
Requirements in Feature Algebra
Peter Höfner

NICTA, Sydney, Australia
peter.hoefner@nicta.com.au

Sven Mentl

sven.mentl@googlemail.com

Bernhard Möller
Universität Augsburg, Germany

moeller@informatik.uni-augsburg.de

Wolfgang Scholz
University of Passau, Germany

scholz@uni-passau.de

Abstract—Feature Algebra is intended to capture the
commonalities of feature oriented software develop-
ment (FOSD), such as introductions, refinements and
quantification. It allows denoting systems composed
of features by algebraic terms and transforming the
systems by manipulating the terms using the laws of the
algebra. The algebraic view abstracts from differences
of minor importance and leads to more compact and
effective reasoning. While the existing Feature Alge-
bra covers most of the main aspects of FOSD, so far
requirements have not been integrated into it. They
naturally arise in connection with different aspects of
feature orientation, such as feature elicitation, feature
dependence, mutual feature exclusion and feature in-
teraction. This paper presents a possibility for integrat-
ing requirements into Feature Algebra.

I. Introduction
Over the last years feature orientation (FO) (e.g. [13],

[14]) has been established in computer science as a
general programming paradigm. It provides formalisms,
methods, languages, and tools for building variable, cus-
tomisable, and extensible software. In particular, FO
summarises feature-oriented software development and
feature-oriented programming. FO has widespread ap-
plications from network protocols [13] and data struc-
tures [15] to software product lines [31]. It arose from
the idea of incremental software, i.e., every program,
design or product can successively be built up by adding
more and more features, like methods, documentations or
properties. Roughly spoken, a feature reflects an increment
in functionality or in the software development.

In the literature, there are different definitions of a
feature. A common one describes a feature as “a structure
that extends and modifies a given program in order to
satisfy a stakeholder’s requirement, to implement a design
decision, and to offer a configuration option.” [6]. Elemen-
tary features may be composed, even in a nested way,
into more complex ones. Features may depend on each
other: If a feature is added to a given program, other
features may also be required and have to be added to
get a proper (valid) program. These additional features
are part of the requirements of a given feature. Other
requirements might be that a product/program must have
some property like a toString ()-method or a requirement
given by a stakeholder.

A feature itself can be viewed at different levels of ab-
straction. In the most concrete view, a feature consists of a
bunch of artefacts, maybe even each in a different language
(e.g., makefile, source code in Java and documentation in
XML). Feature Algebra provides a more abstract view. It
covers the common concepts of feature oriented software
development (FOSD) such as introductions, refinements
and quantification. In particular, it abstracts from differ-
ences of minor importance. The standard model (instance)
of Feature Algebra is based on feature structure forests
(FSFs). FSFs focus on the hierarchical structure of the
features’ implementations and hide details from a certain
depth on. In [23], [24] FSFs have been encoded in lists and
sets, so that the composition of two features (FSFs) can
easily be determined.

So far, requirements are not covered directly by Feature
Algebra. In this paper we show how they can be introduced
into it, even without using fundamentally new concepts.
In particular, we define a new model that satisfies the
axioms of Feature Algebra and allows the formulation of
all common types of requirements. It is able to reflect
simple checks whether requirements are met. Hence, in
some sense, this model can be seen as another contribution
to a general theory of type systems for features (e.g. [2]).

On one hand this shows that Feature Algebra captures
one more important trait of FO. On the other hand, having
a solid mathematical foundation for requirements yields a
better understanding of the theoretical concepts of FO.

As stated in our earlier papers on Feature Algebra [7],
[24], the main achievement of Feature Algebra is to provide
a single, mathematically sound foundation for the formula-
tion and handling of additional information about software
product lines, as it is, e.g., necessary to describe the ad-
missible feature combinations. The integration of feature
requirements adds to the details covered by the algebraic
approach. Feature combinations no longer are either valid
or invalid, but invalid combinations better reflect their
conflicts. With this contribution we aim to extend Feature
Algebra into a framework that is more widely applicable
and better suited for automatic reasoning (and by that
more able to deal with feature interactions) than previous
versions.

II. Preliminaries
A. Feature Structure Forests

Feature structure forests (FSFs) capture the essential
hierarchical module structure of a given system (e.g. [6]).
An example is given in Figure 1b, where a simple Java
class BaseStack is described as an FSF consisting of a
single tree.

package util ;

class Stack{
Object [] stack ;
void push(Object o){

stack [stackpointer++] = o; }
Object pop(){

return stack [stackpointer−−]; }
}

(a) Implementation

util

Stack

stack push pop

package

class

field methods

(b) FSF

Fig. 1: Feature BaseStack

Each node of an FSF has a name and a kind1. For
example, the class Stack is represented by the node Stack
of kind class in Figure 1b. For the present paper we are
mostly not interested in the kind information, hence we
will skip this information when appropriate.

Formally, a feature structure forest is a labelled forest
(collection of trees); the labels correspond to, e.g., di-
rectory names in a large structured system and the tree
structure expresses their hierarchical interdependence.

In Java and in most other programming languages,
the inner nodes correspond to modules like packages and
classes, while the leaves contain the components of the
modules. This structure is captured in a language-indepen-
dent way by the branching structure of the trees in an FSF.

The transformation of a feature’s implementation (real
code) into a feature structure forest and hence towards an
algebraic notion has been thoroughly investigated and is
well known [6], [4], not least since feature structure forests
are closely related to abstract syntax trees.

