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Subdiffusive dynamics and critical quantum correlations in a disorder-free localized Kitaev
honeycomb model out of equilibrium
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Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous
lattice gauge theories. In this work we show that this mechanism can lead to unconventional states of quantum
matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics. We study a
Kitaev honeycomb model in a skew magnetic field subject to a quantum quench from a fully polarized initial
product state and observe nonergodic dynamics as a consequence of disorder-free localization. We find that
the system exhibits a subballistic power-law entanglement growth and quantum correlation spreading, which
is otherwise typically associated with thermalizing systems. In the asymptotic steady state the Kitaev model
develops volume-law entanglement and power-law decaying dimer quantum correlations even at a finite energy
density. Our work sheds light on the potential for disorder-free localized lattice gauge theories to realize quantum
states in two dimensions with properties beyond what is possible in an equilibrium context.
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I. INTRODUCTION

It is the general expectation that realistic isolated quantum
many-body systems driven out of equilibrium eventually ther-
malize such that the relaxed long-time steady states become
locally indistinguishable from thermal ensembles [1–6]. Two
types of celebrated exceptions beyond this paradigm are quan-
tum integrable models [7–11] and the Anderson or many-body
localization (MBL) mechanism imposed by strong disorder
[12,13]. In two dimensions, the exploration of ergodicity
breaking dynamics in interacting systems remains a challenge
especially in view of the argued instability of MBL in two
dimensions [14]. Recent years have witnessed a new type of
mechanism for nonergodic dynamics unique to lattice gauge
theories where static local gauge charge or flux serves as a
source for an effective internal disorder [15–17]. Importantly,
this so-called disorder-free localization scenario does not rely
on breaking translational invariance and can even occur in
interacting two-dimensional (2D) models [18,19], opening up
a promising route targeting the challenge of realizing quantum
states in 2D nonergodic systems with properties beyond any
equilibrium counterpart.

In this work we show that the Kitaev honeycomb model
driven to highly excited states by a nonequilibrium quantum
quench enters a peculiar disorder-free localized phase exhibit-
ing subdiffusive dynamics towards a critical state exhibiting
an algebraically decaying dimer quantum correlation func-
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tion. Specifically, we investigate the nonequilibrium dynamics
in the Kitaev honeycomb model in a weak skew magnetic field
starting from a spin-polarized initial state. The problem can be
mapped to a weakly interacting Majorana fermion model cou-
pled to a static Z2 gauge field [20], which for the considered
dynamics becomes effectively disordered. Although a number
of previous works have considered the intertwined physics
between fermion and flux in the Kitaev model [21–29], the
central open question has remained as to whether this model
can break ergodicity and can potentially host nonthermal
quantum order. In the noninteracting limit, we find that the
gauge flux disorder localizes most of the Majorana fermions
but fails to freeze the metallic and critical modes, leading
to the observed subdiffusive dynamics although the system
is overall nonergodic [30–34]. We identify the subdiffusive
dynamics in both an algebraic spread of quantum correlations
and the power-law growth of entanglement. At late times,
the system relaxes to a steady state with dimer quantum cor-
relation functions decaying algebraically in space, which is
characteristic of quasi-long-range order not accessible in ther-
mal equilibrium. We argue that this quasi-long-range order
implies a divergent multipartite entanglement as quantified by
the quantum Fisher information. We find evidence that our
main findings are robust against the leading-order perturbative
Majorana fermion interactions induced by the skew magnetic
field according to our numerical calculations for up to 128
spins on long timescales. Our results can be extended to any
Z2 lattice gauge theory coupled to chiral Majorana fermions
as long as the gauge flux can be considered static and disor-
dered on the considered timescales.

