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ABSTRACT
Embodied cognition theory states that students thinking in a learn-
ing environment is embodied in physical activity. In this regard,
recent research has shown that signal-level handwriting dynamics
can distinguish learning performance. Although machine learning
has been considered to detect how multimodal modalities corre-
late to specific learning processes, the use of deep learning has
received insufficient attention. With this in mind, we build a Group
Work Performance Prediction system from analysis of 3D (including
strokes frequency) handwriting signals of students in a smart Eng-
lish classroom, with deep convolutional neuronal network (CNN)
based regression models. For labelling of their proficiency level,
their spoken language performance is being used. The students
were working together in groups. A 3D (2D writing coordinates
plus frequency) handwriting dataset (3D-Writing-DB) was collected
through a collaboration platform known as ‘creative digital space’.
We extracted the 3D handwriting signal from a table tablet dur-
ing English discussion sessions. Afterwards, professional English
teachers annotated the English speech (values vary from 0 - 5). Our
experimental results indicate that group work performance can be
successfully predicted from physical handwriting features by using
deep learning, as shown by our best result, i. e., 0.32 in regression
assessment by applying RMSE for evaluation.
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1 INTRODUCTION
During the past decade, the fast development of information and
communication technologies (ICT) has dramatically improved and
even changed the paradigms in education evaluation. By leveraging
the power of the prevalent internet of things (IoT), sensors and ar-
tificial intelligence (AI [12]) have made feasible automatic analysis
and monitoring of students’ performance [40]. Using technology in
classroom has shown to contribute to the development of students’
creativity, motivation, and critical thought, encouraging also their
capability of solving problems in a more collaborative way [30]. The
increasing digital research in today’s classrooms has encouraged
a recent development of specific computer-based approaches for
their application in E-learning environments, such as classroom
activity detection [21], hand-rising gesture recognition [23], and
classroom motion tracking [15]. Particularly, the proliferation of
sensors in classrooms has created an environment in which stu-
dents’ behaviours are continuously monitored and recorded [2, 28].

∗Dr. Kun Qian is the corresponding author.
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In this regard, research in the realm of multimodal learning anal-
ysis has assessed how students communicate, collaborate, and solve
problems within a smart classroom [37]—an area of research re-
cently stimulated by the evaluation of neuro-physiological data
from these technology-based learning environments [42]. Indeed,
it has been shown that users’ tactile manipulation of tangible in-
terfaces enables the development of cognitive and physical con-
nections [35]—a research outcome supported by the higher stu-
dents’ ability to identify objects’ parts and position when using
touch-based smart-pad interfaces w. r. t. traditional mouse-based
technology [20]. In this regard, to evaluate how digital classrooms
might encourage students’ learning,multimodal learning analytics—
an emerging field of research that combines the study of differ-
ent natural communication modalities, such as speech, writing, or
gesturing—has been successfully taken into account [27, 29]. Yet,
this endeavour is challenging: Merely providing students with mul-
timodal learning resources does not necessarily lead to the use of
such resources in assessment practices [36].

Previous research has shown that classroom discussion is a fertile
ground to develop higher-order thinking, i. e., the acquisition of the
critical skills which enable the ability of solving problems in new
situations [5]. Indeed, during discussions, students make comments
and build on each other’s ideas, which encourages the debate [14],
a situation specially tailored to collect cross communication modal-
ities. Meaning-making, i. e., the process that enables students to
make knowledge and experiences meaningful [16], is encouraged
by implementing group work in the classroom w. r. t. traditional
accommodating environments [10]. Indeed, assessing the learning
potential of student group discussions has become an important
feature of classroom research. The predominant methodological
form underpinning such research efforts falls under the broad um-
brella of discourse analysis—a research method in which language
is analysed beyond the sentence, i. e., considering how the context
of the discourse affects the interaction between sentences [19]. To
this end, group discussions should be analysed by taking into ac-
count both the content and the communicative meaning-related
aspects [1]. These aspects are displayed, for instance, through users’
physiological behaviours, such as handwriting signals, which can
be evaluated as indicators of specific cognitive processes [6].

