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Abstract. The representation of cloud microphysical pro-
cesses contributes substantially to the uncertainty of numer-
ical weather simulations. In part, this is owed to some fun-
damental knowledge gaps in the underlying processes due to
the difficulty of observing them directly. On the path to clos-
ing these gaps, we present a setup for the systematic charac-
terization of differences between numerical weather model
and radar observations for convective weather situations.
Radar observations are introduced which provide targeted
dual-wavelength and polarimetric measurements of convec-
tive clouds with the potential to provide more detailed infor-
mation about hydrometeor shapes and sizes. A convection-
permitting regional weather model setup is established using
five different microphysics schemes (double-moment, spec-
tral bin (“Fast Spectral Bin Microphysics”, FSBM), and par-
ticle property prediction (P3)). Observations are compared
to hindcasts which are created with a polarimetric radar for-
ward simulator for all measurement days. A cell-tracking al-
gorithm applied to radar and model data facilitates compari-
son on a cell object basis. Statistical comparisons of radar ob-
servations and numerical weather model runs are presented
on a data set of 30 convection days. In general, simulations
show too few weak and small-scale convective cells. Con-
toured frequency by altitude diagrams of radar signatures
reveal deviations between the schemes and observations in
ice and liquid phase. Apart from the P3 scheme, high reflec-
tivities in the ice phase are simulated too frequently. Dual-
wavelength signatures demonstrate issues of most schemes
to correctly represent ice particle size distributions, produc-

ing too large or too dense graupel particles. Comparison of
polarimetric radar signatures reveals issues of all schemes
except the FSBM to correctly represent rain particle size dis-
tributions.

1 Introduction

In numerical weather models, clouds play an important role
by strongly affecting, e.g., the radiation budget or the pre-
cipitation formation. Cloud processes are generally divided
into two scales: the macrophysics and the microphysics. We
refer to “cloud macrophysics” for processes on a kilome-
ter scale, namely cloud geometry or cloud coverage, while
we refer to “cloud microphysics” for all processes on a mil-
limeter scale or smaller. On coarse-grid weather models, both
macro- and microphysics are unresolved and must be param-
eterized. Increasing computational power allows numerical
weather models to use finer grid spacings, which in turn al-
low more and more small-scale processes to be simulated ex-
plicitly. Meanwhile, some operational weather models par-
tially resolve convective updrafts (e.g., Pinto et al., 2015;
Baldauf et al., 2011; Seity et al., 2011; Lean et al., 2008,
and many more). This progress effectively removes prob-
lems arising from cloud macrophysical parameterizations, as
they can eventually be solved explicitly. However, this is not
the case for microphysical processes due to the large num-
ber of hydrometeors present in a cloud. Microphysical pro-
cesses occur on scales of millimeters or smaller and are not
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expected to ever be resolved. As such, the parameterization
of microphysics in numerical weather simulations is of in-
creasing relative importance the more the model grid spacing
decreases.

Although it is well known that cloud microphysics intro-
duce substantial uncertainty to numerical weather simula-
tions (Li et al., 2009; White et al., 2017; Khain et al., 2015;
Xue et al., 2017; Morrison et al., 2020, and many more),
the extent of this uncertainty and its underlying reasons re-
main less clear. Microphysical cloud processes are very com-
plex small-scale processes, due to the large variety of shapes,
sizes, and phases of hydrometeors involved. It is a challenge
to represent this complexity correctly in a model since it
cannot be resolved explicitly. Instead, the effect of the mi-
crophysical processes must be parameterized. This has the
potential to introduce uncertainties, as important processes
could be misrepresented or missed out completely. In nu-
merical weather models, different microphysical schemes of
varying complexity exist to parameterize the microphysical
processes. Traditionally, microphysics schemes are catego-
rized into so-called bulk and bin schemes. Bulk schemes as-
sume a predefined shape of the particle size distribution of
several hydrometeor classes and predict bulk variables, such
as the mass mixing ratio for each of the hydrometeor classes.
Depending on the predicted number of variables, the scheme
is categorized as a one-moment (e.g., Kessler, 1969), two-
moment (e.g., Morrison et al., 2009), or even three-moment
scheme (e.g., Milbrandt and Yau, 2005). Bin schemes (e.g.,
Khain et al., 2004) on the other hand do not assume a prede-
fined shape of the particle size distribution but instead use a
number of size bins and predict the variables for each of the
bins independently. In recent years some alternative schemes
have been developed: the predicted particle properties (P3)
scheme (Morrison and Milbrandt, 2015) deviates from par-
titioning ice particles into categories of hydrometeor classes
with corresponding properties but instead predicts the prop-
erties of ice particles, such as the riming mass mixing ratio.
Lagrangian cloud models (LCMs; e.g., Shima et al., 2009)
calculate cloud microphysics based on individual particles
(super droplet) that represent a family of particles with the
same properties, but this type of scheme will not be covered
in the present study.

Several studies have analyzed the performance of cloud
microphysics schemes by comparing schemes against each
other and against observations (Morrison and Pinto, 2006;
Gallus and Pfeifer, 2008; Rajeevan et al., 2010; Jankov et al.,
2011; Varble et al., 2014; Fan et al., 2015; Li et al., 2015;
Fan et al., 2017; Xue et al., 2017; Han et al., 2019, and
many more). However, all of them are limited to case studies.
There are some studies that directly use polarimetric radar
forward operators to evaluate the performance of cloud mi-
crophysics schemes. For instance, Jung et al. (2010) and Sny-
der et al. (2017) each simulate idealized supercell events to
test if the cloud microphysics schemes together with a polari-
metric radar forward operator are able to reproduce known
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supercell radar signatures. Ryzhkov et al. (2011) and Putnam
et al. (2017) compare simulated polarimetric radar signals
with radar observations to evaluate microphysics schemes
but focus on one or two convective cases. Given the large
variability between convective cases, a large number of indi-
vidual cases is necessary to test whether one scheme consis-
tently outperforms others in reproducing observations (Flack
et al., 2019; Stanford et al., 2019). Few studies have evalu-
ated microphysics schemes on such a statistical basis. John-
son et al. (2015) used a statistical emulation approach to
study the uncertainty produced by several model input pa-
rameters but focused on a single idealized convective cloud
simulation. Stein et al. (2015) evaluated simulated convective
storms over 40 non-consecutive days at varying grid spacings
but with only one microphysics scheme. Caine et al. (2013)
describe an object-based approach to statistically compare
convective cells of a convection-permitting model with radar
observations, but they use only two simple microphysics
schemes, and their statistics are limited to 4.5d. By com-
paring two microphysics schemes for different convective
events, White et al. (2017) found that the response to cloud
droplet number concentrations differs not only between the
schemes, but also significantly between different convective
cases. All of this emphasizes the need for an evaluation of
several microphysics schemes over a larger data set on a sta-
tistical basis. In an extensive recent overview paper on the
challenges in modeling cloud microphysics, Morrison et al.
(2020) argue that a rigorous uncertainty quantification on a
statistical basis could also help to pinpoint the underlying
microphysical processes that cause these uncertainties.
Multiple studies attribute weather simulation errors to
poorly constrained cloud microphysics, especially for ice or
mixed-phase clouds (e.g., Varble et al., 2014; Stanford et al.,
2017). The uncertainty resulting from microphysical cloud
processes is in part a result of some fundamental knowledge
gaps: it is not well known which processes are poorly repre-
sented in numerical models (Morrison et al., 2020). This is
owing to the difficulty of observing these processes directly.
To better constrain the parameters, novel observations are
needed to provide corresponding information. These obser-
vations must provide information about the key microphys-
ical fingerprints, such as particle properties, their location,
or ideally conversion rates between hydrometeor classes. Po-
larimetric radars allow hydrometeor classes and shapes to be
retrieved and are hence suitable to provide observations of
cloud microphysical processes. Kumjian (2012) demonstrate
the impact of precipitation processes on polarimetric radar
signals, though he focuses mainly on rain processes such as
raindrop evaporation or size sorting. Within the framework of
IcePolCKa (Investigation of the initiation of convection and
the evolution of precipitation using simulations and polari-
metric radar observations at C- and Ka-band), a sub-project
of the DFG Priority Programme 2115 PROM (Polarimetric
Radar Observations meet Atmospheric Modelling — Fusion
of Radar Polarimetry and Numerical Atmospheric Modelling
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Towards an Improved Understanding of Cloud and Precipi-
tation Processes; Tromel et al., 2021), we exploit the synergy
of two polarimetric radars at C- and Ka-band to provide a ob-
servational basis for comparison to numerical weather simu-
lations. We evaluate multiple microphysics of different com-
plexity to answer the following question: how much com-
plexity is necessary to reproduce polarimetric radar observa-
tions?
The goal of this study is to tackle two different aspects:

1. Provide novel observations of cloud microphysics based
on dual-wavelength and polarimetric radar measure-
ments using a combination of operational and research-
grade radars.