To combine features and FSFs the concept of tree
superimposition was introduced [5], [32]. Superimposition
is a composition technique that is able to deal with a
wide range of artefacts, like source code, documentation or
makefiles. Problems arise in the composition of leaf nodes
if they represent the actual source code of the feature:
it is still an open question whether implementations of
the same method name should be merged, override one
another, be inlined, etc.

B. The Problem
We now present a minimalistic example that shows our

core ideas concerning requirements.
We assume that for some user the functionality provided

by BaseStack is not sufficient and that we want another
1Often the word “type” is used instead of “kind”. In the present

paper we use “type” for other concepts.

feature PeekStack that allows looking at the element
on the top of the stack without popping it off. Figure 2
illustrates the implementation and the FSF of the feature
PeekStack.

package util ;

class Stack{
public Object peek(){

return stack [stackpointer]; }
}

(a) Implementation

util

Stack

peek

package

class

method

(b) FSF

Fig. 2: Feature PeekStack

To get an implementation of the stack with the function-
ality of PeekStack and BaseStack, both features have
to be composed into a new version of stack; the result of
the composition of PeekStack and BaseStack is given
in Figure 3. It is clear that the feature PeekStack cannot
be compiled in isolation, since the method peek() requires
an object stack.

That means that the FSF alone is expressive enough
for reasoning in an abstract and general fashion about the
structure of features, but it cannot express requirements
on features: none of the standard models of Feature Alge-
bra is able to characterise requirements.

III. Types of Requirements
We now describe all types of requirements2 that occur in

FOSD and which Feature Algebra should cover. We focus
on requirements arising from object-oriented programming
languages with feature support and use feature-oriented
Java for our accompanying examples. Although there may
be different types of requirements for different program-
ming paradigms, we hope that the requirements listed
here cover most of them, or, at least, the most relevant
ones. There has been recent research on the capabilities
of other languages for feature orientation, which indicates
that issues like crosscutting features and feature interac-
tions also exist in different programming domains, like
functional programming [3] and specification languages [8].
We expect that this also applies to requirements.

To structure the list of requirements we distinguish
between three different types: low-level and high-level
requirements as well as non-functional criteria.
• Low-level requirements stem from the code level. An

example are dependences like “feature A builds on
feature B”.

• High-level requirements mainly originate from the
feature model or the domain. A typical example are
optional features.

• An example of a non-functional requirement is that
“the product must run on a mobile phone and has to
have less than 1 Mb of compiled source code”.

2at least all we are aware of

2

package util ;

class Stack{
Object [] stack ;
void push(Object o){

stack [stackpointer++] = o; }
Object pop(){

return stack [stackpointer−−]; }
public Object peek(){

return stack [stackpointer]; }
}

(a) Implementation

util

Stack

peek

•

util

Stack

stack push pop

=

util

Stack

stack push poppeek

(b) FSF

Fig. 3: Feature composition

In this paper, we show how low- and high-level require-
ments can be formalised in Feature Algebra; although
there are useful applications for non-functional require-
ments, we will not embed them in the algebraic model.
A. Low-Level Requirements

Low-level requirements are inferred from the code level;
they describe all constraints that are based on implemen-
tation details. Some of them were discussed w.r.t. jak code
by Thaker et al. [37].
References describe all code-level requirements where a
method, a class, etc. refers to another object. In particu-
lar, the code cannot be compiled and/or executed if the
referenced part is not contained in the overall product.
An example was already given in the previous section; the
feature PeekStack (cf. Figure 2 refers to stack). To focus
on the essential parts and to obtain a uniform style we
give a minimal example. In Figure 4, the feature F2 uses
an element, the object o, which it does not define. Thus
F2 implicitly contains the requirement that (at least one)
feature in the overall system has to define an Object o.

//feature F2
class F1{

void foo(){
o.something();
... }

}

//feature F1
class F1{

Object o;
}

Fig. 4: Low-level Requirement: Reference

Refinement is quite similar to the previous type of
requirement. In jak, the keyword refines indicates that
a feature F3 builds on (refines) a feature F4 (cf. Figure 5);
hence to produce an executable program that has feature
F3 as a component, F4 must be integrated, too. The same
effect is produced by the keyword extends in Java.

//feature F4
refines class F3{

...
}

//feature F3
class F3{

...
}

Fig. 5: Low-level Requirement: Refinement

Abstract Class Constraints and Interface Con-
straints are two other types of requirements presented
in [37]. A concrete subclass class C of an abstract class
or interface A must implement all inherited abstract
methods. Features may introduce new classes inheriting
from class or interface A or may introduce new abstract
methods into A. If new descendants of A are introduced
by a feature, only the introduced code is to be checked.
Yet, if a feature introduces new abstract methods to the
supertype A, we have to investigate all other features in the
product whether they introduce a concrete subclass and, if
so, that all these classes implement the newly introduced
abstract method, as all descendants of class A now have
a new implementation obligation.

Since the abstract class constraint and the interface
constraint are very similar, we only give a code example
for the former. Looking at Figure 6, we see that Feature
F5 is an executable program without any requirement.
In contrast to that, Feature F6 has a requirement, since
it extends class F5. Moreover, the definition of class F5
forces the existence of the method foo in feature F6.

//feature F6
class F6 extends F5{

void foo(){};
}

//feature F5
abstract class F5{

abstract void foo ();
}

Fig. 6: Abstract class constraint

This concludes our list of low-level requirements.
Since the first two of them behave similarly we will

call them structural dependences. In the next section we
will abstract structural dependences to a special kind
of abstract requirements. All other requirements will be
abstracted using a general concept of constraints.

