) )
Return Abnormal Return
High Emitter x COVID -0.0017"" -0.0013™"
(-4.46) (-3.03)
High Emitter x Post-COVID 0.0015"" 0.0015™"
(8.30) (8.50)
High Emitter -0.00099"" -0.00098™"
(-6.27) (-5.88)
COVID-19 -0.0096™" -0.0023™"
(-51.19) (-12.39)
Post-COVID-19 0.0031™ 0.0015™"
(40.46) (19.72)
Controls Yes Yes
Industry fixed effects Yes Yes
Country fixed effects Yes Yes
Observations 644,255 644,255
Adjusted R? 0.01789 0.003481

This table presents results of difference-in-differences regressions for daily excess and abnormal returns. High
Emitter equals one for high carbon intensity firms in the last carbon intensity quartile and zero otherwise.
COVID-19 equals one from 02/24/2020 to 03/31/2020, and Post-COVID-19 equals one from 04/01/2020 to
12/31/2020. Control variables, industry, and country fixed effects are included in all specifications. Standard
errors are clustered at the firm level. T-statistics are provided in parentheses. *, ™, and **" indicate significance at

the 10%, 5%, and 1% level, respectively.
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Figure 2
Evolution of the carbon intensity coefficient in the year 2020

This figure plots the daily carbon intensity coefficients (in percent) from panel regressions from 01/01/2020 to
12/31/2020. The panel regressions include all control variables from Table 3 and are estimated in a recursive
window starting with all trading days of 2019 for the first estimation. The vertical lines enclose the COVID-19
period.
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Influence of carbon intensity on risk during and after the COVID-19 period

COVID-19 Post-COVID-19
1) ) ®) (4)
Volatility Idio. Volatility Volatility Idio. Volatility
Carbon Intensity 0.000089 0.000062 0.00018™ 0.00013™
(0.70) (0.48) (2.74) (2.03)
Size 0.00014 -0.00076™" -0.00068™" -0.00092"""
(0.56) (-3.11) (-5.90) (-8.36)
Debt 0.0077"" 0.0089™" 0.0032""" 0.0033""
(4.41) (5.24) (4.03) (4.16)
Profitability -0.013™ -0.011™" -0.011™ -0.0094™
(-4.31) (-3.72) (-7.64) (-7.10)
Cash Intensity -0.0081™ -0.0055 -0.0020 -0.0014
(-2.06) (-1.45) (-1.07) (-0.75)
SGAE Intensity -0.0077" -0.0076™ 0.0013 0.00090
(-2.35) (-2.40) (0.86) (0.62)
Historical Volatility 1.07™ 1.25™" 077" 077"
(17.72) (19.51) (25.81) (26.78)
Dividends -0.00079™ -0.00058" 0.000070 0.000023
(-2.26) (-1.68) (0.45) (0.15)
BTM -0.00080 -0.00087 0.00059" 0.00035
(-1.13) (-1.22) (1.74) (1.09)
Industry fixed effects Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Observations 2,589 2,589 2,587 2,587
Adjusted R? 0.6401 0.4917 0.5837 0.5704

This table provides the results of cross-sectional regressions for the COVID-19 period (02/24/2020 to
03/31/2020) and the post-COVID-19 period (04/01/2020 to 12/31/2020). The dependent variable is defined as
the volatility of the (abnormal) returns during the respective period. All variables are as defined in Table 1.
Industry and country fixed effects are included in all specifications and heteroscedasticity-robust standard errors
are estimated. T-statistics are provided in parentheses. *, ™, and ™" indicate significance at the 10%, 5%, and 1%

level, respectively.
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-IrnaftI)LIJeeche of carbon intensity quartiles on risk during and after the COVID-19 period
COVID-19 Post-COVID-19
1) ) ®) (4)
Volatility Idio. Volatility Volatility Idio. Volatility
High Emitter 0.0017" 0.0024™ 0.0018"" 0.0018™"
(1.69) (2.27) (3.50) (3.80)
Medium Emitter -0.00013 0.00056 0.00075" 0.00077*
(-0.15) (0.66) (1.91) (2.05)
Lower Emitter -0.00092 -0.00044 0.00032 0.00050
(-1.14) (-0.55) (0.86) (1.41)
Size 0.000089 -0.00081™" -0.00073™ -0.00096™"
(0.37) (-3.33) (-6.31) (-8.80)
Debt 0.0075™" 0.0085™" 0.0029™ 0.0030™"
(4.26) (5.02) (3.65) (3.79)
Profitability -0.013™ -0.011™ -0.011™ -0.0094™
(-4.25) (-3.63) (-7.57) (-7.03)
Cash Intensity -0.0076" -0.0047 -0.0015 -0.00079
(-1.92) (-1.23) (-0.78) (-0.44)
SGAE Intensity -0.0071™ -0.0067" 0.0019 0.0015
(-2.15) (-2.11) (1.23) (1.00)
Historical Volatility 1.07™ 1.24™ 0.76™ 077
(17.66) (19.43) (25.73) (26.72)
Dividends -0.00079™ -0.00059" 0.000061 0.0000093
(-2.26) (-1.69) (0.39) (0.06)
BTM -0.00100 -0.0011 0.00044 0.00020
(-1.39) (-1.53) (1.29) (0.60)
Industry fixed effects Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Observations 2,589 2,589 2,587 2,587
Adjusted R? 0.6411 0.4934 0.5852 0.5725

This table provides the results of cross-sectional regressions for the COVID-19 period (02/24/2020 to
03/31/2020) and the post-COVID-19 period (04/01/2020 to 12/31/2020). The dependent variable is defined as
the volatility of the (abnormal) returns during the respective period. We use dummy variables for carbon intensity
quartiles such that High Emitter takes the value of one if the firm is in the last carbon intensity quartile and zero
otherwise, Medium Emitter takes the value of one if the firm is in the third carbon intensity quartile and zero
otherwise, and Lower Emitter takes the value of one if the firm is in the second carbon intensity quartile and zero
otherwise. Control variables are as defined in Table 1. Industry and country fixed effects are included in all
specifications and heteroscedasticity-robust standard errors are estimated. T-statistics are provided in

parentheses. ", ™, and ™ indicate significance at the 10%, 5%, and 1% level, respectively.
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7 ARTICLE VI: WHAT DRIVES SUSTAINABLE INDICES? A FRAMEWORK FOR ANALYZING

THE SUSTAINABLE INDEX LANDSCAPE

Andrea Jacob, Marco Wilkens

Working Paper (2021), University of Augsburg

Abstract. This article presents an encompassing four-step customizable framework for
analyzing the heterogeneous sustainable index landscape. Compared to previous studies, we
present means and methods to move the measurement and impact of sustainability performance
in the center of attention and thus emphasize the often neglected aim of sustainable indices:
incorporating sustainability into investment tools. Besides traditional comparisons of return and
risk indicators (step one), we analyze the sustainability profile of sustainable indices while
actively managing the presence of ESG rating disagreement (step two). For the determination
of index-specific return and risk sources, we integrate sustainability factors in common factor
analyses and risk decomposition approaches (step three). A performance attribution analysis
based on sustainability classes increases the transparency on the composition strategies of
sustainable indices (step four). Our framework supports investors in understanding sustainable
indices and thus drives more informed decision making with respect to sustainability

integration.

JEL Classification: G11, M14, Q56

Keywords: Market indices, sustainable investing, investment decisions, equity portfolio

management
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7.1 Introduction

Sustainability is on the rise. At least since 2015 with the adoption of the UN 2030 Agenda for
Sustainable Development and the Paris Agreement, the world is committed to follow a more
sustainable path towards the future. However, the achievement of set targets and milestones
does not come without costs. According to estimates, we face a yearly investment gap of USD
2.4 trillion worldwide (Schmidt-Traub, 2015). Put differently, sustainable targets yield
investment needs of 2.5% of average world GDP annually. To raise these horrendous funds, the
financial system is required to take over a key role in promoting a greener and more sustainable

economy (European Commission, 2018; Ahlstrém and Monciardini, 2021).

Not only BlackRock in its letter to CEOs recognizes that “we are on the edge of a
fundamental reshaping of finance” (Fink, 2020). We want to consume sustainably, demand
firms to act sustainably, and require investors to invest sustainably. Hence, portfolio managers
increasingly integrate these investment beliefs and values in their portfolio management

strategies.

