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Quantum entanglement recognition
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Entanglement constitutes a key characteristic feature of quantum matter. Its detection, however, still faces
major challenges. In this paper, we formulate a framework for probing entanglement based on machine learning
techniques. The central element is a protocol for the generation of statistical images from quantum many-body
states, with which we perform image classification by means of convolutional neural networks. We show that the
resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error across a
wide range of quantum states. We discuss the potential use of our scheme to quantify quantum entanglement
in experiments. Our developed scheme provides a generally applicable strategy for quantum entanglement
recognition in both equilibrium and nonequilibrium quantum matter.
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I. INTRODUCTION

Entanglement has turned into a central concept across var-
ious branches in physics ranging from quantum technological
applications [1] to the characterization of quantum matter
[2,3]. It has remained, however, a key challenge to quantify
the entanglement content of a given quantum state especially
under realistic experimental conditions beyond the ground
and pure state paradigm. This challenge is rooted in the fun-
damental property that entanglement measures are nonlinear
functions of the density matrix, but quantum measurements
only yield direct information linear in it according to the
axiomatic foundations of quantum mechanics. For quantum
systems involving a limited number of degrees of freedom,
entanglement can still be quantified also experimentally upon
reconstructing the full density matrix via tomography [4–8],
by means of measurements on identical copies of quantum
states [9–13], or through the statistics of randomized measure-
ments [14–16].

By applying machine learning techniques we show in this
paper that entanglement measures can be accurately extracted
merely from limited information obtainable directly from
quantum measurements, thereby reducing significantly the
necessary measurement resources. The key element of the
proposed scheme is a protocol to generate a two-dimensional
statistical image from a given quantum many-body state. Uti-
lizing conventional image recognition based on convolutional
neural networks, we then perform a quantitative classification
of the entanglement entropy and logarithmic negativity, rang-
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ing over a broad class of quantum many-body wave functions
from ground and excited states to quantum nonequilibrium
evolution for pure and mixed states. We apply these tech-
niques to various one-dimensional quantum spin-1/2 chains
and find that this classification is remarkably accurate and can
be assigned a well-defined error. Importantly, we find that the
artificial neural networks (ANNs) for quantum entanglement
recognition are robust to weak perturbations. Unlike previ-
ous machine-learning-based schemes that exploited ANNs
to classify states belonging to different entanglement classes
[17,18], our focus on quantitative entanglement prediction
broadens significantly the applicability and provides a direct
means of performance characterization through the prediction
error. In particular, the obtained ANNs can, at a controlled
error, even predict nonequilibrium dynamics, generated, e.g.,
by a Lindblad master equation. We further discuss how this
quantum entanglement recognition might be utilized exper-
imentally as an entanglement estimator upon training with
simulated data.

II. IMAGE GENERATION FROM QUANTUM STATES

The key element of our quantum entanglement recognition
scheme is the statistical image generating protocol, which
we now introduce. Let ρ0 denote the density matrix of a
quantum (many-body) system. In the following, we study
models of L spin-1/2 degrees of freedom for simplicity,
although the protocol can be extended straightforwardly to
any lattice model with finite local Hilbert spaces. We per-
form measurements on the quantum state with the string
O = σ z

1 ⊗ · · · ⊗ σ z
L of Pauli matrices σ z

l yielding as outcomes
spin configurations s = (s1, . . . , sL ) with sl = ±1. Such mea-
surements can be performed on quantum computing platforms
such as trapped ions [19] and superconducting qubits [20–22]
or ultracold atomic systems via quantum gas microscopes
[23]. In general, a single measurement basis is not sufficient
for entanglement detection. We therefore generate a more
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FIG. 1. Schematic illustration of the quantum entanglement recognition scheme. (a) Representative statistical images of weakly entangled
pure states (WE1), strongly entangled pure states (SE), and weakly entangled mixed states (WE2) of the transverse-field ferromagnetic Ising
model. (b) Adapting an image recognition neural network for entanglement quantification. The network reads statistical images such as those
in (a). After processing the image information the network classifies the entanglement by assigning the images to different labels corresponding
to binned intervals of the considered entanglement measure. Shown in the figure is the case of Nbin = 4 total number of bins. (c) Distribution of
the error in entanglement quantification for weakly entangled ground states (WE1) of the ferromagnetic transverse-field Ising model with field
strengths h > 1 over a range of 2 � Nbin � 10 for a spin chain with L = 10 sites. Error distances δ are measured in units of bins. A similar
performance is obtained for larger system sizes, as is shown in the inset for the case of L = 18.

