
1. Introduction
The Australian 2019/2020 bushfires were unprecedented in both their extent and intensity (Brew 
et al., 2020), causing a catastrophic loss of habitat and human and animal life. Between October 2019 and 
February 2020 hundreds of fires burned in the south-east of the country, peaking in size in December and 

Abstract The Australian 2019/2020 bushfires were unprecedented in their extent and intensity, 
causing a catastrophic loss of habitat, human and animal life across eastern-Australia. We use a regional 
air quality model to assess the impact of the bushfires on particulate matter with a diameter less than 
2.5 μm (PM2.5) concentrations and the associated health impact from short-term population exposure to 
bushfire PM2.5. The mean population Air Quality Index (AQI) exposure between September and February 
in the fires and no fires simulations indicates an additional ∼437,000 people were exposed to “Poor” or 
worse AQI levels due to the fires. The AQ impact was concentrated in the cities of Sydney, Newcastle-
Maitland, Canberra-Queanbeyan and Melbourne. Between October and February 171 (95% CI: 66–291) 
deaths were brought forward due to short-term exposure to bushfire PM2.5. The health burden was largest 
in New South Wales (NSW) (109 (95% CI: 41–176) deaths brought forward), Queensland (15 (95% CI: 
5–24)), and Victoria (35 (95% CI: 13–56)). This represents 38%, 13% and 30% of the total deaths brought 
forward by short-term exposure to all PM2.5. At a city-level 65 (95% CI: 24–105), 23 (95% CI: 9–38) and 
9 (95% CI: 4–14) deaths were brought forward from short-term exposure to bushfire PM2.5, accounting 
for 36%, 20%, and 64% of the total deaths brought forward from all PM2.5. Thus, the bushfires caused 
substantial AQ and health impacts across eastern-Australia. Climate change is projected to increase 
bushfire risk, therefore future fire management policies should consider this.

Plain Language Summary The Australian 2019/2020 bushfires were unprecedented in 
their size and intensity, resulting in a catastrophic loss of habitat and human and animal life across 
eastern-Australia. We use an air pollution model (WRF-Chem) to quantify the impact of the bushfires on 
particulate matter with a diameter less than 2.5 μm (PM2.5) concentrations. We run the model with and 
without emissions from the fires so their impact on PM2.5 can be isolated. We find that between September 
and February an additional ∼437,000 people were exposed to “Poor” or worse air quality index levels due 
to the fires across eastern-Australia. Short-term exposure to high PM2.5 concentrations has been linked 
to negative health impacts. Therefore, we estimate the health impact of population exposure to bushfire 
PM2.5 across eastern-Australia, regionally and at city level. Our estimate indicates that between October 
and February 171 deaths were brought forward due to exposure to PM2.5 from the fires. Regionally, most 
deaths were brought forward in New South Wales (109 deaths brought forward), Queensland (15), and 
Victoria (35). Within these regions, the most deaths were brought forward in Sydney (65), Melbourne (23), 
and Canberra-Queanbeyan (9) as large populations were exposed to high PM2.5 concentrations due to the 
bushfires.
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January. By burned area the bushfires were the largest in south-east Australia since European occupation 
(late 1700s) (Wintle et al., 2020), burning more than 10 million hectares of vegetation. The burned area of 
the 2019/2020 fires was larger than the Ash Wednesday (1983) and Black Saturday (2009) fires combined 
(Brew et al., 2020). The immediate impacts of the bushfires included the destruction of almost 6,000 build-
ings and the deaths of 34 people and more than 3 billion terrestrial vertebrates (Verzoni, 2021).

The severity of the 2019/2020 bushfire season was promoted by a decrease in rainfall and increase in tem-
peratures due to a combination of meteorological and climatic conditions (Australian Bureau of Meteorol-
ogy, 2019a). Australia had experienced two consecutive very dry years prior to 2019 (2017–2018), with 2019 
being the warmest and driest on record (van Oldenborgh et al., 2020). This was combined with a strong pos-
itive Indian Ocean Dipole (IOD) phase from July 2019 onwards (Australian Bureau of Meteorology, 2020) 
and a negative Southern Annular Mode (SAM) event (Australian Bureau of Meteorology, 2019b), both of 
which reduce rainfall across south-eastern Australia.

Climate change is projected to increase the frequency, intensity and spread of wildfires both globally (Sut-
ton et al., 2011) and in Australia (Lucas et al., 2007). Fire weather conditions in Australia are predicted to 
worsen, with forest fire danger index (FFDI) projected to increase in all climate change scenarios (0%–30% 
by 2050) (Lucas et al., 2007). Alongside this, the number of days where fire danger is “very-high” or “ex-
treme” is projected to increase, with an increase in the length of the fire season (Lucas et al., 2007). The 
largest changes in FFDI are predicted to be seen in New South Wales due to the Mediterranean climate of 
the region. Mild, wet winters encourage the growth of fuel, and hot, dry summers lead to an increase in the 
FFDI (Lucas et al., 2007). The increase in bushfire frequency and intensity is likely to increase population 
exposure to pollutants from bushfires, and therefore the health burden of bushfire events.

Substantial epidemiological and toxicological evidence supports the association between wildfire PM2.5 ex-
posure and short-term all-cause mortality and short-term respiratory morbidity (Delfino et al., 2009; Faus-
tini et al., 2015; Johnston et al., 2011; Naeher et al., 2007; Reid et al., 2016; Zanobetti & Schwartz, 2009). 
However, research to identify the toxicity of different components of PM2.5 chemical composition is on-
going, and so equal toxicity for all PM2.5 is commonly assumed in health impact assessments. The health 
burden of wildfires is concentrated in the tropics, Australia, Canada, and the USA and is substantial (Black 
et al., 2017; Crippa et al., 2016; Johnston et al., 2012; Liu et al., 2015; Reid et al., 2016). The effect of wild-
fires on PM2.5 concentrations in these countries is so large that the PM2.5 associated health burden from 
long-term exposure is dominated by exposure to wildfires in large parts of them (Lelieveld et al., 2015). 
Therefore, reducing population exposure to pollutants from wildfires is likely to yield large near-term health 
benefits in these regions (Johnston et al., 2012).