From the early 80s, research aimed to provide user-friendly input
solutions for handwriting and drawing recognition, which do not
rely on a sensor-based tablet, has been developed [17]. In this regard,
previous work on the estimation of students’ attention has shown
that Kinect features, such as handwriting signals or the RightEye-
Closed indicator, clearly correlate to the attention level [41]. Indeed,
pen based writing, one of the most ubiquitous aspects in classrooms
to encourage students’ learning [22], is characterised by signal-level
handwriting dynamics, e. g., average duration, distance, or pressure,
aspects that might encode a particular communicative meaning.
Nevertheless, despite recording handwritten signals through tech-
nological devices is a common practise in today’s classrooms; the
investigation of how these could correlate to attributes from other
communication modalities, such as speech proficiency, has received
little attention at a group learning level [26].

In this regard, we evaluate how handwritten signals, collected
during group discussion work in a smart English classroom, might
be used as indicators of learning performance. Although it has been

Figure 1: Students’ interaction with a table tablet by using
digital cards and electronic pens during group work.

shown that handwriting signals correlate to learning aspects [41]
such as students’ attention, previous research on the automatic pre-
diction of English speaking proficiency ismostly performed through
the evaluation of speech-based features [43], while handwriting-
based features have not been yet considered. Meanwhile, machine
learning has been already successfully applied to automatically
recognise teaching-learning related concepts, such as the classifica-
tion of teacher’s questions into different cognitive levels [39]; yet,
the extent to which deep learning might contribute to the develop-
ment of this research question is still under investigated [24]. To
this end, in the presented work, the automatic prediction of group
work performance from students’ 3D handwriting features through
a Convolutional Neural Network (CNN) model in a smart English
classroom is considered for the first time.

2 DATA ACQUISITION: 3D-WRITING-DB
2.1 Group Work Discussion Setting
Since students’ participation in cooperative exercises within group
work especially increases their motivation in linguistic activities,
we performed the data collection in the Communication English
course. In each session, teachers provided 5 topics per group work
of students, e. g., ‘Cashless Society’ or ‘Paperless Classroom’, as
well as related texts to be read. After reading the provided materials,
the students of each group work had 30min to discuss and write
notes about each topic; thus, each session lasted 150min (30min ×

5 topics). The students wrote their notes in digital cards by using
infrared electronic pens. The digital cards are ‘virtual’ cards pro-
jected onto each group’s table—from now on we will refer to each
table as ‘table tablet’ (cf. Figure 1).

In order to enable the teachers to quickly monitor the overall
classroom situation, the ‘creative digital space’ system [4], i. e.,
a digital environment based on the real-time analysis of group
activities aimed to support active learning classes, was considered.
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Figure 2: Digital Classroom equipment. A standard table
tablet, equipped with a Unit-PC, a Projector, a Camera, and
eight Infrared Electronic Pens (one per student), is shown.
The Digital Classroom, equipped with five table tablets—
eachwith its ownUnit-PC (all of themconnected to theBase-
PC)—enables to collect data from five work groups.

The study was developed in a High School from Tokyo (Japan).
A total of 80 students with ages from 15 to 17 years old and spoken
English proficiency from low to high, participated in the study.
The students were randomly split into 2 classroom-groups with
40 students each (A and B). In each classroom-group, they were
subsequently divided into 5 group work teams of 8 students. Each
classroom-group performed 5 sessions, i. e., 10 sessions were carried
out in total. After each session, each student presented the argu-
ments in a short oral presentation (1-3min); presentations were
recorded by other students with mobile-phones and tablets.

2.2 Data Collection and Annotation
To collect the handwriting data, the Digital Classroom used alterna-
tively by the classroom-groups A and B, was equipped with 5 table
tablets (one per each work group), i. e., 5 Unit-PCs with projector
and camera, all connected to the Base-PC (cf. Figure 2). In their
interaction with the table tablet, the students could create digital
cards to write handwritten content with infrared electronic pens.
Handwriting signals were produced by the students and extracted
from the ‘creative digital space’ through the Base-PC, i. e., without
the need of other card operation signals. Indicators based on opera-
tion frequency and handwriting signals were obtained according
to the respective weighted accumulations of the number of strokes
written in the digital cards that occurred within one time window of
10 seconds length [4]—note that the weights for the accumulating
values decreased exponentially over time. The handwriting signals
were collected in image format, generating one image for every
table tablet. Each image was processed to 100 × 900 pixels—900
pixels relates to the session length, i. e., 150 minutes. During the
class, students could write notes at any time on the table tablet, and
all of them were required to take notes.

