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A Survey on Client Throughput Prediction Algorithms
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Network communication has become a part of everyday life, and the interconnection among devices and

people will increase even more in the future. Nevertheless, prediction of Quality of Service parameters, par-

ticularly throughput, is quite a challenging task. In this survey, we provide an extensive insight into the

literature on Transmission Control Protocol throughput prediction. The goal is to provide an overview of

the used techniques and to elaborate on open aspects and white spots in this area. We assessed more than

35 approaches spanning from equation-based over various time smoothing to modern learning and location

smoothing methods. In addition, different error functions for the evaluation of the approaches as well as pub-

licly available recording tools and datasets are discussed. To conclude, we point out open challenges especially

looking in the area of moving mobile network clients. The use of throughput prediction not only enables a

more efficient use of the available bandwidth, the techniques shown in this work also result in more robust

and stable communication.
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1 INTRODUCTION

The dramatic increase in data transmitted over the Internet represents a challenge for the infra-

structure. To meet this challenge, transmission rates are being increased and new technologies

are being developed. More efficient use of bandwidth can also help to increase the amount of

data transferred. This is demonstrated, for example, by developments in the field of mobile video

streaming, in which Throughput Prediction (TPP) becomes progressively more important. The

topic itself, however, is not a new one. Knowing the time required to transfer a certain amount

of data was even relevant at times without mobile devices at all. With the change to services pro-

vided via the Internet, the use cases for TPP changed. In the early years of TPP, the transfer time
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Fig. 1. A holistic taxonomy of commonly used prediction models. Starting from the first equation-based
approaches to the state-of-the-art geographic and machine learning-based ones.

of bulky Transmission Control Protocol (TCP) connections was one of the most interesting

topics [38]. Nowadays, research shifted more and more to applications in the area of mobile adap-

tive streaming (see, e.g., References [5, 7, 9, 10, 29, 61, 80, 124, 134]), other mobile applications like

vehicle-to-network communication for autonomous driving [48, 99]. Especially for streaming real-

time map information [46] and scheduling multi-provider connections in public transport systems

[126], there is already evidence that TPP can improve the process [137]. There are also approaches,

which use the prediction to decide if the download of software updates should be started or not

[28], as well as for more general tasks in data transmission in vehicle to infrastructure [78] or

cellular vehicle-to-vehicle environment, which is one form of intelligent transportation system

communication [59]. Therefore, this article focuses on presenting an overview of different predic-

tion models. It concentrates on the prediction of the two quality parameters Throughput (TP)

and Round-Trip Time (RTT), as well as on providing a taxonomy of the different methods for

doing so. To cope with this challenge, this work is targeting the following main contributions:

• First, Section 2 describes the recent works and discusses surveys related to the topic of this

work. This includes also a holistic taxonomy of commonly used prediction model shown in

Figure 1.

• Deployment areas and advantages of TPP are subject of Section 3 and range from classic

server to client communication to modern mobile networks.

• A detailed introduction of more than 35 different approaches is given in Section 4, which to

our knowledge, is the most holistic work ever done on this topic.

• A summarizing overview of all prediction models is presented in online only material. It

comprises their classification, input parameters and error function.

• A list of available datasets and of tools, which can be used to create additional datasets, is

shown in Section 5.

• The work is supported by the discussion of open issues, and future work that should be done

on TPP in Section 6.

• Finally, Section 7 presents the conclusion of the survey.

First, however, the scope and limitations of this work have to be clarified.

1.1 Scope and Limitations of This Work

Since the main purpose of this work is to study the TP of a single connection on the client side, the

scenarios and methods described in this article are limited to this scope. This means that traffic,
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e.g., handled in data centers or other types of large-scale broadband networks, is not further inves-

tigated in this article, although there are, of course, interesting approaches for these applications,

as demonstrated in the works of Kelly et al. and Cardwell et al. [18, 52].

In addition, approaches containing multiple paths for one connection, such as Multipath TCP

[115] or the control of mutable connection [114] are not discussed in this work.

2 RELATED WORK

In this section, the most relevant surveys regarding TPP are discussed. To cluster the related work,

this section is structured in methods using just the throughput itself, so called univariable ap-

proaches and algorithms using additional parameters like low-level value of the connection or the

geographic location, called multivariable approaches.

2.1 Univariable Approaches

The use of algorithms to predict the TP of TCP connections is shown by Qiao et al. [83], where

the focus is on mean-based approaches as well as on linear and nonlinear time series methods. A

wide range of prediction models is evaluated in three traces recorded on different wired scenarios.

The Time Series Models (TSMs) can also be used in mobile network data as presented by Bui

et al. [17], where the authors not only investigated the classic linear models, e.g., Moving Average

(MA), Autoregressive Model (AR), Autoregressive Moving Average (ARMA), Autoregres-

sive Integrated Moving Average (ARIMA) (presented in Section 4.3) but also nonlinear ones.

2.2 Multivariable Approaches

Another type of approaches is shown by Raca et al. [85]. Here, Learning-Based (LB) algorithms

are explored on simulated data provided for static and mobile cellular network connections. The

simulation was done using the Network Simulator 3, where Raca et al. applied single algorithms,

namely, Support Vector Machine (SVM) and Gaussian Process as well as ensemble methods

like Random Forest (RF) and Gradient Boosting. Each approach was optimized via grid-search

techniques. An evaluation of SVM used for regression and Neural Networks (NN) applied on

real-world static cellular network data is presented by Liu and Lee [56]. The authors performed an

empirical study to compare different Mean-Based (MB) methods against time series and machine

learning models by using the data recorded at three different locations in Hong Kong. In total,

they analysed seven prediction algorithms regarding their performance and characteristics. The

fact that LB models are highly interesting in areas related to TPP is also shown by Nguyen and

Armitage [72], who presented a survey regarding techniques used for Internet Protocol (IP)

address traffic classification. The work of Bui et al. [16] takes also location smoothing prediction

methods into account. The authors focus on wireless networks and present a large number of

models utilizing learning-based algorithms and time smoothing as well. They concentrate not only

on TPP but also show approaches regarding the quality of experience for specific applications and

a discussion on challenges and issues in the context of the new mobile network standard 5th

Generation of Cellular Mobile Communication (5G). But the survey of Bui et al. lacks in

explaining methods for TPP that are not based on machine learning. For example, the authors are

mentioning the nearest neighbour measurements as a Location Smoothing Model (LSM), but

other methods, such as the segment building ones presented in Section 4.5, are not mentioned and

further categories are missing at all.

There is also a study of Zhang et al. [130] concentrating on deep learning methods in mobile

networks. This study is investigating different areas in mobile and wireless network, apart from

TPP. But, however, it only takes deep learning into account and does not consider approaches like

Location Smoothing (LS) as mentioned in this work.
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Fig. 2. The three different scenarios in which throughput prediction is used. S1 describes the classical wired
client-server connection. The other two (S2 and S3) are establishing a connection via mobile network for
static and moving clients.

2.3 Taxonomy of Models

Although the surveys listed in the previous section are presenting a selected number of prediction

models for either wired or wireless scenarios, to the best of our knowledge, this is the first survey

describing such a large number of different TCP TPP models including Equation-Based (EB),

time smoothing, and LS once. To structure the large number of models, a taxonomy is introduced

in Figure 1, clustering the approaches according to the methods used. However, since there are

very different techniques based on time smoothing, these are subdivided again. This results in five

groups, which are explained in more detail in Sections 4.1 to 4.5. Of course, there are also methods

that sometimes cannot be clearly assigned to a category due to the combination of techniques,

but this has been noted in the following text as well as in a table presented in the online only

material.

The employed transfer technologies have huge impact on the predictability and of course the

accuracy of the TP prediction. Section 3 describes three basic scenarios, in which the individual

models shown later on in Section 4 are categorized.

3 SCENARIO

To structure the approaches in this survey, the terms use case and scenario are used. A use case de-

scribes a concrete application like video on demand or bulky file download, while scenario means

the compilation of the techniques and the environment, in which a method is evaluated. The dif-

ferent TPP approaches are categorized into three scenarios: First, a static wired client to Internet

scenario (S1), second a scenario with a static client, which is connected via a mobile network and

uses the whole time the same cell of the cellular network (S2) and third, a scenario with a moving

mobile network client that changes its location (S3). We need to distinguish between S2 and S3,

since other works, e.g., Mirza et al. [67] or Yue et al. [129], have shown huge differences in accuracy

between stationary and moving mobile network clients. Of course, not all approaches are focused

on only one of the scenarios, shown in Table 1. Therefore, this article shows a summary of models

for all three of them.
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3.1 Static Wired Scenario (S1)

The most frequent scenario in which TPP was investigated, is the static wired scenario based on

a classical cable link between client and server: This can be done either via a directed cable con-

nection or by using the Internet, e.g., with a broadband interface. Since this is the oldest scenario,

many models exist for it, and there are even testbeds, which can be used to collect data. In sim-

ulation environments, the Internet is described as a group of meshed local links with different

bandwidths and latencies. Most of the prediction algorithms for this scenario are only based on

TCP related parameters, since the lower level network parameters seem not to have a big impact

and cannot easily be investigated because of their diversity. As already mentioned in Section 1.1,

this scenario does not include data center environments, since these are out of the scope of this

article.

