
Universität Augsburg

KABCROMUNGSHO0

Non-Smooth and Zeno Trajectories for

Hybrid System Algebra

Peter Höfner Bernhard Möller

Report 2006-07 March 2006

Institut für Informatik

D-86135 Augsburg

Copyright c© Peter Höfner Bernhard Möller
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Non-Smooth and Zeno Trajectories for Hybrid

System Algebra

Peter Höfner⋆ and Bernhard Möller

Institut für Informatik, Universität Augsburg
D-86135 Augsburg, Germany

{hoefner,moeller}@informatik.uni-augsburg.de

Abstract. Hybrid systems are heterogeneous systems characterised by
the interaction of discrete and continuous dynamics. In this paper we
compare a slightly extended version of our earlier algebraic approach
to hybrid systems to other approaches. We show that hybrid automata,
which are probably the standard tool for describing hybrid systems, can
conveniently be embedded into our algebra. But we allow general transi-
tion functions, not only smooth ones. Moreover we embed other models
and point out some important advantages of the algebraic approach. In
particular, we show how to easily handle Zeno effects, which are excluded
by most other authors. The development of the theory is illustrated by
a running example and a larger case study.

1 Introduction

Hybrid systems are dynamical as well as heterogeneous systems characterised by
the interaction of discrete and continuous dynamics. Many applications, such as
automated highway systems, air-traffic control, automotive controllers robotics,
chemical and biological processes, are known. Hybrid automata (HA) [2, 11] are
widely popular for designing and modelling hybrid systems. They are based on
timed automata [4], a variation of finite state machines. After a short introduc-
tion we give in Section 2 the exact definition of HA. Afterwards, in Section 3, we
present a slightly extended version of our algebraic model of hybrid systems [12].
Section 4 shows that this model forms a left semiring. Furthermore, it contains
a very brief overview of the algebraic theory necessary for the paper. Section 5
presents one of the main results, viz. that Hybrid automata can be conveniently
embedded into our algebra. But we allow general transition functions, not only
smooth ones. Therefore our model is more expressive as HA. We further show
how to embed other models and point out some important advantages of the
algebraic approach. The following two sections discuss composition of hybrid
systems as well as how to handle Zeno effects. The latter can easily be handled
in the algebra, whereas in other models they are excluded by most other authors.
To round off the paper and to illustrate our theory in an explicit example, in
Section 8 we present a case study and also discuss some aspects of safety.

2 Hybrid Automata

In [2], hybrid systems are modeled by hybrid traces and hybrid automata. As
we will show later on, hybrid traces are related to an algebra of hybrid systems.
First, we want to recapitulate the definition of hybrid automata.

A hybrid automaton (HA) H [2, 1, 8, 11] consists of the following components.

Variables A finite set X = {x1, . . . , xn} of real-valued variables. The number
n is called the dimension of H . We write Ẋ for the set {ẋ1, . . . , ẋn} of dotted
variables, which represent the first derivatives of the xi during continuous
change. We write X ′ for the set {x′

1, . . . , x
′
n} of primed variables, which

represent the values of the xi at the end of a continuous period, just before
occurrence of a discrete change.

Control graph A finite directed multigraph (V, E). The vertices in V are called
control modes. The edges in E are called control switches.

Initial, invariant and flow conditions Three vertex labelling functions init,
inv, and flow assign to each control mode v ∈ V three predicates. Each
initial condition init(v) and invariant condition inv(v) is a predicate with
free variables from X . Each flow condition flow(v) is a predicate with free
variables from X ∪ Ẋ .

Jump conditions An edge labelling function jump assigns to each control
switch e ∈ E a predicate jump(e) with free variables from X ∪ X ′.

Events A finite set Σ of events, and an edge labelling function event : E → Σ

that assigns to each control switch an event.

To illustrate this definition and to show a graphical representation we give
one of the standard examples of [2, 11]. This example has no events. In Section 8
we will see an example that contains an event.