This article turns the spotlight on one of the top monitoring and benchmarking solutions
for financial market participants ready to integrate sustainability into their investment process:
market indices. Indices are not only used as benchmarks for all types of financial products, but
also as basis to create and rebalance new and existing products. In recent times, we have
observed the launch of various sustainable indices of the largest and most important index
providers such as MSCI, S&P Dow Jones, FTSE Russell, and STOXX. When deciding on
which index might be the most suitable for mirroring sustainability aspects, even the most
sophisticated investors are possibly left clueless. A myriad of different construction
methodologies and investment focuses for measuring sustainability leaves them rather puzzled

than providing real insights.
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In its Action Plan on Financing Sustainable Growth, the European Commission actively
has addressed this issue and set up a Technical Expert Group (TEG) to elaborate standards for
the construction of low-carbon benchmarks and to enhance Environmental, Social, and
Governance (ESG) disclosure requirements for investment indices to reduce greenwashing (EU
TEG, 2019). In its final report, the EU TEG asserts that the lack of harmonization of the
construction methodologies and the lack of transparency on the pursued objectives impede
comparability, reliability, and adoption of sustainable benchmarks. As a result, a significant
outreach for overall portfolio allocation remains limited (EU TEG, 2019). In general, Hamilos
and Ribando (2016) emphasize the importance of a right understanding of the index
construction methodology for correct evaluations and proper capital allocation decisions.
Ghayur et al. (2018) reinforce that transparency in structure and design is essential for asset
owners. Transparency thereby implies that the sources of risk and return are well recognized

and understood.

With this article, we aim at creating a deeper understanding on the composition and
strategy of sustainable indices and supporting their users in their decision-making processes to
drive sustainable economic growth. Hence, we remove one of the barriers impeding their
adoption in finance practice as stated by the EU TEG (2019). For this purpose, we develop an
easy-to-implement and customizable approach for analyzing construction strategies and the

sources of risk and return of sustainable indices.

In literature, there are several studies concerned with the comparison of conventional and
sustainable indices majorly based on risk and return indicators (Sauer, 1997; Statman, 2006;
Schroder, 2007; Fowler and Hope, 2007; Consolandi et al., 2009; Wan-Ni, 2012; Cunha and
Samanez, 2013). Their results point to the assumption that sustainable and conventional indices
perform at least equal. Belghitar et al. (2014) show that risk-averse investors can improve their

expected utility when investing in conventional holdings and reducing socially responsible
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holdings. More recent studies such as Cunha et al. (2019) and Giese et al. (2019) conclude that
sustainable indices have higher risk-adjusted performance than their conventional counterparts.
Bianchi and Drew (2012) compare different sustainable indices, whereas Lesser et al. (2014)
compare green and SRI indices. Kollias and Papadamou (2016) examine how climatic events
such as storms, droughts, and floods impact the risk and return profiles of a sustainable index.
Monasterolo and De Angelis (2020) analyze how the financial market’s perception on carbon-
intensive and low-carbon indices has changed after the Paris Agreement announcement.
Furthermore, several event studies analyze the effects of being included in or excluded of a
sustainable index (Consolandi et al., 2009; Robinson et al., 2011; Cheung, 2011; Oberndorfer

et al., 2013; Kappou and Oikonomou, 2016; Hawn et al., 2018; Durand et al., 2018).

With this article, we expand the scope of previous research. In essence, our aim is to
provide a customizable framework for investors on how to approach the analysis of sustainable
indices in an encompassing way. We present four steps that move the measurement and impact
of sustainability performance in the center of attention. This emphasis corresponds to the main
objective of sustainable indices — capturing sustainability in the capital market — and thus
distinguishes our article from previous studies. By incorporating sustainability-related aspects
into traditional methods and approaches, we assure that our framework can be easily
implemented into existing investment processes and at the same time, we clearly augment the

insights obtained on sustainable indices from previous studies.

We exemplify our approach and possible interpretations of results by choosing eight
different sustainable MSCI indices that are representative of the overall index landscape in the
financial market. Our framework consists of four fundamental steps to make sustainable indices

transparent.

In the first step, we stick to traditional return and risk indicators to compare sustainable

indices among each other and with their parent index, the MSCI World Index. As expected for
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passive benchmarks, there are no remarkable differences between the sustainable indices and

the conventional index.

In the second step, we analyze one of the prevailing characteristics of sustainable indices —
their ESG performance and carbon exposure. Instead of focusing on one definition of ESG, we
apply three different data providers (MSCI ESG, Refinitiv ESG, and Sustainalytics) and
actively address the challenge of ESG rating disagreement widely discussed in literature (e.g.,
Dimson et al., 2020; Berg et al., 2020; Gibson et al., 2020; Christensen et al., 2019). We find
that divergence in ESG ratings persists on index level. However, implications drawn based on
ESG scores and a “market consensus ESG performance” remain stable across data providers.
This step demonstrates investors how to use and interpret ratings and carbon exposure even

when relying on different data providers.

In the third step, we investigate the return and risk drivers of sustainable indices using
factor analysis and risk decomposition approaches. Compared to traditional model setups, we
reinforce the need to account for systematic influences attributed to sustainability. By
integrating sustainability factors, we determine to which degree index-specific components are
characterized by their designated sustainable thematic focus. These analyses support portfolio
managers in drawing right inferences about return and risk implications for their portfolio

strategy when integrating sustainability.

In the last step, we dissect the different index construction strategies by implementing a
performance attribution model based on sustainability classes. This analysis increases the
understanding of the composition and strategies underlying sustainable indices. In turn, it
allows investors to draw more profound conclusions for their own portfolio strategies or

compare an index composition strategy to an individually chosen sustainability definition.
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These steps provide an in-depth analysis of sustainable indices and can be customized
towards individual preferences such as the preferred definition of ESG performance. They
provide an encompassing view on key return and risk indicators, the sustainable profile, sources
of risk and return, and the strategy drivers of sustainable indices. By applying all steps, financial
market participants gain a deeper understanding of sustainable indices and thus can steer their
portfolio decisions more in line with their sustainability targets without facing the risk of

greenwashing.

The remainder of this paper is structured as follows. The next section presents the index
and sustainability data sets. Section 7.3 starts with traditional descriptive analyses on index
level and the investigation of the ESG and carbon profile (steps one and two). The following
section describes the methodologies used for the analysis of the return and risk drivers (step
three), and index strategies (step four). Sections 7.5 to 7.7 contain the empirical results of the
test environment and Section 7.8 summarizes further robustness tests. The last section

concludes.

7.2 Data description and preparation

This study requires different types of data sets. First, we review the sustainable index landscape
and systematically categorize sustainable indices. Next, we employ different data providers for
ESG ratings to address the divergence in ESG ratings. Lastly, we compose a carbon data set for

measuring carbon exposure.

7.2.1 Sustainable index landscape

Investors can find numerous sustainable indices provided by different corporations. Hamilos
and Ribando (2016) emphasize that understanding a benchmark’s design is crucial for its proper
use. Therefore, in this section, we examine the construction strategies and characteristics of

sustainable indices.
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The largest and most important index providers such as MSCI, S&P Dow Jones, FTSE
Russell, and STOXX offer a wide range of thematic sustainable indices covering a reasonable
period and varying regions. All index providers basically divide sustainable indices in two
categories: ESG and carbon indices. ESG indices focus on the integration of environmental,
social, and corporate governance aspects, whereas carbon indices intend to reduce carbon
exposure. ESG indices thus concentrate on a broader set of themes, carbon indices, in contrast,
emphasize the more fundamental climate aspect. In essence, there are three index construction
methodologies (selection, re-weighting, and hybrid approaches) to implement the designated

thematic focus originating from an eligible universe of stocks.

Testing our framework with all available indices from all providers would result in a
complex and possibly unclear representation without being of real help for financial market
participants.! Thus, we focus our analysis on MSCI indices as a “test environment” and

illustrate how to analyze sustainable indices in a suitable and customizable way.

For comparability, we choose to restrict our analyses to developed markets with the MSCI
World Index as parent index, which is also considered as one of the most important global
equity indices in the financial market. This ensures that all sustainable indices have a common
basis and differ only in their integrated sustainability focus. We select the following MSCI ESG
indices: World ESG Leaders, World SRI, World ESG Universal, and World ESG Focus. As
carbon indices, we choose World ex Coal, World ex Fossil Fuels, World Low Carbon Target,
and World Low Carbon Leaders. The eligible universe of stocks for each sustainable index is
comprised of the constituents of the MSCI World Index. The World ESG Leaders and World
SRI Indices single out their constituents based on certain selection criteria. The World ex Coal

and World ex Fossil Fuel Indices focus on excluding certain business activities (sector

L At this time, S&P Dow Jones offers 17 diverse sustainable indices, MSCI and FTSE Russell each 18, and STOXX
9 different thematic construction focuses. All of these indices are usually available for different regions, thus
multiplying the number of available sustainable indices in the market.
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exclusion). The World ESG Universal and World Low Carbon Target Indices re-weight the
constituents of the parent index to attain an improved sustainable exposure. The World ESG
Focus and World Low Carbon Leaders Indices make use of both selection criteria and re-
weighting combined in an optimization approach. A more detailed view on the designated index

objectives and construction criteria is provided in Table 1.

[Insert Table 1 here.]

