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1. Introduction

Perovskite-related oxides show a huge variety of intrinsic prop-
erties.[1] With oxide heterostructures, it is not only possible to
combine such material characteristics but also to identify novel
electronic phases emerging on the nanoscale which allows to
trigger a plethora of functionalities.[2,3] At the interfaces of cer-
tain polar insulators confined metallic electronic systems appear
driven by electronic reconstruction.[4,5] In addition, inversion
symmetry is systemically broken, a key ingredient for strong
Rashba-type spin–orbit coupling, leading to anomalous transport

properties which will be addressed in this
article. Moreover, such electronic systems,
when gapped, may assume nontrivial val-
ues of topological invariants causing a par-
ticular behavior of their magnetotransport.
In fact, magnetotransport allows to obtain a
fingerprint of the electronic state of metals,
especially also of oxide heterostructures
with their complex electronic properties
controlled by sizable spin–orbit coupling,
multiband behavior, disorder, and
Coulomb interaction.

This article covers two complementary
spin–orbit-coupled electronic systems, both
with regard to magnetotransport: a disor-
dered and a defect-free 2D system.
Correspondingly, the article is organized
as follows: in Section 2, we examine experi-
mentally BaPbO3 thin films grown on
SrTiO3. The perovskite-related oxide
BaPbO3 is a single-band metal. In this sys-

tem with Rashba spin–orbit coupling disorder accounts for weak
antilocalization (WAL) in the presence of electron–electron inter-
action (EEI). We briefly introduce these theoretical concepts of
quantum corrections to transport properties before we analyze
our temperature- and magnetic field-dependent measurements.
We then self-consistently extract parameters describing spin–orbit
coupling and EEI—indicating a correlated ground state in
BaPbO3. In a further step toward a general understanding it sug-
gests itself to consider the spin–orbit coupling dominated magne-
totransport beyond the single-band 2D systems. In Section 3, we
analyze the influence of magnetic fields on the transport proper-
ties of a defect-free 2D multiband system in the fully quantum
mechanical treatment of linear response theory. Our work is
inspired by the fact that magnetotransport studies of LaAlO3/
SrTiO3 interfaces under applied hydrostatic pressure can lead
to counterintuitive results if evaluated with standard semiclassical
techniques.[6] However, as the semiclassical Boltzmann transport
theory builds upon a single-band model its validity in case of mul-
tiband systems like LaAlO3/SrTiO3 should be questioned.

[7] This is
especially true if one expects topological band aspects to play a fun-
damental role. After a general model description, we start by ana-
lyzing magnetotransport for the single-band case revisiting the
results of the Hofstadter model. In a next step, we discuss multi-
band behavior affected by atomic or Rashba-type spin–orbit
coupling.
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Oxide heterostructures allow for detailed studies of 2D electronic transport
phenomena. Herein, different facets of magnetotransport in selected spin–orbit-
coupled systems are analyzed and characterized by their single-band and mul-
tiband behavior, respectively. Experimentally, temperature and magnetic field
dependent measurements in the single-band system BaPbO3/SrTiO3 reveal
strong interplay of weak antilocalization (WAL) and electron–electron interaction
(EEI). Within a scheme which treats both, WAL and EEI, on an equal footing a
strong contribution of EEI at low temperatures is found which suggests the
emergence of a strongly correlated ground state. Furthermore, now considering
multiband effects as they appear, e.g., in the model system LaAlO3/SrTiO3,
theoretical investigations predict a huge impact of filling on the topological Hall
effect in systems with intermingled bands. Already weak band coupling produces
striking deviations from the well-known Hall conductivity that are explainable in a
fully quantum mechanical treatment which builds upon the hybridization of
intersecting Hofstadter bands.
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2. Magnetotransport in Single-Band Systems
Governed by Disorder

Recently, we found that BaPbO3 thin films grown on (001)-
oriented SrTiO3 single crystals show single-band behavior and
a pronounced magnetoresistance (MR) which at low magnetic
fields is evidently ruled by WAL.[8] Surprisingly, temperature-
dependent measurements of the sheet resistance R□ðTÞ account
for an insulating low-temperature state, contradicting the WAL
result of magnetoconductance. Such a counterintuitive behavior
of thin film samples was observed before.[9,10] It is argued that
MR and R□ðTÞ may originate from distinct sensitive channels
leading to different measurement-dependent ground states.[9–12]

By carefully investigating MR and R□ðTÞ, we unveiled that the
expectedWAL contribution in R□ðTÞ is covered by a pronounced
EEI contribution. However, up to now, we neglected the mutual
effect of EEI to MR as we considered it to be small.

Before we examine the influence of EEI on the WAL signal in
our samples, let us discuss the generic temperature and
magnetic field dependencies on the quantum corrections of
the electrical transport of a disordered 2D system.