3.2 Stationary Mobile Network Scenario (S2)

The stationary mobile network scenario describes a static client with a mobile data connection (e.g.,

Long-Term Evolution (LTE) or 5G) that is connected to a server. Although the client would be

able to move in this scenario, S2 focuses on measurements done at a specific location. So, there

are no influences from moving and cell hand-over, and so on. This scenario looks quite similar to

S3, where the client is dynamic. However, e.g., Mirza et al. [67], who performed measurements

for Wi-Fi networks, found significant differences regarding prediction accuracy for static wireless

networks compared to moving ones. Mirza et al. figured out a factor of 1.5 in accuracy. Also other

papers are distinguishing between static (S2) and (S3) [110, 129].

3.3 Dynamic Mobile Network Scenario (S3)

The S3 scenario summarizes all cases in which the client moves. This can mean walking, driving

or even travelling in a high-speed train [117]. Like in the other two scenarios, this scenario could

be separated into several sub-scenarios, which would add a lot of complexity, especially to the

comparison shown in online only material. The main challenge of the S3 scenario is the handling

of cell hand-overs and the higher fluctuation of lower level parameters during movement. The

scenario does not include device-to-device communication in a cellular network, as analysed by

Asadi et al. [3], but to the best of our knowledge, no TCP TP prediction is performed in this area

so far, so no other scenario is needed.

4 PREDICTION MODELS

There are already proposals to categorize TPP models, described by He et al. [38]. They divided

the models in formula-based and history-based ones. Since this survey covers a large range of

models, we introduced our own taxonomy by defining five groups of different approaches shown

in Figure 1. In Section 4.1 approaches are presented, which try to calculate the throughput by

modelling the protocols used in TCP. These models can be classified as EB and related to the

formula-based ones shown by Zhou et al. [136]. Another type of models are the Mean-Based

Models (MBMs) described in Section 4.2. Those utilize smoothing of the last samples to predict

the next value based on an average of the previous ones. This technique suggests that the TCP

TP can be interpreted as a time series of measurement points. Therefore, Section 4.3 shows the

approaches using TSMs like AR or ARMA and Section 4.4 contains models utilizing LB techniques,

mainly regression. A different strategy is shown in the fifth group, where models based on the

location are described. To further structure these groups, the models using MB and LB techniques

as well as the TSM are grouped together under the category time smoothing. In addition to Figure 1,

Table 1 provides an overview of all approaches, categorizing them regarding the used prediction
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Table 1. Overview of the Prediction Approaches, Classified by Their Scenarios and Models

Static Wired Scenario (S1)
Stationary Mobile Net-
work Scenario (S2)

Dynamic Mobile Network
Scenario (S3)

EBM

He et al. [37], Hwang and Yoo [43],
Padhye et al. [76], Cardwell et al.
[19], Goyal et al. [33], Huang and
Subhlok [42], Liu and Rao [55]

MBM
Borzemski and Starczewski [12],
Miller et al. [65], Liu and Lee [56]

TSM
Zhani et al. [133, 135],
Yoshida et al. [127], Karrer [50],
Sadek and Khotanzad [89],

Torres et al. [106] Wei et al. [110]

LBM

Hu et al. [41], Zhani et al. [133],
El Khayat et al. [27], Mirza et al.
[66], Borzemski and Starczewski
[12], Lee et al. [54], Rao et al. [87]

Samba et al. [90] [91],
Ghasemi [32],
Wei et at. [112]

Wei et at. [110] [112],
Samba et al. [90] [91]

LSM

Yao et al. [122], Yue et al. [129],
Pögel and Wolf [82], Murtaza
et al. [69], Curcio et al. [22], Hao
et al. [36], Riiser et al. [88],
Kamakaris and Nickerson [49],
Estevez and Carlsson [28], Opitz
et al. [74], Taani and Zimmermann
[105], Sliwa et al. [99]

method as well as the scenario. A more detailed summary is shown in the online only material,

which includes input parameters and error functions, used to calculate the difference between

predicted and measured values. The last paragraph of this section provides a comparison of the

five groups identifying their strengths and weaknesses.

4.1 Equation-Based Models

In this section, we present methods, which use mathematical equations to describe the charac-

teristics of a TCP transmission. On the one hand, these approaches do not require a lot of com-

puting power, but on the other hand, they use a very fine granularity, which means that this ap-

proaches are performed more often and some of the models presented in this section are belonging

to this category. Consequently, the main scenario for this class of predictors is S1, as explained in

Section 3, where the connection is more stable and lower level parameters such as the Signal-to-

Noise Ratio are quite constant.

Considering the range of Equation-Based Models (EBMs), the TCP Congestion Control

(CC) with its two schemes slow start and congestion window is very important. To achieve a

high performance, the CC algorithm is defining a congestion window size (CWND), which is a

multiple of the maximum segment size. During the slow start, this CWND is doubled after every

correct transmission, until the slow start threshold is reached. At this point, the CWND is calculated

using the congestion window scheme. For TCP algorithms like TCP Tahoe, this means that the

CWND is increased by one. But the CWND can also be decreased when a loss event happens.

There are two types of loss events:

The first one is the loss of single segment and can be detected with the duplicate acknowledg-

ment method. The period between two of these events is defined as Triple-Duplicate ACK Time
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Table 2. Values for Congestion Avoidance Constant (C) According to Loss
Type and Acknowledgment Strategy

Derivation Acknowledgment strategy C

Periodic Loss [64] Every Packet 1.22 =
√

3/2

Periodic Loss [64] Delayed 0.87 =
√

3/4
Random Loss [75] Every Packet 1.31

Random Loss [75] Delayed 0.93

(TD ) in the following. The second one is a timeout, to model this loss, the TCP Retransmission

Timeout Period (TO ) is used.

One model for calculating the Predicted Bandwidth (B̂) that is based on the CC, is the Mathis-

Equation (1) presented by Mathis et al. [64]. It also considers the RTT . This is the amount of time

needed for a segment to be sent and answered, and therefore, has a huge effect on the bandwidth.

The CWND and the likelihood that a single random message gets lost are also taken into account.

The latter is defined as the Package Loss Probability (l) and describes the probability of a seg-

ment loss after the correct transmission of a certain number of segments. Due to the definition of

the CWND done by the CC, there is an additional constant Congestion Avoidance Constant (C)

(C =
√

3/2) in the Equation (1). In this article, the authors Mathis et al. also define values of C
according to the type of single loss and the acknowledgment strategy used by the TCP implemen-

tation. This assumption is presented in Table 2. This model is also called the SQRT model [27, 133].

Mathis et al. introduced the C as a combination of several terms that are typically constant for a

given combination of TCP implementations. This term can be carried through any of the deriva-

tions and always reduces C by
√

2.

B̂ =
data per cycle

time per cycle
=
CWND

RTT
× C
√
l
. (1)

Looking at the Mathis equation, it is very important to note that it is strongly connected to the

TCP CC, which leads to the situation that it is not well suited for TCP flows that are not in line

with this algorithm. Therefore, the model is inaccurate on:

• A small data transfer, which is even too small that the performance is controlled by the CC,

because it only happens within the slow start phase.

• A link, which is not continuously sending.

• A connection using another CWND strategy.

An evaluation on simulated and real-world data is shown by Padhye et al. [76], which demon-

strates that the model can be used if the losses are infrequent and isolated. This also means that

the model is inaccurate for connections with non-randomized losses, such as drop-tail queues, for

which all packages were lost after a single error.

Therefore, another Equation-Based Model (EBM) was created by Padhye et al. to prevent the

overestimation of the Mathis-Equation in some cases. It models the behaviour of the TCP CC

in rounds. A round begins with the transmission of CWND TCP segments. Once all segments are

sent, nothing more is sent until the first Acknowledgement (ACK) corresponding to one of these

segments is revised. This Acknowledgement (ACK) reception signals the end of the current round

and the start of the next one. The model defines the RTT as the duration of a round and independent

of the CWND. In addition, the number of packages acknowledged in an answer is defined as b and

typically set to 2. So, for a round of CWND segments, CWND/b acknowledges must be received. To
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handle a single package loss for the triple duplicate acknowledgments, the property l is introduced.