With these eight indices, we cover all prevalent construction and thematic methodologies and
therefore have a convenient test environment for a deeper analysis of sustainable indices at our

disposal.

7.2.2 Sustainability data and ESG rating disagreement

In recent years, various corporations developed own methodologies for assessing a firm’s ESG
performance. As a result, there does not exist any consistent standard ESG evaluation
framework and ESG ratings diverge significantly based on rater-specific biases and
disagreements about the scope, measurement, and weighting of underlying data points (Berg,
et al., 2020; Dimson et al., 2020; Gibson et al., 2020; Christensen et al., 2019; Kotsantonis and
Serafeim, 2019). As a consequence, a firm’s ESG performance can be evaluated differently
dependent on the chosen rating provider (Dimson et al., 2020; Li and Polychronopoulos, 2020).
For investors, this implies that a deep understanding of the underlying ESG methodologies is
necessary to choose an adequate benchmark in line with their investment preferences. However,
a crucial component of sustainable benchmarks is the improvement in the ESG performance
compared to the parent index. We demonstrate how to compare different ESG ratings on index

level and derive implications thereof for their legitimacy as being labelled as sustainable.
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For ESG data, we make use of three different data providers: MSCI ESG, Refinitiv ESG?,
and Sustainalytics. Each provider covers a different set of global stocks for which relevant data
is available and assesses a firm’s sustainability performance according to its own defined
methodology. In order to make ESG ratings comparable across all providers, we adjust ESG
scores for their individual distributions as in Gibson et al. (2020). At each point in time for each
score and data provider, we calculate the adjusted score as percentile rank of the respective firm
according to the respective rating normalized to a range between 0 and 1. Hence, the adjusted
scores depend on their ranking within the whole sample for which the data provider has assessed
ESG ratings. Additionally, we calculate the overall adjusted score as average over all adjusted
scores of the three data providers to derive a “consensus ESG performance” as pointed out by
Berg et al. (2020) and also implemented by Christensen et al. (2020). This approach requires
that a firm is part of each of the three ESG data providers. This leaves us with four different
ESG samples — the original data samples of MSCI ESG, Refinitiv ESG, and Sustainalytics, and
our own ESG sample as intersection between these three data providers and comprising overall

adjusted scores.

The measurement of carbon exposure is more fundamental in nature and thus less prone to
divergent calculation methodologies. Carbon performance is usually measured as carbon
intensity. We calculate yearly carbon intensity as the sum of scope 1 and 2 emissions reported
to CDP. If no CDP emissions are available for a stock, we fill data by Refinitiv and

Sustainalytics reported emissions.® Emissions are subsequently normalized by enterprise

2 Formerly known as Thomson Reuters ESG.

3 Reliable data on scope 3 emissions is rather scarce. Therefore, we focus on scope 1 and 2 only as also suggested
by the Task Force on Climate-related Financial Disclosures (TCFD) recommendations for calculating carbon
footprinting and exposure metrics (TCFD, 2017).
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value.* This financial metric allows cross-sectoral comparisons and thus qualifies as suitable

denominator for carbon intensity (EU TEG, 2019).

The ESG and carbon data sets are matched to the index constituents, so that we can judge
the ESG performance and carbon exposure of each index. An overview of all data sets and the

number of available and matched stocks, respectively, can be found in Figure 1.
[Insert Figure 1 here.]

We aggregate the carbon and ESG performance measures on index level by value-weighting
the constituents’ data at each point in time. Following the construction methodologies of MSCI
and Morningstar, we re-scale weights and calculate index-level measures only over those stocks
with the respective available carbon or ESG measures. In addition, we exclude all points in time
for which less than 40 percent of carbon or ESG data is available on constituents level. Besides
the overall ESG score, we also report the single pillar (environmental, social, and governance)
scores. In addition, we calculate the reduction in carbon intensity from the parent index for each

year.

7.3 Descriptive analyses

7.3.1 Index factsheets

We start with simple descriptive statistics usually found in index factsheets. This first step
constitutes the standard procedure for evaluating index characteristics and thus has to be part
of a profound index analysis. Table 2 summarizes key indicators of all indices in our test
environment. Monthly data runs from April 2011 to December 2019. The most restrictive index
is the MSCI World SRI Index with an average number of included stocks of 407 compared to

an average of 1,633 for its parent index. This leads to a low market capitalization coverage of

4 Enterprise value is defined as the sum of the market capitalization of common and preferred stocks, the book
value of total debt and minority interest, minus cash (Worldscope item 18100).
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24.56%. In contrast, the World ex Coal Index excludes the least stocks and displays a market
capitalization coverage of 99.57%. This pattern is mirrored in the tracking error. Overall, the
tracking error ranged from a low of 0.07% for the ex Coal Index to a high of 0.44% for the SRI
Index. Among the lowest tracking errors are the indices which incorporate tracking error targets
into their construction methodologies, such as the World ESG Focus, World Low Carbon

Target, and World Low Carbon Leaders Indices.

Monthly return and risk levels only varied slightly across indices. The Sharpe Ratio lied
between 0.22 and 0.24, thus not permitting to seek out a high performer. Active return was
slightly positive albeit low in our sample period. In line with literature (Giese et al., 2019;
Lesser et al., 2014), the price-to-book ratio and return on equity (ROE) were on average slightly
higher for ESG indices compared to the conventional index, i.e., ESG indices are more valuable.
Liquidity measured by the annualized traded value ratio (ATVR) turned out to be high for all

indices, even for the most restrictive index, the World SRI Index, with 94.79% on average.
[Insert Table 2 here.]

7.3.2 ESG and carbon profiles

In the second step of our approach for index evaluation, we assess the core of sustainable
indices: their sustainability performance measured by ESG ratings and carbon exposure. More
importantly, we demonstrate how to manage different ESG definitions and the resulting ESG
rating disagreement. For the evaluation of the sustainability performance, we first compare the
distributions of the sustainability measures for each index. Distributions for the ESG scores and
carbon intensities are displayed in Figure 2.5 For each sustainability measure (ESG scores,
carbon intensity), we use the matched samples of the respective ESG data provider or carbon

data set with the constituents of the respective index.

5 Distributions of pillar scores can be found in Figure A.1 of the Internet Appendix.
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[Insert Figure 2 here.]

Distributions follow the same pattern regardless of the underlying data provider (Panel A). The
conventional MSCI World Index has most constituents in the middle class measured by the
ESG score. The distribution for each data provider moves more to the right for ESG indices.
For example, three quarters of the constituents of the MSCI SRI Index display an MSCI ESG
score of 61 and higher. For the MSCI Index, only a third of all constituents are found in these
classes. When measuring scores with Refinitiv ESG (Sustainalytics), percentages in the upper
classes move from 32.37% (39.90%) for the MSCI World Index to 58.48% (65.59%) for the
MSCI SRI Index. Hence, irrespective of the data provider, we draw similar inferences for ESG
indices: regardless of their underlying ESG definition, they contain proportionally more stocks

with higher average ESG ratings.

In a next step, we focus on our constructed adjusted scores to compare the different indices.
In Panel A of Figure 2, we find that our overall adjusted ESG score unequivocally allocates a
higher percentage of ESG index constituents in the upper ESG classes compared to their parent

index.

In Panel B, we draw similar conclusions for carbon indices. Carbon indices effectively
allocate towards stocks within lower carbon intensity classes than the MSCI World Index. Only
6.63% of the constituents of the World Low Carbon Target Index are to be found in the highest
carbon intensity quintile, whereas 15.77% of the stocks in the MSCI World Index are members

of the same quintile class.

For a more detailed view on the ESG and carbon profile, Table 3 illustrates the average
adjusted scores and carbon intensity reductions for each index over the sample period. To

increase comparability of the data providers, we only include the scores of those constituents
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which are available in all three ESG data sets. Therefore, we also show how to assess ESG

rating disagreement on index level.

[Insert Table 3 here.]

When adjusting the scores of each data provider for their different distributions, we find that in
general, MSCI assigns lower scores than Sustainalytics and Refinitiv (Panel A). This is in line
with the findings of Christensen et al. (2019). The high dispersion implies low correlations
across data providers. In accordance with Gibson et al. (2020) and Berg et al. (2020), rank
correlations are somewhat higher for the ESG score than for the single pillar ratings (see Table
A.1l in the Internet Appendix). The average correlations between providers are 55.12% for the
ESG score, 45.38% for the environmental pillar, 33.64% for the social pillar, and 23.46% for
the governance pillar. Hence, data providers do not converge in assigning ranks to firms in our
sample. However, what’s more important for investors, the implications drawn remain basically
unchanged across data providers. Focusing on the ESG score, there are no significant deviations
for carbon indices from the parent index, the MSCI World Index. For ESG indices, we find
slightly differing results across data providers. For MSCI and Sustainalytics ratings, all ESG
indices improve their ESG profile, whereas the World ESG Universal Index performed
marginally worse than the MSCI World Index when measured by the Refinitiv ESG score.
However, for this index, even the MSCI and Sustainalytics ESG ratings only measure a
marginal improvement compared to the parent index. For the environmental scores, we find
that carbon indices do not display a superior ESG profile indicating that they are not optimized
towards the environmental pillar of the data providers. The World SRI performs best across all
pillar scores for the MSCI and Sustainalytics ratings, pointing to the fact that it actively excludes
firms with a negative social and environmental impact. For Refinitiv scores, the World ESG

Focus Index performs best even though it is closely followed by the World SRI Index.
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When we measure the ESG profile by our consensus ESG measure, the overall adjusted
scores, we see that scores turn out similar to the Sustainalytics ratings. Based on the figures in
Panel A, we think that the overall adjusted scores are a good approximation for ESG ratings as
they alleviate both the low scores of MSCI and the high scores of Refinitiv while taking all

possible definitions of sustainability aspects into account.

