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Abstract
The two most common chronic inflammatory skin diseases are atopic dermatitis (AD) 
and psoriasis. The underpinnings of the remarkable degree of clinical heterogene-
ity of AD and psoriasis are poorly understood and, as a consequence, disease onset 
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1  |  RE VIE W OF THE FIELD

1.1  |  Atopic dermatitis and psoriasis are the most 
common chronic inflammatory skin diseases

One of the greatest challenges that health systems will face globally in 
the twenty- first century is the increasing burden of chronic noncom-
municable diseases.1 The skin is an organ often affected by chronic 
conditions, in particular inflammatory immune- mediated diseases, ei-
ther as the primary target or through secondary manifestations. The 
two most common chronic inflammatory skin diseases are atopic der-
matitis (AD) and psoriasis.2,3 Data from the WHO Global Burden of 
Diseases initiative indicate that at least 230 and 125 million people 
worldwide have AD and psoriasis (lifetime prevalence 10– 15% and 2– 
3%, respectively4), with AD being the leading cause of the non- fatal 
disease burden conferred by skin conditions.5 At the patient level, 
both AD and psoriasis have diverse and marked negative impacts on 
quality of life (QoL) and place a tremendous financial burden on pa-
tients and also on healthcare providers.6,7 AD and psoriasis are associ-
ated with a strongly increased risk of comorbidities. Up to one- third of 
patients with AD suffer from comorbid atopic diseases, such as food 
allergy, rhinitis and/or asthma,8 and up to 20% of psoriasis patients are 
affected by psoriatic arthritis.9 Inflammatory bowel disease, rheuma-
toid arthritis, cardiometabolic traits and neuropsychiatric conditions 
have also been linked with both AD and psoriasis.10- 14

AD can manifest at any point in life but the incidence peaks in early 
infancy, around age 2 years.15 After onset, the course may be continu-
ous for long periods, but may also show a relapsing- remitting nature.16,17 
Conventional clinical teaching is that AD clears in more than 50% of af-
fected children, but recent data indicate that the proportion of patients 
with persistent or adult- onset disease, or with relapses after longer 
asymptomatic intervals, is much higher than previously thought.18,19 

Psoriasis can also manifest at any age, but onset most commonly oc-
curs between 18 and 39 years and between 50 and 69 years of age.20 
Its natural course is highly variable, but there is little robust epidemi-
ological data on patient trajectories. Both AD and psoriasis are based 
on a strong inherited predisposition and triggered by environmental 
factors, ultimately leading to epidermal barrier deficiency and exces-
sive T- cell activation; however, the underlying T- cell polarization is dif-
ferent. Psoriasis is largely driven by Th17 T cells and associated with 
type 17 responses, and severe disease can effectively be controlled in 
most patients by blocking the IL- 23/Th17 T- cell axis.21 However, there 
is significant inter- patient heterogeneity in efficacy and adverse effects 
to respective biologics, and up to 35% of patients fail their first biologic 
therapy,22 possibly reflecting the heterogeneity of the disease. AD has 
a strong Th2 component but appears to involve multiple immune path-
ways that might create different disease features.23,24

As in many other common chronic inflammatory diseases, the 
underpinnings of the remarkable degree of clinical heterogeneity of 
AD and psoriasis are poorly understood and, as a consequence, dis-
ease onset and progression are unpredictable and the optimal type 
and time point for intervention are as yet unknown.3 Thus, the de-
lineation of disease subtypes and their mechanistic basis and molec-
ular signatures, and biomarkers capable of assessing disease- related 
individual patient trajectories and response to different therapies 
are key unmet needs.3 Ideally, current classifications would be re-
placed with an aetiology- based taxonomy that can be coupled with 
effective and safe treatment regimens for AD and psoriasis. Major 
technological advances in recent years include high- resolution 
‘omics’ assay technologies that enable large- scale multidimensional 
molecular profiling across biological strata. The intelligent integra-
tion of ‘omics’ data with detailed clinical, environmental and lifestyle 
information has the potential to identify the molecular identity and 
subclasses of the underlying disease aetiologies.25,26 Yet generating, 
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processing, distributing and utilizing sufficiently large, detailed, re-
liable and robust sample collections and data sets require comple-
mentary expertise and collaborative efforts.27

1.2  |  The human skin microbiome in 
AD and psoriasis

The human microbiome, that is the assemblage of microbial genomes 
on or in our bodies, plays an essential role in maintaining our health 
via crosstalk with the immune system.28 Representing the largest 
organ of our body including various distinct physical and chemical 
niches, the skin presents a diverse environment for microbial growth. 
Furthermore, being a protective barrier against the external environ-
ment, skin constantly receives microbial input from the surround-
ings, consequently hosting the most diverse microbial communities 
in the body.29,30 In healthy skin under steady- state conditions, most 
microbes thrive as commensals and mutualists, hence interacting 
with dermal cells in a way that maintains homeostasis of cutaneous 
immunity.28 An inadequate barrier function can result from endog-
enous factors such as filaggrin (FLG) loss- of- function mutations,31,32 
or local inflammation, or from exogenous factors such as bathing 
practices, and may allow for colonization by opportunistic microbes, 
triggering an undesirable immune activation. Perturbations in this 
host- microbe network alter both skin microbiome and immune func-
tions. Whether such shifts are apparent even before disease initia-
tion and can drive disease development have been examined only in 
small studies33 but during inflammation, such as in AD, the composi-
tion of microbiome often shifts substantially.34 Shifts in the microbi-
ome composition in psoriasis have also been observed.35