Two studies have previously estimated the impacts of the 2019/2020 bushfires on mortality due to short-
term exposure to bushfire PM2.5. Both studies used observational data from the ground-based monitoring 
network in south-east Australia to estimate daily mean PM2.5 exposure. The first study, from Borchers Ar-
riagada et al. (2020), estimated exposure using inverse distance weighting to interpolate PM2.5 monitoring 
data spatially to statistical area level 2 (SA2s) centroids within 100 km of each monitoring site. The entire 
SA2 population was then assumed to be exposed to the interpolated PM2.5 concentration. Bushire smoke 
affected days were defined, for each monitoring site, as days where the daily mean PM2.5 concentration 
exceeded the 95th percentile of historical daily mean PM2.5 concentrations. The contribution of bushfire 
smoke to the total PM2.5 mass (bushfire smoke PM2.5) was estimated using the difference between the ob-
served PM2.5 concentration and the long-term historical monthly mean PM2.5 concentration at each mon-
itoring site. Using the bushfire smoke PM2.5 fraction the health impacts of bushfire PM2.5 exposure were 
estimated, applying the World Health Organisation (2013) short-term exposure-response function for all-
cause, all-age mortality. The estimated health impact on mortality was substantial, with an estimated 417 
(95% CI: 153–680) deaths brought forward across eastern-Australia due to short-term exposure to bushfire 
smoke between October 1, 2019 and February 10, 2020. The health impact was highest in New South Wales 
and Victoria, with 219 (95% CI: 81–357) and 120 (95% CI: 44–195) deaths brought forward by bushfire PM2.5.

In a separate study, Ryan et al. (2021) used a random forest model, trained using historical ground-based 
observations, to predict air pollutant concentrations, including PM2.5, without bushfires. These estimates 
were compared with ground-based observations during the period of the bushfires to estimate the bushfire 
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contribution to PM2.5 concentrations each day. Population-weighted bushfire PM2.5 exposure and mortality 
from short-term exposure to bushfire PM2.5 in New South Wales and Victoria were then estimated in the 
same way as Borchers Arriagada et al. (2020). The estimated health impact lay within the lower limit of 
Borchers Arriagada et al. (2020) in New South Wales and Victoria at 152 (95% CI: 95–209) and 92 (95% CI: 
57–126) deaths brought forward due to bushfire PM2.5, compared with 219 (95% CI: 81–357) and 120 (95% 
CI: 44–195). The difference was attributed to the different approaches to quantifying the bushfire fraction of 
PM2.5, as well as the study by Ryan et al. (2021) only including populations within the large cities (∼80% of 
the region), rather than the entire region.

This study will use an atmospheric chemistry transport model (ACTM) to explicitly simulate PM2.5 concen-
trations with and without bushfires between September 1, 2019 and January 31, 2020 at 30 km resolution. 
This method aims to provide a more accurate daily estimation of the bushfire smoke contribution to total 
PM2.5 mass, by simulating PM2.5 concentrations accounting for real time meteorological conditions and 
atmospheric processes, and calculating explicitly the PM2.5 increment due to the fires. Regional population 
exposure is likely to be better captured, since this is more challenging to capture using the sparse monitor-
ing network, which may not capture strong PM2.5 concentration gradients that are likely to have occurred 
during the fires. The use of an ACTM also allows us to estimate the health impacts of bushfire PM2.5 expo-
sure at both city and region (state)-wide scales. Region and city-scale AQ and health impact estimates can 
help governments to focus future policies toward particularly fire vulnerable regions based on the health 
benefits that are likely to be seen by reducing population exposure.

2. Materials and Methods
2.1. Model Description

PM2.5 concentrations between September 1, 2019 and January 31, 2020 were simulated using the Weather 
Research and Forecasting model coupled to Chemistry (WRF-Chem) model (version 3.7.1), a fully cou-
pled atmospheric chemistry model. A detailed model description can be found in Conibear et al. (2018a), 
and this model version has been used to successfully simulate PM2.5 air pollution for India (Conibear 
et al., 2018a, 2018b, 2018c), SE Asia (Kiely et al., 2019, 2020), and China (Reddington et al., 2019; Silver 
et al., 2020). The model domain covered eastern-Australia (128.9–170.6°E and 9 to 48°S) at 30 km horizontal 
resolution (130 x 150 grid boxes), with 33 vertical levels (up to 10 hPa) and included 89% (22.1 m) of the 
Australian population. The contribution of bushfires to surface PM2.5 concentrations between September 1 
and January 31 was calculated by simulating two scenarios, with and without fire emissions. This allowed 
the contribution of the fires to air quality and health be quantified (PM2.5 Fires − PM2.5 No Fires = PM2.5 Fires Only).

Meteorological conditions were initialized using ERA5 6-hr analyses at 0.1° resolution on 38 pressure levels 
(Hoffmann et al., 2018). Nudging was used in order to keep simulated meteorology in line with the mete-
orological analyses. Several nudging sensitivity experiments were carried out to investigate the sensitivity 
of simulated PM2.5 concentrations to the nudging option used (Table S1 in Supporting Information S1). 
Nudging of potential temperature, the horizontal and vertical winds and the water vapor mixing ratio in 
all vertical levels, rather than just above the boundary layer, improved simulated PM2.5 concentrations by 
reducing the Root Mean Square Error (RMSE) to 24.1 μg m−3 from 25.7 μg m−3, Normalised Mean Absolute 
Error (NMAE) to 0.65 from 0.70 and Normalised Mean Bias (NMB) to −0.24 from −0.53, and the Pearson 
correlation coefficient (r) to 0.53 from 0.48, respectively (Table S1 in Supporting Information S1). Therefore, 
the results of the simulations where all meteorological variables in all vertical levels were nudged are pre-
sented here.