2. Evaluate multiple state-of-the-art cloud microphysics
schemes for current generation numerical weather pre-
diction models in a common model framework against
observations with a large sample size.

Eventually, the evaluation should help to identify micro-
physical processes with obvious differences between radar
measurements and weather simulations. However, it is dif-
ficult to extract the influence of the cloud microphysics
schemes because of feedbacks between dynamics and mi-
crophysics. There are methods that focus on untangling the
microphysical impacts from other impacts, e.g., the “piggy-
backing” method (e.g., Grabowski, 2014). However, opera-
tional weather forecast simulations as a whole will always
include the feedbacks between microphysics and dynamics
as well. Therefore, we decided to use a framework that is
applicable to operational weather forecasts and run it over
a large number of cases for a statistical comparison, but in
this framework we will not be able to perfectly separate the
microphysical impacts from possible feedbacks.

We present a setup for the systematic characterization of
differences between model simulations with different micro-
physics schemes and polarimetric radar observations for con-
vective weather situations. This includes the application of a
radar forward simulator to the model output and of an auto-
mated cell-tracking algorithm to the observations and sim-
ulations alike. This allows convective cell characteristics to
be objectively compared in simulations and observations. We
apply this framework to a data set consisting of 30 d of radar
observation and simulations with five microphysics schemes
of varying complexity.

The potential of the generated data set is demonstrated by
showing differences in reflectivity between models and ob-
servations in convective clouds to identify issues of micro-
physics schemes to correctly simulate ice and liquid particle
size distributions.

The paper is organized as follows. The methods are de-
scribed in Sect. 2, which includes our radar data (Sect. 2.1),
the simulation setup (Sect. 2.2), a description of the micro-
physical schemes (Sect. 2.3), the radar forward operator used
to bring the model output into radar space (Sect. 2.4), the
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Figure 1. Radar locations and model domain. Filled blue area
shows the model domain. Stars show the radar locations and the
circles show the radar range around each radar. The straight blue
and orange lines visualize RHI scans executed by the Mira-35
and Poldirad radar. Background map tiles by Stamen Design (http:
//stamen.com, last access: 16 February 2022), distributed under the
Creative Commons Attribution (CC BY 3.0) license. Background
map data by OpenStreetMap (http://openstreetmap.org, last access:
16 February 2022; © OpenStreetMap contributors YEAR. Dis-
tributed under the Open Data Commons Open Database License
(ODbL) v1.0.). Roads, rivers, and lakes made with Natural Earth
(https://www.naturalearthdata.com, last access: 16 February 2022).

cell-tracking algorithm (Sect. 2.5), and the grid matching of
the different radars and the model grid (Sect. 2.6). In Sect. 3
the microphysics schemes are evaluated by comparing statis-
tics of cloud geometry and frequency (Sect. 3.1) as well as
analyzing frequency diagrams of reflectivity (Sect. 3.2), po-
larimetric variables (Sect. 3.3), and dual-wavelength ratio
(Sect. 3.4) in simulations and observations. In Sect. 4, the
results are discussed.

2 Data and methodology

In total, we observed and simulated 30 convective days over
2 years in 2019 and 2020. The majority of these days were
in spring and summer. For all of them, convective precipita-
tion was forecasted. A table listing the dates can be found in
Appendix A.

2.1 Radar data

The observational data basis is provided by two research
radar systems in the area of Munich, Germany, at C- and Ka-
band frequencies, and a complementary second C-band radar
operated by the German Weather Service (DWD; Fig. 1). The
C-band research radar Poldirad (Schroth et al., 1988), oper-
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ated by the German Aerospace Center (DLR), is located in
Oberpfaffenhofen southwest of Munich. At 23 km distance,
the research Ka-band radar Mira-35 is operated by the Me-
teorological Institute Munich (MIM) of the Ludwig Maxim-
ilian University (LMU) in the center of Munich. The third
radar is an operational C-band radar located in Isen at a dis-
tance of 40 km to the Mira-35 radar.

All three radars are polarimetric Doppler radars. Poldirad
and the Isen radar are fully polarimetric, sending out elec-
tromagnetic waves with horizontal and vertical polariza-
tion. Both radars receive the co-polar components backscat-
tered by atmospheric targets. Therefore, polarimetric vari-
ables such as differential reflectivity (Zpr) or specific dif-
ferential phase (Kpp) are available. Poldirad additionally re-
ceives the cross-polar components and hence measures the
linear depolarization ratio (LDR). The Mira-35 radar is a
single-polarization ground-based cloud radar manufactured
by METEK GmbH (Gérsdorf et al., 2015). It only transmits
horizontally polarized waves but receives co- and cross-polar
components. Thus, it is possible to measure LDR in addition
to the standard reflectivity.

Poldirad and Mira-35 are two research radars without
any operational obligations. This allows for synchronized
and targeted scan patterns of convective clouds and pre-
cipitation on demand. The absolute calibration of reflectiv-
ity Z of Poldirad is estimated to have an error of £0.5dB
from calibration with an external electronic calibration de-
vice (Reimann, 2013), while the reflectivity error of Mira-35
is estimated to be =1.0dB (Ewald et al., 2019). We estimate
Poldirad ZpR to have an offset of about 0.15 dB from mea-
surements in a liquid cloud layer, where Zpr near 0 is to be
expected. This offset is corrected before any of the subse-
quent analysis is done. The Isen radar is part of the DWD
operational radar network with a fixed observation strategy.
For a complete description of the measurement strategy, re-
fer to Helmert et al. (2014). More radar characteristics and
configurations can be found in Table 1. This setup allows for
dual-wavelength and polarimetric measurements of convec-
tive clouds and precipitation in the area of Munich.

Two measurement strategies have been applied. For spa-
tial coverage, only data of the operational DWD Isen radar
are utilized in scan strategy A. The Isen radar is running op-
erationally a volume plan position indicator (PPI) scan every
S min at 11 elevations from 0.5 to 25° and over the whole az-
imuth circle of 360°. This provides a good spatial coverage at
a high temporal resolution. In Fig. 1, the green circle depicts
the area that is covered by this strategy.

In strategy B, Poldirad and Mira-35 are used for coor-
dinated and targeted scan patterns of the same convective
cloud. Strategy B starts with a Poldirad overview scan in
PPI mode: the elevation angle is kept constant, and the az-
imuth angle is varied. After manually choosing a convective
cell from this overview PPI, both radars start to execute three
fast scans towards this convective target cloud in the range—
height indicator (RHI) scan mode; i.e., the azimuth angle is
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kept constant, while the elevation angle is varied. The first
scan is executed exactly towards the direction that was cho-
sen; one is directed to 2° azimuth angle to the left; and one
is directed to 2° azimuth to the right. This scan mode is re-
ferred to as sector range—height indicator (S-RHI). The nine
intersection profiles resulting from these RHIs give an idea
about the variation within the cloud and compensate for po-
tential pointing inaccuracies. In Fig. 1, the six straight lines
(three orange and three blue) visualize these RHI scans. After
each S-RHI scan the azimuth direction is adjusted slightly,
according to the projected movement of the cell. This cell
movement is projected using two previous Poldirad overview
PPI scans by calculating the displacement at which the cross-
correlation between the two PPI images is at maximum. After
a few minutes, the S-RHI scans are stopped (manual), and the
procedure starts over with another overview PPI scan. This
strategy allows for targeted dual-wavelength observations of
convective clouds in high vertical resolution over a signifi-
cant fraction of their lifetime.