Off

ẋ =−0.1x

x≥18

On

ẋ = 5−0.1x

x≤22

x<19

x>21

x = 20

Fig. 1. Thermostat automaton

Example 2.1 (Temperature Control)
The hybrid automaton of Figure 2 models a thermostat. It is adapted from [11].
The variable x represents the temperature. Initially, the temperature is equal
to 20 degrees and the heater is off (control mode Off). The temperature falls
according to the flow condition ẋ = −0.1x. According to the jump condition
x < 19, the heater may start as soon the temperature is below 19 degrees. The
invariant condition x ≥ 18 ensures that the heater will go on at least when
the temperature is equal to 18 degrees. In control mode On, the heater is on
and the temperature rises according to the flow condition ẋ = 5 − 0.1x. If the

2

temperature reaches the second jump condition, the heater is switched off and
the procedure starts again (maybe with another initial value). ⊓⊔

3 Algebra of Hybrid Systems

We aim at an algebraic view of hybrid systems, in particular of hybrid automata.
A first approach to this is given in [12]. For this model we use trajectories (cf.
e.g. [18]) that reflect the variation of the values of the variables over time. We
briefly present the main definitions and ideas and recapitulate the basic algebraic
concepts which are in line with our approach.

Let V be a set of values and D a set of durations (e.g. IN, Q

A process is a set of trajectories, consisting of possible behaviours of a hybrid
system. The set of all processes is denoted by PRO. The finite and infinite parts
of a process A are defined as

inf A =df {(d, g) ∈ A | d = ∞} , finA =df A − inf A .

In Section 7 we give a general definition of finite and infinite elements.
Composition is lifted to processes as follows:

A · B =df inf A ∪ {a · b | a ∈ finA, b ∈ B} .

The constraint g1(d1) = g2(0) for composability of trajectories T1 = (d1, g1)
and T2 = (d2, g2) is very restrictive in a number of situations. Hence we will
introduce a compatibility relation ≍⊆ V × V , which describes the behaviour at
the point of composition. The relation allows ‘jumps’ at the connection point
between T1 and T2. This is meaningful, since ‘jumps’ in the interior of a trajectory

Iterated composition of such trajectories then gives the behaviour of the
automaton over longer periods of time. ⊓⊔

We apply this encoding for hybrid automata to our running example 2.1.

Example 3.2 We define two sets of trajectories.

AOff =df {(d, (Off, g(t))) | d ∈ IR+, ġ(t) = −0.1t} ,

AOn =df {(d, (On, g(t))) | d ∈ IR+, ġ(t) = 5 − 0.1t} .

Using the compability relation given above, the overall behaviour of the automa-
ton is represented by the algebraic expression

(AOff
≍ · AOn

≍)ω ,

where ω is an operator for infinite iteration. The existence of such an operator
will be shown in the next section. Note that we do not yet consider the initial
value of the temperature. This can easily be done by pre-composing a zero-length
trajectory {20

As in [16], we can extend an idempotent left semiring by finite and infinite
iteration. A left Kleene algebra is a structure (S, ∗) consisting of an idempotent
semiring S and an operation ∗ that satisfies the left unfold and induction axioms

1 + a · a∗ ≤ a∗ , b + a · c ≤ c ⇒ a∗ · b ≤ c .

To express infinite iteration we axiomatise an ω-operator over a left Kleene
algebra. A left ω algebra [6] is a pair (S, ω) such that S is a left Kleene algebra
and ω satisfies the unfold and coinduction axioms

aω = a · aω , c ≤ a · c + b ⇒ c ≤ aω + a∗ · b .

Lemma 4.2Lemma nur umfor-
matiert.

1. Every left quantale can be extended to a left Kleene algebra by defining
a∗ =df µx . a · x + 1.

2. If the left quantale is a completely distributive lattice then it can be extended
to a left ω algebra by setting aω =df νx . a · x. In this case,

νx . a · x + b = aω + a∗ · b.

The proof of 2. (see e.g. [5]) uses fixpoint fusion.
Since by Lemma 4.1 PRO forms a left quantale, we also have finite iteration ∗

and infinite iteration ω with all their laws available.

