
Hardware Extensions
for a

Timing-Predictable Many-Core Processor

Dissertation

for the degree
Doctor of Engineering (Dr.-Ing.)

submitted to the
Department of Computer Science

University of Augsburg

by

Martin Frieb

September 13th, 2019

Thesis titled: Hardware Extensions for a Timing-Predictable Many-Core Processor

Supervisor: Prof. Dr. rer. nat. Theo Ungerer, Department of Computer Science
University of Augsburg, Germany

Advisor: Prof. Dr.-Ing. Rudi Knorr, Department of Computer Science
University of Augsburg, Germany

Date of defense: November 19th, 2019

Abstract

The requirements for today’s embedded hard real-time systems are high: They
should deliver high performance, be energy-efficient and always react in time. This
leads to the use of processors with several cores. However, when the cores are
connected via a shared memory, static timing analysis suffers from high pessimism.
We see distributed memory many-core processors as a solution where cores com-
municate via messages. One of them is the Reduced Complexity Many-Core (RC/MC)
architecture [MFSU17]. It was developed with the goal of high timing predictability.

In our thesis, we present an approach to estimate the Worst-Case Execution Time
(WCET) of programs running on this platform. Furthermore, we extend the RC/MC
to improve its timing predictability and its worst-case performance. Our first step is
the introduction of ready synchronization, which avoids buffer overflows. Second,
we design hardware support for broadcasts and multicasts. Third, the RC/MC is
extended with hardware supported barriers.

Each of these techniques is evaluated for its impact. We carry out timing analyses
of the hardware operations for broadcasts/multicasts and barriers and compare
them with their variants without hardware support. Finally, we present three case
studies, where we analyze benchmarks taken from the NAS parallel benchmark
suite to evaluate the worst-case performance of our extensions in the context of real
use cases.

iii

Never give up your dream
– Timo’s life motto

Acknowledgements

This thesis would not have been possible without the support of many people:

First and foremost, I would like to express my sincere gratitude to my supervisor
Prof. Dr. Theo Ungerer, professor of the Chair of Systems and Networking. He has
been very supportive at all times, I thank him for encouraging my research and
for allowing me to grow as a research scientist. I have learned a lot from him, his
constructive comments and suggestions were always a good guidance for me. I
am also very grateful that he made a research trip to Toulouse possible, where I
integrated RISC-V support into the timing analysis tool OTAWA.

I also thank my advisor Prof. Dr. Rudi Knorr and Prof. Dr. Sebastian Altmeyer
for accepting to be an examiner for my thesis.

My sincere thanks go to all my colleagues at the University of Augsburg, for many
valuable discussions, their support and comments on my work, especially Alexan-
der Stegmeier and Dr. Jörg Mische. Furthermore, I thank my students who helped
with the implementation of my ideas and the timing analysis during their bachelor,
master, practical or project modules. Their studies are referenced throughout the
thesis.

Special thanks go to Prof. Dr. Hugues Cassé, Dr. Wei-Tsun "Willie" Sun and Dr.
Haluk Ozaktas from the Institut de Recherche en Informatique de Toulouse (IRIT) at
the Université Paul Sabattier who develop the timing analysis tool OTAWA and
gave me support at using and extending it. More special thanks go to all members
of the TACLe (Timing Analysis on Code Level) network for inspiring me on their
summer school, PhD meeting and other meetings.

Last but not least I thank my parents Roswitha and Erich for their education and
support during my studies as well as my sister Birgit and my brother Rainer.
Furthermore, I thank my friends for their continuous support, especially Dr. Ingo
Blechschmidt, Dr. Michael Hartmann and Paul Colin Hennig.

Martin Frieb Augsburg, September 13th, 2019

v

In beloved memory of

Timo Collenberg
b September 21st, 1990

dApril 21st, 2011

Contents

Abstract iii

Acknowledgements vi

1. Introduction 1
1.1. Contribution and Structure of this Thesis 2

2. Related Work 5
2.1. Many-core Architectures with Directly Connected Cores 5
2.2. Many-core Architectures with Cores organized in Groups 7

3. The RC/MC Processor Architecture 9
3.1. Basic Concept . 9
3.2. Details on Network Communication 11

3.2.1. Schedules for the Coordination of Flits 13
3.2.2. General-Purpose Schedules . 14

3.3. Programming Model for the RC/MC 16
3.3.1. Bulk Synchronous Parallel Model 16
3.3.2. Realization in Software via MPI Collective Operations 18

3.4. Programming the RC/MC . 20
3.5. Hardware Prototype and Simulation 22
3.6. Timing Analysis for the RC/MC . 24

3.6.1. Example: Timing Analysis of MPI_Barrier 25

4. Ready Synchronization: Real-Time Flow Control 31
4.1. Introduction . 32
4.2. Related Work . 34
4.3. Synchronization Concept . 35
4.4. Software Implementation of ready Synchronization 37
4.5. Hardware Supported ready Synchronization 40

4.5.1. Hardware Implementation Considerations 40
4.5.2. New Instructions . 41
4.5.3. Implementation . 42
4.5.4. Programming model . 44

vii

Contents

4.5.5. Expected Hardware Costs . 46
4.6. Evaluation . 47

4.6.1. Comparison of Software and Hardware Implementation Effort 47
4.6.2. Execution Times . 47
4.6.3. Saving of Buffer Slots . 48
4.6.4. Actual Hardware Costs . 49

4.7. Conclusion . 50

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All 51
5.1. Introduction and Basic Idea . 51
5.2. Related Work . 52
5.3. Concept: Hardware-supported Broadcast Operation 53
5.4. Concept: Hardware-supported Multicast Operation 55
5.5. Hardware Implementation . 56
5.6. Programming Model . 59
5.7. Hardware Costs . 63

5.7.1. Expected Impact on Hardware Costs 63
5.7.2. Actual Hardware Costs . 63

5.8. Evaluation: Worst-Case Performance 64
5.8.1. Timing Analysis of Different MPI_Bcast Implementations . . 64
5.8.2. Comparison of WCET Estimates 76
5.8.3. Theoretical Comparison . 79

5.9. Conclusion . 82

6. Hardware Barrier Extension to Improve Schedule One-to-All 85
6.1. Introduction . 85
6.2. Related Work . 86
6.3. Concept for Global Hardware Barriers 89
6.4. Hardware Barriers for Subsets of Nodes 91

6.4.1. Concept for non-global Barriers 92
6.4.2. Distinction of Flits of Two Consecutive Barriers 93
6.4.3. Example for Complete Barrier Operation 96

6.5. Hardware Implementation . 98
6.6. Programming model . 101
6.7. Hardware Costs . 105

6.7.1. Expected Hardware Costs . 105
6.7.2. Actual Hardware Costs . 106

6.8. Evaluation: Worst-Case Performance 107
6.8.1. Timing Analysis of Different MPI_Barrier Implementations . 107
6.8.2. Comparison of WCET Estimates 112
6.8.3. Theoretical Comparison . 114

viii

Contents

6.9. Conclusion . 116

7. Case Studies: Impact on Communication in Benchmarks 117
7.1. Case study: CG Benchmark . 118

7.1.1. Timing Analysis of the CG Benchmark 118
7.1.2. Impact of Hardware Extensions on Worst-Case Performance . 119

7.2. Case study: MG benchmark . 121
7.3. Case Study: LU Benchmark . 126

7.3.1. Workflow of the LU Benchmark 126
7.3.2. Characterization of the (Worst-Case) Execution Behaviour . . 128
7.3.3. WCET estimates for LU . 129

8. Conclusion and Outlook 133

Bibliography 137

Acronyms 159

A. Overview on RISC-V Instruction Set Extensions 161
A.1. Overview on our Instructions . 161
A.2. Encoding of our Instructions . 164
A.3. Control and Status Registers . 165

B. Overview on Implementation Details 167
B.1. messageTypes for Flits in the Network-on-Chip 167
B.2. Execution times of RISC-V Instructions on the RC/MC 168
B.3. The One-To-All Schedule without Corner Buffers 170

ix

1
Introduction

Embedded real-time systems have become increasingly important devices. They
are omnipresent in cars, trains or medical devices. They have to respect real-time
constrains, i.e. computation results have to be available in time. On the one hand,
considering soft real-time systems, a result gradually looses its relevance the later it
becomes available, e.g. satellite-based navigation will still be a good guide when the
result is one second too late, but not after five minutes. On the other hand, at hard
real-time systems late results could immediately cause major harm or even death of
involved people, e.g. an airbag not responding in time or an airplane crash due to
late response of the autopoilot system [WEA+08]. Therefore, the worst-case execution
time (WCET) of the involved programs has to be estimated to be sure that deadlines
will not be missed. However, techniques in modern processors like caches, branch
prediction or out-of-order execution make it hard to impossible to carry out a WCET
analysis.

Moreover, just like with all other computing devices, there is an ever-growing
demand for more computational power at embedded real-time systems. In the
field of desktop and server computers and even smartphones, this demand is
satisfied by adding more cores [Sut05]. This multi-core revolution slowly reaches
the embedded real-time field, e.g. in the form of multi-core Electronic Control Units
(ECUs) in cars [AUT14, KQnBS15]. Thereby, typically more cores are added, but
shared memory is kept, because software engineers are used to develop shared
memory programs. However, this way is very challenging, especially when timing
constraints have to be met: The presence of additional cores itself increases WCET
estimates, because it has to be assumed that other cores access shared memory

1

1. Introduction

before the own memory access is processed [RBS+10, FJO+16]. Further problems are
high costs for cache coherence, sequentialization when accessing shared resources
and waiting times for critical sections [ADG16]. This leads to a loss of parallel
computation power and decreasing efficiency per core for increasing core numbers.

Most of these problems also have to be handled in high-performance computing.
There, performance is gained by employing many cores and connecting them via
a network-on-chip (NoC) [HJK+00, KJS+02], e.g. in the Intel Xeon Phi [SGC+16] co-
processor. A NoC enables that several components (e.g. cores or memory) on the
chip can interact with each other simultaneously by applying proven concepts from
large networks on the processor. They have several advantages like good scalability
and high energy efficiency [BM06, AIS09]. One of the key factors when employing
NoCs is that components on the chip have less side effects on each other. This is also
beneficial in the real-time field, especially for timing analyzability.

Therefore, we also follow this route with the Reduced Complexity Many-Core
(RC/MC) architecture [MFSU17]. It does not have any shared memory and its pro-
gramming model is completely different to shared memory multi-cores. The basic
idea of the RC/MC is that cores work in total isolation. Thereby, they communicate
via explicit messages over a predictable NoC. Due to the high degree of isolation and
simplicity of cores, a WCET analysis of the code executed on the cores can be carried
out utilizing the established methods [WEA+08]. For the total WCET estimation of
a parallel application, the outcome has to be combined with a WCET analysis of the
network traffic. When more cores are added, only the latencies of the NoC increase
a little – there is no effect on the WCET estimates of the cores. Therefore, we see
this approach as a scalable solution, appropriate for real-time many-core processors
and delivering the computational power and timing analyzability needed for future
embedded real-time systems.

However, while the basic ideas are trendsetting, the RC/MC as presented by
Mische et al. [MFSU17] requires some extensions to improve its timing predictability
and worst-case performance. We see our focus at improving its network interface (NI),
which connects the cores with the NoC and contains the message send and receive
buffers. In our thesis, we will integrate several hardware extensions at the NI and
evaluate how they influence timing predictability and worst-case performance.

1.1. Contribution and Structure of this Thesis

The concepts elaborated in our thesis are generally platform independent. For
their realization, we take the RC/MC architecture due to its simple design and
because it was originally designed to be utilized for real-time applications [MMU11,
MFSU17]. We will describe its background in Chapter 3 after having a look on
related work in Chapter 2. Chapter 3 also includes our concept for the timing

2

1.1. Contribution and Structure of this Thesis

analysis of parallel applications on many-core architectures. Afterwards, we will
introduce our real-time flow control mechanism called ready synchronization in
Chapter 4. It avoids buffer overflows while various cores communicate with each
other. The next two Chapters 5 and 6 will focus on improvements of the One-to-
All schedule, which manages the conflict-free and timing-predictable delivery of
messages in the NoC. However, it has some drawbacks. To overcome them, we
will elaborate and implement a hardware-supported broadcast/multicast operation
in Chapter 5 and hardware-supported barriers in Chapter 6. Thereby, a timing
analysis of our new and established broadcast/multicast and barrier operations will
be carried out at the evaluation of the corresponding chapters. Then, we evaluate
the impact of our hardware extensions in three case studies in Chapter 7. Finally, we
conclude our thesis in Chapter 8 and give an outlook to future work.

3

2
Related Work

We will present related work on each hardware extension in the corresponding
Sections 4.2, 5.2 and 6.2. Thus, our focus here is on other many-core architectures:
First, we have a look on many-core architectures with directly connected cores in
Section 2.1. They provide an own NI for each core and they are designed in a highly
homogeneous way: All cores behave the same way and have the same latencies
when communicating with other cores. Second, there are many-core architectures
where two or more cores share one NI and sometimes even a small shared memory
installed between them. It allows them to exchange data within the group very fast,
but makes the architecture more complex. Moreover, communication latencies vary,
depending where the communication partner is installed. We will present some
architectures with cores organized in groups in Section 2.2.

2.1. Many-core Architectures with Directly Connected
Cores

Generally, today’s many-core architectures may be seen as successors of the trans-
puter [WS85]. Its basic idea is to have very powerful computer systems containing many
processing elements [WS85]. Whitby-Strevens suggests a workstation with transput-
ers each for user interaction, execution of applications and controlling disks and
further devices. Another idea is a board with 128 transputers for high performance
database searching. From the architectural view, a transputer is what we call core
in a many-core processor today. It consists of a processing element, memory and
communication links and is programmed in Occam [May83]. A system is under-

5

2. Related Work

stood as collection of transputers that are connected with each other. The concept
to use this transputer system is to carry out local computations on local data and
processes can communicate via message passing. Thereby, channels are the concept
for communication provided by Occam. They are working in a synchronized way,
i.e. transputers have to wait for each other when transmitting data. This avoids
data loss and allows to have only very small buffers. On the hardware level, two
transputers are connected via two one-directional signal lines. Since several links are
available, several transputers may be connected with each other. This implies even
heterogeneous transputers – e.g. different word lengths were considered throughout
the design of the transputer concept. Its designers were also already aware of the
bottleneck at off-chip communication. Therefore, only 25% of the chip area of a
transputer are for the processing element and most of rest for on-chip memory.
Many of the transputer ideas have found their way into modern many-core designs.
Instead of channels, we have one or several NoCs today. They not only connect
specific cores with each other, but allow communication between arbitrary cores.
However, the basic idea to have simple cores and gain performance through high
parallelism can be seen throughout the many-core architectures presented in this
chapter.

One of them is the Epiphany many-core architecture, which was developed by
Olofsson [ONUA14, Olo16, Olo17]. The Epiphany-IV processor features 64 cores
with 32 KB of local scratchpad memory each [ONUA14]. They are directly con-
nected via three independent 2D scalable mesh NoCs. Instead of explicit messages
distributed shared memory is utilized for communication between the cores. Its
successor Epiphany-V is a large many-core processor with 1024 cores and 64 MB
of distributed on-chip memory, i.e. 62,5 KB per core [Olo16, Olo17]. The Epiphany
processors target smartphone applications, supercomputers and floating-point accel-
eration in embedded systems. However, the caches do not have an explicit hierarchy
and loads and stores are allowed to access data inter-core and even off-chip. Further-
more, there are high variations at traversal times when sending messages between
cores. Altogether, this makes timing analysis impossible and this architecture un-
suitable for real-time systems.

A homogeneous approach targeting embedded real-time systems is the T-CREST
architecture [SAA+15]. Basically, it consists of a lot of Patmos cores [SSP+11] con-
nected to two NoCs: One for data exchange between the cores and a time-division
multiplexing (TDM) tree to connect the cores to a global shared memory. The Patmos
core is a dual-issue 5-stage pipelined VLIW processor with caches (stack cache, data
cache, method cache) and a scratchpad memory. For data exchange between the
cores implicit message passing in the form of direct memory access (DMA) driven
block transfers is carried out via the Argo NoC [KS14, KSS+16]. Thereby, the All-to-
All schedule [SBSK12] is employed, which we explain in Subsection 3.2.2 and will

6

2.2. Many-core Architectures with Cores organized in Groups

be used for comparison in the evaluation Sections 5.8 and 6.8 and at the case studies
in Chapter 7. For the connection of the cores to the shared memory arbitration takes
place in the NoC and in the memory controller.

Altogether, the T-CREST architecture is comparable to the RC/MC architecture.
However, we use different cores without caches, only having a scratchpad memory.
Only one NoC is present at the RC/MC and we employ PaterNoster [MU12, MU14]
instead of Argo. Moreover, we do not have a shared memory or DMA.

The TILE64 processor developed by Tilera consists of 8x8 = 64 tiles [ABB+07,
BEA+08]. Each tile consists of a core, several caches and a network switch connecting
the tile to the different NoCs. A tile core is 3-way VLIW and has 8 KB of L1 data
cache and another 8 KB of L1 instruction cache. The 2-way 64 KB L2 cache may be
shared among tiles to provide up to 4 MB of L3 cache. All tiles are connected via
five 2D mesh NoCs called iMesh: A static network for low-latency communication
and four dynamic networks (dynamic network , user dynamic network, memory
dynamic network, I/O dynamic network). As their names suggest, each of these
NoCs is intended for a specific function. Moreover, adjacent tiles can communicate
on register-level within a two-cycle latency. The TILE64 processor focuses on high
performance in networking and digital media (e.g. video encoding). It is not capable
to be used for hard real-time applications.

2.2. Many-core Architectures with Cores organized in
Groups

At another class of many-core processors not every core is connected to the NoC.
Instead, several cores form a group sharing several ressources (e.g. the NI or some
on-chip memory).

An early example is the Intel Single-chip Cloud Computer (SCC) [Rat10]. It consists
of 24 tiles with two Pentium cores each and a small message passing buffer of 16 KB.
The Pentium cores have 32 KB L1 cache (16 KB data cache and 16 KB instruction
cache) and 256 KB unified L2 cache [vdWMH11]. Together, the tiles form a non-
coherent distributed shared memory. Although the programming model relies
on message passing, no explicit messages are utilized for communication. The
commercial successor of the Intel SCC is the Xeon Phi [SGC+16] co-processor. It
features 36 tiles with 2 Atom cores, 2 vision processing units and 1 MB L2 cache,
which is kept coherent via the MESIF protocol [GH04]. The Atom cores are out-of-
order with 4-way simultaneous multithreading. A 2D mesh NoC connects the tiles.
Both the Intel SCC and the Intel Xeon Phi are targeting high-performance computing
and are not suitable for real-time systems.

A positive example for an architecture with good timing predictability is the
Composable and Predictable Multi-Processor System on Chip (CoMPSoC) [HGBH09,

7

2. Related Work

GKN+17]. At its development, predictability and composability were in the focus.
Small processor tiles with several cores are connected via the real-time NoC dAElite
[SMG14]. Predictability is achieved by utilizing real-time components everywhere,
composability through strict isolation of applications. Both intentions are also
found in the RC/MC processor. However, we use another NoC and instruction set
architecture (ISA) as well as strict message passing, while CoMPSoC is based on
shared memory organized in tiles.

Another platform targeting embedded systems is the Kalray Massively Parallel
Processor Array (MPPA) [dDAB+13]. At the first MPPA Andey, 16 clusters with 16
processing cores each are installed. Thereby, each core has its own L1 cache and
has access to a cluster-wide shared memory, which it uses together with the other
15 cores on this cluster. This cluster-wide shared memory may also be configured
to be used as private scratchpads for the 16 cores on the cluster. Inter-cluster com-
munication is organized via a dual 2D torus NoC [dD15]. It guarantees predictable
latencies for all data transfers. A timing analysis for the Kalray NoC architecture was
carried out by Ayed et al. [AESF16]. For communication between the cores/clusters,
there is no explicit message passing – the Kalray MPPA can be programmed like a
shared memory architecture; implicit message passing is possible via remote DMA
to other clusters’ memory [dD16, VLKJ17]. Furthermore, a high level programming
model is available in the form of the data flow language ΣC [GSLD11]. Thereby,
programmers only express data dependencies and do not need to care about com-
munication [VLKJ17]. Later Kalray MPPA processors Bostan and Coolidge always
follow the same basic principles, with varying numbers of clusters and cores [dD15].
Because of the complex architecture with caches and clusters, a static timing analysis
is challenging. Moreover, due to the cluster concept, this architecture is highly
placement dependent, while the RC/MC allows placement of tasks at any core.

8

3
The RC/MC Processor Architecture

Overview. After giving an overview on related work in the previous

chapter, we now describe the basic concepts of the RC/MC in Section 3.1.

Furthermore, we give an overview how communication within the NoC

is organized (Section 3.2) and present the programming model for our

platform (Section 3.3). Then, we illustrate the underlying instruction set

architecture and how we extended it in Section 3.4. In Section 3.5, we

introduce the hardware model of our platform and the simulators we

utilize for our experiments. Finally, in Section 3.6, we show how timing

analysis for our platform works, integrating the worst-case times of local

computation as well as communication on the chip.

3.1. Basic Concept

Our processor is based on four assumptions for a hard real-time capable many-core
processor by Metzlaff et al. [MMU11]:

1. A small and simple core is the best building block for a real-time capable many-core.

2. Distributed memory with the option to access the memory of other nodes provides a
predictable memory access and enough bandwidth for embedded applications.

3. A statically scheduled mesh network for hard real-time tasks targets a predictable
timing and a high utilization.

9

3. The RC/MC Processor Architecture

Processing
Element

Local
Memory

Network Interface

1 Small and simple Processing Element

I /O Connection

2 Distributed memory

3 Statically Scheduled Network

Task + Network Analysis = WCET est.4

Figure 3.1.: The ideas behind the RC/MC are small and simple processing ele-
ments (1) with distributed memory (2), which are connected via a stati-
cally scheduled NoC (3). This allows to estimate a WCET by combining
a task analysis with a network analysis (4) [MMU11, MFSU17].

4. A tight WCET analysis of the system can be reduced to an independent task analysis
per core and an analysis of the network communication.

We actualized a processor following these assumptions, the Reduced Complexity
Many-Core (RC/MC) processor [MFSU17]. It is a many-core processor for hard real-
time systems, which delivers good timing predictability due to reduced complexity
(RC) and high performance via many cores (MC). In Figure 3.1, we give an overview
over our RC/MC processor:

Following the first assumption, it employs simple processing elements (PEs) on each
node1 – each of them implements a classical single-issue in-order 5-stage pipeline
utilizing the RISC-V 64 bit ISA [WAE17]. Thereby, no speculative components are
installed at the nodes – neither caches nor branch prediction. All nodes are single-
threaded and intended to execute only one software thread. I/O or additional
DRAM is connected to single nodes. When something is needed from or to be
sent there, a request to the corresponding "DRAM node" has to be sent. Interrupts
are also handled by dedicated nodes. Besides external components/events, the
architecture is considered to be completely homogeneous: All nodes have the same

1Because we consider a many-core architecture, we avoid the term core. Instead, the term processing
element (PE) refers to each 5-stage pipeline including register set. The PE together with its local
memory (scratchpad) and network interface (and I/O connection) is referred to as node.

10

3.2. Details on Network Communication

structure and capabilities as well as the same access and waiting times. This is
beneficial for timing analyzability, because no special cases have to be considered.

As proposed by the second assumption, there is no global shared memory, only
distributed core-local memory in the form of scratchpads. In our prototype, each
scratchpad is connected to its PE like a L1 cache, having a memory access time of
only one cycle – there is no latency. Thus, load/store instructions pass the pipeline
within five cycles (1 cycle for each stage). However, the downside is that each
node only has 128 KB of memory. Due to the distributed organization of memory,
nodes have to send a message to the node whose memory is to be accessed. It then
responds with the requested data. All communication between nodes is carried out
via explicit messages.

Although the third assumption postulates a mesh network, we employ a torus
network (like in Figure 3.2) due to its regular structure and not having "border" nodes.
It has a completely timing-predictable behavior and is described in the following
Section 3.2. Due to the NoC being the only way for the nodes to communicate with
each other, they work completely isolated except when executing communication
operations. This eases timing analysis, because each node can be analyzed without
the need to respect other nodes.

The fourth assumption is the consequence of the others: A timing analysis of the
code running on the nodes gives us information when each node wants to send or
receive data. Thereby, data is transported via the statically scheduled NoC. This
allows us to determine when data arrives at a target node. Thus, we can combine the
WCET estimation of core-local code with the latest points in time when messages
are to be sent or received. Altogether, we get the total WCET estimation for the
distributed application running on the RC/MC processor. Considerations for the
analysis process are given in Section 3.3 and an example is illustrated in Section 3.6.

3.2. Details on Network Communication

For communication between the nodes, flits are sent from one node to another over
the NoC. A flit is the smallest unit to be sent via a NoC [BM06], in our case it has
a payload of 64 bits (corresponding to the size of a register in the register set). In
many NoCs, messages are composed of a header flit containing routing and further
information and data flits following it [BM06, AIS09]. At the RC/MC, we go a
different way by supporting only single flit messages. Headers are transmitted via
additional signal lines next to the payload signal lines [MU12]. For example in a 4x4
NoC, we have links between the nodes with a width of 73 bits: 64 bits for the payload
of each flit, 4 bits for addressing the target node, another 4 bits for specifying the
sender node and 1 bit to indicate if the current flit is valid (i.e. if a flit is transmitted
or data on the lines is to be ignored).

11

3. The RC/MC Processor Architecture

(a) 4x4 Torus [MU12]

(b) Folded 4x4 Torus [MU12]

Figure 3.2.: Torus and folded torus for a 4x4 NoC.

Nodes in the NoC are connected via routers [AIS09]. One NoC router is installed
at each node. At the RC/MC, we employ a lightweight NoC router called Pater-
Noster [MU12]. It connects each node with its neighbours and manages when and
how flits are moved forward or stored in buffers. To have short distances between
nodes, they are arranged as quadratic 2D torus like in Figure 3.2a. Because the wrap
arounds may lead to long connection lines with increased latencies, it may also
be realized as folded torus like in Figure 3.2b. Following the definition of Dally et
al. [DT04], we define n as dimension of the NoC. Thus, we have n · n = N nodes on
the chip, e.g. in Figure 3.2 n = 4 and N = 16. Due to the regular and symmetric
structure of the torus it looks same from the perspective of any node. As a result,
tasks are placement-independent.

The torus consists of unidirectional x-rings (horizontal) and y-rings (vertical).
Flits travel along the rings following the concept of xy-routing (see e.g. [NM93]):
First, they are sent in x-direction until they reach their target column. Thereby,
intermediate nodes instantly forward flits, so that no buffers are needed. In the
target column, the flit is stored in the corner buffer. Finally, the flit takes the ring
in y-direction until it reaches its target node. Because all nodes take the same
way, it is guaranteed that all flits are delivered in the same order as they were
sent. Due to instantly forwarding flits in x- and y-rings, only few buffers are
required: Send and receive buffers are organized as first in first out (FIFO), while the
organization of corner buffers is dependent on the schedule, see Subsection 3.2.1.
In our implementation, we realized send buffers with 4 slots and receive buffers
with N slots. Thereby, it is possible to put/take flits to/from the buffers in the same
cycle as they are put/taken from the network. This is possible due to the concept of

12

3.2. Details on Network Communication

the RC/MC called pipeline-integrated message passing (PIMP) [MFSU19]. Usually, the
NoC is connected via an NI [AIS09]. At the RC/MC, the NI is integrated into the
execute stage of the pipeline for fast access. Thus, it takes only one cycle to insert
a data word from the pipeline into the NoC. After it was delivered, a data word is
available in the pipeline after one cycle. The size of the corner buffers is dependent
on the schedule, which will be explained in the next Subsection 3.2.1.

3.2.1. Schedules for the Coordination of Flits

A NoC can work either in best effort (BE) or guaranteed service (GS) mode [SPG97,
GvMPW02]. BE means that flits are forwarded whenever possible, i.e. the NoC is
optimized for maximum throughput (for high-performance computing). However,
BE can result in flits taking extra rounds or other behavior which is hard to predict.
Therefore, schedules are employed to be able to provide a maximum delay how long
flit transfer takes (GS) [SPG97]. A schedule manages communication in a NoC: It
defines for each point in time which flit is at which point in the NoC (TDM). This
means that for each pair of senders and receivers the position within the NoC is
uniquely defined – ensuring that no other node will place a flit there at the same
time. Thus, a schedule avoids collisions and extra rounds and enables us to estimate
a worst-case transportation time (WCTT) for a flit transfer. This also guarantees fairness:
All nodes can utilize equal transportation slots – no "babbling idiot" can slow down
network communication.

Schedules can be divided into two groups: Custom and general-purpose sched-
ules [SBSK12, MU14]: For a custom schedule, all details of communication have to
be clear at design time. It is then computed for a specific combination (incl. task
placement) of all nodes on the chip. The advantage of a custom schedule is a good
(worst-case) performance, but at the cost of recomputing the complete schedule
each time something is changed. On the other hand, a general-purpose schedule
describes a regular pattern defining how many flits may be sent or received by the
nodes. As such, a general-purpose schedule is application-independent, but its
(worst-case) performance may be worse than that of custom schedules. Its advan-
tage is that recomputation is not necessary when further applications are added,
e.g. when several applications are put together to run on one ECU in a car (compos-
ability). Moreover, general-purpose schedules allow us to give general statements
about communication behavior and changes are easier to handle than with custom
schedules. Furthermore, we can exploit some of their properties to improve their
general (worst-case) performance. Therefore, we will only consider general-purpose
schedules in the remainder.

13

3. The RC/MC Processor Architecture

3.2.2. General-Purpose Schedules

General-purpose schedules define a pattern for the communication between all
nodes in a NoC [SBSK12]. One instance of this pattern considering all nodes is
called period. These periods are repeated indefinitely, allowing nodes to send flits to
the same nodes again at each further period. Periods may be divided into rounds
describing a repeated pattern for a subset of all nodes [MU14]. For example, a
schedule might process flit transfer columnwise. Then, each round may handle the
transfer of flits of a specific column.

Table 3.1.: Overview on schedules considered in this thesis.

name description admission time transp. time

All-To-All Each node is allowed to send
one flit to every other node.
It also may receive flits from
every other node.

(︂
n2(n−1)

2 + 2
)︂
· f n2

2 + 2n

One-To-One Each node can send and re-
ceive at most one flit.

n · χ · f 2n

One-To-All Each node may send one flit
to one other node and can
receive flits from all other
nodes.

n2 · χ · f 2n

In Table 3.1, we give an overview on general-purpose schedules relevant for our
thesis. For each schedule, we give a brief description as well as its admission time and
transportation time. The admission time states how long a flit may wait in the send
buffer before it is injected into the NoC (e.g. because it has to wait for previous flits
to be sent first or because the schedule allows flit insertion only at specific points in
time). On the other hand, the transportation time states how long the flit takes to
travel through the NoC. Added together, transportation time and admission time
give the WCTT, i.e. how long it takes for a flit in the worst-case to travel through the
NoC from a sender node to a receiver node including waiting times.

The first schedule called All-to-All (A:A) was proposed by Schoeberl et al. [SBSK12]:
Within one period of the schedule, each node is allowed to send and receive flits
to/from any other node. However, each node is allowed to send at most one flit to
one particular node. In the worst-case this means that all nodes send and receive
one flit to/from every other node. When utilizing the PaterNoster router [MU12],
flits are sent alternately to columns with far and close distance. Thus, it is quite
difficult to put them into the send buffer in the right order. To deal with this
issue, Sewing implemented and evaluated a variant with a fully searchable send

14

3.2. Details on Network Communication

buffer [Sew18, Sew19]. This variant 1 leads to a considerably improved performance
compared to variants with a FIFO send buffer. Therefore, we will consider this
variant in the rest of this thesis and especially for our evaluation2. The corner buffer
has to provide at least n buffer slots. Because all nodes can communicate with all
other nodes in the same period, periods are quite long (O(n3)) [SFMU16]. This leads
to long WCTTs when the same two nodes exchange several flits.

An approach to overcome this issue is the One-to-One (1:1) schedule from Mis-
che et al. [MU14]: Each node is allowed to send and receive at most one flit each
period. This is much stricter than All-To-All, but results in shorter periods (O(n))
and communication times when not all nodes have to be reached [SFMU16]. Fur-
thermore, the worst-case is the same as the average case: Each node sends and
receives one flit. Sending several flits takes several periods as does sending one flit
to different receivers (χ). Thereby, n corner buffer slots are installed at each node. In
his master’s thesis [Wal19], Walter implemented the 1:1 schedule for the RC/MC
and optimized it. He also integrated ready synchronization (see Chapter 4) and
hardware supported barriers (like in Chapter 6). However, before communication
between two nodes can take place, it is always necessary to first synchronize them
via an additional synchronization NoC to ensure that at most one flit is received
by each node in each period. The time for synchronization is dependent on the
organization of the synchronization NoC and has to be added to the admission and
transportation times from Table 3.1.

Therefore, we will focus on the One-to-All (1:A) schedule [MU14] in this thesis,
which offers a good trade-off between the A:A and 1:1 schedules. It allows each
node to send at most one flit to one other node per period and each node may receive
flits from all other nodes. This is very easy to realize as each flit can only be sent out
when the next period has begun. On the receiver side, nothing has to be respected
because the schedule is designed in a way that each cycle one flit from some other
node may arrive. Therefore, periods are not too long (O(n2)) and no synchronization
NoC is needed. Sewing implemented and compared several variants of the A:A
and 1:A schedules in his master’s thesis and designed a new variant of the 1:A
schedule without the need for corner buffers [Sew19]. It is explained in detail in
Appendix B.3. In the remainder, we will only focus on this variant 3. However, the
presented concepts also work with the variants 1 and 2, which require 1 and n corner
buffer slots, respectively.

A detailed comparison of different general-purpose schedules is carried out by
Stegmeier [Ste19]. In the remainder of this thesis, we will present several extensions
for the RC/MC. Only a part of them works with all schedules: ready synchronization

2The admission time of A:A may vary between different implementations. Our admission time in
Table 3.1 comes from the implementation of Sewing [Sew18, Sew19].

15

3. The RC/MC Processor Architecture

(Chapter 4) is required for all schedules to ensure proper operation without buffer
overflows. In the Chapters 5 and 6, we focus on improvements for the 1:A schedule.
Finally, in the evaluation in Chapter 7, we will compare the 1:A schedule including
these improvements with the 1:1 schedule and the A:A schedule.

3.3. Programming Model for the RC/MC

For high efficiency and timing predictability, software for our platform should be
developed in a way following the Bulk Synchronous Parallel (BSP) model. The
backgrounds are presented in Subsection 3.3.1. To implement programs in practice,
we recommend the use of Message Passing Interface (MPI) for communication and
synchronization operations. An overview is given in Subsection 3.3.2.

3.3.1. Bulk Synchronous Parallel Model

Estimating a WCET is already complex for applications executed on a single-core
platform [WEA+08]. Parallel execution increases this complexity, because the be-
havior of other nodes may directly influence the timing of the currently considered
node [RBS+10, NPB+14, UBF+16, FJO+16]. One way to deal with this issue is to
implement parallelism only at specific points in the program, where the participat-
ing nodes work together in a coordinated way (for a pattern-based approach see
e.g. [McC10, JGU+14, FJO+16]).

For a massively parallel platform like the RC/MC, the Bulk Synchronous Parallel
(BSP) model [Val90, SHM97] seems to be most promising to coordinate nodes and
achieve good timing predictability. Thereby, the same program code is executed
simultaneously on all participating nodes in supersteps:

1. At the beginning of each superstep, local computation takes place, i.e. each node
works on its own.

2. Then, there is a phase of global communication, where all nodes may exchange
data, e.g. results from the local computation.

3. Finally, all nodes wait at a barrier until all other nodes have finished their
superstep. Afterwards, they can continue with the next superstep.

As outlined by Lisper [Lis12], BSP is beneficial for timing analysis. From his point of
view, the excution time of local computation and global barriers should be easy to
bound. Thereby, it is sufficient to estimate the WCET of local computation parts only
once, because all nodes execute the same code. Thus, Lisper sees the main challenge
at the timing analysis of communication. At the RC/MC platform, this issue is
overcome with the GS NoC and the schedules, which enable us to give upper timing
bounds on communication.

16

3.3. Programming Model for the RC/MC

A

B

C

D

Tim
e

Figure 3.3.: Structure of BSP-like programs running on the RC/MC: Each column
represents one node. Long vertical bars represent local computation –
the longer the bar, the longer it takes. (A), (B), (C) and (D) represent
communication between nodes as well as barriers. From the beginning
to (A), we have a global superstep, while the following parts are local
supersteps (between (A) and (B), (B) and (C), (C) and (D)). These local
supersteps together form one global superstep, starting at (A) and end-
ing at (D). Thereby, the maximum WCET estimate of all local supersteps
has to be considered to get the WCET estimate of the global superstep
(longest path, coloured in red).

In contrast to the BSP model, we allow barriers to be non-global. On the one hand,
other applications may be executed on the same many-core. As long as they do not
communicate with each other, they can be treated like working in total isolation
and do not need joint barriers. On the other hand, an application may consist of
some parts with application-wide barriers and other parts with non-global barriers.
Figure 3.3 gives examples for both: It illustrates four nodes (represented by the
columns) carrying out local computation (long vertical bars – the length stands for
the computation time) and then communicating with each other/meeting at barriers
(horizontal bars at (A), (B), (C) and (D)). A classical BSP superstep is shown from
the beginning to (A): Local computation is followed by global communication/a
global barrier. Afterwards, at (B) and (C) only a subset of all nodes is involved
at communication and the corresponding barriers. Thus, we call these parts local
supersteps and the original supersteps global supersteps for a clear separation of
concerns. Internally, local supersteps can be treated like global supersteps due to
not influencing other nodes. However, when local supersteps merge, the longest
path of all local supersteps has to be respected as worst-case, i.e. the red path in

17

3. The RC/MC Processor Architecture

Figure 3.3 indicates the worst-case path.
Moreover, we allow implicit barriers, e.g. when all nodes wait for one node to

broadcast some result. When this node is on the longest path, all nodes have arrived
at this point in the program and wait for the result. In this case, the phases of global
communication and barrier join to one common part of the superstep. Adding a
dedicated barrier is not necessary.

For estimating a WCET for our BSP-like programs, the WCET estimates of all
global supersteps can be added, because each of them is self-contained and they
are executed one after another. Thereby, the WCET estimate of a global superstep is
composed of the WCET estimates of local computation, the WCTTs of communica-
tion and the time for the barrier, which are to be added. The same holds for local
supersteps. However, when local supersteps are involved, the maximum of all local
supersteps added together gives the WCET estimate of the global superstep (like
the red worst-case path in Figure 3.3).

We see the phases of global communication and barrier to be not only pure
communication operations, but they may also contain some code to be executed on
the PEs. On the one hand, this is necessary in any case, because communication
only takes place when the corresponding assembly instructions are executed (see
Section 3.4). On the other hand, we see communication operations to be more
than sending a message from one node to another. Nodes may interact in a more
sophisticated way, e.g. distributing or collecting data or broadcasting a result value
to all participating nodes. Therefore, we consider communication not as single
operations concerning only message transfer, but always as holistic communication
operations, including sequential code for coordinating communication.

As a result, the timing analysis of global communication not only has to consider
WCTTs, but also the related sequential code. Together they form a basic commu-
nication block, which may be reused in the same or other applications. As long
as this communication block is reused for equivalent situations (e.g. same number
of participants, same number of values to be transmitted), it will always have the
same worst-case behavior. Thus, estimating a WCET is necessary only once for each
communication block, independent where and how often the same communication
block is utilized again.