Due to weak disorder low-temperature electronic transport in
2D materials is affected by quantum interference (QI) resulting
either in insulating or metallic ground states. QI contributes
significantly to the electrical transport only if the electrons’
temperature-dependent dephasing time τϕ is large compared
with, e.g., the elastic scattering time τe: randomly scattered elec-
trons will unavoidably self-interfere constructively with their time-
reversal counterparts leading to WL with its insulating ground
state.[13–17] Pronounced spin–orbit (SO) coupling described by a
timescale τso associated with the D’yakonov–Perel’ spin relaxation
(τso � τϕ) instead contributes an additional phase causing WAL
which induces a metallic ground state.[15,18–20]

Both QI effects, WL andWAL, are characteristically influenced
by applied time-reversal symmetry-breaking external magnetic
fields which makes it possible to experimentally decide on the
type of quantum corrections. A comprehensive description of
the magnetic field-dependent first-order quantum correction to
the conductivity of an ideal 2D material is given by the well-
accepted Iordanskii–Lyanda-Geller–Pikus theory which relates
the specific magnetic field dependence to the winding number
of the spin expectation value around the Fermi surface.[19,21,22] In
case of triple spin winding, found in, e.g., SrTiO3-based 2D thin
films,[23–25] the Iordanskii–Lyanda-Geller–Pikus theory merges
to the analytical result of the Hikami–Nagaoka–Larkin theory.[15]

The first-order quantum correction to the conductivity σ
in applied magnetic field B triggered by QI can then be
expressed as

δσQIðBÞ ¼ e2

πh
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with ψ being the digamma function.[26] The introduced effective
magnetic fields are related to the scattering times via

Be=ϕ=so ¼
ℏ

4eDτe=ϕ=so
(2)

with D being the diffusion constant.
Magnetoconductivity in relevant magnetic fields B � Be is

then given by

ΔσQIðBÞ ¼ δσQIðBÞ � δσQIð0Þ ¼ e2
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where ΨðxÞ ¼ lnðxÞ þ ψð12 þ 1
xÞ.

In the 2D case, experimental data are often presented in terms
of the related MR calculated from the magnetic field-dependent
resistance RðBÞ via

MR ¼ RðBÞ � Rð0Þ
Rð0Þ ¼ 1

1þ ρð0ÞΔσQIðBÞ � 1 (4)

where the 2D resistivity ρ is identified with the sheet resistance
R□ ¼ w

l ⋅ R with l and w being the measurement bar’s length and
width, respectively.

To compare the conductivity influenced either by magnetic
fields or temperature, Equation (1) can be further adapted:
Evaluating δσQIðBÞ in the limit of zero magnetic field the
first-order correction to the conductivity can be individually
expressed for both low-temperature states associated with WL
and WAL, respectively: in case of τso ≫ τϕ (Bso � Bϕ)
Equation (1) treats WL and simplifies to

δσWLðB ! 0Þ ¼ e2

πh
ln

Bϕ

Be

� �
(5)

whereas in case of τso � τϕ (Bso ≫ Bϕ) it relates to WAL and
reads

δσWALðB ! 0Þ ¼ � 1
2
e2

πh
ln

B2
eBϕ

2B3
so

� �
(6)

Bϕ is controlled by inelastic scattering and an algebraic tem-
perature dependence of Bϕ is assumed by

BϕðTÞ ¼ γ þ βTα (7)

with β being a scaling factor, γ modeling a saturation in dephas-
ing at zero temperature, and α being an exponent in the range
between 1 and 2 combining contributions of both electron–
phonon and electron–electron scattering.[27,28]

With the help of Equation (7), the first-order quantum correc-
tions to the conductivity become temperature-dependent with an
insulating state in case of WL

δσWLðTÞ ¼ e2

πh
ln

γ þ βTα

CWL

� �
(8)

and with a metallic state in case of WAL
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δσWALðTÞ ¼ � 1
2
e2

πh
ln

γ þ βTα

CWAL

� �
(9)

Both progressions are exclusively driven by the temperature
dependence of the dephasing scattering with CWL and CWAL

being temperature-independent constants determined by WL
and WAL, respectively.

An insulating ground state is not necessarily induced by
Anderson localization but can also be incited by EEI.[16,17,29]

In 2D systems, the conductivity correction due to EEI reveals
nearly the same logarithmic temperature dependence compared
with WL

δσEEIðTÞ ¼ e2

πh
ln

Tζ

CEEI

� �
(10)

with ζ being an exponent related to screening effects and ranging
between 0.35 for no screening and 1 for perfect screening, and
CEEI being a temperature-independent constant defined by EEI.
The temperature dependence can again be compared with
magnetic field-dependent measurements as in the presence of
magnetic fields a finite Zeeman splitting (ZS) is responsible
for a sizable magnetoconductivity in 2D systems[17]

ΔσZSðB̃ðTÞÞ ¼ � e2

πh
2ð1� ζÞ

3
g2DðB̃ðTÞÞ (11)

with B̃ðTÞ ¼ ðgμBBÞ=ðkBTÞ, g the Landé factor, and g2D a func-
tion defined by

g2DðB̃ðTÞÞ ¼
Z∞
0

dΩ ln
����1� B̃ðTÞ2

Ω2

���� d2

dΩ2
Ω

expðΩÞ � 1
(12)

which can be evaluated numerically.

2.1. Sample Growth and Characterization of BaPbO3 Thin Films

All samples discussed were grown by pulsed laser deposition
(PLD). The PLD system uses a KrF excimer laser with a wave-
length of 248 nm and a nominal fluency of 2 J cm�2. The used
polycrystalline BaPbO3 targets were obtained commercially with
asked maximum achievable density. They are evaluated to have
purities of at least 99.95%. Prior to each sample growth the sur-
face of the targets were carefully cleaned.

BaPbO3 thin films were grown on commercially available, one-
side polished, (001)-oriented single-crystalline SrTiO3 substrates
with a given size of 5� 5� 1 mm3. To obtain defined BaPbO3/
SrTiO3 interfaces the substrates were either TiO2 terminated
using a hydrogen fluoride (HF) buffer solution[30,31] and subse-
quently annealed in pure oxygen flow at about 950 �C for 7 h or
cleansed by lens paper as well as ultrasonic bath treatment in
acetone and isopropyl.