With regard to carbon exposure, we expect carbon indices to display higher carbon
intensity reductions since this constitutes the aim of their thematic focus. The World Low
Carbon Target Index in fact achieved the highest reduction with 64.18% compared to the parent
index, closely followed by the World Low Carbon Leaders Index with 43.06% (see Table 3,
Panel B). One might have assumed that the World Low Carbon Leaders Index is more
successful in reducing carbon exposure when considering its construction framework (Table 1).
However, in this analysis, we focus on carbon intensity only (following EU TEG, 2019),
whereas the World Low Carbon Leaders Index additionally captures potential carbon emissions
sources, i.e., fossil fuel reserves. Once again, this emphasizes the need to fully understand the
underlying construction criteria when analyzing indices. Mere sector exclusion indices such as
the World ex Coal and World ex Fossil Fuels Indices provide some degree of carbon intensity
reductions (4.61% and 21.86%), but demonstrate that construction methodologies based on
selection and re-weighting of constituents are more effective. Thus, excluding sectors is not as
efficient as selecting stocks based on their carbon exposure (in line with Andersson et al., 2016
as well as Mercereau et al., 2020). These indices are even outpaced by the World SRI and the

World ESG Focus Indices.

7.4 Methodology

In the following analyses, we derive a deeper understanding on the sources of return and risk
specific to sustainable indices and thus increase transparency on performance attribution

(Ghayur et al., 2018). Specifically, we determine whether sustainable indices are driven by their
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pursued objectives, so that investors can better manage their return and risk exposure while
integrating sustainability aspects. In addition, we investigate the drivers of the index strategies

by a performance attribution model following Brinson and Fachler (1985).

7.4.1 Reference models for regression analyses

First, we incorporate sustainability factors into common asset pricing models as a means to
capture the impacts of sustainability integration on return and risk profiles.® We estimate factor
exposures using the common Carhart (1997) model as baseline case. Besides the common risk
factors market, smb, hml, and wml, we estimate models by including different global
sustainability factors. For this purpose, we build zero-cost investment portfolios that mirror
sustainability aspects. For the factor construction, we consider all global stocks part of the ESG
data sets irrespective of their membership in the MSCI World Index. For example, in June of
each year, we sort all stocks with available ESG data into quintile portfolios based on their ESG
score. Stocks retain their quintile membership throughout the following twelve months. The
monthly ESG factor return time-series is then obtained by subtracting the value-weighted
portfolio return of the stocks in the lowest quintile from the value-weighted portfolio return of
the stocks in the highest quintile. The ESG factor is thus invested long in high ESG performers

and short in low ESG rated stocks.

We apply this procedure to different sustainability ratings introduced before, i.e., the
overall adjusted ESG, environmental, social, and governance scores. In this way, we focus on
the consensus ESG performance on the market and analyze return and risk drivers not solely
based on one ESG definition. For example, sustainability factors based on MSCI ESG ratings
are assumed to efficiently capture specific return and risk drivers of the sustainable MSCI

indices since the construction of these indices relies on these scores. Demonstrating that return

® The idea of including sustainability factors into common factor models is widely used in literature. See, e.g.,
Gorgen et al. (2020), Hiibel and Scholz (2020), Gregory et al. (2020), Maiti (2020), and Xiao et al. (2013).
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and risk drivers using consensus rating factors remain similar to MSCI factors increases the

reliability and credibility of sustainable indices.

In addition, we form an emissions factor that invests in stocks with the 20 percent highest
carbon intensities of the carbon data set and is short in those with the 20 percent lowest intensity
measures (i.e., a dirty minus clean investment portfolio). Overall, all sustainability factors are
constructed in such a way that they resemble the other common risk factors in their

methodological scope following Fama and French (1993) and Carhart (1997).”

In total, we apply four different global models: (1) the Carhart (1997) model, (2) the ESG
model, (3) the pillar factors model, and (4) the emissions factor model as shown by the

respective equation below.
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with r;, being the return measure of index i at time t, mktrf,, smb,, hml,, and wml, the common
global risk factors from Kenneth French’s data library, esg,, env;, soc;, gov,, and emi, being the

global zero-cost portfolios constructed based on overall adjusted ESG ratings and carbon
intensity, respectively. For the dependent variable, we focus on the index-specific return drivers
and use active returns, i.e., the difference between the return of an index and its benchmark
return, the MSCI World Index return. In general, the construction of sustainability factors and
the setup of the regression model can be customized to the preferences of each individual

investor.

7 Descriptive statistics of all factors can be found in Table A.2 in the Internet Appendix.
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7.4.2 Risk decomposition approach

The determination of risk drivers is based on the decomposition framework of Klein and Chow
(2013). The authors develop a methodology to democratically orthogonalize factors. In turn,
this allows calculating the contribution of each risk factor to the variation in the dependent
variable, in our case the return measure. The construction of sustainability factors that mimic
sustainability aspects enables us to allocate risk to the different sustainable thematic focuses
and thus, we can assess more transparently what drives sustainable indices. Klein and Chow

(2013) derive the following equations, which we use for our risk decomposition approach.

O
DR} = < " %) , )
K
R = ZDRzk , (6)
k=1
IR, =1—R?. (7

Equation (5) describes the risk contribution DR?,k of factor k to index i with ﬂ,j being the beta

exposure of index i towards the democratically orthogonalized factor k in the respective factor

model, &fk the standard deviation of factor k, and 5, the standard deviation of the return measure
of index i. The contributions of all factors in the factor model sum up to the coefficient of

determination R? (Equation (6)). Finally, the idiosyncratic risk can be calculated as shown in

Equation (7).

7.4.3 Performance attribution analysis

The last analysis focuses on traditional performance attribution models following Brinson and
Fachler (1985). Even though performance attribution applies to the evaluation of active
investment strategies, it serves as a tool for strategy evaluation for passive investment products
such as indices (see, e.g., Andersson et al., 2016 and Giese et al., 2019). It relates active return

to allocation and stock selection effects as well as to interaction effects of both. Allocation
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measures the effect of over- or underweighting performance classes compared to the benchmark
case (Equation (8)). The selection effect measures in how far stock selection influences returns
within one class and turns out differently compared to the benchmark portfolio (Equation (9)).
The interaction effect takes both effects, i.e., weighting and selection, into account (Equation

(10)). The sum of allocation, selection, and interaction over all classes equals the active return

of the index.
allocation, = (wx’i - wx,b)(rx,b - rb) , (8)
selection, = (rx,,- -y b) Wyp, 9)
interaction, = (wx,,- — wx’b) (rx),- —ry b) ) (10)

with w, ; (w, ,) being the weight of class x in index i (benchmark index b), . ; (r, ») the return

of class x in index i (benchmark index b), and r, the return of the benchmark index b.

In order to relate the sustainable investment focus to active returns, we consider the
attribution model for sustainability classes. For this purpose, we divide the stock universe of
the matched sample of the ESG data sets into five ESG classes based on the overall adjusted
ESG score at each point in time. The first class contains all low ESG stocks and the fifth class
the highest ESG performing stocks. We follow the same procedure with carbon intensities for
emissions classes using the carbon data set. The lowest class contains the low carbon intensity
stocks and the highest class the high carbon intensity stocks. Again, the definition of classes

can be defined according to individual preferences.

The class membership can then be matched to the constituents of the indices to calculate

all attribution effects compared to the benchmark (parent) index.

7.5 Index-specific return drivers

Madhavan et al. (2018) point out that factor analysis for market indices has gained importance

in recent years. Thus, for the third step of our framework, we start with the evaluation of active
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return drivers based on factor sensitivities. Since passive investment strategies are majorly
driven by their overall market exposure, we extract the index-specific component, i.e., active
returns. In this way, we focus on the index component that is specific to the respective
sustainable index, i.e., the part that investors additionally gain to the benchmark case. This part

should mirror the designated objective of the index.®

Table 4 illustrates regression results for active returns. Panel A contains the results for the
ESG model.® The exposure towards the ESG factor is significantly different from zero at the
five percent level for most ESG indices. In specific, the index-specific return of ESG indices is
positively sensitive towards it. The highest sensitivity towards ESG aspects is achieved by the
World SRI Index with a beta value of 0.0768 closely followed by the World ESG Universal
Index (0.0751). In contrast, the ESG factor lacks significance for explaining active returns of
carbon indices. This indicates that ESG and carbon indices differ in their sensitivity towards

ESG stocks.