1.2.1  |  Skin microbiome in AD

The skin microbiome in AD is characterized by increased abundance 
of Staphylococcus aureus (S. aureus) and reduced diversity of the 

commensal skin microbiome (Figure 1A). Most AD subjects are colo-
nized with S. aureus, compared with only 10% of healthy individuals, 
and the relative abundance of S. aureus correlates with disease flares 
and severity.34,36- 42 S. aureus exacerbates AD through mechanisms 
that affect the epidermal skin barrier as well as cutaneous innate 
and adaptive immune responses.43 Staphylococcal enterotoxins act 
as superantigens to activate polyclonal T- cell responses and can also 
act as allergens to stimulate IgE production.44- 46 Staphylococcal 
phenol soluble modulins (PSMs), such as δ- toxin which induces mast 
cell degranulation, and α- toxin which activates keratinocyte IL- 1α 
and IL- 36α production are also likely to drive inflammation in AD.47,48

Skin microbial diversity is reduced in AD and diversity inversely 
correlates with disease severity.34,37,41 Common skin microbiome 
members, including coagulase- negative staphylococci (CoNS) such 
as Staphylococcus epidermidis, may aid skin homeostasis and protect 
against the pathogenic effects of S. aureus. S. epidermidis has been 
shown to promote TLR2 signalling and antimicrobial peptide (AMP) 
expression in keratinocytes and also to induce PSM production, 
which inhibit growth of S. aureus in vitro.49,50 Topical treatment with 
CoNS in AD resulted in decreased S. aureus colonization.51 CoNS 
have also been shown to reduce S. aureus- driven skin inflamma-
tion by producing auto- inducing peptides that inhibit the S. aureus 
accessory gene regulatory quorum sensing system. This resulted 
in reduced expression of the S. aureus virulence factor PSMα in 
vitro and reduced S. aureus- induced skin barrier damage in mice.52 
Furthermore, other skin commensals including Cutibacterium acnes 
and the gram negative Roseomonas mucosa have also been shown to 
inhibit growth of S. aureus.53- 55 The homeostasis- inducing properties 
of these commensal species could potentially be harnessed thera-
peutically to reduce inflammation and treat AD in the future.

It remains largely unknown whether certain microbial popula-
tions in the skin precede or protect from the development of AD, 
though many of the environmental factors that have been associ-
ated with protection from AD development, such as rural living en-
vironment 56 and exposure to dogs,56 are potential seeding sources 
for the skin microbiome.57

F I G U R E  1  Host- microbe interactions are implicated in the pathogenesis of atopic dermatitis and psoriasis. Schematic view of alterations 
in the skin microbiota and host defence responses in (A) atopic dermatitis and (B) psoriasis. AMPs = antimicrobial peptides, DC = dendritic 
cell, KC = keratinocyte, Th = T helper cell, IL = interleukin, TSLP = thymic stromal lymphopoietin, TNF = tumour necrosis factor alpha, 
IFNg = interferon gamma, TLR2 = toll- like receptor 2 and NOS2 = nitric oxide synthase 2
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1.2.2  |  Skin microbiome in psoriasis

In contrast to the established association between AD and S. au-
reus, knowledge regarding the skin microbiome in psoriasis is more 
nascent.58,59 There is a clear connection between psoriatic flares 
and microbial alterations, suggesting that skin microbiota may be 
an important player in the aetiology of this disease. However, no 
specific microbial patterns have been possible to determine, due to 
conflicting results from several studies. Nevertheless, a common ob-
servation in psoriatic skin is the underrepresentation of certain taxa, 
such as Cutibacterium acnes (Figure 1B), which are highly abundant 
in healthy skin. Moreover, some studies have reported the overrep-
resentation of Streptococcus species,60- 62 and others have described 
the association of Staphyloccus species with the disease.58,63 Like 
S. aureus, Streptococcus species can secrete superantigens which 
stimulate T- cell expansion, potentially leading to the breakdown of 
immune tolerance to cutaneous microbes, and the accumulation of 
Th1 and Th17 cells.64

1.3  |  Lifestyle, environment variables and genetic 
factors associated with the human microbiome and 
inflammatory skin disease

1.3.1  |  Lifestyle and environment in the 
general population

The very first scaffold of the human skin microbiome is already 
set at birth and impacts health and disease via early influences on 
the developing immune system.65,66 During puberty, the change in 
hormones and sebum expression in the skin leads to a profound 
change in the microbial composition of the skin,67 which then re-
mains largely stable during adulthood, despite lifelong exposure to 
strongly fluctuating environmental factors.68 To better understand 
the fundamental forces that shape the healthy skin microbiota, 
several studies have investigated the impact of lifestyle and envi-
ronmental factors on the microbial skin community in the general 
population. These studies have shown that the strongest influence 
on the skin microbiome stems from the local skin microenviron-
ment, in particular determined by skin pH, skin hydration, sebum 
production and epidermal lipid content.69,70 Additionally, links be-
tween the skin microbiome or its members and a variety of intrin-
sic and extrinsic factors have been observed, including age,57,71,72 
sex,73,74 BMI,75 use of cosmetic products,76,77 exposure to antibi-
otics,78 ethnicity and geographical region.79- 81 Moreover, variation 
in the skin microbiome was found to be associated with several 
environmental factors, including UV exposure,82 exposure to do-
mestic animals such as dogs,83 contact with soil and plants,84 and 
urbanization of place of residence.57,85 While many of these results 
have been replicated in independent studies (eg age), our current 
understanding is still patchy, with few studies available that aimed 
to integrate many candidate factors.71,74