The substrates were then fixed for either infrared laser heat-
ing or resistive heating on appropriate platforms using silver
paste and transferred via a load-lock system and transfer cham-
ber into permanently air-sealed PLD vacuum chambers.
Depending on the pretreatment the substrates were either
slowly heated to nominally 554 �C during at least 60 min in case

of HF-treated substrates or heated up to 800 �C within a few
minutes for at least 5 min in case of cleansed substrates to
purify the substrate surface and then reheated to about
554 �C within seconds, both in a pure oxygen background pres-
sure of about 1 mbar.

Thin-film deposition was done using a nominal laser
pulse energy of 550 and 650mJ—depending on the used PLD
chamber—at a laser frequency of 5 Hz. The number of laser
pulses was chosen individually resulting in desired thin-film
thicknesses. With this setup, the growth rate of BaPbO3 was
determined to be about 0.34 nm per laser pulse.

After thin-film deposition, the vacuum chamber was immedi-
ately filled with pure oxygen to at least 400 mbar, whereas the
sample was cooled to about 400 �C within 3min and kept at that
temperature for additional 17min for annealing. Then the sam-
ple was allowed to freely cool-down to room temperature before
the chamber was evacuated again for unloading the sample.

Film thicknesses were routinely obtained by X-ray reflectivity
(XRR). Conducted XRR fits resulted in averaged surface and
interface roughness better than 0.6 and 0.7 nm, respectively.
X-ray diffraction (XRD) measurements indicate that all epitaxial
BaPbO3 layers are (001)-oriented.

All samples were patterned into four-probe and Hall bar lay-
outs using a standard photolithography system (mercury arc
lamp) followed-up by ion-milling. To minimize contact resistan-
ces gold was sputtered onto the contact pads. All samples were
electrically contacted using copper wires (0.1 mm in diameter)
soldered to the puck and glued via silver paste to the samples.

All electrical transport measurements were carried out using a
commercial 14-T physical property measurement system (PPMS)
with an electrical transport option (ETO). The applied AC cur-
rents were in the range of 0.1–1 μA with typical frequencies from
70 to 128Hz.

2.2. Experimental Results and Discussion

In this article, we account for the EEI contribution intrinsically
involved in the MR data. Assuming both WAL and EEI contrib-
uting equally via Equation (3) and (11), we self-consistently eval-
uate MR and R□ðTÞ within the following iterative scheme:

We start by applying Equation (3) to our raw MR data and
extract the WAL contribution neglecting any EEI contribution dur-
ing the first iteration. Subsequently, with the help of Equation (9),
we are able to subtract the WAL contribution to reveal the pure
temperature-dependent sheet resistance due to EEI which then
provides a value of the screening factor ζ. By accounting for a pro-
nounced Zeeman splitting the MR data can now be reevaluated
again allowing for a priorly hidden EEI contribution that is
described by Equation (11) with a presumed Landé factor
g ¼ 2.We carry out this procedure successively until the screening
factor ζ settles to a constant value. To avoid oscillations which may
prevent convergence—as ζ is close and limited to 1—we average
the obtained ζ values within the last three iterations.

Exemplarily the result of such a self-consistent evaluation of
MR and R□ðTÞ in terms of WAL and EEI are shown in
Figure 1 and 2. Figure 1 shows temperature-dependent MR data
taken from a 15.0 nm-thick BaPbO3 thin film showing
an increase in MR to a maximum value at a magnetic field of
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B � 0.85 T with a following decrease at higher magnetic fields,
confirming our former results.[8] The MR data were corrected
from concomitant EEI by subtracting its contribution via
Equation (11) with ζ ¼ 0.91 retrieved from R□ðTÞ analysis. As
expected, EEI contributes only slightly (see colored lines in
Figure 1). The re-evaluated MR data can now be perfectly fitted
in terms of WAL using Equation (3).

Further, the fits result in an averaged Bso � 0.22 T and a
temperature dependence of Bϕ that can be best described with

α ¼ 1.99 following Equation (7) supporting a dephasing mecha-
nism mainly due to electron–phonon scattering.

Simultaneously taken R□ðTÞ data are likewise affected by EEI
at low temperature, see zero-field data in Figure 3: Upon cooling
starting from room temperature R□ steadily decreases, then
reaches a minimum at about 11.1 K and subsequently rises
again. The high-temperature progression can be well understood
in terms of electron–phonon scattering as well as thermally
activated dislocation scattering.[32]

The low-temperature behavior is unequivocally controlled
by quantum corrections. Figure 2 shows the change of the
conductivity

Δσ ¼ 1
ρðTÞ �

1
ρðT ref Þ

� �
(13)

normalized to T ref ¼ 11.1 K. The measured data were
re-evaluated by subtracting the influence of WAL following
Equation (9) with parameters acquired from evaluations of the
MR. The corrected data show a clear logarithmic increase per-
fectly described by EEI following Equation (10) that results in
ζ ¼ 0.91.

For consistency, we applied the just established self-consistent
calculations of Bso and ζ to the data presented in the study by

Figure 2. Progression of the change in conductivity referenced to the tem-
perature T ref ¼ 11.1 K in logarithmic scale. Blue dots show original mea-
sured data, whereas the expected progression for WAL is plotted in
orange, retrieved from MR analysis (see Figure 1) following
Equation (9) indicating a metallic low-temperature state. In green,
WAL-revised data are shown which are perfectly explained by the EEI con-
tribution solely (Equation (10))—resulting in ζ ¼ 0.91.