3.3.2. Realization in Software via MPI Collective Operations

On the software level, our programming model can be implemented with message
passing interface (MPI) [Mes15], the de facto standard for message-based communi-
cation [Hem94]. It realizes the BSP concept with collective operations, where all or a
subset of all nodes work together (representing global communication). Thereby,
most of these collective operations implement an implicit barrier combining the
phases of global communication and barrier. Some examples of MPI collective

18

3.3. Programming Model for the RC/MC

operations are listed in Table 3.2.

Table 3.2.: Examples of MPI collective operations.

name description parameters

MPI_Barrier All participating nodes wait for
each other until they have all ar-
rived at this point of the program.
Then they continue program exe-
cution.

Number of participating
nodes

MPI_Bcast One node broadcasts one or sev-
eral values to other nodes.

Number of participating
nodes, Number of values
to be broadcasted

MPI_Gather Values distributed at different
nodes are collected at one node.

Number of participating
nodes, Number of values
to be collected

MPI_Reduce Values distributed at different
nodes are summarized at one
node by reducing them, e.g.
global minimum, maximum or
sum.

Number of participating
nodes, Number of values
to be reduced, Type of op-
eration

MPI_Barrier leaves global communication out and only implements an explicit
barrier. At MPI_Bcast, all participating nodes wait for one or more values from a
root node (global communication). An explicit barrier is not necessary when the
collective operation is realized in a way that first ensures all nodes arrive at the
point in the program where they wait for the value to be broadcasted and then
the broadcast operation starts. MPI_Gather works the other way round: One node
collects values from all other participating nodes. Therefore, global communication
and barrier can again be joined when implemented in the right way: The nodes
sending data to the root node should only continue program execution when all
participating nodes have sent all values to the root node. MPI_Reduce is a variation
of MPI_Gather: The values distributed on different nodes are summarized and the
root node finally holds the overall result. It may be implemented in a similar way as
MPI_Gather. All of these collective operations in Table 3.2 are reused in a wide field
of applications. In Figure 3.3, they may be placed at (A), (B), (C) or (D).

As already mentioned in the previous Subsection 3.3.1, each communication oper-
ation has the same worst-case behavior when it is reused for equivalent situations.
For example, on a given platform with N = 16 and a 1:A schedule, an execution of
MPI_Barrier for all nodes will always have the same WCET estimation, because
the same code will be executed and the same number of nodes has to communicate

19

3. The RC/MC Processor Architecture

with each other. Now we get one step further: The column parameters in Table 3.2
shows which parameters influence the WCET of a collective operation.3 With these
parameters, we can assemble a formula for each MPI collective operation estimating
its WCET. Thereby, each parameter becomes a variable in the formula. In the timing
analysis of a parallel program, each variable has to be set to a concrete value to
get a WCET estimation of the MPI collective operation. As a result, we are able to
estimate WCETs for these MPI collective operations for different situations, while
carrying out a timing analysis only once.

In Section 3.6, we will illustrate an example how to analyze an MPI collective
operation. Further formulas for MPI operations will be assembled in Chapters 5
and 6. They will be utilized in the case studies in Chapter 7.

3.4. Programming the RC/MC

Our RC/MC processor employs the RISC-V ISA version 2.2 [WAE17]. To realize
explicit message passing, we had to extend the RISC-V ISA with some customized
instructions. They are introduced in [MFSU19] and implemented in [Gor18]. An
overview on them is given in Tables 3.3 (for sending and receiving flits) and 3.4
(for checking the status of buffers). Their execution times as well as the execution
times of all RISC-V assembly instructions on the RC/MC platform are listed in
Appendix B.2.

Table 3.3 describes instructions for sending and receiving flits: snd (send) ex-
pects two source registers – one contains the data word to be sent and the other
one specifies the destination node. Because the RISC-V pipeline only allows one
destination register, receiving a flit and determining the sender node is split into
two instructions called rcvp (receive payload) and rcvn (receive node id). Thereby,
removing a flit from the receive buffer is integrated into the instruction rcvp.

Before executing the instructions from Table 3.3, it is crucial to check the status
of the send/receive buffers with the branch instructions in Table 3.4: When the
send buffer is full, bsf (branch if send buffer is full) jumps to the given address. In
contrast, bsnf (branch if send buffer is not full) jumps when there is space left for at
least one flit. With these instructions, the send buffer can be checked before inserting
a new flit via the snd instruction. Should snd be called when the send buffer is full,
an exception is raised. The same holds when accessing the receive buffer and no
flit is stored there. Therefore, the branch instructions bre (branch if receive buffer is
empty) and brne (branch if receive buffer is not empty) work the same way: They

3A further parameter not listed here is the WCTT composed of transportation time and admission
time from Table 3.1. It is mainly dependent on the NoC dimension n. However, as long as the
schedule and n remain the same (i.e. we remain on the same platform), the WCET of a collective
operation is only dependent on the parameters in Table 3.2.

20

3.4. Programming the RC/MC

Table 3.3.: Overview on our RISC-V instruction set extension for sending and receiv-
ing flits with pipeline-integrated message-passing [MFSU19, Gor18].

destination source source
mnemonic register register 1 register 2 function

snd receiver payload send payload to receiver
rcvp payload store the payload from the old-

est flit in the receive buffer in
the destination register and re-
move this flit from the receive
buffer

rcvn node id store the node id of the sender
from the oldest flit in the re-
ceive buffer in the destination
register

Table 3.4.: Overview on our RISC-V instruction set extension checking the status of
pipeline-integrated message-passing [MFSU19, Gor18].

source source immediate
mnemonic register 1 register 2 value function

bsf address when send buffer is full, jump
to address

bsnf address when there is space left in the
send buffer, jump to address

bre address when receive buffer is empty,
jump to address

brne address when there is a flit waiting in
the receive buffer, jump to ad-
dress

21

3. The RC/MC Processor Architecture

jump to the given address when the receive buffer is empty (bre) or when there is a
flit stored there (brne).

While waiting for a free send buffer slot or the arrival of the next flit in the receive
buffer, the PE may execute alternative code by branching there. Alternatively, it
can spin on the status branch instruction. Or the instruction may be extended to
energy saving waiting: The PE could sleep and be woken up by the NI when the
status changes. However, this is beyond the scope of our thesis. In the remainder,
we will always spin on the status branch instruction to have a simple case for timing
analysis.

Table 3.5.: Overview on RC/MC specific Control and Status Registers (CSRs).
CSR # description

0xc70 Number of nodes present on the platform
0xc71 ID of the node where the code is executed

Moreover, we added two CSRs to easily retrieve parameters of the architecture,
which might be valuable for the distributed computation. They are listed in Table 3.5.
From the CSR 0xc70, we can read how many nodes are present on the platform.
This enables us to write programs in a general way, so that they can always utilize
all available nodes. The other CSR 0xc71 returns the ID of the current node. This
allows e.g. to check if the current node has to coordinate communication between
other nodes (i.e. is "root/master node").

In the next chapters, we will introduce several more instructions to efficiently
work with our hardware extensions. These new instructions will be presented and
explained in the corresponding chapters. An overview on all RISC-V ISA extensions
is given in Appendix A. It also contains the exact binary definitions of our new
assembly instructions. Thereby, we utilized opcodes which are reserved for custom
extensions of the RISC-V ISA: They are called custom-2 (sending/receiving flits) and
custom-3 (status branches) in the RISC-V specification [WAE17].

3.5. Hardware Prototype and Simulation

For the verification that our concepts work, we implement them as Very High Speed
Integrated Circuit Hardware Description Language (VHDL) model. Thereby, our work
builds on the RC/MC implementation from Mische et al. [MFSU17], with updated
PIMP NI (integrated into the execute stage) as described in [MFSU19] and imple-
mented in [Gor18]. An estimation of its power consumption is available from
Bauer [Bau18].

The basic structure of a node is illustrated in Figure 3.4: A 5-stage pipeline is
connected to the core-local memory and to the network router. The send buffer (SB)

22

3.5. Hardware Prototype and Simulation

Core-local memory

Router

IF ID EX M WB

Receive Buffer

SB

Figure 3.4.: Hardware structure of a node (simplified): 5-stage pipeline connected
to core-local memory and to the NoC router via the send and receive
buffers.

is located in the network router, while the receive buffer is part of the execute
stage due to the PIMP concept. In the figure we omitted the register set and I/O
connections to keep it simple.

To estimate hardware costs, we carry out a synthesis of the VHDL model via
Altera Quartus Prime 16.0.2 [Int19a] for a Stratix V Field-Programmable Gate Array
(FPGA) board [Int19c]. Due to the size of the FPGA chips, it is only possible to
synthesize the VHDL model for a limited number of nodes. Furthermore, synthesis
times increase quite fast, because optimal placement of the logic modules is an
NP-hard problem [CM07]. For being able to place as many nodes as possible on
the chip, our VHDL model only implements the RV64I ISA [WAE17] including
our RC/MC specific extensions. Hardware costs are measured in Adaptive Logic
Modules (ALMs) [Alt06], registers and memory bits. Thereby, an ALM is the basic
building block of Altera/Intel FPGA chips. It is composed of a 6-input look-up table
(LUT), two adders and two registers and supports various configurations4. When
we evaluate hardware costs, we compare the costs of our VHDL model synthesized
for the FPGA chip before and after our new components are integrated. For better
comparability, we divide the ALMs, registers and memory bits of the total design
through the number of synthesized nodes to get numbers for one node. Because all
of our extensions will not have any impact on memory bits, their number remains
the same before and after our hardware extensions are integrated (each node in our
prototype utilizes 69 632 memory bits). Thus, we will never report memory bits
when analysing hardware costs.

For a functional test of the VHDL model, we employ the G Hardware Design

4For details see [Alt06, Int19b].

23

3. The RC/MC Processor Architecture

Language (GHDL)5. It is a VHDL compiler, which can be utilized to simulate the
execution of a VHDL model. However, GHDL cannot be used for larger hardware
designs as it requires lots of RAM (more than 16 GB for a 6x6 node NoC). Thus, we
also employ a cycle-accurate simulator written in C and called many-core simula-
tor (MacSim) [MMU11, MFSU17]. It implements the full RV64IMFD ISA [WAE17]
including our RC/MC specific extensions. To ensure a cycle-accurate compari-
son between the VHDL model and MacSim, we use a technique elaborated by
Tafertshofer [Taf16] and improved by Gorlo [Gor18]. Thereby, GHDL and MacSim
create output files containing the changes to registers at each cycle during the ex-
ecution of a program. These output files are compared and when they match, the
functional behavior of both the VHDL model and MacSim coincide. To achieve a
good quality of the comparison, we execute several programs running a few million
cycles.

In the remainder, all hardware extensions are implemented both in the VHDL
model and in the MacSim. The hardware costs are estimated via a synthesis utilizing
Altera Quartus Prime and actual execution times of applications are taken from
executing them in MacSim. Because the RC/MC does not contain any speculative
components and hidden states, a repeated execution of the same program with the
same parameters leads to exactly the same results. Therefore, a single execution is
sufficient. When we estimate a WCET of the execution of a program or function, we
combine a WCET analysis of local computation parts with a manual NoC WCTT
analysis as described in the following Section 3.6.

3.6. Timing Analysis for the RC/MC

In the timing analysis of local computation, we assume that the RV32IMFD ISA
including our RC/MC specific ISA extensions is implemented. The execution
times of all assembly instructions on our platform are fixed – they are listed in
Appendix B.2. For the timing analysis of program code, we employ the static WCET
analysis tool Open Tool for an Adaptive WCET Analysis (OTAWA)6 [BCRS11]. We
extended it to support the RV64IMAFD ISA including our RC/MC specific ISA
extensions7. However, the OTAWA loader is currently only implemented for 32 bit
binary files. Therefore, our code will support 32 and 64 bit, but we will carry out
our analyses with 32 bit compiled files. Furthermore, all software we analyze was

5Homepage: http://ghdl.free.fr/
6Homepage: https://www.otawa.fr/
7See https://www.github.com/hcasse/riscv for the RISC-V description for the required GLISS2

instruction set simulator [RCS09], https://www.github.com/hcasse/otawa-riscv for the RISC-V
loader for OTAWA and https://www.github.com/hcasse/otawa-rcmc for the RC/MC extension
for OTAWA.

24

http://ghdl.free.fr/
https://www.otawa.fr/
https://www.github.com/hcasse/riscv
https://www.github.com/hcasse/otawa-riscv
https://www.github.com/hcasse/otawa-rcmc

3.6. Timing Analysis for the RC/MC

adapted or implemented to follow the recommendations of Gebhard et al. [GCH11]
and Bonenfant et al. [BBB+10] for good timing predictability. Moreover, we had to
disable compiler optimizations (-O0), because otherwise it is impossible for OTAWA
to link flow facts and binary file together. For the generation of flow fact files, we
utilize oRange [BdMS08], which is part of the OTAWA framework. It also tries to
find loop bounds for all loops in the analyzed program.

Although our analysis for sequential code parts is carried out for a 32 bit platform,
we assume flits to be 64 bits wide. This is because except OTAWA everything for our
platform is realized with 64 bit support. OTAWA’s WCET estimations for 32 bits may
lead to slightly improved results, because some values may have to be processed in
two steps instead of one due to reduced register bandwidth. However, all results
may be seen as pessimistic variations of a fully 64 bit analysis.

When considering WCTTs of flits, the transportation time and the admission time
from Table 3.1 on page 14 have to be added for the corresponding schedule like in
Formula 3.1 for the A:A schedule. For example, when n = 4, the WCTT of one flit is
42 cycles, while it is 120 cycles for four flits (see details in Formulas 3.2 and 3.3).

WCTTAA(f) =
(︃

n2(n − 1)
2

+ 2
)︃
· f +

n2

2
+ 2n (3.1)

WCTTAA(1) =
(︃

42 · (4 − 1)
2

+ 2
)︃
· 1 +

42

2
+ 2 · 4 = 42 (3.2)

WCTTAA(4) =
(︃

42 · (4 − 1)
2

+ 2
)︃
· 4 +

42

2
+ 2 · 4 = 120 (3.3)

Following our programming model from Section 3.3, applications for our platform
are always composed of alternating phases of local computation and global com-
munication/barriers. Thereby, global communication/barriers are represented by
MPI operations. These consist of program code and flit transfers. With the following
example, we illustrate how the analyses of both can be combined to get a WCET esti-
mation of an MPI operation. The analysis follows the concept described in [FSMU16]
and was originally carried out by Brügmann [Brü19]. More MPI operations were
analyzed for our platform by Unte [Unt18] and Bürger [Bür19].

3.6.1. Example: Timing Analysis of MPI_Barrier

We analyze a simple implementation of the operation MPI_Barrier, its structure is
visualized in Figure 3.5. Although all nodes call the same function MPI_Barrier,
they do not necessarily execute the same code: There is a case distinction between
a root node and participating nodes. The root node collects information from all
nodes that they have arrived at the barrier and notifies them that they can continue
program execution when all have met at the barrier. Therefore, we see a root node
on the left of Figure 3.5 and a participant node on the right. Usually, there is more

25

3. The RC/MC Processor Architecture

root

A

participant

1727

31

91

73 92

8695 B

D E

F

G

I J

C

H

Figure 3.5.: Simple implementation of MPI_Barrier. The root node manages the bar-
rier, while the participant node tells it that it arrived and waits for barrier
release. There may be more participant nodes, but we included only one
to keep the figure simple. Other participant nodes would behave exactly
the same way as the participant node in the figure. Boxes represent local
code execution, arrows between root and participant denote flits, arrows
from the end of a box to the beginning of the same box illustrate loops.
Numbers inside of the boxes specify the WCET estimation of this code
part. The meaning of the different steps is described in Table 3.6.

26

3.6. Timing Analysis for the RC/MC

than one participant. However, we illustrated only one participant in Figure 3.5,
because all participants behave in the same way. It should be mentioned that more
participants might require more buffer space at the root node. Throughout the
example, we assume that buffers are large enough. A technique how we can rely on
this will be presented in Chapter 4. MPI_Barrier works as described in Table 3.6,
where the WCET estimates of the different steps are also given.

In the formulas for the WCET estimates in Table 3.6, #participants is the num-
ber of participants arriving at the barrier (excluding the root node8). Moreover,
WCTT(1, χ) denotes the WCTT for sending one flit to χ receivers and WCTT(x, 5)
the WCTT for sending x flits to 5 receivers. At the latter, the admission time is
only added once, because at the next period the next flit is already waiting in
the send buffer. This is the first case at step (G): 31 + WCTT(1, #participants).
Therefore, the WCET estimate is driven by flit transportation. In the other case
31 · #participants + WCTT(1, 1), a loop iteration requires more time than a period.
Thus, we consider the WCET estimate of all loop iterations and add the WCTT
of the last flit to be transported (because all other flits have already reached their
destination). Due to the WCTTs being dependent on the schedule and the NoC size
(see Section 3.2), both cases are relevant and have to be considered for the worst-case
path.

WCETSimpleBarrier
root = max(95, 86 + WCTT(1, 1))

+ 73 · #participants

+ 91

+ 31 · #participants

+ 27 (3.4)

WCETSimpleBarrier
participant =

= max(95, 86 + WCTT(1, 1))

+ 73 · #participants

+ 91

+ max(31 + WCTT(1, #participants), 31 · #participants + WCTT(1, 1))

+ 17 (3.5)

Altogether, we get WCETSimpleBarrier
root in Formula 3.4 as estimation for the root

node and WCETSimpleBarrier
participant in Formula 3.5 for the participant nodes. We assem-

ble WCETSimpleBarrier
Total in Formula 3.6 as maximum of both, because we are always

8For example at a global barrier in a 4x4 = 16 node NoC #participants would be 15.

27

3. The RC/MC Processor Architecture

Table 3.6.: Description of the structure and WCET estimates for a simple implemen-
tation of MPI_Barrier as shown in Figure 3.5.

step description WCET estimate

(A),
(B),
(C)

First, root and participant nodes initialize,
e.g. they find out whom they communicate
with and if they are root or participant nodes.
This initialization code has a WCET estimate
of 95 cycles for the root node, while it is 86
cycles for the participant nodes. At the end
of the initialization, the participant nodes
send a flit to the root node notifying it that
they have arrived at the barrier.

max(95, 86 + WCTT(1, 1))

(D) Then, all arrived flits are processed at the
root node. Thereby, the time for waiting
for the flits from the participant nodes was
already respected at the WCET estimate of
steps (A) to (C). Thus, we can assume that all
flits already have arrived. Processing takes
place in a loop, which has to be iterated once
for every participant and each iteration has
a WCET estimate of 73 cycles.

73 · #participants

(E),
(F)

Both the root node and the participating
nodes execute some sequential code before
they can continue with the next step.

root: 91
participant: 92

(G),
(H)

Now the root node sends a flit to each par-
ticipant node to tell it that it can continue
program execution. The loop for sending
out these flits needs estimated 31 cycles in
the worst-case for each iteration. When the
period of the schedule is longer than 31 cy-
cles, then the WCET estimate is driven by
the WCTT of the flits. Otherwise, the exe-
cution of the local code is on the worst-case
path.

max(
31 +
WCTT(1, #participants)
,
31 · #participants
+ WCTT(1, 1)
)

(I),
(J)

At the end of the function, there is a short
sequential code part both at the root and the
participant nodes. It has a WCET estimate
of 27 cycles at the root node and 17 cycles at
the participant nodes.

root: 27
participant: 17

28

3.6. Timing Analysis for the RC/MC

interested in the WCET estimation for a complete MPI operation.

WCETSimpleBarrier
Total = max(WCETSimpleBarrier

root , WCETSimpleBarrier
participant) (3.6)

There may be some points where the timing analysis may be improved, e.g. by
reducing waiting times or considering pipeline states. However, this is beyond
the scope of our thesis – our principal concern is that the timing analysis delivers
suitable results for our platform.

Basically, the same structure and a similar WCET formula as for MPI_Barrier
may be utilized for a simple implementation of MPI_Bcast. Thereby, the participant
nodes send the flit to the root node to notify it that they are ready to receive data
(flit at step (C)). This will be described in detail in the following Chapter 4. At
step (G) the loop would have to be extended to a nested loop: The root node
iterates over all values to be transmitted (outer loop) and all participant nodes
(inner loop). This order is important to optimally utilize the schedule and avoid
buffers to run full. In the timing analysis, the loop iterations of both loops have to be
respected. An implementation of MPI_Bcast following this principle was analyzed
by Bürger [Bür19]. His result is included in Section 5.8.

These considerations show that not only the timing analysis of MPI operations
may be reused, but also parts of the timing analysis may be reused for similar MPI
operations.

29

4
Ready Synchronization:

Real-Time Flow Control

Abstract. At the RC/MC architecture as it was presented in Chapter 3,
all nodes are allowed to send flits to all other nodes at any time (limited
by the time-division multiplexing (TDM) schedule). When all nodes
send flits to one node at the same time, this may lead to a buffer overflow.
Thus, we introduce a simple synchronization mechanism ensuring that
data is transferred when nodes need it and are able to handle it. Thereby,
it avoids full buffers and the need to handle flits that arrive too early.
However, software synchronization is not able to completely achieve
these objectives, because its synchronization flits may still interrupt data
transfers and fill buffers.
Therefore, we propose a lightweight hardware synchronization. It re-
quires only small architectural changes as it comprises only very small
components and it scales well. For controlling our hardware supported
synchronization, we add two new assembly instructions. Furthermore,
we show the difference in the software development process and evalu-
ate the impact on the execution time of global communication operations
and required receive buffer slots.

31

4. Ready Synchronization: Real-Time Flow Control

4.1. Introduction

Besides the TDM schedule, there is no restriction for nodes when and where to
send data at the RC/MC architecture presented in Chapter 3 – each node is allowed
to send flits to any other node at any time. In the worst case, this may lead to all
nodes sending flits to one node, which currently is busy processing some sequential
program part1. It is then not able to process any incoming flit, which results in the
receive buffer getting filled more and more. Therefore, nodes either have to handle
incoming flits at any time or buffers have to be of an appropriate size. However,
the largest receive buffer runs full when a node is too busy to process flits from it.
Interrupting the execution of a node to handle incoming flits is also not an option,
because our platform is intended for real-time programs: Giving upper timing
bounds is impossible when nodes can be interrupted at any time.

One might ask if message coordination by just strictly following the BSP model
from Section 3.3 would solve the problem. However, even at BSP-like applications,
execution might diverge e.g. when the root node has to do coordination work or
when some nodes follow different case distinctions of a program. Moreover, our
platform is intended to support the execution of several applications simultaneously.
Thus, flits from cooperating applications might arrive at any time. Another issue
arises from the receive buffer of each node being organized as FIFO buffer. When a
node communicates with another node and flits from other nodes arrive, these flits
have to be handled although they are not needed yet.

Altogether, we cannot give timing guarantees and ensure correctness when an
arbitrary number of flits from other nodes could arrive at any time.

A B C

!

ti
m
e

Figure 4.1.: Node C fills the receive buffer of node B, which is currently waiting for
flits from node A. As a result, the receive buffer of node B is full and the
request from node A gets lost. Boxes represent local computation times
and arrows the delivery of flits.

One of the basic problems is illustrated in Figure 4.1: There are three nodes A, B
and C running a parallel application. Each of them does some local computation
(boxes), followed by communication (flits represented as arrows). The computation
of node A takes a little bit longer than on nodes B and C. Meanwhile, node C

1An example would be a naive implementation of MPI_Gather [Mes15], where all nodes send values
to one root node, which collects and stores them.

32

4.1. Introduction

finishes its local computation and sends several flits to node B. Node A sends a
request to node B, but the receive buffer of node B is already full with flits from
node C. Because our TDM schedules do not provide extra rounds for flits (like the
BE approach in [MU12]), the flit from node A gets lost.

Therefore, we introduce a synchronization mechanism we call ready synchroniza-
tion: Our basic idea is that the receiver node "puts forth its hand" to the sender node
when its receive buffer is empty and it is ready to handle incoming flits. For this, the
receiver node sends a ready flit to the sender node. Afterwards, it is not necessary
to send any more handshake flits between sender and receiver node. When the
sender node has received the information that the receiver node is ready, it just starts
sending as soon as it has reached the appropriate part in the program. When the
receiver node is not yet ready, the sender node waits until the ready flit arrives. In
contrast to other approaches, our ready synchronization is intended to find the point
in time when communication in both directions can be started. This means when the
receiver wants to reply to some action of the sender, another synchronization is not
necessary as long as both agree that communication can still go on.2

By adding ready synchronization in the example in Figure 4.1, only ready syn-
chronization flits and desired data flits arrive at the node. As a result, it is possible to
give an upper timing bound, because each other node may send at most one ready
synchronization flit. However, this leads to pessimism and requires a lot of buffer
space to handle the worst case when all ready flits arrive at the same time. Thus, we
suggest to realize our ready synchronization with hardware support. Our hardware
implementation stores synchronization information and makes it available for the
PE when it asks for it. Thereby, we focus on minimal hardware and synchronization
overhead.

Altogether, we develop a cheap and simple hardware synchronization mechanism
which can easily be controlled in software, to increase performance and timing
predictability while decreasing receive buffer size and hardware costs. Our approach
is independent of router design and network topology. Thus, it can be applied to
other architectures than the RC/MC processor, too. We already published a more
general version of this chapter in [FSMU18].

The remainder of this chapter is structured as follows: In the next Section 4.2,
we present related work. Afterwards, we introduce our synchronization concept
in Section 4.3. We describe how to implement it in software in Section 4.4 and in
hardware in Section 4.5. Afterwards, we evaluate our synchronization mechanism
in Section 4.6. Finally, we conclude in Section 4.7.

2It is up to the software developer when the next ready synchronization is reasonable.

33

4. Ready Synchronization: Real-Time Flow Control

4.2. Related Work

Most classical synchronization approaches were developed for distributed sys-
tems [RH90, TVS07], where several constraints have to be respected. For example,
communication times might be very long, messages might get lost or a node may
drop out surprisingly. In a NoC, all nodes are reliable and communication times are
short [AIS09, BM06]. However, NoCs contribute a lot to the power consumption of
many-core chips. The NoC of the Intel 80-core Teraflops research chip consumes
28% of the power per tile [VHR+08]. This percentage increases when more nodes
are put on the chip [Bor10]. A high amount of this contribution stems from buffers.
They need a lot of chip area, e.g. 60% of the tile area of the Tilera TILE64 many-
core [WGH+07]. Nevertheless, compared to buffers in distributed systems, buffers
in NoCs seem to be very small. This is due to distributed systems having plenty
of buffer space because the main memory and swap space (hard disk) may be
employed. Therefore, flow control is indispensable.

Our approach is a variation of stop-and-wait protocols (sawps) [KR12, TW10]: In the
original sawp, the sender has to wait for an acknowledgement from the receiver
after sending a flit and before sending the next flit. This means that each flit has
to be acknowledged seperately and leads to a high overhead. In contrast, in our
approach the sender waits for a synchronization flit before starting to send. Instead
of acknowledging each flit several flits can be sent. Then, the next synchronization
takes place (see details in Section 4.3).

Another concept is credit-based flow control [KM95], which works as follows:
When a node wants to send data to another node, it asks it for credit. Then, the
receiver node tells the sender how many receive buffer slots it can use. Therefore,
the sender knows how many flits it can send. While sending, the receiver might
update the credit, then the sender can send more flits. Credit-based flow control is
implemented e.g. in the Æthereal NoC [GDR05]. Thereby, a forward channel is used
to send data and a reverse channel to give feedback about buffer utilization. Our ap-
proach does not dynamically exchange detailed information about buffer utilization.
Instead, it is intendend to only find the starting point of the communication.

In Message Passing Interface (MPI), the standard for message-based communica-
tion [Mes15], a function MPI_Ssend is defined for synchronous sending/receiving. It
requires that the receiving nodes have already called the function before the sending
node calls it. Therefore, it implements something similar as our ready synchro-
nization for synchronous communication. However, this takes place at a higher
abstraction level, while our synchronization is realized at low software level or even
at hardware level. Moreover, our approach also works when the sender arrives at a
communication part first.

Ruadulescu et al. [CMR+06] describe an approach to optimize the buffer size
on NoCs with credit-based flow-control. They employ time-division multiple access

34

4.3. Synchronization Concept

(TDMA) with an application-specific schedule, i.e. contention-free paths are deter-
mined at design time of the System-on-Chip (SoC). Ruadulescu et al. focus on building
a SoC with buffers being as small as possible for a specific application. In contrast,
our approach works at execution time and is application independent. Instead of
determining the optimal buffer size at design time, our focus is on using buffers of a
specific size as efficient as possible without having buffer overflows.

4.3. Synchronization Concept

In NoCs, bandwidth is restricted and a lot of communication takes place between
nodes. Therefore, our idea is to avoid buffer overflows with just one synchronization
flit – we call it ready flit. It does not contain payload and is just used to indicate
that the receiver node is ready to receive data.3 When the receiver node is ready to
handle incoming data from the intended sender, it starts communication by sending
a ready flit. This way, the receiver node indicates that its receive buffer is free4 and
any incoming flit will immediately be processed.

On the other hand, the sender node does not send any flits to the receiver node
before it receives the ready flit. Meanwhile, it has to wait for it or execute some
alternative code. When the ready flit arrives at the sender, it knows that the receiver
is now ready and can start sending. In this way, it is ensured that the receiving node
has free buffer slots and is ready to handle the received flits. Should it be necessary
to tell the receiver how many flits follow, a header flit containing all relevant data
might be sent and processed in software.

The concept of ready synchronization is illustrated in Figure 4.2: As in Figure 4.1,
node B waits for data from nodes A and C. Since it first needs data from node A,
it sends a ready flit there. Node A starts sending flits after its local computation
has finished. After receiving and processing all data from node A, node B sends a
ready flit to node C, which in turn starts sending. This leads to node C waiting until
node B is able to receive and process data and avoids any slowdown caused by full
buffers. Altogether, problems occuring when nodes do not meet a communication
part at the same time are avoided: A node sending flits waits until the receiving
node signalizes that it is ready. And a node receiving flits only sends one ready flit
when it is ready to receive data and then waits for flits from the sender (flit transfer

3When implementing ready synchronization in software, a particular payload is defined to represent
ready flits. In the hardware implementation, a payload is not possible because ready flits do not
reach the PE of a node.

4The safe way utilizing ready synchronization is to send a ready flit when the receive buffer is free.
However, an optimization could be to send out the ready flit as soon as enough receive buffer slots
are free. Thereby, it might be hard to estimate how many receive buffer slots are enough. Thus, we
recommend that ready flits are only sent out when the receive buffer is empty.

35

4. Ready Synchronization: Real-Time Flow Control

A B C

R

R

ti
m
e

Figure 4.2.: Communication with ready synchronization: Each node waits with
sending flits until the receiver node is ready (ready flits are denoted
with R).

starts "on demand"). Should the sender not be ready to send data yet, it just has to
store the ready flit and can start sending as soon as it has finished its computation.

Our procedure is completely safe when synchronizing each flit (like in sawp),
but then synchronization overhead is way too high. Instead, we intend that ready
synchronization takes place only once per message or program block (which may
even imply communication in both directions). This works well as long as a message
does not exceed a certain length and each program block is written in a way that
ensures that the receiver can process incoming flits fast enough. When a sender
delivers faster than its receiver can process incoming flits and it sends more flits
than the receiver node has buffer slots, buffers could still run full. In this case, the
maximum number of flits before the next ready synchronization has to take place is
limited. The number of receive buffer slots at the receiver node has to be respected
as well as the difference in time between executing a send and a receive operation.5

When processing of flits at the receiver node is at least as fast as flits are sent from
the sender node, there is no problem and therefore no restriction on the number of
flits to be sent.

On architectures different from the RC/MC, it has to be considered that not all flits
might arrive in constant time periods, although they may be sent in such. On their
way through the NoC, flits may be hindered (e.g. collisions, deflection routing) on
their direct way between sender and receiver. Thus, there might be periods where
few flits arrive and others with more flits arriving (jitter) – which might be more
than the receiver node might handle at a time. An ideal number of flits between
two ready synchronizations is then up to the software developer and influenced
by specific details of the architecture. Therefore, attention has to be paid that ready
synchronization takes place in appropriate periods to avoid full buffers.

5For example, when a send operation takes 20 cycles and a receive operation takes 25 cycles, it takes
4 sends (80 cycles) to permanently occupy one more receive buffer slot.

36

4.4. Software Implementation of ready Synchronization

4.4. Software Implementation of ready Synchronization

The ready synchronization concept is realizable without requiring additional hard-
ware. Thereby, each node maintains a software array with one entry for each other
node.6 These entries indicate whether a node is ready to receive data (i.e. if a ready
flit was received from a particular node). Nodes can send ready flits at any time.
Thereby, ready flits are normal flits with a defined content (-1 in the following two
Code examples 4.1 and 4.2).

Code example 4.1 illustrates the source code of the sender side: After the initializa-
tion, the sender node has to check the ready_array for the state of the receiver node
at check_ready_array. When it already indicates ready (value from ready_array
is ̸= 0), it can jump to send, where it first resets the entry in the ready_array
and then starts sending (at send_flit/wait4sendbuffer). Otherwise, the code at
wait4ready is executed: We wait for the next flit in the FIFO receive buffer and then
fetch it. When it is a ready flit, the corresponding node is marked as ready in the
ready_array. Otherwise, the received flit is a data flit and handled at rcv_data.
This case is for debugging purposes only as it cannot occur when all nodes execute
programs consequently implementing ready synchronization. After receiving the
ready flit, check_ready_array checks if it was the one for the receiver node. In this
case, it jumps to send, where sending data takes place as already described above.
Otherwise, it waits for the next ready flit at wait4ready.

On the other hand, Code example 4.2 shows the source code of the receiver side:
After the initialization, we check if the receive buffer is empty. When it is, a ready
flit is sent to the sender node at sendready. Otherwise, the next flit is taken out
of the receive buffer and checked for its type. First, we check if it is a data flit.
This should never occur when ready synchronization is consistently implemented
in all applications running on the processor. Thus, it should be a ready flit and
the corresponding entry in the ready_array is marked as ready (set to 1). Then,
the receive buffer is checked again. Since there are at most as many ready flits to
receive as there are other nodes, the receive buffer will eventually be empty and the
function can continue at sendready. After sending the ready flit, we wait for new
flits arriving in the receive buffer at wait4receive. Each incoming flit is received
and checked if it comes from the sender specified in register a0. In this case, it is
stored in an array, which was specified in register a1. Otherwise, the node who
sent the flit is marked as ready in the ready_array. As already described above,
the rcv_data case should never be reached and is therefore only for debugging
purposes.

6For easier and uniform addressing, the ready_arrays in Code examples 4.1 and 4.2 include one
entry for the own node, which is never used.

37

4. Ready Synchronization: Real-Time Flow Control

Code example 4.1 Send operation including software ready synchronization.

. data
array f o r s t o r i n g ready s t a t e s of nodes (16 in t h i s example)
0 i n d i c a t e s t h a t a node i s not yet ready to r e c e i v e data , while
1 denotes t h a t data can be sent
ready_array : . byte 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

. t e x t

. g l o b l send_data_sw_rdy
send_data_sw_rdy : # funct ion to send data with software ready

expects r e c e i v e r node in a0 . . .
. . . address of data to send in a1 . . .
. . . and amount of data to send in a2

i n i t i a l i z a t i o n
addi t3 , zero , −1 # −1 as value f o r ready f l i t s
addi t4 , zero , 1 # 1 as value f o r nodes which are ready

check ready array i f r e c e i v e r node i s already marked as ready
check_ready_array :

lb t2 , ready_array (a0) # load s t a t e of r e c e i v e r node . . .
. . . from ready array

bne t2 , zero , send # when r e c e i v e r node i s ready (! = 0) . . .
. . . jump to send operat ion

r e c e i v e f l i t s and wait f o r ready f l i t
wait4ready :

bre wait4ready # wait f o r f l i t in r e c e i v e b u f f e r
rcvn t0 # s t o r e node id of rece ived f l i t in t0
rcvp t1 # s t o r e payload of rece ived f l i t in t1
bne t1 , t3 , rcv_data # rece ived f l i t i s not a ready f l i t . . .

. . . process i t as data f l i t
sb t4 , ready_array (t0) # s t o r e 1 to node ’ s entry in ready array
j check_ready_array # check i f r e c e i v e r node i s now ready

when node i s ready , send data
send :

sb zero , ready_array (a0) # r e s e t entry in ready array to 0
s e n d _ f l i t :

ld t0 , 0 (a1) # load data to send
wait4sendbuffer :

bs f wait4sendbuffer # wait f o r f r e e s l o t in send b u f f e r
snd a0 , t0 # send data to r e c e i v e r node
addi a2 , a2 , −1 # l e s s data to send
addi a1 , a1 , 8 # point to next data word to send
b l t zero , a2 , s e n d _ f l i t # process next data word when e x i s t e n t
r e t # re turn when a l l data i s processed

rece ived a data f l i t ins tead of a ready f l i t
rcv_data :
f o r debugging purposes only , should never occur
when a l l nodes execute code with ready synchronizat ion

38

4.4. Software Implementation of ready Synchronization

Code example 4.2 Receive operation including software ready synchronization.

. data
array f o r s t o r i n g ready s t a t e s of nodes (16 in t h i s example)
0 i n d i c a t e s t h a t a node i s not yet ready to r e c e i v e data , while
1 denotes t h a t data can be sent
ready_array : . byte 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

. t e x t

. g l o b l receive_data_sw_rdy
receive_data_sw_rdy : # funct ion to r e c e i v e data with software ready

expects sender node in a0 . . .
. . . address where to s t o r e rece ived data in a1 . . .
. . . and amount of data to r e c e i v e in a2

i n i t i a l i z a t i o n
addi t3 , zero , −1 # −1 as value f o r ready f l i t s
addi t4 , zero , 1 # 1 as value f o r nodes which are ready

wait u n t i l r e c e i v e b u f f e r i s empty
wai t4 f reeRbuf fer :

bre sendready # r e c e i v e b u f f e r empty => send ready f l i t to sender
r e c e i v e b u f f e r not empty => r e c e i v e f l i t

rcvn t0 # s t o r e node id of rece ived f l i t in t0
rcvp t1 # s t o r e payload of rece ived f l i t in t1
bne t1 , t3 , rcv_data # rece ived f l i t i s not a ready f l i t . . .

. . . process i t as data f l i t
sb t4 , ready_array (t0) # s t o r e 1 to node ’ s entry in ready array
j wai t4 f reeRbuf fer # check i f r e c e i v e r node i s now ready

send ready f l i t to sender
sendready :

bs f sendready # wait u n t i l send b u f f e r has f r e e s l o t s
snd a0 , t3 # send ready f l i t to sender

r e c e i v e f l i t s from sender
wai t4rece ive :

bre wai t4rece ive # wait f o r f l i t s in r e c e i v e b u f f e r
rcvn t0 # s t o r e node id of rece ived f l i t in t0
rcvp t1 # s t o r e payload of rece ived f l i t in t1
bne t0 , a0 , other_nodes # jump when f l i t comes from d i f f e r e n t sender . . .
sd t1 , 0 (a1) # . . . otherwise s t o r e rece ived data in memory
addi a2 , a2 , −1 # l e s s data to r e c e i v e
addi a1 , a1 , 8 # next memory l o c a t i o n to s t o r e rece ived data
b l t zero , a2 , wai t4rece ive # process next data word when e x i s t e n t
r e t # re turn when a l l data i s processed

other_nodes :
bne t1 , t3 , rcv_data # rece ived f l i t i s not a ready f l i t . . .

. . . process i t as data f l i t ; otherwise . . .
sb t4 , ready_array (t0) # . . . s t o r e 1 to node ’ s entry in ready array
j wai t4rece ive # wait f o r next f l i t

rece ived a data f l i t ins tead of a ready f l i t
rcv_data :
f o r debugging purposes only , should never occur
when a l l nodes execute code with ready synchronizat ion

39

4. Ready Synchronization: Real-Time Flow Control

4.5. Hardware Supported ready Synchronization

Figure 4.3.: Node D is sending data flits to node E (solid arrows), all other nodes
send ready flits (dotted arrows) at the same time. Therefore, buffer space
is needed for incoming data flits as well as for incoming ready flits.