The losses detected by aTO are also taken into account. Finally, the model depends on the maximal

CWND, CWNDmax , which is the upper limit for the throughput. The whole equation is given by

B̂ (l ) ≈ min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CWNDmax

RTT
,

1

RTT

√
2bl

3 +TO ×min(1, 3

√
3bl

8 )l (1 + 32l2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (2)

The model is validated in a wired server-to-server scenario, where Padhye et al. [76] measured

the number of packets, the losses indicated by duplicate acknowledgments or time outs, the RTT
and the time out time. They built two datasets: One with 28 traces each 1 h long and another one

with 13 traces and a duration of 100 s each. The results are showing a Normalized Error (NE)

between 0.1 and 2.2 for the 1 h datasets and an error from 0.08 to 0.6 for the 100 s,

NE =

∑n
i=1

B̂i−Bi

Bi

n
. (3)

He et al. [37] have highlighted the limitation of the approach regarding lossless paths (l is zero).

He et al. deal with this by predicting the TCP TP based on the Mean Bandwidth (B̄), which can

be measured non-intrusively with end-to-end probing techniques as shown by Jain and Dovrolis

[45]. They also define an upper boundary CWNDmax/RTT for lossless paths. If applied together

with Equation (2), then it leads to the following:

B̂ (l ) =
⎧⎪⎪⎨⎪⎪⎩

B̂ (l ) l > 0

min
⎧⎪⎪⎩

CW N Dmax

RTT
, B̄⎫⎪⎪⎭ l = 0

. (4)

Hwang and Yoo [43] have also shown an improvement of Equation (2) by defining the model for

different value ranges of CWND. This changes the model in a way that it is no longer a function

of loss rate, which is difficult to observe accurately, but depends on the available bandwidth. So,

this model improves the field of EB prediction in accuracy as well as in usability. Therefore, TCP

Retransmission Timeout Period (TO ), l and the window size Wm of the receiver side need to be

taken into account (see Equation (2)). In addition, the Router Buffer Size as Packet Unit (Rp ) is

also considered as well as the Average Bandwidth per Seconds (S). The model defines CWND as

a function depending on these two variables: CWND(S,Rp ) = S × RTT + Rp . The TPP function is

also based on S and Rp and defined for different ranges of these parameters. It is given as

T (S,Rp ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4 CW N D ( 3

2 CW N D+5)+Q (CW N D )

RTT ( CW N D

2 +2)+
Rp

S
(
Rp +3

2 )+QZ

0 < Rp ≤ CW N D
2 ,CWND < CWNDmax

1
4 CW N D ( 3

2 CW N D+5)+Q (CW N D )

RTT ( CW N D

2 +2)−
( W +2

2 )(Rp −W

4 )+Rp
S

+QZ

CW N D
2 < Rp ,CWND < CWNDmax

Wm

RTT+
max (0,CW N Dmax −S×RT T )

S

CWND ≤ CWNDmax

. (5)

The variablesQ (CWND) andQZ are used for the probability of a triple-duplicate ACK in relation

to the window size and the likelihood of a timeout. Hwang and Yoo [37] evaluated this model by

predicting the real TCP TP of a 100 Mbps Local Area Network (LAN) environment with a simple

Dumbbell topology. To simulate Wide Area Network situations, a number of background TCP

transfers was used. A plot of the simulation shows that their model is much more accurate than

the one shown by Padhye et al. [76]. But apart from Equation (5), there are also other improvements

on the Padhye model. Cardwell et al. [19] introduced a technique for better slow start prediction,
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resulting in a more accurate model overall. Goyal et al. [33] modified the model to be more accurate

in terms of bulk transfer TPP.

A totally different approach based on the TCP algorithms is called fast pattern prediction shown

by Huang and Subhlok [42]. They define four distinct TCP data transfer patterns:

• Rate control: Where the TCP TP is constant and limited by a bottleneck.

• Congestion Control: Where the TCP TP is fully limited by the TCP Congestion Avoidance

algorithm, which means the window size is rising until a loss of a TCP message happens,

which first cuts the throughput and then raises it again.

• Rate control with delay: Similar to rate control, but with short break done due to a delay.

• Mixed Congestion Control: A mixture of the other patterns, where it is not clear, which

pattern is measured.

The predictor tries to detect the actual pattern by features like the climb rate of the TP. As

a simplification, the authors used a moving average with a small window for data smoothing.

The model was evaluated in a typical wired network download scenario (S1), where files with an

average size of 30MB are downloaded using the Linux program wget. The evaluation was done

using the absolute error, defined as B̂−B
B
× 100%. The results show an error between 15 % to 25 %

depending on the number of previous measurements used and the prediction horizon.

All approaches described above are based on a simple TCP implementation using only slow

start, Triple-Duplicate ACK Time (TD ) and TO , but there are also further improvements of the

TCP implementations and mechanisms. One of them is, e.g., the additive increase multiplicative

decrease algorithm [20] with improves the rate control. To predict the TP of connections using

such implementations, models such as the ones described by Yang and Lam [119] are needed. The

approach of congestion control using feedback of the other end of the TCP connection is presented

by Chiu and Jain [20], but since this requires the control of both sides of the connection, it is not

further investigated in this work. There are also TCP implementations, which are using a basic TP

estimation to control the CWND, as done by TCP Vegas [57]. This implementation uses the RTT
to calculate an expected data rate. The difference between this expected rate and the actual one

is then used to increase or decrease the CWND. TCP Westwood [63], which is also a modification

of the TCP congestion window algorithm aims to improve the performance of wireless links. A

detailed analysis of different algorithms and implementations used for congestion control can be

found in the work of Srikant [103]. To implement complex congestion control functions, the paper

of Narayan et al. [70] is worth as further reading.

All approaches described above are based on a single TCP stream in a wired environment. To

use them for multiple TCP connections, some modifications proposed by Lu et al. [58] have to be

made. Equation (1) is modified in a way to process multiple TCP flows. Another EBM used for

multiple stream is to calculate the number of connections that can be used without congesting the

network as proposed by Yildirim et al. [125].

However, apart from the TCP implementations, there are also concave-convex methods used for

TCP modeling under S1, like those presented by Rao et al. [86] and Liu and Rao [55]. These models

are able to propose a coefficient that characterizes the overall TP profile and offer possibilities for

Quality of Service (QoS) optimization by the adjustment of parameters like the buffer sizes and

parallelism.

In addition to EB prediction, there are also models based on previously recorded data. He et al.

[37] and Arlitt et al. [2] compared them and came to the conclusion that in general these data-based

models can be superior to EB ones. He et al. compared the EB predictor shown in Equation (4)

for lossy paths against MB ones, such as Moving Average (MA) and Exponentially Weighted

Moving Average (EWMA), which are going to be introduced in Section 4.2. They came to the
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conclusion that even simple data smoothing prediction on average is much more accurate. One

major cause for the inaccuracy of EB prediction is that RTT and l before the transfer can be signif-

icantly different to the one measured while the transfer is taking place [37]. Therefore, the rest of

this survey focuses on models using historical recorded data.

4.2 Mean-Based Models

One type of basic approaches for prediction is data smoothing. As a technique to improve the

signal quality by smoothing the noise; hence, it is very useful to detect the trend of a signal. In

this section, a closer look on smoothing methods, utilizing a set of the last values is provided.

Although the principle of using the mean value of past measurements to predict the future is

commonly used in many applications in the area of TCP TPP, mean-based prediction is mainly

applied for comparison with other models and not introduced as an approach on its own. Liu and

Lee [56] investigated four different types of MB algorithms. The equations use K time intervals,

with the measured throughput T i−k for k = 1, 2, . . . ,K . T̂ i denotes the forecast value for the

next time interval. Consequently, these models are able to predict one-step-ahead. To increase the

prediction time, the duration of Ti needs to be increased. The K parameter controls how far in

the past the values for prediction are taken into account for smoothing. Accordingly, K depends

on the correlation of the historical data with the future value. Since the data points older K do not

have any impact on the models, we call this type of methods instant time smoothing models. The

four mean computations used by Liu and Lee [56] are shown in the following:

• Arithmetic Mean (AM).

• Harmonic Mean.

• Geometric Mean.

• Exponentially Weighted Moving Average (EWMA) for 0 < α < 1.

Regarding the optimizations presented by Mirza et al. [66, 67], the parameter α should be se-

lected to be α = 0.3. This parameter is used in EWMA to specify the influence of past values and

is adopted by Liu and Lee.