Panel B delivers a more detailed view by breaking up the ESG factor in its three pillar
factors. When comparing the exposures of the three pillar factors, the index-specific return
fraction of the World ESG Leaders Index is most sensitive towards governance aspects. The
World ESG Universal and ESG Focus Indices are more exposed to the social factor. This shift
in focus might be attributable to the re-weighting approach used by these two indices. In
addition, it is noteworthy that the World SRI Index does not display any significant exposure
towards the pillar factors. In fact, the goodness-of-fit for the pillar factors model decreases for
the World SRI index compared to the ESG model (4.46% compared to 7.12% in adjusted R?).

For all other indices, the pillar factors model delivers a higher fit.1° Hence, the active return of

8 An analysis of factor exposures based on the total return of an index can be found in Internet Appendix B.

® Results for the Carhart model can be found in Table A.3 in the Internet Appendix.

10 Overall, goodness-of-fit measures seem relatively low. However, we explain index-specific returns. They are
expected to be driven by rather idiosyncratic exposures (see Section 7.6 and Internet Appendix B).
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the World SRI Index might be more suitably explained by the overall ESG model. The sector
exclusion carbon indices show their highest sensitivities towards the environmental pillar
factor. The World Low Carbon Target and Low Carbon Leaders Indices lack significant
positive exposures to the pillar factors. For carbon indices, this is to be expected since they are

not specifically optimized towards a specific ESG pillar.

In Panel C for the emissions factor model, the carbon indices follow their designated target:
they show highly significant exposures towards the emissions factor. As expected, they are
negatively exposed, i.e., more sensitive to the short leg of the emissions factor (low carbon
intensity stocks). In comparison, ESG indices are not significantly exposed towards the

emissions factor.

[Insert Table 4 here.]

This analysis illustrates that sustainability factors capture systematic variation in active returns
of sustainable indices. A re-weighting of constituents based on their ESG performance such as
implemented for the World ESG Universal or World ESG Focus Index can shift the active
return driver from governance to social aspects. More importantly, factor exposures are in line
with the respective thematic focus of the index. The beta sensitivities towards sustainable
factors are among the highest across all factors pointing to their importance in determining
index-specific components. Hence, investors are advised to include factors capturing

sustainability aspects when evaluating the sources of return for sustainable indices.

7.6 Risk drivers

It is often claimed that sustainability integration comes with additional risk since investors have
to forgo stocks of the whole investment universe that do not comply with sustainability criteria.
We investigate this issue further by analyzing risk exposures in more detail. In Table 2, total

risk (as measured by standard deviation) and systematic risk (measured by the historical market
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beta) were similar for the MSCI World Index and its sustainable counterparts. Hence, portfolio
managers do not have to fear a significant change in conventional risk measures when relying

on sustainable indices.

To get a more detailed view, we analyze the drivers of systematic risk sources. We
decompose the systematic risk into factor contributions as outlined in section 7.4.2. In
untabulated results, we find that most of the systematic risk is driven by systematic market
exposures, i.e., by the market factor. For passive benchmarks, this result is to be expected. Thus,
we focus our risk analysis on the index-specific component similar to the analysis of the return
drivers. In this way, we explicitly take account of the risk components specific to each
sustainable index. To derive risk sources, we apply the methodology of Klein and Chow (2013)

to regression models with active returns as dependent variable.

Table 5 reports the results for the individual factors’ risk contributions. In Panel A, we find
that the pillar factors drive a major part of systematic risk in active returns. For example, 13.57%
of the systematic variation in active returns of the MSCI World ESG Universal Index are
attributable to the social pillar factor, whereas the proportions of risk contributed systematically
by the market factor are only 1.25%. However, for the World SRI and World ESG Focus
Indices, expectations are not met. Their active risk is rather driven by conventional factors, even
though the governance (social) pillar factor constitutes the second (third) highest risk
contribution for the World SRI (World ESG Focus) Index.** The highest risk contribution is
achieved by the governance factor for the World Low Carbon Leaders Index. As seen in Table
4, active returns of this index are negatively sensitive towards governance aspects, thus

explaining its high risk exposure towards this factor.

1 When repeating the analyses with factors constructed based on MSCI ESG scores, results are more in line with
expectation. The systematic risk of active returns of the World SRI (World ESG Focus) Index is then
predominantly driven by the governance (social) pillar factor. See also the robustness tests in Section 7.8.
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For comparison, we also report the idiosyncratic risk proportions for the ESG and Carhart
model. We notice that both the ESG and the pillar factors model decrease idiosyncratic risk
compared to the Carhart model, pointing to the fact that the sustainable factors capture
systematic variation of active returns, which is attributed to idiosyncratic risk when the factors

are not included.

In Panel B, we implement the same methodology for the emissions factor model. Variation
of active returns in all carbon indices is majorly caused by the emissions factor. Since the
emissions model does not capture ESG effects per se, all ESG indices are more prone to other
common risk sources. In comparison to Panel A, the part of systematic risk explained is lower
and idiosyncratic risk sources in turn higher for ESG indices and vice versa for carbon indices.
This implies that the pillar factors model (emissions factor model) is better suited for ESG

indices (carbon indices) to capture and explain systematic risk sources.

[Insert Table 5 here.]

Summing up, the index-specific risk of sustainable indices is significantly driven by sustainable
aspects. Investors thus cannot only diminish idiosyncratic risk exposure by hedging systematic
sustainable risk sources, but also steer portfolio risk more appropriately. Our results imply that
investors can easily gain risk exposure for a desired sustainability focus or even hedge ESG and

carbon risk while optimizing both sustainability aspects.

7.7 Evaluation of index strategies

In our last step, we turn to a traditional performance attribution analysis using the Brinson and
Fachler (1985) model, which has become an industry standard in this field. By investigating
attribution effects for ESG and emissions classes, we increase the understanding on how and

which classes contribute most to the different index strategies.
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7.7.1 Aggregated attribution effects

The attribution effects for both performance class categories are shown in Table 6.12 The
strategies of all sustainable indices are predominantly driven by selection effects for ESG
classes (Panel A). For example, the negative active return of the World ESG Leaders Index of
—0.0302% consists of 0.0393% attributable to allocation, —0.1033% to selection, and the
remaining component to interaction. This means that picking stocks within ESG classes is a
more prominent strategy driver than systematically allocating weights to certain ESG classes.
For the re-weighting index strategy of the World ESG Universal Index, this result is surprising.
Stock selection basically only plays a minor role in the construction framework of the index;
however, single firm exclusions based on the criteria specified in Table 1, the re-weighting of
constituents, and the class return impact following the re-weighting are more pronounced than
systematic changes in class weights compared to the parent index. Overall, for ESG indices, the
eligibility criteria for index construction drive the respective strategies. As expected, the carbon
indices are majorly driven by stock selection within ESG classes, i.e., picking low carbon stocks

within ESG classes is more important than ESG exposure.

Panel B reports the results for emissions classes. All carbon index strategies follow
allocation effects. This means they are triggered by their strategy in allocating different weights
towards emissions classes compared to their parent index, the MSCI World Index. In addition,
both the World ESG Universal and the World ESG Focus index systematically assign different
weights to emissions classes than the MSCI World Index. This might be connected to their re-
weighting strategy of constituents. For the World ESG Leaders and SRI Index, stock selection

within emissions classes is more dominant than allocation.

[Insert Table 6 here.]

12 The active return of an index turns out slightly differently across performance class categories since ESG and
emissions data are not available for every constituent at each point in time.
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7.7.2 Attribution effects on class level

To dissect attribution effects further, we analyze the single performance classes in more detail.
For each class, we determine its active return and attribution effects. In this way, we get a deeper

understanding which strategies and decisions drive the investment focus of sustainable indices.

Figure 3 graphically depicts performance attribution effects for each class.*® In Panel A,
we see the dominance of the selection and interaction effects for the ESG indices when
attributing their performance to ESG classes. The margin ESG classes, i.e., low and high ESG
classes, majorly determine the performance of ESG indices. For example, the World SRI Index
heavily overweighed the high ESG class during our sample period on average by 26.68%
compared to the MSCI World Index and underweighted the low ESG class by 4.99%. For the
low ESG classes, however, selection and interaction effects within these classes dominated.
The lowest ESG class achieved an average return of —2.11%, whereas the benchmark class
performed better with a return of -0.0039%. Hence, this led to a large negative stock selection
effect for this class. Since this class underperformed the benchmark index and the index

simultaneously underweighted this class, the interaction effect turns out positive.