In total, we collected data of strategy B over 5 convective
days during summer 2019. The strategy A comprises a larger
data set. It consists of the same 5 convective days as well as
25 additional convective days during 2019 and 2020.

2.2 Simulation setup

The simulations are performed using version 4.2 of the
Weather Research and Forecasting Model (WRF; Skamarock
et al., 2019). Initial and lateral boundary conditions are pro-
vided by reanalysis data at 0.25° grid spacing from the
Global Forecast System (GFS; National Centers for Envi-
ronmental Prediction/National Weather Service/NOAA/U.S.
Department of Commerce, 2015), available every 6h and
with hourly forecast data in between. Horizontally, the setup
includes a parent Europe domain (3750 km by 3750km), a
two-way nested Germany domain (442 km by 442 km), and
a two-way nested Munich domain (144 km by 144 km). The
vertical domain extends from the surface to 5 hPa at 40 ver-
tical levels. The nesting ratio is 5: 1 with the Europe do-
main at a horizontal grid spacing of 10km, the Germany
domain at 2km, and the Munich domain at 400 m. Cur-
rently, operational limited area weather models operate at
2km grid spacing (e.g., 2.8 km in COSMO-DE of the Ger-
man Weather Service; Baldauf et al., 2011), which means
our inner domain has a resolution that is effectively about 5
times higher and should represent the future of operational
limited area weather models most likely including advanced
microphysics handling. The Munich domain is centered over
the Mira-35 instrument (48.15° N, 11.57°E). It covers the
Mira-35 range (48 km) and an edge region of an additional
48 km around. All analyses are performed on the innermost
Munich domain excluding the edge region, only considering
the Mira-35 range (Fig. 1). This area is completely covered
by the Poldirad and Isen radar observations. Each simulation
consists of 6h spin-up and 24 h simulation time. The spin-
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Table 1. Radar characteristics. For the Isen radar, the precipitation scan at 1.5° elevation was referenced. For the full configuration of the

volume scan, see Helmert et al. (2014).

Poldirad Mira-35 Isen
City Oberpfaffenhofen Munich Isen
Location 48.087°N, 11.279°E  48.148°N, 11.573°E  48.175°N, 12.102°E
Wavelength 5.45cm 0.85cm 5.3cm
Frequency 5.5GHz 35.2GHz 5.66 GHz
Beamwidth  1° 0.6° 0.9°
Range 120 km 24 km 150 km

up always starts at 18:00 UTC (20:00 LST) on the previous
day. Thus, the 24 h forecast exactly covers the day of interest
(00:00-24:00 UTC). The dynamics can freely evolve during
the simulation time. The parent Europe domain is nudged to-
wards the global GFS data, by appending a nudging term to
the prognostic equations for humidity, temperature, and wind
that “nudges” the WRF grid value towards the closest GFS
grid value for each grid point of the Europe domain above the
planetary boundary layer (grid analysis nudging). The inner
Germany and Munich domain are not nudged. All days are
simulated with five different microphysics schemes. Hence,
there are five simulations available for each of the convective
days, and the simulation setups only differ in the choice of
the microphysics scheme. Other physics options include the
Noah land surface model (Ek et al., 2003; Chen and Dud-
hia, 2001), the MYNN2 planetary boundary layer scheme
(Mellor—Yamada scheme by Nakanishi and Niino; Nakanishi
and Niino, 2006), and the RRTMG radiation scheme (rapid
radiative transfer model for general circulation models; Ia-
cono et al., 2008). For any other options, please refer to the
WREF namelist that is provided in the Supplement.

2.3 Description of microphysics schemes

Five different microphysics schemes are employed: three
three-moment bulk schemes, one from Thompson et al.
(2008) (from here on “Thompson”), the one from (Thompson
and Eidhammer, 2014) (“Thompson aerosol-aware”), and the
one from (Morrison et al., 2009) (“Morrison”), as well as
the “Fast Spectral Bin Microphysics” (FSBM; Shpund et al.,
2019) and the “predicted particle properties” scheme (P3;
Morrison and Milbrandt, 2015). The FSBM scheme explic-
itly resolves the particle size distribution (PSD) with a num-
ber of bins, while all other schemes generally represent the
PSD by a gamma function

N(D) = NgD"e™ P, )]

where Ny is the intercept parameter, D is the particle maxi-
mum diameter, u is the shape parameter, and A is the slope
parameter. The only exception is snow in the Thompson
schemes following a bimodal gamma function as described
below.
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The mass—size relationships are given by a power law,
m=aD", )

where m is the particle mass, and D is the particle diameter.
The parameters a and b depend on the hydrometeor class and
the scheme used and are described below.

a. Thompson. The Thompson bulk scheme predicts inte-
gral moments of the PSD for five hydrometeor species:
cloud ice, cloud water, rain, snow, and graupel. Rain
and cloud ice are double-moment species which predict
mass mixing ratio (¢) and number concentration (N).
Snow, graupel, and cloud water are single-moment; i.e.,
only the mass mixing ratio is predicted.

The PSDs of rain, cloud ice, graupel, and cloud wa-
ter are represented by gamma distributions (Eq. 1). For
rain, graupel, and cloud ice u =0; i.e., the PSD is an
exponential function. Snow and cloud ice have a fixed
non-zero [.

The mass—size relation follows a power law (Eq. 2).
Rain, graupel, cloud ice, and cloud water are assumed
to be spherical (b = 3), with the parameter a depending
on the hydrometeor bulk density p, with

T
a=pg. 3)

The bulk density of rain, graupel, cloud ice, and cloud
water is constant and size-independent.

Snow is treated differently in the Thompson scheme
compared to other bulk schemes. Instead of the simple
gamma function shown in Eq. (1), a bimodal gamma
distribution (sum of an exponential and a gamma
function) from Field et al. (2005) that is dependent on
temperature is used. Snow is not considered to have
a constant density across the particle size distribution;
the mass is proportional to D? (b =2) to better fit
observations. The parameter a of the mass—size relation
is constant at a = 0.069.

b. Thompson aerosol-aware. The Thompson aerosol-
aware bulk scheme (Thompson and Eidhammer, 2014)
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is very similar to the older version (Thompson et al.,
2008) described in the previous section but includes
some changes: while the older version of the Thompson
scheme only uses two two-moment species (rain and
cloud ice) and a prescribed number of cloud droplets,
the newer version includes activation of aerosols as
cloud condensation nuclei (CCN) and ice nuclei (IN).
Therefore, it explicitly predicts the droplet number con-
centration of cloud water and two aerosol variables
(CCN and IN).

c. Morrison. The Morrison bulk scheme predicts inte-
gral moments of the PSD for five hydrometeor species:
cloud ice, cloud water, rain, snow, and graupel. All
are double-moment species. Particle size distributions
follow a general gamma distribution (Eq. 1). Rain,
cloud ice, snow, and graupel have shape parameter
n =0, again transforming the particle size distributions
into an exponential distribution. For cloud water, u
is a function of droplet number concentration follow-
ing Martin et al. (1994). All particles are assumed to be
spherical with fixed and size-independent bulk densi-
ties.