B. High-Level Requirements
High-level requirements are semantic dependences that

can only partially be derived from a product line descrip-
tion or specification. In general, they cannot be determined
from a given implementation. They can either be derived
from the given domain model [27] or are specified by a
customer who wants a specific product or product line.

3

//features CONS
class List{

ListNode first ;

void cons(ListNode n){
n.next = first ;
first = n; }

}

class ListNode{
ListNode next;

}

(a) Implementation of cons

//feature name: SNOC
class List{

ListNode last ;

void snoc(ListNode n){
n.prev = last ;
last = n; }

}

class ListNode{
ListNode prev ;

}

(b) Implementation of snoc

//feature CONSSNOC
class List{

ListNode first ;
ListNode last ;

void cons(ListNode n){
n.next = first ;
first = n; }

void snoc(ListNode n){
n.prev = last ;
last = n; }

}

class ListNode{
ListNode next;
ListNode prev ;

}

(c) Composition of cons and snoc

Fig. 7: Feature CONSSNOC

A customer may, for example, require a feature f in each
product. Other constraints, such as invariants, are of a
more semantic nature.

We start with requirements that can be encoded in the
corresponding feature model (e.g., [27], [35]). Sometimes
these requirements are also called primitives.
Mandatority describes the fact that a certain feature has
to be within a product. An example is for example that a
user requires a toString ()-method for each class.
Optionality describes a requirement for a whole product
line. It might be that a product A has the optional feature
f , whereas another product B of the same product line
does not have (implement) f .
Alternative provides a choice from a given set of features.
It can be seen as a requirement “exactly one of m different
features”.
Exclusion describes the situation that two features are
not allowed to be inside the same product. For example,
if a product has a 64-bit implementation of method foo,
another implementation of the same method for a 32-bit
system is not allowed.
Implication3 describes the counterpart to an exclusion. A
second feature is not forbidden, but required. For example,
if a product provides a method (feature) to allocate mem-
ory, another feature for deallocation has to be provided.
User Requirements4 are quite similar to the reference
requirements of the previous subsection. But this time the
dependence is given by the feature model or the user. For
example, a costumer demands the implementation of a
printer driver whenever a function print () is implemented.
In other words, print () requires a printer driver.

3Implications are not given in the original literature. However we
think that implications are the natural counterpart of exclusions.
They are quite similar to references and refinement, but cannot be
determined from the given code fragment.

4In the literature this primitive is only called “requirement”. How-
ever, since we use the word “requirement” in a much more general
setting, we added the word “user” to distinguish this special class
from requirements in general.

Our examples are more or less simple; real-life re-
quirements are more complicated, but base on the same
concepts. We illustrate this by a cons/snoc example for
lists. We assume two separate implementations: one for
cons and another one for snoc (cf. Figure 7a–b). The
composition (superimposition) of these features compiles
without an error. However, depending on the intention of
the programmer the result is erroneous. In Figure 7c the
operations cons and snoc are not working on the same list.

To overcome this deficiency, the programmer can pro-
vide a further feature that should be added whenever both
cons and snoc occur. Such a code fragment or derivative
is given in Figure 8. Together with this code fragment one
then has the requirement “if the features cons and snoc
occur in a program, the derivative has also to be added.”

refines class List{
void cons(ListNode n){

if (first == null)
last = n;

else
first .prev = n;

original (n); }
void snoc(ListNode n){

if (last == null)
first = n;

else
last .next = n;

original (n); }
}

Fig. 8: Code derivative for cons and snoc

This derivative enforces that the composition of cons
and snoc work on the same list.

C. Non-Functional Requirements
Next to low-level and high-level requirements, there is

another class of requirements. Examples are
• Since the implementation is intended to run on a

mobile phone, the size of the compiled source code
should be smaller than 1Mb.

4

• Modern embedded systems save electricity by turning
off temporarily unused components. Running on a
contactless smart card, the code must be able to per-
form wireless authentication with a maximum power
consumption of 7mW .

• On the same smart card device, the code must be
robust against differential power analysis, i.e. there
are no means of reconstructing the cryptographic
key used during authentication by an analysis of the
device’s power consumption.

Since these requirements can be anything, we will not
integrate them into our abstract algebraic model. Rather,
we will focus on the first two classes of requirements.

IV. Requirements in Feature Algebra
A. Feature Algebra

We briefly recapitulate the formal definitions relevant
for Feature Algebra [6]. A Feature Algebra comprises a set
I of introductions that abstractly represent FSFs and a set
M of modifications that allow changing the introductions.
The central operations are the addition + that abstractly
models feature tree superimposition, the operator · that
allows application of a modification to an introduction and
the modification composition operator ◦.

Definition 4.1: Formally, a Feature Algebra is a tuple
(M, I,+, ◦, ·, 0, 1) such that, for all m,n ∈M and i, j ∈ I,
• (I,+, 0) is a monoid satisfying the additional axiom

of distant idempotence, i.e., i+ j + i = j + i,
• (M, ◦, 1) is a groupoid operating via · on I, i.e., ◦ is

a binary inner operation on M and 1 is an element of
M such that furthermore

– · is an external operation from M × I to I,
– (m ◦ n) · i = m · (n · i),
– 1 · i = i,

• 0 is a right-annihilator for · , i.e., m · 0 = 0,
• · distributes over +, i.e., m · (i+ j) = (m · i) + (m · j).
The standard model (e.g. [6]) of Feature Algebra uses

FSFs as elements. The operation + coincides with super-
imposition (cf. Section II-A). Superimposition is denoted
by •. Each modification consists of a query that selects a
subset of introductions and a change function that specifies
how to modify the selected introductions. More details
concerning this model can be found in [6], [7].