The evaluation of the models is done on a mobile network setup. A notebook with 3G/High

Speed Packet Access (HSPA) link captures a trace for a performance comprehension. It com-

municates with a server connected via a 100 Mbps link. This corresponds with a scenario S2 as

described in Section 3. The authors tested three different locations, with varying values for K , be-

tween 1 and 60. They showed that despite these methods are very similar, there is a significant

difference in terms of accuracy between them. Referring to Liu and Lee [56], for static mobile net-

work connection, Arithmetic Mean (AM) with K = 60 performed best. As a metric a Normalized

Root Mean Square Error (NRMSE), according to Equation (6), was used:

NRMSE =

√√
1

n

⎧⎪⎪⎪⎪⎩
n∑

i=1

(T̂i −Ti )2
⎫⎪⎪⎪⎪⎭
. (6)

For all three locations, it was between 0.1 and 0.15. Borzemski and Starczewski [12] also inves-

tigated MB functions, namely the EWMA and the Arithmetic Weighted Moving Average defined

by Equation (7), using the weight wk for the TP value Ti−k . They compared both models with

the Transfer Regression (TR) model shown in Section 4.4. For data recording, they traced the

download of a Linux distribution multiple times and analyzed the measurements:

T̂i =

∑K
k=1wkTi−k∑K

k=1wk

. (7)
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Fig. 3. A time series is a signal with white noise, i.e., a model used for time series prediction tries to estimate
the signal behind the noise.

An evaluation using the Mean Absolute Percentage Error (MAPE) described in Equation (8), lead

to a level of 50–60%, which is, according to Borzemski and Starczewski, too high for prediction:

MAPE =

∑n
i=0

			
yi−ŷi

yi

			
n

. (8)

Further investigation of smoothing methods for short-term TCP TPP was performed by Miller

et al. [65]. The authors used different algorithms with multiple parameter combinations for pre-

dicting a video on demand transfer. In the process, Miller et al. focused on transmitting the video

in the highest possible quality while minimizing transmission interruptions. According to their

results, AM performs best and even better than more complex algorithms like the double expo-

nential smoothing that Miller et al. described in their work [65]. In summary, it can be shown that

the consideration of past values of the TCP TP increases the accuracy in predicting the future, but

Mean-Based Models (MBMs) can only do this up to a certain level. Especially, when the knowledge

of historical records should be considered, methods taking this history into account are needed.

Therefore, we concentrate on this type of approach in the following.

4.3 Time Series Models

TSM are methods to analyze discrete temporal data. Forecasting future values of a time series is

one of the most important tasks these models are facing in many areas. Therefore, it is hardly

surprising that many of the known TSM were investigated for TPP. TSM algorithms interpret a

Time Series (TS) as constant signal plus white noise with zero mean and finite variance, also

called shock or innovation. This interpretation of a Time Series (TS) is illustrated in Figure 3. The

goal of TSMs is to build a model for the signal behind the noise, and to predict the next value of

the signal [68].

To achieve this, a generic model with different sets of parameters is trained in a so-called training

phase. Since the validation of the training must be performed with similar data, there is typically

a split of the recorded series into a training dataset and a test dataset and ideally an additional

development set. Subsequent to the training phase, the model is applied on the test dataset. The

predicted values are then used to validate the model with the measured ones from the test dataset.

The whole process is illustrated in Figure 4, where yi denotes the ith TCP TP of training set, �x i

represents the vector of the corresponding past values and j is the index of the data points in the
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Fig. 4. Work flow used to develop a TSM model (based on References [133, 135]). First, the measured dataset
is split into a training and a test dataset. This step is followed by the training of the model. Next, the model
is used to predict the output value of ŷj for the test dataset (�x j ). This prediction can be validated with the
measured value yj to assess the accuracy of the model.

test set. ŷj is defined as the predicted TP for the jth position in the test dataset. For validation, the

predicted values ŷ j can be compared with y j .

To be able to use such models, the data must fulfill mainly two characteristics. First, the data

points have to be in regular time intervals of the same length. This property means that either

data must be recorded at equidistant intervals or pre-processing must be performed. Second, the

data for most models must be stationary, which describes their statistical property in time. Mont-

gomery et al. define stationarity as the following [68]:

(1) The probable values of the TS do not depend on time.

(2) The auto-covariance function defined as Cov (yt ,yt−k ) only depends on k and not on time.

One method for testing the stationarity of a TS is the Dickey–Fuller test [25]. The first TSM used

for TPP is the AR model, which uses a weighted sum of the p previous values and its innovation

to predict the future value. The number of p is called order, which means that a First-Order AR

algorithm has p = 1. The model is depending on p and can be described using the following

equation:

yt = μ − ϕμ + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + ϵt , (9)

where ϕ1,ϕ2,. . . are the weight parameters for the past values, ϵt is the value of the white noise and

μ is the mean of the series. Karrer et al. [50] used this model to predict a set of more than 52,000

Internet TCP traces. They also had a look at four other models. One of them was the MA model,

which predicts the current value by using the q previous values of the white noise as ϵt−1 to ϵt−q

weighted with Θ1 to Θq plus the mean of the series μ, as shown in:

yt = μ + ϵt − Θ1ϵt−1 − · · · − Θqϵt−q . (10)

There is also the possibility to combine both models to a so called ARMA model (see Equa-
tion (11)), which is more flexible and depends on both parameters p and q. The order of the
model can be defined as ARMA(p,q). Due to their flexibility, many time series can be modeled
with p,q ∈ (0, 1, 2) [34]:

yt = δ + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + ϵt − Θ1ϵt−1 − Θ2ϵt−2 − · · · − Θqϵt−q . (11)

                                                                       



                                                                       194:13

A proof that this model can be used to predict network traffic is given by Sang and Li [93], in which

the authors also indicated a particular interest in the estimation of the lower and upper values of

the prediction interval. The data processed by the ARMA model needs to be stationary. There is

also an integrated version that can be used for non-stationary data. This is done by differentiating

the TS d times before processing it with an ARMA model. The model is described as a function

of Order of the Autoregressive Model (p), Order of the Moving Average (q) and d with the order

ARIMA(p,d,q).
A deeper analysis of Autoregressive Integrated Moving Average (ARIMA) models, regarding

their usability for TPP was done by Zhani et al. [133]. They compared the ARMA(1,1) and the

ARIMA(1,1,1) model on different datasets, but in most cases the models were similarly accurate.

To improve this, Shu et al. [97] and Corradi et al. [21] used a fractal-ARIMA, which led to better

results. This model implements a fractional integration given by the parameter d , which is also

used in the ARIMA models. Zhani et al. also investigated the question of how many previous data

points (lags) should be used and what is the optimal time interval for a data point. Their results

showed that the traffic is only correlated to the last data point and the graduation of such a point is

best by using 6 times the RTT . They have also proven that predicting longer data packets is easier.

Another approach is to combine the linear ARIMA model with a non-linear Generalized Auto-

Recessive Conditional Heteroskadasticity (GARCH) model. The idea behind the Generalized

Auto-Recessive Conditional Heteroskedasticity (GARCH) models is the assumption that if the last

ϵt has a high value, which means a high change in TS, the next ϵt will also be high [13]. Since

a GARCH model only works on stationary data, first, the integration parameter d needs to be

estimated. Afterwards, algorithms like the maximum likelihood method can be used to estimate

other parameters of the model. This ARIMA/GARCH approach was used by Zhou et al. [135]

to predict even more than one step ahead. This was done by using a publicly available dataset of

Internet TCP packages (Static Wired Scenario (S1)). The authors evaluated an error for a prediction

timescale of 100 ms, as well as for 10 s. As evaluation metric the Signal to Error Ratio (SER) function

was taken:

SER = 10loд10


�

y2
t

(yt − ŷt )2

�


dB. (12)

An extension to the ARIMA usage in TPP was shown by Torres et al. [106], the so-called Au-

toregressive Integrated Moving Average with Explanatory Variable model, which also considers

seasonal effects for the estimation. Sadek and Khotanzad [89] used a k-factor Gegenbauer ARMA

model to outperform the AR model. They applied their model to different types of data and pre-

dicted video streaming, as well as Ethernet, and internet traffic. For the evaluation, they used the

Mean Absolute Error (MAE) (see Equation (13)) and the SER and came to the conclusion that for

Internet data, the AR model can be improved by more than 40% in relation to the MAE perfor-

mance:

MAE =
1

N

N∑
i=1

|ŷt − yt |. (13)

A look at all the approaches in this section shows that although most of them consider TP traces

as stationary TS, there are also some models that are built for non-stationary TS, which may even

be superior. Therefore, the question arises, whether TCP traces are stationary or not. To answer

this question, Yoshida et al. [127] performed an analysis of HSPA, Long-Term Evolution (LTE),

and Wi-Fi traces. They proved that the tracks contain both stationary and non-stationary parts.

The authors collected throughput data produced by a 1-GB file download on different locations in
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Tokyo. An evaluation using the Dickey–Fuller test [25] shows that the ratio of stationary to non-

stationary parts depends on the used technology, but all measurements contain both. Taking this

new knowledge into account, they created a stochastic model, which can handle both categories.