Chemical boundary conditions were provided by the Whole Atmosphere Community Climate Model 
(WACCM) 6-hourly simulation data (Marsh et al.,  2013; UCAR, 2020a). WACCM meteorology is driven 
by the NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System Model 
(GEOS-5) model. Anthropogenic emissions for 2014 from the Community Emissions Data System (CEDS) 
(used in the 6th Coupled Model Intercomparison Project (CMIP6)) and the Fire Inventory from NCAR 
(FINN) version 1 (v1) fire emissions are used in WACCM. Model output is given on 88 vertical levels at 
0.9 × 1.25° (UCAR, 2020b).
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Global anthropogenic emissions were taken from the Emission Database for Global Atmospheric Research 
with Task Force on Hemispheric Transport of Air Pollution version 2.2 (EDGAR-HTAP2) (Janssens-Maen-
hout et al., 2015) at 0.1° resolution for 2010. Sector specific diurnal cycles were subsequently added to the 
emissions, using diurnal cycles from Olivier et al. (2003). EDGAR-HTAP2 is a global, gridded, air pollution 
emission inventory compiled of officially reported, national gridded inventories. Where national emissions 
datasets or specific sectors are not available 2010 EDGAR v4.3 grid maps are used. Emissions include SO2, 
NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC. Emissions include all anthropogenic emissions except 
large-scale biomass burning (e.g., wildfires).

The Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) (Emmons et al., 2009) is used to 
calculate gas-phase chemical reactions. Aerosol chemistry and physics are represented using the Model for 
Simulating Aerosol Interactions and Chemistry (MOSAIC) scheme, with sub-grid scale aqueous chemistry 
(Zaveri et al., 2008). Aerosols are represented by four sectional discrete size bins (0.039–0.156, 0.156–0.625, 
0.625–2.5, and 2.5–10). The use of the MOSAIC scheme with four size bins balances detailed chemistry with 
computational expense.

2.1.1. Wildfire Emissions

Wildfire emissions are taken from FINNv1 near-real time (FINNv1 NRT), since FINNv1.5 was not available 
at the time model simulations were carried out. FINN combines satellite observations, land cover, biomass 
consumption estimates and emissions factors to calculate daily fire emissions globally at 1 km resolution. 
FINN uses satellite observations from the MODIS Thermal Anomalies Product to provide detections of ac-
tive fires. Burned area is assumed to be 1 km2 for each fire identified and scaled back based on the density 
of vegetation from the MODIS Continuous Fields (VCF) (i.e., if 50% bare = 0.5 km2 burned area). The type 
of vegetation burned during a detected fire is determined using the MODIS Collection 5 Land Cover Type 
(LCT). This assigns each fire pixel to one of 16 possible land cover/land use classes and also the density of 
vegetation at 500 m resolution, scaled to 1 km. The 16 LCTs are then aggregated into 8 generic categories to 
which fuel loadings are applied (Wiedinmyer et al., 2011). Fuel loadings are from Hoelzemann et al. (2004) 
and emissions factors are from Akagi et al. (2011), Andrae and Merlet (2001), and McMeeking (2008). Fire 
types included are wildfires, prescribed and agricultural burning. However, trash burning or biofuel use are 
not included.

The key difference between FINN v1 NRT and FINN v1.5 is that FINN v1 NRT uses MODIS near real time 
fire counts rather than the reprocessed fire counts, which FINN v1.5 uses. The differences between the two 
datasets over Australia for the year 2018 (and 2019 following the v1.5 release) are quantified (Figure S1 in 
Supporting Information S1) to identify any differences in emissions. Generally, emissions for 2019 indicate 
that emissions per fire hotspot were much higher than previous years (2010–2018). This is likely due to 
the high levels of dry fuel availability during 2019 (van Oldenborgh et al., 2020). Emissions in FINN v1.5 
and NRT are in good agreement for 2018, while for 2019 FINN NRT PM2.5 (∼1 Tg) are slightly higher than 
FINNv1.5 (∼0.9 Tg). However, there is a much larger range of disagreement in the estimates of 2019 annual 
fire emissions between the five key fire emissions datasets (∼1–>7.5 Tg) (Figure S2 in Supporting Informa-
tion S1). Due to the large discrepancies in annual fire emission estimates from the five key fire emission 
datasets available, we also carry out a further simulation where FINN NRT emissions are scaled by 1.5 (re-
ferred to later as scaled_1.5) to test the sensitivity of simulated PM2.5 concentrations to total fire emissions.

2.1.2. Release of Fire Emissions

The high temperatures associated with combustion mean that wildfires can often inject emissions above 
the surface due to buoyancy of the fire plume. In WRF-Chem a default plume-rise parameterization is 
used to release fire emissions (Freitas et al., 2007). However, several studies have found that the plume-rise 
parameterization potentially represents an incorrect vertical distribution of the emissions (Archer-Nicholls 
et al., 2015; Crippa et al., 2016). Kiely et al. (2020, 2019) found that releasing emissions evenly through the 
boundary layer (BL) improved agreement between simulated surface PM2.5 concentration and observations 
for Indonesian fires. Therefore, we test two options: (a) releasing emissions evenly through the boundary 
layer and (b) plume-rise. The results of this sensitivity study indicate that simulated PM2.5 concentrations 
are relatively insensitive to the emission option used (Figure S4 and Table S1 in Supporting Information S1) 
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but releasing emissions evenly through the BL performs better. Therefore, we present the results of releas-
ing emissions evenly through the BL in this study.

2.2. Observations

2.2.1. Ground-Based Monitoring Sites

Daily mean PM2.5 mass concentrations, calculated from hourly PM2.5 observations, at ground-based mon-
itoring sites are used to assess model performance in simulating PM2.5 concentrations. Data from the New 
South Wales, Queensland, Australian Capital Territory Government, and the Victoria EPA monitoring net-
works were combined, providing data across 80 observational sites. A map of sites used is available in the 
Supporting Information S1 (Figure S3 in Supporting Information S1). Daily means were calculated from 
hourly data if > 18 hr of data was available each day, otherwise a missing data flag was applied. Model 
performance was evaluated using r, NMB, RMSE, and NMAE (Table S1 in Supporting Information S1). 
Multiple observations were available in several large cities (Newcastle, Sydney, Canberra, Melbourne–see 
Figure 1 for locations), allowing the model performance to be evaluated in locations where populations are 
likely to have been exposed to high concentrations of PM2.5.