detailed picture of ρ0 by applying a set of W fixed but
random local unitary transformations Ui>1 = ui,1 ⊗ · · · ⊗ ui,L

with i = 2, . . . ,W , where each local unitary ui>1,l on site l
is drawn independently from the circular unitary ensemble
(CUE) [24]. The full information about ρ0 can be obtained by
measuring along W = 2L orthogonal directions; this would
lead to full state tomography. Here, we explore whether a
limited number of measurement axes is sufficient for entangle-
ment quantification. For that purpose, we start with a simple
experimentally accessible way of generating independent
measurement directions via local unitary rotations. Measur-
ing the rotated ρ �→ ρi = Uiρ0U

†
i as before, we obtain the

probabilities

pi j = 〈 j|ρi| j〉 = Tr[Uiρ0U
†
i | j〉〈 j|], (1)

with j = 1, . . . ,D labeling the D = 2L spin configurations.
To begin, we consider the case with W = 11. In this way we
obtain a two-dimensional representation of ρ0 in terms of the
probabilities pi j , shown for three exemplary states of different
entanglement classes in Fig. 1(a).

While we have chosen the simplest form of local unitary
transformations Ui for the image generating protocol, note that
it is not unique and can just as well comprise many-site unitary
transformations respecting the symmetry of the entanglement
measure (see Appendix F for details). For any protocol, a
natural choice, though not absolutely essential, is to have U1

be the D × D identity operator, i.e., ρ1 = ρ0, such that p1 j =
〈 j|ρ0| j〉. We found that while this choice does not affect the
performance of the network trained with the simplest protocol
proposed here, it turns out to be crucial for the network to
achieve a comparable performance when trained with some
of these alternative protocols.

III. SUPERVISED LEARNING OF ENTANGLEMENT

In the following we now outline how the introduced statis-
tical image generation can be used to perform a quantitative
entanglement classification task by means of a supervised
learning procedure. For pure states a natural entanglement
measure is the half-chain entanglement entropy

S(ρ) = −Tr<[ρ< ln ρ<], (2)

with ρ< = Tr>ρ being the reduced density for the first half
of the chain, obtained by tracing out the degrees of freedom
of the remainder > from the full density matrix ρ. For mixed
states we use instead the logarithmic negativity [25],

EN (ρ) = log2 ||ρT< ||, (3)

where ||ρT< || denotes the trace norm of ρT< and ρT< is the
partial transpose of ρ on the degrees of freedom of the first
half of the chain.

For the desired quantification task we bin the range of val-
ues for the respective entanglement measure into Nbin equally
spaced intervals. We fix an interval IS = [0, Smax] for the en-
tanglement entropy S, say, with a suitably chosen Smax and
decompose IS = ⋃Nbin

n=1 ISn into ISn = [(n − 1)�S, n�S) with
n = 1, . . . , Nbin = Smax/�S. Each of these bins, labeled by n,
corresponds to the category with which we aim to associate
the images. This binning process is necessary when there are
no training images in some range of entanglement values, and
consequently, the largest value of Nbin permissible is such that
there are no empty intervals ISn . With this we can now perform
an entanglement classification problem as in conventional im-
age recognition. We adapt a convolutional neural network to
process the two-dimensional image of the quantum state as
shown in Fig. 1(b). Two layers of feature maps, comprising 64
and 32 features, respectively, are extracted from the images.
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These feature data are then flattened and fitted across the
images from the training library to their respective Nbin labels.
See Appendix A for more details on the network. We quan-
tify the classification accuracy on test images by the signed
binning error distance δ = n − nANN measuring the difference
between the bin label n from the exact entanglement content
and nANN predicted by the ANN. A typical distribution of δ

for various 2 � Nbin � 10 is shown in Fig. 1(c) for a specific
benchmark problem. Importantly, the entanglement classifica-
tion exhibits a well-defined error, whose distribution is sharply
peaked around δ = 0, implying no error, with some further
appreciable weight only for δ = ±1.