II. MODEL

The Kitaev model consists of spin- 1
2 degrees of freedom

on the honeycomb lattice with spin-orbital locking Ising inter-
actions Dμ

j = −σ
μ
j σ

μ
j+eμ

, where j labels the spin site and eμ
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FIG. 1. (a) Model interactions. Arrows indicate Majorana
fermion hopping. Four Majorana fermions interact within every Y
junction, shaded in gray. (b) 〈Dz(x)(t )〉. (c) Cμμ = 〈Dμ

j Dμ
j+r〉c. The

propagating wave front is determined by the threshold |C| � 10−6,
subject to a power-law fitting r ∝ (Jt )1/z indicated by white lines.
Here z = 2.5(2) for |Czz| and z = 2.7(3) for |Cxx|. (d) Collapse of
correlation growth at fixed distance with rescaled time. The param-
eters are Jz = Jx = Jy = J , h̃ = 0.25J , and 10 000 disorder samples
of system size with 60 × 60 unit cells (7200 spins) have been used.

denotes the nearest-neighbor vector of different orientations
μ = x, y, z [Fig. 1(a)]. In the presence of a weak [111] skew
magnetic field the Hamiltonian is

ĤK =
∑

j

∑

μ=x,y,z

(Jμσ
μ
j σ

μ
j+eμ

+ hσ
μ
j ), h � Jμ. (1)

For h = 0 the product Ŵ ≡ DxDyDzDxDyDz surrounding a
hexagon plaquette commutes with ĤK , implying an extensive
number of local integrals of motion. In the targeted limit
h � Jμ we take into account the magnetic field perturbatively
to the leading order that preserves these local symmetries [20],

Ĥ =
∑

μ

∑

j

Jμσ
μ
j σ

μ
j+eμ

+ h̃
∑

(i jk)∈∧,Y

σ x
i σ

y
j σ

z
k , (2)

where h̃ ∝ h3/J2. The perturbative interaction acts on three
spins that exist on any wedges ∧ or the end of any Y junction.
Either by introducing the gauge redundancy [20] and fixing
the gauge or by a Jordan-Wigner transformation [35,36], one
can map Ĥ onto an interacting Majorana fermion minimally
coupled with Z2 gauge field on the links,

Ĥ =
∑

〈 j→l〉
Jμiu j,lβ jαl + h̃

∑

〈〈 j→l〉〉
iu j,kuk,l (α jαl + β jβl )

+ h̃
∑

Y

ui, jui,kui,l (βiα jαkαl − αiβ jβkβl ), (3)

where α (β) denotes Majorana fermion on the A (B) sub-
lattice marked with open (closed) circles in Fig. 1(a). The
static gauge field on the link is pinned to u j, j−ex(y) = 1 and
u j, j−ez = ±1. The Ŵ on plaquettes are transformed to be lo-
cally conserved Z2 gauge fluxes. The last four-fermion term is
a chiral and gauged Majorana Hubbard interaction [37], where
j, k, and l are arranged in counterclockwise order around i.

III. QUANTUM QUENCH PROTOCOL

We prepare a simple initial state as a Néel state such that
σ z|�0〉 = ±|�0〉 on the A or B sublattice, respectively, which
is to be evolved by Ĥ later on. In the fermion representation
the initial state becomes a gauged fermion vacuum coupled to
a disordered gauge-field background

|�(t )〉 = 1

2N/2

∑

{u}
e−it Ĥ{u} |{u}〉 ⊗ |ψ{u}〉, (4)

where N is the number of unit cells (z links) and the Fock state
satisfies iu j, j−ezα jβ j−ez |ψ{u}〉 = |ψ{u}〉. In the sector

∏
j σ

z
j =

1 the antiperiodic boundary condition in the spin Hamiltonian
is mapped to the periodic boundary in the Majorana Hamil-
tonian. Here we will mainly focus on the isotropic coupling
Jx = Jy = Jz ≡ J and h̃ = 0.25J .