d. Spectral bin. In contrast to the bulk schemes, a spec-
tral bin scheme explicitly resolves the PSD by approx-
imation with a number of independent size bins. This
has the advantage that no prior assumption about the
shape of the PSD is necessary. However, computational
costs are much higher, as all microphysical processes
are computed for each bin separately. In this study we
use the Fast Spectral Bin Microphysics scheme (FSBM;
Shpund et al., 2019) that applies 33 mass-doubling bins;
i.e., the mass of the bin k is twice the mass of the bin
k — 1. Five hydrometeor classes are included: cloud wa-
ter, cloud ice, rain, graupel, and snow.

e. Predicted particle properties (P3). The P3 scheme uses
three bulk categories: rain, cloud water, and, unlike all
the previous schemes, only a single ice category. Instead
of predicting mixing ratio and number concentration for
multiple ice categories, the P3 scheme predicts proper-
ties of this single ice category. Four prognostic ice mix-
ing ratio variables are predicted: total ice mass, rime
mass, rime volume, and number mixing ratio. Based on
these variables more properties are derived, such as rime
mass fraction F; (ratio of rime mass and ice mass mix-
ing ratio) or rime density p; (ratio of rime mass and rime
volume mixing ratio). All particle size distributions fol-
low a general gamma distribution (Eq. 1). For cloud
droplets, the shape parameter u follows observations of
Martin et al. (1994). For rain, u follows observations
of Cao et al. (2008). For ice, 1 follows observations of
Heymsfield (2003).

Mass—size relationships follow a power law (Eq. 2).
The parameters a and b depend on the size of the
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ice. The scheme distinguishes between small ice, un-
rimed ice, partially rimed ice, and fully rimed ice (grau-
pel/hail). Small ice and graupel are considered spheri-
cal (b =3) with parameter a given by Eq. (3), where
the ice bulk density p equals 917 kgm™> for small ice
and varies for graupel/hail. Unrimed ice, grown by va-
por diffusion or aggregation, and partially rimed ice
have an effective density that is generally less than
that of an ice sphere (b =1.9). The parameter a fol-
lows an empirical relationship from Brown and Fran-
cis (1995) (@ = 0.0121 kg m~®) for unrimed ice and de-
pends on the rime mass fraction F; for partially rimed
ice (a =0.0121/(1 — Fy) kg m~); i.e., a increases with
the rime mass fraction. Rain and cloud water are consid-
ered spherical with » = 3 and a following Eq. (3) and a
bulk density p of 1000 kgm~3.

2.4 Radar forward operator

To compare the WRF model output against radar observa-
tions, version 3.33 of the Cloud-resolving model Radar SIM-
ulator (CR-SIM; Oue et al., 2020) is used. CR-SIM is based
on the T-matrix method to compute the scattering character-
istics of hydrometeors and is able to simulate polarimetric
and Doppler radar variables for several radar frequencies,
including C-band and Ka-band that are used in this study.
The variables include, among many others, the reflectivity
(Z) and specific attenuation (A) at vertical and horizontal
polarization, differential reflectivity (ZpRr), and specific dif-
ferential attenuation (ADP). Given that CR-SIM supports
both C- and Ka-band frequencies, we are also able to sim-
ulate the dual-wavelength ratio (DWR) by performing the
forward simulation for the C-band radar as well as the Ka-
band radar. The dielectric constant of water is 0.92. Solid-
phase hydrometeors are assumed to be dielectric dry oblate
spheroids and are represented as air in an ice matrix. The
refractive index hence depends on the hydrometeor density
and is computed using the Maxwell Garnett (1904) mixing
formula. There are no mixed-phase particles simulated. This
means mixed-phase radar signatures (for example the “bright
band”; Austin and Bemis, 1950) will not be reproduced by
the simulation. In order to simulate polarimetric radar ob-
servables, a radar forward simulator must assume particle
shapes and particle orientation. The particle orientation as-
sumptions are the same for all schemes. It is assumed that the
particle orientations are 2D Gaussian-distributed with zero
mean canting angle as in Ryzhkov et al. (2011). The width
of the angle distributions is specified for each hydrometeor
class: 10° for cloud, rain, and ice and 40° for snow, unrimed
ice, partially rimed ice, and graupel. Regarding the shape
assumptions, cloud droplets are simulated as spherical (as-
pect ratio (AR) of 1), and raindrops are simulated as oblate
spheroids with a changing axis ratio dependent on the drop
size according to Brandes et al. (2002) in all schemes. For
ice hydrometeor classes, the same aspect ratio assumptions
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are applied for all schemes except the P3 scheme: cloud ice
is assumed as oblate with a fixed aspect ratio of 0.2. Snow
is assumed as oblate with a fixed aspect ratio of 0.6. Graupel
is assumed to be oblate with an aspect ratio that is changing
from 0.8 to 1, dependent on the diameter and according to
Ryzhkov et al. (2011):

AR=1.0-0.02if D < 10mm,
AR =0.8if D > 10mm.

The P3 scheme does not provide the standard ice hydrome-
teor classes. Instead, the aspect ratio of small ice (spherical,
fixed aspect ratio of 1), unrimed ice (oblate, fixed aspect ratio
of 0.6), partially rimed ice (oblate, fixed aspect ratio of 0.6)
and graupel (spherical, fixed aspect ratio of 1) is assumed
by CR-SIM. This means in comparison to the other schemes
that the P3 simulation deviates for small ice (aspect ratio of
1 in P3, while cloud ice in other schemes is assumed to have
an aspect ratio of 0.2) and graupel (0.8—1 in other schemes,
while graupel particles in P3 are assumed to have an aspect
ratio of 1). Resulting differences in the radar signal are dis-
cussed in the results in Sect. 3 whenever it might influence
the simulated radar signal.

2.5 Cell tracking

This study focuses on convective clouds and precipitation. To
identify and track convective cells in simulations and obser-
vations, the open-source Python package TINT (TINT is not
TITAN; Fridlind et al., 2019) is used. TINT is based on the
Thunderstorm Identification, Tracking, Analysis, and Now-
casting package (TITAN; Dixon and Wiener, 1993). Convec-
tive cells are identified using minimum thresholds for reflec-
tivity (32 dBZ) and cell area (8 km?); 32 dBZ is at a common
magnitude to identify convective storms (e.g., Dixon and
Wiener, 1993; Jung and Lee, 2015). Higher thresholds poten-
tially miss moderate or weaker convective cells, while lower
thresholds will misidentify more non-convective echoes as
convective cells. A cell motion vector is found by calculating
cross-correlation of the reflectivity field in the cell neighbor-
hood of two subsequent time steps and a correction based
on prior cell movement. Possible convective cell pairs are
compared and matched using an algorithm from TITAN that
uses a cost function combining travel distance and volume
change of the possible cell pairs. The cell tracking is applied
to simulated and observed reflectivity of the Isen radar only.
The simulated and observed reflectivity from Mira-35 and
Poldirad is not used for cell tracking. This way we ensure that
we have one unique definition to locate convective cells and
prevent varying cell definitions depending on the radar that
is simulated. More detailed information about TINT can be
found in Fridlind et al. (2019) and Dixon and Wiener (1993).
TINT does not deal with splits (one cell splits into multiple
cells) or mergers (multiple cells merge into one cell), but it
was specifically designed for the tracking of convective cells
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Figure 2. Example of cell tracking with TINT: colored background
is the reflectivity simulated with WRF and CR-SIM, and solid lines
and numbers represent the TINT tracks and TINT cell identifier.

over large data sets and is straightforward to apply to our data
(Fig. 2).

