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Digital quantum simulation on quantum computers provides the potential to simulate the unitary
evolution of any many-body Hamiltonian with bounded spectrum by discretizing the time evolution
operator through a sequence of elementary quantum gates. A fundamental challenge in this context
originates from experimental imperfections, which critically limits the number of attainable gates within a
reasonable accuracy and therefore the achievable system sizes and simulation times. In this work, we
introduce a reinforcement learning algorithm to systematically build optimized quantum circuits for digital
quantum simulation upon imposing a strong constraint on the number of quantum gates. With this we
consistently obtain quantum circuits that reproduce physical observables with as little as three entangling
gates for long times and large system sizes up to 16 qubits. As concrete examples we apply our formalism
to a long-range Ising chain and the lattice Schwinger model. Our method demonstrates that digital quantum
simulation on noisy intermediate scale quantum devices can be pushed to much larger scale within the
current experimental technology by a suitable engineering of quantum circuits using reinforcement
learning.
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Introduction.—Digital quantum simulation (DQS) has
emerged as one of the most promising applications of
quantum computers. Unlike analog simulators, which
directly mimic the Hamiltonian of interest, digital simu-
lators reproduce a target time-evolution operator with a
sequence of elementary quantum gates. In principle, the
unitary time evolution of any spin-type Hamiltonian can be
encoded in a quantum computer with arbitrary precision
[1]. The experimental implementation of DQS has seen
remarkable progress in recent years leading to the simu-
lation of theoretical condensed matter models [2–7], lattice
gauge theories [8], and quantum chemistry problems [9–
11]. A common and natural approach to factorize time
evolution operators into elementary quantum gates is to use
Suzuki-Trotter formulas [12,13]. While the theoretical
Trotter error can be well controlled [14–16], high accuracy
Trotterization requires a large number of quantum gates.
This leads to a critical problem because each of these
individual gates suffers from experimental imperfections,
in particular those which entangle qubits. A key challenge
of DQSs is therefore to identify factorizations of time
evolution operators utilizing a minimal number of quantum
gates in order to exploit currently available hardware

resources optimally. How many quantum gates are actually
necessary to reproduce the targeted quantum dynamics is,
however, an outstanding question.
In this work we introduce a method based on reinforce-

ment learning (RL) to systematically build DQSs con-
strained to a fixed low number of entangling gates. We
apply our method to two models chosen because of their
relevance for DQS: the long-range Ising (LRI) model,
unsolvable analytically but inheriting a natural Trotter
decomposition, and the lattice Schwinger model, a key
model to be simulated digitally [8,17]. The real-time
dynamics of the lattice Schwinger model is hard to compute
theoretically and to quantum simulate digitally as the
Hamiltonian involves both short- and long-range couplings
on a competing level. Moreover there is no existing
quantum computing device which could achieve a natural
implementation. As a crucial step in our RL algorithm
towards feasible large-scale DQS we propose to optimize
the quantum circuits not with respect to the conventionally
used global many-body wave function, but rather based on
a local reward with the goal to reproduce expectation values
of local observables and correlation functions. Remarkably,
we find that the dynamics of strongly correlated systems
can be digitally realized using just a handful of gates
making large system sizes and long-time simulations
feasible on current day devices. Specifically, for the lattice
Schwinger model, we build quantum circuits using only
three entangling gates that correctly reproduce the dynam-
ics of local observables and correlation functions for up to
16 qubits and for large times, reducing the number of
entangling gates by one order of magnitude in comparison
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to a recent pioneering DQS experiment for 4 qubits [8].
With our RL algorithm we are able to systematically build
DQSs with a drastically reduced number of quantum gates
for large quantum many-body systems pushing the design
of quantum circuits beyond what has been achieved
previously utilizing RL methods [18–21] or in the field
of quantum control [8,17].
Although quantum supremacy is not possible within the