The main drawback of the software ready implementation is that in the worst
case ready flits from all other nodes have to be stored in the receive buffer besides
data flits from communication with some node. Thus, the receive buffer has to be
large enough to save all arrived ready and data flits: It should have at least as many
receive buffer slots as there are nodes on the chip. Figure 4.3 illustrates an example
with 8 other nodes: Node D sends a lot of data flits to node E (solid arrows). Then,
all other nodes (A-C, F-I) send their software ready flits to node E at the same time
(dotted arrows). Node E requires 7 receive buffer slots for ready flits and 5 for data
flits from node D. This sums up to 12 receive buffer slots, which is even more than
there are nodes in the example.

There are also some minor drawbacks at the software ready implementation: It is
possible, though very unlikely, that some data flit has exactly the same payload as a
ready flit – how can data and ready flits be distinguished in a safe way? Moreover,
program execution is slowed down by flits that arrive and have to be handled, but
are not needed yet.

Due to these reasons, ready synchronization should be implemented in hardware.
Then, ready flits can be handled in a dedicated ready hardware component by-
passing the normal receive buffer in the NI. This allows to minimize the number of
receive buffer entries, which is highly desirable as buffers occupy a high amount
of hardware logic [WGH+07]. Our new ready hardware component handles ready
flits immediately when they arrive and provides a simple check mechanism for the
sender to know whether some node is ready.

4.5.1. Hardware Implementation Considerations

At its basic principles, the hardware ready implementation works similar to the
software ready implementation. The difference is a new ready hardware component
to process ready flits independent from data flits. It processes ready flits, while data

40

4.5. Hardware Supported ready Synchronization

flits are still stored in the receive buffer and handled by the PE. For the differentiation
of ready and data flits, we introduce an additional 1-bit signal isReady everywhere
between sender and receive logic. For data flits, it is 0 and for ready flits it is set to 1.
In addition, the array storing information which nodes are ready is replaced by a
hardware bit array.

When a data flit arrives, it is stored in the receive buffer just as before and when
a ready flit arrives, the sender’s corresponding bit in the hardware bit array is set
to 1. Each node has its own hardware bit array where each bit corresponds to one
particular node. When a node wants to send data to some other node, it can look up
in its own hardware bit array if the corresponding node is ready.

All flits that arrive at the node are either needed by the PE (data which was
requested and is now processed) or they are ready synchronization flits. The latter
neither reach the receive buffer, nor the PE – they are processed in the NI and put
in the hardware bit array. Therefore, it is avoided that flits which are currently not
needed reach the PE. As a result, there is no need to distinguish between ready and
data flits in the program code anymore. Furthermore, this is a scalable solution since
each additional node only requires one bit of additional storage at each node.

4.5.2. New Instructions

Two new instructions are required for handling ready information: send ready
(srdy) for sending ready flits and branch if not ready (bnr) to check if a spe-
cific node is marked as ready in the hardware bit array. They can be seen in Table 4.1.

Table 4.1.: Overview on our RISC-V instruction set extension for ready synchroniza-
tion (originally published in [FSMU18]).

source source immediate
mnemonic register 1 register 2 value function

srdy sender send ready flit to sender
bnr receiver address check if receiver is ready; when

it is not, jump to address

The receiver node sends a ready flit to the sender node via srdy. This instruction
might be called some cycles before the receive instructions on the same node to
reduce waiting times (the time between sending the ready flit and receiving the an-
swer from the sender node). Since srdy is a modified snd instruction, it is necessary
to check the status of the send buffer before executing it with bsf or bsnf. Should
the send buffer be full when it is executed, srdy will raise an exception.

bnr is a branch instruction with the operand receiver and the immediate value
address. It checks if receiver is ready to receive data and jumps to address if it is not. For

41

4. Ready Synchronization: Real-Time Flow Control

this purpose, the corresponding bit is checked in the hardware bit array. Following
the status branch instructions in Section 3.4, bnr is also implemented as branch
instruction for checking a status. Although branch instructions with side effects are
uncommon, we designed bnr with one small side effect: When the receiver node is
ready, the bit in the hardware bit array is reset to 0. This is necessary to ensure that
at the next program part which requires synchronization a new ready flit is awaited
before flits are sent. An alternative to this behavior would be a dedicated reset
instruction. However, it may be forgotten and lead to time-consuming debugging by
the software developer. Moreover, the ready information is not valid after the bnr
instruction anymore, because then flit transfer starts and the receiver node has to
handle these flits. Thus, the ready information should not be kept beyond the point
where bnr is executed. Altogether, with the bit being reset at the bnr instruction,
there is no need for other specialized instructions and code stays simple with only
two additional instructions.

4.5.3. Implementation

Core-local memory

Router

IF ID EX M WB

Bit Array Receive Buffer

SB[else]

[messageType == ready]

Figure 4.4.: Hardware structure of a node with ready synchronization: After the
router, a distinction between ready and data flits is made. ready flits
enable the bit of the sender node in the Bit Array, all other flits are
stored in the Receive Buffer. The thin arrow between execute stage
and Bit Array illustrates that only one bit is fetched from the Bit Array.
It indicates whether a node is ready to receive data. Not illustrated is
that the connection to the send buffer (SB) has to be extended by one bit
to support the ready messageType.

The hardware implementation described in this chapter was first carried out
by Sewing [Sew18] and later improved by Bitterlich and Unte [BU19]. As already
explained in Subsection 4.5.1, an additional 1-bit signal isReady and a hardware bit
array are to be implemented. At our VHDL model, flits are distinguished with an

42

4.5. Hardware Supported ready Synchronization

enumeration type called messageType7. Instead of installing a seperate 1-bit signal
isReady, we extend the messageType with an additional enumeration type ready.
Since the original messageType required one bit for two types and now requires
two bits for three types, it essentialy implements the same change as introducing
an additional 1-bit signal. Architectural changes besides the messageType are illus-
trated in Figure 4.4: A node consists of a 5-stage pipeline with core-local memory,
which is connected to the network router. Thereby, the send buffer is part of the
router and the components between the 5-stage pipeline and the router are part of
the execute stage (EX) to guarantee fast access to the Bit Array and the Receive
Buffer. In contrast to Figure 3.4, we now added the hardware bit array, which
is called Bit Array in the figure. It stores the ready status of other nodes at the
corresponding position and as such has the same role as the ready_array in the
software implementation (see Code examples 4.1 and 4.2). For accessing single bits
in the Bit Array, a multiplexer has to be integrated (not seen in the figure). To
determine whether an arriving flit should be given to the Bit Array or the Receive
Buffer a case distinction based on the messageType is introduced.

Table 4.2.: Encoding of ready related instructions in our RISC-V instruction set
extension.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 00000 rs1 001 00000 1011011 srdy
imm[12|10:5] 00000 rs1 101 imm[4:1|11] 1111011 bnr

For handling ready flits and ready status information, our new instructions from
Subsection 4.5.2 also have to be implemented. Their encoding is shown in Table 4.2,
the opcodes are the same as for the PIMP instructions in Section 3.4.

srdy is a variation of the snd instruction with two differences: First, there is no
payload, because a ready flit never reaches the PE. Second, the messageType is set
to ready. When the ready flit arrives at the target node, it is not put into the receive
buffer. Instead, the ready messageType allows the detection as ready flit. Then, the
corresponding bit in the Bit Array is set to 1.

bnr follows the implementation of the other PIMP status related instructions in
Section 3.4. In contrast to bsf, bsnf, bre and brne, bnr requires one source register
for specifying the node which ready status is to be checked.

Some minor changes at the decode and execute stages are also necessary to

7At the original VHDL model, messageType comprises the types none and data. An overview over
all messageType is given in Appendix B.1

43

4. Ready Synchronization: Real-Time Flow Control

support our new instructions.

4.5.4. Programming model

Code example 4.3 Send operation including hardware ready synchronization.

. g l o b l send_data_hw_rdy
send_data_hw_rdy : # funct ion to send data with hardware ready

expects r e c e i v e r node in a0 . . .
. . . address of data to send in a1 . . .
. . . and amount of data to send in a2

ld t0 , 0 (a1) # load data to send

wait4ready :
bnr a0 , wait4ready # wait f o r ready f l i t

wait4sendbuffer :
bs f wait4sendbuffer # wait f o r f r e e s l o t in send b u f f e r
snd a0 , t0 # send data to r e c e i v e r node
addi a2 , a2 , −1 # l e s s data to send
beq a2 , zero , f i n i s h # when a l l data sent => f i n i s h
addi a1 , a1 , 8 # point to next data word to send
ld t0 , 0 (a1) # load next value to send from array
j wait4sendbuffer # send next data word

f i n i s h :
r e t # re turn when a l l data i s sent

Our Code examples 4.3 and 4.4 illustrate how easy hardware ready synchro-
nization can be employed in software. The first Code example 4.3 shows a send
operation with the same behavior as in Code example 4.1. However, there is no
need for manually handling any incoming flits anymore. Therefore, the operation
is much shorter and simpler. Basically, it is a variation of the send part of Code
example 4.1. The main difference is the bnr instruction at wait4ready checking the
ready status of the receiver node before waiting for the send buffer and sending
a data flit. A few minor modifications were made to efficiently send out data flits.
Altogether, the send operation now consists of only 10 assembly instructions.

At the second Code example 4.4 comprising the receive operation, changes are
similar and it is reduced to 11 assembly instructions. In the beginning, the receive
buffer is checked if it is empty. Since no ready flits can be in the receive buffer and
all data flits should already be processed before, brne at wait4freeRbuffer should
never jump to rcv_data, which remained for debugging purposes only. Therefore,
execution should directly continue at sendready. Here, Code example 4.4 is similar
to the same part in Code example 4.2. For sending out the ready flit, now the
specialized instruction srdy is employed. Afterwards all incoming flits can directly
be stored in the local memory as only flits from the corresponding sender node

44

4.5. Hardware Supported ready Synchronization

Code example 4.4 Receive operation including hardware ready synchronization.

. g l o b l receive_data_hw_rdy
receive_data_hw_rdy : # funct ion to r e c e i v e data with hardware ready

expects sender node in a0 . . .
. . . address where to s t o r e rece ived data in a1 . . .
. . . and amount of data to r e c e i v e in a2

wait u n t i l r e c e i v e b u f f e r i s empty
wai t4 f reeRbuf fer :

brne rcv_data # when r e c e i v e b u f f e r i s not empty => data rece ived

send ready f l i t to sender
sendready :

bs f sendready # wait u n t i l send b u f f e r has f r e e s l o t s
srdy a0 # send ready f l i t to sender

r e c e i v e f l i t s from sender
wai t4rece ive :

bre wai t4rece ive # wait f o r f l i t s in r e c e i v e b u f f e r
rcvp t1 # s t o r e payload of rece ived f l i t in t1
sd t0 , 0 (a1) # s t o r e rece ived data in memory
addi a2 , a2 , −1 # l e s s data to r e c e i v e
beq a2 , zero , f i n i s h # when a l l data rece ived => f i n i s h
addi a1 , a1 , 8 # next memory l o c a t i o n to s t o r e rece ived data
j wai t4rece ive # r e c e i v e next data word

f i n i s h :
r e t # re turn when a l l data i s rece ived

rece ived a data f l i t
rcv_data :
f o r debugging purposes only , should never occur
when a l l nodes execute code with ready synchronizat ion

arrive. As it is not necessary to distinguish between incoming ready and data flits
anymore, the code for receiving flits is now much shorter and simpler. Like in Code
example 4.3, some minor optimizations were also applied.

From the timing perspective, the parts for sending and receiving data (starting at
wait4sendbuffer and wait4receive) have the same length and need the same time
for execution.8 On the first sight, bre might cause a branch delay when jumping
to itself. However, it only jumps when the receive buffer is empty. When it is
empty, there is no data to receive and the branch delay does not delay any data
receipt. Should the receive buffer be filled with one or more flits, bre will never
jump and therefore cause no delay as the next instruction is already in the pipeline.

8At the RC/MC, load and store instructions only take one cycle due to the local memory being
realized as scratchpad. However, it is not necessary to have this short memory access time. It is
sufficient when a store instruction is at least as fast as a load instruction. Otherwise, nops have to
be inserted at the send operation to avoid that flits are sent faster than they are received.

45

4. Ready Synchronization: Real-Time Flow Control

bsf only jumps when the send buffer is full. This is the case when one period of the
TDM schedule takes longer than the execution of the loop at wait4sendbuffer and
several flits are sent. Because the TDM period is respected in the timing analysis of
the NoC, this is no problem.

At the software ready implementation in Code examples 4.1 and 4.2, receiving
data takes longer than sending data. Thus, the receive buffer might still run full
when a lot of data is to be transmitted. However, the hardware solution delivers a
better performance at low hardware cost and avoids this problem. Therefore, the
hardware version of our ready synchronization should always be preferred.9

4.5.5. Expected Hardware Costs

Ready flit handling requires additional hardware logic: In the focus is the hardware
bit array, how it is integrated in the execute stage and how it processes incoming
ready flits. It is the largest part of our ready hardware component at the nodes
and grows with the number of nodes in the NoC. However, it scales very well as it
only grows with one bit per additional node. Additionally, it needs a multiplexer to
access the single bits. Further logic is required for the additional ready messageType,
which needs 1 additional bit for the messageType and has to be passed through from
the senders’ send buffer to the receiver. Other signals comprise the flits’ source,
destination and payload (64 bit payload, 8+8 bit for sender and receiver information
in a 16x16 NoC). Thereby, the overhead is only 1.25% (in a 16x16 NoC) compared
to the other information that is sent through the NoC. Moreover, the additional
messageType requires an (extended) multiplexer to distinguish where an arrived
flit goes. Finally, the additional send instruction srdy and the branch instruction
bnr have to be provided. However, srdy does the same like the regular snd besides
setting the ready messageType. This overhead should be negligible. bnr works
similar to the PIMP status related branch instructions and should also induce rather
low overhead.

The additional logic might pay itself by saving buffer slots: Since the PE does not
need to handle unwanted flits anymore, processing times are reduced. The received
data flits can immediately be processed. Therefore, fewer buffer slots should be
necessary. But most promising seems that received ready flits do not enter the
receive buffer due to their handling in hardware. Thus, the receive buffer is only
needed for data flits and does not have to carry any synchronization flits. Altogether,
the load in the receive buffer should be drastically reduced and the PE can focus on
flits it currently wants to process.

9Adding nops at the software send operation would avoid that the receive buffer could run full at the
receiver node, but would also decrease performance.

46

4.6. Evaluation

4.6. Evaluation

For the evaluation, we consider an RC/MC processor as described in Chapter 3
with 2x2 = 4 nodes and the generic TDM schedule 1:A. We compare four different
programs with hardware and software ready synchronization.

First, we compare the effort for the Code examples 4.1 to 4.4 in Subsection 4.6.1.
In Subsection 4.6.2, we execute several small programs with software and hardware
ready synchronization. Afterwards, we check how many receive buffer slots are
required for these small programs in Subsection 4.6.3. Finally, in Subsection 4.6.4,
we compare the actual hardware costs of our hardware ready synchronization with
the costs of buffer slots.

4.6.1. Comparison of Software and Hardware Implementation Effort

In the previous sections, we already presented code examples for sending and
receiving flits: On the one hand, Code examples 4.1 and 4.2 illustrate how ready
synchronization would be realized as software implementation without hardware
support. Thereby, all nodes maintain a software ready_array. Always when flits are
received, a distinction between ready and data flits has to be made and the software
ready array has to be updated in the first case. Although the receive function should
only be called when all previous data transmissions are finished, it first has to check
the receive buffer for ready flits before sending out its own ready flit.

On the other hand, Code examples 4.3 and 4.4 show the minimalistic effort of
ready synchronization with hardware support: After checking the ready state of
the receiver node (and waiting for it if necessary), the sender can directly start
sending flits. At the receiver node, the receive buffer should always be empty when
starting with the function. Thus, it can send its ready flit to the sender node early.
Afterwards, the receive operation focuses on the necessary minimum of instructions
(7 assembly instructions in a loop).

Altogether, our hardware ready implementation saves execution cycles and sim-
plifies code, which is beneficial e.g. for maintainability and code analysis. Moreover,
sending and receiving flits takes equal cycles with hardware support. Thus, it
completely avoids buffer overflows and delivers better performance and timing
predictability.

4.6.2. Execution Times

We executed several programs where four nodes work together, e.g. for exchanging
data. In the following, we compare software versus hardware implementation
of ready synchronization. Both are implemented in the way we described in the
previous sections. Our programs are (i) four nodes meeting at a barrier and a (ii)

47

4. Ready Synchronization: Real-Time Flow Control

broadcast of 1280 values from one node to three other nodes.10 Furthermore, we
have an (iii) All-to-All broadcast, i.e. all nodes broadcast one 64-bit value to all
other nodes. Finally, we have (iv) a global reduce operation, where a global sum is
computed from values coming from all nodes.

These programs are small building blocks used in distributed memory programs.
The more these building blocks are employed in programs, the bigger is the effect.
We do not compare with an implementation without ready synchronization as this
would lead to buffer overflow.

Table 4.3.: Overview on benchmarks and their execution times.

Name Software Ready [cycles] Hardware Ready [cycles] Saving
Barrier 237 116 51%
Broadcast 29 764 18 124 39%
All-to-All
broadcast

1 167 1 007 14%

Reduce,
global sum

1 208 1 055 13%

Table 4.3 gives an overview of our results. In comparison to the software im-
plementation, the execution time of all programs is reduced in the hardware im-
plementation. The savings reach from 13% to 51%. As Code examples 4.1 to 4.4
already illustrate, less code is executed. It should be noted that no ready flits from
non-participating nodes interfere these executions. When there would be some,
they would interrupt the software ready implementation and increase its execution
times. However, they would have no impact on the hardware ready execution times,
because they are handled by our specialized hardware.

4.6.3. Saving of Buffer Slots

Now, we check how many slots in the receive buffer are required at least to avoid
buffer overflows. For this, we execute the above programs in the MacSim and
decrease the receive buffer size until a buffer overflow occurs. The results can be
seen in Table 4.4. Thereby, the numbers at No Synchronization represent the buffer
space needed in the worst case when there is no synchronization present. It results
from the maximum number of flits sent by other nodes to one node. Thereby, it is
assumed that all nodes send all their flits at the same time and the receiving node is
not yet ready to process them. It practice, this would require buffers of an unlimited

10A broadcast operation with one flit would result in numbers similar to the Barrier and All-to-All
broadcast. Therefore, we took a larger broadcast to give an idea about what happens when lots of
data is transmitted.

48

4.6. Evaluation

size. Thus, these values are of theoretical kind.

Table 4.4.: Overview on required receive buffer slots

Name No Sync. Software Ready Hardware Ready Saving
[buffer slots] [buffer slots] [buffer slots]

Barrier 2 1 1 0%
Broadcast 1280 251 1 >99%
All-to-All
broadcast

3 2 2 0%

Reduce,
global sum

2 2 1 50%

Hardware ready flits do not occupy receive buffer slots. Therefore, less or in the
worst case equal receive buffer slots are required compared to the software ready
implementation. As before, there are no other nodes sending interfering ready flits.
Otherwise, more buffer slots would be required in the software implementation.
At the barrier and reduce program, only two buffer slots are occupied without
synchronization. This is because of the implementation of these programs, where
tree-based algorithms are employed. At the broadcast implementation, 1280 64-bit
values are to be broadcasted, which are 1280 flits. As can be seen in Table 4.4, a lot
of buffer slots can be saved. The reason is the implementation: It is not one node
sending flits to all other nodes. Instead, the broadcast operation is distributed in the
network as a binary tree. Thus, there are intermediate nodes having to receive data
and forward it to other nodes. In the software ready implementation, they need too
much time to process flits. New flits arrive faster than the old ones are processed.
Therefore, more and more flits retain at the intermediate nodes. In the hardware
ready implementation, code parts are shorter and processing can take place faster.
Therefore, it is avoided that buffers run full.

4.6.4. Actual Hardware Costs

In our original publication [FSMU18], we presented the numbers from the imple-
mentation by Sewing [Sew18]. To have a consistant view with the other hardware
extensions presented later in Chapters 5 and 6, we now include the numbers from
Bitterlich and Unte [BU19]. They integrated ready synchronization in our VHDL
model and carried out a synthesis as described in Section 3.5. For 2x2 and 4x4 nodes,
around 15 ALMs and 17 registers are required per node. Thereby, the total costs
for a node are roughly 2200 ALMs and 2600 registers per node for 2x2 nodes and
2900 ALMs and 3400 registers for 4x4 nodes. This means that ready synchronization
imposes an overhead of less than 1%. Moreover, the costs for one receive buffer

49

4. Ready Synchronization: Real-Time Flow Control

slot in the design are around 50 ALMs and 60 registers per node. Therefore, sav-
ing only one receive buffer slot already pays the hardware logic needed for ready
synchronization.

4.7. Conclusion

Besides the TDM schedule, the RC/MC architecture in Chapter 3 imposes no limi-
tations when a node sends flits to other nodes. Therefore, flits from several nodes
could arrive at any time and have to be stored and handled. This requires large
receive buffers and free computational capacity at the node receiving these flits. To
avoid this, data flits should only be sent when the receiver node is ready to process
them. Thus, a systematic synchronization mechanism should be applied. To keep
network utilization low, we presented ready synchronization requiring only one
flit. The ready flit is sent from the node that wants to receive data to the intended
sender node. The sender node does not start sending until the ready flit arrives.
When it arrives, it knows that the receiver node is ready to handle incoming flits
and starts sending. This simple principle can be implemented in software, but is
less performant than an implementation in hardware. For an efficient hardware im-
plementation, we added two new instructions srdy and bnr, a ready messageType
and a hardware bit array (plus management logic) at the receiver node. The latter
allows to check if a specific node is ready to receive flits. Our evaluation shows
that global communication operations execute 10-50% faster and need fewer receive
buffer slots. By saving buffer slots, our hardware ready synchronization pays itself
as it requires only a small amount of additional logic.

50

5
Hardware Broadcast/Multicast Extension

to Improve Schedule One-to-All

Abstract. Broadcast and multicast are communication operations needed

often in parallel programs. They are important for data exchange in

distributed computations. When using the 1:A schedule, it takes several

periods until data is broadcasted/multicasted to all (participating) nodes

in the NoC, because of the restriction to send at most one flit per period.

Therefore, we exploit the reserved slots in the 1:A schedule to enable

broadcasting of flits to all nodes within one period. Furthermore, we

extend our approach to hardware-supported multicast.

5.1. Introduction and Basic Idea

One of the shortcomings of the One-to-All schedule is the limitation that only one
flit can be sent each period. Therefore, the execution of a broadcast or multicast
operation takes several periods because communication has to be organized e.g. as
binary tree in software. A binary tree is currently the most efficient way to imple-
ment these operations in real-time software according to Stegmeier et al. [SFMU18].
Thereby, it would take up to (⌈log2 (χ + 1)⌉ − 1) · 2 periods with a (full) binary tree

51

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

for broadcasting data to χ nodes (χ includes the sending node)1 For example, it
takes up to 8 periods to reach all nodes in a 4x4 NoC or 12 periods in a 8x8 NoC.
We propose an extension which enables to send one flit to all other nodes within
one period, realizing a broadcast operation. Moreover, we extend it to a hardware-
supported multicast operation. This makes the One-to-All schedule an efficient
alternative to the All-to-All schedule.

Our approach exploits the property of the One-to-All schedule that paths from a
node are reserved to send a flit to any other node. Our idea is to send a flit to the
farthermost node and the routers on the way make a copy of it and forward it to
the other nodes. Since all of these paths were reserved for the flit to be sent from
one node and the receiving nodes await flits from any node, there are no collisions
and no conflicts. The flits only have to be marked as broadcast/multicast flits to
be recognized by routers to copy them instead of just forwarding them. Based on
this idea we implement hardware-based broadcast and multicast operations in this
chapter.

The remainder is structured as follows: In the next Section 5.2, related work is
presented. Afterwards, in Section 5.3, the concept and implementation consider-
ations of the hardware-supported broadcast operation and in Section 5.4 of the
hardware-supported multicast operation are described. Section 5.5 illustrates our
actual implementation and Section 5.6 the programming model. Then, in Section 5.7
expected and real hardware costs are contrasted with each other. An evaluation
takes place in Section 5.8. Finally, the results are concluded in Section 5.9.

5.2. Related Work

Research on hardware support for broadcasts/multicasts focuses typically on op-
timizing the average-case execution time (ACET) for high-performance systems and
supercomputers. Thereby, communication between nodes usually does not follow a
schedule, but flits/messages are forwarded as soon as possible (best effort).

One idea for multicast is to send the flits on the Hamiltonian path, i.e. a path in
a graph where each vertex (here: node) is visited exactly once: Lin and Ni [LN91]
propose multicast wormhole routing in multicomputer networks based on the
Hamiltonian path. Thereby, either two messages (dual-path multicast routing) or
several messages (multi-path multicast routing) are sent to reach many nodes in a
short time. To realize multicast, messages always have to follow Hamiltonian paths.

Another idea is to send a flit through the NoC and nodes make copies of it: Panda

1log2 comes from determining the depth of the tree, χ + 1, because a binary tree is already full with
2y − 1 nodes. −1 compensates the rounding operation and ·2 states that data has to be sent to two
childs for each intermediate and the root node.

52

5.3. Concept: Hardware-supported Broadcast Operation

et al. [PSK99] realize multicast by adding one header for each node which should
receive the message. The message is first routed to the first node, where the first
header is removed. Then, the message is sent to the next node, as defined by the
next header. This way, the message is constantly forwarded and additional headers
are removed until all headers are worked off.

Both ideas do not work in the real-time field because the WCTT would be very
high due to very long paths. Moreover, preparing these messages consumes a lot of
time.

Other approaches integrate broadcast/multicast support directly in their architec-
ture, avoiding delays by long paths:

The BlueGene/L torus interconnection network [ABC+05] is organized as a three-
dimensional torus. It supports broadcasting of messages in x-, y- or z-direction.
However, it is limited to only one of these directions as multi-dimensional broad-
casting would have greatly complicated the logic.

Krishna et al. [KKC+08] developed a many-core with two 2D mesh NoCs: One
NoC for data and one NoC for control signals. In the control signal NoC global
interconnection lines (G-Lines) are employed for broadcasting control signals. To
enable broadcasting in one cycle, 2 · n G-Lines per direction per row/column are
needed (e.g. 16 G-Lines for a 8x8 NoC). However, broadcasting only works for
control signals like virtual channel signaling and buffer signaling.

As already illustrated in Chapter 2, several real-time many-core architectures are
being developed. Nevertheless, no literature was found on hardware broadcast or
multicast taking real-time aspects into account.

5.3. Concept: Hardware-supported Broadcast Operation

Figure 5.1.: For the node on the left bottom being sender, the paths denoted with
arrows are reserved for flit traversal at each period of the One-to-All
schedule.

At the 1:A schedule, each node can usually send only one flit per period to one

53

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

other node, but receive flits from all other nodes [MU14]. As can be seen in Figure 5.1,
several paths through the NoC are reserved to reach any other node at the sending
operation. This means that in x-direction the path to the farthermost node is free
and in y-direction also (besides other paths).

While a flit takes this way to the farthermost node, each of the routers on x-
direction can make a copy while forwarding the flit. This copy can be forwarded in
y-direction, where the remaining routers also make a copy. In this way, all nodes
can receive the flit although it is sent out only once – it is broadcasted.

For detecting that a flit is a broadcast flit and has to be copied, an additional 1-bit
signal copyFlit has to be integrated between the nodes and in the send buffer. On
architectures where a header flit always has to be sent first, the header flit should be
extended with this information.

Table 5.1.: Overview on our RISC-V instruction set extension for broadcasts and
multicasts.

source source immediate
mnemonic register 1 register 2 value function

mcst message broadcast/multicast a 64 bit
message

bnar address branch to address when not all
nodes are ready yet

bnra part nodes address branch to address when the
nodes in the indicated part of
the Ready Bit Array are not
yet ready
part has to be 0 when up to 64
nodes are present

mrdy sender number send ready flit to sender and
store sender and number at NI
to accept only number multi-
cast flits from sender

An overview on the new instructions is given in Table 5.1. To send a broadcast flit,
a new assembly instruction mcst message is introduced, where message is the data
to be broadcasted. This new instruction works like a normal snd instruction with
the difference that no receiver is to be provided (because it is a broadcast operation)
and that it sets the new 1-bit signal copyFlit. We already called the mnemonic mcst
(multicast), because at our implementation in Section 5.5 we will finally implement
broadcast as special case of multicast. Like at snd and srdy instructions, mcst will
raise an exception when the send buffer is full when it is executed. Therefore, it is

54

5.4. Concept: Hardware-supported Multicast Operation

required to check the status of the send buffer before with bsf or bsnf.

Keeping in mind that flits should only be sent when the receiving nodes are ready
(see Chapter 4), a new instruction bnar (branch if not all ready) is introduced:
It works like bnr (branch if not ready, see Subsection 4.5.2), but checks if all
nodes are ready. In contrast, the original bnr instruction only checks if a single node
is ready. Sending a broadcast flit without the bnar instruction would require to do
as many bnr checks as there are nodes.

5.4. Concept: Hardware-supported Multicast Operation

While a broadcast flit is always sent to all other nodes, a multicast flit only addresses
a fraction of the nodes as receivers.

In theory, the broadcast flit could be sent to only a subset of the nodes on the chip
by not sending it to the farthermost node but some other node. This would span a
rectangle between the sender and target node, where all nodes within the rectangle
are receiver nodes. However, this approach makes everything highly placement
dependent, which we want to avoid to retain composability. Moreover, this would
only allow multicasts to single rows or columns or nodes arranged in rectangular
positions.2

Therefore, we intend that even at a multicast operation, the flit is sent to all nodes,
but not all nodes will accept it.3 Only those nodes which wait for a flit will perform
a receive operation, the others just deflect it: At the NI of each node it is checked
if a broadcast flit from this sender is to be received. When it is, it is handled like
a normal data flit, otherwise it is deflected. On architectures where header flits
are always sent before data flits, information about receivers could be saved in the
header flit. However, this approach is limited: When the information if a node
should receive the message or not only requires one bit per node, the complete size
of a header flit would already be filled at 32 nodes (32-bit flits) or 64 nodes (64-bit
flits), respectively. We intend our approach to work with many cores and therefore
with more than 64 nodes.

Thus, each receiving node configures on its own which multicast flits it wants to
accept and how many. With a new assembly instruction mrdy sender, number (send

2Indeed, Walter realized hardware barriers for nodes in rectangular positions exploiting a similar
property in the 1:1 schedule [Wal19].

3This requires that all receivers know who sends flits they want. In operations like MPI_Bcast (see
Subsection 3.3.2), there is a parameter specifying the node sending the broadcast. Furthermore,
our programming model assumes that the same program code is executed simultaneously on
all participating nodes (see Section 3.3). Thus, there will be case distinctions at the broadcast
operations to decide who sends flits and who receives them. Then, it will also be clear for receiving
nodes whom they await flits from.

55

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

multicast ready), each node can store from which sender multicast flits should be
accepted (parameter sender) and how many (parameter number). It extends the srdy
instruction as it collects the same information (besides additional information about
the number of flits to receive) and the sender should not start before a ready flit was
sent. Every time when a multicast flit comes by, it is forwarded from the router to
the NI. There, the sender of the flit is compared with the sender stored. When the flit
comes from the desired sender, it is stored locally, otherwise it is deflected. In the
first case, the counter is decremented. When the counter reaches zero, all further
incoming multicast flits are deflected, because the node does not expect any more
multicast flits.

The only remaining problem occurs when the same node sends out several multi-
casts to different groups of participants. These multicasts may be mixed up, because
all nodes accept multicast flits passing by from the desired sender, irrespective if
they are intended for these receivers or not. To overcome this, nodes should meet
at a barrier before and after a multicast operation to have a clear separation of
different communication parts (which is also in accordance with the BSP model, see
Section 3.3). Because barriers might be rated as costly in regard to communication
effort and required time, we will present a hardware-supported barrier in the next
Chapter 6.

In the case that a node receives multicast flits from different nodes in the same
period (e.g. collecting results from a distributed computation), comparing only one
sender is not sufficient. Thus, the NI might be extended to manage and count several
senders of multicast flits. The maximum number of possible senders to be managed
at the same time is upper bounded by the number of receive buffer slots because
in the worst case all multicast flits might be received in the same period. For the
comparison to still take place in one cycle, additional comparators have to be added
in hardware. However, this largely complicates hardware logic. Therefore, we only
support accepting multicast flits from one sender at a time in our implementation.

5.5. Hardware Implementation

In his master’s thesis [Aue18], Auer implemented a first prototype of hardware-
supported broadcast for the 1:A schedule without multicast support. His results
indicate that our basic ideas work. Based on the experiences made in this work, the
implementation in this section was elaborated. It extends the RC/MC processor as
it was described in Chapter 3 and extended with ready synchronization (Chapter 4).
The actual implementation in the VHDL model and the MacSim was carried out by
Bitterlich and Unte [BU19].

Like in Subsection 4.5.3, we extend the enumeration messageType with an addi-
tional type mcst instead of an additional 1-bit signal. For sending a broadcast/mul-

56

5.5. Hardware Implementation

Table 5.2.: Encoding of broadcast/multicast related instructions in our RISC-V in-
struction set extension.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 101 00000 1011011 mrdy
0000000 00000 rs1 110 00000 1011011 mcst

imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1111011 bnra
imm[12|10:5] 00000 00000 111 imm[4:1|11] 1111011 bnar

ticast flit, a new instruction mcst rs1 (multicast) broadcasts/multicasts the data in
register rs1. Thereby, broadcast is a multicast which is accepted by all nodes. An
overview on the encoding of our new instructions related to broadcast/multicast
is given in Table 5.2. To be able to realize a simple broadcast operation with only
two assembly instructions, we introduce a new instruction bnar imm. It implements
branch if not all ready as described in Section 5.3 (check if all nodes are marked
as ready).

For multicasts, the new instruction bnra rs1, rs2, imm (branch if not ready
array) is utilized. It compares the part of the Ready Bit Array which is addressed
by rs1 with the bits in rs2 (the 64 bits in rs2 represent the ready state of up to 64
nodes). When the Ready Bit Array is e.g. 256 bits (256 nodes), the value in rs1
could be 0, 1, 2 or 3 to address the first, second, third or last block of 64 bits in the
256 bit Ready Bit Array, see example in Figure 5.2. The first block represents the
nodes 0 to 63, the second 64 to 127 and so on. In this way, the state of 256 nodes
can be checked with only four bnra calls.When the Ready Bit Array is only up to
64 bits wide (representing up to 64 nodes), rs1 always has to be zero4. Because the
number of nodes is not necessarily a multiple of 64 nodes, the last block may not
completely be filled with bits representing nodes. These "undefined bits" will never
return ready, because there should never be sent any flits to nodes that do not exist.

At the router, all flits with messageType mcst have to be copied. Then, they are
forwarded to the north and to the west. Thereby, the x target address of flits copied to
the north is set to the current column to signalize that they have arrived in the target
column. The architectural design of an extended node can be seen in Figure 5.3:
We combined the logic handling incoming mcst flits within the module multicast
filter5, which is a further extension of the execute stage. All incoming mcst flits

4Should the program running on the processor access a block that does not exist, this may lead to
undefined behavior.

5In the VHDL model, there is no additional module multicast filter – there, only 2 additional ifs
are required. We added the multicast filter module in the figure to give a better overview.

57

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

...10110...1

10011...10100...11101...10100

bnra rs1 rs2

Ready Bit Array
block 0 block 1 block 2 block 3

...10110...
compare

Figure 5.2.: Example of the bnra (branch if not ready array) instruction when
the Ready Bit Array has four blocks: The value 1 in register rs1 in-
dicates that the bits in register rs2 are to be compared with block 1 of
the Ready Bit Array. Since our architecture has 64 bit registers, we
would compare 64 bits in this example, representing the ready state of
64 nodes.

have to fulfill two requirements to reach the receive buffer: First, they have to
come from the desired sender node, which is checked via the multicastSender
== flit.sender statement. Second, it is counted if enough flits from the desired
sender have already been received. The statement multicastCount > 0 checks if
more flits are wanted. If so, the received mcst flit reaches the receive buffer and
is handled like a normal data flit there. In this case, the multicastCount register
has to be decremented. It is utilized to count the multicast flits received and stop
receiving when all multicast flits from the desired sender have arrived. To keep the
hardware effort low, only receiving of broadcast/multicast flits from one sender
is supported at a time. For handling our new instructions, minor changes in the
decode and execute stages are also necessary.

58

5.6. Programming Model

[multicastCount > 0]

[multicastSender == flit.sender]

[else]

flit
deflect

Multicast Filter

[else]

flit
deflect

Core-local memory

Router

IF ID EX M WB

Bit Array Receive Buffer

SB

[else]
[messageType == mcst]

[messageType == ready]

Figure 5.3.: Hardware structure of a node, extended with a multicast filter and
a further case distinction for arriving flits. When they have messageType
mcst, arriving flits are given to the multicast filter. It checks whether
the flit comes from a source where a multicast flit is awaited from and if
it is one of the desired flits. Not shown are the extensions in the decode
and execute stages.

5.6. Programming Model

With our new hardware extension, a broadcast can be handled with only a few lines
of assembly code using the instructions shown in Table 5.1. In Code example 5.1, we
create a small function to broadcast an array and it is received in Code example 5.2.

For sending a broadcast (Code example 5.1), the address of the array to be sent
has to be provided as parameter as well as the number of values to be sent. In the
function, first it has to be checked whether all nodes are marked as ready in the
Ready Bit Array. When they are, the loop processing the array can start with its
first iteration: The first 64 bit value is loaded from the array. Then, we check if the
send buffer has a free buffer slot and spin if necessary before broadcasting the first
64 bit value. Afterwards, the pointer to the array is redirected to the next value and

59

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

Code example 5.1 Broadcast on sender side.

. g l o b l send_broadcast
send_broadcast : # funct ion to broadcast values from an array

expects address of array in a0 . . .
. . . and number of values in a1

check : bnar check # check i f a l l nodes are marked as ready
loop : ld t0 , 0 (a0) # load value from array
w4sb : bs f w4sb # wait f o r send b u f f e r before sending value

mcst t0 # broadcast loaded value
addi a0 , a0 , 8 # address of next value
addi a1 , a1 ,−1 # counter : one value l e s s to process
b l t zero , a1 , loop # next i t e r a t i o n with next value

f i n i s h : r e t # otherwise f i n i s h e d => return

the value counter is decremented. When the value counter has reached zero, the
function is finished and returns. Otherwise, the loop is entered again to proceed
with the next value in the array. A further check for the ready state is not necessary
because the receiving nodes already indicated that they are ready and able to process
all incoming data.

Code example 5.2 Broadcast on receiver side.

. g l o b l r e c e i v e _ b r o a d c a s t
r e c e i v e _ b r o a d c a s t : # funct ion to r e c e i v e broadcast values

and s t o r e them in an array
expects number of sender node in a0 . . .
. . . address of array to s t o r e in a1 . . .
. . . and number of values in a2

wait4sb : bs f wait4sb # wait f o r send b u f f e r before sending ready
mrdy a0 , a2 # send ready to sender node and s t o r e sender

node and number of values to r e c e i v e
loop : bre loop # wait as long as r e c e i v e b u f f e r i s empty

rcvp t0 # r e c e i v e value . . .
sd t0 , 0 (a1) # . . . and s t o r e i t in array
addi a1 , a1 , 8 # next place in array
addi a2 , a2 ,−1 # counter : one value l e s s to process
bne a2 , zero , loop # continue with next value or . . .
r e t # . . . re turn when there are no more values

Receiving a broadcast works in a similar way as sending and is illustrated in
Code example 5.2. The function expects three parameters: The number of the node
to receive values from, the address of the array where to store them and how many
values are to be received.