IV. RESULTS

It is the key goal of the following analysis to explore
the performance of the quantum entanglement recognition
scheme for a large variety of quantum states.

A. Models

As benchmark systems we choose a set of paradigmatic
one-dimensional quantum many-body models. This includes
the transverse-field Ising chain with either ferromagnetic
(TFI+) or antiferromagnetic (TFI−) couplings as well as the
XX model:

HTFI± = ∓
∑

〈i, j〉
σ x

i σ x
j − h

L∑

i=1

σ z
i , (4)

HXX = −
∑

〈i, j〉

(
σ x

i σ x
j + σ

y
i σ

y
j

) − h
L∑

i=1

(−1)iσ z
i . (5)

Here, σ
x,y,z
i denote the Pauli matrices at site i = 1, . . . , L, and

h denotes a magnetic field strength. While throughout this
paper we show numerical data for L = 10, we emphasize that
the entanglement recognition does not depend significantly on
L. This scalability with system size is exemplified in Fig. 1(c),
where we also include data for L = 18. Although we focus
on a particular set of models, we find that our results do not
depend crucially on the model details as discussed below,
suggesting that our observations are generic and therefore
applicable in a broad context.

B. Ground and excited states

We start by studying weakly entangled ground states of the
considered spin chains. First, we explore the performance by
testing on the same class of states, e.g., with ground states of
TFI+ after training the ANN with ground states of the same
model (see Appendix B for details). The network performs
remarkably well in this case, as can be seen in Fig. 1(c),
showing a typical distribution of the binning error δ. Almost
independent of Nbin, one can recognize a strongly peaked
distribution with an appreciable weight beyond δ = 0 only
at δ = ±1. As the mean error is practically vanishing, the
performance is effectively captured by the standard deviation,
which can therefore be used as a well-defined error quantifier.
The fact that the network typically fails at most by assigning
a state to the nearest-neighboring bin suggests that the dom-
inant error originates from those instances where the actual

FIG. 2. Characterization of network performance on weakly en-
tangled states through its binning error statistics. (a) The rescaled
mean μ̄ (left) fluctuates negligibly about zero while the rescaled
standard deviation σ̄ (right) decreases with increasing total number
of bins Nbin used for the training. The binning error is rescaled
by Nbin to reflect the reduction in the maximum entanglement en-
tropy error as Nbin increases. The plots are shown for the three
classes of weakly entangled ground states (i.e., obtained for fields
h > 1); considered are those from the transverse-field ferromagnetic
(TFI+) and antiferromagnetic (TFI−) Ising models as well as the XX
model. Shown also is the corresponding plot for the full spectrum of
TFI+ excited [TFI+(ex)] states (red), indicating the network’s ap-
plicability beyond area-law-type entanglement. (b) Analogous plots
showing the robustness of the TFI+ trained network to perturba-
tions when tested on λTFI+ ground states for various strengths of
perturbation λ.

entanglement entropy resides close to the border between two
bins. A particularly important consequence of Fig. 1(c) is
that the performance of the network improves upon enlarging
Nbin. This can be directly quantified by the statistics of the er-
ror δS = Sn − SANN

n = δ × �S, where Sn denotes the binned
value of the computed entanglement entropy and SANN

n de-
notes the one predicted by the ANN. For comparing between
the performances for different values of �S, we considered
instead the mean μ̄ and standard deviation σ̄ of the rescaled
error, δ̄ = δS/Smax = δ/Nbin, the results of which are shown
in Fig. 2(a) for all the different models considered. In each
case, |μ̄| < 0.03 is negligible while a decreasing σ̄ trend indi-
cates a clear improvement in network prediction accuracy for
larger Nbin.