Panel B of Figure 3 displays attribution effects for emissions classes. For carbon indices,
the high carbon class was by far the dominant performance driver. The pattern is most distinct
for the World ex Fossil Fuels Index. We find that this index underweighted the high emissions
class by 5.75% on average during the sample period compared to its parent index. The class
performed better for the World ex Fossil Fuels Index by 0.22% compared to the same class of
the MSCI World Index. Even though this does not seem much, the combination of both
underweighting and outperforming the benchmark’s emissions class has driven active returns

substantially.

13 A more granular view with weights and returns of the respective classes within each index is provided in Table
A.3 in the Internet Appendix.
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[Insert Figure 3 here.]

In summary, we find that the index strategies are majorly influenced by their stock selection
when focusing on ESG classes and by allocation effects when taking emissions classes as a
basis. In general, this step is important in dissecting and understanding the construction strategy
of an index. As an extension, it is possible to analyze an index with regard to individualized
sustainable class categories. The respective attribution effects then reveal how the index

behaves towards the chosen classes.

7.8 Robustness tests

To prove the robustness of our results, we perform several further tests.** For the regression
models, we apply different sets of sustainable factors. We construct factors based on the MSCI
ESG ratings instead of the overall adjusted scores. In addition, we slightly change the
calculation of carbon intensity and use net sales as denominator — a definition which is widely
used in research and finance practice (e.g., Bolton and Kacperczyk, 2020; TCFD, 2017). For
both new factor sets, the results for the return and risk drivers basically remain unchanged. We
notice, however, that the decomposition of risk drivers based on MSCI ESG factors is even

more tilted towards the thematic focus of ESG indices.

For the calculation of the “market consensus ESG performance” we additionally apply
another approach by simply standardizing scores of each data provider instead of relying on the
percentile ranks (as in Berg et al., 2020). Using the overall adjusted scores based on

standardized ratings leads to comparable results.

14 Results of all robustness specifications are available upon request.
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To account for multicollinearity between factors, we also repeat the return analyses with
democratically orthogonalized factors following the methodology of Klein and Chow (2013).

All results remain stable.

For the performance attribution model, we adjust the definition of ESG classes and build
them based on the MSCI ESG score. Again, the selection effect outweighs the allocation effect
for all sustainable indices. For emissions classes, we analogously rely on carbon intensity
measured by net sales. Except for the World ex Fossil Fuels Index, the results are unchanged.
The active return of the World ex Fossil Fuels Index displays a slightly higher selection than
allocation effect. The distinction between these two effects has not been very pronounced with
the original definition of carbon intensity neither, so that the new results are in line with

previous findings.

Instead of focusing on sustainability classes, we also perform a more traditional form of
performance attribution based on sector, size, and book-to-market classes (see, e.g., Hsu et al.,
2010). Sector allocation is especially pronounced for carbon indices. For size classes, we find
that all sustainable indices do not systematically allocate towards them. For book-to-market
classes, the World ESG Universal, World ESG Focus, and World Low Carbon Target Indices

systematically overweigh growth stocks.

7.9 Conclusion

A myriad of different sustainability indices of various index providers in connection with
different ESG ratings makes it difficult for investors to orientate themselves. In turn, this lack
of transparency impedes effective capital allocation towards a sustainable economic
development necessary to combat climate change (European Commission, 2018). Even though
there are many studies analyzing sustainable indices and their conventional counterparts, there

are no insights on the measurement and impact of their sustainability performance. We provide
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a customizable approach based on conventional methods to analyze the strategies as well as
sources of risk and return of sustainable indices. We test our framework with a MSCI index

sample representative for the whole sustainable index landscape.

In the first step, we summarize traditional and thus necessary return and risk indicators of
market indices. In the second step, we focus on the ESG and carbon profile. Even though ESG
rating disagreement is also present at index level, we demonstrate how to handle different ESG
definitions. Thus, we find that inferences drawn on the ESG profile remain unchanged
regardless of the underlying ESG definition. This allows investors to apply their own ESG
rating definition. In the third step, index-specific return and risk drivers are determined to
demonstrate the importance of sustainability-related influences. Our analyses emphasize the
need to include sustainability aspects in factor analysis when evaluating the sources of risk and
return. With this step, investors can focus on specific exposures towards self-defined
sustainability issues and bundle as well as hedge various sustainability themes more effectively.
In the fourth and last step, we dissect index strategies into their attribution effects. Performance
attribution analyses with sustainability classes provide investors with a means to dissect index
strategies and draw conclusions for their own portfolio management towards sustainability

integration.

With this study, we increase the transparency on the design, composition, and driving
forces of sustainable indices and thus, actively address the European Commission’s criticism
on the lack of transparency in the construction and scope of sustainable indices (EU TEG,
2019). Investors can use our approach and tailor it towards their individual preferences and
needs. In this way, they can infer more informed decisions on capital allocation while taking

their own sustainability-related preferences into account.

In the upcoming years, the development of sustainability initiatives and regulations might

influence the sustainable index landscape to a large extent. Index providers have already started
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to provide provisional indices aligned with the proposals of the EU TEG report. A comparison
between benchmarks aligned with the standards proposed by the EU TEG and existing
sustainable indices with regard to their composition as well as sources of risk and return
presents an interesting area for future research. At this point in time, however, the financial
market still is targeted towards already existing indices, which also serve as underlyings of,
e.g., exchange traded funds. This study supports all financial market participants in their

decision-making process for effective sustainable capital allocation.
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Panel A. ESG scores
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Panel B. Carbon intensity
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Figure 2 continued

This figure shows the average distribution of ESG scores (Panel A) and carbon intensities (Panel B) of select
indices over the sample period. ESG scores are based on scores provided by MSCI ESG, Refinitiv ESG, and
Sustainalytics. The adjusted score is calculated as described in the data section. MSCI ESG scores are multiplied
by 10 to put them on the same scale as Refinitiv ESG and Sustainalytics data (following Christensen et al., 2019).
Carbon intensity is measured as scope 1 and 2 emissions divided by enterprise value. Carbon intensities are
divided into quintile classes with class 1 containing stocks with the lowest carbon intensities and class 5
comprising stocks with the highest carbon intensities.
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Table 6
Performance attribution effects
Active Return Allocation Selection Interaction

Effect Effect Effect
Panel A. ESG classes
World ESG Leaders -0.0302 0.0393 -0.1033 0.0338
World SRI 0.0437 0.0632 -0.1536 0.1341
World ESG Universal 0.0164 -0.0012 0.0205 -0.0029
World ESG Focus -0.0544 0.0145 -0.0360 -0.0328
World ex Coal -0.0144 -0.0014 -0.0131 0.0001
World ex Fossil Fuels 0.0116 -0.0030 0.0139 0.0007
World Low Carbon Target -0.0510 -0.0085 -0.0425 0.0001
World Low Carbon Leaders 0.0395 -0.0089 0.0529 -0.0045
Panel B. Emissions classes
World ESG Leaders -0.0319 0.0055 -0.0389 0.0015
World SRI -0.0030 0.0224 -0.0428 0.0174
World ESG Universal 0.0101 0.0117 -0.0008 -0.0008
World ESG Focus 0.0338 0.0384 -0.0082 0.0037
World ex Coal 0.0086 0.0052 0.0036 -0.0002
World ex Fossil Fuels 0.0673 0.0416 0.0387 -0.0130
World Low Carbon Target 0.0441 0.0514 -0.0167 0.0093
World Low Carbon Leaders 0.0293 0.0548 -0.0326 0.0071

This table displays attribution effects of active index returns of the indices following the methodology of Brinson
and Fachler (1985) and calculated following equations (8) to (10). All numbers are given in percent. The effect
with the highest absolute contribution for each index is printed in bold.
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Performance attribution of classes

This figure graphically depicts performance attribution effects for each performance class within one index
following the model of Brinson and Fachler (1985).