(a)

(b)

Figure 3. Progressions of R□ðTÞ as well as changes in conductivity nor-
malized to T ref ¼ 6 K while applying various perpendicular magnetic fields
between 0.2 and 1 T (in logarithmic scale). The magnetic field suppresses
WAL contributions, whereas EEI contributions are unaffected. The slopes
clearly show trends toward an insulating ground state as the magnetic field
increases. The gradient jmj was linearly fitted, representing ζ in case of
suppressed WAL. The resulting ζ ranging between 0.91 and 0.92 is in good
agreement with the prior self-consistent analysis (ζ ¼ 0.91).

.

.

M
R

(%
)

K
EEI, K

. K

. K
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Magnetic Field(T)
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EEI,
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fitHLN
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Figure 1. Reevaluated MR data taken at different temperatures of a
15.0 nm thick BaPbO3 thin film grown on a (001)-oriented single-crystal-
line SrTiO3 substrate. The symmetrized raw data were self-consistently
corrected from EEI contributions (Equation (11)) with the presumed value
of g ¼ 2 and ζ ¼ 0.91 retrieved from analysis of the R□ðTÞ measurement
(see Figure 2). The EEI contribution for each temperature is plotted as a
solid line with its corresponding color. Black solid lines show best fits
(least squares method) of the EEI-corrected MR data (see “corr.”, i.e., col-
ored dots) using Equation (3) resulting in an averaged value of
Bso � 0.22 T. The obtained temperature dependence of Bϕ can be
described by an algebraic dependence (Equation (7)) with α ¼ 1.99,
β ¼ 0.14mTK�α, and γ ¼ 7.50mT (not shown) determining the WAL cor-
rection in the R□ðTÞ analysis (see Figure 2).
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Seiler et al.,[8] comparing different sample thicknesses: For the
sample with thickness 21.3 nm, the WAL contribution expressed
by Bso changes in its average value from 0.10 to 0.13 T, whereas
EEI represented by ζ remains unchanged at a value of 0.97. The
4.8 nm thick sample shows a small increase in Bso from 0.23 to
0.24 T in average, whereas ζ changes from 0.84 to 0.89. It will be
interesting to further study the thickness dependence on both the
WAL and EEI contributions.

An independent approach to extract the EEI contribution with-
out being affected by WAL is the magnetic field dependence of
R□ðTÞ. Magnetic fields B > Bϕ cause the quantum corrections

induced by QI (δσQI
B ) to become temperature independent[33]

and therefore to vanish by evaluating

ΔσQI
B ðTÞ ¼ δσQIB ðTÞ � δσQI

B ðT ref Þ (14)

Hence, in the presence of even small magnetic fields, the tem-
perature dependence of the conductance below T ref should be
solely reigned by EEI.

In Figure 3, the temperature-dependent progression of R□ðTÞ
as well as ΔσðTÞ normalized to now T ref ¼ 6K are plotted, both
in logarithmic scale. The magnetic field further increases
R□ pronouncing the insulating ground state according to the
expected suppression of WAL effects. The gradient jmj (which
translates directly into the value of ζ in case of suppressed
WAL) extracted from linear fits clearly increases and saturates
at jmj � 0.915 in reasonable good agreement with our previous
result (ζ ¼ 0.91).

3. Magnetotransport in Multiband Systems in the
Clean Limit

Magnetotransport studies have also been carried out on multi-
band oxide heterostructures. For example, for the confined
electronic system at the interface of LaAlO3/SrTiO3, an EEI con-
tribution was suggested to dominate transport at low tempera-
tures.[32] This interpretation was challenged in a more recent
WAL analysis within the framework of a semiclassical approach
to multiband magnetotransport.[6]

A fully quantummechanical multiband treatment of WAL was
established for degenerate, isotropic t2g bands.

[34,35] However, for
various multiband systems, such as the electron system at the
LaAlO3/SrTiO3 interface, band hybridization at crossing points
or rather lines is present in the relevant filling regime. This
so far has not been addressed within a fully quantummechanical
approach to WAL.

Here, as a first step to a more realistic modeling, we develop a
description of magnetotransport in the presence of band cross-
ings within an effective two-band model for a defect-free lattice
system. We investigate explicitly the Hall conductivity in the
presence of atomic and Rashba-like spin–orbit coupling.

Before we reexamine the prerequisites of magnetotransport of
a single-band model and the two-band case with its particular
Hall conductivity, let us introduce the generic model description.

We use a tight-binding representation for the Hamiltonian of
a noninteracting electron system in an infinite 2D crystalline
lattice

H ¼
X
j, l

X
μ, ν

tμ,νRj�Rl
ðcμRj

Þ†cνRl
¼
Z
ΩBZ

d2k
X
μ, ν

hμ,νk ðcμkÞ†cνk (15)

where Rj is a lattice vector. Lowercase Greek letters μ, ν label the
states within a unit cell. The integral over the lattice momenta k is
taken over the first Brillouin zone (BZ), the area of which we
denote by ΩBZ.