2.6 Grid matching and attenuation correction

Radar data and model output are available on different grids.
To allow for a comparison, these grids must be matched
first. In a first step, the model data are transformed to a
spherical grid of the corresponding radar. For example, sim-
ulated Mira-35 radar data are transformed to a spherical
grid with a range resolution of about 31 m and a maximum
range of 24 km. The transformation utilizes the source code
radar_filter, which is available on the website of Stony Brook
University, together with the CR-SIM source code (https:
/lyou.stonybrook.edu/radar/research/radar-simulators/). The
radar_filter considers beam propagation effects; i.e., for the
interpolation to a grid point of the target spherical grid, all
Cartesian input grid points that are within the beam width
are included with a weight depending on the distance to the
radar volume center. If no Cartesian grid point falls into the
radar beam, the nearest grid point is used. In the next step,
attenuation correction is applied along the beam. The cor-
rection is applied by subtracting the accumulated (along the
range coordinate) simulated attenuation from the uncorrected
reflectivity

i=r
Zeomr=Ze—2-Ar- Y _Aj. 4)
i=0
Here the simulated reflectivity without attenuation correc-
tion at range gate r is given by Z;. Aj is the simulated atten-
uation in decibels per meter at range gate i, and Ar is the
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radar range resolution in meters. The factor 2 takes into ac-
count the fact that the beam travels twice through each grid
box (from antenna to target and back). In the same way, the
differential reflectivity Zpr is corrected with the simulated
differential attenuation ADP.

In a last step, all data (model and radar) are transformed
back to a Cartesian grid that exactly covers the Munich do-
main of the model (144km by 144km) with a 400 m by
400m by 100 m (vertical) grid spacing. This is done by ap-
plying a nearest neighbor interpolation that chooses the clos-
est radar bin for each of the Cartesian grid points. Only grid
boxes within the lowest and highest radar beam are consid-
ered. All grid boxes below the lowest or above the highest
beam are masked out. Then, the cell tracking with TINT is
applied to this Cartesian grid in exactly the same way for
model and radar data, by passing Py-ART grid objects (Hel-
mus and Collis, 2016) created from the Cartesian grid data to
TINT.

3 Comparison of model and radar observations

An example for the impact of the microphysics scheme
choice is given in Fig. 3. It shows the total accumulated pre-
cipitation over the Munich area as simulated by WRF sim-
ulations while only varying the microphysics scheme. Over-
all, the total accumulated precipitation over the whole do-
main and over longer periods (Fig. 3a; 30d) is similar be-
tween all schemes except the bin scheme. However, the de-
viations can be much larger during single days (e.g., Fig. 3b;
1 August 2020). The total precipitation over all surface grids
varies between all five schemes, in this case by more than
6 x 10" m> between the P3 and the bin scheme. This illus-
trates the variation between simulations as a result of the
choice of microphysics scheme alone. In the following part,
we analyze the resulting deviations in more detail.

3.1 Cloud geometry and frequency

We begin our comparison with an evaluation of the geometric
properties of simulated and observed clouds. Figure 4 shows
histograms of the convective cell core extent (altitude of con-
tinuous 32 dBZ volumes) as well as the maximum cell re-
flectivity provided by strategy A. At each 5min time step
during 30 convective weather days, all cell detections are
summed up on DWD Isen observation data or CR-SIM for-
ward simulations. This means that this analysis is indepen-
dent of possible matching errors of the cell tracking, as the
identified convective cells at each time step are counted inde-
pendently; e.g., a single cell detected for 30 min would con-
tribute to the statistics six times. The cell core top heights
of observed cells (Fig. 4a) show a distinct peak with more
than 2000 cell detections at an altitude of 3—4 km. This cor-
responds to about 40 % of all cell detections by the radar.
All numerical weather prediction (NWP) simulations inde-
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pendent of the microphysics scheme are able to reproduce
a peak at a similar altitude but none of them as pronounced
as in the observations. The two Thompson schemes show a
tendency towards slightly higher cell core heights of 4-5 km.
Reflectivities of more than 32 dBZ above the melting layer
are mostly related to big graupel particles in our simulations
and, to a lesser extent, rain likely lifted by updrafts. In partic-
ular, the Thompson schemes more frequently simulate grau-
pel particles that produce very high reflectivities of more than
45 dBZ above the melting layer (see Appendix B).

A similar approach to compare cloud geometry in sim-
ulation and radar observation was followed in Caine et al.
(2013). They objectively compare simulated cell character-
istics with observations over 4.5d after applying a cell-
tracking algorithm on their data. Among other things, they
found the simulated convective cells to reach higher altitudes
on average compared to their radar observations, which is
also visible in our analysis. This is independent of the chosen
cloud microphysics scheme and mainly a result of the miss-
ing small-scale cells in the simulations, which is indicative
of a resolution effect: the very small cell heights correspond
to small cells that we might not be able to resolve, even with
our 400 m grid spacing.

Regarding the total number of cell detections, the Thomp-
son schemes are closest to the observed number. A total of
5458 cell detections are counted, i.e., the number of cells
in all 5 min observation time steps. The Thompson aerosol-
aware scheme (6035) is still close to the observed number;
the basic Thompson scheme (5468) is the closest; and the
P3 (4758) has fewer cells. Especially the Morrison (3427)
and FSBM scheme (3326) produce too few convective cells.
This difference is mainly a result of missing small-scale de-
velopment (early stages, weak cells) in the simulations. For
fully developed thunderstorms (cell core top heights > 7 km),
all schemes produce numbers that are slightly larger than
in the observations (observations: 554, Thompson: 1139,
Thompson aerosol-aware: 948, Morrison: 928, FSBM: 899,
P3: 780). The related distribution of maximum reflectivity
of each cell provides some clarification (Fig. 4b). The ob-
served high occurrence of weaker cells is only partially visi-
ble in FSBM and Morrison schemes. While the total number
of weaker cells (max cell reflectivity at 35-40dBZ) is still
too low, the Morrison and FSBM schemes show the highest
relative occurrences for relatively weak cells between 40—
45 dBZ maximum reflectivity. This still does not represent
the pronounced peak of observed cells at weaker reflectiv-
ities of 35-40dBZ well. The other three schemes produce
too many medium-intensity cells and too few low-intensity
cells. At the other end of the reflectivity spectrum, none of the
models is able to reproduce the occurrence of the strongest
reflectivities at more than 57 dBZ. In part, this is most likely
related to numerical smoothing of local and rare values in the
NWP model.
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Figure 4. Cell core height (a) and cell maximum reflectivity (b) distribution for inner simulation domain over 30 convection days for

observations and five microphysics scheme simulations.
3.2 Profiles of reflectivity

Contoured frequency by altitude diagrams (CFADs; Yuter
and Houze, 1995) for reflectivity of observed and simulated
convective cells are shown in Fig. 5 provided by scan strat-
egy B. This scan strategy provides dual-frequency profiles of
high vertical resolution through convective clouds. The radar
observation CFADs contain about 1300 profiles in convec-
tive clouds. The simulated CFADs consist of many more pro-
files (on the order of 10°) because (1) all cells present during
one time step on the model domain are analyzed, and (2) all
columns within each identified cell are included (as opposed
to the 3 x 3 profiles that an S-RHI observation provides).
The restriction to the center profile of the convective cell,
which is a default output of the TINT cell tracking, would
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have been an alternative approach. We decided against it for
three reasons: (1) the observation was targeted at the location
of highest reflectivity and the geometric TINT cell center is
not necessarily the location of highest reflectivity; (2) using
the S-RHI strategy we include more variation from each cell
compared to one center profile; and (3) more profiles provide
a better statistical basis for intercomparison of schemes. In
Fig. 5 the simulated reflectivities are corrected for attenuation
to make them comparable to the radar observations. Below
the melting layer, high reflectivities of more than 30 and up to
45 dBZ are simulated most frequently. Overall, the schemes
agree in the simulated reflectivity in this area, mostly caused
by rain and graupel. They differ only in the spread. The Mor-
rison scheme shows a higher spread, more often simulating
reflectivities below 30 dBZ and even down to 0 dBZ. In con-
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Figure 5. CFADs of simulated and measured reflectivity over 5 convective days in 2019. Radar observations with Poldirad.

trast, the FSBM produces reflectivities below 25 dBZ less
often than the others within the convective cells. Compared
to the observed CFAD, high reflectivities below the melting
layer are generally modeled too frequently. This is in agree-
ment with Putnam et al. (2017), who compare radar signals
simulated by five different microphysics schemes for two
case studies and find that especially the Morrison scheme,
but to a lesser extent also the Thompson scheme, produces Z
values that are too high. They attribute this to stratiform rain
PSDs that contain too many large drops, to an over-forecast
of the precipitation coverage overall, and, in the case of Mor-
rison, to a high bias of wet graupel in convective regions.
Given that the forward simulator applied in this study does
not consider wet particles, we find the high bias in Z ex-
ists even without considering wet graupel and comes mostly
from rain, suggesting PSDs that contain too many large rain-
drops compared to the observations.