For observables that preserve the gauge field Ô =∑
{u} O{u} [15,16],

〈�0|Ô(t )|�0〉 = 1

2N

∑

{u}
〈ψ{u}|eit Ĥ{u}Ô{u}e−it Ĥ{u} |ψ{u}〉, (5)

where the average over gauge-field configurations can be
performed via Monte Carlo sampling. The typical {u} config-
uration is random, making the dynamical problem equivalent
to Majorana fermions subject to Z2 gauge (π ) flux disorder,
although our model is overall translationally invariant [15,16].

Overall we target the description of the nonequilibrium
dynamics through a sequence of two steps. First, we will study
in detail the exact solvable point, i.e., the noninteracting limit
of Eq. (3), where we find that the system becomes nonergodic
due to disorder-free localization, and afterward explore the
influence of interactions.

IV. EXACTLY SOLVABLE POINT

When the Majorana interactions are neglected, the model
becomes exactly solvable. For each gauge configuration the
dynamics is governed by a free Majorana fermion Gaussian
Hamiltonian that can be computed efficiently. By randomly
sampling gauge fields u = ±1 on the z links, we compute the
real-time evolution of various physical observables that are
natural in both the spin and the fermion language.

First, we consider the spin dimer expectation values Dμ
j =

iu j, j−eμ
α jβ j−eμ

(μ = z, x), which relax exponentially fast to
the same constant losing the memory of initial anisotropy
[see Fig. 1(b)]. The observables along the x and y di-
rections can be related by mirror symmetry. As we will
show, the dimer quantum correlation functions Czz(xx)(r, t ) =
1
N

∑
j〈�(t )|Dz(x)

j Dz(x)
j+r |�(t )〉c exhibit a much slower and

intricate dynamics, which quantifies the correlation of gauged
local fermion parity. Remarkably, we find that Czz(xx)(r, t )
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FIG. 2. Dimer correlations in the steady state, averaged over
103.6 � Jt � 104. Black lines indicate power-law fitting r−� with
� = 0.63(2) for both Czz and Cxx . Insets show correlations at r = 2
extrapolated to finite values in the thermodynamic limit.

exhibits an algebraic light cone in space-time [see Fig. 1(c)],
with the wave front following a power-law Jt ∝ rz behavior.
The dynamical exponent is obtained as z = 2.5(2) for |Czz|
and z = 2.7(3) for |Cxx|. Notice that the dynamical exponent
z here is associated with information transport instead of
particle or energy transport, and z > 1 signals subdiffusion
[38]. In Fig. 1(d) we further corroborate this by achieving a
data collapse upon rescaling the time axis Jt/rz. While such
subballistic behavior in systems with conventional disorder
is typically observed on the ergodic side close to the MBL
transition lying between diffusive and glassy limits [30–34],
here we observe such dynamics for a disorder-free localized
model, as we will argue in more detail below.

At long times the system settles to a steady state, which,
as we find, is of nonergodic critical nature with correlations
decaying algebraically in space, as seen in Fig. 2. We observe
that the decay of Czz(xx)(r, t ) is consistent with a power law in
space, whose exponent increases for larger system sizes and
appears to converge near 0.63(2). The power-law decaying
correlation function in all directions x, y, and z is reminis-
cent of the Kosterlitz-Thouless phase with quasi-long-range
order [39], without spontaneously breaking the spin-orbital
threefold rotation symmetry. However, even when this sym-
metry is explicitly broken in the anisotropic regime, we still
observe a critical correlation [40]. It is the effective disorder
that partially inhibits the finite-energy density fluctuations and
stabilizes the quasi-long-range spin dimer order [41].

These critical quantum correlations further have an im-
mediate impact on the entanglement content of the reached
steady state, as the dimer quantum correlation function can be
directly linked to a quantum Fisher information density via
f zz(xx)
Q (t ) = ∑

r Czz(xx)(r, t ) [42–44]. Since Czz(xx)(r, t ) ∼ r−�

with 0 < � < 1 for t → ∞, we find that f zz(xx)
Q ∼ N1−� di-

verges in the thermodynamic limit. As a consequence, the
steady state exhibits strong multipartite entanglement.