As a next step, we show that our scheme also applies
to excited states with volume-law entanglement, where we
again find strongly peaked distributions for δ similar to that in
Fig. 1(c). We have included for one representative case, HTFI+,
the corresponding μ̄ and σ̄ in Fig. 2(a). We have also checked
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that the network performs equally well when making the
Ising chain nonintegrable and across different entanglement
measures (see Appendix D for details). Specifically, we added
an integrability-breaking perturbation,

HλTFI+ = HTFI+ + λ
∑

〈i, j〉
σ z

i σ z
j , (6)

where λ characterizes the strength of the perturbation. Re-
markably, as shown in Fig. 2(b), the ANN trained with ground
states of HTFI+ is robust to such a perturbation, whose per-
formance when tested on ground states of HλTFI+ does not
suffer significantly for weak perturbations (λ = 0.1), or even
for strong perturbations (λ = 0.5) when Nbin is large.

C. States obtained from unitary dynamics

As a next step we aim to explore quantum entanglement
recognition in nonequilibrium dynamics. This is of particular
importance for many quantum simulator platforms, where it
is much more natural to realize time evolution than, for in-
stance, ground state preparation. Here, we will be exclusively
interested in whether the ANN can be trained to quantify the
entanglement dynamics associated with time evolution under
the same Hamiltonian H . This effectively probes the ability
of the network to differentiate between the entanglements
present in different superpositions of the eigenstates of H . For
the case of unitary dynamics, the training library consists of
images of states evenly sampled across the statistical image
time series of 1000 different initial randomly polarized states
evolving in time under H . In this case, there are essentially no
gaps in the entanglement distribution of the training images,
so that unlike for ground and excited states, binning into
intervals is not necessary. Consequently, we are no longer con-
strained as before to having the network perform a “discrete
classification” task. Instead, the network can be modified to
perform a “continuous classification” task by appending to
the network in Fig. 1(b) a single output neuron that directly
predicts the value of the entanglement measure S or EN . See
Appendix A for details on network structure and Appendices
B and C for details on the training image library.

As a benchmark, we consider the evolution of randomly
polarized states under HTFI+. The resulting prediction for the
entanglement entropy SANN(t ), based on its statistical image
time series, in comparison to the exact real-time evolution
S(t ), is shown in Fig. 3(a) for a specific instance (thin green
solid curve and thin black dashed curve respectively) and aver-
aged over 100 different initial randomly polarized states (thick
green solid curve and thick black dashed curve respectively)
with a shaded region indicating the associated standard devia-
tion of the error in the network prediction. As one can see, the
network is able to almost precisely predict the entanglement
dynamics, achieving essentially vanishing error for S(t ) under
unitary evolution across the timescales probed.

D. States obtained from dissipative dynamics

In an experimentally realistic context the major challenge
is to quantify entanglement for mixed states. For this pur-
pose we study exemplarily the logarithmic negativity EN for
nonunitary time evolution as described by a Lindblad master

0.0
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0.0

1.0

2.0

3.0

FIG. 3. Excellent quantification of entanglement dynamics by a
network trained under the same time evolution. (a) Unitary dynam-
ics under HTFI+ with h = 1 of the entanglement entropy S(t ) and
(b) dissipative dynamics with small dissipation parameter γ = 0.01
of the logarithmic negativity EN (t ), for a representative initial ran-
dom polarized state (Representative) and averaged over 100 different
initial randomly polarized states (Average). In contrast to the actual
values plotted with black dashed curves, the network predictions are
plotted in (a) green and (b) blue, with a corresponding shaded region
indicating the associated standard deviation of the prediction error
over the initial random states.