Above the melting layer, simulated reflectivities start to
decrease with height. This is a fingerprint of ice growth pro-
cesses where falling particles increase in size by deposi-
tion, aggregation, or riming. At these subfreezing heights, the
schemes show more deviations from each other. While most
schemes exhibit a smooth transition from ice to liquid phase,
the prominent exception is the P3 scheme for which reflectiv-
ities abruptly increase by about 15 dBZ at the melting layer
height (approximately at 3.6 km height, varies among cases).
All other schemes show a slow and smooth increase in re-
flectivity, which better agrees with our observations. How-
ever, given that the reflectivity within rain was too high, the
reflectivity distribution above the melting layer height is re-
produced quite well by the P3 scheme. Most other schemes
directly above the melting layer height extend to higher re-
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flectivities, showing reflectivities greater than 25 dBZ too of-
ten. The Thompson schemes even simulate reflectivities of
more than 45 dBZ above the melting layer height frequently.
These extreme reflectivity values are produced mostly by
graupel and to a lesser extent by rain (see Appendix B for
CFADs of radar signals separated by hydrometeor classes).
Compared to our measurements these reflectivities are un-
realistically large. A high bias in reflectivity could be pro-
duced in principle by three mechanisms: the simulated par-
ticles are (1) too dense, (2) too many, or (3) too large. The
graupel densities assumed by the schemes (and correspond-
ingly in the forward simulator) are 500 kg m~ in the Thomp-
son schemes and 400kgm™> in the Morrison and FSBM
scheme. The higher graupel density could explain the higher
bias seen in the Thompson scheme compared to the moderate
bias in Morrison and FSBM, but the underlying PSD could
also play a role. Reflectivity overestimation in deep convec-
tion at subfreezing temperatures was found by other stud-
ies as well (e.g., Stanford et al., 2017; Varble et al., 2011)
and is explained to be a result of graupel or snow particles
that are too large, likely a product of overly strong updrafts.
Stanford et al. (2017) show that this bias not only exists for
bulk schemes, but also for a bin scheme. We can confirm that
with our simulations, the bias exists for the FSBM scheme
too, even though it appears to be strongest in the Thompson
scheme. However, this could be a consequence of the higher
assumed graupel density.

3.3 Profiles of polarimetric variables
The same analysis is possible for simulated and observed

polarimetric variables, e.g., differential reflectivity Zpgr
(Fig. 6). We found Kpp to provide not much additional value,
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radar.

in part due to noisy observations, which is why we neglect
Kpp in the subsequent analysis. Strong differences between
the simulations are visible in the liquid phase below the melt-
ing layer. While most schemes show a wide spread over the
whole range of 0—4 dB within rain, the FSBM only produces
Zpr values up to around 1.5 dB. This is in much better agree-
ment with the observations, where Zpr values of up to 1.5
have been measured most of the time, though also covering
slightly higher Zpgr. Here, the advantage of the FSBM that
uses a discrete PSD becomes apparent. The FSBM model
is able to explicitly predict rain droplets of each bin, which
is more flexible and potentially better captures the variabil-
ity in observed PSDs (better size-sorting). Ryzhkov et al.
(2011), for example, evaluate radar signals simulated from
a spectral bin scheme for a hailstorm case and find that their
spectral bin scheme produces PSDs for rain that deviate from
the gamma distribution. Bulk schemes would not be able to
reproduce these PSDs, and since radar signals strongly de-
pend on the PSD, Ryzhkov et al. (2011) argue that spectral
bin schemes are better suited to simulate polarimetric radar
signals. However, contributions by other microphysical pro-
cesses, such as drop breakup or evaporation, could also facil-
itate the ZpR signatures and were not examined in this study.
All other schemes use a gamma distribution (Eq. 1) with a
shape parameter ;v = 0 for rain. This effectively is an expo-
nential (Marshall-Palmer) PSD, which has a slope that is too
weak: there are too few small rain droplets and too many big
droplets. Putnam et al. (2017) find similar results regarding
Zpr signatures near the surface: in their two case studies, the
simulations with Thompson and with Morrison cloud micro-
physics showed incorrect Zpr maxima, associated with iso-
lated large drops at locations of weak convection, where this
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would not be expected. All of this suggests that the underly-
ing rain particle size distributions are better captured by the
FSBM compared to the bulk schemes.

In order to separate the analysis into reasons due to dif-
ferences in the underlying modeled microphysics and due to
different processing in the forward simulator, we examined
rain particle size distributions directly produced by the NWP
model (rain PSD CFAD in Appendix B). The FSBM scheme
provides the drop size distributions over a number of size
bins; for the bulk schemes we calculated the distributions ac-
cording to the schemes parameterization. The FSBM bins are
approximated by calculating the number of droplets for the
geometric center of the FSBM bin. The calculated number of
droplets for the given bin center diameters is then summed
over all time steps and over the grid boxes at each height
and visualized as a relative frequency. Only grid boxes that
were flagged as a convective cell by the TINT cell tracking
are considered. The rain PSD CFAD confirms the findings of
the Zpr CFAD: the two Thompson schemes simulate large
raindrops from the surface up to the melting layer height and
even above, while the Morrison scheme produces large rain-
drops only at the surface, and the FSBM produces the highest
frequency of small drops.

Directly above the melting layer, the FSBM and Morri-
son schemes show Zpgr values close to 0, while the P3 and
the Thompson schemes have their frequency maximum at 0
but also show more spread to higher Zpr values. A Zpgr of
0 is associated with spherical particles. The signal directly
above the melting layer height is generally dominated by
graupel, which has the highest reflectivity signal (see Ap-
pendix B for separation by hydrometeor class) and is associ-
ated with Zpr values of 0, due to the assumed aspect ratio
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of 1 in the forward simulation. The sparse but large values
of Zpr in the two Thompson schemes and the P3 scheme are
predominantly caused by rain, likely lifted by strong updrafts
in the convective situations. The FSBM scheme also shows
ZpR signals originating from rain particles in that area, but
the total Zpg is reduced by a significant contribution from
other hydrometeors with a lower Zpr. Only the Morrison
scheme shows no contribution by lifted raindrops directly
above the melting layer. The observations show a little more
spread compared to Morrison and FSBM in that area, but
the Zpr does not reach values as high as for the Thomp-
son and P3 schemes. There are multiple possible explana-
tions for the differences to the observations: compared to the
observed convective cells, (1) more (fewer) large raindrops
are lifted above the melting layer height in Thompson and
P3 (Morrison and FSBM); (2) there are more (fewer) parti-
cles with spherical nature alongside lifted raindrops in the
observations that reduce the total Zpr compared to Thomp-
son and P3 (Morrison and FSBM). Furthermore, (3) the ob-
served variability of Zpg is possibly not correctly captured
by the radar forward simulator, which has to assume fixed
distributions of particle orientations as well as a fixed aspect
ratio of the particles.