5 Embeddings of Other Approaches

In [2] Alur et al. show that Hybrid automata are equally expressive as piecewise-
smooth hybrid traces. In Example 3.1 we already showed how to embed hybrid
automata (and hence piecewise-smooth hybrid traces). However, it is obvious
that hybrid traces are more expressive than hybrid automata. In this section
we show how to adapt the hybrid traces to the algebra of hybrid systems and
hence to the theory of semirings. Furthermore, we discuss the embedding of other
models for hybrid systems.

Alur et al. use for their approach any intervals, i.e., intervals can be open,
half-open, or closed, as well as bounded or unbounded. Let V ′ be a set of values
(similar to V of Section 3). A trace is a function from IR+ to V ′.

A set T of traces is fusion-closed if for all traces τ1, τ2 ∈ T and t1, t2 ∈ IR+,
if τ1(t1) = τ2(t2), then τ ∈ T for the trace τ with τ(t) = τ1(t) for all t ≤ t1 and
τ(t) = τ2(t + t2 − t1) for all t > t1. Now we show the connection between the
set of fusion-closed, piecewise-smooth hybrid traces and PRO. Every trace can
be split into a sequence of intervals I1, I2, . . . such that for any i, j with i 6= j

Ii ∩ Ij = ∅ ,
⋃

i

Ii = {x | ∃ i : x ∈ Ii} = IR .

τ is piecewise-smooth iff there is a sequence of intervals such that all τ |Ii
are

C∞-functions. Here, τ |Ii
denotes the restriction of the function τ to Ii, i.e.,

6

τ |Ii
: Ii → V , τ |Ii

(x) = τ(x) for all x ∈ Ii. Note that all intervals of the
sequence except the first and the last one, can be open, half-open or closed as
well as bounded or unbounded. Since the sequence of intervals covers IR, the first
interval has to be [0, x[or [0, x] and the last one [x,∞[or]x,∞[. Now we can
formulate and prove the desired connection.

Lemma 5.1 There exists a function α from the fusion set T of piecewise-smooth
traces to PRO, i.e, T can be embedded into PRO.

Proof. We will give a constructive proof by defining α′, which connects each
trace τ of T to a process. The construction is close to the don’t-care approach
of Section 3 using the compatibility relation ≍. The main idea is to extend the
(half-)open intervals to closed intervals. α is then given by lifting α′ pointwise.
First, we need a function β which works on an interval of the implicitly given
interval sequence. Let I be such an interval. For the construction, we assume
D = IR+. We start with the case, where I = [a, b] is closed and bounded, then

β(τ |[a,b]) = {(d, f) | d = b − a, f(x) = τ(x + a), x ∈ [0, d]} .

In this case, where I is closed, we have a one-to-one relation between a part
of the sequence τ |I and a trajectory (strictly speaking, and a process with one
element). If I is (half-)open, the case is a bit more complicated. We demonstrate
this when I = [a, b[. The other two cases (]a, b],]a, b[) are similar.

β(τ |[a,b[) = {(d, f) | d = b − a, f(x) = τ(x + a), x ∈ [0, d[, f(d) = v, v ∈ V } .

We do not have a one-to-one relation anymore. In fact we ‘complete’ the half-
open interval to a closed interval including all possibilities. Therefore, we get a
process as result. Two cases are missing, if I = [a,∞[and if I =]a,∞[. We only
show the first one. The second one is similar if we consider again all possibilities
for the ‘missing point a’.

β(τ |[a,∞[) = {(d, f) | d = ∞, f(x) = τ(x + a), x ∈ [0, d[} .

Overall, we have defined a function β : I → PRO. To get α′ : τ → PRO we just
use the composition of trajectories: α′(τ) = β(τ |I1) · β(τ |I2) · · · ⊓⊔

Since we add all values of V at those points where the interval is (half-)open, the
composition cannot have the empty set as result, and so ‘jumps’ in the behaviour
do not matter and fit well with our model. Obviously, the proof can be generalised
to any traces, since we do not make any usage of piecewise-smoothness.

In the case where we restrict PRO to such trajectories where the function f

is piecewise-smooth, we can easily formulate a dual lemma.

Lemma 5.2 There is a function that maps trajectories with piecewise-smooth
functions and infinite duration in D = IR to traces.