1.3.2  |  The effects of the environment on the 
microbiome and the skin- gut axis in AD and psoriasis

There is increasing recognition of the global burden of both AD 
and psoriasis, with changing epidemiological patterns in high-  and 
low- income countries.86,87 Both diseases are more prevalent in 
high- income and in highly westernized countries, but the exact re-
lationship between environmental risk factors and AD and psoriasis 
remains to be elucidated. Epidemiological studies have implicated 
hygiene- related factors, urbanization and climate, which are thought 
to reduce microbial biodiversity, and lifestyle factors, such as diet 
and obesity, alcohol, smoking and stress, which may impact chronic 
inflammation.88

The International Study of Asthma and Allergies in Childhood 
(ISAAC) studies contributed significantly to our understanding of 
the global prevalence of AD, and the changing patterns amongst 
high-  and low- income countries.88- 91 There is conflicting evidence 
regarding the geographic distribution of psoriasis with some stud-
ies reporting higher incidence and prevalence rates of psoriasis 
with increasing distance from the equator.92,93 However, this rela-
tionship was not confirmed in a recent systematic review and meta- 
analysis,87 which attributed increased frequency of psoriasis to 
higher income levels. Urbanization, air pollution and differences in 
climate and UV exposure are possible explanations for increased fre-
quency of AD and psoriasis at higher latitudes. Lower UV exposure 
directly contributes to lower vitamin D levels, which may be relevant 
to AD and psoriasis given their associations with hypovitaminosis 
D.94,95 Vitamin D affects the innate and adaptive immune system, 
antimicrobial defences and influences skin barrier function.95,96 UV 
radiation has been shown to impact the skin microbiome in healthy 
volunteers,82 and phototherapy modifies the skin microbiome in pa-
tients with psoriasis97 and with AD.98 Narrowband UVB and natural 
sunlight exposure on the skin may even modulate the gut microbi-
ome.99,100 The skin, gut and household microbiome varies amongst 
populations living in regions with the same latitude, but varying 
levels of urbanization. These changes, particularly changes in the 
mycobiome, are associated with availability of household cleaning 
products and dwelling type.85 Further research integrating the im-
pacts of the environment, including temperature, climate, pollution 
and urbanization, on the skin and gut microbiome and the relation-
ship with AD and psoriasis is required.

In addition to environmental factors associated with urbaniza-
tion, a Western lifestyle, diet and increasing obesity may play a role 
in AD and psoriasis.101,102 Patients with psoriasis are at significantly 
increased risk of metabolic diseases including hyperlipidaemia, insu-
lin resistance, obesity and the metabolic syndrome.103- 105 Mendelian 
randomization has shown that obesity plays a causative role in pso-
riasis.106 The relationship between diet and the gut microbiome is 
bidirectional107: nutrient availability impacts the bacterial commu-
nity structure and the metabolic effects of the gut microbiome in-
fluence the host's energy availability and alter the metabolome.108 
The health consequences of an obesity- associated gut microbiome 
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have been discussed elsewhere,109- 111 and associations between the 
skin microbiome and obesity and diet have more recently been re-
ported.75,112 Whether the gut and/or skin microbiome have medi-
ating, confounding or bystander roles in the relationship between 
psoriasis and/or atopic dermatitis and obesity remains to be fully 
elucidated.

1.3.3  |  Genetics

The influence of human genetics on the skin microbiome is largely 
understudied, particularly at the general population level, and avail-
able AD studies have mainly focused on mutations in the skin barrier 
gene filaggrin (FLG). In a seminal work, Si et al.113 found that the her-
itability of bacterial clades ranged from 40.9% to 56.4% in a study of 
45 individuals, including twins. In addition, they found an association 
between a single nucleotide polymorphism (SNP) in the FLG gene 
when searching within a SNPs panel of skin- related genes. FLG en-
codes a structural protein essential for skin barrier function,32 and 
its loss- of- function mutations are the strongest known genetic risk 
factors for AD31,114 and the cause of ichthyosis vulgaris.115 FLG mu-
tations have been associated with distinct skin microbiome profiles 
of healthy individuals, which instead resembled microbiome profiles 
observed in AD patients.116 Furthermore, FLG mutations were asso-
ciated with Staphylococcus aureus colonization in AD patients117 and 
microbial composition in patients’ non- lesional skin.118 Nevertheless, 
to the best of our knowledge, no systematic survey of possible influ-
ences of genes on the skin microbiome has been conducted on the 
general population nor on patients with AD or psoriasis. This is in 
strong contrast with the increasing number of genome- wide asso-
ciation studies conducted on gut microbial communities (mGWAS), 
which now include thousands of participants.119,120 The interaction 
between host genetics and gut microbiomes found by mGWAS stud-
ies suggest that such interactions may exist for the skin microbiome. 
Further findings are, however, more suggestive of a potential impact 
of host genetics on skin microbiome, such as microbiome- related 
gene expression profiles of psoriasis patients and AD patients,121- 123 
the association of skin bacterial communities with ethnicity,81 and 
the small proportion of microbial community variation explained by 
individual, lifestyle and environmental factors combined (around 
15%).76