At upper levels clear differences between Morrison and
FSBM and Thompson and P3 can be seen. Morrison and
the FSBM scheme show Zpr values of up to 4dB at these
heights, while the Thompson schemes and the P3 scheme
are close to 0dB. Here, the high Zpr values are caused by
cloud ice (see Appendix B for CFADs of radar signals sep-
arated by hydrometeor class). All schemes assuming spher-
ical cloud ice or with other dominating spherical hydrome-
teor classes at these heights show small Zpg. This is true for
the P3 small ice fraction for which the forward simulator as-
sumes spherical aspect ratio of 1. In the Thompson schemes,
the assumed aspect ratio by the forward simulator is 0.2, sug-
gesting that other hydrometeor classes with lower Zpg like
snow or graupel dominate the signal. Only for FSBM and
Morrison (aspect ratio 0.2) does cloud ice dominate the sig-
nal. The stronger signal in FSBM and Morrison is not a result
of different density assumptions because both the FSBM and
Morrison scheme assume lower density of cloud ice com-
pared to Thompson. The observations do not show increased
Zpr at these heights. This could either mean (1) that there
are no large cloud ice particles observed, (2) that the signal
is dominated by other more spherical particles in the observa-
tions, or (3) that the assumed aspect ratio of 0.2 by the radar
forward operator is unrealistic, and the observed particles are
more spherical in nature.

3.4 Profiles of dual-wavelength variables
More insight about the particle size is provided by the sim-
ulated and observed dual-wavelength ratio DWR. The stan-

dard radar reflectivity is strongly influenced by the number
of particles within the radar beam, the particle sizes, and the
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particle densities. In contrast, DWR is rather sensitive to the
particle size. In principle, it is also sensitive to the particle
density, but the simulated density is assumed to be constant
or a function of particle size. Figure 7 shows deviations be-
tween the schemes within the ice phase as well as in the lig-
uid phase. Here, no attenuation correction is applied. This
makes the comparison to the radar observations less real-
istic but reveals differences in microphysical processes and
fingerprints between the simulations more clearly. The ob-
servations show DWR close to 0 at upper levels, where ice
crystals are very small. All simulations and the observations
agree at these heights. The observations then show a steady
increase of DWR towards the melting layer height. This is
reflecting ice particle growth, given that DWR is mainly sen-
sitive to particle size. All simulations reproduce this increase
of DWR towards the melting layer heights but differ in the
slope and height where the increase starts. While the Morri-
son and FSBM simulations already show the beginning of
an increase in DWR at about 10km, the P3 and the two
Thompson simulations show the beginning of an increase
at about 7 km, which agrees better with the observations. At
melting layer heights, the DWR values reach their maximum
in all simulations. The magnitude of the maximum DWR
values differs: Morrison and FSBM do not produce DWR
values larger than 20 dB, while the P3 and the two Thomp-
son schemes produce DWR values of up to 25 dB. At these
heights, the two Thompson schemes produce distinct streaks
of higher frequencies at low DWR values (0-10 dB) and then
a diffuse area of lower frequencies at higher DWR (> 10 dB).
The streaks are related to snow growth during sedimentation.
Thompson only uses one mass—size relation for snow, while
the P3 is more flexible: it uses a varying mass—size relation
depending on whether the ice particle is unrimed, partially
rimed, or fully rimed. This is the reason why the DWR corri-
dor in P3 above the melting layer height is wider.

Below the melting layer, the observed DWR steadily de-
creases towards the ground. The models do not reproduce
this very well: even though the DWR decreases in all mod-
els, this decrease happens abruptly at the melting layer. The
DWR directly below the melting layer height is very different
between the models and the observations. However, includ-
ing attenuation increases the simulated DWR and its vari-
ability, making it difficult to quantify DWR deviations be-
tween models and observations as discussed below. Below
the melting layer height, the simulated DWR stays more or
less constant, while the observed DWR decreases towards
the surface. In the P3 simulations (and weaker in the Mor-
rison scheme), the DWR even increases again towards the
ground. At these heights, rain and graupel are the dominant
species. The simulated increase of DWR towards the ground
is likely a result of the simulated collection process: rain
droplets grow while falling by collecting smaller droplets.
This is visible also directly in the rain PSD (see Appendix B)
and was discussed in Sect. 3.3. Conversely, the large parti-
cles precipitating from the melting layer seem to shrink to-
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wards the ground, perhaps by drop breakup or evaporation.
The general magnitude of simulated DWR values near the
surface is close to the observed again at around —3 to 10 dB.

Comparing DWR signatures without including attenuation
gives insight into the details of the microphysical schemes
but is not well suited for a direct comparison with radar ob-
servations because especially the Ka-band observations are
potentially strongly attenuated. This would lead to an in-
crease in DWR. Figure 8 shows the same DWR CFADs
including attenuation. Obviously, attenuation drastically in-
creases the variability in DWR. As a result, DWR values are

https://doi.org/10.5194/amt-15-1033-2022

scattered over larger ranges, partially masking the underlying
fingerprints that were visible in the CFADs without atten-
uation. Furthermore, the lower number of observed profiles
compared to the simulated profiles is still clearly visible. This
is most prominent in the DWR CFAD but also in the CFADs
of reflectivity (Fig. 5) and Zpgr (Fig. 6). This is reminiscent
of the large observational effort to collect targeted cell core
RHI scans.
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4 Summary and conclusions

A methodological framework has been presented that allows
for a statistical comparison of polarimetric dual-wavelength
radar observations with numerical weather model output.
Targeted dual-radar observations of convective cell charac-
teristics in the vicinity of Munich over a significant frac-
tion of cell lifetime have been established. For the weather
model, cell-specific observations of a Ka-band and two C-
band radars are produced using a polarimetric radar forward
operator and automatic cell tracking. The total data set pre-
sented includes 30 convective days of simulation and radar
observations so far. Targeted dual-wavelength observations
were performed on 5 of those days, adding up to about 1300
RHI profiles of dual-wavelength observations of convective
clouds. A convection-permitting WRF setup over Munich
has been implemented. WRF hindcast simulations were con-
ducted with five different microphysics schemes of varying
complexity. The radar forward simulator CR-SIM was ap-
plied that provides polarimetric radar variables from model
output. The cell-tracking algorithm TINT was applied on
radar and model data in the same way to allow for compari-
son of convective cell characteristics.

With the exception of the Thompson schemes, all micro-
physics schemes simulate too few convective cells compared
to the radar observations. The difference is mainly caused by
missing weak cells with cell core heights between 3—4 km.
This points to missing small-scale development in most of
the simulations. This suggests dynamical reasons or numer-
ical resolution issues rather than the impact of microphysics
schemes. It is a reminder that the presented methodology is
not able to perfectly separate microphysics from dynamical
feedbacks or other impacts. Statistics of observed and simu-
lated cell reflectivities show that models are not able to re-
produce the observed high occurrences of very weak cells,
as well as the occurrence of strongest reflectivities at more
than 57 dBZ. This might be related to numerical smoothing
of local and rare values in the NWP model.

Targeted scans of convective clouds revealed differences
in radar observations and models as well as between mi-
crophysics schemes in ice and liquid phases. Overall, the
schemes agree in simulated reflectivity in below the melting
layer height, but comparison to the radar observations shows
that reflectivity in this area is overestimated in all schemes.
Simulated Zpr values reveal that only the FSBM scheme
is able to reproduce the radar signatures reasonably well;
all other schemes produce Zpgr signals within rain with too
much spread. This is likely a result of the assumed exponen-
tial (Marshall-Palmer) rain PSD producing too many large
and too few small droplets. The FSBM scheme on the other
hand demonstrates the advantage of explicitly resolving the
PSD that results in a more realistic radar signature in rain.