The coordinate operator is assumed to be diagonal in the cho-
sen basis fjRj, μig

r ¼
X
j

X
μ

ðRj þ dμÞðcμRj
Þ†cμRj

¼
Z
ΩBZ

d2k
X
μ

ðcμkÞ†i∇kc
μ
k (16)

where dμ is the position of the state μ within the unit cell. For the
last equality to hold the Fourier transformation of the creation
and annihilation operators must be defined for each state μ indi-
vidually with respect to its exact position

cμk ¼
1ffiffiffiffiffiffiffiffiffi
ΩBZ

p
X
j

exp½�ikðRj þ dμÞ�cμRj
(17)

Linear response theory provides us with the Kubo formula for
the electric conductivity in the static limit

σαβDC ¼ �iℏ lim
η!0þ

Z
ΩBZ

d2k
ð2πÞ2

X
m, n

f ðEm
k Þ � f ðEn

kÞ
Em
k � En

k

� k,mjJαjk, nh i k, njJβjk,mh i
Em
k � En

k þ iℏη

(18)

where jk,mi describes an eigenstate of the Hamiltonian in band
m and Em

k the corresponding eigenvalue.[36–38] For numerical sta-
bility η has to be kept finite, which may be roughly interpreted as
a finite scattering rate. The Fermi distribution f ðEm

k Þ actually also
depends on the chemical potential and temperature. The electric
current operator J in the reciprocal basis can be written in terms
of the gradient of the Hamiltonian matrix hμ,νk

J ¼ �e
i
ℏ
½H, r� ¼ �e

Z
ΩBZ

d2k
X
μ, ν

1
ℏ
∇kh

μ,ν
k

� �
ðcμkÞ†cνk (19)

where e is the elementary electric charge.[39–41]

As the coordinate operator (Equation (16)) is assumed to be
diagonal, the effect of a homogeneous external magnetic field
on the orbital degrees of freedom is given purely in terms of the
Peierls phase.[42,43] No further parameters enter the model
description.[44,45] In general, the Hamiltonian will then not com-
mute with the lattice translation operators TRj

, because of the real
space dependence of the vector potential. For a homogeneous
external magnetic field with rational flux p=q per 2D unit cell,
in units of the magnetic flux quantum Φ0 ¼ h=e, translation
symmetry can be restored by introducing magnetic translation
operators TM

Rj
.[46–48] Those are a combination of a gauge transfor-

mation and a lattice translation. They do not commute with each
other except if transporting a particle to the opposite corner of a
parallelogram penetrated by an integer number of magnetic flux
quanta. The smallest such parallelogram with a nonvanishing
area is the so-called magnetic unit cell, which is a q times
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enlarged version of the lattice unit cell, so that it is penetrated by
an integer number p of magnetic flux quanta. Here and in the
following p and q are assumed to be coprime integers.

The quantum numbers of the commuting magnetic transla-
tion operators are good quantum numbers to characterize the
eigenstates of the Hamiltonian. They replace the lattice momenta
of the translation invariant system, resulting again in a
Hamiltonian in reciprocal space of the form of Equation (15),
where μ, ν now label the states in a magnetic unit cell. From
a band perspective, the enlargement of the unit cell to a magnetic
one leads to a splitting of each of the initial dispersion relations
without field into q magnetic Bloch bands (so-called Hofstadter
bands). Each of the Hofstadter bands contains only a fraction 1=q
of the states of the original bands.[49]

Under applied magnetic field the matrix elements of the cur-
rent operator in the eigenbasis of the Hamiltonian, as appearing
in Equation (18), have the same q-fold degeneracy in the mag-
netic BZ as the eigenvalues.[49] The integral over kmust therefore
in the magnetic case only be taken over a reduced part of the
magnetic BZ.[50–52]

3.1. Anisotropic Hofstadter Model

Within this framework, we now consider a square lattice with
one orbital per site and nearest-neighbor hopping only

H ¼
Z
ΩBZ

d2k½�2tx cosðkxÞ � 2ty cosðkyÞ�c†kck (20)

The lattice spacing is set to 1 and spin polarization is assumed.
We note that a rectangular lattice geometry would in the following
only lead to a scaling of longitudinal conductivities and densities of
states. We allow for an asymmetry in the hopping strength along
the two different bond directions. By introducing the Peierls phase
to account for a homogeneous magnetic flux through the lattice
cells, one arrives at the Harper–Hofstadter Hamiltonian.[49,53]

To review how band structure and topology affect the conduc-
tivity of the anisotropic Hofstadter model, we first choose a flux of
p=q ¼ 1=10. The original cosine band is then split up into q ¼ 10
separate Hofstadter bands, as long as the system is truly 2D
(tx 6¼ 0 6¼ ty). In case of q being even the two middle sub-bands
in the Hofstadter model touch.[49,54] All other bands are isolated
by finite energy gaps and have a Chern number of þ1.[54,55]

This can be verified in Figure 4, as the longitudinal conductivity
vanishes in those gaps, whereas the transversal conductivity is quan-
tized in units of the conduction quantum e2=h. This holds approxi-
mately true even at finite temperatures and scattering rates, as long
as temperature kBT and scattering-induced energy broadening ℏη
are much smaller than the bandgaps. If the chemical potential on
the other hand is placed within a Hofstadter band, one calculates a
finite Drude weight in case of the longitudinal conductivity and the
Hall signal is shifted away from its quantized values.

In the limit of a 1D system with either tx ¼ 0 or ty ¼ 0, the
Peierls phase can be gauged away completely. One is left with
the field-free model with a single band with zero Hall signature.