1.4  |  Disease initiation and early AD development

The healthy skin microbiota changes considerably throughout life, 
with Staphylococcus and Streptococcus dominating in infancy, while 
Cutibacterium and Corynebacterium are more abundant in adult-
hood (Figure 2A).67,70,124,125 Interestingly, the prevalence of AD is 
highest in the first years of life, with a considerable decline around 
school age126,127 (Figure 2B), and while AD can resolve in some 
cases, for others it becomes a lifelong condition.86 Interestingly, the 
skin microbiota in young children is also quite different from that 

of older children and adults.67,70,124,125 This could suggest an age- 
specific skin dysbiosis in infant lesional skin (Figure 2C), a hypoth-
esis that is supported by a few studies, each with low numbers of 
participants.122,128 Skin barrier dysfunction, including that caused by 
filaggrin mutations, is associated with immunological Th2 skewing,86 
but this relationship is bidirectional as Th2 inflammatory cytokines 
(such as IL- 4, IL- 13 and IL- 33) can directly disrupt the skin barrier, 
through alterations in filaggrin breakdown products and stratum 
corneum lipid mediators.129,130 It is not known how microbial expo-
sures in early life interact with genetic and environmental factors 
in the initiation of AD. As discussed previously, pathogenic bacte-
ria can, themselves, impair the skin barrier by producing superanti-
gens and toxin- promoting biofilms, and by inducing thymic stromal 
lymphopoietin.131- 133

1.4.1  |  Early life is a critical window for immune- 
microbe interactions

Birth marks the abrupt transition from intra- uterine to postnatal 
life, a period characterized by dynamic changes in the infant's liv-
ing environment, colonizing microbiota and their immune system. 
Our understanding of the infant's developing immune system has 
evolved, with some authors, suggesting that it should be considered 
specialized rather than immature.131- 133 Early life is a ‘window of op-
portunity’ for the development of a symbiotic relationship between 
the host immune system and colonizing microbes.134,135 Initially, 
maternal passive immunity predominates and the infant's adaptive 
immune system is characterized by high levels of tolerogenic regula-
tory T lymphocytes (Tregs).136 Requirements for skin biopsies hinder 
our understanding of the infant's cutaneous immune system; how-
ever, mouse models suggest early exposures to commensal bacteria 
may entrain a population of skin- resident Tregs.137 Culture- based 138 
and culture- independent microbiome studies 125 in human infants 
demonstrated that perturbations of the early- life skin microbiome, 
including differential colonization with commensal staphylococcal 
species, can influence the subsequent development of AD.

1.4.2  |  The infant gut microbiome and AD

To date, studies of the microbiome in early life have primarily focused 
on the gut.139- 144 The Environmental Determinants of Diabetes in 
the Young (TEDDY139) study provides the largest longitudinal micro-
biome data set from early life to date (n = 903) and demonstrated 
that breastfeeding was the major determinant of gut microbiome 
maturation. The TEDDY study and others have identified associa-
tions between the infant gut microbiome and mode of delivery,145 
antibiotic exposure,146- 148 geographical regions, and the presence of 
older siblings140,149 and household pets,150 factors which have also 
been associated with AD in epidemiological studies.86 Further recent 
evidence comes from the Enquiring About Tolerance (EAT) cohort; 
caesarean section and the early introduction of solid foods alongside 
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breastfeeding had the strongest impact on the evolution of the gut 
microbiome.151 In addition, increased Clostridium sensu stricto rela-
tive abundances at three months of age were associated with the 
presence of AD at three and twelve months of age. However, a 
previously published systematic review 152 did not find a consist-
ent association between the diversity of the gut microbiome and the 
development of AD, nor a consistent association of specific bacterial 
species with AD. The heterogeneity of results may be attributable to 
methodological and technical differences between studies.

1.4.3  |  The early- life skin microbiome requires 
further research

The microbiome of the skin and other body compartments has in-
creasingly been studied, including in early life. Chu et al 65 demon-
strated minimal site specificity of the microbiome of the meconium, 
nostrils, oral cavity and skin when sampled immediately after birth. 
However, by 6 weeks of age, the infant's microbiome had developed 
distinct ecological niches.65 Site- specific differences of the skin mi-
crobiome can be detected as early as the second day of life,125 re-
flecting age- related and topographic differences in skin physiology, 
barrier function 153,154 and micro- environments.

Mode of delivery may exert a small influence on the skin microbi-
ome at birth, but this influence appears to be short- lived.65,125 Small 
studies have examined the influence of gestational age, antibiotic 

exposure 155 and feeding 125 on the early- life skin microbiome but 
the long- term effects in shaping the infant skin microbiome are not 
clear. A small study of infants at risk of AD demonstrated differ-
ences in the skin microbiome and the skin pH in those randomized 
to use daily emollients.156 A larger randomized trial evaluating the 
use of emollients157 for the prevention of AD demonstrated a trend 
towards higher skin infection rates but did not specifically character-
ize the skin microbiome. Infant bathing practices have been demon-
strated to influence skin barrier 158 function; however, the effects of 
bathing and hygiene practices on the infant skin microbiome have 
not been characterized.