2.2.2. Health Impact Assessment

In order to assess the exposure of populations in individual regions and cities, population-weighted bushfire 
PM2.5 concentrations are used. Population data is separated by region and city using shapefiles and then 
population-weighted PM2.5 concentrations are calculated (Equation 1). The population and concentration 
in each grid box (popi and conci) are summed and divided by the total population (pop) in the region/city.

  


2.5
pop conc

Population_weighted PM
pop

i i (1)

All-cause, all-age mortality from short-term exposure to PM2.5 is calculated using a concentration-response 
function (CRF). We use relative risk values from the World Health Organisation (2013) of 1.0123 (95% CI: 
1.0045, 1.0201) per 10 μg m−3, which we use to estimate beta (β) using Equation 2. Since the RR used is for 
all-cause, all-age mortality, we use all-cause, all-age baseline mortality rates in the calculations.

 
 



ln RR
C

 (2)

Figure 1. Particulate matter with a diameter less than 2.5 μm (PM2.5) fire emissions (Tonnes day−1) across Australia 
between March 2019 and March 2020 from the FINN near-real time fire emission data set. The timeseries shows the 
2010–2018 daily mean PM2.5 emissions (gray) and the 2019–2020 daily mean PM2.5 emissions (maroon). Inset map: Total 
PM2.5 fire emissions (Tonnes km−2) across eastern Australia between March 2019 and March 2020.
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The AF (Equation 4) is calculated using the concept of relative risk (RR) (Equation 3), which is the proba-
bility of mortality from a disease endpoint within an exposed population compared to within an unexposed 
population. The concentration of bushfire PM2.5 that a population is exposed to is given by ΔX (PM2.5 FIRES 
–PM2.5 NO FIRES) and the safe-limit of exposure is X0 (Equation 3). Since there is little evidence to suggest 
a safe-limit of exposure to PM2.5 we assume X0 to be zero (Holgate, 1998; Macintyre et al., 2016; Schmidt 
et al., 2011).

   
 0RR exp X X (3)

 
  
 

RR 1AF
RR

 (4)

The excess mortality caused by exposure to PM2.5 over the theoretical minimum risk level of exposure 
(Equation 3: ΔX–X0) each day is represented by Em. N is the number of days within the simulation and i is 
the day in simulation (Equation 5), Bd is the baseline death rate, popi is the population exposed each day and 
AFi is the attributable fraction of risk each day due to exposure to PM2.5 (calculated in Equation 4).


 

1
.pop .AF

N

m d i i
i

E B (5)

Health impacts are calculated at 1 km resolution to match the resolution of the population data and sepa-
rated by region and city using shapefiles.

2.2.3. Population and Baseline Mortality Data

Population count data for 2018 is from the Australia Bureau of Statistics (Australian Bureau of Statis-
tics, 2019) at 1 km resolution. This indicates our model domain includes 89% of the Australian population. 
Baseline all-cause, all-age 2018 mortality rate data for each region in our model domain is taken from the 
Australia Bureau of Statistics (Australian Bureau of Statistics, 2020) (Table S4 in Supporting Information S1).

3. Results
3.1. Fire Emissions

FINN emissions clearly indicate that the PM2.5 emissions between late-October 2019 and mid-January 2020 
were unprecedented, lying far above the daily mean emissions observed in the previous 8 years (Figure 1 
and Figure S1 in Supporting Information S1). The Australian bushfires in 2019–2020 began in the northern 
region of eastern-Australia (close to Brisbane and Newcastle) and shifted south through the season (Fig-
ure 1). As the fires moved southwards, PM2.5 emissions also increased, with the highest PM2.5 emissions 
occurring in south-eastern Australia in late December-early January.

The impact of the fires on PM2.5 air quality (AQ) is clear from ground-based observations across south-
east Australia (Figure 2). Observations indicate that between October 2019 and February 2020 daily mean 
PM2.5 concentrations averaged across all sites reached 70 μg m−3 on several days. In the no fires simulation 
concentrations remain below 20 μg m−3, indicating that a large fraction of the total PM2.5 mass observed is 
due to fires. The impact of the fires on populations can be more clearly seen when PM2.5 concentrations in 
individual cities are examined (Figure 2). Newcastle and Sydney exhibit the same pattern of PM2.5 varia-
bility, following the pattern seen regionally across eastern-Australia closely. High PM2.5 concentrations are 
first observed in late October and affect the cities sporadically until mid-January, reaching ∼75 μg m−3. In 
contrast, the impacts of the fires on PM2.5 AQ in Canberra are not seen until November and December. How-
ever, concentrations are much higher in Canberra, reaching >100 μg m−3 in November and >300 μg m−3 in 
December. PM2.5 AQ in Melbourne is affected latest, with PM2.5 concentrations reaching 50 to >150 μg m−3 
in December and January.
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3.2. Model Evaluation

Evaluation of the WRF-Chem model indicates that the model generally underestimates PM2.5 in early Sep-
tember (by ∼70%) but then tends to overestimate PM2.5 (by ∼30%) in early October (before the fires) across 
all sites (Figure 2). This is also generally true at city scale (Figure 2). During the fire period (late-Octo-
ber–November) there is a substantial enhancement in PM2.5 in both the observations and WRF-Chem fires 
simulation. The fires simulation captures the variability in PM2.5 observations reasonably well (r = 0.53), 
particularly compared to the no fires simulation (r = 0.22). The fires simulation also captures the concen-
trations observed in the peaks and ambient conditions well (RMSE = 24.1 μg m−3, NMB = −0.24), com-
pared to the no fires simulation (RMSE = 27.3 μg m−3, NMB = −0.49) and the RMSE is better than the 
scaled fire emissions simulation [scaled_1.5] (RMSE = 25.0 μg m−3, NMB = −0.11), in which fire emis-
sions between September and February were scaled by 1.5 (see Text S1 and Figure S4 in Supporting Infor-
mation S1 for more details). The model performance is in line with previous modeling studies that esti-
mated wildfire PM concentrations during other large wildfire events in Indonesia using WRF-Chem. Our 
model simulations show similar r and NMB values when compared with observed PM2.5 concentrations to 