The accuracy of the last 100 data points was tested by using the Root Mean Square Error (RMSE):

RMSE =

√∑n
i=1 (yi − ŷi )2

n
. (14)

4.4 Learning-Based Models

In general, LB algorithms can be seen as models, which allow the computer to learn from data.

The learning process tries to extract a model from provided data samples. Depending whether a

corresponding output or label is given, the LB methods can be categorized into supervised and

unsupervised learning models, e.g., the clustering of unlabeled data is an unsupervised learning

task, while a classification task using labelled training data as a supervised task. In the area of TPP,

mainly regression tasks are used, which belong to supervised approach. These models return an

absolute output value, based on a given input set. The building of such models is done in different

steps. After a dataset has been recorded and pre-processed, it is split into three different subsets.

The first and usually the largest one is called training set. It is used to train the algorithm and to

build a model. The second one is the validation set for optimizing the model. Finally, there should

also be a test set for evaluation. A detailed instruction how to create an LB project is, e.g., provided

by Géron [35].

A further advantage of Learning-Based Models (LBMs) is their capability to use multiple in-

put parameters. Compared to other models like MB or EB ones, Learning-Based Models (LBMs)

can be easily applied to different sets of input parameters, which can significantly improve their

performance as shown by Samba et al. [90, 91]. This process of selecting the correct input parame-

ters for an LBM is called feature selection [101]. To highlight the impact of the feature selection, a

study performed by El Khayat et al. [27] built models on the parameter set shown by Padhye et al.

[76] as well as for an input set, which in addition used the timeout loss rate. They investigated,

that the accuracy was improved by a factor of 2 to 3 depending on the model. Another investiga-

tion of datasets with different attributes was done by Borzemski and Starczewski [12]. They built

nine sets containing the same data, but with different features to predict the TP during a web file

download. There results are showing that the datasets with most features perform best for the

Transfer Regression (TR) model. The same effect was investigated by Wei et al. [111]. Here, the

authors compared Support Vector Regression (SVR) models using either the Reference Signal

Strength Indicator (RSSI) of the LTE connection or the past throughput or both. Wei et al. evalu-

ated the models in different scenarios like staying at a specific location, walking around or sitting

in a bus or train. In every scenario, the Support Vector Regression (SVR) using both parameters

performed better than the other ones.

Next, different LBMs used for TPP are presented in detail. One of the simplest methods are

Decision Trees (DTs). These models make a bunch of decisions based on the input parameters

and can be used for classification or regression. A Decision Tree (DT) uses the input to build

a tree structure. Each leaf is labeled with an output value. Depending on the depth of the tree,

multiple decisions are leading to a prediction, which results in a certain accuracy at the output

given by the training dataset. The accuracy for regression also depends on the number of output

nodes, since each leaf can only represent one concrete value. Essentially, the regression task is a

classification with a distinct number of classes. The flexibility of DT regarding TP is shown by

El Khayat et al. [27], where the authors used the models not only for prediction, but also as an

approach to recognize the overestimation of an EBM as given by Mathis et al. [64].
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Fig. 5. Visualization of a decision tree used to predict overestimation of the equation-based model described
in Equation (4), see Reference [27].

An example of such a DT is shown in Figure 5. DTs are a quite simple method in terms of predic-

tion. They are also very popular, especially when they are used in ensembles. These are algorithms,

which use multiple learning algorithms to reach an even better prediction. Some ensemble methods

used for TPP were presented by El Khayat et al. [27], in particular Bootstrap aggregating, Extra-

Trees, MART and Random Forest (RF). Another important task where regression trees are applied

is identifying the number of past samples that are related to the predicted output. One possibility

is the consideration of the correlation of the input time series [118]. Another application area is to

analyze the relation of the input parameters [81].

A different ensemble technique used for TPP is Bootstrap aggregating, also known as bagging.

It combines different models with an equally weighted vote. To obtain, e.g., different decision

trees, bagging uses a randomized subset of the dataset provided for training [14]. An improvement

of this technique is called RF [15], which changes the algorithm in a way that the sub-trees are

less correlated. Furthermore, there is a method called Extra-Trees. In contrast to other tree-based

ensembles, Extra-Trees use all the learning samples and choose the cut-points for their nodes

totally randomly [31].

El Khayat et al. [27] compared these ensemble methods against the EB approaches shown in

Equations (1) and (4). They used a simulation environment that generates random topologies with

10–600 nodes, a bandwidth between 56 kb/s and 100 Mb/s and a delay variation starting from

0.1 ms up to 500 ms. The evaluation criterion used was the Mean Square Error (MSE) given in

Equation (15):

MSE =
1

n

n∑
i=1

(ŷi − yi )2. (15)

In addition, the regression Coefficient of Determination (R) was evaluated. It indicates the con-

fidence of the model. If it is close to zero, then the model is less accurate, but if it is close to 1, the

regression is near the measured values. The coefficient of determination is defined as

R2 = 1 −
∑n

i=1 (ŷi − yi )2∑n
i=1 (ȳ − yi )2

. (16)

With the average ȳ of all yi (i ∈ [1, . . . ,n]), R2 can also be determined as 1, minus the ratio of

the mean square error to the variance. The results of El Khayat et al. show that bagging, Extra-

Trees and MART perform significantly better than EBMs but are less powerful than the Neural

Networks (NN) explained later in this section.
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Another investigation of RF was carried out by Samba et al. [90, 91]. They used RF to predict

the instantaneous TP on a connection during establishing. Therefore, they investigated different

sets of LTE low-level parameters as well as other features collected by the mobile device and came

to the conclusion that by taking into account also data from the operator, much better results can

be achieved. For the evaluation, the R2 function, given in Equation (16) was used.

This is very similar to the work done by Ghasemi [32]. Here the authors showed how crowd-

sourced mobile spectrum data can be used for TPP. Therefore, a memory-efficient gradient boosted

tree algorithm called LightGBM was studied, as well as a dataset collected with the mobile phone

application OpenSignal, which contains LTE parameters and the TP for up- and download. As

an evaluation metric the RMSE was performed. Samba et al. [90] also showed that a comparison

between RF and NN provided a similar accuracy for both. All their tests were performed in a static

mobile network scenario (S2). RF models can also be taken in S3 scenarios. Yue et al. [129] high-

lighted an approach using this method in different S2 and S3 situations, with a different number

of inputs, starting from the univariable TP up to a model taking additional LTE low-level values

into account. Their study shows that more input parameters as well as a stationary scenario are

leading to better results regarding the Relative Error (RE).

Borzemski and Starczewski [12] have shown TPP using TR. The TR is based on the Kolmogorov

superposition theorem [77], which says that for every integer dimension d ≥ 2, there exists a

constant real function hi j (x ) defined on the intervalU = [0, 1]. In addition, the TR shows that for

every d-dimensional function f (x1, . . . ,xd ) defined on the hypercube U d , there exists a function

дi (x ). It allows reducing a very complex function with multiple variables to a term of univariate

functions. The TR model is given by Equations (17) and (18):

ŷ1 =

d∑
j=1

h1j (x j ), ŷ =
∑

i

ŷi , (17)

ŷi =

d∑
j=1

hi j (x j ; ŷ1, . . . , ŷi−1) +
d+i−1∑
k=d+1

hik (ŷk−d ; ŷ1, . . . , ŷi−1), i > 1. (18)

For evaluation, Borzemski and Starczewski compared their results against the WMA and EWMA

models described in Section 4.2. By using the MAPE function, they showed that their MA model

reaches an accuracy of 50–60%, which is insufficient for using it as a predictor. The TR model is

able to use other inputs, apart from the past TCP TP values. So, it achieves an error of 20–22% by

further considering file size, loss rate, time of the day, and other parameters.

A different learning technique are Markov models. They are mainly chosen for topics related to

TPP, e.g., for analyzing the stationary of TP series [109], the bit rate selection in video streaming

[6, 104] or for the prediction of the amount of traffic to be transmitted [102]. For TPP, Markov

models use the current TP of the client as a state for their state machine. Each state has a calculated

TP and a probability to transition to another state. Hence, taking Figure 6 into account, at one-step

prediction starting a state s0 can be calculated according to the following equation:

ŷ (s0, 1) = ps00 × ys0 + ps01 × ys1 + ps02 × ys2 . (19)

The parameterps is introduced for the property that a state switch happens andys i
is the calculated

TP for state si . Additionally, an approach considering a Hidden Markov Model (HMM) is given

by Wei et al. [110]. There, a two-step method was developed, to stream videos via two connections.