As the anisotropy between the hopping parameters in x- and y-
directions is in-/decreased, only the contributions to the conduc-
tivities, which are not of topological character, approach the fully
an-/isotropic limit (see yellow/orange lines in Figure 4). For

(a)

(b)

Figure 4. Quantization of conductivities: a) longitudinal and b) transversal
signals for different anisotropy values in the Hofstadter model plotted
versus band filling with a magnetic flux per unit cell of p=q ¼ 1=10 of a
magnetic flux quantum. The evaluations are done setting
kBT ¼ 5tx ⋅ 10�4 and ℏη ¼ tx ⋅ 10�3. The periodicity of the field-free system
is taken to be N ¼ 12 000 lattice cells in each direction.

(a)

(b)

(c)

Figure 5. Hall conductivity in respect to open and closed semiclassical
orbits: Hall signal for a) p=q ¼ 1=30 of a flux quantum per unit cell
and b) p=q ¼ 1=300. All other parameters are unchanged from
Figure 4. c) Density of states of the field-free model at the Fermi energy
in dependence of the filling factor. The insets show the Fermi surfaces at
certain fillings in the first BZ, where the horizontal axis represents kx and
the vertical axis ky. In all three subfigures, the positions of the logarithmic
Van Hove singularities of the model with anisotropy ty=tx ¼ 0.25 and the
isotropic case are indicated by vertical lines.
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filling factors n ¼ r=q, on the other hand, where r Hofstadter
bands are completely filled, the conductivities are invariant as
long as no single energy gap becomes too small.

By reducing themagnetic flux (Figure 5) for a fixed value of the
anisotropy with 0 < ty=tx < 1, one can see that the Hall signal is
filling-wise divided into distinct regimes where it either
approaches the fully anisotropic or the isotropic limit. The same
holds true also for the longitudinal conductivity. The boundaries
between those different cases are associated with the positions of
the logarithmic Van Hove singularities of the field-free model.[56]

This is reasonable if one recalls that those two Van Hove sin-
gularities originate from the saddle points of the band structure
and are thus at the same fillings as the transitions between dif-
ferent kinds of semiclassical orbits.[57] In this specific case, one
finds closed orbits for low and high fillings of the anisotropic
Hofstadter model, whereas in between the logarithmic
Van Hove singularities only open orbits exist (see insets
in Figure 5c). The isotropic limit is a special case: the two
considered Van Hove singularities merge in energy, which
leads to an immediate switching from electron to hole like
closed orbits, with only a single energy level in between accom-
modating open orbits.[58] In the fully anisotropic limit, on the
other hand, there are only open orbits, which are purely 1D and
yield no Hall signal as already mentioned.

The sharp topological peaks in the regions of open orbits that
one finds for highmagnetic fields (Figure 4b) are washed out quickly
with decreasingmagnetic field by finite temperatures and scattering,
as there the gaps between the Hofstadter bands become small.

From semiclassical Boltzmann transport theory, one can
deduce an expression for the nontopological contributions to
the Hall conductivity of the considered band model at zero tem-
perature, assuming ty ≤ tx

σxyDC ¼ � e2

h
q
p

n� jkxðnÞj
π

 !
(21)

where jkxðnÞj is the absolute value of the time averaged kx-value
along a semiclassical orbit at the Fermi surface for a certain band
filling n (compare previous studies[59,60]). So in case of only
closed electron orbits jkxj ¼ 0 and in case of exclusively closed
hole orbits at the Fermi level jkxj ¼ π, whereas for open orbits,
jkxðnÞj is bounded by the minimal and maximal absolute kx-value
of the open orbit. Thus, opposed to the standard textbook deri-
vations, Equation (21) is not limited to the linear contributions of
closed electron or hole orbits to the transversal conductivity.[60] It
describes the complete filling range, even the suppression of the
Hall signal for open orbits and the switching from electron to
hole like behavior at half filling.

For a similar study about open and closed orbits in the
Hofstadter model where the anisotropy is due to a diatomic basis,
see Göbel et al.[56]

3.2. Effective Two-Band Model in a Perpendicular Magnetic
Field

With knowledge of the magnetotransport behavior of the single-
band model from Section 3.1, one can now proceed to study a

multiband system, where two such square lattice cosine bands
are combined. Its field-free Hamiltonian is given by

H ¼
Z
ΩBZ

d2k
X
μ¼1, 2

�
�2
	
tμx cosðkxÞ þ tμy cosðkyÞ


ðcμkÞ†cμk
þ εμðcμkÞ†cμk þ

X
ν¼1, 2

ΔðkyÞτμ,νx ðcμkÞ†cνk
� (22)

where εμ allows for a relative energy shift of the two bands against
each other, τx is the first Pauli matrix, and ΔðkyÞ controls a
spin–orbit-like coupling effect (see the following text). We
assume that both states in a unit cell (μ ¼ 1, 2) are centered at
the same point (d1 ¼ d2).

To provide a specific example of a perovskite oxide,
Hamiltonian (22) can accommodate each reduced set of two
out of the six spin-orbital states of the effective LaAlO3/SrTiO3

band model.[7,61,62] As such, it allows us to study the complex
patterns of the Hall signal for every pair of bands individually,
without interference from a plethora of additional states. The
interplay between the anisotropic dyz-/dzx-bands of the 3d t2g
orbitals of titanium and the isotropic dxy-band governs the main
structure of the Hall signal of the effective six-band model. From
this perspective we now concentrate on the Hall conductivity
emerging from coupling of an anisotropic (μ ¼ 1, t1y ¼ 0.25t1x )
and an isotropic (μ ¼ 2, t2x ¼ t2y ¼ t1x ) cosine band.