current procedure, we emphasize that current experiments
on digitally simulated real-time dynamics using
Trotterization are limited still to small system sizes and
simulation times. Our work provides a route towards larger-
scale DQS in previously inaccessible regimes with cur-
rently available hardware resources. Further, our work
contributes to the important open question on how many
quantum gates are actually necessary to reproduce the
targeted quantum dynamics. We show that a substantial
reduction is possible which highlights that there can be
algorithms with orders of magnitude smaller depth than
those used today in the context of Trotterization.
Digital quantum simulation.—Let H ¼ P

lHl be such
that UlðtÞ ¼ expð−iHltÞ can be realized on the chosen
quantum computing platform. The targeted dynamics can
then be approximately factorized using the Suzuki-Trotter
formula: e−iHτ ≈ ðQl e

−iHlτ=nÞn. This Trotterization comes
with an error that is rigorously upper bounded asOðNτ2=nÞ
[14] withN the number of qubits, whereas the error on local
observables can be even much smaller [15]. The central
problem is that higher Trotterization accuracy requires
larger n. This, however, increases the number of required
quantum gates and therefore amplifies the imperfections
due to faulty gate operations. In this work we aim to
generate optimized quantum circuits for the factorization of
time-evolution operators with a minimal number of quan-
tum gates. We focus on trapped ion quantum computing
platforms with the following set of universal quantum
gates:

Ux
jðθÞ ¼ e−iθσ

x
j ; Uz

jðθÞ ¼ e−iθσ
z
j ;

UxxðθÞ ¼ e−iθ
P

j<k

σx
j
σx
k

jk−jjα ; ð1Þ

where σxj , σ
y
j , and σzj are the Pauli matrices at site j. The

exponent α can be theoretically tuned within the range
0 ≤ α < 3, but the optimal performance is typically
reached either for α ¼ 0 or α ≈ 1. For the following we
will focus for concreteness on either α ¼ 3 or α ¼ 1 while
emphasizing that our approach can be straightforwardly
applied also to other α or other quantum computing
architectures such as superconducting qubits with different
sets of universal quantum gates.
The central goal of our work is to find circuits with a

small number of quantum gates for the task of reproducing
the dynamics of a given Hamiltonian. We translate this task
into an optimization problem as follows. Let jψ0i denote

the initial state and let us fix the resources in terms of
quantum gates as in Eq. (1). Then we construct a sequence
of gates:

jψDQSi ¼ Un � � �U2U1jψ0i; ð2Þ

Ut ¼ Uxxðθxxt Þ
Y
j

½Uz
jðθz;jt ÞUx

jðθx;jt Þ�; ð3Þ

as depicted schematically in Fig. 1(a). The main goal now is
to choose the underlying variational parameters θ ¼
ðθxxt ; θz;1t ; θx;1t ;…; θz;Nt ; θx;Nt Þ such that jψDQSi is as close
as possible to jψ targeti ¼ e−iHτjψ0i. From now on the
number of entangling gates will be fixed to n ¼ 3. As
we will show, remarkably, these small quantum circuits will
be sufficient to reproduce the dynamics of local observ-
ables, see Fig. 1(b).
Method.—We use RL to solve this difficult optimization

problem. In RL a software agent learns by interacting with
an environment and adapting its behavior accordingly. The
agent generates sequences of actions in the environment
and learns to perform a given task by maximizing a
cumulative reward function. RL has seen a recent surge
of applications in the field of quantum control for few-body
problems [18,19,21–26] as it suits well optimization
problems consisting of successive actions on a state with
high dimensionality. Here, we are interested in the dynam-
ics of quantum many-body problems which is a far more
challenging problem.