ARTICLE VI: WHAT DRIVES SUSTAINABLE INDICES? | 223

Internet Appendix A

Panel A. Environmental pillar scores
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Figure A.1
Distribution of scores

(to be continued)
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Panel B. Social pillar scores
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Figure A.1 continued

(to be continued)
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Panel C. Governance pillar scores
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Figure A.1 continued

This figure shows the average distribution of the environmental (Panel A), social (Panel B), and governance
(Panel C) pillar scores of ESG indices over the sample period. The pillar scores are based on scores provided by
MSCI ESG, Refinitiv ESG, and Sustainalytics. The adjusted score is calculated as described in the data section.
MSCI ESG scores are multiplied by 10 to put them on the same scale as Refinitiv ESG and Sustainalytics data
(following Christensen et al., 2019).
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Table A.2
Summary statistics of factors

Panel A. Descriptive statistics

mean sd t-stat
mktrf 0.0073 0.0355 2.11
smb -0.0015 0.0128 -1.22
hmi -0.0021 0.0173 -1.25
wml 0.0048 0.0255 1.93
esg -0.0027 0.0140 -1.95
env -0.0022 0.0157 -1.40
soc -0.0024 0.0147 -1.70
gov -0.0009 0.0168 -0.57
emi -0.0069 0.0225 -3.15

Panel B. Correlations between factors

mktrf smb hml wml esg env soc gov emi
mktrf 1
smb 0.0122 1
hml 0.0266 -0.0371 1
wml -0.3066 0.0197  -0.5053 1
esg -0.0780 -0.4309 0.3025  -0.1257 1
env -0.1580 -0.3650 0.3083  -0.0875 0.7193 1
soc 0.2643 -0.3097  0.4853 -0.3310 0.7657  0.5106 1
gov -0.3641 -0.3647  0.0369  0.1484  0.6121  0.3842  0.2966 1
emi -0.1500 0.0152  0.3217 -0.1113 0.2078 -0.0512  0.1524 0.3952 1

This table reports descriptive statistics of all factors used in this study for the sample period from April 2011 to
December 2019. The market factor (mktrf), smb, hml, and wml are the global factors from Kenneth R. French’s
data library. The factors esg, env, soc, gov, and emi are constructed as long-short portfolios based on the overall
adjusted ESG, environmental pillar, social pillar, governance pillar scores, and carbon intensity, respectively. T-
statistics are based on two-sided t-tests.
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Table A.3

Regression results for active returns — Carhart model
alpha B Boo B B R? adj. R?

World ESG Leaders 0.0002 -0.0244 0.0005 0.0019 0.0010 0.0805 0.0437
(0.59) (-2.76)  (0.02) (0.10) (0.07)

World SRI 0.0005 -0.0293 0.0389 -0.0178 -0.0020 0.0723 0.0352
(1.10) (-2.31) (117  (-0.62) (-0.10)

World ESG Universal 0.0000 -0.0059 -0.0241 -0.0148 -0.0029 0.0483 0.0102
(0.06) (-1.04) (-1.63) (-1.16) (-0.31)

World ESG Focus 0.0001 0.0120 -0.0053 -0.0151 -0.0218 0.1307  0.0959
(0.41) (2.09) (-0.35) (-1.16) (-2.34)

World ex Coal 0.0001 -0.0055 -0.0106 -0.0057 0.0037 0.1963 0.1641
(1.86)  (-2.93) (-2.16) (-1.34) (1.22)

World ex Fossil Fuels 0.0006 -0.0156 -0.0201 -0.0514 0.0105 0.2301 0.1994
(2.63) (-2.27) (-1.11) (-3.30) (0.95)

World Low Carbon Target 0.0001 0.0008 -0.0077 -0.0207 -0.0060 0.0862 0.0497
(1.31) (0.24) (-0.92) (-2.87) (-1.17)

World Low Carbon Leaders 0.0002 0.0082 0.0154 0.0183 0.0013 0.0986 0.0625

(153) (1.97) (1.42) (195  (0.19)

This table shows the results for regressions of the global Carhart (1997) model with the active return of the
respective index as dependent variable. We display all estimated coefficients in the sample period for the Carhart
model (equation (1)). The last two columns display R? and adjusted R? values. T-statistics are reported in
parentheses.
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Internet Appendix B

This appendix includes analyses based on the total excess return of indices. In comparison to
the main analyses, this implies that return and risk impacts common to both the conventional
parent index and the sustainable index are taken into consideration besides the index-specific

part. In the following, we present both active return exposures and systematic risk tilts.

Active Exposures

We estimate factor exposures using our four factor models as described in Equations (1) to (4)
of the main analysis. As dependent variable, we employ the excess return over the risk-free rate
for each index. Subsequently, we subtract the respective beta exposure of the MSCI World
Index from the estimated exposure of each sustainable index to attain the active beta exposure

(see Figure B.1).

In line with literature, we barely find any differences for common risk factors (Wan-Ni,
2012). The World SRI Index displays the highest size tilt with a 0.0389 higher SMB beta than
the MSCI World Index. Even though the World ex Fossil Fuels Index has shown high
similarities with the MSCI World Index before, it has a 0.0514 lower HML beta than its parent
index. All ESG indices display positive active exposures towards the ESG factor (Panel A). We
find the highest ESG tilt for the World SRI Index closely followed by the World ESG Universal
Index. When splitting the ESG factor in its thematic components, the high active exposure
towards ESG of the World SRI Index (World ESG Universal Index) is mainly caused by a tilt
towards governance (social) issues. Additionally, the pillar factors model demonstrates that
ESG indices can also display lower exposures towards sustainability issues than their parent
index. For example, the World ESG Leaders Index has a 0.0389 lower beta exposure towards

the social pillar factor than the MSCI World Index. However, it is more sensitive towards the



ARTICLE VI: WHAT DRIVES SUSTAINABLE INDICES? | 232

governance pillar factor by 0.0587. Active exposures towards the emissions factor are

comparatively small.
[Insert Figure B.1 here.]

Carbon indices are significantly less exposed towards the emissions factor than their parent
index (Panel B). This is in line with expectations as it implies that carbon indices are tilted
towards the short leg of the emissions factor, i.e., low-carbon stocks. In addition, we find
positive tilts for the environmental pillar factor in line with the thematic environmental focus
of carbon indices. The World ex Fossil Fuels Index thereby has the largest active exposure of

0.0870.

Overall, sustainable indices do not show systematically high deviations from their parent
index for common risk factor exposures. Since we analyze passive investment strategies, small
differences are to be expected. More importantly, indices with an ESG focus are more sensitive
towards a systematic ESG factor and pillar factors, respectively. Additionally, carbon indices
display absolute high active exposures towards an emissions factor and the environmental pillar
factor. Hence, sustainable indices conform to their investment focus and are more exposed to

their respective thematic emphasis.
Systematic risk tilts

We estimate the systematic risk exposure of an index explained by all factors in the underlying
factor model as coefficient of determination of the assumed factor model (R?). To be more
specific, we estimate models (1) to (4) with the excess return of the index as dependent variable.
In the next step, we subtract the risk exposure of the parent index, the MSCI World Index, from

the systematic risk exposure of the respective sustainable index to obtain risk tilts.

In Table B.1, we report the tilts for all of the models in equations (1) to (4). All indices

show negative deviations from their parent index, i.e., they have lower systematic risk.
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However, this implies that they contain higher idiosyncratic risk following equation (7). This
is in line with the hypothesis that sustainability is part of stock-specific characteristics (see, e.g.,

Nagy et al., 2016).

[Insert Table B.1 here.]

The World SRI Index achieves the highest absolute systematic risk tilt with the Carhart model
of —1.3683%. The tilt remains the highest even when accounting for the ESG factor, the three
pillar factors, or the emissions factor. The lowest risk deviations are found for the World Low
Carbon Leaders Index with a small tilt of, e.g., 0.0158% for the emissions factor model. We
notice that the systematic risk tilt is diminished when applying the ESG, pillar factors, or
emissions factor model in most of the cases. When including additional relevant factors,
systematic risk rises by definition. In our case, systematic risk increases more for sustainable
indices than for the parent index (i.e., the difference between the two decreases) confirming that

sustainable indices are more exposed to systematic sustainable risk sources.
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Panel A. ESG indices
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Figure B.1
Index active exposures

This figure displays active exposures of the indices compared to the MSCI World Index (the difference between
the beta exposures of the index and the MSCI World Index). The Carhart mkt, Carhart Bsmb, Carhart hml, and
Carhart Bwml values are estimated by a global Carhart (1997) model (equation (1)). The Besg value is the result
of a Carhart model including a global ESG zero-cost portfolio (equation (2)). The environmental, social, and
governance exposures (Benv, Bsoc, fgov) are estimated by a Carhart model including the three ESG pillar factors
(equation (3)). As a last model, we implement a Carhart model plus an emissions zero-cost portfolio to obtain
Bemi (equation (4)).
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Table B.1
Systematic risk tilts

Pillar factors

Carhart model ESG model model Emissions model
World ESG Leaders -0.6996 -0.6885 -0.5326 -0.6858
World SRI -1.3683 -1.3095 -1.2521 -1.3651
World ESG Universal -0.1347 -0.0807 -0.1067 -0.1349
World ESG Focus -0.2370 -0.2287 -0.2537 -0.2359
World ex Coal -0.0737 -0.0741 -0.0518 -0.0709
World ex Fossil Fuels -0.4338 -0.4336 -0.3334 -0.1721
World Low Carbon Target -0.0682 -0.0669 -0.0673 -0.0477
World Low Carbon Leaders -0.0482 -0.0481 -0.0786 -0.0158

This table reports systematic risk tilts as the difference between the systematic risk exposure of sustainable
indices and the MSCI World Index. The systematic risk exposure for each index is obtained as the coefficient of
determination (R?) of the regression models in equations (1) to (4) with the index excess return as dependent
variable. All numbers are shown in percent.
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8 CONCLUDING REMARKS

This dissertation effectively captures the impacts of changing market expectations on asset
pricing theory and finance practice. It scrutinizes underlying model assumptions and modifies
traditional model setups to account for sustainability considerations. Moreover, it assesses the

implications for finance practice, i.e., investment strategies and tools.