Figure 2. (a) Observed (black) and simulated (dotted magenta and dashed cyan) daily mean particulate matter with a diameter less than 2.5 μm (PM2.5) 
concentrations. Simulations shown are no fires (dashed cyan) and fires (dotted magenta). The mean PM2.5 concentration from all 80 observational sites across 
eastern-Australia is shown for the model and observations. (b) The same as above but for individual cities (Sydney, Newcastle, Canberra, and Melbourne). The 
observed (black) and simulated (dotted magenta and dashed cyan) daily mean PM2.5 concentrations are shown for each city. The total number of observational 
sites in each city is also shown on the left of each panel.
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previous WRF-Chem studies focused on fires in Indonesia (r = 0.51, 0.56 and NMB = −0.47, 0.18) (Kiely 
et al., 2019, 2020) (r = 0.55 to 0.57 and NMB = −0.24–−0.15) (Crippa et al., 2016). The model performs well 
in all of the cities, which have several observational sites (Sydney, Newcastle, and Melbourne), capturing 
the variability and magnitude of the peaks in PM2.5 well. The model struggles to capture the magnitude of 
the PM2.5 peaks observed in Canberra but this is likely due to the lack of observations (3 sites), meaning 
the model struggles to represent a small number of point measurements. PM2.5 concentrations in cities for 
which there are many more observation locations (5–24 sites) are represented better by the model. The 
improvement in model performance in cities where there are multiple observations gives confidence in the 
ability of the model to represent the population exposure to PM2.5 from the fires.

Monthly mean modeled PM2.5 concentrations from the fires and no fire runs can be used to understand the 
impact of the bushfires on PM2.5 concentrations across south-east Australia (Figure 3, and Figure S6 and S7 
in Supporting Information S1). This indicates that although monthly mean concentrations were relatively 
low in October and November (monthly mean ≤  25  μg  m−3), a large fraction of PM2.5 around Brisbane 
(20%–30%) and also Newcastle and Sydney (20%–100%) was from fires (Figure 3). This bushfire fraction 
increases in magnitude and spatial extent as the fires peak in December and January, when >70% of PM2.5 
is from fires over a large region including Melbourne, Canberra, Sydney, Newcastle and Brisbane (Figure 3).

Figure 3. Monthly mean percentage of particulate matter with a diameter less than 2.5 μm (PM2.5) attributable to 
fires, calculated as PM PM /PM

fires no fires fires2 5 2 5 2 5. . .
  using the fires and no fires simulations. Monthly mean PM2.5 

concentrations from the fires simulation are also over plotted in contours for reference.
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3.3. Air Quality Impacts

Combining simulated PM2.5 concentrations with population data (at 1 km) allows the contribution of the 
fires to population exposure to poor AQ to be estimated across eastern-Australia (Figure 4a, Figure S8 in 
Supporting Information S1) and in individual cities (Figure 5a). Across eastern-Australia exposure to New 
South Wales Air Quality Index (AQI) values before the fires (in September and October) were dominated 
by “V.Good” and “Good” values (Figures  4a and Table  1 (Fires)). During September, on average, ∼21.4 
million people were exposed to “V. Good” and “Good” AQI concentrations (Table 1 (Fires)), while ∼6,000 
people were exposed to concentrations poorer than “Good” AQI. In October, there was an increase in the 
monthly mean population exposure to poor PM2.5 AQ (“Poor,” “V.Poor” and “Hazardous” PM2.5 AQI values) 
(Figure 4a), however overall monthly mean exposure to poor AQ remained low. Throughout November 
exposure to poor AQ increased, exposing 1.35 m people to “Poor” or “V.Poor” PM2.5 AQI (Figure 4a and 
Table 1 (Fires)). Between November 1 and February 1 the average population exposed to “Poor,” “V.Poor,” 
and “Hazardous” PM2.5 AQI values was ∼1.5 m in November, 935,000 in December and ∼1.3 m in Janu-
ary (Table 1 (Fires)). This equates to a population ∼2 times the size of Canberra-Queanbeyan (∼0.6 m) or 
almost half of the population of Brisbane (∼3.5 m) being exposed to “Poor” or worse AQ on average from 
November to February.

By comparing the mean population AQI exposure (calculated as the daily population exposure to each AQI, 
subsequently averaged between September and February) during the bushfires to if there were no fires 
exposure to high AQI value can be attributed to the fires rather than as a result of other effects (e.g., long-
range transport of PM2.5). This indicates that in the fires (and no fires) simulation between September and 
February ∼604,000 (∼279,000) people were exposed to “Poor” AQI values, ∼122,000 (∼89,000) people to “V. 
Poor” AQI values and ∼95,000 (∼69,000) people to “Hazardous” AQI values. Therefore, the fires led to an 
additional ∼437,000 people being exposed to “Poor” or worse AQI values on average (∼279,000 exposed to 
“Poor,” 89,000 to “V.Poor” and 69,000 to “Hazardous” AQI values) across eastern Australia between Sep-
tember and February.