Above the melting layer height more deviations between
the schemes are found. The P3 scheme is the only scheme not
overestimating reflectivities directly above the melting layer
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height. All other schemes show unrealistic high reflectivities
related to graupel, partly over 45 dBZ. This means that ei-
ther too many or too large graupel particles are produced or
that the density assumption of graupel is set too high by the
Morrison, FSBM, and especially the Thompson schemes. An
overestimation of reflectivities in the ice phase was found by
other studies as well, which attribute this bias to wrong grau-
pel and snow particle size distributions (e.g., Stanford et al.,
2017; Varble et al., 2011). CFADs of DWR allow the sim-
ulated particle sizes to be analyzed more directly. The two
Thompson schemes produce clearly confined distributions of
higher occurrences of DWR in the ice phase related to snow
and its growth by aggregation during sedimentation. The P3
scheme also produces distinct narrow distribution of DWR
values at these heights. Nonetheless, it is wider compared to
the Thompson results, caused by a mixture of unrimed, partly
rimed, and unrimed particles. We believe this demonstrates
the greater flexibility of the P3 scheme in the ice phase where
this scheme deviates from the traditional hydrometeor classes
and instead predicts properties for a single ice category. This
seems to produce a wider range of particle characteristics
(and hence DWR signals) as opposed to the other schemes,
where most of the signal is produced along distinctly visi-
ble corridors. CFADs of Zpr reveal deviations at the highest
levels above 10 km, where the Morrison and FSBM scheme
produce larger values related to cloud ice that are not visible
in the observed radar signal. This could either be a result of
simulated cloud ice particles being too large or too many, but
this could also be a result of the assumed flat cloud ice shape
with an aspect ratio of 0.2. Directly above the melting layer
height, three schemes (the two Thompsons and the P3) show
increased Zpr signals that are dominated by large lifted rain-
drops, while Morrison and FSBM do not show any increase
of Zpr. The observations are between both extremes. This
suggests that there are fewer large drops in the observation
than simulated by Thompson—P3 or that their signals are not
dominated by lifted raindrops but that other spherical parti-
cles reduce the total measured ZpgR.

In general, we could demonstrate how weather simulations
with varying microphysics schemes produce varying polari-
metric and DWR radar signatures. However, one interesting
fact is that the two Thompson schemes do not show signifi-
cant differences from one another. Even though the schemes
are very similar, one could have expected that the explicit
prediction of droplet number concentration as well of aerosol
variables would have a stronger influence on the weather
simulation.

Using our framework, there are some challenges for the
evaluation of the microphysics schemes performance. Us-
ing a large data set provides the possibility of a statistical
evaluation. Thus, it can provide correct general overview of
the schemes performance. On the other hand, considering
long periods of time, multiple different weather situations
produce convective cells of varying types. In our analysis,
these are all analyzed together. This introduces ambiguities,
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and some individual microphysical aspects might be smeared
out. A solution would be a separation of different convec-
tive cloud types, e.g., by classifying into shallow, congestus,
or deep convective clouds using our 32 dBZ echo top height
(e.g., Matsui et al., 2009). Furthermore, classifications into
weak/strong forcing situations could be of interest, to ana-
lyze the effect of, e.g., frontal systems on the distribution of
radar signals. This will be addressed in a future application
of this framework.

Furthermore, there are uncertainties connected to the radar
forward simulator applied. To calculate scattering character-
istics, assumptions have to be made, including the particles’
aspect ratio, orientations, and shape. The variability of the
simulated signals is reduced by applying fixed relations com-
pared to the potential variability of shapes, orientations, and
aspect ratios in nature. In addition, the radar forward simula-
tor applied in our study does not consider mixed-phase parti-
cles. This means that, e.g., effects such as the bright band
where particles melt cannot be reproduced by the simula-
tions. To circumvent some ambiguities introduced this way,
the comparison could be extended from radar signal space to
cloud hydrometeor space; i.e., retrieved hydrometeor classes
can be compared to simulated ones.

Finally, there is more noise in our radar statistics compared
to the simulation statistics (for example, Fig. 5) due to the
lower number of data points available from the observations.
This could partially explain biases between model and radar,
reminiscent of the large observational effort to statistically
compare convective cloud characteristics.

The analyses shown in this work demonstrate the potential
to analyze the treatment of small-scale processes within mi-
crophysics schemes. More analyses will be conducted with
the methods presented, especially including dual-wavelength
and polarimetric variables to analyze the simulated particle
shapes and sizes. The observed radar CFADs still show large
scatter due to small numbers of measurements included.
More dual-wavelength data are needed to compare radar ob-
servations and a model for convective weather situations with
more confidence. Another operational dual-wavelength mea-
surement strategy is currently being established that makes
use of the operational DWD volume scans and copies their
strategy with the Mira-35 Ka-band radar. Because the vol-
ume scan strategy consists of multiple PPI scans of different
elevations angles, the vertical resolution will be somewhat
lower compared to our dual-wavelength RHI scans in strat-
egy B. On the other hand, the PPI strategy possibly samples
multiple cells at the same time, and together with the oper-
ational setup, we expect to obtain a larger number of dual-
wavelength measurements of convective cells.
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Based on the methodology presented in this paper, more
detailed analysis of some of the observed differences will be
analyzed next. This will allow us to slowly approach the an-
swer to the question of which level of complexity in micro-
physical processes needs to be implemented to realistically
represent cloud and precipitation distribution in NWP mod-
els at the same time.

Appendix A: Simulation and observation dates

Table Al. List of convective days that were used in our analyses.
Strategy A always refers to the whole day.

Date Strategy

(dd-mm-yyyy)

29-04-2019 Strategy A

06-05-2019 Strategy A

28-05-2019 Strategy A, strategy B (11:25-14:00 UTC)
29-05-2019 Strategy A

11-06-2019 Strategy A

12-06-2019 Strategy A

21-06-2019 Strategy A, strategy B (14:40-17:25 UTC)
01-07-2019 Strategy A, strategy B (11:20-16:50 UTC)
07-07-2019 Strategy A, strategy B (09:20-15:10 UTC)
08-07-2019 Strategy A, strategy B (09:00-14:00 UTC)
17-06-2020 Strategy A

20-06-2020 Strategy A

27-06-2020 Strategy A

28-06-2020 Strategy A

29-06-2020 Strategy A

01-07-2020 Strategy A

10-07-2020 Strategy A

11-07-2020 Strategy A

23-07-2020 Strategy A

24-07-2020 Strategy A

26-07-2020 Strategy A

28-07-2020 Strategy A

01-08-2020 Strategy A

02-08-2020 Strategy A

03-08-2020 Strategy A

18-08-2020 Strategy A

17-09-2020 Strategy A

22-09-2020 Strategy A

23-09-2020 Strategy A

12-10-2020 Strategy A
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Appendix B: Hydrometeor class CFADs

CR-SIM calculates radar signals for the single hydrometeor
classes independently, next to the total signal of all hydrom-
eteors together. Below are CFADs of the signals calculated
from the most relevant hydrometeor classes. The CFADs are
shown on the original WRF grid and without attenuation cor-
rection. The FSBM simulation sometimes showed spurious
rain signals on the highest levels (> 10 km). Sometimes there
are small numbers of raindrops present in the largest bins,
even though the mass mixing ratio of rain is O in the FSBM
simulation. We consider this an error with no physical mean-
ing.
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Figure B1. CFADs of simulated reflectivity of the rain hydrometeor class over 5 convective days in 2019.
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Figure B3. CFADs of simulated differential reflectivity of the rain hydrometeor class over 5 convective days in 2019.
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Figure B4. CFADs of simulated differential reflectivity of the cloud ice hydrometeor class over 5 convective days in 2019. The P3 scheme
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operational C-band radar in Isen are available for research
from the German Weather Service (DWD) upon request. The
Poldirad and Mira-35 data presented in this paper are avail-
able from the authors upon request. Data of WREF, CR-SIM,
and TINT simulations are also available from the authors upon
request. The software developed for this paper is available
at https://doi.org/10.5281/zen0do0.5796546 (Kocher, 2021). The
Weather Research and Forecasting model (WRF; version 4.2) is
publicly available on GitHub at https://github.com/wrf-model/WRF
(last access: 20 June 2020; https://doi.org/10.5065/1dth-6p97, Ska-
marock et al., 2019). The cell-tracking algorithm TINT is pub-
licly available on GitHub at https://github.com/openradar/TINT
(openradar, 2021). The forward operator CR-SIM (version 3.33)
is available on the website of Stony Brook University (https://you.
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