First, we wait for the send buffer to have a free buffer slot. Now, we can start with

60

5.6. Programming Model

sending a ready flit to the sender node. At the same time, the number of the sender
node as well as the number of flits to be received are stored in the NI (all done
with the mrdy instruction). Then, the loop to process values starts: After checking
and waiting for flits in the receive buffer, the received value is taken out from there
and stored in the array. Afterwards, the pointer to the array and the value counter
are updated. When there are more values to be received, the loop is entered again,
otherwise the function is finished and returns.

Note that the bre (branch if the receive buffer is empty) instruction is part of the
loop because it cannot be ensured that the next flit has already arrived when the
loop starts its next iteration.

Both operations have an equal length at the loop (1 PIMP communication opera-
tion, 1 PIMP status branch, 2 add operations, 1 memory access and 1 branch to the
beginning of the loop) to ensure that the receive broadcast operation is as fast as
the send broadcast operation. To avoid buffers running full or needing a further
ready synchronization, receive operations should always perform faster or at least
as fast as send operations. This also means that the WCET of the receive operation
must not be larger than the best-case execution time (BCET) of the corresponding send
operation.

From the timing perspective, both Code examples 5.1 and 5.2 provide good
timing analyzability: bnar is called as long as not all nodes are ready. This means,
it realizes an implicit barrier. It can be upper bounded by the time required by the
other nodes to send a ready flit via mrdy. ld, mcst and add instructions have a fixed
latency of one cycle each. On the receiver side, the same holds for rcvp, sd and
add instructions. However, before these instructions, we have a bre branch waiting
until a flit arrives in the receive buffer. The WCTT for the flit transfer between
sender and receiver can be estimated with the network schedule. At the end of
the loop, the loop iteration branch is dependent on the number of values to be
broadcasted/multicasted, which has to be provided by the software developer for
timing analysis. In both functions, the loops need six cycles for execution with
additional two cycles branch delay for each value to be transmitted. This holds both
for the best and the worst case, because the instructions are always worked off in the
same order and there are no variations at their execution times. The only variation
would be when bre (branch if receive buffer is empty) branches: There is a branch
delay of three cycles. But bre branches only when there are no flits in the receive
buffer. Thus, it cannot occur that flits in the receive buffer pile up due to branch
delays of bre.

Multicast on the sender side works almost the same way as broadcast: Instead of
checking if all nodes are ready, only selected nodes are checked. In Code example 5.3,

61

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

Code example 5.3 Example for multicast on sender side for a 256 node RC/MC
processor.

s e t _ p a r a m e t e r s _ f o r _ m u l t i c a s t :
f o r t h i s example , we address nodes 49−73 and 189−231
block 0 : 49−63 , block 1 : 64−73 , block 2 : 189−191 , block 3 : 192−231
addi t0 , zero ,−1 # s e t a l l b i t s in t0
s r l i a2 , t0 , 4 9 # s e t b i t s 49 to 63 in r e g i s t e r f o r block 0
s l l i a3 , t0 , 5 4 # s e t b i t s 0 to 9 in r e g i s t e r f o r block 1
s r l i a4 , t0 , 6 1 # s e t b i t s 61 to 63 in r e g i s t e r f o r block 2
s l l i a5 , t0 , 3 9 # s e t b i t s 0 to 39 in r e g i s t e r f o r block 3
j a l send_mult icas t # c a l l func t ion send_mult icast

. g l o b l send_mult icas t
send_mult icast : # funct ion to m u l t i c a s t values from an array

expects address of array in a0 . . .
. . . number of values in a1 and . . .
. . . and t arg e te d nodes in a2 − a5

check0 : bnra zero , a2 , check0 # check i f nodes in block 0 are ready
addi t0 , zero , 1 # s t o r e 1 to a c c e s s block 1 at bnra

check1 : bnra t0 , a3 , check1 # check i f nodes in block 1 are ready
addi t0 , zero , 2 # s t o r e 2 to a c c e s s block 2 at bnra

check2 : bnra t0 , a4 , check2 # check i f nodes in block 2 are ready
addi t0 , zero , 3 # s t o r e 3 to a c c e s s block 3 at bnra

check3 : bnra t0 , a5 , check3 # check i f nodes in block 3 are ready
loop : ld t0 , 0 (a0) # load value from array
waitsb : bs f waitsb # wait f o r f r e e s l o t in send b u f f e r

mcst t0 # broadcast loaded value
addi a0 , a0 , 8 # address of next value
addi a1 , a1 ,−1 # counter : one value l e s s to process
b l t zero , a1 , loop # go on with next value

f i n i s h : r e t # otherwise f i n i s h e d => return

we have an RC/MC processor with 256 nodes and select nodes 49 to 73 and 189
to 231 to multicast to. For selecting nodes, we adapted the broadcast function
to accept four more registers as parameters. Furthermore, it does not use the
bnar (branch if not all ready) instruction anymore, but the bnra (branch if
not ready array) instruction. The remainder after checking the Ready Bit Array
remains the same code as in the broadcast Code example 5.1. When we consider a
processor with far more than 256 cores, the a registers are not sufficient anymore to
hand over all parameters (especially the registers defining the required ready bits).
Then, the receiver nodes may be selected in an array whose address is handed over
to the function.

On the receiver side, multicast works exactly the same way as in the broadcast
Code example 5.2. Because the loops for data exchange are the same as in the

62

5.7. Hardware Costs

broadcast example, the timing considerations still hold. Moreover, we recommend
to add a barrier after the broadcast/multicast operation is finished, in accordance
with the BSP model as described in Section 3.3.

5.7. Hardware Costs

In Subsection 5.7.1, we discuss the impact of our implementation from Section 5.5
on hardware costs. Then, in Subsection 5.7.2, we have a look on the actual hardware
costs.

5.7.1. Expected Impact on Hardware Costs

Our hardware broadcast/multicast extension is designed with the goal of low
additional hardware effort. At the hardware level, the extensions as described
in Section 5.5 have to be implemented at each node and result in the following
overhead:

The additional messageType mcst comes for free, because the messageType re-
quires two bits and up to now only represents three states (none, data, ready).
Therefore, the mcst messageType can utilize the free fourth state. Our additional
send instruction mcst should impose negligible hardware effort as it does the same
like a snd instruction besides setting the mcst messageType. However, it needs to
know which is the node with the farthermost distance. To avoid complex hardware
computing this node, it is computed at synthesis and its node id is saved in a reg-
ister. For multicast support, some additional logic is added for the decision if a
flit is to be accepted or deflected. This includes the registers multicastSender and
multicastCount, the comparator and the decrementer. These seem to be the most
expensive components of the multicast extension, although their price should be
within reason. Resigning on multicast and implementing only broadcast would be
the higher price, because only having broadcasts would prevent the possibility to
execute different applications concurrently (on different nodes) on our platform.
The additional instructions bnar and bnra require direct access to the hardware bit
array to access 64 bits at a time instead of only one bit (at bnr). This should only
impose small overhead as the hardware bit array is already part of the execute stage
and stage-internal access ways are short.

Altogether, the need for additional hardware logic should be small.

5.7.2. Actual Hardware Costs

The described concepts were integrated into the existing VHDL model and synthe-
sized for a Stratix V E FPGA by Bitterlich and Unte [BU19] as described in Section 3.5.
Our broadcast/multicast extension requires around 300 additional ALMs and 140

63

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

registers per node (for RC/MC processors with 2x2 and 4x4 nodes). Thereby, around
170 ALMs and 50-60 registers are needed per node to realize the bnar and bnra
instructions. The total costs of a node (including ready synchronization and our
broadcast/multicast extension) in a 2x2 node RC/MC processor are 2483 ALMs
and 2703 registers or 3223 ALMs and 3561 registers when having 4x4 nodes on
the chip. Thus, we have an overhead of around 10% at the ALMs and 5% at the
registers. Although the hardware costs are not too high, we expected them to be
a little bit lower. Since bnar is only needed for a special case and may only save
a few hundred cycles in the worst-case, it may be cut out to save hardware costs.
Together with the the bnra instruction, bnar almost contributes half of the costs
of the hardware broadcast/multicast extension. Maybe accessing so many ready
bits at once cannot be implemented in an efficient way on an FPGA. However,
since our hardware broadcast/multicast extension might have a high impact on the
(worst-case) performance, it might be worth its extra costs.

5.8. Evaluation: Worst-Case Performance

For the evaluation, we carry out timing analyses for different implementations of
MPI_Bcast. In this operation, one node broadcasts one or several values to other
nodes. It is defined in the MPI standard [Mes15] and was already introduced
in Subsection 3.3.2. For determining the receivers, a communicator is utilized. It
defines which nodes belong together at communication. Typically, communicators
are created in the initialization part of a real-time program. This saves time and
allows to prepare communication parameters at a non-critical point of time. During
program execution, the communicator is handed over to collective operations to
express which nodes communicate with each other. MPI_Bcast is a typical operation
in parallel programs to exchange intermediate or final results along several nodes.

In the next Subsection 5.8.1, we carry out a timing analysis of different imple-
mentations of MPI_Bcast. Afterwards, we compare their worst-case performance in
Subsection 5.8.2. Because the timing analysis might have introduced pessimism and
overestimation, we assume optimal code optimization at the theoretical comparison
in Subsection 5.8.3.

5.8.1. Timing Analysis of Different MPI_Bcast Implementations

We first analyze MPI_Bcast with hardware support and then a tree-based implemen-
tation.

64

5.8. Evaluation: Worst-Case Performance

Timing Analysis of MPI_Bcast with Hardware Support

MPI_Bcast with hardware support works as illustrated in Figure 5.4 and described
in Table 5.3. We illustrated only one participant node – all others behave exactly
the same way and have the same timing. The operation works in two phases: First,
ready information is collected and then data is multicasted.

root

A

participant

74
13

56

68 63 B

D E

F

C

Bit Array

check
ready
status

mark as
ready

30

15

28

G

H

I J

collect
ready

send
multicast

Figure 5.4.: Workflow and timing behaviour of MPI_Bcast with hardware support.
After all participating nodes were marked as ready in the Bit Array,
the root node sends out the multicast flits to the participant node(s).
Generally, there are more participant nodes, but we included only one
to keep the figure simple. Other participant nodes behave exactly the
same way as the participant node in the figure. Boxes represent local
code execution, continuous arrows between root, participant and Bit
Array denote flits, arrows from the end of a box to the beginning of
the same box illustrate loops. The dotted arrow at step (D) indicates
the local access to the node’s own Bit Array. Numbers inside of the
boxes specify the WCET estimation of this code part. The meaning of
the different steps is described in Table 5.3.

At the end of the first phase at step (D), the ready status of 64 nodes is checked
via the bnra instruction. Thereby, the root node spins at the bnra instruction until
these nodes are marked as ready. It takes 68 + 23 + 3 = 94 cycles for the root
node until the bnra instruction finished its execution for the first time. Thus, when
all participant nodes have already marked their state in the Bit Array, 94 cycles
at the root node represent the worst-case path. Otherwise, we have to wait for
the last participant node to arrive, which takes 63 + WCTT(1, 1) cycles. After the
last participant node has arrived, the root node can continue with the rest of the

65

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

Table 5.3.: Description of structure and WCET estimates for the implementation of
MPI_Bcast with hardware support as shown in Figure 5.4.

step description WCET estimate

(A) The root node executes initialization code. 68
(B),
(C)

At the end of the initialization of the partici-
pant nodes they send a ready flit to the root
node, where the information that this partic-
ipant is ready to receive data is stored in the
Bit Array.

63 + WCTT(1, 1)

(D) For each 64 nodes, one iteration of a loop
checking the status of the receiver nodes
in the Bit Array has to be taken. In de-
tail, the bnra instruction is called after 23 cy-
cles. Since it requires three cycles and the fol-
lowing code takes 30 cycles, this code block
takes 56 cycles in total.

⌈︁ N
64

⌉︁
· (23 + 3 + 30) =

= 56 ·
⌈︁ N

64

⌉︁

(E) After sending the ready flit and before han-
dling incoming flits, some preparation code
is executed at the participant node.

15

(F),
(G)

The root node sends out multicast flits. max(30 + WCTT(f , 1),
30 · f + WCTT(1, 1))

(H) At the participant node, each flit except the
last one is received and stored in a loop.

max(sign(f − 1), 0) · 28

(I) When all flits were sent out, the end of the
function requires 13 cycles.

13

(J) Finally, the last flit is received by the partici-
pant node and closing operations take place.

74

66

5.8. Evaluation: Worst-Case Performance

current iteration (30 cycles) and the remaining iterations of the loop at step (D):
(56 · (

⌈︁ N
64

⌉︁
− 1)). Altogether, the WCET estimate of the first phase is summarized as

WCETHwBcast
CollectReady in Formula 5.1.

WCETHwBcast
CollectReady = max(94, 63 + WCTT(1, 1)) + 30 + 56 · (

⌈︃
N
64

⌉︃
− 1) (5.1)

In the second phase, the root node sends out multicast flits, which are stored and
received by the participant nodes. After the last flit was sent out, the worst-case
path lies at the participating node, because step (J) is longer than step (I). However,
first we have to consider f flits to be sent out at step (F). Like in Subsection 3.6.1,
step (F) might be driven by the WCTT or the loop to be executed. Thus, we have to
take the maximum of both: max(30 + WCTT(f , 1), 30 · f + WCTT(1, 1)). It should
be noted that the second parameter for the WCTT is always set to 1 independent of
the actual number of participants, because we only send out one multicast flit.

At the participating node at step (H) the third-last flit was already processed
when the second-last flit arrives, because step (F) requires more cycles than step (H).
Therefore, it is sufficient to add only the last iteration to the total WCET estimate.
Because this step is not executed when only one flit is sent, we added the factor
max(sign(f − 1), 0). Finally, step (J) has to be added and we get WCETHwBcast

Multicast in
Formula 5.2 for the second phase.

WCETHwBcast
Multicast = max(30 + WCTT(f , 1), 30 · f + WCTT(1, 1))

+ max(sign(f − 1), 0) · 28 + 74 (5.2)

Finally, we get the total WCET estimate WCETHwBcast
Total as result in Formula 5.3.

Thereby, steps (E) and (I) can be safely ignored, because they do not lie on the
worst-case path.

WCETHwBcast
Total =max(31, WCTT(1, 1)) + 56 ·

⌈︃
N
64

⌉︃
+ max(sign(f − 1), 0) · 28

+ max(30 + WCTT(f , 1), 30 · f + WCTT(1, 1)) + 111 (5.3)

Timing Analysis of a Tree-Based MPI_Bcast Operation

Trees are current state-of-the-art to distribute data on a real-time network [SFMU18].
Our tree-based implementation works as follows: There is one root node, several
intermediate nodes and a lot of leaf nodes. The message to be multicasted comes
from the root node. It is received by the intermediate nodes who distribute it to the
leaf nodes. There may be one or several layers of intermediate nodes. Our example
will first focus on one layer of intermediate nodes and is afterwards extended
to several layers during the analysis. At some points, the number of children is
important. For keeping the analysis simple, we will assume that the tree is full, i.e.

67

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

the root node and all intermediate nodes will have the same number of children6. In
the formulas, the number of children will be denoted as c. Furthermore, the number
of flits will be represented as f and the number of additional layers as l7.

Communication in the tree takes place in two phases: At the beginning, there
is a phase for collecting ready information. It is propagated upwards the tree –
when all nodes are ready, the root node is notified via its children. Then, the second
phase starts, where data is multicasted to all nodes along the tree (propagation
downwards). At the beginning, only the first data flit is sent out, then all but the last
data flit and finally the last one8. The structure and timing behavior of the tree-based
MPI_Bcast operation is illustrated in Figure 5.5, while the steps (A) to (K) which are
displayed in the figure are explained in Table 5.4.

Now we consider the first phase: Collecting ready information (steps (A) to (D)).
At step (A), we summarized a function for determining the node’s own position
in the tree together with a part of the initialization. This function was already
analyzed by Bürger [Bür19] – we just copied his result here and adapted it. For
the intermediate nodes, we have to consider two situations: When ready flits from
leaf nodes have already arrived at the execution of step (C), Formula 5.4 holds.
Otherwise, we have to wait for the ready flits at step (C) (Formula 5.5). For further
estimations, we will need the maximum of both, which is assembled and simplified
as WCETTreeBcast

Ready1Intermediate in Formula 5.6.

WCETTreeBcast
ReadyLea f−1 = 515 + 72 · (log2(N) + 1) + 100

+ 52 + 47 + 17 + (c − 1) · (47 + 17)

+ 36 (5.4)

WCETTreeBcast
ReadyLea f−2 = 515 + 72 · (log2(N) + 1) + 100

+ 33 + WCTT(1, 1)

+ 17 + (c − 1) · (47 + 17)

+ 36 (5.5)

WCETTreeBcast
Ready1Intermediate = max(WCETTreeBcast

ReadyLea f−1, WCETTreeBcast
ReadyLea f−2) =

= 637 + 72 · (log2(N) + 1) + max(66, WCTT(1, 1)) + c · 64 (5.6)

6More cases are covered by Stegmeier [Ste19].
7This means when we have three layers (root, intermediate, leaf) in total, l will be 0. At 4 layers (root,

intermediate, intermediate, leaf), l is 1.
8This structure is due to optimization to handle transfer of many flits fast.

68

5.8. Evaluation: Worst-Case Performance

intermediate

A

leaf

86

28

30*

36

33

52B

D

E

F

G

I

J

C

H

30*
16

27

18
27

36

38

34

88

33

11

30*

23

7

15

30*

55

30*

...

root

... ...A A

B

B
ready

ready

11

K

47

17

47

17

18

collect
ready

send
multicast

Figure 5.5.: Workflow and timing behaviour of our tree-based MPI_Bcast operation.
After all leaf and intermediate nodes propagated that they are ready,
data flits are sent out in three phases. Each time, the intermediate
nodes get the data flits from the root node and forward them to their
children. Generally, there are several intermediate and leaf nodes, but
we included only one each to keep the figure simple. Other intermediate
and leaf nodes behave exactly the same way as those in the figure. Boxes
represent local code execution, arrows between root and intermediate
nodes or intermediate and leaf nodes denote flits, arrows from the end
of a box to the beginning of the same box illustrate loops. Numbers
inside of the boxes specify the WCET estimation of this code part. The
meaning of the different steps is described in Table 5.4.

69

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

Table 5.4.: Description of structure and WCET estimates for a tree-based implemen-
tation of MPI_Bcast as shown in Figure 5.5. c is the number of children of
a node, while f is the number of flits to be multicasted.

step description WCET estimate

(A) During the initialization, all nodes compute
their position in the tree.

515 + 72 · (log2(N) + 1) +
100

(B),
(C)

At the end of the initialization, the interme-
diate nodes have to wait for the ready flits
from their children.

max(52 + 47 + 17
+ (c − 1) · (47 + 17),
33 + WCTT(1, 1) + 17)

(D) After the intermediate nodes received ready
flits from their children, they send ready flits
to the root node.

max(47 + 17
+ (c − 1) · (47 + 17),
36 + WCTT(1, 1) + 17)

(E) Now, the whole tree is ready to receive data.
Thus, the root node starts with sending the
first flit to all intermediate nodes.

11 + 18
+ (c − 1) · (18 + 12) + 12

(F) When the data flit arrived at the intermedi-
ate node, it is forwarded to the leaf nodes.
max(sign(f − 1), 0) ensures that this step is
only considered when more than 1 flit is to
be sent.

WCTT(1, 1)
+ max(sign(f − 1), 0)
· (27 + 18 + (c − 1) · (18 +

18) + 18 + 27)

(G) Should there be more than two data flits to
be sent, it is iterated over the data flits (outer
loop) and the children (inner loop). The in-
ner loop works the same way as at step (E).
This step is only executed when f > 2 via
the factor max(0, f − 2)

15 + max(0, f − 2) · (23 +

18 + (c − 1) · (18 + 12) +
12 + 7)

(H) At the intermediate nodes, the flits from step
(G) are received and forwarded to the leaf
nodes. As in step (F) , the leaf node is not on
the worst-case path and therefore not further
respected. Like at step (G), max(0, f − 2)
ensures integration only for f > 2.

max(0, f − 2) · (36 + 18 +

(c − 1) · (18 + 12) + 12 +

16)

(I) Finally, the last data flit is sent out at the root
node.

11 + 18 + (c − 1) · (18 +

12) + 12
(J) The intermediate nodes receive and forward

the last data flit.
28 + 18 + (c − 1) · (18 +

12) + 12
(K) At the leaf nodes, the last flit is received and

the operation ends.
WCTT(1, 1) + 88

70

5.8. Evaluation: Worst-Case Performance

Should we have several intermediate levels, then it is necessary to extend our
formula WCETTreeBcast

Ready1Intermediate. For each additional level, we have to consider the
time it takes to collect all ready flits from the children at the next deeper level and
to send one ready flit to the parent node. Because all intermediate nodes execute
the same code, it is not necessary to respect steps (A), (B) and the beginning of
(C) again – they are already respected at the next deeper intermediate node. An
intermediate node between our current intermediate node and the root node will
have to wait for its child intermediate node(s) – which have exactly the WCET
estimate WCETTreeBcast

Ready1Intermediate from Formula 5.6. Thus, an additional intermediate
node will be waiting for the ready flits from its children at step (C). Therefore,
we only have to add the time for receiving and processing these ready flits: 17 +

(c − 1) · (47 + 17). Moreover, we have to add the time to send the ready flit to the
parent node at step (D): 36 + WCTT(1, 1). When there are even more intermediate
levels, the same times have to be added for each additional intermediate level. To
integrate this situation, we have extended WCETTreeBcast

Ready1Intermediate from Formula 5.6
to WCETTreeBcast

ReadyXIntermediates in Formula 5.7, where l is the number of additional layers.

WCETTreeBcast
ReadyXIntermediates =637 + 72 · (log2(N) + 1)

+ max(66, WCTT(1, 1)) + c · 64

+ l · (17 + (c − 1) · (47 + 17) + 36 + WCTT(1, 1)) (5.7)

At the root node, we have to consider similar situations: When the root node
reaches step (D) and the ready flits from intermediate nodes have already arrived,
Formula 5.8 holds. Otherwise, we have to wait for the ready flits from the inter-
mediate nodes at step (D) (Formula 5.9). However, because WCETTreeBcast

ReadyRoot−1 from
Formula 5.8 is smaller than WCETTreeBcast

Ready1Intermediate in Formula 5.6, WCETTreeBcast
ReadyRoot−1

cannot lie on the worst-case path and will be ignored in the remainder9.

WCETTreeBcast
ReadyRoot−1 =515 + 72 · (log2(N) + 1) + 100

+ 55 + 47 + 17 + (c − 1) · (47 + 17) (5.8)

WCETTreeBcast
ReadyRoot−2 =WCETTreeBcast

ReadyXIntermediates

+ WCTT(1, 1)

+ 17 + (c − 1) · (47 + 17) (5.9)

9We assume at least one intermediate layer in this thesis.

71

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

As result, the WCET estimate for the phase for collecting ready information is al-
ready given as WCETTreeBcast

ReadyRoot−2 in Formula 5.9. We summarize it as WCETTreeBcast
CollectReady

in Formula 5.10.

WCETTreeBcast
CollectReady =662 + 72 · log2(N)

+ max(66, WCTT(1, 1))

+ WCTT(1, 1)

+ c · 128

+ l · (c · 64 − 11 + WCTT(1, 1)) (5.10)

In the second phase data is multicasted. Like at the collect ready flits phase, we
will first elaborate a formula with only one level of intermediate nodes and then
extend it to more levels afterwards.

The send operation of the first data flit is seen at step (E). It contains a sending
block with a WCET estimate of 30 cycles, which occurs several times in Figure 5.5
(at steps (G), (H), (I) and (J), denoted with ∗). It consists of two parts: After 18 cycles,
the flit is sent out. Then, twelve cycles remain before the next iteration takes place.
We will not go into further detail at the later occurrences, because always the same
code is executed. Because it takes 18 cycles until the flit is sent in this sending block,
the first flit from the root node is sent after 11 + 18 cycles and the last one after
11 + 18 + (c − 1) · 30 cycles.

While the first data flit is processed by the intermediate nodes, the root node
already continues with the next data flits. Because the operations at the root node
are shorter than on the intermediate nodes10, we do not need to consider the root
node for the worst-case path anymore. The leaf nodes are also not on the critical
path (only when receiving the last flit), because they only have to receive single
flits, while the intermediate nodes have to distribute flits to their children. Thus, the
WCET estimate for steps (F) and (H) can be directly taken from Table 5.4. It should
be noted that the steps (F) to (H) are only executed when there are more than 1 (step
(F)) or 2 (steps (G) and (H)) flits to be sent. Thus, their WCET estimates contain
terms like max(sign(f − 1), 0) or max(0, f − 2). Thereby, sign is the sign function
which returns −1 for negative inputs, 0 for input 0 and 1 for positive inputs. The
factor max(0, f − 2) works in a similar way – it prevents that the loop will have
negative results when less than two flits are to be sent.

When reaching step (J), the last flit was already received, because the root node
is faster than the intermediate nodes. Thus, program execution can immediately

10This is due to the root node only sending data, while the intermediate nodes have to receive and
forward data.

72

5.8. Evaluation: Worst-Case Performance

proceed. The last flit from the intermediate node to the leaf node is sent out after
28 + 18 + (c − 1) · 30 cycles11. After WCTT(1, 1) + 88 cycles, the leaf node can
finish execution. When this time is shorter than 12 + 86 cycles, the intermediate
node will be the last one to reach the end of the function. Altogether, we get
WCETTreeBcast

Multicast1Level−1 in Formula 5.11 as result.

WCETTreeBcast
Multicast1Level−1 =

=11 + 18 + (c − 1) · 30

+ WCTT(1, 1)

+ max(sign(f − 1), 0) · (27 + 18 + (c − 1) · (18 + 18) + 18 + 27)

+ max(0, f − 2) · (36 + 18 + (c − 1) · (18 + 12) + 12 + 16)

+ 28 + 18 + (c − 1) · 30

+ max(12 + 86, WCTT(1, 1) + 88) (5.11)

Furthermore, we have to extend WCETTreeBcast
Multicast1Level−1 to respect the situation

when the WCTTs are larger than the WCETs of the loop iterations. In this case, the
WCET of the steps (F), (H) and (J) is WCTT-driven. Therefore, we have to take the
maximum of the corresponding code parts and the WCTTs: At step (F), the first flit
is sent after WCTT(1, 1) + 27 + 18 cycles and the last one (c − 1) · (18 + 18) cycles
later. Afterwards, the next flit will be sent at step (H) after 18 + 27 + 36 + 18 cycles.
This flit transfer at step (H) cannot start when the flits from step (F) are still on their
way. Thus, we have to take the maximum of the code execution time and flit transfer
of all flits transmitted at step (F) as shown in WCETTreeBcast

TimeFtoH (Formula 5.12). When
there are only 2 flits to send, steps (G) and (H) are not executed, but the term can
still include the time at the beginning of step (H) (36+ 18 cycles), because it is longer
than 28 + 18 cycles at step (J). Then, step (F) directly integrates with step (J).

WCETTreeBcast
TimeFtoH = max((c − 1) · (18 + 18) + 18 + 27 + 36 + 18, WCTT(1, c)) (5.12)

From step (H) to step (J), we have a similar situation. When code execution is
faster than flit transmission, the WCET is WCTT-driven – we have to wait until the
flit transfers are finished. For assembling the formula, we will first consider that 1
flit is sent at step (H) (f = 3) and then extend our result to more than 1 flit (f > 3).

The first flit can be sent after 36 + 18 cycles at step (H). Then, it takes (c − 1) ·
(18 + 12) cycles to send the flits, afterwards there remain 12 + 16 cycles at step (H)

11Thereby, 18 cycles are the first part of the 30 cycle sending block as described above. Thus, we have
respected the time for the flit to be sent to the first child. Flits to the other children are represented
by the (c − 1) · 30 block. At this multiplication, we have included −1 because the flit sent to the
first child was already considered at the 18 cycles.

73

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

and 28 + 18 cycles at step (J) before the last flit is to be sent. At WCETTreeBcast
TimeFtoH, we

already respected the 36 + 18 cycles at the beginning of step (H). The remainder
works the same way as there: We need the maximum of the flit transfer of all flits
transmitted at step (H) and the code execution time till the next flit transfer. Thus,
we assemble formula WCETTreeBcast

TimeHtoJ1 (Formula 5.13).

WCETTreeBcast
TimeHtoJ1 = max(WCTT(1, c), (c − 1) · (18 + 12) + 12 + 16 + 28 + 18)

(5.13)

When we have more than 1 flit at step (H) (f > 3), the WCTT in WCETTreeBcast
TimeHtoJ1

will have to be extended to WCTT(f − 2, c) and the second part has to be multiplied
with the number of flits at step (H). However, we have to adapt the end of the term:
28 + 18 represents the beginning of step (J), which only has to be included once.
Furthermore, we have to include the beginning of step (H) with 36 + 18 cycles for
all further iterations. Therefore, we combine both by including 36 + 18 cycles for
all iterations. This leads to a small overestimation for the last iteration when the
beginning of step (J) is executed instead of the beginning of step (H). However, we
accept this overestimation of 36 − 28 = 8 cycles to keep our formula manageable.
Thus, we get WCETTreeBcast

TimeHtoJX in Formula 5.14 for step (H).

WCETTreeBcast
TimeHtoJX = max(WCTT(f − 2, c),

(f − 2) · (c − 1) · [(18 + 12) + 12 + 16 + 36 + 18]) (5.14)

The first part of step (J) (28 + 18 cycles) was already considered in WCETTreeBcast
TimeHtoJX.

When we have less than 2 flits, it may be represented by 36 + 18 in WCETTreeBcast
TimeFtoH.

However, when only 1 flit is sent, we have to include it again, because then
WCETTreeBcast

TimeFtoH and WCETTreeBcast
TimeHtoJX will not be utilized. This is done via the term

max(sign(2− f), 0) · (28+ 18). For the rest of step (J), we have to take the maximum
of the WCTT and the code execution like in WCETTreeBcast

TimeFtoH and WCETTreeBcast
TimeHtoJX. The

result is illustrated in WCETTreeBcast
TimeJtoEnd in Formula 5.15. Because no further flit trans-

fer follows, we have to add the final 88 cycles at step (K) to the WCTT part of the
max term.

WCETTreeBcast
TimeJtoEnd = max(sign(2 − f), 0) · (28 + 18)

+ max(WCTT(1, c) + 88, (c − 1) · 30 + max(12 + 86, WCTT(1, c) + 88)) (5.15)

We see that the first part of the second max term WCTT(1, c) + 88 is included in
the second part of the same max term. Therefore, the second part of the max term
will always be the larger term and we can ignore the first part and only respect

74

5.8. Evaluation: Worst-Case Performance

the second part. Altogether, we can adapt WCETTreeBcast
Multicast1Level−1 from Formula 5.11

integrating WCETTreeBcast
TimeFtoH from Formula 5.12, WCETTreeBcast

TimeHtoJX from Formula 5.14 and
WCETTreeBcast

TimeJtoEnd from Formula 5.15 and get WCETTreeBcast
Multicast1Level−2 in Formula 5.16.

WCETTreeBcast
Multicast1Level−2 =

=11 + 18 + (c − 1) · 30

+ WCTT(1, 1)

+ max(sign(f − 1), 0) · (27 + 18 + max((c − 1) · 36 + 99, WCTT(1, c)))

+ max(sign(f − 2), 0) · max(WCTT(f − 2, c), (f − 2) · ((c − 1) · 30 + 82))

+ max(sign(2 − f), 0) · (28 + 18)

+ (c − 1) · 30 + max(12 + 86, WCTT(1, c) + 88) (5.16)

When having several intermediate levels, the same considerations as at the collect
ready part hold: The worst-case path is already covered with the first level of
intermediate nodes as included in WCETTreeBcast

Multicast1Level−2 (Formula 5.16). We now
have to extend it with the time it takes for more intermediate layers to receive and
forward flits. This is covered with the WCET of steps (F), (H) and (J) (now without
the final 86/88 cycle blocks, because we are only interested in the point in time
when the last flit is sent) for each intermediate layer again. When integrating these
numbers in Formula 5.16 and summarizing some parts, we get the new Formula 5.17.

WCETTreeBcast
MulticastXLevels =

=11 + 18 + (c − 1) · 30

+ WCTT(1, 1)

+ 28 + 18 + (l + 1) · max(sign(f − 1), 0) · max(c · 36 + 63, WCTT(1, c))

+ (l + 1) · max(sign(f − 2), 0) · max(WCTT(f − 2, c), (f − 2) · (c · 30 + 52))

+ (l + 1) · (c · 30 − 30 + max(10, WCTT(1, c))) + 88 (5.17)

Finally, WCETTreeBcast
CollectReady from Formula 5.10 and WCETTreeBcast

MulticastXLevels from For-
mula 5.17 have to be added to get the total WCET estimate WCETTreeBcast

Total in For-
mula 5.18.

75

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

WCETTreeBcast
Total = WCETTreeBcast

CollectReady + WCETTreeBcast
MulticastXLevels =

=765 + 72 · log2(N) + c · 188 + max(66, WCTT(1, 1)) + l · (c · 94 − 41)

+ (l + 2) · WCTT(1, 1)

+ (l + 1) · max(sign(f − 1), 0) · max(c · 36 + 63, WCTT(1, c))

+ (l + 1) · max(sign(f − 2), 0) · max(WCTT(f − 2, c), (f − 2) · (c · 30 + 52))

+ (l + 1) · max(10, WCTT(1, c)) (5.18)

5.8.2. Comparison of WCET Estimates

In this section, we compare the WCET estimates of the different implementations
of MPI_Bcast from the last Subsection 5.8.1. For this, we combine them with the
schedules 1:1, A:A and 1:A. Furthermore, we consider a simple implementation
like it was described in Section 3.6. At this implementation, the root node iterates
over all flits to be sent (outer loop) and participating nodes (inner loop). An imple-
mentation working this way was already analyzed by Bürger [Bür19]. His result is
WCETSimpleBcast

Total in Formula 5.19. In this formula, f is the number of flits to be sent
to χ nodes.

WCETSimpleBcast
Total =max(f · (3 + χ · 52) + WCTT(1, 1), WCTT(f , χ − 1) + 120)

+ 76 + 41 · χ + WCTT(1, 1) (5.19)

Thereby, we consider an RC/MC processor with 4x4 = 16 nodes, 8x8 = 64 nodes
and 16x16 = 256 nodes. We evaluate how long it takes to broadcast/multicast
varying numbers of flits to different parts of the chip. For communication between
the nodes, we compare:

1. WCETTreeBcast
Total (Formula 5.18) configured as binary tree (c = 2), which is the

most efficient way to broadcast/multicast flits through the NoC via the original
1:A schedule without hardware extensions [SFMU18].

2. WCETHwBcast
Total (Formula 5.3) running on our extended 1:A schedule with hard-

ware support for multicasts and broadcasts.

3. WCETSimpleBcast
Total (Formula 5.19) utilizing the generic schedules 1:1, A:A and

the original 1:A schedule without hardware extensions.

A tree-based algorithm makes only sense in combination with the 1:A schedule,
because at the A:A schedule flits to different communication partners can all be sent
in the same period and at the 1:1 schedule things are more complicated: Because
of the condition that each node can receive at most one flit each period, ready flits

76

5.8. Evaluation: Worst-Case Performance

Flits

C
yc

le
s

0

5000

10000

15000

2 4 6 8 10 12 14 16

A:A 1:A 1:1 1:A+Tree 1:A+Hw Ext.

(a) Broadcast in a 4x4 node NoC

Flits

C
yc

le
s

0

20000

40000

60000

80000

2 4 6 8 10 12 14 16

A:A 1:A 1:1 1:A+Tree 1:A+Hw Ext.

(b) Broadcast in a 8x8 node NoC

Flits

C
yc

le
s

[x
10

00
]

0

250

500

750

1000

2 4 6 8 10 12 14 16

A:A 1:A 1:1 1:A+Tree 1:A+Hw Ext.

(c) Broadcast in a 16x16 node NoC

Figure 5.6.: WCET estimates for broadcasts in NoCs with 4x4, 8x8 and 16x16 nodes.

have to be sent via a dedicated ready NoC each time the communication partner
changes. Thus, it is more efficient to utilize the short periods of the 1:1 schedule to
send the data flits directly to all participating nodes.

Figure 5.6 displays results for broadcasts in 4x4 (a), 8x8 (b) and 16x16 (c) node
NoCs. In all cases, our hardware supported broadcast operation (called 1:A+Hw Ext.
in the figures) has a WCET estimate far below the other WCET estimates. At our
benchmarks, we did not utilize the bnar instruction, which would save a few cycles
when checking the ready states. However, we decided to carry out our evaluation
without bnar, because its hardware costs were considered to be quite expensive in
Subsection 5.7.2. Since our results still convince without bnar, it may be cut out to
decrease hardware costs.

Our hardware supported broadcast operation is followed by the binary tree exe-
cuted on the original 1:A schedule (1:A+Tree), which scales better than the simple
broadcast operation (independent from the utilized schedule). At the simple broad-
cast operation, it can be noticed that the 1:1 and A:A schedules always have similar
WCET estimates. For the broadcast operation in a 4x4 NoC (Figure 5.6a), the same
holds for the simple broadcast operation combined with the original 1:A schedule.
This is because in these cases the WCET of the simple broadcast operation is driven
by the program code, i.e. we cannot use the full capacity of the NoC due to waiting

77

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

Flits

C
yc

le
s

0

1000

2000

3000

4000

2 4 6 8 10 12 14 16

A:A 1:A 1:1 1:A+Tree 1:A+Hw Ext.

(a) Multicast to 4 of 16 nodes

Flits

C
yc

le
s

0

2000

4000

6000

8000

2 4 6 8 10 12 14 16

A:A 1:A 1:1 1:A+Tree 1:A+Hw Ext.

(b) Multicast to 8 of 64 nodes

Flits

C
yc

le
s

[x
10

00
]

0

100

200

300

2 4 6 8 10 12 14 16

A:A 1:A 1:1 1:A+Tree 1:A+Hw Ext.

(c) Multicast to 64 of 256 nodes

Figure 5.7.: WCET estimates for multicasts in NoCs with 4x4 and 16x16 nodes.

for the execution of the next snd instruction. For the 1:1 and A:A schedules this
stays the case in all scenarios. However, at the 1:A schedule, the WCTTs increase
fast when the NoC size grows. Then, the WCET of the simple broadcast operation
combined with the original 1:A schedule is driven by the WCTT as can be seen at
the 8x8 and 16x16 node NoCs (Figures 5.6b and 5.6c).

At the WCET estimates for multicasts displayed in Figure 5.7, our hardware sup-
ported multicast remains also below all other multicast implementations. However,
the binary tree does not always perform second-best for multicasts to 4 or 8 nodes
in a 4x4 node NoC as we see in Figures 5.7a and 5.7b (par at 12 flits for 16 nodes and
6 flits for 64 nodes). This is because the tree needs some time to "warm up". Thus,
trees are paying off especially when sending messages to a high number of nodes or
sending a lot of flits. Like at the WCET estimates for broadcasting flits to all nodes
in Figure 5.6, the WCET estimate of the simple broadcast operation is also driven by
the code to be executed at the multicast operation. Only when employing the 1:A
schedule and increasing the number of nodes, it is driven by the WCTT, as can be
seen in Figure 5.7c.