In [24], other instances of Feature Algebra are discussed.
Later on, we will introduce yet another model of Feature
Algebra that captures requirements.

Definition 4.2: Based on the introductions of a Feature
Algebra, the natural preorder or subsumption preorder is
defined by i ≤ j ⇔df i+ j = j; it is closely related to the
subtyping relation <: in the Deep calculus of [25].

In the above mentioned model based on FSFs the sub-
sumption preorder can be understand as follows: An FSF i
is less or equal than a forest j (i ≤ j) if i is a subforest
of j. By a subforest we mean that each node(edge) of i is
also a node(edge) in j. Moreover, if m is a node of i, each

predecessor of m in j as well as all connection have to be
in i. Please note that the relative order of terminal nodes
does not matter for the subsumption relation.

B. Representing Requirements Algebraically

In the original model of Feature Algebra, an intro-
duction is an FSF that abstractly represents a feature’s
implementation (cf. Section II). Other models use lists and
sets as introductions [24]. However, none of them is able
to formalise requirements at the abstract level.

In this section we discuss how requirements can be
represented algebraically. Based on that we will introduce
a model capturing requirements. The main idea is to use
triples (i, d, c) consisting of a (partial) implementation i,
a collection d of structural dependences and a constraint
c. Both i and d are given by the introductions of some
Feature Algebra A; this is possible, since structural depen-
dences have the same structure as implementations. The
component c is a predicate on the set of introductions I,
i.e., a mapping from I to the set of truth values.

Let us look at an example. We already showed that
the Feature PeekStack (cf. Figure 2) requires an object
stack. Such a requirement is now modelled by yet another
FSF (presented in Figure 9).

util

Stack

stack

package

class

field

Fig. 9: A structural dependence of Feature PeekStack

To ease readability, we will denote the FSF of Figure 2b
by i, the one of Figure 9 by d. Obviously, we do not have
d ≤ i. Hence i does not satisfy its requirements. In contrast
to that the composed FSF of PeekStack and Basestack
satisfies d, since it includes d as a subtree.

Let us now give some formal definitions.
Definition 4.3: Assume a Feature Algebra A =

(M, I,+, ◦, ·, 0, 1) and let PI be the set of all predicates
p : I → {true, false} over the introductions I of A.

1) A design over A is an element of I× I×PI . To select
the components, we define, for a design D = (i, d, c),
im(D) =df i, sd(D) =df d and co(D) =df c.

2) Design D satisfies its dependence if sd(D) ≤ im(D).
3) Design D satisfies its constraint if co(D)(im(D)) =

true.
4) A design that satisfies both its dependence and its

constraint is called a product.
Using designs it is now easy to model the classes of

requirements identified in Section III. For most of these
tasks it is useful to assume a predicate has(f) that checks

5

whether a feature f is included in a given Feature Al-
gebra element i. Frequently, but not always, this can be
expressed in the form

has(f)(i) ⇔df f ≤ i .

Moreover, we need some basic knowledge of predicates.
Definition 4.4: Assume an arbitrary set I, the set of

predicates PI over I and predicates p, q ∈ PI .
1) The conjunction of two predicates p, q is given by

(p ∧ q)(i) =df p(i) ∧ q(i) for all i ∈ I. This opera-
tion is associative, commutative and idempotent. The
corresponding subsumption order can be described by

p ≤ q ⇔ ∀i ∈ I : q(i) ⇒ p(i) .

2) The predicate that maps every element of I to true is
denoted by true.

The introductory discussion on designs has already
shown that structural dependences (references and re-
finement) can easily be determined from a given imple-
mentation and formulated by in the concrete algebra of
designs over FSFs. An example was already presented in
the previous section.

Also, mandatory features, optionality, alternatives and
user requirements can be encoded into constraints in a
straightforward manner. If more than one requirement
occurs they are combined by conjunction. We skip the
details for these constructions and refer to the case study
in [22].

Next, we show how exclusions and implications can
be formalised. Since the third component of designs is
based on predicates, we freely use the logical connectives
∧ , ∨ , ⇒ ,¬, All these operations are, like ∧ , defined
on predicates via pointwise lifting.
• That feature f excludes feature g is expressed as

has(f)(i) ⇒ ¬has(g)(i)

for all FSFs i or,equivalently, by ¬(has(f)(i) ∧
has(g)(i)).

• Similarly, feature implication is expressed as

has(f)(i) ⇒ has(g)(i)

for all FSFs i or,equivalently, by ¬has(f)(i) ∨
has(g)(i).

Last, we have have a look at abstract class constraints;
abstract interface constraints can be characterised in a
similar way. An abstract class constraint has the form

If a class C extends the class D then it must provide a
method foo().

Again this can be formalised as an implication:

extendsD(i) ⇒ has(foo())(i) ,

where extendsD is a predicate which looks at the provided
code and decides whether the phrase extends D occurs.

The two predicates (has and extends) presented so far,
are given in a very informal way (although it is clear how to
define them properly). A more general form of constraints
is specified in the form

P (i) ⇒ ∃j : Q(i, j) ,

where i, j are variables for introductions and P,Q are
predicates. In particular, each tool based on DESA has
to provide such a simple query language, closely related
to the query language that defines modifications on FSFs
(cf. Section II). Examples for existing query languages
are AspectJ (for defining pointcuts) or the modification
language of FeatureHouse [17].