equation of the form ∂tρ = −i[HTFI+, ρ] + γ
∑L

i=1(σ x
i ρσ x

i −
ρ) with γ characterizing the dissipation strength. Analogous
to the case of unitary dynamics, the training images are ob-
tained from a statistical image time series of 1000 different
initial randomly polarized states evolving in time under the
above Lindblad master equation. We find that the ANN is
capable of accurately tracking the evolution of EN for the
studied dissipative dynamics. Analogous to the purely unitary
case, we compare in Fig. 3(b) the network-predicted EANN

N (t )
(blue curves) with the exact result EN (t ) (black curves) for the
case of weak dissipative dynamics with γ = 0.01. For early
times t < 100 ∼ γ −1, the evolution is approximately unitary,
and EN (t ) increases linearly with time. At later times t > 100,
however, EN (t ) gradually decays as dissipation kicks in lead-
ing to a reduction in entanglement. The network performs
very well, although slightly worse than the unitary case as
can be seen by its slightly broader range of fluctuations in
prediction error (shaded region) in Fig. 3(b) compared with
that in Fig. 3(a). We characterize the average performance of
the network by the time-dependent mean μ(t ) [Fig. 4(a)] and
standard deviation σ (t ) [Fig. 4(b)] of the error in entangle-
ment prediction by the network, δSANN(t ) for the unitary case
and δEANN

N (t ) for the nonunitary case, taken over 100 different
initial randomly polarized states.

E. Generalizing to time evolution under
a perturbed Hamiltonian

An additional challenge in experiments is the presence of
perturbations to a model Hamiltonian that is being emulated.
For applications in experiments, therefore, it is desirable for
an ANN that is trained for a specific Hamiltonian H to still be
relatively accurate in quantifying the entanglement of states
evolved by a weakly perturbed Hamiltonian H̃ . To this end,
for our case with H = HTFI+, we consider again the perturbed
Hamiltonian H̃ = HλTFI+ [Eq. (6)]. The effects of perturbation
on the network’s performance are shown in Fig. 5. We find that
when the perturbation is weak, λ = 0.01, the ANN trained by

033135-4



QUANTUM ENTANGLEMENT RECOGNITION PHYSICAL REVIEW RESEARCH 3, 033135 (2021)

0.0

0.0

FIG. 4. Effects of image noise on the network performance
on dynamical entanglement quantification. (a) The mean μ(t ) and
(b) standard deviation σ (t ) of the prediction error in the respective
entanglement measures taken over the 100 initial states used to
produce the plots in Figs. 3(a) and 3(b). For the dissipative case,
color variation from blue (noiseless) to red indicates the level of
noise introduced to the statistical image time series via sampling the
wave function a finite M number of times to generate each row of the
image.

images of states evolving under HTFI+ with weak dissipation
γ = 0.01 is still able to accurately quantify the entanglement
dynamics on average but does so with a larger error at times
t > 100 ∼ γ −1, when dissipation begins to dominate. When
the perturbation is strong, λ = 0.2, the error begins to grow
from t > 0, while it starts to underpredict the entanglement
on average after t � 2γ −1. In the worst-case scenario, when
in addition the actual dissipation is twice as large as what was
used for training, the ANN begins to overpredict on average
after t � 4γ −1 by an amount that increases with time. Inter-
estingly, a stronger dissipation does not further increase the
standard deviation of the prediction error. The above suggests
that dissipation modifies the statistical images in a systematic
way which on the one hand can be recognized by the ANN but
on the other hand lacks a simple extraction of the dissipation
strength. Consequently, the ANN overpredicts (underpredicts)
on average the late time entanglement when the actual dissipa-
tion is weaker (stronger) than what was used for training. The
presence of a strong perturbation to the Hamiltonian, however,
does strongly deform the statistical images and cripples the
performance of the ANN.

V. SUMMARY AND DISCUSSION

In this paper we have introduced quantum entanglement
recognition based on machine learning techniques. Our proto-
col provides a controlled and unbiased way to extract quantum
state information by essentially applying projective measure-
ments in W predetermined but randomly selected bases. By
organizing this information into a statistical image, the entan-
glement quantification task is mapped into the conventional
image recognition task, for which convolutional neural net-
works have been optimized to achieve excellent performance.
In the large W ∼ 2L limit, these statistical images essentially
capture all the information present in the density matrix, such
that it would not be surprising if a trained convolutional neural
network is able to successfully reconstruct the entanglement
associated with a statistical image.