(a)

(b)

FIG. 1. (a) Quantum circuit used for the DQSs, here for a three-
site system. The boxes represent different quantum gates.
(b) Particle number density ν in the 10-site lattice Schwinger
model starting from the bare vacuum for the parameters used in a
recent DQS experiment [8]: J ¼ w ¼ 2m in Eq. (7). We show the
DQS results using the fidelity (green) and the local reward
[Eq. (4)] (red), and the exact time evolution (blue).
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In this work, inspired by the method used in Ref. [19],
we use a modified version of a deep Q-network algorithm
[27], a variant of the original Watkins off-policy Q-learning
algorithm using artificial neural networks as function
approximators [28,29]. While we now summarize the
central aspects of the algorithm, further details can be
found in Refs. [29,30].
The optimization problem is defined as an episodic RL

problem: each episode is divided into a finite number of
steps t ¼ 1;…; n, corresponding to the steps of the DQS.
At t ¼ 0, the quantum wave function is in a given initial
state jψ0i. Then, at each step t the agent chooses an action
at ¼ ðθxxt ; θz;1t ; θx;1t ;…; θz;Nt ; θx;Nt Þ defining the unitary Ut
in Eq. (3). After each action the agent receives a reward rt.
At the end of the episode the reward rn ≡ R characterizes
how close the final state jψDQSi is to the target state jψ targeti.
For intermediate steps, the reward is set to 0 as we do not
constraint the specific evolution of the quantum wave
function between the initial and target state. In deep Q-
learning, a neural network is trained to predict the value
Qðs; aÞ of choosing an action a given a state s of the
environment, following the update rule Qðst; atÞ ←
Qðst; atÞ þ α½rt þmaxa Qðstþ1; aÞ −Qðst; atÞ� for the
learning rate α, while the action at ¼ argmaxaQðst; aÞ þ
Gaussian noise [29,30]. Here, s describes the state of the
quantum wave function. Importantly, the actions a take
continuous values in our case, which is not standard for
Q-learning.We have modified our algorithm accordingly so
that the argmaxaQðs; aÞ operation is done by maximizing
the output of the neural network with respect to part of its
input [30].
Reward.—A central quantity in the problem is the

reward quantifying how close jψDQSi is to jψ targeti. First,
we define a global reward as the square of the fidelity
Rglobal ¼ jhψDQSjψ targetij2, which is commonly used to
compare the two states. With a limited number of entan-
gling gates, we find, however, that it is challenging to
obtain high fidelities for large system sizes or times. As a
consequence, we now introduce an alternative reward,
which takes into account that in quantum simulation we
are not so much interested in the global many-body wave
function but rather in reproducing local observables and
correlation functions. Let ρ ¼ jψ targetihψ targetj and
σ ¼ jψDQSihψDQSj. We then define a local reward

Rlocal ¼ 1 −
2

NðN − 1Þ
X
j<k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðρjkjjσjkÞ

q
ð4Þ

measuring the closeness of reduced density matrices ρjk

and σjk of the subsystem made of sites j and k for ρ and σ,
respectively. Here DðρjjσÞ ¼ Trρðlog ρ − log σÞ is the rel-
ative entropy andN denotes the number of qubits. A reward
of Rlocal ¼ 1 means that all expectation values and corre-
lation functions are reproduced exactly. In practice, we

further cap negative values to zero such that Rlocal ∈ ½0; 1�.
It is a crucial observation that a high local reward Rlocal ¼
1 − ϵ can be directly translated into a high accuracy for
local observables and correlations functions. For a two-
body operator O ¼ f2=½NðN − 1Þ�gPj<k O

jk we have

jhOitarget − hOiDQSj ≤
ffiffiffi
2

p
max
j;k

kOjkk∞ · ϵ; ð5Þ

where k � � � k∞ denotes the operator norm. This can be
derived using Hölder’s inequality for Schatten norms
and Pinsker inequality [31,32]: jTr½ðρjk−σjkÞOjk�j≤
kρjk−σjkk1kOjkk∞≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðρjkjjσjkÞ

p
kOjkk∞. Similarly,

for a single-body operator O ¼ ð1=NÞPjO
j we

have jhOitarget − hOiDQSj ≤
ffiffiffi
2

p
maxj kOjk∞ϵ.