C. A Feature Algebra of Designs
We now want to make the set of designs over A into a

Feature Algebra itself. Having again a Feature Algebra
immediately implies that all knowledge about Feature
Algebras also holds for the new structure. In particular,
the new model violates none of the concepts Feature
Algebra was intended for. Therefore the model can be seen
as an algebra that covers “even more” concepts of FOSD
at the abstract algebraic level.

Since designs are elements of a Cartesian product, the
idea is to define the necessary operations componentwise.
For the first two components we can simply use the
corresponding operations from A. For the third component
we have to decide how to define the sum and the set of
modifications together with application and composition.
Since the requirements of a combined design should be
the joined requirements of the parts, it seems reasonable
to use conjunction of predicates here; the neutral element
is true. For modifying predicates, we can use the well-
known concept of predicate transformers, i.e., of functions
that transform predicates into predicates. They are for
example used in Dijkstra’s wp-calculus [19] or in Back and
von Wright’s refinement calculus [10].

Definition 4.5: Assume an arbitrary set I, the set of
predicates PI over I and predicates p, q ∈ PI .

1) We denote by PT I the set of all predicate transform-
ers m : PI → PI .

2) By id we denote the identity predicate transformer
with id(p) = p for all p ∈ PI .

3) The composition operator ◦ : PT I × PT I → PT I is
defined, as usual, by (m1 ◦m2)(p) =df m1(m2(p)).

4) The operator · : PT I × PI → PI applies a predicate
transformer to a predicate; the result is again a
predicate: m · p =df m(p).

5) A predicate transformer m is conjunctive if for all
p, q ∈ PI we have m(p ∧ q) = m(p) ∧ m(q). In
particular, id is conjunctive.

6) The set of all conjunctive predicate transformers over
A is denoted by CT I .

Lemma 4.6: Given a set I of introductions, the structure
(CT I ,PI , ∧ , ◦, ·, true, id) forms a Feature Algebra.

The proof is straightforward.

6

Now we are ready to construct a Feature Algebra of
designs. The following result is immediate by universal
algebra (e.g. [38]).

Theorem 4.7: Let A = (M, I,+, ◦, ·, 0, 1) be a Feature
Algebra. Then the structure

DESA =df (M ×M × CT I , I × I × PI ,+, ◦, ·,0,1)
forms again a Feature Algebra if 0 =df (0, 0, true), 1 =df
(1, 1, id)5 and the operations as well as modifications are
lifted pointwise. For example, the external operation · is
defined by (m,n, l) · (i, d, c) =df (m · i, n ·d, l ·c) , where
m,n ∈M are modifications of A and l ∈ CT I is a predicate
transformer (modification of PI).

V. Propagating Type Information
Not all structural dependences can be represented as

FSFs. This means that structural dependences and in-
troductions are not equivalent in the concrete model.
Informally, structural dependences can be viewed as intro-
ductions enriched by the additional concept of replacement
expressions. Before a definition of structural dependences
and replacement expressions is given, they are motivated
by an example.

In the case of a typed language the type of an element is
determining which function can be applied to or invoked
on this element. For example in Java elements of type
String can be concatenated, two elements of type Integer
can be added.

In an FSF each node has a position which can be
identified with the path to that node (as long as the
ordering of children is irrelevant). Furthermore each node
has a kind. According to [6], [7] the kind of a node in
the case of Java can be package,class, field ,method,... .
Furthermore classes in Java denote types. This means that
a node labelled MyOwnClass is of kind class and introduces
a new type MyOwnClass, which is important for the type
system.

When identifying structural dependences it can occur
that a function f () is invoked on an element e, but it is not
possible to determine the type of element e. This means,
in FSF terminology, the exact path and the type (types
in the sense MyOwnClass) of the node labelled e are not
known. A little Java example should clarify this.

Given the three features A, B, C of Figure 10. We try
to find their structural dependences. For feature A it is
quite easy since there are no structural dependences at
all. In Feature B, the member b is of type D. Hence this
feature requires a definition of a class D and the structural
dependences of feature B are sd(B) = {D}.

For feature C things get more difficult. In the method
foo(), a method e() is invoked on an element b. This
means, first, that C requires an element b. There are two
different possibilities to include it. The first one is that b is
declared as a member of class A. The other one is that b is
a local variable in method foo(). Since this affects the code

5Please note that we overload the symbols +, ◦ and ·.

level, we will not go into more detail at the moment and
assume the first case. Hence A.b is a structural dependence
of feature C.

Although it might seem plausible that A.b.e() is another
structural dependence, this is not the case. First the type
of the member A.b has to be determined and then it
has to be checked whether an operation e() is defined on
that type or not. Therefore a type evaluation operator τ
is introduced and the structural dependence A.b.e() is
replaced by τ(A.b,F).e(), which means “determine the
type of A.b within F and insert it”. Here F is the overall
FSF in which we are working. Then we can write sd(C) =
{A, A.b,τ(A.b,F).e()}.