1.4.4  |  The gut- skin axis in early life

Beyond taxonomic classification, the functional roles of the gut and 
skin microbiota in AD have not been established. Metagenomic and 
metabolomic studies of the gut microbiome have identified associa-
tions with AD,159,160 and a variety of other diseases including aller-
gic sensitization, asthma,161,162 inflammatory bowel disease163 and 
obesity.164 For example, bacterial- derived short- chain fatty acids 
can exert anti- inflammatory or tolerance- inducing effects.165,166 In 
culture- based studies,167,168 early gut colonization with particular 
Staphylococcus aureus strains was negatively associated with later 
development of AD. The metabolic impact and immunologic conse-
quences of the skin microbiome in early life, and the relationship 

F I G U R E  2  The development of the skin bacterial community structure and the nature of perturbations during AD lesions in different 
developmental periods. A, Schematic view of the healthy developing skin microbiota, shown through the relative abundance of the four 
most prevalent bacterial genera present on the skin during infancy, childhood and adulthood. B, Schematic view of the prevalence of AD 
during infancy, childhood and adulthood, highlighting that the major disease burden of AD occurs in early life. C, The red box marks the 
age- specific dysbiosis associated with lesional AD skin, resulting in higher (up- arrow) or lower (down- arrow) relative abundances of certain 
bacterial genera. The nature of this dysbiosis in infancy is largely unknown and is therefore marked with a question mark
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with the initiation and early development of AD and other atopic 
diseases remains to be defined. It is plausible that there is crosstalk 
between the infant gut and skin microbiota and the developing im-
mune system.

1.5  |  Gene- microbiome networks underlying 
cutaneous inflammation

Abnormal host- microbe interactions are associated with cutaneous 
disorders like AD and psoriasis,34,60,125,169 but little is known about 
their physiological roles and the molecular mechanisms that medi-
ate cutaneous host- microbe interactions. Meisel et al.170 profiled the 
skin transcriptome of mice in the presence and absence of microbiota 
to identify genes and pathways under transcriptional modulation by 
the microbiome. They used germ- free (GF) mice and compared their 
dermal transcriptome to that of conventionally raised mice (SPF). In 
the presence of microbiota, close to 3000 genes were differentially 
expressed between GF and SPF skin. Innate immune response genes 
and genes involved in cytokine signalling were generally upregulated 
in response to microbiota and included genes encoding toll- like re-
ceptors, antimicrobial peptides, the complement cascade, and genes 
involved in IL- 1 family cytokine signalling and homing of T cells. Their 
results also revealed a role for the microbiota in modulating epider-
mal differentiation and development, with differential expression of 
genes in the epidermal differentiation complex (EDC).170

1.5.1  |  The S. aureus- related host gene signature 
in AD

Only very few studies have investigated the interplay between skin 
microbiota and host cutaneous transcriptomes in patients with in-
flammatory skin diseases. To achieve a better understanding of the 
dialogue between the skin and its microbiome, we correlated the 
relative abundance of skin microorganisms to host cutaneous tran-
scriptomes in study subjects of the large MAARS cohort (belonging 
to the BIOMAP cohort portfolio), including patients with AD (n = 82) 
and psoriasis (n = 119), and healthy volunteers (HV, n = 115).122 We 
stratified AD patient samples into ‘high’ and ‘low’ groups, based on 
S. aureus abundance. Comparison of the transcriptomes between 
S. aureus high and low samples revealed a set of 256 significant genes. 
To explore whether the S. aureus- regulated genes were relevant to 
global features of AD pathophysiology, we created a co- expression 
network based on AD- associated genes, and partitioned the net-
work into functional modules based on the expression patterns. 
Projecting S. aureus- regulated genes onto the AD network revealed 
significant enrichment in genes that mapped to modules associated 
with keratinocyte differentiation and extracellular matrix organiza-
tion. Functional analysis of the S. aureus- regulated genes revealed 
the enrichment of keratinization and skin development, TH17 sig-
nalling and tryptophan (trp) degradation.122 Unlike in AD, where one 
species, S. aureus, was identified as the dominant microbe, psoriasis 

is characterized by co- occurring communities of microbes with weak 
associations with disease- related gene expression.122 The MAARS 
study represents a rich data set giving an opportunity for further 
detailed analysis of specific microbe- host interaction.

Altunbulakli et al 121 similarly used an integrated ‘omics’ approach to 
uncover possible correlations between the skin microbiome and the skin 
transcriptome in the context of AD. They performed genome- wide RNA 
sequencing (RNAseq) and 16S rRNA gene sequencing of skin samples 
collected from patients with AD and from healthy subjects (HV), showing 
that the Staphylococcaceae family significantly increased in abundance in 
patients with AD. Furthermore, comparison of the skin transcriptomes 
between AD lesional and healthy skin, revealed that cell adhesion, cad-
herin signalling and keratinization were amongst the most differentially 
expressed gene groups in patients with AD.121 Finally, the frequency of 
Staphylococcus species correlated with dysregulation of the skin barrier 
related genes in patients with AD. In particular, in lesional skin there was 
a correlation between the relative abundance of all major Staphylococcus 
species (S. aureus negatively and S. epidermidis, S. hominis, and S. haemo-
lyticus positively) and the expression of tight junction genes.121

1.5.2  |  Association between S. aureus abundance, 
disease severity and dermal gene expression in 
different skin sites