Proof. We have to restrict P to its infinite parts since traces have to cover all of
IR+. The construction of the function is similar to the one of Lemma 5.1. ⊓⊔

7

Summarising, we can formulate our main theorem of this section.

Theorem 5.3 The fusion set S of hybrid traces can be embedded into PRO.
More precisely, hybrid automata, the fusion set of piecewise-smooth traces and
PRO restricted to piecewith-smooth trajectories are isomorphic.

Proof. This is a simple consequence of Lemma 5.1 and Lemma 5.2 as well as the
fact that Hybrid automata and the fusion set T of piecewise-smooth traces are
isomorphic, as shown in [2]. ⊓⊔

So far, we have shown that Hybrid automata (hybrid traces), which are probably
the standard tool for describing hybrid systems, can conveniently embedded into
our algebra. But in contrast to hybrid automata we can also handle non-smooth
trajectories. Other models like timed automata [3] or hybrid I/O automata [14]
can be embedded into our algebraic model in a similar way.

6 On the Composition of Hybrid Systems

The product of two finite state machines as well as the parallel composition are
well known. Since [11] defines a product and a parallel composition for hybrid
automata, we will discuss the algebraic counterpart in this section.

Product Following Example 3.1 and the definition of product of [11] we

a is an event of H1 but not of H2 then during the transition of H1 the state of
H2 has to be kept constant and vice versa. I.e., if we look at trajectories (d, f)
and (e, g), where d and e are elements of the same set of durations, we have

(d, f)||(e, g) =







(d, f ▽ g) if d = e

(e, const(f) ▽ g) if d = 0
(d, f ▽ const(g)) if e = 0 ,

where (f ▽ g)(x) = (f(x), g(x)) and const(f)(x) = f(0) is the constant func-
tion. Now we see that in the case of two semirings of processes with the same
set of durations the parallel-composed trajectories form again trajectories. I.e.,
if the first process contains only trajectories (d, f) with functions f : D → V

and for all trajectories (e, g) of the second process we have g : D → V ′, then
the parallelised process semiring contains a trajectory with functions of type
D → V × V ′. Hence the parallel composition of [11] can be modelled with the
same algebraic theory just changing the range of trajectories.

7 Zeno Effects

Zeno of Elea’s famous paradox of the Achilles and the tortoise is well known.
Summarised we get:

“In a race, the quickest runner can never overtake the slowest, since the
pursuer must first reach the point whence the pursued started, so that the
slower must always hold a lead.”

(Aristotle Physics VI:9, 239b15)

However, when describing hybrid systems as well as any natural behaviour, Zeno
effects are excluded in general. In the theory of hybrid systems usually the au-
thors do not consider them, even if they appear in their theoretical model. In
papers concerning such systems it is also not mentioned how to avoid those ef-
fects. In this section we present a possible way of handling Zeno effects in PRO
and characterise the zeno and zenofree parts of hybrid systems.

Roughly spoken, a Zeno effect occurs if an infinite iteration does not take
infinite time (duration). In Section 3 we already have defined finite and infinite
parts of trajectories and processes. In general left semirings an element a ∈ S

is called infinite if it is a left zero, i.e., a · b = a for all b ∈ S. An equivalent
characterisation is a · 0 = a. By this property, a · 0 may be considered as the
infinite part of a. We assume that there exists a largest infinite element N, i.e.,

a ≤ N ⇔df a · 0 = a .

Dually, we call an element a finite if its infinite part is trivial, i.e., if a · 0 = 0.
We also assume that there is a largest finite element F, i.e.,

a ≤ F ⇔df a · 0 = 0 .

9

In Boolean quantales N and F always exist and satisfy

N = ⊤ · 0 , F =

aω ⊓ F

= ((fin a)∗ · inf a + (fin a)ω) ⊓ F

= ((fin a)∗ · inf a) ⊓ F + (fin a)ω ⊓ F

= (fin a)ω ⊓ F

≤ (fin a)ω.