The central result of this work is to show that indeed the
above expectation is correct and, more remarkably, only a
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FIG. 5. Effects of perturbations on the network performance of
dynamical entanglement quantification. Testing the network that was
trained on statistical images of states evolving under HTFI+ with
dissipation parameter γ = 0.01 on those evolving under a perturbed
version HλTFI+ = HTFI+ + λ

∑
〈i, j〉 σ

z
i σ z

j with weak (dark blue) and
strong (green) perturbations λ for the same dissipation, as well as
with stronger dissipation for the strongly perturbed case (yellow).
Plots of the (a) logarithmic negativity EN (t ) (dashed curves) and
those predicted by the network EANN

N (t ) (solid curves) averaged
over 100 initial states and the corresponding (b) mean μ(t ) and
(c) standard deviation σ (t ) of the prediction error. (b) and (c) For
comparison, we show the blue reference plots from Figs. 4(a), and
4(b) respectively, i.e., for the case of λ = 0 and γ = 0.01.

small set of measurement bases W 	 2L is required. This
is the key feature going beyond previous works on applying
machine learning techniques to characterize quantum matter
[26–30], which operate either in a single measurement basis
[26,27,29,30] or by considering low-order correlation func-
tions [28]. By applying to various different classes of quantum
many-body states we show that the resulting quantum en-
tanglement recognition can be assigned a well-defined error
making the scheme accurate and reliable. While the networks
primarily learn model-specific features of the entanglement,
which was demonstrated by the inability of a network trained
for one class of ground states to always generalize to another
class of ground states (see Fig. 7 in Appendix E), we show that
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the networks in our scheme are at least capable of generalizing
to weak perturbations, e.g., in the context of nonequilibrium
dynamics, implying that the networks can learn universal
features of quantum entanglement, and from a theoretical
standpoint, that such features are already well encoded within
the state information obtained from W 	 2L measurement
bases. A generalizable network is particularly important for
its potential use in experiments, where the microscopic details
of the dynamics might not be known in full detail.

In the experimental context, we showed that indeed the
network is able to perform accurately in the presence of weak
perturbations. In addition, the probabilities pi j from Eq. (1)
can only be estimated from a finite number of measure-
ments M of spin configurations, introducing noise into the
statistical images. In Figs. 4(a) and 4(b), we have included
results for such noisy images, where one can see that even
with M = 3000 per rotation the dynamics can be reproduced
well, with a mean |μ(t )| � 0.1 and standard deviation σ (t ) �
0.2 of the prediction error δEANN

N (t ), i.e., within 5–10% of
the actual values of EN (t ). For the considered W = 5 ro-
tations this implies a total number of 15 000 measurements,
which is much less compared with a recent experiment on
probing Rényi entropies [16]. Let us emphasize, however,
that we have not attempted to optimize the ANN for the
entanglement recognition task at finite M, so that further
improvements on this front will likely appear in the future.
While the perfectly optimized ANN is not expected to over-
come the intrinsic exponential-in-system-size scaling barrier
associated with quantum measurements, our scheme provides
the means to push the experimental limits today substantially
closer towards the intrinsic barrier. This opens the door to the
development of machine learning tools that directly enable
experimental studies on quantum entanglement in systems
beyond the few-body context. This is all the more important
as many phases of strongly correlated quantum matter are
characterized by their entanglement content such as in, e.g.,
quantum spin liquids as they have been recently experimen-
tally realized on noisy intermediate-scale quantum devices
[31] and programmable quantum simulators [32].
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APPENDIX A: CONVOLUTIONAL NEURAL NETWORKS
FOR ENTANGLEMENT RECOGNITION

Based on the statistical images generated out of quantum
many-body states, we perform a conventional image recogni-
tion task using a convolutional neural network. In the case
of ground and excited states for which images are labeled
by their half-chain entanglement entropy binned into Nbin

intervals, we used a network consisting of two consecutive
convolution layers followed by a hidden dense layer with
Nbin nodes established by the different image labels. The

first convolution layer scans a statistical image and constructs
64 different feature maps, which are in turn scanned by the
second layer to construct 32 new feature maps. This feature
information is then flattened and fitted across the images from
the training library to their respective Nbin labels of the dense
layer via the “categorical cross-entropy” loss function.