A total of 50 images: 1 image × 5 table tablets × 5 sessions ×
2 classroom-groups, were collected. However, since unbalanced
student distribution might bias the experimental results, only data
from table tablets of discussion sessions with eight participating stu-
dents were considered. Due to some students’ absence, likewise, a
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(b) Handwriting Feature Image with Data Augmentation

Figure 3: Table tablet images representing handwriting sig-
nals. Strokes in cards and time are indicated in the x and y
axis respectively: a) gives the original image (with a size of
100×900 pixels); b) gives a new image obtained after applying
data augmentation (with a size of 100 × 810 pixels).

total of 42 images were collected. In Figure 3a, an example of a table
tablet image is given. We applied the ‘thermal image’ concept [18]
to the images, i. e., every image’s spot indicates the handwriting
frequency in the digital cards: high temperature represents high
frequency, low temperature indicates low frequency. The English
proficiency ground truth was retrieved from the oral presentations.
For doing this, the students’ speaking performance was evaluated
by five English teachers from 0 (poorest) to 5 (best): we computed
the arithmetic mean across all raters to infer the gold standard [7]
from individual annotations. Since one unique image was collected
to represent the handwriting features of the eight students partici-
pating in each work group, the averaged English proficiency score
across the eight students was also computed to be associated to
each image.

3 EXPERIMENTAL SET-UP
3.1 Data Augmentation
Since the use of bigger datasets usually increases machine learning
algorithm performance [38], we applied data augmentation to the 42
image samples. By erasing a single rectangular patch with a random
size from a given image, Random Erasing [44] has shown to be a
method performing well on image data augmentation. Following
this method, we randomly erased 10% of the data, which shows
minimal effect w. r. t. the original images: in Figure 3b, an image
after data augmentation, presenting a size of 100× 810, is displayed.
For every image, through the application of the Random Erasing
data augmentationmethod, 20 new samples were generated. In total,
840 samples (20× 42) were considered to carry out the experiments.

3.2 Data Partition Set-up
In this study, Leave-One-Subject-Out (LOSO) cross-validation eval-
uation was performed to satisfy the group independence evaluation
constraint [11]. In this context, the 840 samples were divided into
42 group-independent folds, with each fold containing only the
handwriting signals from one work group. With the LOSO evalua-
tion scheme, one of the 42 folds was used as test set while the other
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Table 1: Regression results (RMSE) obtained from CNN
architectures: Shallow (M)odels, with four different
(Conv)olutional Layers; Deep (M)odels, with four different
Residual Network(ResNet).

Shallow M Conv2 Conv4 Conv6 Conv8
RMSE Value 0.41 0.32 0.36 0.38
Deep M ResNet18 ResNet34 ResNet50 ResNet101
RMSE Value 0.56 0.45 0.48 0.39

41 folds were considered together as training set. This process was
repeated 42 times until all the folds were utilised as test set.

3.3 CNN models
The algorithms on visual recognition currently available are mostly
based on deep Convolutional Neural Networks (CNNs) [8, 34],
which achieved outstanding performance with small datasets in
recent years [33]. When increasing the complexity of CNNs, the
training process based on stochastic gradient descent—the multi-
layer backpropogation—can easily lead to the gradient ‘dispersion’
or vanishing gradient. Moreover, there is a phenomenon that the
training error increases as the depth increases [13]. The principal
of a Residual Network (ResNet) introduces a novel architecture that
helps to ease the degradation problem—higher training error when
using more layers—and hence allows for training of a very deep
network [13]. Thus, in this study, we considered eight CNN models
from shallow to deep: for shallow topologies, we consider tradi-
tional CNNs with increasing convolutional layer number; for deep
architectures, we consider typical ResNet layouts, such as ResNet
18, ResNet 34, and so on. For better comparison, we group our eight
CNN models into Shallow Models and Deep Models according to
complexity. Following previous work [25], the Root Mean Squared
Error (RMSE) is considered as loss function and evaluation metric
in all CNN models. The computation of RMSE is defined as:

RMSE =

√
Σni=1(ŷi − yi )2

n
,

where n indicates the total number of samples, and ŷi and yi rep-
resent the prediction and the ground truth for the i-th sample,
respectively.