If, for example, features B and C are added we have
sd(B + C) = {D, A, A.b, τ(A.b,F).e()} and im(B + C) =
{A, A.b, A.foo()}. Now it is possible to evaluate the type of
A.b since {A.b} ⊆ im(B + C) and to rewrite the structural
dependences as sd(B + C) = {D, A, A.b, D.e()}

//feature A
class D{
void e(){}
}

//feature B
class A {
D b;
}

//feature C

class A{
void foo(){
b.e (); }

}

//composition of B and C
class A{
D b;
void foo(){
b.e (); }

}

Fig. 10: Type Evaluation

This example is strongly influenced by Java. Neverthe-
less the idea of type evaluation can be expressed in an
abstract, language independent way.

Definition 5.1 (replacement): Replacement is a func-
tion τ : I × I → I which maps an introduction together
with a context to another introduction.

A replacement expression is of the form τ(i, j), where
i, j are elements of I. It is supposed to represent the
type of i as provided by the context j. With a view
on implementation, the function τ can be viewed as ab-
stracting references from applied occurrences to defining
occurrences (and extracting information from there).

In terms of the FSF model, an introduction represents
an FSF and therefore encodes each path of an FSF in an
abstract way. Then replacement maps an FSF to another
FSF as seen in the previous example. In the example
the FSF with the set-based representation {A, A.b} was
mapped to the FSF with the set-based representation {D}.

Like for the function sd, we need a language dependent
implementation of the function τ . In the case of Java it is
called type evaluation. Note that we are now not talking
at the abstract level of introductions but at the level of
the concrete model.

7

In the concrete model, replacement expressions have to
be of a certain (well-formed) kind to be usable as struc-
tural dependences. Therefore we will revise the identifica-
tion of the replacement expression in the above example.

Let again F be the overall FSF in which all the features
subsequently mentioned occur. The replacement expres-
sion τ(A.b,F).e() is found in feature C. Looking at the
implementation of method foo() a first structural depen-
dence is A.b. A method e() is invoked on the element b,
that has just been identified as an structural dependence.
Whether such a method e() exists depends on the type of
the element b. Hence the method e() itself is a structural
dependence. Consequently the second structural depen-
dence depends on the structural dependence A.b. Further-
more, translating the second structural dependence into
an FSF we know that there must be a leaf labelled e. So
we only have to evaluate the FSF excluding the leaf itself.

Assume a path p = a.b.c and an introduction d. The
following two properties must be satisfied for a type
evaluation expression to be well-formed.

1) Type evaluation may only be applied to a proper
prefix of the path leading to the feature in question.
Thus τ(a.b.c,F) is not well-formed whereas τ(a.b,F).c
is.

2) Furthermore, for every design D and every path p in
F the implication τ(p,F).c ∈ sd(D)⇒ p ∈ sd(D) must
hold.

The second property is necessary since a type evaluation
expression cannot be applied to an argument p if the
argument itself is not given.

Since replacement expressions evaluate to introductions,
they have the same algebraic properties. Hence replace-
ment expressions also form an FA. To formalise this, we
slightly change the definitions used in Theorem 4.7. We
distinguish between introductions representing pure FSFs
and introductions enriched with replacement expressions
representing structural dependences; the set of the latter
ones is called SD. Now, instead of working on triples
(i, d, c) ∈ I × I × PI designs, we use designs (i, d, c) ∈
I × SD× PI .

With this modification, adding τ to the set of structural
dependences does not violate the axioms of Feature Alge-
bra.

Lemma 5.2: The structure (M,SD,+, ◦, ·, 0, 1) forms a
feature algebra, when modification application on path
replacement expressions is defined as:

m · τ(p, q).e = τ(m · p, q).e

This is intuitive, since a modification in the FSF model
is applied to paths.

To check whether a feature satisfies its dependence (in
the sense of Definition 4.3), all type evaluations must have
been replaced. If that is not possible, the design cannot
satisfy its dependence, since a type evaluation expression
is never part of an introduction.

VI. Related Work
A main goal of our Feature Algebra is to formally model

conflicts between features in a language-independent way.
To our knowledge we are the first to provide an algebra to
model these conflicts. Yet, there are several approaches like
ours dealing with formal aspects of feature composition.
For clarity, we want to discern them into four areas:
• feature-oriented type systems
• constraint-based approaches
• hybrid approaches
• approaches with focus on feature models

A. Feature-oriented Type Systems
Feature-oriented type systems resemble what we call the

low-level requirements in terms of Feature Algebra. Type
system rules apply to all elements of a given programming
language. In Feature Algebra, these rules are modelled as
requirements, which have to be applied to every fragment
of feature of a certain language. Type systems cannot
model domain-specific constraints, which are a major
source of feature interactions. This is why type systems
are necessary to handle conflicts between features, but are
not enough to serve as a device to avoid them.

gDeep is a language-independent, feature-oriented type
calculus [2]. New languages can be adopted via a plug-in
system, which promotes a (nearly) arbitrary type system
into a feature-oriented one. Our Feature Algebra is also
situated on top of a language-dependent type system.
Like in gDeep, these not feature-oriented type rules have
effect on the feature-oriented requirements imposed by
the algebra. For example, an interface constraint is the
feature-oriented form of a corresponding type rule.

There are other formal approaches to type systems,
which are not explicitly feature-oriented, but have a notion
of components, for example FeatherTraitJ [30] and Java
Mixins [1]. These are language-dependent.

As our Feature Algebra is not bound to any specific lan-
guage syntax, it is able to model programming paradigms
instead of language constructs in terms of feature conflicts.
This way, similar languages are treated similarly.

B. Constraint-Based Approaches
There have been attempts to cover the issue of feature

interactions by model-checking [21], [20], [16], [36]. Like
us, these approaches use additional information to argue
about properties of feature combinations. These properties
map to high-level requirements and abstract from code.
We aim at covering all these requirements in one formal
algebra and hope to encapsulate fundamental concepts of
FOSD which do not arise when considering either low or
high-level requirements alone.