In the first step, the TS was classified using SVM. To make a decision, the next TP should be

predicted using an HMM or an AR model. This two-step approach is very flexible and achieves an
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Fig. 6. Visualization of a Markov model to describe the predicted TP as a state and the changing of TP as a
probability for switching this state.

accuracy between 76% and 93.33% depending on the scenario S2 or S3. To measure this accuracy,

the Root Mean Square Relative Error (RMSRE) defined in Equation (20) is performed,

RMSRE =

√√√
1

n

n∑
i=1

⎧⎪⎪⎪⎪⎩
yi − ŷi

yi

⎫⎪⎪⎪⎪⎭
2

. (20)

A further popular method used in the context of TPP is SVR. This is a powerful LB technique,

which has shown good results. SVRs take multiple input variables to generate a prediction, e.g.,

Mirza et al. [66] employed the loss rate, the length of the TCP stream and the available bandwidth

on the path to predict the TP. SVRs are also not using any particular parametric form like EBMs.

Instead, so-called kernels can be used, which give high flexibility and allow the building of pre-

dictors with better accuracy. The kernel function is defined as K (�xi , �x j ) with �xi and �x j as the ith
and jth input vector of the dataset. Finally, compared with other LBMs like NN, SVR can be very

computing efficient. The generic model of SVR is described in Equation (21), where ŷ is the pre-

diction for the input vector �x . The model parameters a and a∗ are the result of the optimization

problem solved in the training phase. A more detail description of SVRs is provided by Smola and

Schölkopf [100],

ŷ =
N∑

i=1

(ai − a∗i ) × K (�xi , �x ) + b, (21)

whereK (�xi , �x ) is the kernel function, which makes the basic SVR model more flexible. The different

kernels studied for TPP in the work of Hu et al. [41] are as follows:

• Linear Function:

K (�xi , �x j ) = �xT
i �x j .

• Polynomial Function:

K (�xi , �x j ) = (γ (�xT
i �x j ) + a)b ,γ > 0,a ∈ R,b ∈ N.

• Radial Basis Function:

K (�xi , �x j ) = exp (−(γ ‖�xi − �x j ‖2),γ > 0.

• Sigmoid Function:

K (�xi , �x j ) = tanh(γ (�xT
i �x j ) − c ),γ > 0, c ∈ R.
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An extension of the SVR is the Nu-SVR orν-SVR model, which was introduced by Schölkopf et al.

[96]. In this algorithm, the parameter ν is introduced to control the number of support vectors. This

gives the possibility to eliminate the accuracy parameter ϵ taken in SVR models. Of course, also ν-

SVR models are able to use the different kernels. Lee et al. [54] use aν-SVR with a polynomial kernel

to predict the TP of different wide area network connection pairs. They investigated the effect of

the polynomial kernel degree between 2 to 5 and consider the 3-degree polynomial kernel as a

reasonable choice for their predictor. Theν-SVR model was analyzed by Hu et al. [41]. Furthermore,

there also was an approach from Nicholson and Noble [73], where they utilized it for one-step-

ahead prediction as well as for multi-step-ahead prediction using a Radial Basis Function kernel.

As input, a vector of the past 10 throughput values was taken and an optimization as well as a

cross-validation was executed. They achieved a smaller MAE compared to their NN model, which

was built with the same inputs.

NNs are very popular in research at the moment. They are also frequently studied for regression

tasks [53] as well as for related tasks like dynamic bandwidth allocation [99], so it is not surprising,

that they have also been investigated in the area of TPP and first used for comparison as shown by

Borzemski et al. [11]. According to their name, NNs are networks of so-called neurons. A neuron

is a binary unit that computes a weighted sum. This sum is the input of the activation function

that calculates the output of the unit. Such a neuron can be defined as y = (
∑n

i=1wixi ) −u, where

n is the number of inputs xi , i = 1, 2, . . . ,n and wi the weight for every input. The threshold is

defined by u. Activation functions can be linear, sinusoidal or gaussian. Since the function has a

huge influence on the output, it is important to choose it carefully. The network itself is structured

in layers. Each layer has a given amount of neurons and the more layers a network has, the deeper

it is. There are three types of layers. The input layer, which is the first layer. It directly receives all

inputs. The output layer, that returns the results and at least one hidden layer for the calculation.

A more detailed description of NN is given by Jain et al. [44]. One approach using these models

for generalization of an EBM is given by Rao et al. [87].

The α-SNF model is a combination of fuzzy logic and NNs [133]. It uses the flexibility of fuzzy

logic and the learning ability of NN. The general structure of an α-SNF is the same than for a NN,

but the neuron output is calculated differently. The fuzzy system used in such a neuron is a non-

linear relation between the inputs �x and the output y of the neuron. This relation is a collection of

C fuzzy rules, where Rk denotes the kth rule in 1 < k < C . A rule Rk is defined in Equation (22).

A more detailed description of α-SNF is given by Abed Rouai and Ben Ahmed [1] and Zhani et al.

[132],

Rk : i f (�x ) is Ak then Yk is bk . (22)

Another method already investigated for similar tasks [116], are special modern NN model. In

the so-called Recurrent Neural Network models, there exist different types of recurrent neurons.

The Long Short-Term Memory is the most widespread. A model using this type of NN was studied

by Wei et al. [112]. They evaluated four different scenarios ranging from static mobile network

traffic, walking up to bus and train trips. As an evaluation function the NRMSE was performed.

Their results indicated the importance of data preprocessing when using NNs. With their model,

Wei et al. were able to outperform different TSM and MB approaches.

4.5 Location Smoothing Models

Apart from time smoothing approaches, in the last years, there was also a significant increase

of location smoothing LS prediction, which can be attributed to the studies done by Yao et al.

[123] showing the impact of the location for the prediction. Yao et al. investigated that previously

recorded data of at the same location, to tells more about the future TP than current measures of
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a different location, which is also proposed by Martínez et al. [62]. Yao et al. call this result Past
Tells More Than Present. One way to set up such a collection is to send the data to a server via

the mobile network immediately after their measurement [122]. The main difference between the

approaches described in Section 4.1 to 4.4 and Location Smoothing Models (LSMs) is that these

algorithms are not time-based. Accordingly, they predict the TP for a concrete time in the future;

this automatically includes the prediction of the future position. However, LSMs are used to predict

the TP for a particular location and not for a subtend data points in a TS.

LSMs can be separated into two classes. There are aggregated maps, which use the historical

data to pre-calculate a model for a defined area, like a segment describing a part of a road. In these

kind of models, new measurements are used for updates. The other approach is a method that uses

past measurements directly without pre-processing. These models typically take a certain amount

of data points around the location that shall be predicted and compute the prediction online, e.g.,

by interpolating. These approaches have in common that for predicting the throughput also the

future location needs to be predicted, which can be a challenging task on its own [131].

The aggregated map differs in the way the segments are built and the methods, which are used

to calculate the prediction. One possibility is to use segments, which are already defined by the

map provider. Such a model was proposed by Pögel and Wolf [82] as well as by Kelch et al. [51].

One drawback of this approach is that road segments differ a lot in size. The authors used an

upper boundary of 50 m to compensate this fluctuation, but since there are also segments, e.g. at

intersections that are only few meters in length, there are still large differences. This problem can

be solved by using self-defined segments with a fixed length as shown in the works [69, 122, 126].

Here, fixed size segments of 500 or 1000 m were used. These lengths result from the fact that for

every segment a measurement probe should be taken, so the segments need to be long enough, to

have time to record a measurement [126]. In addition, e.g., Yoa et al. [126] expand their initial size

of 200 m, since there are some segments containing no probe, which led them to choose a length

of 500 m.

Of course this is less flexible, since a test track needs to be a multiple of this length. Before

calculating a prediction for such a segment, it must first be checked whether a sufficient number

of data points has been collected. A suitable method for this is an entropy analysis, as proposed

by Yao et al. [121]. Afterwards, this calculation can be done by building the mean and the stan-

dard deviation [69] or by using another mean-based prediction like the EWMA, which takes the

newer samples with higher weights into account [126]. Since the construction of segments causes

additional costs, an approach that uses a grid-based map can be advantageous [28]. Such a model

does not require road matching for raw Global Positioning System (GPS) points as shown by

Quddus et al. [84], and the calculation of a EWMA for a grid is much easier, because of its simple

geometry. A more detailed description of the different approaches is given in the following.

4.5.1 Map with Flexible Segment Length. To build a TP map, it can be very beneficial to use

already defined structures like road parts from a map provider. This is helpful, especially if the

data shall be used in automotive use case, e.g., connected car scenarios. Pögel and Wolf [82] pre-

sented an approach using the segments in the Open Street Map (OSM) data. These contain open

source map data that are maintained by the Open Street Map (OSM) community. Since the road

parts are not created with any constraint in length, they can span from a few meters up to some

kilometers. Aggregation of all measurements of such a segment as shown in Figure 7(a), can lead

to inaccuracy, since the number of measurement points is normally related to the segment length

and the aggregated value is always a forecast for the whole segment.