78

5.8. Evaluation: Worst-Case Performance

5.8.3. Theoretical Comparison

The WCET analysis in Subsection 5.8.1 is performed with compiler optimizations
disabled (compiler optimization level -O0) and may be improved. Moreover, at some
parts of the comparison in the last Subsection 5.8.2, we already noticed that WCETs
may be code-driven, meaning that the NoC is not fully utilized. Therefore, we
carry out a theoretical comparison in this section to see the impact of our hardware
extension when code would be optimized in an optimal way. For this, we consider
only transportation times and assume code execution times to be zero.

Table 5.5.: How large is the WCTT for flit transfer for a broadcast/multicast oper-
ation with f flits to be transmitted to χ receiver nodes in a NoC with a
dimension of n?

schedule ready transm. data transmission
One-to-One (1:1) 1 period 1:A χ · f periods 1:1

= n2 + 2n = n · χ · f + 2n
All-to-All (A:A) 1 period A:A f periods A:A

=
(︂

n2(n−1)
2 + 2

)︂
=

(︂
n2(n−1)

2 + 2
)︂
· f + n2

2 + 2n

+ n2

2 + 2n
One-to-All (1:A) 1 period 1:A f · (⌈log2 (χ + 1)⌉ − 1) · 2 periods 1:A

with = n2 + 2n = n2 · f · (⌈log2 (χ + 1)⌉ − 1) · 2 + 2n
binary tree

One-to-All (1:A) 1 period 1:A f periods 1:A
with broadcast/ = n2 + 2n = n2 f + 2n

multicast extension

Table 5.5 summarizes how long ready and data transmission take in the different
schedules. In the first line of each schedule, it is stated how many periods are needed
to transmit f flits to χ receiver nodes in a NoC with a dimension of n. Then, in the
second line, the corresponding formula is given how many cycles are needed for
transmission. Most of these formulas were already introduced in Subsection 3.2.2.

When employing the 1:1 schedule, a dedicated ready NoC is necessary, because
in the 1:1 schedule there are no free time slots for ready coordination as described
in Chapter 4. For small NoC sizes, a ring is sufficient, but since a ring does not scale
well, a 2D NoC is better. Walter investigated how the 1:1 schedule can be utilized in
an optimal way in his master’s thesis [Wal19] and comes to the conclusion that the
ready NoC should use the 1:A schedule. Therefore, transmission times in the 1:1
schedule require the 1:A schedule for ready synchronization, while the 1:1 schedule
is employed for data transmission. For the latter, data flits are sent out in a for loop,
iterating over flits and receiver nodes.

79

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

At the A:A schedule, we assume that each flit can be sent out to all nodes within
one period. Therefore, one period of the A:A schedule is sufficient for ready syn-
chronization and f periods for the transmission of all data flits.

We assume one period when transmitting ready flits via the 1:A schedule with
binary tree: All nodes directly tell the root node that they are ready to receive data.
Data transmission in the binary tree takes ⌈log2 (χ + 1)⌉− 1 periods for each flit12. A
binary tree is the most efficient way to distribute data in a real-time NoC [SFMU18].

Finally, we consider the 1:A schedule with our hardware broadcast/multicast
extension. Ready synchronization can be carried out in one single period. The data
transmission time is now very short: Instead of several periods to transmit each flit
through the NoC, only f periods of the 1:A schedule are required to send all data
flits to all receivers.

Figure 5.8 visualizes the results of our theoretical comparison: It shows multicasts
to varying numbers of receiver nodes in a 256 node NoC as well as multicasts in
NoCs with 16 and 64 nodes.

The first Figure 5.8a illustrates a multicast to 8 of 256 nodes. It can be seen that the
A:A schedule needs the most cycles to distribute data, followed by the 1:A schedule
with binary tree. 1:A with hardware-supported broadcast/multicast is a lot faster,
but outperformed by the 1:1 schedule. When a multicast is sent to less than n nodes,
then 1:1 is always better than our hardware extended 1:A schedule. This can be
derived from the admission times from Subsection 3.2.2: For a multicast utilizing the
1:1 schedule, the admission time is n · χ · f , while it is n2 · 1 · f for the 1:A schedule
with broadcast/multicast hardware extension (χ = 1 because only 1 multicast flit
is to be sent out to reach all receivers). When χ < n, the admission time for the
1:1 schedule is smaller than that of 1:A with hardware extensions. At χ = n, both
schedules coincide and for χ > n, 1:A with hardware supported multicast is faster,
because it remains constant.

The matching of the 1:1 schedule and the 1:A schedule with hardware supported
multicast can also be recognized in Figure 5.8b, where a multicast is sent to exactly n
(here 16) nodes. Here, the graph for the 1:A schedule with hardware-supported
broadcast/multicast overlaps with the 1:1 schedule, which is why only the 1:1
schedule can be seen. Both schedules need exactly the same amount of cycles for
data transmission. The A:A schedule is stable, because it is independent of the
number of receiver nodes χ. However, the 1:A schedule with binary tree now
partially overlaps with the A:A schedule, because the number of periods needed
increases quite fast with the number of multicast receivers: For 8 receivers, the tree
has a depth of 3 resulting in up to 6 periods, for 16 receivers the depth is 4, resulting
in up to 8 periods. All data flits have to be propagated along the tree, needing 2

12The number of periods was explained in Section 5.1.

80

5.8. Evaluation: Worst-Case Performance

Flits

C
yc

le
s

0

10000

20000

30000

40000

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Tree

(a) Multicast to 8 of 256 nodes

Flits

C
yc

le
s

0

10000

20000

30000

40000

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Tree

(b) Multicast to 16 of 256 nodes

Flits

C
yc

le
s

5000

15000

25000

35000

45000

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Tree

(c) Multicast to 32 of 256 nodes

Flits

C
yc

le
s

0

15000

30000

45000

60000

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Tree

(d) Multicast to 128 of 256 nodes

Flits

C
yc

le
s

0

15000

30000

45000

60000

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Tree

(e) Multicast to 192 of 256 nodes

Flits

C
yc

le
s

0

17500

35000

52500

70000

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Tree

(f) Broadcast to 256 nodes

Flits

C
yc

le
s

0

350

700

1050

1400

1750

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Tree

(g) Multicast to 9 of 16 nodes

Flits

C
yc

le
s

0

2750

5500

8250

11000

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Tree

(h) Multicast to 35 of 64 nodes

Figure 5.8.: Multicast/broadcast in a NoC with 256 nodes and multicast in
16/64 node NoCs.

81

5. Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All

periods to arrive at the next level (the first period for the left child in the binary tree,
the second period for the right child).

At the next Figure 5.8c, the 1:A schedule with binary tree passed the A:A schedule
for f > 3. Both cycle counts of the 1:1 schedule and the 1:A with binary tree schedule
steadily increase. In Figure 5.8d, the 1:1 schedule also passes the A:A schedule: It is
faster than the A:A schedule when up to 15 flits are multicasted and slower for more
flits. Afterwards, the 1:1 and 1:A schedule with binary tree go on to increase, while
the other two schedules A:A and 1:A with multicast hardware extension remain at
their positions, which is illustrated in Figure 5.8e.

Finally, we get the situation in Figure 5.8f, which presents a broadcast to 256 nodes:
Although the 1:A schedule with binary tree never performed well in this theoretical
comparison, it is on par with the 1:1 schedule, which was the best schedule for small
numbers of receiver nodes. Both are outperformed by the A:A schedule as well as
the 1:A schedule with hardware-supported broadcast/multicast, which remained at
a very low level throughout all numbers of receivers.

After having a very close look on the schedule behavior with 256 nodes, we only
consider two figures for configurations with 16 and 64 node NoCs. Basically these
configurations have the same behavior like the 256 node NoC with a break-even
point of the extended 1:A schedule at n receiver nodes (4 in a 16 node NoC and 8 for
64 nodes). In Figure 5.8g, a multicast is sent to 9 nodes in a 4x4=16 node NoC. Here
the 1:1 schedule almost overtook the A:A schedule: 1:1 is only faster for one and
two flits. It started to overtake the A:A schedule at χ = 7: There, 1:1 was faster than
A:A for up to 13 receivers. Altogether, the 1:A schedule with binary tree performs
worst, while the 1:A schedule with hardware-supported multicast performs best.
Figure 5.8h illustrates a similar situation for 35 receiver nodes in a 8x8=64 node NoC.
Here, the 1:1 schedule is faster than the A:A schedule for small flit numbers (f ≤ 4),
but is slower for large flit numbers (f ≥ 5).

From the view of the theoretic comparison, our 1:A schedule with hardware-
supported broadcast/multicast always performs best except when a multicast is
sent to very few nodes (less than n). Only in these cases, the 1:1 schedule is the
better choice.

5.9. Conclusion

In this chapter, we presented the hardware broadcast/multicast extension to im-
prove the 1:A schedule. It exploits reserved TDM slots of the 1:A schedule to
broadcast flits to all nodes within one period. Thereby, flits are copied while travel-
ling through the NoC. We integrated the ability in the nodes to check if a broadcast
flit comes from a desired sender and count them. This enables us to realize multicast.
For controlling our hardware broadcast/multicast extension, we added four new

82

5.9. Conclusion

assembly instructions: A broadcast/multicast specific ready and send instruction
each and two status branches. Our hardware broadcast/multicast extension outper-
forms all other approaches in the worst-case and scales very well for increasing node
numbers. It comes at the cost of around 10% more ALMs and 5% more registers.
The hardware costs may be reduced by cutting out the second status branch, which
has negligible impact on (worst-case) performance.

83

6
Hardware Barrier Extension

to Improve Schedule One-to-All

Abstract. In parallel programs following the BSP model, barriers are

a crucial coordination operation. They are required at the end of each

superstep to separate the communication phase of a superstep and the be-

gin of the next superstep, which starts with local computation. However,

software implementations of barriers impose a lot of communication and

coordination overhead. Therefore, our idea is to implement barriers in

hardware. We employ the hardware-supported broadcast/multicast op-

eration presented in the previous chapter to realize hardware-supported

barriers.

6.1. Introduction

Barriers are an essential coordination operation in parallel programs, especially
when considering BSP programs. Therefore, it is highly desirable to have an efficient
implementation for them. In this regard, the Bruck Algorithm [BHK+97] is current
state-of-the-art when realizing them in software for real-time systems [SFMU18].
Thereby, a node exchanges its knowledge about other nodes in several iterations
with other nodes. By clever selection of communication partners, a node doubles its
knowledge about other nodes every iteration. Thus, it only takes ⌈log2χ⌉ periods of
a schedule for a node to know that χ participating nodes have arrived at a barrier.

85

6. Hardware Barrier Extension to Improve Schedule One-to-All

Furthermore, a separation into distinct phases for collecting ready flits and sending
out data (barrier release information) like in the previous Chapter 5 is not necessary
anymore. However, this still means that realizing a barrier requires several periods
of the 1:A schedule until all participating nodes can continue program execution.

An alternative would be to implement barriers with the hardware broadcast/
multicast extension presented in the previous Chapter 5. This would work with all
participating nodes sending a ready flit to the coordinator node, which sends out a
mcst flit as soon as all participating nodes have arrived. However, this leads to prob-
lems when several barriers (with different participants) are coordinated by the same
coordinator node, because multicasts are internally implemented as broadcasts.1

Thus, there currently does not exist a safe way to distinguish several multicasts
(with different receiver nodes) from the same sender node as already described
in Section 5.4, where we already recommended to separate those multicasts with
barriers.

To overcome this problem, we now extend the hardware-supported broadcast/
multicast operation from the previous chapter to a hardware-supported barrier
operation. Our basic idea is to have a dedicated barrier control unit (BCU), which can
be notified by all participating nodes when they have arrived at a barrier. When
all participating nodes have arrived, a broadcast/multicast flit as implemented in
Chapter 5 is sent out to inform the nodes that they can now continue their program
execution. Thereby, our focus is on high efficiency providing low timing bounds
and low hardware effort.

The remainder is structured as follows: In the next Section 6.2, related work is
presented. Afterwards, we describe the concept and implementation considerations
of hardware-supported barriers: In Section 6.3 for global barriers and in Section 6.4
for non-global barriers. The presented techniques are implemented in Section 6.5
and the programming model is illustrated in Section 6.6. After examining hardware
costs in Section 6.7, the evaluation takes place in Section 6.8. Finally, the results are
concluded in Section 6.9.

6.2. Related Work

Having hardware support for barriers is not a new concept. It is well researched in
the field of high-performance systems and supercomputers. However, no literature
was found on hardware barriers taking real-time aspects into account.

The IBM BlueGene/L [ABC+05] supercomputer employs several NoCs, each

1A software based solution for this would work like software ready synchronization (see Section 4.4)
utilizing the payload of multicast flits to identify barriers. However, due to the experiences made
with software ready synchronization, we will solve this in hardware in Subsection 6.4.2.

86

6.2. Related Work

with a dedicated purpose. It implements a global interrupt network, which realizes
hardware barriers for 32, 128, 512 and multiples of 512 nodes. Barriers for other
node numbers may be implemented as special case of MPI_Allreduce utilizing the
collective network at which each node injects some message into the network and
waits for the response from the root node [AHA+05]. Altogether, the BlueGene/L
implements a lot of communication capabilities, but at the cost of dedicated NoCs
for each of them, which means improved hardware cost, energy consumption and
coordination effort.

Another approach with a dedicated NoC comes from Abellán et al. [AFA10], who
developed a hardware barrier based on the work of Krishna et al. [KKC+08]. They
employ a many-core with a 2D-mesh NoC, where G-Lines are used to build up an
additional network to carry out barrier synchronizations. Thereby, four cycles are
required to carry out synchronization once all nodes have arrived at the barrier.
However, their approach only works for barriers for the complete network, no
barriers for subsets are possible.

Sartori and Kumar suggest three barrier implementations that are hybrids of
software and dedicated hardware barriers [SK10]: Their first idea is a barrier network
organized as virtual binary tree. This tree structure is stored in the NoC routers. For
relieving barrier coordination effort from the PE, NoC routers are further extended
with a state machine. It stores barrier notifications from the node where it is installed
as well as from its children. When a node and its children have arrived at the
barrier, this information is propagated upwards the tree to the parent node. This
propagation continues until the root node is reached. Then, the root node propagates
a barrier release notification downwards the tree. This way, the PE only has to deal
with its own barrier arrival and release, the rest is done by the extended NoC routers.

Second, Sartori and Kumar improve the performance of their barrier tree by
adding barrier bolstering [SK10]. This means to add shortcuts in the form of dedicated
links between nodes to reduce the critical path of the barrier tree. For example,
when the critical path in the barrier tree has a length of three hops, a dedicated link
from the deepest node to the root node may be added to reduce the critical path to a
length of two hops. This is just a performance improvement for cases where tasks
can be mapped to nodes where these shortcuts can be utilized. In the worst-case,
task mapping is not possible in this way and the performance is the same as for a
platform without barrier bolstering. Moreover, the shortcuts may lead to long links,
especially when having many nodes. This may result in increased latencies.

The motivation for the third idea of Sartori and Kumar [SK10] is that virtual links
in virtual trees have a short distance, but on the physical layer a barrier notification
may need to take multiple hops to take one virtual link. Thus, they suggest the
use of express virtual channels as introduced by Kumar et al. [KPKJ07]. Thereby, all
intermediate routers are spanned and the barrier notification only has to be routed

87

6. Hardware Barrier Extension to Improve Schedule One-to-All

once although it takes several hops at the same time. However, this comes at the cost
of increased router complexity and degradation of other network traffic as express
virtual channels do not allow any other communication on intermediate routers.

Oh et al. [OPZ11] introduce TLSync, a hardware barrier utilizing the high fre-
quency band of on-chip radio frequency transmission lines. All participating nodes
send a "tone" at a barrier specific frequency as long as they have not arrived at the
barrier. As long as this "tone" can be detected, all finished nodes have to wait until
it disappears. When no "tone" is detected anymore, all nodes have arrived at the
barrier and can continue their program execution. This approach supports many
(tens) of barriers simultanously and is restricted to the high frequency band to leave
the other frequencies for normal data transmission. However, it works only on
architectures with on-chip radio frequency transmission lines and thus has to deal
with their latencies, disturbance variables etc.

In his master’s thesis, Walter implements hardware-barriers for the RC/MC
processor utilizing the 1:1 schedule [Wal19]. Because each node is allowed to receive
at most one flit per period, ready synchronization is done in a dedicated NoC,
the ready ring. It allows simple broadcasting of status messages (e.g. ready status).
Thereby, each node sends a status message each period. This status message is
utilized for barriers. All participating nodes broadcast that they have arrived at
a barrier and count how many barrier broadcasts they received. When they have
received as many broadcasts as there are participants, they know that all other
participating nodes have arrived at the barrier and they can now continue program
execution.

Another master’s thesis carried out by Auer [Aue18] investigated hybrid hard-/
software barriers for the 1:A schedule in the RC/MC processor. His idea is send
ready flits to a coordinating node and interpret them as barrier arrival flits. This
approach works well, we will use it for our evaluation. However, Auer focused
only on global barriers. He also tried to implement an automatic hardware-only
barrier, but it has quite a long delay due to high communication overhead. Thus, it
performs worse than his hybrid approach.

A fast and hardware-efficient way to synchronize a multiprocessor system with
a barrier register is described by Beckmann and Polychronopoulos [BP90]. We
combine their approach with our hardware-supported broadcast operation to realize
hardware-supported barriers on our platform, see details in Section 6.3, where we
also explain their idea. Furthermore, we extend the approach to provide non-global
barriers in Section 6.4.

88

6.3. Concept for Global Hardware Barriers

Figure 6.1.: Original single barrier register hardware as suggested by Beckmann and
Polychronopoulos [BP90]: When arriving at the barrier, each processor
stores 0 at its bit in the R register (1 otherwise). As soon as all pro-
cessors have arrived, this is detected by the Zero Detect Logic and a
broadcast is sent out via the BR register to inform all processors that they
can continue their program execution. Figure taken from [BP90].

6.3. Concept for Global Hardware Barriers

For our hardware-supported barrier operation, we implement a variation of the
Fast Barrier Synchronization Hardware from Beckmann and Polychronopoulos [BP90].
Their approach is illustrated in Figure 6.1. They realize a hardware barrier as regis-
ter R, where each processor contributes one bit: It is set to 1 while the corresponding
processor is working and reset to 0 when it has finished its work (and arrived at
the barrier). Then, each processor is waiting for the other processors to arrive at the
barrier. The register is connected to a zero detect logic, which checks if all bits are
zero. When they are, all processors have arrived at the barrier. Then, a barrier release
broadcast to all processors can be sent out via the single-bit register BR, so that they
can continue program execution.

Instead of the BR register and the additional broadcast signal, we employ our
hardware-supported broadcast operation as described in the previous Chapter 5.
There is no call to the mcst instruction, the barrier release broadcast operation is
directly initiated from the BCU to avoid wasting any time. At the same time as the
broadcast is carried out, the barrier is reset. In the remainder, we will refer to the

89

6. Hardware Barrier Extension to Improve Schedule One-to-All

R register as barrWaiting register. Furthermore, in our implementation we swap
the meaning of bits: 0 means that a node is working and 1 that it has arrived at the
barrier. Thus, our barrWaiting register is reset by resetting all bits to 0. After the
BCU released and resetted the barrier, it can immediately be reused for the next
coordination operation. A BCU in installed on each node. Therefore, it is possible to
have several barriers for different groups of nodes at the same time.

For exchanging information about barrier arrival and barrier release, flits have
to be sent between the coordinating node and participating nodes. Thereby, the
coordinating node is the one collecting all barrier arrival flits of a specific barrier and
initiating the final barrier release broadcast. The configuration of a barrier directly
takes place by the coordinating node (details follow in the remainder of this and the
next section). Thus, it is necessary that the coordinating node participates at each
barrier which is carried out at its BCU.

At the NoC schedule, it has to be considered that the node coordinating the barrier
has to wait one period until it can inject the next flit, because the send slot in the
current period is occupied by the barrier release broadcast flit from the BCU. All
nodes participating at the barrier have to wait for the barrier release broadcast flit
to arrive before they can continue their program execution. They receive it at the
end of the same period, which means that their next send operation can take place
at the following period in the best case. The node coordinating the barrier can
immediately continue its computations and send flits, because it does not have to
wait for the barrier release broadcast flit. Instead, it is notified via a local signal which
allows to continue program execution one cycle after barrier release. All other nodes
participating at a barrier can continue their program execution as soon as the barrier
release broadcast flit arrives.

Participation at barriers is usually implemented as one single call from the pro-
gram, e.g. pthread_barrier_wait at POSIX Threads [IG18] or MPI_Barrier at
MPI [Mes15]. Although these operations take place at a rather high level, we
originally intended to implement hardware supported barriers with one single
barrier assembly instruction. However, this would be a rather complex instruction
as it should first send a barrier arrival flit and afterwards wait for the barrier release
broadcast flit. Instead, a separation of arriving at a barrier and waiting for its release
is closer to the Reduced Instruction Set Computing (RISC) concept:

Arriving at a barrier is implemented by sending a flit to the coordinating node.
This could be realized with a specialized send instruction called brrav (barrier
arrival), see Table 6.1. Because brrav is a modified snd instruction raising an ex-
ception when the send buffer is full, bsf or bsnf has to be executed before executing
brrav. At the coordinating node, brrav has a different behavior: The barrier release
broadcast flit is put in the send buffer. Before it can be sent from there, a signal from
the BCU has to indicate that all nodes have arrived at the barrier.

90

6.4. Hardware Barriers for Subsets of Nodes

Waiting for the release of a barrier means to wait for the receipt of the correspond-
ing barrier release broadcast flit at the participating nodes. Following the PIMP status
branch concept, this could be implemented by an additional branch instruction
bbnr (branch if barrier not released), which checks if this flit was received.
Explicitly receiving the flit afterwards via rcvp (receive payload, see Section 3.4) is
not necessary, because it is processed by the dedicated BCU. Having two instructions
for handling barriers gives the software developer the opportunity to execute code
between arriving at a barrier and waiting for its release. However, we recommend
to use brrav and bbnr always consecutively to keep barriers compact and avoid
additional waiting times. As brrav already puts the barrier release multicast flit into
the send buffer, the waiting time might also be used to put the next flits there. Due
to the organization of the send buffer as FIFO buffer, they will all be sent out after
the barrier release.

Table 6.1.: Overview on our RISC-V instruction set extension for barriers.

source source immediate
mnemonic register 1 register 2 value function
brrav node uid arrive at barrier which is co-

ordinated by node and has
unique id uid

bbnr address branch to address when the
barrier where the node partic-
ipates via brrav has not yet
been released

cbrr part nodes configure the part of the
barrExpected register to
set/reset bits for given nodes

mbrr mode when the content of mode is
set (is non-zero), enter config-
uration mode (no barrier is re-
leased). When it is reset to 0,
leave configuration mode.

6.4. Hardware Barriers for Subsets of Nodes

We now extend the concept from the previous Section 6.3 to barriers for subsets
of all nodes in Subsection 6.4.1. Because multicasts are internally implemented as
broadcasts, we introduce the unique id to distinguish barrier release multicast flits
of consecutive barriers in Subsection 6.4.2. Finally, we illustrate the behavior and

91

6. Hardware Barrier Extension to Improve Schedule One-to-All

communication flow for a complete hardware barrier operation in Subsection 6.4.3.

6.4.1. Concept for non-global Barriers

Although the BSP model relies on global barriers, barriers for subsets of all nodes are
needed sometimes in parallel programs (cf. Figure 3.3 on page 17). Moreover, our
platform may execute several applications at the same time, where each application
is running on a dedicated group of nodes. Then we need barriers which only
coordinate one of these groups.

 1011
0000111100000000
1001 01101001 barrWaiting

barrExpected
10 11 12 13 14 150 1 2 3 4 5 6 7 8 9

Figure 6.2.: Hardware barrier registers barrExpected and barrWaiting: The bits set
to 1 in register barrExpected indicate which bits are currently respected
in register barrWaiting (i.e. which nodes participate at the current bar-
rier; each bit represents one node). When all of these bits are also set
to 1 in barrWaiting, all participating nodes have arrived at the barrier
and the barrier release multicast flit can be sent out. In this example, we
currently only wait for the node on position 5 to arrive, then the barrier
can be released.

To enable barriers for subsets of nodes, we need to define which nodes participate
at a barrier. Therefore, we introduce a second register barrExpected working
similar to the barrWaiting register. Its concept is illustrated in Figure 6.2. In both
registers barrWaiting and barrExpected each bit represents one node. For the
current barrier only the nodes selected in register barrExpected are respected in
register barrWaiting.2 When all bits set to 1 in barrExpected are also set to 1 in
barrWaiting, all participating nodes have arrived at the current barrier and can
be notified via a barrier release multicast flit that they can continue their program
execution. In contrast to the global barrier, only the bits of the participating nodes
are reset to 0 in the barrWaiting register while the barrier release multicast flit is sent
out.

For changing the contents in the barrExpected register, we add an additional
instruction cbrr (configure barrier) as described in Table 6.1. It sets/resets
the bits representing the nodes which (do not) participate at the barrier. Since
the number of bits in the registers barrWaiting and barrExpected matches with

2In barrWaiting 1 means that a node has arrived at a barrier and 0 that we still wait for it. In
barrExpected 1 means that we respect this node at the current barrier and 0 that we currently
ignore it.

92

6.4. Hardware Barriers for Subsets of Nodes

the number of nodes on the chip, there may be more than 64 bits to be set/reset.
Then, the contents of the barrExpected register cannot be changed at once, which
is the same situation as with bnra (branch if not ready array) in Section 5.5.
Thus, cbrr works the same way as bnra: When there are more than 64 nodes, the
corresponding block has to be specified as parameter (cf. Figure 5.2 on page 58).
Should there be up to 64 nodes, the block parameter always has to be zero. In the
case when there is not a multiple of 64 nodes on the chip, the bits not representing
nodes are generally ignored and treated like non-participants. An example would
be a 4x4 NoC with 16 nodes. Then, cbrr can only set up to 16 participants in part 0.

While changing the contents of the barrExpected register on many-core proces-
sors with more than 64 nodes, it could happen that barrWaiting and barrExpected
match although not intended and a barrier release multicast flit is sent out. Therefore,
a configuration mode has to be implemented, controlled by the new instruction mbrr
(mode of barrier). While the BCU is in configuration mode, no comparisons
between the registers barrWaiting and barrExpected take place and no barrier is
released. When the content in the source register of mbrr is non-zero, configuration
mode is entered and when it is zero, configuration mode is left.

To provide enough barriers, one BCU is installed at each node. Thus, there are
always N barriers which should be enough to coordinate one large or several smaller
distributed application(s) on a many-core chip. By installing two or more BCUs at
each node, even more barriers could be provided, but since each node may only
participate at one barrier at a time, one barrier at each node should be sufficient.

6.4.2. Distinction of Flits of Two Consecutive Barriers

The source node’s id is not sufficient to distinguish several barriers when several
barriers with different participants are coordinated by the same node3. When a node
coordinates two consecutive barriers and the groups of nodes participating at these
barriers are not identical, barrier release multicast flits might be interpreted in an
ambiguous way:

Figure 6.3 illustrates the situation how it is intended to work. There are four
nodes, half of them participating at the first barrier A and all are participating at
the second barrier B. Both barriers are coordinated by node 04. The corresponding
communication flow is visualized in Figure 6.4.

Nodes 0 and 1 send their barrier arrival flits to the BCU of node 0, which then
sends out a barrier release multicast flit. Next, all nodes send barrier arrival flits to the

3Restricting the software developer to have at most one hardware barrier on each node would be a
too strong limitation.

4For better illustration, the BCU in Figures 6.4 and 6.5 has its own column. However, although this
column makes the BCU look to be independent from the nodes, it belongs to node 0.

93

6. Hardware Barrier Extension to Improve Schedule One-to-All

A

B

Tim
e

0 1 2 3

Figure 6.3.: Intended barrier participation

Barrier

Node 0 Node 1 Node 2 Node 3
Control
Unit

arrival
arrival

release
release

arrival
arrival

arrival
arrival

release
release

release
release

Figure 6.4.: Intended barrier-related communication: First, nodes 0 and 1 arrive at
barrier A, which is then released. Second, all nodes arrive at barrier B,
which is finally released.

BCU of node 0. Another barrier release multicast flit is finally sent out.

Figure 6.5 shows the situation that node 2 finishes its local computation early:
Node 2 sends a barrier arrival flit to the BCU of node 0 before node 1 has arrived. The
arrival status is stored in the barrWaiting register and not considered for barrier A
due to the concept of the barrExpected register. After nodes 0 and 1 have signalized
their arrival at barrier A, the BCU sends out a barrier release multicast flit. However,
a multicast flit is internally implemented as a broadcast, which is only accepted
by the nodes waiting for a multicast flit from the intended sender. Because node 2
waits for a barrier release multicast flit from node 0, this barrier release multicast flit is
accepted by node 2 and is interpreted as release of barrier B there. As a result, node
2 continues its program execution too early.

94

6.4. Hardware Barriers for Subsets of Nodes

Node 0 Node 1 Node 2 Node 3

arrival

arrival

release
release

arrival
arrival

arrival

arrival

release

Barrier
Control
Unit

Figure 6.5.: Problem situation: Node 2 sends its barrier arrival flit too early. Because
of the internal implementation of multicast flits, the barrier release multi-
cast flit is then also received by node 2. As a result, node 2 continues its
program execution too early.

To overcome this problem, we introduce a unique id, which has to be set for each
barrier and is carried as payload of the barrier release multicast flit. Consequently, it
ensures that a barrier release multicast flit is accepted only at the nodes participating
at the current barrier. When arriving at a barrier via the brrav instruction, the node
coordinating the barrier stores the unique id as payload of the barrier release multicast
flit in the send buffer. On the receiver side, the unique id is implicitly stored in an
additional register awaitBarrID, when brrav is executed. The nodes participating
at a barrier compare the payload of each multicasted barrier release flit with the unique
id stored in their register awaitBarrID and will only accept the one with the correct
id. Choosing a unique id is up to the software developer. In an MPI implementation
it may be integrated in the communicator.

The unique id allows to clearly distinguish different barrier release multicast flits: It
enables to accept only the intended barrier release multicast flit. When coordinating
a barrier, intermixed receipt of barrier arrival flits is also no problem due to the
concept of the barrWaiting and barrExpected registers: All arriving barrier arrival
flits set the bit of the corresponding sender node in the barrWaiting register. The
coordinating node, where this BCU is installed, works off its different barriers in
a fixed order. Thereby, it utilizes the barrExpected register to only respect the
participating nodes in the barrWaiting register. Bits in the barrWaiting register
which belong to other than the participating nodes are ignored. Furthermore, the
1:A schedule makes no restriction on the flits arriving at a node. Thus, it is not
relevant if a node arrives at a barrier (too) early – barrier arrival flits can be handled

95

6. Hardware Barrier Extension to Improve Schedule One-to-All

at any time.

6.4.3. Example for Complete Barrier Operation

The complete barrier initialization and communication flow as well as the state of
the registers is visualized in Figure 6.6. In this example, there are only two nodes 0
and 1, where node 0 coordinates the barrier and node 1 participates at it. All further
participants would behave the same way as node 1. Both nodes possess a PE and a
BCU (besides other components which are omitted to keep the figure simple). In the
columns of the PEs only the executed barrier-related instructions are shown and in
the columns of the BCUs only the registers utilized by these nodes.

The figure is divided into three rows: In the first row Init only instructions
initializing the required registers are illustrated. Thereby, the instruction li t1,
0x214 loads a unique id 0x214 into register t1 and li t2, 0x3 prepares bits for the
barrExpected register.

Configuration instructions are shown in the second row Config. They only have
to be executed by the coordinating node. cbrr zero,t2 selects the participating
nodes in the barrExpected register. Should the NoC comprise more than 64 nodes,
several calls to cbrr are necessary to configure the different parts of barrExpected.
To avoid random matches between barrWaiting and barrExpected resulting in
unwanted barrier release flits, mbrr should be employed. It enters the configuration
mode before the cbrr calls and leaves it afterwards. Meanwhile, no comparison
between barrWaiting and barrExpected takes place.

The last row Arrival/Release contains barrier arrival and release operations and the
corresponding states of the registers. Before the instruction brrav can be executed,
it is checked if the send buffer has free slots via bsf self, because brrav puts a new
flit in it and would raise an exception when it is full. At the participating node 1,
brrav zero, t1 sends the barrier arrival flit5 to the barrWaiting register of node 0
and stores the unique id implicitly in the local awaitBarrID register. At the coordi-
nating node 0, the execution of brrav also puts a flit into the send buffer. However,
here it is a barrier release multicast flit6. Moreover, the coordinating nodes’ bit in the
barrWaiting register is also set. When the comparison of the barrExpected and
the barrWaiting registers indicates that all participating nodes have arrived and
the BCU is not in configuration mode7, the barrReleasePermission signal is set. It

5Internally, the messageType of a barrier arrival flit is called barrival, see details in Section 6.5 and
Appendix B.1.

6The messageType of a barrier release multicast flit is called barrelease and further explained in
Section 6.5 and Appendix B.1.

7A BCU is in configuration mode when barrConfig is 1. Then, no comparison between the
barrExpected and barrWaiting registers takes place. Configuration mode is entered and left
via the mbrr instruction, see Table 6.1.

96

6.4. Hardware Barriers for Subsets of Nodes

Processing Hardware

Node 1

Barrier
ComponentElement

Node 0

barrConfig

ti
m

e

cbrr zero, t2

barrExpected

...00011

brrav zero, t1

barrWaiting

...00001

li t1,0x214
li t1,0x214

brrav zero, t1

send buffer
0x214

ProcessingHardware
Barrier

Component Element

0x214

awaitBarrID

bbnr self

bbnr self

C
o
n
fi
g

In
it

A
rr

iv
a
l

(mbrr zero)

(mbrr t1)

li t2,0x3

1

barrConfig

0

barrelease

send buffer
0x214

barrivalbarrWaiting

...00011

barrExpected

...00011

compare

AND

barrConfig==0

barrReleasePerm.

1

 barr
Release

1
Router

send!

0x214

awaitBarrID

==

barrRelease

1

R
e
le

a
se

continue
program
execution

continue
program
execution

0x214

0x2
14

bar
riv

al

barrelease

bsf self

bsf self

Figure 6.6.: Complete barrier initialization and communication flow: Node 0 coor-
dinates the barrier, both nodes participate at it. Further participating
nodes would behave the same way as Node 1.

97

6. Hardware Barrier Extension to Improve Schedule One-to-All

tells the router to send out the barrier release multicast flit and sets the barrRelease
register. After the barrier release multicast flit has arrived at the participating node 1
and its payload was successfully compared to the awaitBarrID, the barrRelease
register is also set there. All nodes participating at a barrier (including the coordi-
nating node) check the status of the barrRelease register via the bbnr instruction.
When barrRelease is 0, the bbnr branch is taken (in our examples, it always jumps
to itself). Otherwise, when barrRelease is 1, the barrier is released and program
execution can continue. At the same time, barrRelease is reset to 0.

6.5. Hardware Implementation

In our hardware implementation, global barriers are implemented as special case of
barriers for subsets of nodes as described in Section 6.4 to have a consistent program-
ming model and behavior without too many distinctions. The actual implementation
was carried out and refined by Bitterlich and Unte [BU19].

All barrier-related communication fits into single flits. Their transfer takes place
via the 1:A NoC, which is also utilized for ready, mcst and data flits. For a clear
separation of concerns, we introduce two new messageTypes: barrival for barrier
arrival flits and barrelease for barrier release multicast flits. All flits with these
messageTypes are handled by the BCU, while all other flits are handled as before.
Flits of messageType barrival are sent from the participating nodes when executing
the brrav instruction. They indicate that a participating node has arrived at a barrier.
When a barrival flit arrives at the coordinating node, the node who sent the
barrival flit is marked as arrived in the barrWaiting register of the BCU. When the
coordinating node executes the brrav instruction, it puts a flit with the messageType
barrelease and the unique id as payload into the send buffer. Moreover, it sets
its own bit in the barrWaiting register. Because brrav is a variation of the snd
instruction, it raises an exception when the send buffer is full. Thus, the status of
the send buffer always has to be checked with the bsf or bsnf instruction before
executing the brrav instruction.

Figure 6.7 illustrates the BCU and how it is integrated in an RC/MC node. Like the
ready and hardware broadcast/multicast extension, the BCU is integrated in the ex-
ecute stage of the pipeline. The send logic has to support the two new messageTypes
barrival and barrelease (not seen in the figure) and is further extended with
the new signal barrReleasePermission, which connects the BCU with the router.
When a barrelease multicast flit is in the send buffer, it is only sent out when
the barrReleasePermission signal is set. As long as the barrReleasePermission
signal is not set and the barrelease flit is on the first position in the send buffer,
no flit is sent out. The rest of the router is not changed except supporting the
additional messageTypes. When flits are received, they are handled like before

98

6.5. Hardware Implementation

Core-local memory

Router

IF ID EX M WB

barrConfig

barrExpected

barrWaiting

awaitBarrID

co
m

p
a
re

AND

OR
==

barrRelease

[== 0]

barrReleasePermission

[barrival]

[barrelease][else]see
Fig. 5.3

BCU

SB

Figure 6.7.: Hardware structure and integration of the BCU in the node: When in-
coming flits have the messageType barrival or barrelease, they are
forwarded to the BCU. There, incoming barrival flits set the corre-
sponding bit of the sender node in the barrWaiting register or are
compared to the unique id stored in the awaitBarrID register, respec-
tively. When this comparison matches, the barrier is released. A barrier
coordinated by the current node is released when the content of the
barrExpected and barrWaiting registers match and the barrier is not
in configuration mode (set via the barrConfig register). Arriving flits
not having the messageType barrival or barrelease are handled like
before in one of the cases seen in Figure 5.3. Thick arrows indicate the
transport of several bits, while thin arrows represent only one bit.

except when they have one of the new messageTypes barrival or barrelease.
In these cases, they are handed over to the BCU. Besides the already described
signal barrReleasePermission to the router and the acceptance of barrival and
barrelease flits, the BCU is only connected to the execute stage – more precisely, it
is part of the execute stage to allow fast access to its registers.

Inside of the BCU, the registers barrExpected and barrWaiting work as de-
scribed in Subsection 6.4.1. They are connectd via a compare logic module. In the
same Subsection 6.4.1, the concept of the configuration mode was explained. It is im-
plemented via the register barrConfig. When a barrier is not in configuration mode
and both the barrExpected and barrWaiting registers match, the barrRelease-
Permission signal releases a barrier coordinated by the current node. The barrier
release is locally recognized via the barrRelease register. It is alternatively triggered

99

6. Hardware Barrier Extension to Improve Schedule One-to-All

when a barrelease multicast flit is received and its payload matches with the unique
id stored in the awaitBarrID register (see Subsection 6.4.2).

Table 6.2.: Encoding of barrier related instructions in our RISC-V instruction set
extension.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 100 00000 1011011 brrav
imm[12|10:5] 00000 00000 110 imm[4:1|11] 1111011 bbnr

0000000 rs2 rs1 111 00000 1011011 cbrr
0100000 00000 rs1 111 00000 1011011 mbrr

To control the BCU, the instructions described in Table 6.1 are used. Their encoding
is illustrated in Table 6.2. They allow direct access to the following registers: (i)
barrRelease via the bbnr instruction8, (ii) barrConfig via the mbrr instruction,
(iii) barrExpected via the cbrr instruction and (iv) awaitBarrID via the brrav
instruction (only for participating nodes). At the barrWaiting register, only the
nodes’ own bit can be directly accessed via the brrav instruction. All other bits are
set by the other nodes by sending a barrival flit to the BCU of the coordinating
node also via the brrav instruction. The bits in the barrWaiting register are reset
when the barrelease multicast flit is sent out (not further illustrated in Figure 6.7).
Thereby, only the bits set in the barrExpected register are respected. Due to the
generic implementation of our VHDL model, it is not ensured that not-existing
nodes cannot be configured via the cbrr instruction (e.g. a configuration of nodes
17–63 would be possible on a 16 node RC/MC processor).