Distributed feature composition by Zave et al. [26] uses
component instance rules to determine the environment a
feature can cooperate with . These instance rules try to be
modular, complete and comprehensible service specifica-
tions. Unlike our Feature Algebra, the approach is limited

8

to the domain of telecommunications. Yet, similarities to
our approach are the formal basis and the idea to reduce
the number of interactions by a set of rules.

C. Hybrid Approaches
Hybrid approaches unite low-level as well as high-level

requirements.
Delta-oriented programming represents a product line

by one core module and several delta modules [34]. These
delta modules are mostly similar to optional features,
with the difference that they even may remove code.
Delta modules include application conditions, which have
to be checked if a product is generated. Delta-oriented
programming both has measures to automatically assert
type correctness and application conditions allow for con-
straints at the level of features. This information is used
to automatically determine if the composition of certain
features is commutative. It is yet unknown whether our
Feature Algebra complies with delta-oriented program-
ming.

Multiple approaches dealing with requirements were
introduced by Batory et al. Conditions and obligations
are used for Features in GenVoca to express high-level
requirements [12], formality is provided by the Inscape
approach by Perry [33] and Safe Composition asserts
low-level requirements [29], [18], [11], [37]. In sum these
approaches handle all kinds of requirements present in
our Feature Algebra, but there is no evidence that a
combination is possible. Our Feature Algebra is able to
cover all these approaches in one comprehensive model.

D. Feature Models
Feature-oriented domain analysis aims to discern valid

and invalid feature combinations. The set of all valid
combinations inside a product line is described by a propo-
sitional formula, the feature model [27]. Traditionally, a
feature model is constructed by hand utilizing the knowl-
edge of a domain expert. While there are recent efforts to
automatically build feature models out of given software
product lines, these approaches can only handle low-level
requirements [9], [28].

A prominent goal of our Feature Algebra is to be able
to specify a high-level requirement inside a feature, which
then has effects on the whole product line. Thus, it would
be possible to generate feature models out of both low and
high-level requirements.

Additionally, a requirement can be formulated in terms
of one feature’s domain characteristics (like a specification
of the environment the feature needs for proper function).
This can help to avoid combinations of interacting fea-
tures. However, the feasibility of this goal is yet to be
showed, as we expect this to be the more difficult the more
intricate a given feature interaction is.

VII. Conclusion
In this paper we have shown how requirements can be

embedded into the abstract structure of Feature Algebra.

So far Feature Algebra was used to describe main aspects
of FOSD. Feature Algebra itself is intended to describe
FOSD at a very abstract level. Its purpose is to provide a
mathematically precise foundation for this kind of software
development. The main model of Feature Algebra is based
on feature structure forests, structures that describe the
main components of a given program and that are closely
related to abstract syntax trees.

However, none of the earlier models was able to describe
requirements. Feature interactions are an immanent prob-
lem of FOSD, so measures helping to handle them are req-
uisite. Providing proper instruments for the formulation of
requirements are one step in this direction, that is why we
think that requirements are a major construct of FOSD
and should be included in the abstract model. They have
various forms: either they can be determined from a given
program (like references) or they are explicitly given by
the stakeholder/programmer.

As the main contribution of this paper we presented a
model of Feature Algebra that covers all aspects of require-
ments. It is based on a product construction over different
kinds of feature algebras. The fact that the outcome
forms again a feature algebra is especially remarkable
and important, since all knowledge about feature algebras
immediately holds for the new structure. In particular,
the new model does not invalidate any of the concepts
of the original Feature Algebra. Therefore it can be seen
as an algebra that covers “even more” concepts of FOSD
at the abstract algebraic level. Based on this model, we
have shown how different kinds of requirements can be
formalised algebraically. Moreover we have presented a
small case study that underpins our approach.

Future work will include much larger case studies. They
will help to further understand the structure of Feature
Algebra and requirements. Moreover, by implementing a
language-independent algebra-based tool set we hope to
get incentives for further development of Feature Algebra
and see how it can serve as a formal basis for the funda-
mental concepts of FOSD.

References

[1] D. Ancona, G. Lagorio, and E. Zucca. Jam—designing a Java
extension with mixins. ACM Trans. Program. Lang. and Syst.,
25(5):641–712, 2003.

[2] S. Apel and D. Hutchins. A calculus for uniform feature
composition. ACM Trans. Program. Lang. and Syst., 32(5):1–
33, 2010.

[3] S. Apel, C. Kästner, A. Größinger, and C. Lengauer. Feature
(de)composition in functional programming. In A. Bergel and
J. Fabry, editors, Software Composition, volume 5634 of LNCS,
pages 9–26. Springer, 2009.

[4] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-
independent, automated software composition. In 31th Interna-
tional Conerence on Software Engineering(ICSE), pages 221–
231. IEEE Press, 2009.

[5] S. Apel and C. Lengauer. Superimposition: A language-
independent approach to software composition. In C. Pautasso
and É. Tanter, editors, Software Composition, volume 4954 of
LNCS, pages 20–35. Springer, 2008.

9

[6] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebra for
features and feature composition. In Algebraic Methodology and
Software Technology (AMAST 2008), volume 5140 of LNCS,
pages 36–50. Springer, 2008.

[7] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebraic
foundation for automatic feature-based program synthesis. Sci-
ence of Computer Programming, 75(11):1022–1047, 2010.