Very few microbiome and transcriptome studies have explored AD 
heterogeneity between skin sites, with most studies focusing on a 
single site or pooled samples from different body sites for statistical 
analyses. Since the anatomical location is known to be a strong deter-
minant of the microbial composition in healthy individuals,171 local skin 
physiology could determine the role of the microbiota in AD in a skin 
site- dependent fashion. In order to investigate further the interaction 
between host and skin microbiome in AD, we examined two physi-
ologically distinct body sites: posterior thigh and upper back in the 
MAARS cohort.123 Transcriptome analysis revealed distinct disease- 
related gene expression profiles depending on anatomical location, 
with keratinization dominating the transcriptomic signatures in poste-
rior thigh, and lipid metabolism in the upper back. To investigate links 
between S. aureus colonization and transcriptional profiles, lesional 
skin samples in thigh were stratified into ‘high’ and ‘low’ groups, based 
on S. aureus abundance. This resulted in the identification of about 
100 significant genes and functional enrichment of biological pro-
cesses such as keratinization and epidermal cell differentiation, as well 
as circadian regulation. The relative abundance of S. aureus and S. epi-
dermidis displayed an inverse correlation in lesional skin of the thigh. 
The abundance of S. aureus was also positively correlated with disease 
severity. Weighted correlation network analysis (WGCNA) identified 
two modules correlating positively with the abundance of S. aureus 
and S. epidermidis, respectively. The S. aureus associated module dis-
played enrichment of extracellular matrix organization and leukocyte 
migration. Instead, the S. epidermidis- associated module exhibited 
enrichment of epidermal development and was associated with com-
putationally estimated mast cell fraction in the skin. Considering the 
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inverse relationship between S. aureus and S. epidermidis abundances 
in the lesional skin sites, S. epidermidis might play a role in mast cell 
function, potentially explaining the milder form of disease compared 
to that in S. aureus- dominated skin flares.123 These findings suggest 
that in AD, the skin microbiota interacts through local, host- driven 
mechanisms, forming different ecological niches and thereby distinct 
microbe- host interactions, which should be taken into account when 
considering treatment options.

1.5.3  |  Associations between Streptococcal 
species and the immune system in psoriasis

As proposed already in 1995,172 acute guttate psoriasis is initiated by 
ß- haemolytic streptococcal isolates colonizing throat and secreting 
superantigen M- protein, a major virulence factor. T cells that recog-
nize M- protein determinants in the palatine tonsils and keratin de-
terminants in the skin that are homologous to M- protein may then 
potentially play a role in chronic disease,173 a notion supported by 
the finding that streptococcal infection precede acute psoriasis and 
are associated with exacerbations of chronic plaque psoriasis.174- 176 
Streptococcal peptidoglycan (PG) was also proposed to participate 
in p by binding to innate immune receptors.173 In addition, PG- 
containing cells were detected to be increased in chronic plaque skin 
lesions and associated with PG- specific CD4+ T cells.177

2  |  THE BIOMAP PROJEC T

2.1  |  BIOMAP— Biomarkers in atopic dermatitis 
and psoriasis

Funding agencies have widely embraced collaborative funding models 
for research consortia such as the large- scale Innovative Medicines 
Initiative (IMI). IMI is a public- private partnership that aims to improve 
health by speeding up the development of innovative medicines, par-
ticularly in areas where there is an unmet medical and/or social need. 
IMI is the world's biggest public- private partnership in the life sciences. 
The partnership includes the European Commission (EC) (representing 
the EU) and the European Federation of Pharmaceutical Industries and 
Associations (EFPIA) (representing pharmaceutical industry partners), 
and is supported by these two parties. Industry partners contribute to 
the projects in a variety of ways, including bringing in- kind consortium 
capacity and knowhow, while the EC matches the overall value of these 
contributions to fund activities provided by academia, small-  to medium- 
sized enterprises, and other non- industry groups.178 Since 2006, the IMI 
has funded more than 120 projects with more than 1.5 billion € of EU 
funding focused on major diseases affecting European citizens.

However, it took until 2019, when BIOMAP (Biomarkers in Atopic 
Dermatitis and Psoriasis) was launched under the grant agreement 
No. 821511, for the first IMI project to specifically focus on skin dis-
eases. The BIOMAP consortium includes 7 large pharmaceutical com-
panies and 25 non- industry partners including academia, small-  to 

medium- size enterprises, and patient advocacy groups (https://www.
bioma p- imi.eu/). A total of 8 work packages (WPs) collaborate in an 
integrated manner in order to understand key mechanisms and path-
ways that operate in AD and psoriasis and to re- classify these diseases 
based on their intrinsic biology (‘endotypes’), and to identify molecular 
signatures, which have the potential to be developed into biomarker 
assays. BIOMAP brings together clinical and molecular data as well as 
high- quality biological samples from large- scale existing patient col-
lections, disease registries, epidemiological studies and clinical trials, 
to then complement and integrate molecular data on existing sam-
ples across multiple scales from pathways to cells and tissues, and link 
them to relevant and sufficiently detailed readouts. A series of ‘omics’ 
data (in particular, genomics, transcriptomics, methylomics, proteom-
ics and microbiomics) will be analysed on coordinated sets of samples 
in order to provide insight into the basic biological properties reflected 
by these data. To support appropriate harmonization and interpreta-
tion of molecular information, BIOMAP has established a glossary of 
clinical phenotypes and key outcomes,179 making use of existing inter-
national initiatives and consensus exercises, and integrating the pa-
tient (and their careers) view by capitalizing on the reach of partnering 
patient organizations.

Since there is mounting evidence supporting an important role for 
microbial exposures and our microbiota as factors mediating immune 
polarization and AD and psoriasis pathogenesis, flares and chronicity, 
an entire BIOMAP work package is dedicated to the investigation of 
skin and gut microbiome linked to AD or psoriasis. Microbiome re-
search in this area has been more focused on AD but remains fairly 
limited for both diseases. In addition to microbial patterns and signa-
tures associated with AD and psoriasis, BIOMAP investigates poten-
tial disease subtypes based on microbial heterogeneity. Furthermore, 
variability across time scales due to disease-  and disease activity- 
related changes, and host molecular constituents related to normal 
and pathological shifts will be dissected.