Results.—As a first proof of concept, we apply our
method to the LRI model

HLRI ¼ J
X
j<k

1

jk − jjα σ
x
jσ

x
k þmx

X
j

σxj þmz

X
j

σzj: ð6Þ

For this system we can directly compare our approach to a
conventional Trotterization procedure, as there exists a
straightforward decomposition of the Hamiltonian into the
universal set of quantum gates in Eq. (1) upon choosing
θxxn ¼ Jτ=n, θz;jn ¼ mzτ=n, and θ

x;j
n ¼ mxτ=n. For concrete-

ness, we will consider J ¼ 1, mx ¼ mz ¼ 2, and α ¼ 3
starting from a fully polarized state jψ0i ¼ j↑…↑i. Let us
emphasize, however, that we obtain similar results also for
other choices of system parameters.
The learning of the agent is witnessed by the evolution of

the reward as a function of episodes shown in Fig 2(a).
Starting from the Trotterized circuit, the agent progres-
sively improves the circuit until convergence. The mean
value of the maximum rewards throughout each indepen-
dent run is shown in Fig. 2(b) upon varying the system size
N. As opposed to the Trotter fidelity, which decays
exponentially, the DQS rewards remain at large values.
The obtained fidelity decays with the system size N but
only linearly at the considered N, and the local reward is
remarkably unaffected. Now if we fix the system size
and increase τ, the Trotterization also fails eventually. In
Fig. 2(c) we show this together with the DQS results for
both types of rewards. To give a more physical perspective
to our results, we also compare the values of physical
observables resulting from DQS, Trotterization, and
from the actual dynamics (using exact diagonalization).
Figures 2(d), 2(e), and 2(f) show the magnetization
hψ jð1=2NÞPi σ

z
jjψi, the energy hψ jHjψi, and the

Loschmidt echo jhψ0jψij2. For the 10-qubit system, after
τ ¼ 1 it is clear that the system enters a regime where the
Trotterization with n ¼ 3 fails. At the same time, there is a
drop in performance of our algorithm, but the reward
converges to a finite value as τ increases. Importantly, when
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translated in terms of physical observables the resulting
quantum circuits are much more successful than
Trotterization. All quantities are well reproduced by the
DQS, especially when the local reward is used. This
indicates that our algorithm can systematically find a
circuit bringing the initial state to an arbitrary target state
using only three entangling gates.
Having demonstrated that our RL based method with

local reward exhibits a remarkable performance for the LRI
model, we now aim to go one step ahead by studying a
system where no natural decomposition into a Trotter
sequence exists. For that purpose we focus on the lattice
Schwinger model:

HS ¼ w
X
j

½σþj σ−jþ1 þ H:c:� þm
2

X
j

ð−1Þnσzn

þ J
2

XN−1

j¼1

�Xj

m¼1

½σzm þ ð−1Þm�
�2
; ð7Þ

which is represented here in the Kogut-Susskind
Hamiltonian formulation [33,34], as it has been recently
realized experimentally using DQS based on Trotterization
[8]. Concerning the nonequilibrium protocol we closely
follow the experiment [8]. We start from the Néel state and
apply e−iHSτ with w ¼ J ¼ 1 and m ¼ 0.5. Further, we use
α ¼ 1 for the entangling gates in the DQS in Eq. (1), as this
represents one of the optimal working points in systems of
trapped ions.
Even more so than with the LRI model, optimizing with

the fidelity only results in suboptimal sets of parameters as
can be seen in Fig. 3. Both short-range and long-range
couplings are present in the lattice Schwinger model, and
thus reproducing the dynamics with only three entangling
gates is particularly challenging. Nevertheless, we show
that better sets of parameters do exist and are obtained
when using the local reward. Interestingly, as for the LRI
model, the performance of the algorithm with the local
reward does not plummet as the system size increases, and