The framework of this dissertation starts with a review of the underlying assumptions of
asset pricing models. Article I addresses market efficiency in the traditional context. It shows
that delayed price adjustments limit market efficiency and influence the statistical properties of
daily returns. In turn, the CAPM relying on a right price formation process delivers biased
estimates of systematic risk. These biases can be overcome by applying techniques that correct
nonsynchronous information integration into prices. Overall, the article demonstrates how to
mitigate shortcomings in model assumptions to derive at better risk estimates in the investment
decision process. The adjustment techniques are especially effective for portfolios formed on
stock characteristics known to be sensitive towards price adjustment delays. The rising demand
for style portfolios, such as small cap investing, increases the need to adopt these technigues.
Analyses on how common portfolio strategies change when taking delayed price adjustment
into account are to be conducted in future work. The existence of market frictions in the sense
of price adjustment delays in other stock markets not part of this study and spillover effects

between markets constitute other interesting fields for future research.

Article II examines the assumption of rational investor behavior. Investors do not act
rationally but exhibit biases in their decision making under uncertainty (see, e.g., Kahneman
and Tversky, 1979; De Bondt and Thaler, 1995). Article II provides evidence on herding
behavior of institutional investors. This behavior occurs in light of the decarbonization

movement, i.e., investors follow buy trades of green stocks and sell trades of brown stocks.
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Sophisticated investor groups lead the herd, which is in line with expectations that others follow
sophisticated investors since they expect them to have superior information and skills
(Eichengreen et al., 1998). In addition, reputational concerns and the tie to social norms might
be responsible for following the decarbonization movement. Overall, this article provides a
description of investor behavior in a sustainability-related context and points out potential
motives for it. Therefore, the article contributes to a better understanding of sustainable
investment decisions in the financial market. More profound analyses on why this investor
behavior occurs and its impacts on prices have to be carried out in future studies. Additionally,
these behavioral patterns of investors might be useful to lead the financial market towards more
sustainable actions by directing respective measures at the leaders of the herd. The impacts of

such potential measures, however, still have to be determined.

Political movements, societal preferences, and a changing perception of risk sources with
regard to sustainability considerations lead to reassessed foundations for price formation
processes. Article III demonstrates that asset pricing models need to be adjusted to integrate
these revised expectations as they influence asset prices. The carbon risk factor Brown-Minus-
Green (BMG) accomplishes this aim and mirrors carbon risks while significantly determining
variation in returns. Since the market is not in an equilibrium state yet, the factor does not
demand a premium. The methodology developed in this paper adds to the understanding of
carbon risk and provides a way of measuring carbon risk exposure of financial assets without
the need for carbon- and transition-related data. Moreover, the measurement approach can be
adjusted to fit individual needs. All market participants can thus derive their individual carbon
risk exposure to better understand the role of carbon risk in their strategies. At the same time,
new insights on sustainability ratings and larger data time series can be used to calibrate the
approach further. For example, the scoring approach for determining a firm’s brownness or

greenness can be refined by taking ratings disagreement into consideration (Dimson et al., 2020;
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Berg et al., 2020; Gibson et al., 2020). For a more timely assessment of sustainability risks, a
daily model setup is feasible. To increase the model’s accuracy in this case, the impact of
delayed price adjustments has to be taken into account. This case is left for future work.
Moreover, as soon as expectations of market participants derive at a consensus and an
equilibrium state emerges, carbon risk might demand a risk premium. This hypothesis is to be

tested in future research.

Integrating sustainability in investment practices requires a deeper analysis of practical
strategies and their implications. Article IV focuses on portfolio strategies and shows that both
brown and green stocks are exposed to high risk but differ in their return patterns. These patterns
are driven by differing factor exposures. When implementing screening strategies to reach a
certain threshold value of carbon risk exposure, investors are confronted with lower risk-
adjusted performance. Best-in-class approaches on sector level demonstrate that investors do
not have to forgo investments in certain sectors to integrate carbon risk. Last, best-in-class
strategies on country level reveal that a European stock portfolio is greener than an American
portfolio. This article about carbon risk integration on portfolio level emphasizes the
interrelation between a stock’s greenness or brownness with other risk and return
characteristics. Furthermore, the construction methodology of the carbon risk measurement tool
influences the nature of this interrelation. Hence, portfolio managers need to apply due
diligence when integrating carbon risk into their investment strategies. For future research, a
comparison of different carbon risk measurement tools and their impacts on portfolio
management strategies can contribute to a more effective alignment of capital flows and

investment objectives.

Article V moves towards the analysts’ perspective and investigates the impact of carbon
intensity on stock valuation processes by focusing on the COVID-19 crisis and post-crisis

period in 2020. Carbon-intensive stocks had to face lower returns during the intense COVID-19
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period in early 2020. However, in the following recovery period, they could achieve higher
performance relative to the pre-crisis period allowing them to recoup their additional incurred
losses in the crisis period. From a risk perspective, carbon intensity impacted stock risk
positively in the recovery period. The discussions about green economic stimulus packages
coupled with an increased exposure towards stranded assets and climate policy uncertainty
might have increased the risk of carbon-intensive assets. This circumstance also justifies the
occurrence of higher returns for carbon-intensive stocks, i.e., a carbon premium. The article
emphasizes the importance to take climate risk into account for sound risk management
strategies. Furthermore, these results enable better risk assessments for financial analysts and
thus more profound forecasts and recommendations. Stimulus packages targeted at promoting
more sustainable business models could lead to a strengthening influence of carbon intensity
on stock analyses. This has to be tested in future work. Back-testing the results to periods when
climate risk has not been as present in the markets yet and comparisons to other crisis periods,
such as the financial crisis in 2008, might reinforce the assumption that carbon intensity has

recently established itself as a fundamental influencing factor in stock valuation processes.

The last article covers sustainable market tools that should guide successful capital
allocation towards sustainable activities. Article VI provides a customizable step-by-step
framework for analyzing the sustainable index landscape. Besides traditional return and risk
indicators, the approach assesses the ESG profile of indices taking different ESG definitions
into account. Furthermore, index-specific return and risk drivers are identified via a regression
framework with sustainability factors. Last, the index strategy is evaluated by a performance
attribution analysis based on sustainability-related stock classes. Overall, the analyses provide
customizable guidelines for market participants on how to assess the efficacy of sustainable
indices concerning sustainability aspects. In specific, they support investors in their decision-

making process for sustainability integration and thus allow a more informed and effective
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resource allocation in line with an individually desired level of sustainability exposure. In the
future, a reshaping of the sustainable index landscape is to be expected as soon as index
providers start in complying with the standards introduced by the European Commission (EU
Technical Expert Group, 2019). An empirical comparison between existing indices and
provisional benchmarks aligned with these standards can improve the transparency of the

sustainable index landscape further.

In its entirety, this dissertation increases the understanding of price formation processes
and defines a holistic concept for capturing the interconnection between sustainability
considerations, asset pricing theory, and finance practice. In this way, financial market
participants gain deeper knowledge of sustainability-related influences and make more

informed investment decisions.

In summary, sustainability considerations should no longer be perceived as isolated and
subordinate decision-making parameters but as indispensable determinants of investment
processes. In practice, however, they are not yet a standard integral component of financial
decision making. Among investors, data issues remain a key barrier to an adequate integration
of sustainability in investment practices: poor quality or availability together with a lack of
standardized reporting of sustainability metrics impede an efficient use (see, e.g., BlackRock,
2020; Amel-Zadeh and Serafeim, 2018). Furthermore, the real impacts of sustainable investing
on the environment and society often remain uncertain (Kolbel et al., 2020; Wilkens and Klein,
2021). Studies on how and to which degree investments achieve sustainable targets could drive
more purposeful investment decisions. In short, more transparency on sustainable data and

impacts of sustainable investing is needed.

Access to consistent, high-quality, and encompassing information about sustainability and
its implications will increase market efficiency and thus support a more profound reallocation

of capital with regard to sustainability-related influencing factors. The framework and insights
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from this dissertation are at the forefront of filling this gap and pave the way for further
necessary research. At present, financial market participants are not doomed to inaction. The
accelerating shift towards sustainable investing opens up new opportunities for each financial
market participant — from the ordinary private investor to large financial institutions — to reshape

their investment approach in an effective and forward-thinking way.
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