For a more detailed quantification of the entanglement
properties we further consider the projective bipartite entan-
glement entropy that serves as an entanglement diagnostic for
quantum disentangled liquids [45–47]. Namely, we measure
the von Neumann entanglement entropy for half of the Ma-
jorana fermions, when the gauge field is projected onto the

FIG. 3. Projective bipartite entanglement entropy, averaged over
1000 disorder samples. The inset shows the entanglement cut. The
black line indicates the power-law fitting proportional to t1/z with
z = 2.4(1). At late time, entropy saturates to a volume law Sv (Jt =
104) = 0.40(1)N ln 2/2, as shown in the inset.

diagonal ensemble

Sv = 1

2N

∑

{u}
S{u}, S{u} = −ρ̂{u} ln ρ̂{u}, (6)

with the reduced density matrix

ρ̂{u} = Trα,β∈Le−it Ĥ{u} |ψ{u}〉〈ψ{u}|eit Ĥ{u} (7)

obtained from tracing out Majorana fermions on the left half
of the lattice (see the inset in Fig. 3). Here ρ̂{u} is a Gaussian
operator which can be computed exactly [48,49]. Note that
while we can compute local observables and correlation func-
tions exactly, the nonprojective von Neumann entropy of the
Kitaev model is not diagonal with respect to the gauge con-
figurations and therefore cannot be reduced to a free fermion
problem, unlike the low-order Rényi entropy [50]. Diagonal
entanglement entropies such as the one we consider have been
used already for localized systems in other contexts [51] and
give an upper bound on the actual entanglement entropy [52].
As shown in Fig. 3, at early times the entanglement grows
with an area law. At a second stage, the entanglement entropy
exhibits a further growth according to a subballistic power
law S ∝ t z. From a fit to the data we obtain the entanglement
dynamical exponent z = 2.4(1), which within the accuracy of
our simulations aligns with the exponent appearing for the
subballistic spreading in Czz(xx)(r, t ). In a system of finite size,
we find that the entanglement entropy saturates to a volume-
law state Sv ∝ LxLy typical for the highly excited free fermion
states [53,54], as shown in the inset of Fig. 3. These numerical
findings again highlight the unconventional nonequilibrium
dynamics that we observe in the disorder-free localized Kitaev
model.

One may ask what if we deform the initial state. By tuning
the gauge flux density in the initial state by applying an
operator

∏
q[ 1

2 + ( 1
2 − p)Ŵq], the exponent � as well as z

changes continuously, as visible in Fig. 4, which corroborates
the robustness of the critical dynamical phase reminiscent of
Kosterlitz-Thouless phase. However, notice that our critical
dynamical phase at late-time steady state should be contrasted
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FIG. 4. Tuning the density of π fluxes. (a) Projective bipartite
entanglement entropy of Majorana fermions. (b) and (c) Steady-state
spatial correlation function |Czz(xx)|, averaged in the time window
103 � Jt � 104. The parameters are Jz = Jx = Jy ≡ J , h̃ = 0.25J ,
Lx = Ly = 50, and 1000 disorder samples have been used.

with the one exhibiting critical initial slip in short-time relax-
ation [55].

V. LOCALIZATION ANALYSIS

The peculiar coexistence of subdiffusive dynamics at tran-
sient time and the quasi-long-range order at late time implies
a subtle localization scenario in behind. Indeed, we find a
mixture of localized and critical modes from the standard
numerical diagnostics [40] including level spacing statistics
[56,57], 2D localization length [58–60], and Chern number
[20,61–63].