[8] S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Detecting
dependences and interactions in feature-oriented design. In
International Symposium on Software Reliability Engineering
(ISSRE 2010), pages 161–170. IEEE Computer Society, 2010.

[9] S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Language-
independent reference checking in software product lines. In
Workshop on Feature-Oriented Software Development (FOSD),
pages 65–71. ACM Press, 2010.

[10] R.-J. Back and J. von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Science.
Springer, 1998.

[11] D. Batory. Using modern mathematics as an FOSD modeling
language. In Conference on Generative Programming and
Component Engineering (GPCE 08), pages 35–44. ACM Press,
2008.

[12] D. Batory and B. Geraci. Composition validation and subjectiv-
ity in GenVoca generators. IEEE Trans. Software Engineering,
23(2):67 –82, 1997.

[13] D. Batory and S. O’Malley. The design and implementation of
hierarchical software systems with reusable components. ACM
Trans. Softw. Engineering and Methodology, 1(4):355–398, 1992.

[14] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. In Conference on Software Engineering (ICSE
03), pages 187–197. Proc. IEEE, 2003.

[15] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable
software libraries. ACM SIGSOFT Software Engineering Notes,
18(5):191–199, 1993.

[16] L. D. Bousquet. Feature interaction detection using testing and
model-checking—experience report. In In World Congress on
Formal Methods, pages 622–641. Springer, 1999.

[17] B. Boxleitner, S. Apel, and C. Kästner. Language-independent
quantification and weaving for feature composition. In A. Bergel
and J. Fabry, editors, Software Composition, volume 5634 of
LNCS, pages 45–54. Springer, 2009.

[18] B. Delaware, W. Cook, and D. Batory. A machine-checked
model of safe composition. In Workshop on Foundations
of Aspect-oriented Languages (FOAL 09), pages 31–35. ACM
Press, 2009.

[19] E. Dijkstra. A discipline of programming. Prentice Hall, 1976.
[20] N. Griffeth, R. Blumenthal, J. Gregoire, and T. Ohta. Feature

interaction detection contest of the fifth international workshop
on feature interactions. Computer Networks, 32(4):487 – 510,
2000.

[21] O. Grumberg and D. Long. Model checking and modular
verification. ACM Trans. Program. Lang. and Syst., 16(3):843–
871, 1994.

[22] P. Höfner, S. Mentl, B. Möller, and W. Scholz. Requirements
in feature algebra. Technical Report 2010-12, Institut für
Informatik, Universität Augsburg, 2011. (to appear).

[23] P. Höfner and B. Möller. An extension for feature algebra —
Extended abstract. In Workshop on Feature-Oriented Software
Development (FOSD 09), pages 75–80. ACM Press, 2009.

[24] P. Höfner and B. Möller. An extension of feature algebra.
Technical Report 2010-9, Institut für Informatik, Universität
Augsburg, 2010.

[25] D. Hutchins. Eliminating distinctions of class: Using prototypes
to model virtual classes. In P. Tarr and W. Cook, editors,
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2006), pages
1–20. ACM Press, 2006.

[26] M. Jackson and P. Zave. Distributed feature composition:
A virtual architecture for telecommunications services. IEEE
Trans. Software Engineering, 24:831–847, 1998.

[27] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-21, Carnegie-Mellon
University Software Engineering Institute, 1990.

[28] K. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory.
Guaranteeing syntactic correctness for all product line variants:
A language-independent approach. In Conference on Objects,
Models, Components, Patterns (TOOLS EUROPE), volume 33
of Lecture Notes in Business and Information Processing, pages
174–194. Springer, 2009.

[29] M. Kuhlemann, D. Batory, and C. Kästner. Safe composition
of non-monotonic features. ACM SIGPLAN Notices, 45(2):177–
186, 2010.

[30] L. Liquori and A. Spiwack. FeatherTrait: A modest extension
of Featherweight Java. ACM Trans. Program. Lang. and Syst.,
30(2):1–32, 2008.

[31] R. Lopez-Herrejon and D. Batory. A standard problem for
evaluating product-line methodologies. In J. Bosch, editor,
Conference on Generative and Component-Based Software En-
gineering (GCSE 01), volume 2186 of LNCS, pages 10–24.
Springer, 2001.

[32] H. Ossher and H. Harrison. Combination of inheritance hier-
archies. In Object-Oriented Programming, Systems, Languages,
and Applications, pages 25–40. ACM Press, 1992.

[33] D. E. Perry. The inscape environment. In Conference on
Software Engineering (ICSE 89), pages 2–11. ACM Press, 1989.

[34] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella.
Delta-oriented programming of software product lines. In
J. Bosch and J. Lee, editors, Software Product Lines: Going
Beyond, volume 6287 of LNCS, pages 77–91. Springer, 2010.

[35] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps.
Generic semantics of feature diagrams. Computer Networks,
51:456–479, 2007.

[36] B. Stepien and L. Logrippo. Feature interaction detection using
backward reasoning with LOTOS. In Protocol Specification,
Testing and Verification XIV (PSTV 94), pages 71–86. Chap-
man & Hall, 1995.

[37] S. Thaker, D. Batory, D. Kitchin, and W. R. Cook. Safe
composition of product lines. In Generative Programming
and Component Engineering (GPCE 07)), pages 95–104. ACM
Press, 2007.

[38] W. Wechler. Universal Algebra for Computer Scientists.
Springer, 1992.

10