⊓⊔

3. fits well with our intuition, since in PRO it means that Zeno effects can only
occur when all trajectories in a process a are finite. 2. says that the zenofree
part of a process contains either at least one infinite element or all finite parts
have long enough durations that their iteration obtains infinite duration.

Example 7.3 Returning to our running example of the thermostat, we can now
describe all nonzeno behaviours as (AOff

≍ · AOn
≍)ω ⊓ N. ⊓⊔

To give another example for PRO in the special case where the set of durations
D = IR, we first define a scaling function. We denote the set of all trajectories
with D = IR by TRAIR. Similarly, we denote by PROIR the set of processes
where D = IR.

scn : TRAIR → TRAIR

(d, f) 7→ (d

Far

−50≤ẋ≤−40

x≥1000

Near

−50≤ẋ≤−30

x≥0

Past

−50≤ẋ≤−30

x≥−100

x≤5000
x = 1000

approach

x = 0x = −100→

x:∈[1900,4900]

exit

Fig. 2. Train automaton

algebraic expression. Since all control modes have the same structure we define
the following abbreviations:

T [a,b] =df {(d, g) | d ∈ IR+, a ≤ ẋ ≤ b} ,

Pa =df {a

MoveUp

ẏ = 9

y≤90

Opened

ẏ = 0

y = 90

MoveDown

ẏ =−9

y≤0

Closed

ẏ = 0

y = 0

y = 90

l

raise

y = 0

lraise

raise raise

l l

Fig. 3. Gate automaton

and const is again the constant function. Ml · Mr is iterated because the gate
can start opening even if the gate is not totally closed (y = 0) and it can start
closing even if the gate is not absolutely opened (y = 90).

The simplest way to combine both expressions is

TR ||GA

where || is the pointwise lifted parallel composition of Section 6. But this alge-
braic expression contains all combinations of the train trajectories and the gate
trajectories, e.g., the gate can be opened when the train passes.

To combine these two automata and to guarantee safety, one can use a third
automaton (Controller automaton) as done in [11]. This controller has a reaction
delay of some seconds. To simplify matters, we assume a reaction time of 0
seconds. (Another time of delay is also possible, but the algebraic expressions
become more complicated, although the structure would be the same.) When an
approach event is received, the controller issues a lower event and when an exit
event is received, the controller starts an raise event. In sum we have:

TG =
(

O||(P≤5000 · T [−50,−40] · P1000)
)

·

(

(

(Ml · C)||(T [−50,−30] · P0)
)

·
(

C||(T [−50,−30] · P−100)≍

)

·
(

(Mr · O)||(T [−50,−40] · P1000)
)

)ω (2)

Let us have a look at the single components. The first part (O||(P≤5000·T [−50,−40]·
P1000)) models the initial behaviour; the gate has to be open, the train starts
somewhere before the gate (not farther than 5000 metres), and moves until it

13

reaches the point x = 1000. Each of the components in the infinite iteration
loop has as right operand of the parallel composition one control mode of the
train automaton together with the attached event and as left operand the corre-
sponding behaviour of the gate. Note that the nested iteration of GA has been
removed, because that behaviour cannot occur.

Aspects of Safety The algebra of processes not only compacts the description
by a parallelised hybrid automaton (which was not given by Henzinger), but also
contains many aspects of safety. E.g., the expression Ml ·C itself guarantees that
the gate is closed at the time when the train passes the gate. This guarantee is
not given in the original paper. Furthermore, it is easy to see that if the initial
distance between the gate and the train is smaller than 1000, we have for the
first factor of (2)

(P<1000 · T
[−50,−40] · P1000) = 0 .

Thus we know that such an initial distance is not safe, since it is not possible that
the gate gets closed in time. This problem is not discussed in [11]. In general, if
an algebraic expression or a part of it at a strict position is equal to zero, the
corresponding system is not safe. Another aspect of safety is the Zeno problem.
In our example, Zeno effects can occur in the hybrid automata as well as in our
algebraic expressions. But those effects can be excluded by taking

TG ⊓ N ,

as discussed in Section 7. Sometimes it is desirable and necessary to introduce
range assertions. For instance, we may, besides the normal conditions of opera-
tion, want to guarantee that no train is faster than 40 metres per seconds (e.g. if
there is construction work on the track). Then we have to modify our expression
(2). In [12] we have introduced range assertions and the algebraic expression
becomes

TG ⊓ � T [0,−40] .