The localization length is calculated by the retarded
Green’s function using the iterative Dyson equation for a
semi-infinite quasi-one-dimensional geometry, followed by
a one-parameter scaling collapse for varying narrow width.
As shown in Fig. 5(a), the localization length and the level

FIG. 5. (a) The left axis shows the level spacing ratio, for system
size Lx = Ly = 60 with 10 000 disorder samples. The characteristic
value for the Poisson ensemble, 2 ln 2 − 1 
 0.3863, and the one for
the Gaussian unitary ensemble, approximately equal to 0.5996, are
indicated. The right axis shows the localization length obtained by
one-parameter scaling for a sequence of quasi-1D long stripes for
Ly = 8, 16, 32, 64, 128 and Lx � 106. (b) Chern number for system
size Lx = Ly = 40. Black dots are for 500 disorder samples, while
the blue (red) line is for the zero (π ) flux clean system.

spacing ratio for a finite-size system are consistent in showing
three energy windows with delocalization tendency. The de-
localization at zero energy was known to be responsible for a
low-energy Majorana thermal metal state in the class D dirty
superconductors [64–66] or Majorana lattice model [67–69],
which entails a logarithmically divergent density of states and
weak multifractal nature as we numerically verify [40,70].
Intuitively, the low-energy delocalized Majorana mode arises
from percolating through an extensive number of resonating
Majorana zero modes trapped in Z2 gauge fluxes in a weak-
pairing topological superconductor [68,71].

To gain more insight into the topology of the fermion, we
calculate the Chern number of the fermion eigenstates [72–74]
of varying energy by using the real-space formula based on the
concept of a noncommutative Brillouin zone:

C = 2π i

N
Tr([PxP, PyP]), P(E ) =

∑

ε<−E

|ε〉〈ε|. (8)

Here x and y are the real-space coordinate operators which
label the first quantized orbitals and generate the translation
of crystal momenta, |ε〉 is the single-particle eigenstate of the
first quantized Hamiltonian matrix with energy ε, and P(E ) is
the spectral projector where the single-particle mode with en-
ergy smaller than −E is occupied, mimicking the Fermi level
in the complex fermion system with number conservation. In
a fermionic system with only fermion parity conservation,
half of the single-particle eigenstates are redundant, so we
consider only E � 0. The change of C(E ) reveals the Berry
flux carried by the fermion mode at the corresponding energy.
From Fig. 5(b), the delocalized mode near E 
 2.5(1)J is
clearly associated with a topological quantum critical point
separating two distinct Chern plateaus that is robust against
perturbation and weak disorder [75,76]. As for the energy
window 1.5J � E � 2.0J , it is unclear whether it would
maintain a finite mobility edge or shrink to a singular point
or become fully localized in the thermodynamic limit [77,78].

A final comment is that our result is consistent with the
argument that non-Abelian topological phases cannot be fully
localized [79]. While disorder tends towards localization, i.e.,
a divergent dynamical exponent z → ∞, this tendency com-
petes with the metallic and topology induced critical modes
favoring ballistic propagation with z = 1, leading to the ob-
served subdiffusive dynamics with z > 1.

VI. BEYOND EXACT SOLVABLE LIMIT

Now we aim to address the robustness of our observations
upon the influence of interactions present in Eq. (3). Here
we will focus on the leading-order resonant contributions
responsible for an eventual destabilization, by utilizing the
approach introduced in Ref. [80], where it has been shown
that these resonant contributions can capture the essential
nonperturbative effects of interactions such as the logarithmic
entanglement growth in MBL phases not only on a qualita-
tive but also on a quantitative level. The Hamiltonian is then
expressed in the canonical fermion basis

Ĥγ = −
N∑

n=1

εniγ ′
nγ

′′
n − 1

4

N∑

m,n=1

Vm,nγ
′
mγ ′′

mγ ′
nγ

′′
n + · · · , (9)
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where the canonical Majorana fermions γ ′ and γ ′′ are related
to the original local Majorana fermions by an orthogonal
transformation obtained from diagonalizing the noninter-
acting fermion part. The leading-order resonant interaction
preserves the parity of the canonical fermion mode 〈iγ ′

nγ
′′
n 〉

but induces a dephasing effect, analogous to the l-bit theory in
MBL systems [12,13] in which it leads to dramatic nonpertur-
bative effect [80]. In our case of the Kitaev model with weak
magnetic field, we also find a special structure for this inter-
action strength Vm,n, which endows a hierarchy of dephasing
timescales [see Fig. 6(a)]. It is the key observation in Ref. [80]
that the dynamics of any fermion correlation function can be
effectively written as a sum over a number O(N4) of Gaussian
evolution trajectories, schematically abbreviated as