Figure 4. (a) Daily population exposure (in millions and %) to New South Wales Air Quality Index (AQI) values across 
eastern-Australia (fires simulation) between September 1 and January 31. AQI values correspond to particulate matter 
with a diameter less than 2.5 μm (PM2.5) concentrations of 0–8.5 (V. Good), >8.5–16.75 (Good), >16.75–25 (Fair), 
>25–37.5 (Poor), >37.5–50 (V. Poor), >50 (Hazardous), all in μg m−3. More information on how the AQI is calculated is 
available in Table S7 in Supporting Information S1. (b) Daily population-weighted bushfire PM2.5 exposure (in μg m−3) 
across all states in the model domain (red) and regionally for Victoria (green), Australian Capital Territory blue (yellow) 
and Queensland (purple) (fires-no fires simulation) between September 1 and January 31.
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In order to understand the impact of poor AQ from the fires on the population, the bushfire PM2.5 concen-
tration can be weighted by the total population in each region (population weighted bushfire PM2.5 – see 
Health Impact Assessment). We calculate the population-weighted bushfire PM2.5 concentration for the re-
gions most severely affected by the fires (Figure 4b and Table 2 and Table S3 in Supporting Information S1). 
This indicates that the population in Australia Capital Territory (ACT) was exposed to the highest PM2.5 
due to the fires (Table 2). Here, population-weighted bushfire PM2.5 concentrations reached 155.1 μg m−3 
on January 4 and exceeded 100 μg m−3 on several days (Table 2). This is far above the maximum popula-
tion-weighted PM2.5 concentrations in any of the other regions (Queensland (22.9 μg m−3), New South Wales 
(NSW) (53.4 μg m−3), Victoria (81.8 μg m−3)) and far above the maximum between September 1 and January 
31 across all regions, of 58.3 μg m−3 (Table 2). The mean population-weighted PM2.5 concentration between 
September and February across all regions was 11.6 μg m−3, with the highest mean population-weighted 
PM2.5 concentrations in ACT (14.1 μg m−3) and NSW (13.4 μg m−3) (Table 2). Comparing these results with 
Borchers Arriagada et al. (2020), population-weighted bushfire PM2.5 concentrations are considerably lower 
in this study (Table S3 in Supporting Information S1). This is evident from the difference in the mean and 
maximum population-weighted PM2.5 concentrations across all regions (mean: 11.6 μg m−3 vs. 23.7 μg m−3 
and maximum: 58.3 μg m−3 vs. 98.5 μg m−3). The disparity is dominated by the large differences between 
estimates for ACT and Victoria (Table S3 in Supporting Information S1), where observations were relatively 
sparse.

Figure 5. (a) Daily population exposure (in millions and % of total population) to New South Wales Air Quality Index (AQI) values in individual cities 
(Brisbane (Queensland), Sydney (NSW), Newcastle-Maitland (NSW), Canberra-Queanbeyan (ACT), and Melbourne (Victoria)) between September 1st and 
January 31. AQI values correspond to PM2.5 concentrations of 0–8.5 (V. Good), >8.5–16.75 (Good), >16.75–25 (Fair), >25–37.5 (Poor), >37.5–50 (V. Poor), >50 
(Hazardous), all in μg m−3.More information on how the AQI is calculated is available in Table S7 in Supporting Information S1. (b) Daily population-weighted 
bushfire PM2.5 concentration (in μg m−3) in the cities of Brisbane (blue), Newcastle-Maitland (purple), Sydney (green), Canberra-Queanbeyan (yellow), 
Melbourne (gray), and Adelaide (orange) (fires-no fires simulation) between September 1 and January 31.
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When individual cities are considered (Figure 5a) the effect of the southward shift of fires between October 
and January on population exposure to “Poor,” “V. Poor,” and “Hazardous” PM2.5 AQI can be clearly seen. 
In October, there is widespread exposure to “Poor” PM2.5 AQ. The effects of population exposure are largest 
in Brisbane, Newcastle-Maitland, Sydney and Melbourne with 93,000, 220,000, 49,000, and 468,000 people 
exposed to “Poor” or worse PM2.5 AQI values on average (Figure 5a and Table S2 in Supporting Informa-
tion S1). The impacts of fires on PM2.5 AQ becomes most evident from November. During November average 
population exposure to “Poor,” “V. Poor,” and “Hazardous” PM2.5 AQ is evident in Sydney (112,000, 86,000, 
and 10,000 people exposed) and Newcastle-Maitland (235,000, 170,000, and 2,500 people exposed). Along-
side this, in Canberra-Queanbeyan an average of 15,000, 1,100, and 174 people are exposed to “Poor,” “V. 

Fires

AQI September (m) October (m) November (m) December (m) January (m)

V. Good 20.7 10.2 8.9 8.4 5.7

Good 0.73 9.6  8.6 9.0 12

Fair 0.014 2.1 2.4 3.8 3.2

Poor 6,000 0.30 1.1 0.75 0.79

V. Poor 41 0.012 0.26 0.08 0.25

Hazardous 0 93 0.12 0.11 0.24

No Fires

AQI September (m) October (m) November (m) December (m) January (m)

V. Good 20.7 10.8 12.2 11.5 7.8

Good 0.73 9.3 7.8 7.7 11.1

Fair 13,000 1.9 1.2 2.5 2.3

Poor 6,000 0.16 0.27 0.51 0.65

V. Poor 41 9,000 6,500 530 0.15

Hazardous 0 0 0 0 0.13

Note. More information on how the AQI is calculated in Table S7 in Supporting Information S1.

Table 1 
Monthly Population Exposure to PM2.5 AQI Values in the Fires and No Fires Simulation (Calculated as the Monthly Mean of Daily Sum Population Exposure)

Region Mean population-weighted PM2.5 (μg m−3) Maximum population-weighted PM2.5 (μg m−3)

Australian Capital Territory 14.1 155.1

New South Wales 13.4 53.4

Queensland 9.7 22.9

Victoria 9.1 81.8

All domain 11.6 58.3

City Mean population-weighted PM2.5 (μg m−3) Maximum population-weighted PM2.5 (μg m−3)

Brisbane 9.7 26.4

Newcastle-Maitland 14.3 48.7

Sydney 13.8 58.4

Canberra-Queanbeyan 14.2 156.2

Melbourne 9.0 80.5

Adelaide 7.0 26.5

Table 2 
Mean and Maximum (September 1–January 31) Population-Weighted PM2.5 Concentrations for Regions and Cities in Eastern-Australia



GeoHealth

GRAHAM ET AL.