With this, we have a characterisation of the modified system and can now check
safety, etc.

9 Outlook

It will be interesting to apply the approach in further case studies. On the more
theoretical side, an algebraic treatment of time abstraction as well as further
analysis of safety via range assertions and of liveness issues is necessary. The
structures of Kleene and ω algebras should allow a convenient algebraic treat-
ment of reachability questions [9]. Finally, the algebraic semantics for CTL∗

given in [17] prepares the connection to various logics for hybrid systems [8].

Acknowledgement

We are grateful to Kim Solin for helpful discussions and remarks.

14

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine: The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, 138:3–34, 1995.

2. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho: Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems. In
Workshop on Theory of Hybrid Systems, Lyngby, Denmark, October 1992.

3. R. Alur, D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science
126(2):183–236 (1994).

4. R. Alur, and D.L. Dill: Automata for Modeling Real-time Systems. In M.S. Pater-
son (ed.) ICALP 90: Automata, Languages, and Programming, Lecture Notes in
Computer Science 630:340–354, Springer, 1992.

5. R. C. Backhouse et al. Fixed point calculus. Information Processing Letters,
53:131–136, 1995.

6. E. Cohen: Separation and Reduction. In R. Backhouse, J. N. Oliveira (eds.): Math-
ematics of Program Construction. LNCS 1837. Springer 2000, 45–59.

7. J. H. Conway: Regular Algebra and Finite Machines. Chapman & Hall, 1971.
8. J. Davoren, A. Nerode: Logics for Hybrid Systems. Proc. IEEE 88(7):985–1010

(2000).
9. J. Desharnais, B. Möller, G. Struth: Kleene Algebra with Domain. ACM Trans.

Computational Logic (to appear 2006). Preliminary version: Universität Augsburg,
Institut für Informatik, Report No. 2003-07, June 2003.

10. T.A. Henzinger: Hybrid Automata with finite Bisimulations. In Z. Fülöp and
F. Gécseg (eds.) ICALP 95: Automata, Languages and Programming, 324–335.
Springer, 1995.

11. T.A. Henzinger: The Theory of Hybrid Automata: Proceedings of the 11th Annual
Symposium on Logic in Computer Science (LICS), IEEE Computer Society Press,
1996, pp. 278-292. Extended version in M.K. Inan, R.P. Kurshan (eds.): Verifica-
tion of Digital and Hybrid Systems. NATO ASI Series F: Computer and Systems
Sciences, Vol. 170, Springer-Verlag, 2000, pp. 265–292.

12. P. Höfner, B. Möller: Towards an Algebra of Hybrid Systems. In W. MacCaull, M.
Winter and I. Duentsch (eds.): Relational Methods in Computer Science. LNCS
3929 (in press).

13. D. Kozen: Kleene Algebra with Tests. ACM Trans. Programming Languages and
Systems 19, 427–443 (1997).

14. N. Lynch, R. Segala, F. Vaandraager: Hybrid I/O Automata. Information and
Computation, 185(1):105–157 (2003).

15. B. Möller: Towards pointer algebra. Science of Computer Programming 21, 57–90
(1993)

16. B. Möller: Kleene getting lazy. Science of Computer Programming, Special issue
on MPC 2004 (to appear). Previous version: B. Möller: Lazy Kleene algebra. In
D. Kozen (ed.): Mathematics of program construction. LNCS 3125. Springer 2004,
252–273.

17. B. Möller, P.Höfner, G. Struth: Quantales and Temporal Logics. (submitted to
AMAST 2006).

18. M. Sintzoff: Iterative Synthesis of Control Guards Ensuring Invariance and In-
evitability in Discrete-Decision Games. In O. Owe, S. Krogdahl, T. Lyche (eds.):
From Object-Orientation to Formal Methods — Essays in Memory of Ole-Johan
Dahl. LNCS 2635. Springer 2004, 272–301.

15