〈ψ (t )|γmγnγpγq|ψ (t )〉
=

∑

mnpq

C〈ψ |e−it (1/4)γ Amnpqγ γmγnγpγq|ψ〉, (10)

which can be further factorized into the product of a
Loschmidt amplitude quantity and an effective correlation
function [40,81–85]. As shown in Fig. 6(d), we calculate the
system with 16 × 4 unit cells (128 spins) up to the timescale
Jt � 104, where the interacting scenario turns out to col-
lapse with the noninteracting case within numerical accuracy.
The critical quantum correlations are therefore stable up to
this timescale. We estimate the validity of the perturbative
approach by the statistics of resonances in first-order per-
turbation theory of the omitted terms. We find that they are
off-resonant with probability �99.5% for the considered pa-
rameter regime [40], above typical thresholds [86], so they can
become relevant only via higher-order processes manifesting
on longer timescales.

VII. CONCLUSION

While thermalization may occur eventually for the full
Hamiltonian in Eq. (1) on long timescales, we emphasize
that our findings imply a long intermediate-time window with
nonergodic behavior leading to exotic quantum dynamics and
correlations. On the other hand, it is tempting to ask whether
the exotic dynamics and nonequilibrium quantum order are
related to the low-energy non-Abelian Ising topological order
[20,87]. However, in the strongly anisotropic coupling regime
which in zero temperature exhibits a distinct Abelian Z2 topo-
logical order [88], we find a similar high-energy critical mode
and subdiffusive dynamics as well as critical correlation,
which goes beyond the low-energy universality class [40]. Our
findings of subdiffusive dynamics and critical quantum cor-
relations may emerge universally in general Z2 lattice gauge
theories coupled to chiral Majorana matter fermions, provided
two essential ingredients: (i) nontrivial fermion topology and

FIG. 6. (a) Vmn. The mode index corresponds to the energy in
ascending order. (b) Correlation functions of steady state, averaged
in the time window 103 � Jt � 104. The power-law-fitting exponent
is 0.50(6) for Czz and 0.51(4) for Cxx . The parameters are h̃ = 0.25J ,
Lx = 16, Ly = 4, and 200 disorder samples. The V = 0 case for
comparison takes 10 000 disorder samples.

(ii) static disordered gauge flux [89–92]. Above all, our ob-
servation of quasi-long-range order with associated divergent
multipartite entanglement in a nonequilibrium high-energy
steady state marks a concrete step towards yet unexplored
unconventional phase structures in ergodicity breaking 2D
quantum models. Subdiffusion might be present also in a
more general context of Majorana spin liquids as long as the
effective Z2 gauge flux (vison) dynamics is much slower than
that of the fermions, which will be a challenging but valuable
scope for future research. Furthermore, motivated by the re-
cent developments showing that the gauge charge disorder in
a 1D unconstrained gauge theory can stabilize a time crystal
order [93], it would also be interesting to generalize this idea
to two dimensions in search of nontrivial spatiotemporal order
from a driven Kitaev model [94,95]. Finally, beyond the con-
ceptual interest, the nonequilibrium quench dynamics can in
principle be realized in various quantum architectures includ-
ing ultracold atoms [96,97], superconducting qubits [98,99],
or topological nanowires [100,101], as well as via ultrafast
pump-probe techniques in the Kitaev candidate materials at
sufficiently low temperatures with suppressed phonon influ-
ence [29,102–106].
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