10.1029/2021GH000454

12 of 17

Poor,” and “Hazardous” PM2.5 AQI values in November. The pattern of increasing population exposure to 
poor PM2.5 AQ continues in December, as the fires intensify, with a clear southward shift (Figure 5a). Pop-
ulations in Sydney, Newcastle-Maitland, and Canberra-Queanbeyan continue to be exposed to “Poor” and 
worse AQ. This leads to 3.6, 1.7, and 237,000 people being exposed to “Poor” or worse AQ in Sydney, New-
castle-Maitland, and Canberra-Queanbeyan, respectively, on average in December (Table S2 in Supporting 
Information S1). During this time in Brisbane, Melbourne and Adelaide ∼5,000, 1.1 m and 53,000 people 
on average are exposed to “Poor” or worse AQ. Finally, in January, the southward shift in fires continues, 
with a clear decrease in exposure to “Poor” or worse AQI in Brisbane, Sydney, and Newcastle-Maitland but 
increases in monthly mean exposure to “Poor” AQ in Canberra-Queanbeyan, Melbourne and Adelaide. 
This leads to 286,000, 979,000, and ∼48,000 people being exposed to “Poor,” “V. Poor,” and “Hazardous” 
PM2.5 AQI values in Canberra-Queanbeyan, Melbourne and Adelaide on average (Table S2 in Supporting 
Information S1). Despite reductions in the total population exposed to hazardous AQI values in Newcas-
tle-Maitland and Sydney, widespread population exposure to “Poor,” “V. Poor,” and “Hazardous” PM2.5 AQI 
values continues during January. On average 515,000 and ∼820,000 people are exposed to “Poor,” “V. Poor,” 
and “Hazardous” PM2.5 AQI values in Newcastle-Maitland and Sydney in January (Table S2 in Supporting 
Information S1).

Population-weighted bushfire PM2.5 (fires — no fires) for individual cities can be used to identify the cit-
ies most severely affected by bushfire-sourced PM2.5 (Figures 5b and Table 2 and Figure S8 in Supporting 
Information S1). In line with the region population-weighted PM2.5 concentrations, Canberra-Queanbey-
an (ACT) is affected most severely by PM2.5 from the fires. Population-weighted PM2.5 concentrations in 
Canberra-Queanbeyan reach 156.2  μg  m−3 and average 14.2  μg  m−3 between September 1 and January 
31 (Table 2). The maximum population-weighted PM2.5 concentrations in Sydney (58.4 μg m−3) and New-
castle-Maitland (48.7 μg m−3) is much below Canberra-Queanbeyan (Table 2). However, as a result of the 
prolonged exposure to poor AQ in Syndey and Newcastle-Matiland, the mean population-weighted PM2.5 
concentrations in both cities (13.8 μg m−3 and 14.3 μg m−3) are similar to Canberra-Queanbeyan (Table 2).

These results clearly indicate widespread population exposure to dangerous PM2.5 AQI levels throughout 
November, December and January. This is likely to have a large impact on public health due to short-term 
exposure to high PM2.5 concentrations. We estimate these effects in the next section.

3.4. Health Impacts

Using the World Health Organisation (2013) concentration response function, the number of deaths brought 
forward due to PM2.5 from the fires between October 1 and January 31 can be estimated using the concentra-
tion of PM2.5 due to fires (i.e., the difference in PM2.5 concentrations between the fires and no fires simula-
tions) (Figure 6). This indicates the impact of short-term exposure to bushfire PM2.5 has a substantial impact 
on health from mid-October to mid-January (Figure 6a). In total 171 (95% CI: 64–277) deaths were brought 
forward as a result of short-term exposure to bushfire PM2.5 (Table S5 in Supporting Information S1) and 
624 (95% CI: 230–1008) from short-term exposure to all PM2.5. Therefore, the bushfires accounted for almost 
30% of the deaths brought forward from short-term exposure to PM2.5 during this period. This represents an 
increase of 38%, compared to if there were no fires.

Regionally, the health impact of exposure to PM2.5 was largest in New South Wales (NSW), Queensland and 
Victoria (Figure 6b). We estimate that short-term exposure to all PM2.5 between October and February led 
to 287 (95% CI: 107–463), 112 (95% CI: 41–181), and 155 (95% CI: 57–250) deaths being brought forward in 
NSW, Queensland, and Victoria, respectively. Of these deaths, 109 (95% CI: 41–176), 15 (95% CI: 5–24) and 
35 (95% CI: 13–56) deaths brought forward were due to short-term exposure to bushfires PM2.5 (Table S6 
in Supporting Information S1). This indicates the bushfires accounted for 38%, 13%, and 30% of the total 
deaths brought forward by short-term exposure to bushfire PM2.5 in NSW, Queensland and Victoria, respec-
tively. Comparing our estimates with the results of Borchers Arriagada et al. (2020) and Ryan et al. (2021) 
(Figure 6b) the estimates in this study are within the range of both studies in NSW. We estimate 109 (95% 
CI: 41–176) deaths are brought forward by short-term exposure to bushfire PM2.5, while Borchers Arriagada 
et al. (2020) estimate 219 (95% CI: 81–357) and Ryan et al. (2021) estimate 152.1 (95% CI: 95–209). Our results 
lie below the lower end of estimates in Victoria at 35 (95% CI: 13–56) deaths brought forward due to short-
term exposure to bushfire PM2.5. This is considerably lower than Borchers Arriagada et al. (2020) estimate of 
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120 (95% CI: 44–195) and Ryan et al. (2021) estimate of 92 (95% CI: 57–126) deaths brought forward due to 
short-term exposure to bushfire PM2.5. All three studies use the same population, baseline mortality datasets 
and concentration-response function. Therefore, the disparity in results between the studies is likely due 
to a number of other factors. First, our study uses modeled PM2.5 concentrations, rather than observations. 
Since the model generally underestimates PM2.5 concentrations, the overall health impact estimated is likely 
to be underestimated due to a reduction in population exposure to PM2.5. Second, the bushfire fraction of 
the total PM2.5 mass could be overestimated in the Borchers Arriagada et al. (2020) study due the use of 
monthly mean historical PM2.5 concentrations to account for the no fire fraction of PM2.5. This would not 
account for the effect of meteorology on ambient PM2.5, which may be important given the strong positive 

Figure 6. (a) Estimated increase in the number of deaths brought forward across model domain (red) and the regions of Victoria (green), Australia Capital 
Territory (ACT) (blue), New South Wales (NSW) (yellow), and Queensland (purple) due to particulate matter with a diameter less than 2.5 μm (PM2.5) from 
bushfires (fires only) between October 1 and January 31. Shading indicates the 95% confidence intervals of the estimate. The number of deaths brought forward 
due to bushfire PM2.5 (fires only) (red) between October 1 and January 31 is also broken down by region (b) and city (c) and the total number of deaths is shown 
above the bars. The estimated number of deaths brought forward in each region (b) due to bushfire PM2.5 (fires only) (red) in this study are compared to the 
Borchers Arriagada et al. (2020) (indigo) and Ryan et al. (2021) (gold) estimates for the same period.
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Indian Ocean Dipole that year. If ambient PM2.5 concentrations without fires were underestimated due to 
this there would be a resulting overestimation in the health impact of bushfire PM2.5 (since PM2.5 FIRES ONLY  
= PM2.5 ALL–PM2.5 NO FIRES). Ryan et al. (2021) used a random forest model to simulate the non-bushfire PM2.5 
fraction, which accounted for the effect of meteorology on ambient PM2.5 concentrations, like our model. 
Their estimate is also lower than Borchers Arriagada et al. (2020), further supporting this.