4.5.2 Map with Fixed Segment Length. To avoid the problem of road segments with different

lengths, fixed length segments can be used as shown in Figure 7(b). For creating a map with such
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Fig. 7. Different types of geographic-based models used for throughput prediction. The red dot shows the
point, which should be predicted. The black areas and points indicate the geometries used to calculate a
prediction.

segments, additional effort is required to define them, and it leads to the problem that only tracks

can be chosen for prediction, where these segments are defined. To efficiently build a predictor

using this map, equidistant TP measurements should be used.

4.5.3 Grid-based Map. A compromise between equidistant map structures and the effort for

their construction is the use of a grid as illustrated in Figure 7(c). On the one hand, grids can be

built easily even for the whole world, and, on the other hand, they define a kind of boundary re-

garding the structure length. They also have the advantage that matching inaccurate raw Global

Positioning System (GPS) point to a road is not absolutely necessary. Another aspect is the han-

dling of parallel roads. A road segment–based map would create independent predictors for the

parallel roads. In a grid-based approach, there is the same prediction for these two segments if they

are in the same cell of the grid. Another approach that also ends up in a grid-based map is given

by Kamakaris and Nickerson [49]. There, the authors started with a contour throughput map as an

ideal approach. Then, they built a grid-based overlay and labelled the fields with the map values.

A first combination of LS and LB methods is presented by Sliwa et al. [99], where they use the grid

cell as an input parameter for their NN.

4.5.4 Nearest Neighbour Measurements. There are also methods for online calculation of TPP,

which are mainly based on past measurements (see Figure 7(d)). The simplest model is to calculate

the mean value from all data points at a certain distance to the point that shall be predicted [22, 74].

To take also the time into account, there are models, which only count the last days, as proposed,

e.g., in the work of Evensen et al. [29], or divide the data into time slots based on the hour of the

day [36]. An algorithm to use such nearby measurements to predict a whole route between cities

was investigated by Riiser et al. [88]. They were sampling a track into equidistant points with a

distance of 100 m and sent these locations to a server, which calculated the mean and standard

deviation for each of these points. The calculated values can be used by the client, e.g., to schedule

the quality of a video stream. Another method to select the samples used for the prediction is

the k-nearest neighbour algorithm, which returns the nearest locations (nl1, nl2, . . . , nlk ) to the

location pl that should be predicted. These points can be used to calculate a bandwidth value. Hao

et al. [36] applied this method to develop an Inverse Distance Weighted interpolation, which took
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the distance of the location nl i to the point to be predicted Prediction Point (pl ) into account. This

technique is shown in the following equation:

B̂ (pl ) =
n

√√√
k∑

i=1

⎧⎪⎪⎪⎪⎩
B (nl i )

dist (nl i ,pl )

⎫⎪⎪⎪⎪⎭
n / k∑

i=1

⎧⎪⎪⎪⎪⎩
1

dist (nl i ,pl )

⎫⎪⎪⎪⎪⎭
n

. (23)

Taani and Zimmermann [105] advanced this method by using Kriging, which is a geo-statistical

method applied for interpolating a value based on measurements around. Kriging is also used

in simulation topics like the generation of radio coverage maps [23]. A detailed explanation of

the Kriging method is available in the work of Heuvelink et al. [39]. The general formula for a

bandwidth prediction technique based on Kriging is shown in Equation (24):

B̂ (pl ) =
k∑

i=1

λiB (nl i ), (24)

where λi is the unknown Kriging weight for location i . Taani and Zimmermann also compared

this model against the methods shown by Riiser et al. [88] and Hao et al. [36] using the mean error.

Their results show that the Kriging model outperforms both.

4.6 Comparison

After a detailed analysis of the different approaches, this paragraph is giving a comparison of the

model categories shown in Sections 4.1 to 4.5. Although it is difficult to compare them directly,

because the procedures differ in many characteristics, such as granularity or the error methods

used for evaluation, nevertheless, a general conclusion can be drawn with regard to a few cate-

gories of methods. The first category, EB, differentiates from the others because of the fact that

they make their changes in a very high frequency, after each round of TCP segments. Since they

are implemented in TCP CC and TCP is widely used, they are constantly being enhanced. Next,

the MBMs can be considered. They have the advantage that they only need the last data points

and can be used without previous training, but their prediction is also very inaccurate, so they

are outperformed by TSM as shown by Wei et al. [112]. These classic models for predicting TS

are divided into two groups, stationary and non-stationary ones. But since the data of wireless

links like High Speed Packet Access (HSPA), LTE, and Wireless LAN Media Access Control and

Physical Layer (Wi-Fi) contain both stationary and non-stationary parts as investigated by Yoshida

et al. [127], combined models like the ARIMA/GARCH approach, which was used by Zhou et al.

[135] should be used. The third category, LBMs, offer the possibility to include other parameters

for the prediction besides the TP as well. If the input values are pre-processed correctly, then the

performance of the methods also exceeds the performance of MB algorithms or TSM, as shown

by Wei et al.. Another feature of the TS models is that they are location-independent during the

prediction of mobile wireless connections. This distinguishes them from the LS methods that use

the location reference from previous measurements to predict mobile network connectivity. LS

methods require either the storage of all previous measurements, or a map must be created. A

comparison of LS and LB approaches is one of the open points as shown in Section 6.

Another aspect is the changed usage of data networks. Since traffic load as well as capacity have

significantly increased in the last years, the results of early prediction methods are not directly

comparable with new ones.
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Table 3. Collection of Publicly Available Datasets That Can Be Used for TPP in the Scenarios (Sce.):
Static Wired Scenario (S1) and Dynamic Mobile Network Scenario (S3)

Reference Sce. Data Point Usages Features

Zhou et al. [135]1 S1 18 000 k
congestion control,

network management

TCP package timestamps,

source host, destination host,

source port, destination port,

package size, TCP flags,

sequence number,

acknowledgement number

Yao et al. [121]2 S3 26 k
improving mobile

internet performance

timestamps, location,

bandwidth

Bokani et al. [8]3 S3 15 k
adaptive video

streaming

timestamps, download time,

download rate, download size,

start location, end location,

network type, operator

information

Jomrich et al. [47]4 S3 53 k

enable highly

automated driving,

associate comfort

services for the driver

timestamps, cell ID, tracking

area, network type, provider

information, signal strength,

RSIP, RSSI, TP, device identifier,

start location, end location,

speed, number of packages,

packages loss, weekday,

download or upload, . . .

The table is sorted by reference. The number of data points, purpose of use, as well as the recorded features are given.

5 AVAILABLE DATASETS AND MEASUREMENT TOOLS

Section 4 presented the different use cases and scenarios, in which TPP is relevant. It also pointed

out that some models need more input parameters than others. To obtain such an input dataset,

e.g., for the development of a suitable approach, there are essentially two possibilities. The first

one is to use a publicly available dataset, the other one is utilization of a measurement tool.

The first option, the collection of open datasets is described in the following and summarized in

Table 3. Zhou et al. [135] use two hours of recorded traffic between the Lawrence Berkeley Labo-

ratory and the World Wide Web. The measurement was done with the well-known tool tcpdump,

which is able to store the sent and revised TCP packages to a binary file. For the conversion be-

tween raw data and the provided dataset, the authors used a bunch of scripts that are also available.

Thus, it is not only possible to use their dataset for benchmarking, but to create a similar one. This

is beneficial, as the data depend on the Internet connection. The features of the set are low-level

TCP package parameters and header information. To use them for TPP, a pre-processing will be

needed for calculating the TP, loss rate or other higher level parameters. Furthermore, no further

features like physical transmission characteristics or routing buffers are recorded.

1http://ita.ee.lbl.gov/html/contrib/LBL-TCP-3.html.
2https://github.com/aubokani/Bandwidth-Dataset/blob/master/Sydney_bandwidth_2008.zip.
3https://github.com/aubokani/Bandwidth-Dataset/blob/master/Sydney_bandwidth_2015.zip.
4https://github.com/florianjomrich/cellularLTEMeasurementsHighwayA60.
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Table 4. Collection of Publicly Available Tools That Can Be Used for TPP in the Scenarios (Sce.):
Static Wired Scenario (S1), Stationary Mobile Network Scenario (S2), and Dynamic Mobile

Network Scenario (S3)

Reference Sce. Usages Features

Yu et al. [128] S1
estimation of bulk trans-

fer capacity

IP, URL, Download file size, Download

speed

De Silva et al. [24] S2, S3
performance prediction

for mobile devices

Wifi/LTE, Location, RTT /Throughput,

Timestamps

Torres et al. [106] S3

forecasting the average

downlink throughput in

vehicles

Device ID, Provider ID, RSSI, RSRQ,

RSRP, Frequency band, LAC, Cell ID,

IP, Location, RTT, Throughput, . . .