Neglecting the energy shift in the effective LaAlO3/SrTiO3

band model due to spacial anisotropy at the interface, these
two bands are assumed to be aligned at their bottom. This
arrangement leads to a match in energy, and thus filling, of
the logarithmic Van Hove singularity of the isotropic band with
the upper singularity of the anisotropic band. A two-band model
with slightly different relative band positions would be treated
analogously.

Two different coupling effects will be considered. A constant
coupling term with ΔðkyÞ ¼ γ as it arises in the six-band model
between the dxy-band and the dyz-/dzx-bands due to atomic spin–
orbit coupling. Furthermore, a k-dependent coupling ΔðkyÞ ¼
�α sinðkyÞ is examined. It resembles the coupling term between
the dxy-band and the dyz-/dzx-bands, introduced by the symmetry
breaking at the LaAlO3/SrTiO3 interface.[61,62]

First, we inspect the Hall conductivity of the two uncoupled
bands plotted against the filling factor, as its structure already
changes nontrivially with respect to the single-band behavior
studied in Section 3.1. The additional structural complexity is
caused by the differing densities of states of the two bands.
Consequently, the conductivity of the uncoupled two-band sys-
tem may only be obtained by superposition of the individual sig-
nals after a nontrivial transformation of each of them along the
filling axis. By color coding the total Hall conductivity (Figure 6,
purple sections belong to μ ¼ 1, orange sections refer to the
orbital contribution μ ¼ 2), the signal is again resolvable from
a single-band perspective.

In addition to the asymmetry of the signal with respect to half
filling, which results from the alignment of the two bands at their
bottom, the most prominent new feature in the Hall conductivity
is a step-like descent for fillings between the logarithmic Van
Hove singularities. It should not be confused with the similar
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looking quantized Hall conductivity resulting from gaps in the
energy spectrum when plotted against the chemical potential.
In Figure 6, the signal is shown versus band filling, effectively
skipping energy gaps in the dispersion specified by a quantized
Hall conductivity.

Thus, the “treads” of those steps cannot be the result of band-
gaps. Instead, they are the Hall signal of the wider Hofstadter
bands of the anisotropic cosine band, which has open semiclas-
sical orbits in this range of filling, leading to a nearly suppressed
transversal conductivity.

The narrow energy gaps between those wider Hofstadter
bands manifest themselves in Figure 6 as narrow “topological
peaks” interrupting the horizontal progression of the step treads.
However, as seen in the single-band case in Section 3.1, they are
quickly washed out by scattering and temperature, remaining
only visible in the vicinity of the logarithmic Van Hove
singularities.

The step “risers”, on the other hand, can be traced back to the
flat Hofstadter bands of the isotropic cosine band, corresponding
to closed semiclassical orbits. Typically, such a flat Hofstadter
band (with μ ¼ 2) is placed energetically somewhere within a
wider one (with μ ¼ 1). When the chemical potential reaches this
flat Hofstadter band its much higher density of states leads to a
near total suspension of the filling up of the wider band, until no
empty states are left in the flat band. Thus, the slope of the Hall
conductivity changes abruptly compared with the step treads and
the height of the riser assumes a nearly quantized value (of e2=h ).

The regime with the step-like behavior is then expected to be
heavily affected already by adding a weak coupling term ΔðkyÞ to
the Hamiltonian (Figure 7), as the different Hofstadter bands
will hybridize strongest at their intersection lines. In the case
of a weak magnetic field (Figure 7b), it is actually the only range

of filling where the Hall signal of the weakly coupled bands
differs significantly from the one of the uncoupled bands. It
is striking that a weak perturbation modifies the Hall signal qual-
itatively—an observation that will be explained below. The other
affected region around the coinciding logarithmic Van Hove sin-
gularities (Figure 7a), where the Hall signal switches its sign, will
not be investigated closer, as it shrinks to zero width in the low
magnetic field limit.

For weak coupling strengths, the deviation from the behavior
of the uncoupled bands in the step-like region can be well under-
stood by first looking at higher magnetic fields (Figure 8). Band
structure and Berry curvature are for weak coupling only

(a)

(b)

Figure 7. Evolution of the Hall conductivity for a hybridized two-band
model: a) Hall signal from Figure 6 (ΔðkyÞ ¼ 0) compared with the two
different types of band coupling ΔðkyÞ ¼ γ and ΔðkyÞ ¼ �α sinðkyÞ for
small coupling constants. b) Same as (a) but with a reduced magnetic
field.

(a)

(b)

Figure 8. Reappearance of a topologically quantized Hall conductivity for
hybridized Hofstadter bands: Hall signal for the uncoupled model of
Figure 6 (ΔðkyÞ ¼ 0) with an increased magnetic flux of p=q ¼ 1=10 com-
pared with the two different types of band coupling ΔðkyÞ ¼ γ and ΔðkyÞ ¼
�α sinðkyÞ for a) weak and b) strong coupling. The filling of half an electron
per unit cell (n ¼ 0.25) is marked by a vertical gray line. For the lower
fillings, the integer topological values of the Hall signal line up (descend-
ing gray line), as there the magnetic Bloch bands all have a Chern
number of þ1.