2.2  |  Aims and perspectives of the BIOMAP 
project related to host- microbe interplay

Our efforts in investigating the causes and mechanisms of AD and 
psoriasis, in identifying biomarkers which may be responsible for the 
variable disease outcome, and in understanding the role of the human 
microbiota in disease pathogenesis are summarized in Figure 3. In the 
subsections below we list main aims of the BIOMAP project.

2.2.1  |  Expand current knowledge regarding 
AD and psoriasis- associated microbiomes and their 
role in pathogenesis

To date, most microbiome studies have been relatively small, with 
cohorts that include different disease subtypes. The inherent hetero-
geneity of skin inflammation, disease diagnostic criteria and the skin 
microbiome makes it difficult to draw firm conclusions from these small 

https://www.biomap-imi.eu/
https://www.biomap-imi.eu/
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studies on differences in the microbiome between health and disease. 
Moreover, the lack of sufficiently sized longitudinal studies hampers the 
possibilities to gain insight into causality. In addition, significant variabil-
ity in the methods used to study the skin microbiome has made compar-
ing findings between studies difficult and limits the potential that can 
be learned from these studies.180,181 The BIOMAP consortium has the 
opportunity to integrate information from several large paediatric and 
adult cohorts, while accounting for these sources of variation, to more 
precisely determine the microbiome in psoriasis and AD. 16S rRNA 
gene amplicon data from several BIOMAP cohorts will be harmonised, 
allowing standardization across studies for downstream analysis steps. 
Moreover, the choice of 16S rRNA primer pair(s) will be carefully consid-
ered.181 In parallel with 16S rRNA gene sequencing, the large MAARS 
cohort within BIOMAP uses whole metagenomic shotgun (WMS) se-
quencing to study the microbiome in AD and psoriasis.122 The BIOMAP 
WMS data will provide species-  and strain- level taxonomic information 
for eukaryotes, prokaryotes as well as viruses and enable the profiling of 
their functional potential. Constructing microbial genomes from WMS 
and contrasting their functional potential associated with diseased and 
healthy skin will provide us further mechanistic insights into how the 
skin microbiome may function in AD and psoriasis.

2.2.2  |  Improve our knowledge regarding the 
influence of lifestyle and environmental exposures 
on the human microbiome and disease risk

BIOMAP connects the cross- sectional population- based cohorts 
from the north of Germany (PopGen) and south of Germany (KORA 
FF4 and KORAFIT), each including hundreds of participants from 

whom skin swabs were taken for 16S rRNA gene amplicon profil-
ing. Rich information on participant's lifestyle and environmental 
exposition was collected. Furthermore, participants have or are 
being genotyped, allowing for the investigation of the relationship 
of host genetics and the skin microbiome by mGWAS. BIOMAP 
also includes a longitudinal birth cohort from the South of Germany 
(KUNO), and deeply phenotyped and methodologically aligned birth 
cohorts from the UK (EAT) and Denmark (COPSAC), with microbial 
samples collected before onset of disease. Collectively, these stud-
ies provide the opportunity to assess the effects of lifestyle and 
environment on the microbiota of the skin and gut and their in-
tersection with inflammatory skin diseases. The analysis of these 
cohorts has the potential to provide a more comprehensive view of 
the associated factors and the discovery of small effects due to the 
integrative analysis of many candidate factors and increased sta-
tistical power. Moreover, the integration of independent cohorts 
allows for replication of results, and therefore, generalization of 
the outcomes. An example of such potential is the recent publica-
tion under BIOMAP (Moitinho- Silva et al.182), in which a detailed 
analysis of lifestyle and environmental factors was carried out with 
PopGen and KORA FF4 cohorts, leading to insights into the forces 
possibly shaping the skin microbiome and the discovery of its as-
sociations with diet.

2.2.3  |  Provide novel insights into disease 
initiation and early AD development

The dynamic changes of the skin microbiome during infancy, child-
hood and around puberty, followed by the relative stability68 during 

F I G U R E  3  Potential outputs of the 
BIOMAP project. The IMI Consortium 
dedicates an entire work package to 
host- microbiome interplay in atopic 
dermatitis and psoriasis, with the potential 
to provide novel insight into disease 
mechanisms and classification, novel 
treatments and strategies for disease 
prevention. In a large- scale and well- 
coordinated manner, BIOMAP partners 
bring together biological samples, clinical 
information and ‘omics’ data from existing 
patient collections to be integrated with 
skin and gut microbiomes. Using this 
collaborative approach accompanied with 
data harmonization and standardized 
analysis strategies, BIOMAP pursues to 
answer open questions in the field
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adulthood, raise the possibility that perturbations of the early- life 
skin microbiome68 could have long- lasting effects. A better under-
standing of the factors influencing the early- life skin microbiome 
may provide insights into the relationship between hygiene- related 
environmental exposures and the increasing global incidence of AD 
and allergic diseases, as well as guiding novel preventative and ther-
apeutic strategies for AD.