As already described in the previous Section 6.4, the BCU internally works as
following: When the nodes set in the barrExpected register are also set in the
barrWaiting register (checked with the compare unit), all participants have ar-
rived at the current barrier. It has to be further checked that the BCU is not
in configuration mode. Only when all of these preconditions are fulfilled, the
barrReleasePermission signal is set. Then, the router is allowed to send out the
barrelease multicast flit which was put into the send buffer when the coordinating
node executed the brrav instruction. Always when the barrelease multicast flit
arrives at the other nodes, its payload is compared to the stored awaitBarrID to
ensure that only the barrelease multicast flit from the corresponding barrier is
accepted. When they match, the barrRelease register is set and the node can con-

8Like at bnr and the Ready Bit Array, the barrRelease signal is automatically cleared when it is
read by bbnr and was set before (i.e. when the PE gets the information that it can continue program
execution, barrRelease is automatically reset).

100

6.6. Programming model

tinue its program execution. The barrRelease register is also set when the barrier
coordinated by the local BCU is released.

After all participating nodes walked through a barrier, the barrier may be reused
without the need of re-configuration when the same nodes meet again. Should
the group of participating nodes change, the unique id has to be changed and the
barrier reconfigured. For the capability of the barrier to be reused, the register
barrExpected should remain unchanged, while the barrRelease register and the
corresponding bits in the barrWaiting register of the coordinating node need to
be reset. Both are generally reset automatically at all barriers: At the barrWaiting
register, the corresponding bits are reset when the barrier is released, i.e. when the
barrrival multicast flit is sent out. The barrRelease signal is reset when the bbnr
instruction gets the barrier release status and the PE knows that it can continue its
program execution. Actually, there is no need to clear the awaitBarrID register, but
it might be useful for easier debugging.

6.6. Programming model

Figure 6.6 already illustrated the communication flow when nodes process a barrier,
but also some instructions executed by the different nodes. The corresponding
perspective of the software developer is visualized in the Code examples 6.1 (partic-
ipating nodes) and 6.2 (coordinating node).

Code example 6.1 Code executed by the participating nodes
(Node 1 at example illustrated in Figure 6.6).

. . . # code executed before b a r r i e r
l i t1 , 0 x214 # i n i t : unique b a r r i e r id

w4sb : bs f w4sb # wait f o r send b u f f e r before sending f l i t
brrav zero , t1 # a r r i v e a t b a r r i e r with unique id 0x214 , . . .

. . . which i s coordinated by node 0
s e l f : bbnr zero , t1 , s e l f # busy wait ing f o r b a r r i e r r e l e a s e

. . . # code executed a f t e r b a r r i e r

At the participating nodes (Code example 6.1), only the unique id of the barrier
has to be specified (li) and sent to the coordinating node (brrav). Afterwards, the
branch instruction bbnr is utilized for busy waiting until the barrier is released. It
might also jump to some other code to be executed while waiting, which we usually
avoid to ensure good timing behavior (low WCET and good predictability) and keep
code examples simple.

Code example 6.2 representing coordinating nodes works the same way as Code
example 6.1 besides two additional instructions between li and bsf. This is due to
the node being participating and coordinating node at the same time. The additional

101

6. Hardware Barrier Extension to Improve Schedule One-to-All

Code example 6.2 Code executed by the coordinating node
(Node 0 at example illustrated in Figure 6.6).
brrav and bbnr are exactly the same as for participating nodes (Code example 6.1)

. . . # code executed before b a r r i e r
l i t1 , 0 x214 # i n i t : unique b a r r i e r id
l i t2 , 0x3 # i n i t : p a r t i c i p a t i n g nodes 0 and 1
cbrr zero , t2 # s t o r e p a r t i c i p a t i n g nodes in barrExpected

w4sb : bs f w4sb # wait f o r f r e e s l o t in send b u f f e r
brrav zero , t1 # a r r i v e a t b a r r i e r , s e t unique id 0 x214

(b a r r i e r i s coordinated at own HBC;
same c a l l as f o r p a r t i c i p a t i n g nodes)

s e l f : bbnr zero , t1 , s e l f # busy wait ing f o r b a r r i e r r e l e a s e
. . . # code executed a f t e r b a r r i e r

instructions are for barrier coordination: A second li instruction prepares the bits
to be written into the barrExpected register to select the participating nodes. The
barrExpected register is configured via the cbrr instruction. As Code example 6.2
is intended to work with up to 64 nodes, one single call to cbrr is sufficient. An
example with more than 64 nodes is illustrated later in Code example 6.3.

Code example 6.3 brings the code for participating and coordinating nodes to-
gether into one single function barrier, which can be called by any node. It is
tailored to work with 256 nodes, but might be adapted for larger architectures by
replacing the registers a2 to a5 with the address of an array which holds the informa-
tion which nodes participate. Before the function is called, the parameter registers
a0 to a5 are set for a global barrier with the coordinating node 0 and the unique id
0x214. At the beginning of the function barrier, a csrr and a branch are executed
to check if the current node is the coordinating node (for details on the csrs, see
Section 3.4). When it is, the PE jumps to the configuration code at cfg. Otherwise the
PE executes the following lines, where the code for arriving at a barrier is located.

Because the code for barrier arrival is almost the same as in Code example 6.1 (the
registers are changed due to the implementation as function and the jump label is
adapted), we now have a closer look on the code for the coordinating node: As the
unique id and the participating nodes are now passed as parameters, there is now only
one li instruction, which is used to address the different parts of the barrExpected
register9. Since the barrExpected register cannot be changed at once, but requires
several calls to the cbrr instruction, comparisons between the barrWaiting and
barrExpected registers are temporarily disabled via the mbrr instruction. Thereby,
it is sufficient to re-enable the comparison via mbrr zero before jumping to brav,

9The barrExpected register works the same way as the bnra instruction in Figure 5.2 on page 58.
Thus, its different parts have to be addressed with their number 0, 1, 2 or 3.

102

6.6. Programming model

because the barrier will not yet be released due to the coordinating node barrier
arrival taking place with the brrav instruction later. The rest of the function works
the same way as Code example 6.2, besides the jump from configuration code to
barrier arrival (at barv) and the ret instruction at the end, which was added due to
the implementation as function.

From the timing perspective, Code example 6.3 brings together all aspects of our
hardware-supported barrier to achieve a good WCET analyzability: All instructions
have a fixed latency, the only dynamic behavior is found in the branch instructions.
When executing the beq instruction after the csrr instruction, the branch delay
only has to be added for the coordinating node, while the participating nodes
can immediately proceed as bsf and brrav are already in the next pipeline stages.
Although the coordinating node has more code to execute, we optimized Code
example 6.3 for faster barrier arrival of the participating nodes, because the transport
of barrier arrival flits over the NoC lies on the worst-case path10. The number of
iterations of our new bbnr instruction is dependent how long the participating nodes
need to arrive at the barrier. This can be computed based on the NoC schedule and
the WCETs of the sequential code parts, see Section 3.1. Altogether, we have good
timing analyzability: Only the execution times of the instructions have to be added
and the waiting time for the participating nodes has to be integrated.

10Configuration code at cfg requires fixed twelve cycles (1 cycle per instruction and two cycles branch
delay), while flit transfer takes already 24 cycles in a 4x4 node 1:A NoC.

103

6. Hardware Barrier Extension to Improve Schedule One-to-All

Code example 6.3 Function barrier for 256 node NoCs. Here, it is called with
parameters for a global barrier with unique id 0x214 coordinated by node 0.

s e t _ p a r a m e t e r s _ f o r _ b a r r i e r :
g loba l b a r r i e r with coordinator node 0 and unique id 0 x214

l i a0 , 0 # i n i t : s e t coordinator node
l i a1 , 0 x214 # i n i t : unique b a r r i e r id
l i a2 , −1 # i n i t : a l l nodes should p a r t i c i p a t e
l i a3 , −1 # (−1: s e t a l l b i t s)
l i a4 , −1 #
l i a5 , −1 #
j a l b a r r i e r # c a l l func t ion b a r r i e r

. g l o b l b a r r i e r
b a r r i e r : # b a r r i e r funct ion f o r 256 nodes

expects coordinat ing node in a0 . . .
. . . unique id in a1 and . . .
. . . node s e l e c t i o n in a2 − a5

c s r r t0 , c id # get own core id
beq a0 , t0 , c fg # when node i s coordinat ion node . . .

. . . jump to code f o r c o n f i g u r a t i o n

b a r r i e r a r r i v a l code f o r p a r t i c i p a n t s inc luding coordinator node
barv : bs f barv # wait f o r f r e e s l o t in send b u f f e r

brrav a0 , a1 # a r r i v e a t b a r r i e r with unique id in a1
(coordinated by node in a0)

b a r r i e r r e l e a s e code f o r p a r t i c i p a n t s inc luding coordinator node
s e l f : bbnr a0 , a1 , s e l f # busy wait ing f o r b a r r i e r r e l e a s e

r e t # b a r r i e r re leased , continue prg . execut ion

c o n f i g u r a t i o n code only f o r coordinator node
cfg : l i t0 , 1 # i n i t : f o r addressing p a r t s of barrExpected

mbrr t0 # conf ig : enter c o n f i g u r a t i o n mode
(no comp . of barrWaiting and barrExpected)

cbrr zero , a2 # conf ig : s t o r e part . nodes in barrExpected #0
cbrr t0 , a3 # conf ig : s t o r e part . nodes in barrExpected #1
addi t0 , t0 , 1 # t0 should now address pt . 2 of barrExpected
cbrr t0 , a4 # conf ig : s t o r e part . nodes in barrExpected #2
addi t0 , t0 , 1 # t0 should now address pt . 3 of barrExpected
cbrr t0 , a5 # conf ig : s t o r e part . nodes in barrExpected #3
mbrr zero # conf ig : leave c o n f i g u r a t i o n mode
j barv # jump to code f o r a r r i v i n g at b a r r i e r

104

6.7. Hardware Costs

6.7. Hardware Costs

We now estimate the hardware costs of our implementation in Subsection 6.7.1 and
compare our expectations with the actual hardware costs in Subsection 6.7.2.

6.7.1. Expected Hardware Costs

As all RC/MC components, our hardware barrier extension is designed with the
goal of low additional hardware effort. At hardware level, the following extensions
have to be implemented (cf. Figure 6.7):

First, the new messageTypes barrival and barrelease require 1 additional bit
between the nodes. Altogether, three bits are required to support the messageTypes
none, data, ready, mcst, barrival and barrelease. An overview on them is
given in Appendix B.1. These messageTypes also have to be supported in the
decode and execute stages and the send buffer. Moreover, we require additional
circuitry to distinguish between these messageTypes at a receiver node and forward
the relevant data to the corresponding hardware components (BCU for barrival
and barrelease flits). Each node comprises a BCU with five additional registers:
barrConfig and barrRelease are one bit registers, awaitBarrID is 64 bits wide11

and the width of barrExpected and barrWaiting directly correlates with the num-
ber of nodes on the chip. Thereby, barrExpected and barrWaiting are coupled
tightly together to enable the comparison releasing the barrier. In Figure 6.7 we
illustrated this with the compare unit, which should contain an AND logic gate and
a comparator (when barrExpected AND barrWaiting == barrExpected then set
output bit of compare). It is followed by another AND logic gate, which additionally
takes the negation of barrConfig as input and sets the barrReleasePermission
signal when both inputs are set. The barrReleasePermission signal is one of two
ways to set the barrRelease register. Another way is when an arriving barrelease
multicast flit is successfully compared to the value in the awaitBarrID register
via a comparator. Both ways set one bit of the OR logic gate which controls the
barrRelease register. For setting bits in the barrWaiting register, a multiplexer is
required. Automatic reset of the barrWaiting register takes place via a XOR logic
gate (barrWaiting xor barrExpected). The registers barrExpected, barrConfig
and awaitBarrID are directly written by the execute stage.

Beyond that, the instructions from Tables 6.1 and 6.2 have to be implemented: As
suggested in Section 6.3, we provide a modified send instruction brrav (barrier
arrival), which behaves like the snd instruction with the following differences:
First, it sets the barrival messageType. Second, it stores the unique id in the
awaitBarrID register. At the coordinating node, it places a barrelease flit in the

1116 bits would also be enough, but we decided to have 64 bits, because we have a 64 bit architecture.

105

6. Hardware Barrier Extension to Improve Schedule One-to-All

send buffer, having the unique id as payload. Thereby, the barrelease flit behaves
like a mcst flit except having another type. Thus, it does not impose further over-
head at the routing in the NoC. Our additional branch instruction bbnr (branch if
barrier not released) works similar to the bnr instruction from Subsection 4.5.2
– instead of checking a bit in the Bit Array it checks the barrRelease register. The
remaining instructions cbrr (configure barrier) and mbrr (mode of barrier)
directly write to their corresponding registers barrExpected and barrConfig.

These extensions add up as following: Our additional messageTypes barrival
and barrelease require one bit and add to the other signals which connect nodes:
64 bit for data, 8+8 bit for sender + receiver information (in a 16x16 NoC), two bits for
the already existing messageTypes. Altogether, these are bit lines with a width of 82
bit and we add one bit, which is close to 1 %. For handling barrival and barrelease
flits, the decode and execute stages as well as the send buffer have to be extended
with the same costs. The additional register awaitBarrID is 64 bits wide, while the
width of the registers barrWaiting and barrExpected correlates with the number of
nodes on the chip, i.e. 1 bit for each node. To connect these registers, two comparators
and a AND logic module are required. Furthermore, one bit is needed each for
the barrRelease and barrConfig registers as well as the barrReleasePermission
signal. For connecting these registers and signals, we require another AND logic
module as well as an OR logic module. Furthermore, some multiplexers are needed (i)
to distinguish messageTypes and (ii) to set the corresponding bit in the barrWaiting
register. For resetting the barrWaiting register, a XOR logic gate is also required. The
complete BCU and its integration into the node was already illustrated in Figure 6.7.
For working together, our new instructions have to be integrated into the decode
and execute stages, which should only be minor changes.

When looking at the complete BCU and comparing it with the other extensions, it
should roughly cost the same as the broadcast/multicast extension.

6.7.2. Actual Hardware Costs

Bitterlich and Unte integrated the hardware supported barrier into the existing
VHDL model and estimated hardware costs as described in Section 3.5 [BU19].
Their result are around 130 ALMs and 220 registers per node (for an RC/MC pro-
cessor with 2x2 and 4x4 nodes). Compared with the hardware broadcast/multicast
extension, we need less than half of the ALMs, but 50% more registers. This may
come from reduced management effort (e.g. no need to count flits at the barrier),
but more information to store: Especially awaitBarrID and the two new hardware
bit arrays require a lot of registers. The total cost of a node including all of our
hardware extensions is 2615 ALMs and 2929 registers on a 2x2 RC/MC processor or
3350 ALMs and 3777 registers for 4x4 nodes. Thus, the overhead of our hardware
barrier extension is around 4-5% at the ALMs and 6-7% at the registers. Since the

106

6.8. Evaluation: Worst-Case Performance

total size of a node increases with larger core numbers and the required ALMs and
registers remain very slow, the overhead imposed by our hardware barrier extension
decreases for larger node numbers.

6.8. Evaluation: Worst-Case Performance

For the evaluation, we carry out timing analyses for different implementations of
MPI_Barrier. In this operation, one node coordinates a barrier, where several nodes
participate. It is defined in the MPI standard [Mes15] and was already introduced in
Subsection 3.3.2. MPI_Barrier is a crucial operation in parallel programs, e.g. that
all participants wait until the initialization or some computation is finished before
further data exchange between nodes takes place.

In the next Subsection 6.8.1, we conduct timing analyses of different implemen-
tations of MPI_Barrier. Afterwards, we compare their worst-case performance in
Subsection 6.8.2. Because the timing analysis might have introduced pessimism and
overestimation, we assume optimal code optimization at the theoretical comparison
in Subsection 6.8.3.

6.8.1. Timing Analysis of Different MPI_Barrier Implementations

We first analyze our implementation of MPI_Barrier with hardware support as it
was elaborated in this chapter. Afterwards, an analysis for MPI_Barrier implement-
ing the Bruck Algorithm [BHK+97] takes place.

Timing Analysis of MPI_Barrier with Hardware Support

MPI_Barrier with hardware support works as illustrated in Figure 6.8 and described
in Table 6.3. Bascially, it follows the principles described in Subsection 6.4.3 and
already displayed in Figure 6.6. First, the root node has to configure its BCU. Then,
it arrives at the barrier. Thereby, the root node does not have to send a barrier arrival
flit via the NoC like the participant node(s) do. Instead, it directly tells its BCU that it
has arrived. When all nodes have arrived, the BCU sends out a barrier release flit and
all nodes can continue their program execution. We illustrated only one participant
node – all others behave exactly the same way and have the same timing.

For easier handling, the workflow of MPI_Barrier with hardware support may be
divided into two phases: First, we have barrier arrival at steps (A) to (E): Configuring
the BCU (only for the root node) and arriving at the barrier. Second, when all nodes
(including the root node) have arrived, we have barrier release at step (F). The WCTT
for barrier arrival is the maximum of the processing time of the root node (steps
(A), (D) and (E)) and the time the participant node(s) require to deliver their barrier
arrival flit at the BCU (steps (B) and (C)). For the phase of barrier release at step (F),

107

6. Hardware Barrier Extension to Improve Schedule One-to-All

root

A

participant

9
9

62

40

60 63 B

D

E

F

C

BCU
enter
config
mode

configure
barrier

leave
config
mode

arrive at
barrier

release
barrier

arrive at
barrier

Figure 6.8.: Workflow and timing behavior of MPI_Barrier with hardware support
as already illustrated in Figure 6.6. While the root node configures the
barrier, the participant node(s) may already arrive. Then, they wait until
the barrier is released by the BCU. There may be more participant nodes,
but we included only one to keep the figure simple. Other participant
nodes would behave exactly the same way as the participant node in the
figure. Boxes represent local code execution, the continuous arrows at
steps (C) and (F) denote flits, dotted arrows represent local interaction at
the root node and its BCU, arrows from the end of a box to the beginning
of the same box illustrate loops. The box at step (C) is dotted, because
barrier arrival from participant node(s) does not necessarily take place
at this point in time – nodes may arrive at the barrier at an arbitrary
point in time. Numbers inside of the boxes specify the WCET estimation
of this code part. The meaning of the different steps is described in
Table 6.3.

108

6.8. Evaluation: Worst-Case Performance

Table 6.3.: Description of structure and WCET estimates for the implementation of
MPI_Barrier with hardware support as shown in Figure 6.8.

step description WCET estimate

(A) During the initialization, the root node acti-
vates the configuration mode of its BCU.

60

(B),
(C)

After determining the root node, each partic-
ipant node sends a barrier arrival flit there.

63 + WCTT(1, 1)

(D) The root node tells its BCU which nodes par-
ticipate. Thereby, the configuration for 64
nodes can be set at once. Thus, this step has
to be executed in a loop for each 64 nodes
(e.g. 4 times when 256 nodes are present).

⌈︁ N
64

⌉︁
· 40

(E) After the BCU was configured, the root node
disables the configuration mode and arrives
at the barrier.

62

(F) When all nodes have arrived at the barrier, it
is released by the BCU and all nodes execute
the end of the barrier function. Due to the
concept of the integrated hardware broad-
cast, only the WCTT of one single flit has to
be considered.

max(9, WCTT(1, 1) + 9)

109

6. Hardware Barrier Extension to Improve Schedule One-to-All

we take the maximum of the time it takes for the BCU to notify the root node and to
notify the participant node(s). When we add the corresponding WCET estimates
from Table 6.3, we get WCETHwBarrier

Table in Formula 6.1.

WCETHwBarrier
Table = max(60 +

⌈︃
N
64

⌉︃
· 40 + 62, 63 + WCTT(1, 1))

+ max(9, WCTT(1, 1) + 9) (6.1)

Simplifying both max terms and summarizing the rest, we get the total WCET
estimate WCETHwBarrier

Total in Formula 6.2.

WCETHwBarrier
Total = 72 + max(59 +

⌈︃
N
64

⌉︃
· 40, WCTT(1, 1)) + WCTT(1, 1) (6.2)

Timing Analysis of MPI_Barrier implementing the Bruck Algorithm

As we have already seen in Subsection 5.8.1, the management of a tree imposes a high
overhead. For barriers, a more efficient implementation is available realizing the
Bruck Algorithm [BHK+97] as already described in the introduction in Section 6.1.
It is illustrated in Figure 6.9 and the steps in the figure are explained in Table 6.4.

Table 6.4.: Description of structure and WCET estimates for a implementation of
MPI_Barrier implementing the Bruck Algorithm as shown in Figure 6.9.

step description WCET estimate

(A) Initialization code is executed. 32
(B) After determining the communication part-

ners, a ready flit is sent out.
73

(C) The parameters for the branch if not
ready instruction are set.

2

(D) When the ready flit from the corresponding
communication partner has arrived, we can
check for the next loop iteration.

12

(E) Steps (B) to (D) are executed in a loop
⌈log2χ⌉ times, where χ is the number of
nodes to arrive at the barrier.

⌈log2χ⌉ times

(F) After the last ready flit was received, the
operation can terminate.

7

After the initialization at step (A), the next communication partner is determined
and a flit is sent there in step (B). Two cycles later (C), the node waits for the flit
from some other node (D). Steps (B) to (D) are repeated ⌈log2χ⌉ times. Thereby, χ is

110

6.8. Evaluation: Worst-Case Performance

A

all nodes

7

73B

D

E

F

C 2

12

32

Figure 6.9.: Workflow and timing behavior of MPI_Barrier implementing the Bruck
Algorithm. A node sends a ready flit to one other node and waits for the
ready flit from another node. Each iteration the communication partner
is changed to one which has knowledge about more other nodes. When
the ready flit in the last iteration arrives, the node can be sure that all
other nodes are ready for barrier release. Because there is no distinction
between root and participant nodes, all nodes behave exactly the same
way and execute the same code. Therefore, we only displayed one node
in the figure. Boxes represent local code execution, dotted arrows denote
ready flits, arrows from the end of a box to the beginning of a box illus-
trate loops. Numbers inside of the boxes specify the WCET estimation
of this code part. The meaning of the different steps is described in
Table 6.4.

111

6. Hardware Barrier Extension to Improve Schedule One-to-All

the number of nodes arriving at the barrier. Each time communication partners are
changed in a clever way, doubling the information about other nodes. Finally, the
node has the information that all other nodes are ready to release the barrier and
can continue program execution after step (F).

For formulating a WCET estimation, we sum up all steps from Table 6.4 and also
respect the loop iteration at step (E). Then, we get WCETBarrierBruck

Table in Formula 6.3
as result.

WCETBarrierBruck
Table = 32 + ⌈log2χ⌉ · (73 + max(2, WCTT(1, 1)) + 12) + 7 (6.3)

Because we always have to wait for the ready flit to arrive, we have to respect the
WCTT and the code execution time at all iterations. However, because the WCTT is
always larger than two cycles, we do not need the term max(2, ...). Altogether, we
can summarize WCETBarrierBruck

Table to WCETBarrierBruck
Total in Formula 6.4.

WCETBarrierBruck
Total = 39 + ⌈log2χ⌉ · (85 + WCTT(1, 1)) (6.4)

6.8.2. Comparison of WCET Estimates

After estimating the WCETs of different implementations of MPI_Barrier, we now
compare their worst-case performance. For this comparison, we also consider
the simple implementation from Section 3.6. To achieve better comparability, we
assemble Formula 3.6 as WCETSimpleBarrier in Formula 6.5. Thereby, χ represents the
number of nodes arriving at the barrier like at WCETBarrierBruck

Total (Formula 6.4).

WCETSimpleBarrier =max(9, WCTT(1, 1)) + 73 · χ + 122

+ max(31 + WCTT(1, χ − 1), 31 · χ − 31 + WCTT(1, 1))
(6.5)

For our evaluation, we consider an RC/MC processor with 4x4 = 16 nodes, 8x8
= 64 nodes and 16x16 = 256 nodes. We evaluate how long it takes when different
numbers of nodes participate at a barrier. Thereby, we combine the WCET estimates
with the generic schedules 1:1, A:A, the original 1:A schedule without hardware
extensions and our extended 1:A schedule with hardware support for barriers in the
following way:

1. WCETHwBarrier
Total (Formula 6.2) utilizes the 1:A schedule with hardware support

for barriers.

2. WCETBarrierBruck
Total (Formula 6.4) can only be combined with the original 1:A

schedule, because the Bruck implementation relies completely on ready flits

112

6.8. Evaluation: Worst-Case Performance

Nodes arriving at the barrier

C
yc

le
s

0

500

1000

1500

2000

2 4 6 8 10 12 14 16

A:A 1:A 1:1 1:A+Bruck 1:A+Hw Ext.

(a) Barrier in a 4x4 node NoC

Nodes arriving at the barrier

C
yc

le
s

0

2000

4000

6000

8000

10 20 30 40 50 60

A:A 1:A 1:1 1:A+Bruck 1:A+Hw Ext.

(b) Barrier in a 8x8 node NoC

Nodes arriving at the barrier

C
yc

le
s

0

5000

10000

15000

20000

10 20 30 40 50 60

A:A 1:A 1:1 1:A+Bruck 1:A+Hw Ext.

(c) Up to 64 nodes in a 16x16 node NoC

Nodes arriving at the barrier

C
yc

le
s

0

20000

40000

60000

80000

50 100 150 200 250

A:A 1:A 1:1 1:A+Bruck 1:A+Hw Ext.

(d) Barrier in a 16x16 node NoC

Figure 6.10.: WCET estimates for barriers in NoCs with 4x4, 8x8 and 16x16 nodes.

and therefore cannot run on the 1:1 schedule. A:A also does not make sense,
because it is able to send out flits to all nodes in the same period.

3. WCETSimpleBarrier (Formula 6.5) utilizes the generic schedules 1:1, A:A and the
original 1:A schedule without hardware extensions.

Our results are displayed in Figure 6.10. At the 4x4 node NoC in Figure 6.10a,
the simple barrier implementation has similar WCET estimates for all schedules,
because the WCET is code-driven. For the Bruck algorithm, we can clearly see the
"steps" each time we pass powers of two at the number of nodes arriving at the
barrier. It is noticeable that the Bruck algorithm’s WCET estimate is below the WCET
estimate of the 1:A schedule with our hardware barrier extension when only two
nodes arrive at the barrier. This is because of the very short code of MPI_Barrier
implementing the Bruck algorithm. In all other cases, the 1:A schedule with our
hardware extensions is faster than all other implementations. It remains at a constant
low level due to low communication effort and only few code to be executed.

Figure 6.10b illustrates barrier participation in a 8x8 node NoC. Our 1:A schedule
with hardware barrier extension is still at a low level, only outperformed by the
1:A schedule with Bruck algorithm in the case when two nodes arrive at the barrier.
At the Bruck algorithm, we can see the continuation of the "steps" after 16 and 32
nodes arrive at the barrier. When considering the simple barrier implementation, 1:1
and A:A perform similar to the case of the 4x4 node NoC from Figure 6.10a: Their

113

6. Hardware Barrier Extension to Improve Schedule One-to-All

WCET estimates are code-driven and thus remain parallel to each other. However,
the WCET estimate of the simple barrier implementation utilizing the 1:A schedule
increases faster, because it is driven by the WCTT of the 1:A schedule.

Finally, barriers in a 16x16 node NoC are displayed in Figures 6.10c and 6.10d.
Thereby, Figure 6.10d visualizes the complete range from 2 to 256 nodes arriving
at the barrier, while Figure 6.10c shows only the range from 2 to 64 nodes. Our
1:A schedule with hardware barrier extension can only be seen in the left picture,
because it stays at its very low level all time, which is too low to be recognized in
Figure 6.10d. The same holds for the "steps" of the Bruck algorithm utilizing the
1:A schedule. At the simple barrier implementation, the A:A and 1:1 schedules are
code-driven again. However, their distance between each other has increased due
to their WCTTs. The simple barrier implementation running on the 1:A schedule is
WCTT driven like in the 8x8 node NoC. In the case of 256 nodes participating at the
barrier, its WCET is almost 27 times the WCET of the Bruck algorithm and 130 times
the WCET of the 1:A schedule with hardware support for barriers.

Altogether, the WCET of our 1:A schedule with barrier hardware extension almost
always performs best. Only in the case of two nodes arriving at a barrier, the Bruck
algorithm utilizing the 1:A schedule is better. Furthermore, the Bruck algorithm has
the lowest WCET estimates when not having hardware support for barriers.

6.8.3. Theoretical Comparison

The WCET analysis in Subsection 6.8.1 is performed with compiler optimizations
disabled (compiler optimization level -O0) and may be improved. Therefore, we
carry out a theoretical comparison in this section to see the impact of our hardware
extension when code would be optimized in an optimal way. For this, we consider
only transportation times and assume code execution times to be zero.

Table 6.5.: How large is the WCTT for a barrier operation where χ nodes arrive at a
barrier in a NoC with a dimension of n?

schedule barrier arrival barrier release
One-to-One (1:1) 1 period 1:A (χ − 1) periods 1:1

= n2 + 2n = n · (χ − 1) + 2n
One-to-All (1:A) ⌈log2χ⌉ periods 1:A

with Bruck = n2 · ⌈log2χ⌉+ 2n
All-to-All (A:A) 1 period A:A 1 period A:A

=
(︂

n2(n−1)
2 + 2

)︂
+ n2

2 + 2n =
(︂

n2(n−1)
2 + 2

)︂
+ n2

2 + 2n

One-to-All (1:A) 1 period 1:A 1 period 1:A
with hardware = n2 + 2n = n2 + 2n

barrier extension

114

6.8. Evaluation: Worst-Case Performance

Table 6.5 summarizes how many periods are required for barrier arrival and barrier
release at the different schedules. Following the investigations of Auer [Aue18], we
assume barrier arrival to be implemented as sending a ready flit when no explicit
hardware support is present. In the first line of each schedule, it is stated how many
periods are required when χ nodes arrive at a barrier. Then, in the second line,
the corresponding formula is given how many cycles are needed for transmission
of ready and data flits. Similar formulas were already utilized for the theoretical
comparison of our hardware broadcast/multicast extension in Subsection 5.8.3. They
were also described in Subsection 3.2.2 except the formula for the Bruck algorithm,
which was explained in the introduction of this chapter in Section 6.1.

As already mentioned in Subsection 5.8.3, a dedicated ready NoC is necessary
when employing the 1:1 schedule. Therefore, the 1:A schedule is required for barrier
arrival, while the 1:1 schedule is employed for barrier release. Thereby, barrier release
flits are sent out in a for loop, iterating over arriving nodes.

At the 1:A schedule with Bruck algorithm, barrier arrival and barrier release are
integrated into one single formula, because the nodes only exchange information
about the state of the barrier via ready flits.

We assume that barrier release information can be sent out in one period at the A:A
schedule. Therefore, one period of the A:A schedule is sufficient each for arriving at
and releasing a barrier.

Finally, the 1:A schedule including our new hardware barrier extension is pre-
sented. It requires one period for barrier arrival and one for barrier release.

Nodes arriving at the barrier

C
yc

le
s

0

50

100

2 4 6 8 10 12 14 16

1:A+Hardware Extension A:A 1:1 1:A+Bruck

(a) Barrier in a 4x4 node NoC

Nodes arriving at the barrier

C
yc

le
s

0

1000

2000

3000

4000

5000

0 50 100 150 200 250

1:A+Hardware Extension A:A 1:1 1:A+Bruck

(b) Barrier in a 16x16 NoC

Figure 6.11.: Barriers in 4x4 and 16x16 node NoCs.

Figure 6.11 displays the results of our theoretical comparison. Thereby, Fig-
ure 6.11a illustrates a small 4x4 NoC with 16 nodes, while Figure 6.11b shows a large
NoC with 256 nodes. In both figures, we see that 1:A+Hardware Extension remains at
a constant low level, while A:A remains at a constant high level. The 1:1 schedule
starts with a lower WCTT than our 1:A schedule with hardware barrier extension for
few nodes arriving at a barrier. Then, the 1:1 schedule increases steadily and ends
with a WCTT higher than A:A when many nodes arrive at the barrier. At the 4x4

115

6. Hardware Barrier Extension to Improve Schedule One-to-All

node NoC in Figure 6.11a, the 1:A schedule with Bruck algorithm performs similar
to the 1:1 schedule, but with the typical "steps" at the powers of two and staying
better than A:A. In a larger NoC, its performance is worse for small to medium
numbers of nodes arriving at a barrier, but better for larger numbers. Altogether,
our hardware supported barrier is not most efficient when only few cores arrive at a
barrier. But for larger barriers, our approach always performs best. 1:A with Bruck
algorithm is often the second best solution, but for low numbers of nodes arriving
at a barrier, it is outperformed by the 1:1 schedule.

6.9. Conclusion

Originally, the 1:A schedule has the same shortcomings for barriers as it has for
broadcasts and multicasts. They can be overcome with an additional BCU, which is
an extension of our hardware supported broadcast/multicast operation. Thereby,
we install a dedicated BCU at each node. It handles all incoming flits where nodes
tell that they arrived at the barrier managed by that node. When all nodes have
arrived, the BCU automatically sends out a barrier release flit, which is a special kind
of multicast flit. For controlling the BCU, we added four new assembly instructions:
One for arriving at a barrier, a new status branch and two instructions for configuring
which nodes participate in a barrier. Moreoever, barriers for subsets of nodes can be
clearly distinguished via unique ids. The worst-case performance of our approach
is very good, especially for large node numbers. Finally, the hardware supported
barrier comes at low hardware costs, imposing an overhead of only 4-5% at the
ALMs and 6-7% at the registers.

116

7
Case Studies:

Impact on Communication in Benchmarks

We now investigate the impact of our hardware extensions. Thereby, we compare the
WCET estimates for the communication of three benchmarks when they are running
on the RC/MC processor with the A:A, 1:1 and 1:A schedules. For the latter, we have
one variant with the original 1:A schedule, one with optimal algorithms running on
it and one variant with our hardware extensions. However, no further evaluation
of ready synchronization is carried out. We just take the hardware implementation
to have a simple timing analysis and no problems with buffer overflows. Our
benchmarks come from the NAS Parallel Benchmark Suite1 [BBB+91b, BBB+91a].
They were originally designed with the goal to evaluate highly parallel systems
if they are able to simulate an entire aerospace vehicle system [BBDS93]. This
means their kernels may be utilized to compose applications running on cyber-
physical systems implementing physical simulation. These are typical use cases for
future embedded hard real-time many-core systems, e.g. when they are installed
in cars, trains, aeroplanes etc. This chapter is divided into three sections, one
for each benchmark: In Section 7.1, we will present our case study on the CG
benchmark. Afterwards, the worst-case behavior of the MG benchmark running on
our platform is investigated in Section 7.2. Finally, we evaluate the communication
and computation of the LU benchmark in Section 7.3.

1Homepage: http://www.nas.nasa.gov/Software/NPB/

117

http://www.nas.nasa.gov/Software/NPB/

7. Case Studies: Impact on Communication in Benchmarks

7.1. Case study: CG Benchmark

In [FSMU16], we already carried out a timing analysis for the conjugate gradient
(CG) benchmark. It is taken from the NAS Parallel Benchmark Suite. Bailey et al.
describe CG as following: A conjugate gradient method used to compute an approximation
to the smallest eigenvalue of a large, sparse, symmetric positive definite matrix. This
kernel is typical of unstructured grid computations in that it tests irregular long-distance
communication, using unstructured matrix-vector multiplication [BBB+91b]. For our
analysis, we decided to analyze a class S CG benchmark, which is the smallest class:
The matrix size is 1400 · 1400, there are 7 nonzero values per row. In the benchmark,
the matrix is divided into equal sized blocks and each block is assigned to one node
for computation. We employ 4x4=16 nodes – thus, the matrix is divided into 16
blocks of 350 · 350 values.

7.1.1. Timing Analysis of the CG Benchmark

For the evaluation, we reuse the timing analysis from [FSMU16]. Thereby, we
created a formula which is composed of the sum of the WCET estimates of all
sequential code parts and the communication parts. Now, we exchange the parts
of this formula which represent MPI_Bcast with those from Chapter 5. This allows
us to evaluate the impact of our hardware broadcast/multicast extension. The total
WCET estimate of one iteration of the CG benchmark is assembled as WCETCG

Iteration
in Formula 7.1 (based on [FSMU16]).

WCETCG
Iteration = 1 896 959 + 16 · WCETSendRecv(351)

+ WCETReduce(2, 15) + 17 · WCETReduce(1, 3) + 16 · WCETReduce(351, 3)

+ WCETBcast(2, 15) + 17 · WCETBcast(1, 3) + 16 · WCETBcast(351, 3) (7.1)

Thereby, we did not analyze the initialization of the benchmark, but the parts
which are intended for benchmarking a system. Due to problems in the timing
analysis, the sequential program parts were analyzed for integer variables instead
of doubles, resulting in shorter computation times [FSMU16]. Moreover, the result
WCETCG

Iteration in Formula 7.1 represents only one iteration. For a complete execution
of the CG benchmark, it has to be multiplied with 15.

WCETCG
Iteration is composed of the following parts: First, 1 896 959 is the sum of

the sequential code parts of the benchmark. Second, WCETSendRecv(f) represents
the WCET estimate of MPI_SendRecv, which is an operation where nodes send and
receive data at the same time (f flits are to be sent and another f flits to be received).
Thereby, sender and receiver do not necessarily coincide. In the second line, we find
several WCETReduce estimates. They belong to the operation MPI_Reduce, which is a
reduce operation (e.g. find global minimum or maximum or calculate a global sum).

118

7.1. Case study: CG Benchmark

Thereby, f flits are collected from χ nodes (see Formula 7.3). This means that χ + 1
nodes work together at these operations (one root node and χ participant nodes).
In the last line, we have WCETBcast estimates, where we evaluate our hardware
broadcast/multicast extension from Chapter 5.

At each iteration, parts of the matrix and one additional flit are exchanged be-
tween the nodes. Based on the WCET estimations [Brü19, FSMU16], we assembled
Formula 7.2 for WCETSendRecv. It covers the simplified case when the numbers of
flits to be sent and received are equal and are processed in same periods. 250 cycles
is the sum of the sequential code parts, 2 ·WCTT(1, 1) represents exchange of ready
and header flits and max(WCTT(f , 1), f · 34) the send/receive loop.

WCETSendRecv(f) = 250 + 2 · WCTT(1, 1) + max(WCTT(f , 1), f · 34) (7.2)

For the estimate WCETReduce, we adapted the numbers from [FSMU16] in For-
mula 7.3. Thereby, S has to be set depending on the schedule, because this WCTT
describes the receipt of flits from view of the root node, while we usually describe
it from the sender’s view. At the 1:A and A:A schedules, each period n2 − 1 flits
can be received. Thus, it takes f − 1 periods to receive flits from all nodes S. This
is already expressed by WCTT(f − 1, ...). In this case, S can be set to 1. At the 1:1
schedule, each period at most 1 flit can be received. Therefore, it takes χ · (f − 1)
periods to receive flits from all nodes. (f − 1) is already included in the WCTT term,
but to express χ periods, we need to set S to χ.

WCETReduce(f , χ) =224 + 141 · χ + max(23 + 17 · χ, 24 + 2 · WCTT(1, 1)) + 55 · f

+ 23 · f · χ + max(35 · χ · (f − 1), WCTT(f − 1, S)) (7.3)

For our evaluation, we assume that ready flits have the same WCTT as data flits
at the 1:1 schedule (usually, they have to be sent via a dedicated ready NoC with
larger WCTTs).