Figure 6. Hall conductivity of an uncoupled two-band model (ΔðkyÞ ¼ 0)
broken down into distinct band contributions: anisotropic hopping
t1y ¼ 0.25t1x in the first band (μ ¼ 1) and isotropic hopping t2x ¼ t2y ¼ t1x
in the second band. The two bands are aligned at their bottom
(εμ ¼ ð�1Þμ0.75t1x ). System size, temperature, and scattering rate are cho-
sen as in Figure 4 and the magnetic flux is at p=q ¼ 1=30. Vertical gray
lines indicate the positions of logarithmic Van Hove singularities. By cal-
culating the relative change in the Hall signal with filling, coming from
state μ ¼ 1 of the field-free model, one obtains the impact of this state
on the Hall conductivity at a certain filling factor (see color coding).
Loosely speaking, dark purple sections result from the anisotropic band
(μ ¼ 1) and dark orange sections are contributions from the isotropic
band (μ ¼ 2).
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distorted in the vicinity of the former band crossings. So the Hall
signal is expected to stay mostly unchanged. It can only deviate
significantly from that of uncoupled bands in the filling ranges of
the step risers (e.g., 0.2 < n < 0.3, in Figure 8a).

For a flat primary Hofstadter band intersecting a wider one,
the shape of the Hall signal of the hybridized bands can be con-
structed based on two facts: band repulsion and the Chern num-
bers of the hybridized magnetic Bloch bands. By hybridization,
the wider primary Hofstadter band is split apart at the energy of
the flat band and each part is merged with half of the flat band,
which is itself split along the intersection lines. Thus forming
two new nonintersecting hybridized magnetic Bloch bands.

For weak coupling strengths, the new bands in the regions
around the former crossings are pushed above/below the energy
of the primary flat Hofstadter band, due to band repulsion. In
contrast, in the other regions of the BZ, the band dispersions
and also the Berry curvatures are nearly unchanged. This means
that filling-wise the progression of the transversal conductivity
only changes at the two edges of the former step riser, whereas
in the middle part of that region one still finds the same linear
trend as before.

For strong coupling, all hybridized magnetic Bloch bands in
this regime are energetically separated from each other by finite
bandgaps. A Chern number of þ1 can in this case easily be read
off from Figure 8b for each of the new bands (see the peaks at
fillings of completely filled magnetic Bloch bands lined up along
a descending line). This must also hold true for the weak cou-
pling case, assuming the bands do not cross while reducing
the coupling strength—albeit the hybridized bands may eventu-
ally overlap if the flatter band has a finite width.

Somewhere in the middle of the former step riser the ener-
getically lower one of the two hybridized magnetic Bloch bands
is completely filled. Assuming energetically nonoverlapping
bands or, equivalently, that the upper hybridized band only con-
tributes linearly up to this filling factor, the Hall signal must thus
already be shifted down to the descending gray line connecting
the integer topological values in Figure 8a. Otherwise, the Chern
numbers of the nonintersecting hybridized bands could not be
matched correctly. This leads to a broad dip replacing the step
riser. It is the separation of the bands due to the hybridization
that causes this sizable finite down shift of the Hall signal.

Inspecting the case of a slightly weaker magnetic field more
thoroughly (Figure 7), where the assumption of totally flat pri-
mary Hofstadter bands is even more accurate, one sees that such
a broad dip appears at every former step riser. Thereby replacing
the step-like descent by an oscillatory behavior, varying between
the signal of the uncoupled bands and the “topological limit”.
The gaps between the wider Hofstadter bands, associated with
the anisotropic cosine band, must have also been slightly
enlarged by the band coupling. In particular one can now identify
their narrow peaks in the whole region between the logarithmic
Van Hove singularities (Figure 7a), where they were suppressed
before by finite temperature and scattering.

For higher temperatures, the energy broadening of kBT will
eventually extend over the range of several magnetic Bloch
bands. This then leads to an averaging out of these oscillations.
Lowering the magnetic field has the same effect with the addition
that new phenomena can arise due to a finite coupling strength,
which can then also depend on the specific form of ΔðkyÞ.

4. Conclusion

We discussed 2Dmagnetotransport in the presence of spin–orbit
coupling in single-band systems with disorder as well as multi-
band systems in the clean limit.

Experimentally, we extracted self-consistently both WAL and
EEI contributions emerging as first-order quantum corrections
to the electrical transport properties of thin BaPbO3 films.
Thus, we offer a consistent way to interpret quantum corrections
on 2D films to thoroughly identify an electronically correlated
and insulating low-temperature state.

Furthermore, going from a single-band system to a general
multiband setup, we investigated a defect-free lattice system
which reveals a striking behavior when electronic bands hybrid-
ize in the presence of a magnetic field. We first reanalyzed the
Hall conductivity of the anisotropic Hofstadter model, where
open semiclassical orbits lead to a deviation from the well-known
linear behavior in the electron density of closed orbits. This fun-
damental knowledge of the single-band behavior of the conduc-
tivity then allowed us to fully understand an uncoupled
multiband system. The additional effects of a weak band cou-
pling in this multiband system can be explained by the hybrid-
ization of intersecting Hofstadter bands instead of the field-free
bands.

Hereafter, it would be intriguing to investigate a disordered
system in a generic multiband setup to merge the aspects inves-
tigated in our complementary studies. The implementation
of band hybridization into a generalized version of the
Iordanskii–Lyanda-Geller–Pikus theory will be challenging but
allows for a fundamental understanding of multiband quantum
interference.
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