4 RESULTS AND DISCUSSION
The RMSE results indicate the absolute fit of the CNN model to the
data, i. e., how close the observed data points are to the model’s
predicted values [3]. From Table 1, all our results show that using
the 3D handwriting dataset can well predict the group work per-
formance in English classroom. In general, Shallow Models achieve
better results, only the performance of a CNN model with 2 Con-
volutional Layers is slightly outperformed by the ResNet-101, (cf.
RMSE of 0.41 and 0.39 for Conv2 and ResNet-101, respectively, in
Table 1); which might be due to the ‘residual’ architecture perform-
ing well in this case. The best result (RMSE = 0.32) is achieved by
a CNN with 4 Convolutional layers, which might be due to the fact
that more complex and deep architectures cause severe overfitting
during training, which is also observed in previous work [9]. This
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Figure 4: Best RMSE values: ground truth and predictions
achieved from 4 Convolutional Layers CNN. Shallow blue
area indicates error value less than 0.5.

assumption is indeed supported by the continuous decrease of the
training loss, which contrasts with the rapid rise of the test loss.
Furthermore, the ResNet Models’ training phase is time-consuming
and high in computational cost, while Shallow Models, presenting
a lightweight architecture, can be more easily optimised, which
enables Shallow Models to achieve a better ‘rendering’ of the 3D
handwriting dataset structure.

In the CNN model with 4 Convolutional Layers, i. e., the one
which achieved the best results, a max pooling layer after each
convolutional layer was considered. To enhance the computing
performance of the network, the numbers of channels on four
convolutional layers were set to 16, 32, 64, and 64 respectively.
Afterwards, the output vectors were flattened and fed into a dense
layer, whose output size was set to 1. In Figure 4, the best predictions
w. r. t. the ground truth achieved with this CNN model (i. e., Conv4)
are indicated. Our experimental results show that the predictions
fit the ground truth values in 93 % of the cases: an error score lower
than 0.5 is represented with a blue shaded area.

The best experimental result achieved by the CNN with 4 Con-
volutional Layers, with a RMSE of 0.32 (cf. Table 1), confirms that
students’ English speaking proficiency can be predicted by using
handwriting signal images. Large prediction errors were also ob-
served, especially for ground truth with high scores. For instance,
the system predicted a high (proficiency) target score of 4.3 as 2.8,
which means that a group of students with high proficiency was
identified as having poor speaking skills. This might be due to the
limited training data available for high scores—a reason why the
model would not have sufficient capability to predict such scores to
the best performance of the network architecture. Besides, it might
also be due to an exceptional behaviour of this particular group of
students, i. e., showing a tendency to write less, despite their high
speaking proficiency.
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5 CONCLUSION
In this study, we evaluated the relationship between handwriting
signals and group work performance. Our experimental results
indicate that 3D-handwriting signals are an effective feature to
automatically identify group work performance in English class-
room. To the best of our knowledge, this is the first study that
applies cross-modality analytics to classroom discussion at a group
work level. In future work, we plan also to explore internal rela-
tionships among other communication modalities, such as gestures,
facial expressions, speech, and handwriting signals. Moreover, other
kinds of wearables, e. g., watch-type devices equipped with an ac-
tivity monitor—which might be suitable in describing the evaluated
behaviour—will also be taken into account [31, 32]. In addition, we
will also assess the performance of other machine learning meth-
ods, such as long short term memory models. Given the promising
results shown by the use of physical handwriting features in the
recognition of students’ group work performance, we also plan to
collect further work group data from students’ interactions within
the ‘creative digital space’.
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