7.1.2. Impact of Hardware Extensions on Worst-Case Performance

As already mentioned in the last Subsection 7.1.1, the CG benchmark allows us only
to evaluate our hardware broadcast/multicast extension, because it does not employ
any barriers. Therefore, we compare the variants of MPI_Bcast we already presented
in Section 5.8 in the context of the CG benchmark. Our results are displayed in
Figure 7.1.

First, the WCET estimates of the broadcast/multicast operations are compared
in Figure 7.1a. We see that the 1:A schedule with hardware broadcast/multicast
extension always performs best. Notable is the 1:A schedule combined with a binary

119

7. Case Studies: Impact on Communication in Benchmarks

Bcast(2,15) Bcast(1,3) Bcast(351,3)
0

10000

20000

30000

40000

50000

60000

CG: WCET Estimates of Broadcast Operations

1:1

A:A

1:A

1:A+Tree

1:A+Hw Ext.

Broadcast Operation

C
yc

le
s

(a) Total WCET estimate for all broadcast/multicast operations executed at CG.

1:1 A:A 1:A 1:A+Tree 1:A+Hw Ext.
0%

20%

40%

60%

80%

100%

120%

140%

CG: Communication/Computation Ratio

(b) Ratio between worst-case communication times and WCET estimate of computations
for CG.

Figure 7.1.: Sum of all WCET estimates for broadcasts/multicasts during execution
of CG benchmark and communication/computation ratio.

120

7.2. Case study: MG benchmark

tree: It has the highest WCET estimate at Bcast(1,3) due to the high effort for
preparing the binary tree. At Bcast(351,3), the binary tree is found between 1:A
with hardware broadcast/multicast extension and the other schedules. This means
that the effort for creating the tree pays off at larger broadcasts/multicast. We did not
include results for WCETSendRecv(351), because there we have very similar results
for all schedules. Because our node count is very small, the variances between the
schedules are also only very small. The same holds for WCETReduce.

The total WCET estimate of the CG benchmark is roughly double of the sequential
code part. Depending on the schedule and algorithm/hardware support, it is a
little bit more or less. This can be seen at the communication/computation ratio in
Figure 7.1b. Thereby, we divided the sum of the communication times through the
WCET estimate of the sequential code parts (1 896 959). Only the 1:A schedule with
hardware extension is below 100%, all other variants between 107% and 127%. At
this benchmark, communication times are very large compared to the sequential
program parts. This is caused by the communication intensive program structure,
mainly influenced by the operations where 351 values are exchanged. These opera-
tions are executed in loops. We carried out a few experiments with larger matrices
and node counts. The CG benchmark is highly dominated by these communication
times. Thus, there is no (WCET) speedup on our platform and we investigated two
more benchmarks.

7.2. Case study: MG benchmark

Our second benchmark MultiGrid (MG) also comes from the NAS Parallel Bench-
mark Suite [BBB+91b, BBB+91a]. It approximates the solution of a three-dimensional
discrete Poisson equation using the V-cycle multigrid method [BBDS93]. This bench-
mark is very complex – it is the largest of the benchmarks from the NAS Par-
allel Benchmark Suite, with over 3 000 lines of code. The code contains lots of
loops and case distinctions, making a characterization and timing analysis complex.
However, a timing analysis was carried out by Brügmann [Brü19]. For commu-
nication, the operations MPI_Bcast, MPI_Barrier, MPI_Sendrecv, MPI_Reduce and
pairs of MPI_Send and MPI_Recv are employed. Thereby, barriers and broadcasts
always target all nodes. For MPI_Reduce, Brügmann took the timing analysis from
Bürger [Bür19]. However, it seems to have a large overestimation, because Bürger’s
implementation is organized as tree, but performs worse than the simple implemen-
tation we utilized at the WCET analysis of the CG benchmark. Thus, we reused
WCETReduce (Formula 7.3) from the last Section 7.1. For the benchmark, we chose
a grid size of 2048 · 2048 · 2048 elements, which are computed over 4 iterations.
The total WCET estimate for all barrier and broadcast operations is compared in
Figure 7.2.

121

7. Case Studies: Impact on Communication in Benchmarks

16 64 256
0

50

100

150

200

250

300

350

400

MG: WCET Estimate for all Barrier Operations

1:1

A:A

1:A

1:A+Bruck

1:A+Hw Ext.

Number of Nodes

C
yc

le
s

[x
10

00
]

(a) Total WCET estimate for all barrier operations executed at MG.

16 64 256
0

1000

2000

3000

4000

5000

6000

MG: WCET Estimate for all Broadcast Operations

1:1

A:A

1:A

1:A+Tree

1:A+Hw Ext.

Number of Nodes

C
yc

le
s

[x
10

00
]

(b) Total WCET estimate for all broadcast/multicast operations executed at MG.

Figure 7.2.: Sum of all WCET estimates for barriers and broadcasts/multicasts dur-
ing execution of MG benchmark.

122

7.2. Case study: MG benchmark

16 64 256
0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

MG: Communication/Computation Ratio

1:1

A:A

1:A

Number of Nodes

Figure 7.3.: Ratio between worst-case communication times and WCET estimate of
computations for MG.

At a barrier with 16 nodes (Figure 7.2a), all variants with a simple implementation
perform nearly same, maybe their WCET estimate is code-driven. The 1:A schedule
with Bruck algorithm and with hardware barrier extension is much faster. When
employing 64 nodes we see the tendency that the original 1:A schedule performs
worst, followed by the A:A and 1:1 schedules. The 1:A schedule with Bruck algo-
rithm is very fast, only outperformed by 1:A with hardware barrier extension. The
results with 256 nodes are similar to 64 nodes, but the original 1:A schedule now
takes more than double the time of the second-worst A:A schedule. In Figure 7.2b,
the WCET estimates for all broadcast operations are summarized. At 16 nodes all
except the 1:A schedule with hardware broadcast/multicast extension have nearly
the same WCET estimate – here, the effort to build a binary tree does not seem to
pay off for small node counts. When considering 64 and 256 nodes, the situation
looks similar to barriers: The original 1:A schedule performs worst, followed by the
A:A and 1:1 schedules. 1:A with hardware broadcast/multicast extension performs
best, followed by 1:A with binary tree. However, at 64 nodes, the difference between
between the original 1:A schedule and the A:A/1:1 schedules is very small. On the
other hand, at 256 nodes the original 1:A schedule takes around three times of the
A:A schedule.

After comparing broadcasts/multicasts and barriers, we have a look on the com-
munication/computation ratio in Figure 7.3. Thereby, we do not distinguish between
different variants of the 1:A schedule, because they nearly have the same result
here. At 16 nodes we see nothing in the figure, because of the small portion of

123

7. Case Studies: Impact on Communication in Benchmarks

communication in the MG benchmark: Communication is 0.04% (1:1) to 0.06% (A:A)
of the computation part (1:A is in-between with 0.05%). This already sets the trend
for all larger node numbers. For 64 nodes, the range is between 0.04% 1:1 and 0.29%
(A:A). When we employ 256 nodes, the result can be seen most clearly: A:A performs
worst with 42.3%, followed by 1:A with 6.5% and 1:1 with 0.8%. Altogether, the 1:1
schedule performs best at the WCET estimation of the complete MG benchmark,
followed by the 1:A schedule. We will now investigate the reasons.

The MG benchmark does not only consist of barriers and broadcasts – they are
only a small part of the communication. Most of the communication is dominated
by MPI_SendRecv and pairs of MPI_Send and MPI_Recv. At these operations, two (at
the pair) or up to three (MPI_Sendrecv) nodes exchange data with each other. We
calculated their total WCET estimates in Figure 7.4. Thereby, it is most important
to note that the y-axis does not represent cycles [x1.000] like in Figure 7.2, but cycles
[x1.000.000] in Figure 7.4a and even cycles [x1.000.000.000] in Figure 7.4b. This means
their contribution is one thousand to one million times larger than that of barriers
and broadcasts. At MPI_Sendrecv in Figure 7.4a, the (worst-case) performance of all
schedules is similar for 16 nodes, because their WCTTs are quite similar for small
node counts. However, at 64 nodes we already see the magnitudes of the different
schedules: As already described in Subsection 3.2.2, periods of A:A grow with O(n3),
1:A with O(n2) and 1:1 with O(n). Thus, A:A performs worst and is followed by 1:A
– 1:1 is best. For 256 nodes, 1:A and A:A swap places. When a lot of flits are to be
sent to different nodes, then 1:A may perform worse than A:A for large numbers of
nodes. This is because A:A can send flits to different nodes within the same period,
while 1:A always has to wait for the next period. At the pairs of MPI_Send and
MPI_Recv in Figure 7.4b, the situation is different. For 16 and 64 nodes, they behave
like the MPI_Sendrecv operation. When employing 256 nodes, the A:A schedule
again performs worst. At these pairs each node sends or receives data to/from
exactly one other node. This means the shorter the periods of a schedule, the better
its (worst-case) performance. Again, we have the strong impact from the growing
periods from Subsection 3.2.2. Moreover, the pairs of MPI_Send and MPI_Recv have
the highest dominance at the total WCET estimate of MG, because of their high cycle
contribution [x1.000.000.000].

124

7.2. Case study: MG benchmark

16 64 256
0

500

1000

1500

2000

2500

MG: Total WCET Estimate of all SendRecv Operations

1:1

A:A

1:A

Number of Nodes

C
yc

le
s

[x
1.

00
0.

00
0]

(a) Total WCET estimate for all MPI_SendRecv operations executed at MG.

16 64 256
0

50

100

150

200

250

300

MG: Total WCET Estimate of all Send+Recv Pairs

1:1

A:A

1:A

Number of Nodes

C
yc

le
s

[x
1.

00
0.

00
0.

00
0]

(b) Total WCET estimate for all pairs of MPI_Send and MPI_Recv executed at MG.

Figure 7.4.: Sum of all WCET estimates for direct node-to-node communication
during execution of MG benchmark.

125

7. Case Studies: Impact on Communication in Benchmarks

7.3. Case Study: LU Benchmark

The Lower-Upper symmetric Gauß-Seidel (LU) benchmark is part of the NAS Par-
allel Benchmark Suite [BBB+91b, BBB+91a] as well as the SPLASH-2 benchmark
suite [WOT+95]. Woo et al. describe it as following: The LU kernel factors a dense
matrix into the product of a lower triangular and an upper triangular matrix [WOT+95].
Thereby, the matrix is divided into equal sized blocks to be distributed on several
nodes.

7.3.1. Workflow of the LU Benchmark

} Iteration

Barrier

Read Access

Read and Write Access

Multicast

Figure 7.5.: Workflow of the LU benchmark, figure based on [Ste19]. Each row
represents one iteration. The iterations are divided into three steps.
After the first and second step, all nodes wait at a barrier.

In Figure 7.5, we visualize the workflow of the LU benchmark. It expects a

126

7.3. Case Study: LU Benchmark

quadratic matrix2 with m rows and columns (m · m floating point numbers) as
input, e.g. when m = 120, 14 400 floating point numbers are stored in the matrix.
For distributed computation, the matrix is divided into equal sized blocks of e · e
elements, e.g. when we set e = 20, each block comprises 400 floating point numbers.
Thereby, we have b blocks in each row and each column, e.g. for m = 120 and e = 20,
there are b = 6 blocks in each row and column and a total of 36 blocks. Because the
number of blocks is usually larger than the number of nodes, each node manages
several blocks. They are distributed in a block-cyclic way [MSM04], see an example
for b = 6 and n = 2 in Table 7.1, where we have n · n = 4 nodes in total.

Table 7.1.: 6x6 block-cyclic distribution to 4 nodes. The number in a cell specifies its
assignment to a node.

1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

We see that there are always n = 2 different nodes in the same row or column.
This is important for the multicasts during the LU benchmark, because they take
place row-wise or column-wise.

The LU benchmark is executed for b iterations. Each iteration is represented by a
row in Figure 7.5 and consists of three steps, which are represented by the columns:

1. One single block is computed by one single node, while the other nodes wait
at a barrier.

2. A multicast to the blocks in the same row and same column is sent out. Then,
computations on these blocks take place. Afterwards, the step is finished with
a second global barrier.

3. Multiple multicasts are sent out: One for each row and one for each column.
Finally, computations on all blocks where data was received take place.

At steps 2 and 3 nodes do not need to send data to themselves, because they already
have it. Then, data only has to be multicasted to the other nodes. The number of
considered blocks decreases at each iteration. Thus, we introduce p for the number
of participating blocks in the same row at step 2 (green blocks in the same row as the
blue block). At the example in Figure 7.5, p = 5 in the first iteration and p = 4 in the
second iteration. As can be seen in the last row of Figure 7.5, the last iteration walks

2The benchmark allows matrices to be non-quadratic. However, we focus only on quadratic matrices
to keep our estimations manageable.

127

7. Case Studies: Impact on Communication in Benchmarks

through all steps, but only at the first step something happens. This is because there
are no receivers at the multicasts – thus, they are not executed anymore. Moreover,
there are no computations at steps 2 and 3. Therefore, p = 0 in the last iteration.
However, the nodes still meet at the barriers.

7.3.2. Characterization of the (Worst-Case) Execution Behaviour

We did not carry out a complete timing analysis of the LU benchmark, but of its
computation parts for the Gauß–Seidel method. Therefore, we now characterize
which computation parts are executed how often and how much communication
takes place in between.

At step 1, only one node carries out a computation called lu0 in our implementa-
tion. All other nodes wait at a barrier for this node to finish its computation. The
WCET of step 1 is estimated in Formula 7.4

WCETLU
Step1 = WCETlu0 + WCETBarrier (7.4)

Step 2 starts with a multicast to all participating blocks p in the same row and
another p in the same column as the block computed in step 1. Because the node
who owns this block does not need to send it to itself, n − 1 nodes are receivers
in the same row and another n − 1 nodes in the same column. When the row or
column contains less than n − 1 participating blocks p, then there are only p nodes
receiving the multicast. After the blocks were received, each node has to compute
at most ⌈ p

n⌉ blocks in the same row (bdiv in our implementation) and another ⌈ p
n⌉

blocks in the same column (bmodd in our implementation). Finally, the step finishes
with a barrier. Its complete WCET estimation is summarized in Formula 7.5.

WCETLU
Step2 =WCETBcast

2·min(p,n−1)

+
⌈︂ p

n

⌉︂
· WCETbdiv +

⌈︂ p
n

⌉︂
· WCETbmodd

+ WCETBarrier (7.5)

At the last step 3, all blocks computed in step 2 are to be multicasted to their row
or column, respectively. This means p multicasts to n − 1 nodes to reach all rows
and the same to reach all columns. When the participating blocks p are less than
n − 1, then all multicasts are sent to p receivers. Like at step 2, all blocks where data
was exchanged, are to be re-computed (bmod in our implementation). Because there
are p · p blocks distributed to n · n nodes, at most

⌈︁ p·p
n·n

⌉︁
blocks are to be computed by

the same node (in the worst-case). The WCET of step 3 is estimated in Formula 7.6.

WCETLU
Step3 = (p + p) · WCETBcast

min(p,n−1) +
⌈︂ p · p

n · n

⌉︂
· WCETbmod (7.6)

128

7.3. Case Study: LU Benchmark

Because the number of participating blocks p changes at each iteration, the total
WCET estimate has to be formulated as sum: In the first iteration p = b − 1, in the
second iteration p = b − 2 and so on. In the last iteration p = 0. Altogether, we get
Formula 7.7 as result for the total WCET estimate of the LU benchmark.

WCETLU
Total =

b−1

∑
p=0

(WCETLU
Step1 + WCETLU

Step2 + WCETLU
Step3) (7.7)

Moreover, we add 5% of the WCET estimates of communication times for the
overhead to prepare communication and other situations not covered by our charac-
terization.

7.3.3. WCET estimates for LU

To illustrate the (WCET) speedup potential of the RC/MC and the impact of our
hardware extensions, we take a 1024 · 1024 matrix (m = 1024), divided into 32 · 32
blocks, where each block has 32 · 32 values (e = 32). Then, we estimate WCETs
for 1 node, 4x4=16 nodes, 8x8=64 nodes and 16x16=256 nodes. At the sequential
execution, we assume that the matrix is divided into equal-sized blocks as shown in
Figure 7.5, but all blocks are computed by one single node and no communication
takes place. The total WCET estimate for this sequential execution is 16.7 billion
cycles. At the parallel versions, we calculate WCETLU

Total as assembled in Formula 7.7
and add 5% of the WCET estimates of communication as described in the last
Subsection 7.3.2. Like at the evaluation of the CG and MG benchmarks, we assume
that ready flits have the same WCTT as data flits at the 1:1 schedule.

Figure 7.6 displays the sum of all WCET estimates for broadcasts/multicasts and
barriers. At the WCET estimates of barriers in Figure 7.6a, we see similar numbers
for small node counts at all schedules. This is because of similar WCTTs at small
node counts. The 1:A schedule with Bruck algorithm and hardware barrier extension
exhibits very low WCET estimates. On the other hand, the 1:A schedule without
Bruck and hardware extensions shows very high WCET estimates when the number
of nodes increases. At the broadcast/multicast WCET estimates in Figure 7.6b, we
see a situation similar to barriers: The WCET estimates are very similar for small
node numbers. However, the 1:A schedule becomes very large for increasing node
numbers, but performs quite good when employing a binary tree – and even better
with hardware broadcast/multicast extension. Altogether, the 1:A schedule is very
scalable with hardware extensions.

In Figure 7.7a, we illustrate WCET speedups of the LU benchmark. They depend
on the schedule: We have a WCET speedup between 54 for 1:A without broadcast/-
multicast and barrier extensions and 87 with hardware extensions. Differences at
the speedup can only be seen at the large node count 16x16=256 nodes, because for
small node numbers, communication operations only have a small impact. This

129

7. Case Studies: Impact on Communication in Benchmarks

16 64 256
0

1000

2000

3000

4000

5000

6000

LU: WCET estimate for all Barrier Operations

1:1

A:A

1:A

1:A+Bruck

1:A+Hw Ext.

Number of Nodes

C
yc

le
s

[x
10

00
]

(a) Total WCET estimate for all barrier operations executed at LU.

16 64 256
0

20000

40000

60000

80000

100000

120000

LU: WCET estimate for all Broadcast Operations

1:1

A:A

1:A

1:A+Tree

1:A+Hw Ext.

Number of Nodes

C
yc

le
s

[x
10

00
]

(b) Total WCET estimate for all broadcast/multicast operations executed at LU.

Figure 7.6.: Sum of all WCET estimates for barriers and broadcasts/multicasts dur-
ing execution of LU benchmark.

130

7.3. Case Study: LU Benchmark

16 64 256
0

10

20

30

40

50

60

70

80

90

100

LU: WCET Speedup

1:1

A:A

1:A

1:A+Bruck/Tree

1:A+Hw Ext.

Number of Nodes

(a) WCET speedup of the LU benchmark.

16 64 256
0%

10%

20%

30%

40%

50%

60%

70%

LU: Communication/Computation Ratio

1:1

A:A

1:A

1:A+Bruck/Tree

1:A+Hw Ext.

Number of Nodes

(b) Ratio between worst-case communication times and WCET estimate of computations
for LU.

Figure 7.7.: WCET speedup and communication/computation ratio for LU.

131

7. Case Studies: Impact on Communication in Benchmarks

is also seen at the communication/computation ratio in Figure 7.7b. For 16 nodes,
communication is less than 1% of the computation time. At 64 nodes, it stays below
1% with hardware extensions, while the other cases have low percentages. Finally,
at 256 nodes, the different scenarios can clearly be distinguished: The 1:A schedule
with hardware extensions has a communication/computation ratio of 5%, while
it is 65% without hardware extensions. Another factor at the communication/-
computation ratio is the increasing communication demand when more nodes are
employed – more nodes need to communicate more with each other. At the same
time, the computation time is decreased when the application can be distributed
better. Altogether, the scalability can be seen from the speed how fast the communi-
cation/computation ratio increases – the slower, the better. Moreover, we see that
although the communication portion of the benchmark is not too large it has an
important impact on the WCET speedup. However, the LU benchmark exhibits a
somewhat limited amount of parallelism [BBB+91b]. This is demonstrated best at step 1,
where all nodes have to wait for one node and have to be idle meanwhile.

132

8
Conclusion and Outlook

In our thesis, we extended the RC/MC processor with three hardware extensions at
the network interface of its nodes to improve timing predictability and worst-case
performance. The RC/MC is a many-core processor, where each node consists of
a simple processing element, a local scratchpad memory and a network interface.
All nodes are connected via a predictable NoC. Our platform is intended to execute
hard real-time applications similar to the Bulk Synchronous Parallel (BSP) model. In
software, this is realized via the Message Passing Interface (MPI). A timing analysis
for the RC/MC can be carried out by combining a WCET analysis of the sequential
code executed on the nodes with a Worst-Case Transportation Time (WCTT) analysis
of the NoC.

To increase the timing predictability of the network traffic arriving at a node
and to avoid buffer overflows, we introduced ready synchronization: Before two
nodes can communicate with each other, the receiving node sends a ready flit to
the sender node to indicate that it is ready to receive data flits. The sender node
waits for the ready flit before it starts sending. This way it is ensured that sender
and receiver are synchronized and the receiver is able to handle all incoming flits.
We extended all nodes with hardware logic to distinguish ready and data flits and
sort out ready flits before they reach the processing element. Instead, the sender of a
ready flit is marked as ready in a hardware bit array. With our hardware extension,
the processing element is disencumbered from handling ready flits and can focus
on handling desired data flits. Before data is sent to some other node, its status
can be retrieved from the hardware bit array via a new assembly instruction. Our
evaluation shows that this simplifies timing analysis and increases (worst-case)

133

8. Conclusion and Outlook

performance. Moreover, the hardware costs for ready synchronization are low – it
costs less than one receive buffer slot and may save many of them.

Our next two hardware extensions focus on improving the (worst-case) perfor-
mance of the One-to-All (1:A) time-division multiplexing (TDM) schedule. This
schedule defines when each node is allowed to send a flit and thereby avoids colli-
sions and conflicts on the NoC. However, its (worst-case) performance is low when
a flit is to be sent to several nodes. Thus, we exploited its reserved time slots to send
flits to all nodes at once. This is possible by copying a flit while it travels through the
NoC. As a result, our first extension for the 1:A schedule is a hardware-supported
broadcast operation. By adapting the receive logic of nodes, it is also capable to
send out multicasts to a subset of all nodes. Thereby, nodes store the number of
the node whom they sent a ready flit to and sort out all broadcast/multicast flits
from other senders. When a broadcast/multicast flit from the desired sender passes
by, it is copied into the receive buffer. Additionally, it is counted how many broad-
cast/multicast flits are received to stop the receive operation when all desired flits
have arrived. We carried out a timing analysis of our new hardware-supported
broadcast/multicast operation and compared it with two other implementations.
Our hardware broadcast/multicast operation always performs best in both theoreti-
cal and practical evaluations. It comes at 5–10% hardware overhead, which might
be reduced by omitting an optional part of the extension which only brings minor
performance improvements.

A hardware-supported barrier operation is our second hardware extension for
the 1:A schedule. Basically, we install a new Barrier Control Unit (BCU) at all
nodes, which handles all barrier-related flits. This means when a node wants to
participate in a barrier, it sends a barrier arrival flit to the coordinating node. There,
the barrier arrival flit does not reach the processing element, but is handled by the
BCU. The BCU is configured by the node where it is installed. When all nodes
have arrived (including the node where the BCU is installed), the BCU sends out
a barrier release broadcast flit indicating that all participating nodes can continue
their program execution. For distinguishing several barriers taking place at the
same time, all barriers have a unique id. Altogether, our platform can handle as
many barriers at the same time as there are nodes on the chip. We evaluated our
hardware-supported barrier operation in a similar manner to our evaluation of
the hardware-supported broadcast/multicast operation. Thereby, our hardware
barrier extension always performs best when more than two nodes participate. It
imposes only low hardware costs of around 5% overhead. Most of it is already paid
with the hardware broadcast/multicast extension. All of our hardware extensions
are realized as VHDL prototype and synthesized for an FPGA to evaluate their
hardware costs. For functional tests, we also integrated them in our many-core
simulator (MacSim). Our hardware extensions are all designed in a way to be

134

scalable when the number of nodes increases.

For our case studies which are taken from the NAS Parallel Benchmark (NPB)
Suite, the scalability was also one important factor to be investigated. These bench-
marks were chosen by NASA and represent scenarios for physical simulation, which
are relevant for applications like autonomous driving and other use cases for future
embedded hard real-time many-core processors. Therefore, we carried out a tim-
ing analysis of three benchmarks and then evaluated the impact of our hardware
extensions. The first benchmark Conjugate Gradient (CG) implements a conjugate
gradient method used to compute an approximation to the smallest eigenvalue of a large,
sparse, symmetric positive definite matrix [BBB+91b]. We only evaluated CG for 4x4=16
nodes, because it does not scale well due to a lot of communication. But at this small
scenario, our hardware broadcast/multicast extension performed very well, being
the only variant to bring the communication/computation ratio below 100%. Our
next benchmark MultiGrid (MG) approximates the solution of a three-dimensional
discrete Poisson equation [BBDS93]. It is the largest benchmark of the NPB Suite
and utilizes five different communication operations. While our hardware broad-
cast/multicast and barrier extensions improve the results of the benchmark, two
non-accelerated communication operations have a considerably stronger impact on
the total WCET estimate of the benchmark. Unfortunately, they perform second-
worst with the 1:A schedule and therefore decrease the total worst-case performance
of the MG benchmark. Thus, the 1:1 schedule performs better at the MG benchmark.
Finally, we investigated a third benchmark: Lower-Upper symmetric Gauß-Seidel
(LU). It factors a dense matrix into the product of a lower triangular and an upper triangular
matrix [WOT+95]. Thereby, it only uses multicasts and barriers for communication.
We carried out a WCET analysis of its computation kernels and analyzed its commu-
nication. This allowed us to give rough estimates for the total WCET and calculate a
WCET speedup. Our hardware broadcast/multicast and barrier extensions always
perform best. In addition, LU revealed that for a high number of nodes our hardware
extensions have a high positive impact on the (WCET) speedup. Although the ready
hardware extension was not explicitly evaluated with the NPB benchmarks, it was
an important part of the timing analyses of the communication operations – there,
it simplified timing analysis a lot. Our evaluation showed that the 1:A schedule
with hardware extensions is the best solution for some cases, but not always – this
depends on the characteristics of the benchmark. But when communication in a
benchmark is well suited for the 1:A schedule, our hardware extensions have a
positive impact. Then, even the best algorithms are outperformed by our hardware
extensions. Moreover, our hardware extensions impose a high scalability.

As future work, hardware support for more complex operations might be intro-
duced, for example operations that collect or distribute data from/to other nodes
(MPI_Gather, MPI_Scatter). Thereby, flits might be collected in-order or out-of-

135

8. Conclusion and Outlook

order. Since the 1:A schedule was outperformed at a situation where a lot of flits
were sent to the same node, this might be improved, e.g. by integrating Direct Mem-
ory Access (DMA), like it is already installed at the T-CREST architecture [SAA+15].
Another solution might be to integrate support for neighbourhood communication.
Walter [Wal19] extended the ready NoC of the 1:1 schedule to a status NoC, where
each node broadcasts its status every period. This allows to send a not-ready flit to
tell all nodes that the receive buffer of a node is running full. Our evaluation also
revealed that the various schedules A:A, 1:1 and 1:A have different properties. It
should be investigated which algorithms are the best solution for each of them.

136

Bibliography

[ABB+07] Anant Agarwal, Liewei Bao, John Brown, Bruce Edwards, Matt Mat-
tina, Chyi-Chang Miao, Carl Ramey, and David Wentzlaff. Tile Proces-
sor: Embedded Multicore for Networking and Multimedia. In 2007
IEEE Hot Chips 19 Symposium (HCS), pages 1–12. IEEE, August 2007.

[ABC+05] Narasimha R. Adiga, Matthias A. Blumrich, Dong Chen, Paul Coteus,
Alan Gara, Mark E. Giampapa, Philip Heidelberger, Sarabjeet Singh,
Burkhard D. Steinmacher-Burow, Todd Takken, et al. Blue Gene/L
torus interconnection network. IBM Journal of Research and Development,
49(2/3):265–276, 2005.

[ADG16] Roman Atachiants, Gavin Doherty, and David Gregg. Parallel perfor-
mance problems on shared-memory multicore systems: Taxonomy
and observation. IEEE Transactions on Software Engineering, 42(8):764–
785, Aug 2016.

[AESF16] Hamdi Ayed, Jérôme Ermont, Jean-luc Scharbarg, and Christian
Fraboul. Towards a unified approach for worst-case analysis of Tilera-
like and KalRay-like NoC architectures. In IEEE World Conference on
Factory Communication Systems (WFCS), pages 1–4, May 2016.

[AFA10] José L. Abellán, Juan Fernández, and Manuel E. Acacio. Efficient and
scalable barrier synchronization for many-core cmps. In Proceedings
of the 7th ACM International Conference on Computing Frontiers, CF ’10,
pages 73–74, New York, NY, USA, 2010. ACM.

[AHA+05] George Almási, Philip Heidelberger, Charles J. Archer, Xavier Mar-
torell, C. Chris Erway, José E. Moreira, B. Steinmacher-Burow, and
Yili Zheng. Optimization of MPI Collective Communication on Blue-
Gene/L Systems. In Proceedings of the 19th Annual International Confer-
ence on Supercomputing, ICS ’05, pages 253–262, New York, NY, USA,
2005. ACM.

[AIS09] Ankur Agarwal, Cyril Iskander, and Ravi Shankar. Survey of Network
on Chip (NoC) Architectures & Contributions. Journal of Engineering,
Computing and Architecture, 3(1):21–27, 2009.

137

Bibliography

[Alt06] Altera/Intel. FPGA Architecture White Paper. Whitepaper, August
2006. https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/wp/wp-01003.pdf.

[Aue18] Dominik Johannes Ruslan Auer. Implementierung und Evaluierung
von Hardware-Broadcast und Hardware-Barrieren im One-to-All-
Schedule des RC/MC-Prozessors. Master’s thesis, University of Augs-
burg, September 2018.

[AUT14] AUTOSAR. Guide to multi-core systems. Technical re-
port, AUTOSAR, Frankfurter Ring 224, 80807 Munich, Germany,
March 2014. https://www.autosar.org/fileadmin/user_upload/
standards/classic/4-1/AUTOSAR_EXP_MultiCoreGuide.pdf.

[Bau18] Maximilian Bauer. Modellierung des Energieverbrauchs der RC/MC-
Architektur. Master’s thesis, University of Augsburg, June 2018.

[BBB+91a] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The NAS Parallel Benchmarks – Summary and Preliminary Results.
In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,
Supercomputing ’91, pages 158–165, New York, NY, USA, 1991. ACM.

[BBB+91b] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter,
L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S.
Schreiber, H.D. Simon, V. Venkatakrishnan, and S.K. Weeratunga. The
NAS parallel benchmarks. International Journal of High Performance
Computing Applications, 5(3):63–73, 1991.

[BBB+10] Armelle Bonenfant, Ian Broster, Clément Ballabriga, Guillem Bernat,
Hugues Cassé, Michael Houston, Nicholas Merriam, Marianne
de Michiel, Christine Rochange, and Pascal Sainrat. Coding guide-
lines for WCET analysis using measurement-based and static analysis
techniques. Technical Report IRIT/RR-2010-8-FR, IRIT-Institut de
recherche en informatique de Toulouse, March 2010.

[BBDS93] D. H. Bailey, E. Barszcz, L. Dagum, and H. D. Simon. Nas paral-
lel benchmark results. IEEE Parallel Distributed Technology: Systems
Applications, 1(1):43–51, February 1993.

[BCRS11] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal
Sainrat. OTAWA: An Open Toolbox for Adaptive WCET Analysis.
In Software Technologies for Embedded and Ubiquitous Systems, volume

138

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_EXP_MultiCoreGuide.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_EXP_MultiCoreGuide.pdf

Bibliography

6399 of Lecture Notes in Computer Science, pages 35–46. Springer Berlin
Heidelberg, 2011.

[BdMS08] Armelle Bonenfant, Marianne de Michiel, and Pascal Sainrat. oRange:
A tool for static loop bound analysis. In Workshop on Resource Analysis,
University of Hertfordshire, Hatfield, UK, volume 9, September 2008.

[BEA+08] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce,
Vince Leung, John MacKay, Mike Reif, Liewei Bao, John Brown,
Matthew Mattina, Chyi-Chang Miao, Carl Ramey, David Wentzlaff,
Walker Anderson, Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan
Montenegro, Jay Stickney, and John Zook. Tile64 - processor: A 64-
core soc with mesh interconnect. In 2008 IEEE International Solid-State
Circuits Conference - Digest of Technical Papers, page 88, February 2008.

[BHK+97] Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, Eli Upfal, and Der-
rick Weathersby. Efficient algorithms for all-to-all communications in
multiport message-passing systems. IEEE Transactions on Parallel and
Distributed Systems, 8(11):1143–1156, November 1997.

[BM06] Tobias Bjerregaard and Shankar Mahadevan. A survey of research
and practices of network-on-chip. ACM Computing Surveys (CSUR),
38(1), 2006.

[Bor10] Shekhar Borkar. Future of interconnect fabric: A contrarian view. In
Workshop on System Level Interconnect Prediction, SLIP ’10, pages 1–2,
2010.

[BP90] Carl J. Beckmann and Constantine D. Polychronopoulos. Fast barrier
synchronization hardware. In Proceedings of the 1990 ACM/IEEE Con-
ference on Supercomputing, Supercomputing ’90, pages 180–189, Los
Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[Brü19] Jakob Brügmann. WCET-Analyse des parallelen Multi-Grid Bench-
marks für den RC/MC-Prozessor. Bachelor’s Thesis, University of
Augsburg, April 2019.

[BU19] Martin Bitterlich and Tilmann Unte. Implementierung von
Hardware-Broadcasts/Multicasts und Hardware-Barrieren im
RC/MC-Prozessor. Project Module, University of Augsburg, May
2019.

[Bür19] Martin Bürger. WCET-Analyse eines parallelen Programms zur Simu-
lation von Ozean-Strömungen auf dem RC/MC-Prozessor. Bachelor’s
Thesis, University of Augsburg, May 2019.

139

Bibliography

[CM07] Jason Cong and Kirill Minkovich. Optimality study of logic synthesis
for LUT-based FPGAs. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 26(2):230–239, February 2007.

[CMR+06] Martijn Coenen, Srinivasan Murali, Andrei Ruadulescu, Kees
Goossens, and Giovanni De Micheli. A buffer-sizing algorithm for net-
works on chip using TDMA and credit-based end-to-end flow control.
In Hardware/Software Codesign and System Synthesis. CODES+ISSS’06.
Proceedings of the 4th International Conference, pages 130–135. IEEE, 2006.

[dD15] Benoît Dupont de Dinechin. Kalray MPPA®: Massively Parallel Pro-
cessor Array – Revisiting DSP Acceleration with the Kalray MPPA
Manycore Processor. In 2015 IEEE Hot Chips 27 Symposium (HCS),
pages 1–27. IEEE, August 2015.

[dD16] Benoît Dupont de Dinechin. Kalray MPPA®: Massively Parallel
Processor Array – Engineering a Manycore Processor Platform for
Mission-Critical Applications. Keynote at the IEEE 10th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC-
16), September 2016. http://mcsoc-forum.org/2016/wp-content/
uploads/2015/07/Keynote-De-Dinechin.pdf.

[dDAB+13] Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beau-
camps, Patrice Couvert, Benoît Ganne, Pierre Guironnet de Massas,
François Jacquet, Samuel Jones, Nicolas Morey Chaisemartin, Frédéric
Riss, and Thierry Strudel. A clustered manycore processor architec-
ture for embedded and accelerated applications. In High Performance
Extreme Computing Conference (HPEC), 2013 IEEE, pages 1–6. IEEE,
September 2013.

[DT04] William James Dally and Brian Patrick Towles. Principles and Practices
of Interconnection Networks. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2004.

[FJO+16] Martin Frieb, Ralf Jahr, Haluk Ozaktas, Andreas Hugl, Hans Regler,
and Theo Ungerer. A parallelization approach for hard real-time
systems and its application on two industrial programs. International
Journal of Parallel Programming, 44(6):1296–1336, 2016.

[FSMU16] Martin Frieb, Alexander Stegmeier, Jörg Mische, and Theo Ungerer.
Employing MPI Collectives for Timing Analysis on Embedded Multi-
Cores. In Martin Schoeberl, editor, 16th International Workshop on Worst-
Case Execution Time Analysis (WCET 2016), volume 55 of OpenAccess

140

http://mcsoc-forum.org/2016/wp-content/uploads/2015/07/Keynote-De-Dinechin.pdf
http://mcsoc-forum.org/2016/wp-content/uploads/2015/07/Keynote-De-Dinechin.pdf

Bibliography

Series in Informatics (OASIcs), pages 10:1–10:11, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[FSMU18] Martin Frieb, Alexander Stegmeier, Jörg Mische, and Theo Ungerer.
Lightweight hardware synchronization for avoiding buffer overflows
in network-on-chips. In Mladen Berekovic, Rainer Buchty, Heiko
Hamann, Dirk Koch, and Thilo Pionteck, editors, 31st International
Conference on Architecture of Computing Systems (ARCS), pages 112–126.
Springer, Springer International Publishing, 2018.

[GCH11] Gernot Gebhard, Christoph Cullmann, and Reinhold Heckmann. Soft-
ware Structure and WCET Predictability. In Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, volume 18, pages
1–10, Dagstuhl, Germany, 2011.

[GDR05] Kees Goossens, John Dielissen, and Andrei Radulescu. Æthereal
network on chip: concepts, architectures, and implementations. IEEE
Design & Test of Computers, 22(5):414–421, 2005.

[GH04] James R. Goodman and Herbert H. J. Hum. MESIF: A two-hop cache
coherency protocol for point-to-point interconnects. Technical report,
University of Auckland, 2004. http://hdl.handle.net/2292/11593.

[GKN+17] Kees Goossens, Martijn Koedam, Andrew Nelson, Shubhendu Sinha,
Sven Goossens, Yonghui Li, Gabriela Breaban, Reinier van Kamp-
enhout, Rasool Tavakoli, Juan Valencia, Hadi Ahmadi Balef, Benny
Akesson, Sander Stuijk, Marc Geilen, Dip Goswami, and Majid Nabi.
NoC-Based Multiprocessor Architecture for Mixed-Time-Criticality Appli-
cations, pages 1–40. Handbook of Hardware/Software Codesign.
Springer Netherlands, Dordrecht, 2017.

[Gor18] Roman Marek Alexander Kermit Gorlo. Optimierung der Netzwerk-
schnittstelle des PaterNoster-NoC. Master’s thesis, University of
Augsburg, May 2018.

[GSLD11] Thierry Goubier, Renaud Sirdey, Stéphane Louise, and Vincent David.
ΣC: A Programming Model and Language for Embedded Manycores.
In Yang Xiang, Alfredo Cuzzocrea, Michael Hobbs, and Wanlei Zhou,
editors, Algorithms and Architectures for Parallel Processing, pages 385–
394, Berlin, Heidelberg, October 2011. Springer Berlin Heidelberg.

[GvMPW02] Kees Goossens, Jef van Meerbergen, Ad Peeters, and Paul Wielage.
Networks on silicon: combining best-effort and guaranteed services. In
Proceedings of the 2002 Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 423–425, March 2002.

141

http://hdl.handle.net/2292/11593

Bibliography

[Hem94] Rolf Hempel. The MPI standard for message passing. In Wolfgang
Gentzsch and Uwe Harms, editors, High-Performance Computing and
Networking, pages 247–252, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg.

[HGBH09] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken.
CoMPSoC: A template for composable and predictable multi-
processor system on chips. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 14(1):2:1–24, January 2009.