BIOMAP offers an exciting opportunity to study the early- life 
skin and gut microbiome, its determinants, and its effects on the 
later development of AD and other allergic diseases. In addition 
to information available from a longitudinal birth cohort from the 
South of Germany (KUNO), BIOMAP is supporting the collabora-
tive analysis of two deeply phenotyped longitudinal birth cohorts, 
the Copenhagen Prospective Studies on Asthma in Childhood 
2010 (COPSAC2010) mother- infant cohort183 and the participants 
of the Enquiring About Tolerance (EAT) randomized clinical trial.184 
Unselected infants in these independent studies underwent lon-
gitudinal sampling of both the skin and gut microbiota before the 
onset of disease, alongside detailed reporting of environmental 
exposures, clinical phenotyping during childhood and systematic 
evaluation of disease outcomes with predefined diagnostic criteria 
for AD. A collaborative approach, using standardized laboratory 
and analytical pipelines, will facilitate comparisons and replication 
of findings between these cohorts, aiming to identify possible mi-
crobial alterations that precede the development of AD.138 We will 
also examine for any infant- specific dysbiosis of eczematous skin le-
sions (Figure 2B,C), and finally, we will investigate whether there are 
specific bacterial biomarkers that predict disease persistence and/or 
severity in later life.

The dynamic changes of the skin microbiome during infancy, 
childhood and around puberty, followed by the relative stability68 
during adulthood, raise the possibility that perturbations of the 
early- life skin microbiome68 could have long- lasting effects. A better 
understanding of the factors influencing the early- life skin micro-
biome may provide insights into the relationship between hygiene- 
related environmental exposures and the increasing global incidence 
of AD and allergic diseases, as well as guiding novel preventative and 
therapeutic strategies for AD.

2.2.4  |  Explore pathomechanisms of host- microbe 
interplay in AD and psoriasis, using cutting- edge 
bioinformatics and omics technologies

The involvement of streptococci in psoriasis suggests that there 
could be the interplay between microbes and host genes in psori-
atic skin. Moreover, WMS data have shown that S. epidermis strains 
specific to psoriasis lesions produced virulence factors in lesions but 
not in unaffected skin implying that there could be microbial par-
ticipation in psoriasis skin beyond Streptococcus.185 However, the 
knowledge on gene- microbe interactions in skin is still scarce. To our 
knowledge, only the MAARS cohort belonging to BIOMAP122 has uti-
lized the integration of psoriatic skin microbiome and transcriptome 

and found weak associations, and no study to date has integrated 
transcriptome and microbiome for non- lesional and lesional sites 
separately. Furthermore, there are no studies investigating inter-
actions between host genes and microbial functional genes, which 
requires WMS. WMS is also required for detecting strain heteroge-
neity between lesional and non- lesional sites, recently proposed185 
and gene- microbe strain level associations.

The easy accessibility of skin makes it an excellent target for 
simultaneous sampling of the microbiome and host tissue samples 
from exactly the same anatomical location to explore the relation-
ship between the skin microbiome, gene regulation and disease ac-
tivity within the BIOMAP project. During the life course of BIOMAP, 
we will expand our focus from 16S rRNA gene amplicon sequencing 
to metagenomics, which is already available in some of the BIOMAP 
cohorts (eg MAARS) and integrate it with genetic and skin transcrip-
tomics data. Taking advantage of the multiple data layers (eg micro-
biome, transcriptome and methylome), we have the possibility to 
address the interplay between specific microbes or their functional 
properties and host tissue responses in AD and psoriasis.

2.2.5  |  Explore host- microbe interplay by using 
disease relevant ex vivo and in vitro models

To take full advantage of the unprecedented BIOMAP resource and 
framework for the discovery of molecular interactions within the 
human cutaneous ecosystem, key findings of large- scale analyses 
can be validated and characterized in further detail using both ex 
vivo and in vitro experimental setups. These studies may not only 
aid in the identification of host responses to individual pathogenic 
or commensal microbial strains, but can also model the interaction 
of several key microbial species on the skin surface. Complex and 
tissue- like 3D human skin or epidermal equivalent models (HSEs 
and HEEs, respectively) are favourable compared to keratinocyte 
monolayer cultures, especially in validating in vivo findings on both 
inflammatory responses and specific host- microbe interaction path-
ways. The advantage of a functional skin barrier and presence of a 
stratum corneum enable the faithful mimicking of both environmen-
tal and internal factors.186 Although bacterial or fungal co- culture 
approaches seem rather straightforward,187 the modelling of long- 
term interactions and intervention studies are limited by technical 
challenges, while donor- dependent differences limit the power to 
detect meaningful interactions. Therefore, standardized experimen-
tal models with defined genomic background amenable for genome 
editing, co- culture, omics sampling and longitudinal biophysical 
measurements are in high demand. The immortalized N/TERT ke-
ratinocytes could provide such a resource given their high similarity 
to primary keratinocytes188 and accurate disease modelling using 
CRISPR- Cas technology.189 Co- cultures of organotypic skin models 
with a selection of key microbial species and strains identified in 
multi- omics analysis within the BIOMAP framework can provide de-
tailed insights into molecular interactions, and possibly guide further 
research into the ‘homeostatic’ skin microbiota.
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2.3  |  Conclusions

Despite the significant advance in our current understanding of the 
human skin microbiome and skin inflammatory diseases, many ques-
tions remain. What are the factors that ultimately shape the com-
position of the human microbiota? Is the composition of the human 
microbiota a cause or just a consequence of disease? Nevertheless, 
enormous progress has been made, and recent technical advances 
in the field of omics technologies combined with intelligent inte-
gration of the various layers of data will pave the way for further 
ground- breaking discoveries. The advent of a large collaborative 
project like BIOMAP will enable the integration of patient cohorts, 
data and knowledge in unprecedented proportions. Several chal-
lenges remain, however, including how to properly handle biological 
variability between individuals and over time, disease heterogeneity 
and various technical issues. The BIOMAP consortium constitutes 
a unique opportunity with a potential to bridge the gap between 
current problems and solutions, filling important gaps of knowledge.
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