The table is sorted by reference. The purposes of use as well as the recorded features are given.

The other datasets of this section are related to the mobile network, but differ in number of fea-

tures and network type. While older sets like the one shown in Yao et al. [121] are recorded with

a vehicle PC using 3G hardware, newer ones are created using a smart phone with LTE. Looking

at the provided features, the dataset from Yao et al. contains timestamps and location information

measured by a GPS sensor as well as the corresponding bandwidth. It is therefore a lightweight set.

A more accurate dataset regarding the location is provided by Bokani et al. [8]. They recorded the

start and end position of the data transfer, and not merely a location information during transmis-

sion. This led to the fact that a throughput is assigned to a road segment and not to a single point.

For building a multivariable model, which also takes LTE low-level parameters into account, the

dataset of Jomrich et al. [47] should be used. Apart from the large amount of different features, the

authors have already prepared the dataset for the utiliztion of machine learning approaches. New

LBMs can, therefore, be easily implemented. The dataset also contains measurements performed

on different hardware and various providers.

The second method for collecting input data is to use a measurement tool, shown in Table 4.

One of the first available tools was Pathperf [128], which is capable of estimating the bandwidth

of a path. Another possibility to record the raw network traffic and extract the needed parameters

afterwards is shown above. Due to the increase of mobile network and smartphone applications,

meanwhile, there are further tools available, which are able to measure the TP and GPS position.

One of them is shown by De Silva et al. [24]. Such tools have in common that their measurements

are limited to the upload and download TP as well as the ping time. Consequently, no LTE param-

eters are provided. There are also tools in place, which can measure LTE low-level parameters, but

these do not record the TP. If position dependent, then lower level mobile network parameters and

the TP are needed.

One open source tool is publicly available. It is presented by Torres et al. [106] and described their

measurement setup developed in the European H2020 Research Project MONROE. It comprises

four LTE models as well as a computing unit and an additional Raspberry PI. The software is

based on the micro service technique and allows to measure LTE parameters, GPS location and

network parameters. In addition, there are publications describing how to implement such a tool.

You et al. [120] showed a measurement setup, which is capable of creating datasets similar to the

one used by You et al. [121]. Other authors, e.g., Martínez et al. [62] and Pögel et al. [79] showed

approaches capable of measuring features from different input sources like the network interface

and the low-level model parameters. The paper of Schmid et al. [94] presented a tool, which is

able to store a dataset on disk as well as to process the recorded samples of LTE, TCP, and GPS
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values immediately. Of course, there are a number of tools like Netradar [71] or SamKnows [92]

that provide performance measurements at the application level, but since these do not provide

TCP data, they have not been studied in this work. The RIPE Atlas [4] platform also falls into a

similar category, although it provides detailed data on a number of measurement types. But since

it measures application protocols such as DNS and HTTP, it is unfortunately not suitable for the

prediction of TCP values.

6 OPEN ISSUES AND FURTHER WORK

Although the previous sections are showing the work done in the area of TPP, there are still

open challenges to solve. A summary of the most important aspects is provided in the following

subsections.

6.1 Open Dataset for Benchmarking and Evaluation

Comparability of the individual approaches is a key topic. The table presented in the online only

material shows that many models are evaluated using different functions or methods, which makes

it difficult to compare them against each other. Due to the fact that various datasets with different

inputs were used for evaluation, the comparison of research results becomes even more difficult,

since effects such as the correlation between TP and TCP flow size cannot be proven as shown

by Dong et al. [26]. To solve this problem, a dataset is needed that fulfills at least the following

requirements: First, it should concentrate at least on one of the three scenarios defined in Section 3.

Apart from this, it needs to contain all features that are required by the different algorithms ap-

plied in that scenario. And of course, the evaluation must be done with the same method or error

function.

6.2 Comparison of Location and Time-based Approaches

Another topic concerns the comparability of LB and LS prediction methods. If LBMs are chosen

to predict the throughput of a moving client, then the prediction normally includes the estimation

of the future position of the client, which can become inaccurate if the model is only trained on

known routes and evaluated on other ones. The problem becomes even more obvious, when LS

prediction is applied, because of the need of a location for the prediction. To overcome this problem,

one approach is to assume that the path of the client is known as proposed in the work [40]. This

can work quite well in a public transport environment like a train. But it may not work well for

the usage of passenger cars or walking pedestrian scenarios. Here, a suitable approach is to make a

look ahead or to cover whole predictions as done by Singh et al. [98]. An alternative is to estimate

the probability of a location change. We already showed a comparison between a grid-based map

and different LBMs in our previous work [95], in which we considered the future location as given,

so the location prediction error is ignored, which is a good starting point. In summary, finding a

suitable method to compare location and time-based approaches including all aspects is still an

open issue.

6.3 Clearer Description of Measurement Environment

Looking in the area of mobile networks, the continuous development has a huge impact on the TPP

and the correlation between parameters [108]. In LTE, e.g., carrier aggregation probably will have

a significant influence, so not only the client device and scenario need to be described in a dataset

or publication, but also the supported technologies of the network providers need to be mentioned,

to describe the overall setup. This becomes even more relevant in 5G, where continuous evolution

is planned.
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6.4 Investigation on Multiple Server Scenario

Still open is the topic of a client being connected to multiple servers at the same time. There were

investigations on the similarity of connections done by Vazhkudai and Schopf [107], but some

additional work is required in this area, e.g., the generation of a public dataset that was mentioned

in Section 6.1. An investigation of this scenario is also very important, since the connection to

multiple servers is more frequent than communication with just a single server.

6.5 Investigation on the Environment Influence

The influence of the environment such as forests or buildings is well studied for radio-related

topics. Up to now, these effects are not considered in the area of TPP. Location-based methods

taking these effects into account should become more accurate.

6.6 Investigation on Recent Developments in LB Techniques

Another interesting approach is given by recurrent machine learning models, which are from our

point of view understudied. These methods can be used to build very accurate models in other

regression tasks [30, 113], and should therefore preferably be more considered for TCP TPP. In

particular, their memory and representation learning capabilities as given by gated recurrent units

in combination with convolutional neural networks offer strong potential. Generative adversarial

networks further allow to learn from limited observation data.

6.7 Investigation on Combining Approaches

Further, there are approaches that combine different algorithms, e.g., shown by Wei et al. [110] and

Madan and Sarathi Mangipudi [60] combining an LB method classification with a TSM algorithm.

There is still a lack of suitable combined approaches. In particular, merging of LS and multivariable-

based LB methods could offer strong potential, since previous works [95] showed that depending

on the evaluation metric either LS or LB methods are performing better. So a combination of both

should outperform the single approaches. However, only a few scientifically studies started yet,

e.g., Sliwa et al. [99], which are investigating a technique to combine LBMs with a grid-based map.

Even if this approach shows the potential of linking LB and LS, there are currently no approaches

to combine more recent methods.

7 CONCLUSION AND OUTLOOK

In this work, we distilled the most relevant approaches regarding TCP throughput prediction

across the vast range of models, starting from equation-based analyses, over instant time smooth-

ing, to learning-based or location smoothing models. Furthermore, available datasets and tools

were presented, and open topics and challenges were pointed out.

This survey showed that research is currently focusing more on mobile network applications

and thus on S3. This is especially true for data traffic between data centers and can be explained

by the increased use of server services in mobile networks. Related to the prediction algorithms,

a clear trend in the direction of LBMs at LSMs could be shown for a mobile scenario S3. In S1,

however, pure LBMs or new variants of TCP are increasingly used.

Nevertheless, up to now, there is nearly no approach comparing their properties and perfor-

mances yet. Since both categories have their pros and cons, we feel confident that a method combin-

ing them could outperform both. Therefore, this is definitely a development path that will evolve

in the future.

Considering the research in this area, it should be possible to transfer higher priority data for the

client without violating net neutrality as well as detecting areas where the mobile network Quality
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of Service (QoS) has to be improved. Given such improvements, we envision the next generation

of intelligent vehicles to be very well aware of throughput.

8 USED ANNOTATIONS

In this section, annotations and parameters used in the survey are defined. In general, inputs are

described with x and outputs with y. A predicted value is marked by a Circumflex, e.g., ŷ. Looking

into the area of learning-based models, where multiple inputs are used, the collection of these

features is described by vectors. So, the input of these models is �x . Also, commonly used is B
for bandwidth and TP for throughput. The main difference between the terms bandwidth and

throughput is that bandwidth is used for the capacity of the whole network link, while throughput

stands for the capacity of a single client to server connection. Additionally, especially in Section 4.1,

some further symbols are introduced, e.g., RTT for round trip time and TO for timeout.
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