[HJK+00] Ahmed Hemani, Axel Jantsch, Shashi Kumar, Adam Postula, Johnny
Öberg, Mikael Millberg, and Dan Lindqvist. Network on a Chip:
An architecture for billion transistor era. In Proceedings of the IEEE
NORCHIP Conference. IEEE, November 2000.

[IG18] IEEE and The Open Group. IEEE Std 1003.1-2017 (Revision of IEEE
Std 1003.1-2008). The Open Group Base Specifications Issue 7, 2018.

[Int19a] Intel. Quartus Prime Design Software. Whitepaper, April
2019. https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/br/br-quartus-prime-software.pdf.

[Int19b] Intel. Stratix V Device Handbook Volume 1: Device In-
terfaces and Integration. Whitepaper, April 2019. https:
//www.intel.com/content/dam/altera-www/global/en_US/pdfs/
literature/hb/stratix-v/stx5_core.pdf.

[Int19c] Intel. Stratix V Device Overview. Whitepaper, April
2019. https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf.

[JGU+14] Ralf Jahr, Mike Gerdes, Theo Ungerer, Haluk Ozaktas, Christine
Rochange, and Pavel G. Zaykov. Effects of structured parallelism
by parallel design patterns on embedded hard real-time systems. In
IEEE 20th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 1–10, Aug 2014.

[KJS+02] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell,
Mikael Millberg, Johny Öberg, Kari Tiensyrjä, and Ahmed Hemani. A
network on chip architecture and design methodology. In Proceedings
of the IEEE Computer Society Annual Symposium on VLSI. New Paradigms
for VLSI Systems Design. ISVLSI 2002, pages 117–124. IEEE, April 2002.

142

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/br/br-quartus-prime-software.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/br/br-quartus-prime-software.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf

Bibliography

[KKC+08] Tushar Krishna, Amit Kumar, Patrick Chiang, Mattan Erez, and Li-
Shiuan Peh. Noc with near-ideal express virtual channels using global-
line communication. In 16th IEEE Symposium on High Performance
Interconnects, 2008. HOTI’08, pages 11–20. IEEE, August 2008.

[KM95] H. T. Kung and Robert Morris. Credit-based flow control for ATM
networks. IEEE Network, 9(2):40–48, 1995.

[KPKJ07] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha. Express
Virtual Channels: Towards the ideal interconnection fabric. In Proceed-
ings of the 34th Annual International Symposium on Computer Architecture,
ISCA ’07, pages 150–161, New York, NY, USA, 2007. ACM.

[KQnBS15] Sebastian Kehr, Eduardo Quiñones, Bert Böddeker, and Günther
Schäfer. Parallel Execution of AUTOSAR Legacy Applications on
Multicore ECUs with Timed Implicit Communication. In 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco,
USA, 2015.

[KR12] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down
Approach. Pearson, 6th edition, 2012.

[KS14] Evangelia Kasapaki and Jens Sparsø. Argo: A Time-Elastic Time-
Division-Multiplexed NOC Using Asynchronous Routers. In 20th
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 45–52, May 2014.

[KSS+16] Evangelia Kasapaki, Martin Schoeberl, Rasmus Bo Sørensen,
Christoph Müller, Kees Goossens, and Jens Sparsø. Argo: A real-
time network-on-chip architecture with an efficient gals implementa-
tion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24(2):479–492, 2016.

[Lis12] Björn Lisper. Towards Parallel Programming Models for Predictability.
In 12th International Workshop on Worst-Case Execution Time Analysis,
volume 23, pages 48–58, Dagstuhl, Germany, 2012.

[LN91] Xiaola Lin and Lionel M. Ni. Deadlock-free multicast wormhole
routing in multicomputer networks. In Proceedings of the 18th Annual
International Symposium on Computer Architecture, ISCA ’91, pages 116–
125, New York, NY, USA, 1991. ACM.

[May83] David May. Occam. ACM SIGPLAN Notices, 18(4):69–79, April 1983.

143

Bibliography

[McC10] Michael D. McCool. Structured parallel programming with determin-
istic patterns. In Proceedings of the 2nd USENIX conference on Hot topics
in parallelism, HotPar’10, pages 5–5, Berkeley, CA, USA, 2010. USENIX
Association.

[Mes15] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, Version 3.1. High Performance Computing Center Stuttgart
(HLRS), 2015.

[MFSU17] Jörg Mische, Martin Frieb, Alexander Stegmeier, and Theo Ungerer.
Reduced complexity many-core: Timing predictability due to message-
passing. In Jens Knopp, Wolfgang Karl, Martin Schulz, Inoue Koji,
and Thilo Pionteck, editors, 30th International Conference on Architec-
ture of Computing Systems (ARCS), pages 139–151. Springer, Springer
International Publishing, 2017.

[MFSU19] Jörg Mische, Martin Frieb, Alexander Stegmeier, and Theo Ungerer.
PIMP my Many-Core: Pipeline-Integrated Message Passing. In Dion-
isios N. Pnevmatikatos, Maxime Pelcat, and Matthias Jung, editors,
2019 International Conference on Embedded Computer Systems: Architec-
tures, Modelling, and Simulation (SAMOS), pages 199–211, Cham, July
2019. Springer International Publishing.

[MMU11] Stefan Metzlaff, Jörg Mische, and Theo Ungerer. A real-time capa-
ble many-core model. In Proceedings of 32nd IEEE Real-Time Systems
Symposium: Work-in-Progress Session, pages 21–24, Vienna, Austria,
2011.

[MSM04] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill.
Patterns for parallel programming. Addison-Wesley Professional, first
edition, 2004.

[MU12] Jörg Mische and Theo Ungerer. Low power flitwise routing in an
unidirectional torus with minimal buffering. In Proceedings of the Fifth
International Workshop on Network on Chip Architectures, NoCArc ’12,
pages 63–68, New York, NY, USA, 2012. ACM.

[MU14] Jörg Mische and Theo Ungerer. Guaranteed service independent of
the task placement in nocs with torus topology. In Proceedings of the
22Nd International Conference on Real-Time Networks and Systems, RTNS
’14, pages 151:151–151:160, New York, NY, USA, 2014. ACM.

[NM93] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing
techniques in direct networks. Computer, 26(2):62–76, February 1993.

144

Bibliography

[NPB+14] Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling, Si-
mon Wegener, and Michael Schmidt. Multi-core interference-sensitive
WCET analysis leveraging runtime resource capacity enforcement. In
26th Euromicro Conference on Real-Time Systems (ECRTS), pages 109–118,
July 2014.

[Olo16] Andreas Olofsson. Epiphany-V: A 1024 processor 64-bit RISC System-
On-Chip. Whitepaper, October 2016. https://www.parallella.org/
docs/e5_1024core_soc.pdf.

[Olo17] Andreas Olofsson. EPIPHANY-V: A TFLOPS scale 16nm 1024-core
64-bit RISC Array Processor. In Hot Chips 29 Poster Session – Symposium
on High Performance Chips, August 2017.

[ONUA14] Andreas Olofsson, Tomas Nordström, and Zain Ul-Abdin. Kickstart-
ing high-performance energy-efficient manycore architectures with
Epiphany. In 48th Asilomar Conference on Signals, Systems and Comput-
ers, pages 1719–1726, November 2014.

[OPZ11] Jungju Oh, Milos Prvulovic, and Alenka Zajic. TLSync: support for
multiple fast barriers using on-chip transmission lines. In 38th Annual
International Symposium on Computer Architecture (ISCA), pages 105–115.
IEEE, 2011.

[PSK99] Dhabaleswar K. Panda, Sanjay Singal, and Ram Kesavan. Multidesti-
nation message passing in wormhole k-ary n-cube networks with base
routing conformed paths. IEEE Transactions on Parallel and Distributed
Systems, 10(1):76–96, 1999.

[Rat10] Justin Rattner. Single-chip Cloud Computer – An experi-
mental many-core processor from Intel Labs. Presentation,
2010. http://download.intel.com/pressroom/pdf/rockcreek/
SCC_Announcement_JustinRattner.pdf.

[RBS+10] Christine Rochange, Armelle Bonenfant, Pascal Sainrat, Mike Gerdes,
Julian Wolf, Theo Ungerer, Zlatko Petrov, and Frantisek Mikulu. WCET
Analysis of a Parallel 3D Multigrid Solver Executed on the MERASA
Multi-Core. In 10th International Workshop on Worst-Case Execution Time
Analysis (WCET 2010), volume 15, pages 90–100, Dagstuhl, Germany,
2010.

[RCS09] Tahiry Ratsiambahotra, Hugues Cassé, and Pascal Sainrat. A ver-
satile generator of instruction set simulators and disassemblers. In
International Symposium on Performance Evaluation of Computer Telecom-
munication Systems, volume 41, pages 65–72, July 2009.

145

https://www.parallella.org/docs/e5_1024core_soc.pdf
https://www.parallella.org/docs/e5_1024core_soc.pdf
http://download.intel.com/pressroom/pdf/rockcreek/SCC_Announcement_JustinRattner.pdf
http://download.intel.com/pressroom/pdf/rockcreek/SCC_Announcement_JustinRattner.pdf

Bibliography

[RH90] Michel Raynal and Jean Michel Helary. Synchronization and control of
distributed systems and programs. Wiley series in parallel computing.
Wiley, Chichester, 1990. Translation of : Synchronisation et contrôle
des systèmes et des programmes réparties. Paris, Eyrolles.

[SAA+15] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley,
Raffaele Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott
Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber, Alexan-
der Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel
Prokesch, Wolfgang Puffitsch, Peter Puschner, André Rocha, Cláudio
Silva, Jens Sparsø, and Alessandro Tocchi. T-CREST: Time-predictable
multi-core architecture for embedded systems. Journal of Systems Ar-
chitecture, 61(9):449 – 471, 2015.

[SBSK12] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kas-
apaki. A Statically Scheduled Time-Division-Multiplexed Network-
on-Chip for Real-Time Systems. In Sixth IEEE/ACM International Sym-
posium on Networks on Chip (NoCS), pages 152–160, May 2012.

[Sew18] Ingo Sewing. Implementierung von Ready-Synchronisation und One-
to-All + All-to-All-Routing im RC/MC-Prozessor. Project Module,
University of Augsburg, March 2018.

[Sew19] Ingo Sewing. Evaluierung und Optimierung des One-to-All-Schedules
im echtzeitfähigen RC/MC-Prozessor. Master’s thesis, University of
Augsburg, March 2019.

[SFMU16] Alexander Stegmeier, Martin Frieb, Jörg Mische, and Theo Ungerer.
WCTT bounds for MPI Collectives in the Paternoster NoC. In 14th
International Workshop on Real-Time Networks (RTN), Toulouse, France,
July 2016.

[SFMU18] Alexander Stegmeier, Martin Frieb, Jörg Mische, and Theo Ungerer.
Analysing real-time behaviour of collective communication patterns
in MPI. In Proceedings of the 26th International Conference on Real-Time
Networks and Systems (RTNS). ACM, 2018.

[SGC+16] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna
Vinod, Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and
Yen-Chen Liu. Knights landing: Second-generation intel xeon phi
product. IEEE Micro, 36(2):34–46, Mar 2016.

[SHM97] David B. Skillicorn, Jonathan M. D. Hill, and William F. McColl. Ques-
tions and Answers about BSP. Scientific Programming, 6:249–274, 1997.

146

Bibliography

[SK10] John Sartori and Rakesh Kumar. Low-overhead, high-speed multi-core
barrier synchronization. In Yale N. Patt, Pierfrancesco Foglia, Evelyn
Duesterwald, Paolo Faraboschi, and Xavier Martorell, editors, High
Performance Embedded Architectures and Compilers, pages 18–34, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[SMG14] Radu Andrei Stefan, Anca Molnos, and Kees Goossens. dAElite: A
TDM NoC Supporting QoS, Multicast, and Fast Connection Set-Up.
IEEE Transactions on Computers, 63(3):583–594, March 2014.

[SPG97] Scott Shenker, Craig Partridge, and Roch Guerin. Specification of
Guaranteed Quality of Service. RFC 2212, RFC Editor, September
1997.

[SSP+11] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian
Brandner, Christian W. Probst, Sven Karlsson, and Tommy Thorn.
Towards a Time-predictable Dual-Issue Microprocessor: The Patmos
Approach. In Bringing Theory to Practice: Predictability and Performance
in Embedded Systems, volume 18, pages 11–21. OASICS, 2011.

[Ste19] Alexander Stegmeier. Real Time Analysis of MPI Programs for NoC-based
Manycores using Time Division Multiplexing (working title). PhD thesis,
University of Augsburg, expected to appear 2019.

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobb’s Journal, 30(3):202–210, 2005.

[Taf16] Thomas Tafertshofer. Taktgenaue Simulation und FPGA-Emulation
eines nachrichtengekoppelten Manycores. Master’s thesis, University
of Augsburg, August 2016.

[TVS07] Andrew S. Tanenbaum and Maarten Van Steen. Distributed systems:
principles and paradigms. Prentice-Hall, second edition, 2007.

[TW10] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks.
Pearson, 5th edition, 2010.

[UBF+16] Theo Ungerer, Christian Bradatsch, Martin Frieb, Florian Kluge, J. Mis-
che, Alexander Stegmeier, Ralf Jahr, Mike Gerdes, Pavel Zaykov, Lucie
Matusova, Zai Jian Jia Li, Zlatko Petrov, Bert Böddeker, Sebastian
Kehr, Hans Regler, Andreas Hugl, Christine Rochange, Haluk Ozak-
tas, Hugues Cassé, Armelle Bonenfant, Pascal Sainrat, Nick Lay, David
George, Ian Broster, Eduardo Quiñones, Milos Panić, Jaume Abella,
Carles Hernandez, Francisco Cazorla, Sascha Uhrig, Mathias Rohde,

147

Bibliography

and Arthur Pyka. Parallelizing Industrial Hard Real-time Applications
for the parMERASA Multi-core. Transactions on Embedded Computing
Systems (TECS), 15(3), 2016.

[Unt18] Tilmann Unte. Analyse und Optimierung der WCET eines parallelen
Programms zur Lösung von Blocktridiagonalmatrizen. Bachelor’s
Thesis, University of Augsburg, March 2018.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Commu-
nications of the ACM, 33(8):103–111, August 1990.

[vdWMH11] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas.
Light-weight communications on intel’s single-chip cloud computer
processor. SIGOPS Operating Systems Review, 45(1):73–83, February
2011.

[VHR+08] Sriram R. Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe,
Howard Wilson, James Tschanz, David Finan, Arvind Singh, Tiju Jacob,
Shailendra Jain, Vasantha Erraguntla, Clark Roberts, Yatin Hoskote,
Nitin Borkar, and Shekhar Borkar. An 80-Tile Sub-100-W TeraFLOPS
Processor in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 43(1):29
–41, 2008.

[VLKJ17] Pedro Valero-Lara, Ezhilmathi Krishnasamy, and Johan Jansson. To-
wards HPC-embedded. Case study: Kalray and message-passing on
NoC. Scalable Computing: Practice and Experience, 18(2):151–160, June
2017.

[WAE17] Andrew Waterman and Krste Asanović (Editors). The RISC-V Instruc-
tion Set Manual, Volume I: User-Level ISA, Document Version 2.2.
Technical report, RISC-V Foundation, May 2017.

[Wal19] Dominik Walter. Implementierung und Evaluierung des One-to-One-
Schedules im echtzeitfähigen RC/MC-Prozessor. Master’s thesis,
University of Augsburg, February 2019.

[WEA+08] Reinhard Wilhelm, Jakob Engblom, Ermedahl Aandreas, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut,
Peter Puschner, Jan Staschulat, and Per Stenström. The Worst-case
Execution Time Problem – Overview of Methods and Survey of Tools.
ACM Transactions on Embedded Computing Systems, 7(3):36:1–36:53, May
2008.

148

Bibliography

[WGH+07] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce
Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F.
Brown III, and Anant Agarwal. On-chip interconnection architecture
of the tile processor. Micro, IEEE, 27(5):15–31, September-October 2007.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 Programs: Characterization
and Methodological Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, ISCA ’95, pages 24–
36, New York, NY, USA, June 1995. ACM.

[WS85] Colin Whitby-Strevens. The transputer. In Proceedings of the 12th
Annual International Symposium on Computer Architecture, ISCA ’85,
pages 292–300, Los Alamitos, CA, USA, June 1985. IEEE Computer
Society Press.

149

List of Figures

3.1. RC/MC: Basic ideas from [MMU11, MFSU17] 10
3.2. Torus and folded torus for a 4x4 NoC 12
3.3. Structure of BSP-like programs running on the RC/MC 17
3.4. Hardware structure of a node (simplified) 23
3.5. Simple implementation of MPI_Barrier 26

4.1. Buffer overflow situation . 32
4.2. Communication carried out with ready synchronization 36
4.3. Buffer space is needed for ready flits as well as for data flits 40
4.4. Hardware structure of a node with ready synchronization 42

5.1. Paths reserved for flit traversal at each period of the 1:A schedule . . 53
5.2. Example of the bnra (branch if not ready array) instruction . . 58
5.3. Hardware structure of a node with broadcast/multicast support . . . 59
5.4. MPI_Bcast with hardware support . 65
5.5. Tree-based MPI_Bcast operation . 69
5.6. WCET estimates for broadcasts in NoCs with 4x4, 8x8 and 16x16 nodes. 77
5.7. WCET estimates for multicasts in NoCs with 4x4 and 16x16 nodes. . 78
5.8. Multicast/broadcast in NoCs with 16/64/256 nodes 81

6.1. Original single barrier register hardware from [BP90] 89
6.2. Hardware barrier registers barrExpected and barrWaiting 92
6.3. Intended barrier participation . 94
6.4. Intended barrier-related communication 94
6.5. Problem situation when node 2 sends barrier arrival flit too early . . 95
6.6. Complete barrier initialization and communication flow 97
6.7. Hardware structure and integration of the BCU in the node 99
6.8. MPI_Barrier with hardware support 108
6.9. MPI_Barrier implementing the Bruck Algorithm 111
6.10. WCET estimates for barriers in NoCs with 4x4, 8x8 and 16x16 nodes. 113
6.11. Barriers in 4x4 and 16x16 node NoCs. 115

7.1. CG: Broadcasts/multicasts and communication/computation ratio . 120
7.2. MG: Barriers and broadcasts/multicasts 122

151

List of Figures

7.3. MG: Communication/computation ratio 123
7.4. MG: Direct node-to-node communication 125
7.5. LU: Workflow . 126
7.6. LU: Barriers and broadcasts/multicasts 130
7.7. LU: WCET speedup and communication/computation ratio 131

B.1. Workflow of variant 3 of the 1:A schedule 170

152

List of Tables

3.1. Overview on schedules considered in this thesis 14
3.2. Examples of MPI collective operations 19
3.3. RISC-V instruction set extension for sending and receiving flits . . . 21
3.4. RISC-V instruction set extension for the status of send/receive buffers 21
3.5. Overview on RC/MC specific CSRs 22
3.6. Simple implementation of MPI_Barrier: Structure and WCET estimates 28

4.1. RISC-V instruction set extension for ready synchronization 41
4.2. Encoding of ready related instructions 43
4.3. Overview on benchmarks and their execution times 48
4.4. Overview on required receive buffer slots 49

5.1. RISC-V instruction set extension for broadcasts and multicasts 54
5.2. Encoding of broadcast/multicast related instructions 57
5.3. MPI_Bcast with hardware support . 66
5.4. Tree-based implementation of MPI_Bcast 70
5.5. WCTT for flit transfer for a broadcast/multicast operation 79

6.1. RISC-V instruction set extension for barriers 91
6.2. Encoding of barrier related instructions 100
6.3. MPI_Barrier with hardware support 109
6.4. MPI_Barrier implementing the Bruck Algorithm 110
6.5. WCTT for a barrier operation . 114

7.1. 6x6 block-cyclic distribution to 4 nodes 127

A.1. RISC-V instruction set extension for sending and receiving flits . . . 162
A.2. RISC-V instruction set extension for the status of send/receive buffers 162
A.3. RISC-V instruction set extension for ready synchronization 162
A.4. RISC-V instruction set extension for broadcasts and multicasts 163
A.5. RISC-V instruction set extension for barriers 163
A.6. Encoding of PIMP I/O related instructions 164
A.7. Encoding of PIMP status related instructions 164
A.8. Encoding of ready related instructions 164

153

List of Tables

A.9. Encoding of broadcast/multicast related instructions 165
A.10.Encoding of barrier related instructions 165
A.11.Overview on RC/MC specific CSRs 165

B.1. Overview on messageTypes . 167
B.2. Overview on RV64IM instructions and their execution times 168
B.3. Overview on RV64FD instructions and their execution times 169
B.4. Overview on RC/MC specific instructions and their execution times 169

154

List of Code Examples

4.1. Send operation including software ready synchronization 38
4.2. Receive operation including software ready synchronization 39
4.3. Send operation including hardware ready synchronization 44
4.4. Receive operation including hardware ready synchronization 45

5.1. Broadcast on sender side . 60
5.2. Broadcast on receiver side . 60
5.3. Example for multicast on sender side for a 256 node RC/MC processor 62

6.1. Code executed by the participating nodes 101
6.2. Code executed by the coordinating node 102
6.3. Function barrier for 256 node NoCs 104

155

Acronyms

1:1 One-to-One. 15, 55, 76, 77, 79, 80, 82, 88, 112, 113, 114, 115, 117, 119, 121, 123,
124, 129, 135

1:A One-to-All. 15, 19, 46, 51, 53, 56, 76, 77, 78, 79, 80, 82, 85, 88, 95, 98, 103, 112, 113,
114, 115, 116, 117, 119, 121, 123, 124, 129, 134, 135, 151, 152, 170

A:A All-to-All. 14, 15, 14, 15, 25, 76, 77, 79, 80, 82, 112, 113, 114, 115, 117, 119, 121,
123, 124, 135

ACET average-case execution time. 52

ALM Adaptive Logic Module. 23, 49, 63, 82, 106, 116

BCET best-case execution time. 61

BCU barrier control unit. 86, 89, 90, 93, 94, 95, 96, 98, 99, 100, 105, 106, 107, 116, 134,
151, 167

BE best effort. 13, 32

BSP Bulk Synchronous Parallel. 16, 18, 32, 56, 62, 85, 92, 133, 151

CG conjugate gradient. 117, 118, 119, 121, 129, 135, 151

CoMPSoC Composable and Predictable Multi-Processor System on Chip. 7

CSR Control and Status Register. 22, 153, 154, 165, 168

DMA direct memory access. 6, 7, 8, 135

ECU Electronic Control Unit. 1, 13

FIFO first in first out. 12, 14, 32, 37, 90

FPGA Field-Programmable Gate Array. 23, 63, 134

G-Line global interconnection line. 53, 87

157

Acronyms

GHDL G Hardware Design Language. 23

GS guaranteed service. 13, 16

ISA instruction set architecture. 7, 10, 20, 22, 23, 24, 161

LU Lower-Upper symmetric Gauß-Seidel. 126, 127, 128, 129, 135, 152

LUT look-up table. 23

MacSim many-core simulator. 23, 24, 48, 56, 134

MG MultiGrid. 121, 123, 124, 129, 135, 151, 152

MPI message passing interface. 18, 19, 20, 25, 27, 29, 64, 94, 107, 133, 153

MPPA Massively Parallel Processor Array. 8

NI network interface. 2, 5, 7, 12, 22, 40, 41, 54, 55, 56, 60, 161, 167

NoC network-on-chip. 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 19, 22, 23, 24, 27, 33, 34,
35, 36, 45, 46, 51, 52, 53, 76, 77, 76, 77, 78, 77, 78, 79, 80, 82, 86, 87, 88, 90, 92, 96,
98, 103, 102, 105, 106, 107, 113, 114, 115, 119, 133, 135, 151, 155, 170

OTAWA Open Tool for an Adaptive WCET Analysis. 24, 25

PE processing element. 10, 11, 18, 22, 33, 35, 40, 41, 43, 46, 87, 96, 100, 101, 102

PIMP pipeline-integrated message passing. 12, 22, 43, 46, 61, 90

RC/MC Reduced Complexity Many-Core. 2, 7, 8, 9, 10, 11, 12, 15, 16, 20, 22, 23, 24,
31, 32, 33, 36, 45, 50, 63, 88, 98, 100, 105, 106, 117, 129, 133, 151, 153, 154, 165,
168

RISC Reduced Instruction Set Computing. 90

sawp stop-and-wait protocol. 34, 36

SCC Single-chip Cloud Computer. 7

SoC System-on-Chip. 34

TDM time-division multiplexing. 6, 13, 31, 32, 45, 46, 50, 82, 134

TDMA time-division multiple access. 34

158

Acronyms

VHDL Very High Speed Integrated Circuit Hardware Description Language. 22, 23,
24, 42, 49, 56, 63, 100, 106, 134

WCET worst-case execution time. 1, 2, 9, 11, 16, 18, 19, 24, 25, 27, 29, 61, 65, 67, 68,
71, 72, 73, 75, 76, 77, 78, 77, 78, 101, 103, 107, 110, 112, 113, 114, 117, 118, 119,
121, 123, 121, 123, 124, 128, 129, 133, 135, 151, 152, 153

WCTT worst-case transportation time. 13, 14, 18, 19, 24, 25, 27, 53, 61, 67, 73, 74, 77,
78, 79, 107, 112, 113, 114, 115, 119, 124, 129, 133, 153

159

A
Overview on

RISC-V Instruction Set Extensions

In the publications containing work of the RC/MC project (e.g. [MFSU17]) includ-
ing this thesis, we introduced several instruction set extensions to the RISC-V
ISA [WAE17]. We give an overview on them in this appendix chapter.

A.1. Overview on our Instructions

161

A. Overview on RISC-V Instruction Set Extensions

Table A.1.: Overview on our RISC-V instruction set extension for sending and
receiving flits with pipeline-integrated message-passing (copy of Ta-
ble 3.3) [MFSU19, Gor18].

destination source source
mnemonic register register 1 register 2 function

snd receiver payload send payload to receiver
rcvp payload store the payload from the old-

est flit in the receive buffer in
the destination register and re-
move this flit from the receive
buffer

rcvn node id store the node id of the sender
from the oldest flit in the re-
ceive buffer in the destination
register

Table A.2.: Overview on our RISC-V instruction set extension checking the status
of pipeline-integrated message-passing (copy of Table 3.4) [MFSU19,
Gor18].

source source immediate
mnemonic register 1 register 2 value function

bsf address when send buffer is full, jump
to address

bsnf address when there is space left in the
send buffer, jump to address

bre address when receive buffer is empty,
jump to address

brne address when there is a flit waiting in
the receive buffer, jump to ad-
dress

Table A.3.: Overview on our RISC-V instruction set extension for ready synchroniza-
tion (copy of Table 4.1, originally published in [FSMU18]).

source source immediate
mnemonic register 1 register 2 value function

srdy sender send ready flit to sender
bnr receiver address check if receiver is ready; when

it is not, jump to address

162

A.1. Overview on our Instructions

Table A.4.: Overview on our RISC-V instruction set extension for broadcasts and
multicasts (copy of Table 5.1.

source source immediate
mnemonic register 1 register 2 value function

mcst message broadcast/multicast a 64 bit
message

bnar address branch to address when not all
nodes are ready yet

bnra part nodes address branch to address when the
nodes in the indicated part of
the Ready Bit Array are not
yet ready
part has to be 0 when up to 64
nodes are present

mrdy sender number send ready flit to sender and
store sender and number at NI
to accept only number multi-
cast flits from sender

Table A.5.: Overview on our RISC-V instruction set extension for barriers (copy of
Table 6.1).

source source immediate
mnemonic register 1 register 2 value function
brrav node uid arrive at barrier which is co-

ordinated by node and has
unique id uid

bbnr address branch to address when the
barrier where the node partic-
ipates via brrav has not yet
been released

cbrr part nodes configure the part of the
barrExpected register to
set/reset bits for given nodes

mbrr mode when the content of mode is
set (is non-zero), enter config-
uration mode (no barrier is re-
leased). When it is reset to 0,
leave configuration mode.

163

A. Overview on RISC-V Instruction Set Extensions

A.2. Encoding of our Instructions

Table A.6.: Encoding of PIMP I/O related instructions in our RISC-V instruction set
extension.

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 000 00000 1011011 snd
0000000 00000 00000 010 rd 1011011 rcvn
0000000 00000 00000 011 rd 1011011 rcvp

Table A.7.: Encoding of PIMP status related instructions in our RISC-V instruction
set extension.

31 25 24 20 19 15 14 12 11 7 6 0

imm[12|10:5] 00000 00000 000 imm[4:1|11] 1111011 bsf
imm[12|10:5] 00000 00000 001 imm[4:1|11] 1111011 bsnf
imm[12|10:5] 00000 00000 010 imm[4:1|11] 1111011 bre
imm[12|10:5] 00000 00000 011 imm[4:1|11] 1111011 brne

Table A.8.: Encoding of ready related instructions in our RISC-V instruction set
extension (copy of Table 4.2).

31 25 24 20 19 15 14 12 11 7 6 0

0000000 00000 rs1 001 00000 1011011 srdy
imm[12|10:5] 00000 rs1 101 imm[4:1|11] 1111011 bnr

164

A.3. Control and Status Registers

Table A.9.: Encoding of broadcast/multicast related instructions in our RISC-V in-
struction set extension (copy of Table 5.2).

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 101 00000 1011011 mrdy
0000000 00000 rs1 110 00000 1011011 mcst

imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1111011 bnra
imm[12|10:5] 00000 00000 111 imm[4:1|11] 1111011 bnar

Table A.10.: Encoding of barrier related instructions in our RISC-V instruction set
extension (copy of Table 6.2).

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 100 00000 1011011 brrav
imm[12|10:5] 00000 00000 110 imm[4:1|11] 1111011 bbnr

0000000 rs2 rs1 111 00000 1011011 cbrr
0100000 00000 rs1 111 00000 1011011 mbrr

A.3. Control and Status Registers

Table A.11.: Overview on RC/MC specific CSRs (copy of Table 3.5).

CSR # description

0xc70 Number of nodes present on the platform
0xc71 ID of the node where the code is executed

165

B
Overview on Implementation Details

B.1. messageTypes for Flits in the Network-on-Chip

Table B.1.: Overview on messageTypes.

messageType Description

none Indicates that the content of this flit is not valid.
data "Normal" data flit
ready This flit has no payload. It is to be received by the NI of

the receiver to store the information that the sender node is
ready.

mcst Multicast flit, which is to be copied and forwarded until it
has reached the farthermost node.

barrival Barrier arrival flit signalizing that the sender node has ar-
rived at a barrier.

barrelease Barrier release flit, which is to be copied and forwarded like
a multicast flit. It tells the BCU of the nodes that the barrier
is released and they can continue their execution

167

B. Overview on Implementation Details

B.2. Execution times of RISC-V Instructions on the RC/MC

Table B.2.: Overview on RV64IM instructions and their execution times.

Type Instruction(s) ex. time

Simple ALU in-
structions

add, addi, sub, and, andi, or, ori,
xor, xori, sll, slli, sra, srai,
srl, srli, slt, sltu, slti, sltiu,
lui, auipc, addiw, addw, subw,
slliw, srliw, sraiw, sllw, srlw,
sraw

1

Unconditional
Jumps

jal, jalr 2

Branches beq, bne, blt, bltu, bge, bgeu 2
Integer multipli-
cation

mul, mulh, mulhu, mulhsu, mulw 5

Integer division div, divu, rem, remu, divw, divuw,
remw, remuw

35

Loads / Stores† lb, lbu, lh, lhu, lw, lwu, ld, sb,
sh, sw, sd

1

CSR accesses csrrw, csrrs, csrrc, csrrwi,
csrrsi, csrrci

1

Syscalls ecall, ebreak 3
† Due to scratchpad implementation of the RC/MC, loads/stores only require one cycle.

168

B.2. Execution times of RISC-V Instructions on the RC/MC

Table B.3.: Overview on RV64FD instructions and their execution times.

Type Instruction(s) ex. time

Small floating
point instructions

fminmaxs, fminmaxd, fsgnjs, fsgnjd,
fcmps, fcmpd, fclasss, fclassd

1

Floating Point
Conversion
Operations

fcvts, fcvtd, fcvt2s, fcvt2d,
fcvt3d, fmv, fmv2, fcvt3s, fcvt4s,
fcvt4d, fcvt5d, fmv3, fmv4

2

Common floating
point operations

fadds, faddd, fsubs, fsubd,
fmuls, fmuld, fmuladds, fmuladdd,
fmulsubs, fmulsubd, fnegmuladds,
fnegmuladdd, fnegmulsubs,
fnegmulsubd

4

Floating Point Di-
vision (Single Pre-
cision)

fdivs 33

Floating Point
Division (Double
Precision)

fdivd 41

Floating Point
SQRT (Single
Precision)

fsqrts 45

Floating Point
SQRT (Double
Precision)

fsqrtd 57

Floating Point
Load / Store
operations†

flw, fld, fsw, fsd 1

† Due to scratchpad implementation of the RC/MC, loads/stores only require one cycle.

Table B.4.: Overview on RC/MC specific instructions and their execution times.

Type Instruction(s) ex. time

Send/receive snd, rcvn, rcvp, srdy, mcst, mrdy,
brrav

3

Status branches bsf, bsnf, bre, brne, bnr, bnar,
bnra, bbnr

3

Barrier configura-
tion

cbrr, mbrr 1

169

B. Overview on Implementation Details

B.3. The One-To-All Schedule without Corner Buffers

Originally, the 1:A schedule was proposed by Mische [MU14]. At his implementa-
tion, corner buffers are required: They store flits which arrived at the target column
until they can take their reserved slot to their target node. Sewing investigated
several variations of the 1:A schedule and developed an own variant 3 without the
need for corner buffers [Sew19]. Because it has the same timing guarantees, but
reduces hardware effort, we decided to use this variant in our thesis. In this section,
we describe how it works.

Cycle 0 Cycle 1 Cycle 2 Cycle 3

Cycle 4 Cycle 5 Cycle 6 Cycle 7

Cycle 8 Cycle 9 Cycle 10 Cycle 11

Cycle 12 Cycle 13 Cycle 14 Cycle 15

Cycle 0 Cycle 1 Cycle 2 Cycle 3

Figure B.1.: Workflow of variant 3 of the 1:A schedule as developed by
Sewing [Sew19]. We illustrate all possible paths to clarify that there
are no colissions and no conflicts. Rectangles represent nodes, circles
represent flits. Flits on the borders of a node are arriving at the south
or west in ports of this node. The figure should be read from the left
bottom to the right top. Figure based on [Sew19].

170

B.3. The One-To-All Schedule without Corner Buffers

Figure B.1 displays the workflow of one period of the 1:A schedule, i.e. it starts
when flits are sent and ends when these flits are delivered at their target nodes. The
figure is divided into 20 small figures, each representing one cycle of the execution.
These small figures show 16 rectangles, illustrating nodes. Furthermore, we see
colored circles, showing flits travelling through the NoC. Circles in the middle of a
node are flits waiting to be sent out. A flit appearing on the border of a node arrives
at this node in the current cycle (on the left side it comes from west, on the bottom
side from the south). When this flit arrived at its target node, it disappears at the
next cycle in the figure. Otherwise, it will be seen at the border of the next node. At
the left bottom of Figure B.1 at cycle 0, we see the situation before the period starts:
All nodes want to send a flit. Because the schedule works off flits column-wise, each
column appears in a different color. In the figure, we follow all possible paths to see
that there are no collisions and no conflicts.

In cycle 1 (second figure in the bottom row), all flits from the first column are sent
(orange circles): When their target is in the first column, they immediately take their
way to the north. Otherwise, they travel to the west until they reach their target
column (cycles 1-3). As soon as they arrived at their target column, the flits are
sent to the north until they reached their target node (cycles 2-6). Thereby, the first
column is a special case because it is the only one where flits are sent to the north
and to the west at the same time. In the other columns, first only flits to the west
are sent and later those to the north in the same column. This can be seen e.g. at
the light blue flits in the last column, which are to be sent next. When their target
node is not in the same column, they are sent out in cycle 4, otherwise in cycle 15.
Flits travelling to the west are on their way to their target column in cycle 4-6. When
these flits have arrived there, they are sent to the north from cycle 5 (for the first
column) to cycle 9 (for the third column). All light blue flits in the last column which
are already in their target column are sent out in cycle 15, arriving at cycle 1 (at the
top row of the figure).

The red and dark blue flits are worked off the same way. Only when sent to the
west, they start at cycle 7 (red flits) or at cycle 10 (dark blue flits). When the red or
dark blue flits are already in their target column, they are sent out at cycle 13 (dark
blue flits) or cycle 14 (red flits). The last flits arrive at their target nodes in cycle
0 and 1 of the next period (top row). This does not lead to conflicts or collisions,
because in cycles 1 and 2 there are no other flits arriving from the south at these
columns.

171

	Abstract
	Acknowledgements
	Introduction
	Contribution and Structure of this Thesis

	Related Work
	Many-core Architectures with Directly Connected Cores
	Many-core Architectures with Cores organized in Groups

	The RC/MC Processor Architecture
	Basic Concept
	Details on Network Communication
	Schedules for the Coordination of Flits
	General-Purpose Schedules

	Programming Model for the RC/MC
	Bulk Synchronous Parallel Model
	Realization in Software via MPI Collective Operations

	Programming the RC/MC
	Hardware Prototype and Simulation
	Timing Analysis for the RC/MC
	Example: Timing Analysis of MPI_Barrier

	Ready Synchronization: Real-Time Flow Control
	Introduction
	Related Work
	Synchronization Concept
	Software Implementation of ready Synchronization
	Hardware Supported ready Synchronization
	Hardware Implementation Considerations
	New Instructions
	Implementation
	Programming model
	Expected Hardware Costs

	Evaluation
	Comparison of Software and Hardware Implementation Effort
	Execution Times
	Saving of Buffer Slots
	Actual Hardware Costs

	Conclusion

	Hardware Broadcast/Multicast Extension to Improve Schedule One-to-All
	Introduction and Basic Idea
	Related Work
	Concept: Hardware-supported Broadcast Operation
	Concept: Hardware-supported Multicast Operation
	Hardware Implementation
	Programming Model
	Hardware Costs
	Expected Impact on Hardware Costs
	Actual Hardware Costs

	Evaluation: Worst-Case Performance
	Timing Analysis of Different MPI_Bcast Implementations
	Comparison of WCET Estimates
	Theoretical Comparison

	Conclusion

	Hardware Barrier Extension to Improve Schedule One-to-All
	Introduction
	Related Work
	Concept for Global Hardware Barriers
	Hardware Barriers for Subsets of Nodes
	Concept for non-global Barriers
	Distinction of Flits of Two Consecutive Barriers
	Example for Complete Barrier Operation

	Hardware Implementation
	Programming model
	Hardware Costs
	Expected Hardware Costs
	Actual Hardware Costs

	Evaluation: Worst-Case Performance
	Timing Analysis of Different MPI_Barrier Implementations
	Comparison of WCET Estimates
	Theoretical Comparison

	Conclusion

	Case Studies: Impact on Communication in Benchmarks
	Case study: CG Benchmark
	Timing Analysis of the CG Benchmark
	Impact of Hardware Extensions on Worst-Case Performance

	Case study: MG benchmark
	Case Study: LU Benchmark
	Workflow of the LU Benchmark
	Characterization of the (Worst-Case) Execution Behaviour
	WCET estimates for LU

	Conclusion and Outlook
	Bibliography
	Acronyms
	Overview on RISC-V Instruction Set Extensions
	Overview on our Instructions
	Encoding of our Instructions
	Control and Status Registers

	Overview on Implementation Details
	messageTypes for Flits in the Network-on-Chip
	Execution times of RISC-V Instructions on the RC/MC
	The One-To-All Schedule without Corner Buffers