When individual cities are considered in the health impact assessment it becomes clear that the health 
impact from short-term exposure to bushfire PM2.5 is concentrated in cities with high populations, where 
PM2.5 concentrations due to fires were high (Figure 6c). Of the large cities we investigated, the impact of 
short-term exposure to bushfire PM2.5 on mortality was largest in Sydney (65 (95% CI: 24–105)), Melbourne 
(23 (95% CI: 9–38)), and Canberra-Queanbeyan (9 (95% CI: 4–14)) (Figure 6, Table S6 in Supporting Infor-
mation S1). In these cities short-term exposure to bushfire PM2.5 accounted for 36%, 20%, and 64% of the 
total deaths brought forward from short-term exposure to PM2.5, respectively.

4. Conclusions
We use the WRF-Chem regional air quality model to estimate the impact of the 2019/2020 Australian 
bushfires across eastern Australia, complementing the work of Borchers Arriagada et al. (2020) and Ryan 
et al. (2021), which were based solely on analysis of PM2.5 observations. FINN fire emissions indicate PM2.5 
emissions from the 2019/2020 bushfires were unprecedented. Around 1 Tg of PM2.5 was emitted from the 
fires during 2019 and ∼0.3 Tg between January and February 2020. This is likely due to the high levels of 
dry fuel availability across the region during 2019 (van Oldenborgh et al., 2020).

Two model simulations were performed (a) with FINN fire emissions (fires) and (b) without FINN fire 
emissions (no fires), which allowed the impact of the bushfires on PM2.5 AQ and health to be quantified. 
Simulated PM2.5 concentrations from the fires simulation reproduced observed daily mean concentrations 
relatively well but with a low bias (r = 0.53, RMSE = 24.1 μg m−3, NMB = −0.24, NMAE = 0.65). Despite 
this, modeled PM2.5 concentrations captured the variability and magnitude of peaks seen in the observa-
tions across eastern-Australia and for specific cities.

We find that between September and February large proportions of the population were exposed to danger-
ous (“Poor,” “V.Poor,” and “Hazardous”) air quality levels. In total, the fires led to an additional ∼437,000 
people being exposed to “Poor” or worse AQI values on average (∼279,000 exposed to “Poor,” 89,000 to 
“V.Poor” and 69,000 to “Hazardous” AQI values) across eastern Australia between September and February, 
compared to if there were no fires. The impact of the bushfires on AQ was concentrated in the cities of Syd-
ney, Newcastle-Maitland and Canberra-Queanbeyan during November, December and, also in Melbourne, 
in January. While, generally Brisbane and Adelaide were less severely affected by the fires.

We estimate the impacts of short-term exposure to PM2.5 from bushfires on all-cause, all-age mortality 
across eastern-Australia, regionally and in individual cities using a short-term exposure response function 
(World Health Organization, 2013). Our estimate indicates that between October and February 171 (95% CI: 
64–277) deaths were brought forward due to short-term exposure to bushfire PM2.5, 624 (95% CI: 230–1,008) 
due to all PM2.5 and 456 (95% CI: 169–738) if there were no fires. The health impact due to short-term 
exposure to bushfire PM2.5 was largest in New South Wales, Queensland, and Victoria with 109 (95% CI: 
41–176), 15 (95% CI: 5–24), and 35 (95% CI: 13–56) deaths brought forward in these regions (287 (95% 
CI:107–463)), 112 (95% CI: 41–181), and 155 (95% CI: 57–250) all PM2.5), respectively. Our results lie within 
the range of estimated health impacts due to short-term exposure to bushfire PM2.5 from both Borchers 
Arriagada et al.  (2020) and Ryan et al.  (2021) for New South Wales but below the lower limit for other 
regions, such as Victoria. This is most likely due to differences in how ambient PM2.5 (and therefore bush-
fire PM2.5) was estimated in each study and also differences in the estimated population-weighted bushfire 
PM2.5 concentrations. However, this study builds upon previous work by using an atmospheric chemistry 
transport model to simulate PM2.5 concentrations, while accounting for real time meteorological conditions 
and atmospheric processes, and calculating explicitly the PM2.5 increment due to the fires. At a city-level, 
the health impacts of PM2.5 exposure due to bushfires were concentrated in the cities with large populations 
and high PM2.5 concentrations due to bushfires. The highest number of deaths brought forward due to 
short-term bushfire PM2.5 exposure were in Sydney (65 (95% CI: 24–105)), Melbourne (23 (95% CI: 9–38)) 
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and Canberra-Queanbeyan (9 (95% CI: 4–14). In these cities short-term exposure to bushfire PM2.5 account-
ed for 36%, 20%, and 64% of the total deaths brought forward from short-term exposure to PM2.5.

This work confirms that there was a substantial AQ and health impact across eastern-Australia from the 
2019/2020 bushfires. Our study only considered mortality, therefore the full health impact of exposure to 
PM2.5 is likely to be higher and requires further studies addressing the impacts on hospital admissions, 
ambulance call outs and primary health care visits. Alongside this, the impact of other pollutants on health 
could also be quantified. In the future, further work is required to characterize the health impacts of expo-
sure to pollutants from wildfires. This would allow for more comprehensive estimates of the health impacts 
associated with population exposure. Finally, with more dry years like 2019/2020 projected to occur in the 
future due to climate change the impact of wildfires such as 2019/2020 are likely to be seen again. Therefore, 
fire risk management policies should be developed further to consider the impact of climate change on 
wildfire frequency and intensity across the country.
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