(a) (b) (c)

FIG. 3. Results for DQS of the Schwinger model with three entangling gates. (a) Final reward of the DQSs using the fidelity and the
local reward Eq. (4) as a function of system size (for τ ¼ 4.0) and time (for a 10-site system). (b) Loschmidt echo and particle number
density ν as a function of system size (for τ ¼ 4.0). (c) Loschmidt echo and nearest-neighbor quantum correlations in the middle of the
chain of the DQS as a function of time using the fidelity (green) and the local reward Eq. (4) (red), and the exact time evolution (blue)
(for a 10-site system).

(a) (b) (c)

(f)(e)(d)

FIG. 2. Results for the DQS of the long-range Ising model with three entangling gates. (a) Evolution of the local reward during training
for 100 independent runs for a 16-qubit system (average and standard deviation). (b) Rewards of the DQS as a function of the system
size (for τ ¼ 1.0), and the corresponding Trotter fidelity. (c) Rewards of the DQS as a function of time (for a 10-qubit system), and the
corresponding Trotter fidelity. (d) Magnetization obtained as function of time optimizing for the fidelity (green) and the local reward
(red), the corresponding results using Trotterization (black), and the exact time evolution (blue) (for a 10-site system). (e) Same as (d) for
the energy. (f) Same as (d) for the Loschmidt echo.
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physical observables are significantly better reproduced
with the local reward than with the fidelity, as shown
Figs. 3(b) and 3(c) and in Fig. 1(b), where the particle
number density ν ¼ ð1=2NÞPN

j¼1hð−1Þjσzj þ 1i is shown,
which has also been measured in the recent experiment [8].
While ν as a few-body operator is directly covered by the

local reward, the Loschmidt echo is a global quantity, but
can be nevertheless reproduced remarkably well. To
explore further the performance of our RL approach, we
compare in Fig. 3(c) the obtained dynamics for a two-body
quantum correlation function against the exact solution.
There we show results for the connected correlator
CzzðN=2; N=2þ 1Þ in the middle of the chain where
Czzðj; jþ 1Þ ¼ hσzjσzjþ1i − hσzjihσzjþ1i. While the two-
body operator seems not as well reproduced as the
single-body operator for long times, this is different for
τ ≲ 2.0 when using the local reward. This is remarkable as
the overall signal strength of CzzðN=2; N=2þ 1Þ is much
smaller than what one would expect on the basis of the
bound in Eq. (5).
Outlook.—For the considered problems three entangling

gates have turned out to be typically sufficient for an
accurate DQS of local observables, remarkably. In the
future it might be important to increase the number of gates
for higher precision, where convergence of our algorithm
turns out to become progressively challenging. This might
be remedied for instance by either utilizing more advanced
neural network structures, e.g., recurrent neural networks or
long short-term memories, or by reducing the number of
independent variational parameters in the optimization
problem using physical insights, in particular, by utilizing
symmetries.
The current scheme requires an exact theoretically

known reference of the target state, which we obtain using
exact diagonalization. The overarching goal of DQS,
however, is to address scenarios which are beyond such
a theoretical description and therefore without such exact
reference available. For current typical DQS scenarios such
a regime of quantum supremacy is not yet reached, so that
our algorithm represents a central contribution to push DQS
significantly beyond what has been achieved up to now in
terms of system size and simulation time. In particular, our
work represents a key benchmark showing that a tremen-
dous reduction of the circuit depth is possible. For instance,
the algorithm used in the recent experiment [8] required
roughly 2N entangling gates per time step. For N ¼ 10 and
the 30 time steps shown in Fig. 3 this implies more than 600
gates, which is orders of magnitude more than the 3 gates
required with our algorithm. Our work therefore represents
a first step in utilizing reinforcement learning for DQS with
the key goal to reach an algorithm which doesn’t rely
anymore on an exactly known referenc.
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