In the case of states obtained from dynamics for which
images are labeled directly by their (continuous) half-chain
entanglement entropy or logarithmic negativity, an additional
dense layer with a single node is appended to the above
network. The data are then fitted to this last node via the
“mean-square error” loss function. To increase the quantifi-
cation precision, we increase the number of nodes in the
preceding dense layer to Nbin = 50.

APPENDIX B: TRAINING LIBRARIES

For unbiased training of the ANN, the training library is
constructed by generating an approximately equal number of
widely varied reference images in each of the Nbin categories,
i.e., images from states with entanglement spread across ISn

for each bin n.

1. Ground states

We solve for the ground states for different magnetic field
strengths h > 1 for each of the model classes to obtain the
corresponding libraries of labeled images with a uniformly
distributed entanglement entropy S ∈ IS = [0, ln 2]. To ensure
that there are no directional biases in the images concerning
a specific orientation on the Bloch sphere, a uniform random
rotation U = ⊗L

i=1u is applied to each state before generating
its corresponding statistical image. We separately train the
ANN with the library of a particular model class and then test
the entanglement classification with new states it has not seen
before from either the same or a different model class. Each
training library contains 50 000 images, while an additional
10 000 images are generated for each test library.

2. Excited states

We focus on the TFI+ model (as well as a nonintegrable
modification λTFI+) for the study of excited states. We
solve for the eigenstates and their corresponding entangle-
ment entropies (also logarithmic negativities) for a range of
near-critical field strengths h ∈ (1, 1.07). For each h value, the
eigenstates are grouped into Nbin bins ranging between their
maximum and minimum entanglement entropies. One state is
randomly selected from each bin for image generation, while
the rest of the eigenstates are discarded.

3. Unitary and dissipative dynamics

We time-evolve 1000 different initial randomly polarized
states for 1000 time steps under HTFI+ for the unitary case,
and under the Lindblad master equation of the form ∂tρ =
−i[HTFI+, ρ] + γ

∑L
i=1(σ x

i ρσ x
i − ρ) with γ = 0.01 for the

dissipative case. For each initial state, its time-evolved states
at 250 random but evenly spaced time steps are selected for
image generation, giving a total of 250 000 images on which
the ANN is trained.
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FIG. 6. Distribution of the signed binning error distance δ in
entanglement quantification of the ANN when trained and tested on
excited states of (a) and (c) the ferromagnetic transverse-field Ising
model HTFI+ and (b) and (d) a nonintegrable version of it, HλTFI+ =
HTFI+ + λ

∑
<i, j> σ z

i σ z
j with λ = 0.3, over a range of 2 � Nbin �

10. The network accurately quantifies entanglement independent of
the entanglement measure, where in (a) and (b) the network was
trained on images labeled by their half-chain entanglement entropy
S (binned), while in (c) and (d) the network was trained on images
labeled by their half-chain logarithmic negativity EN (binned). The
respective error distances δ are measured in units of bins.

APPENDIX C: NUMERICAL TOOLS

The ground and excited states are solved via exact diag-
onalization for spin chains of L = 10 sites. To speed up the
process of image generation, ITensor [33] was employed to
solve for the ground state of HTFI+ on a spin chain with
L = 18 sites as well as perform the localized unitary rotations
[inset of Fig. 1(c)]. In this case, smaller images with W = 5
had to be used due to limited computational memory. The
time evolution of a given initial state is numerically solved
by employing the mesolve function of Quantum Toolbox in
PYTHON (QuTiP) [34,35].

APPENDIX D: NETWORK PERFORMANCE ON EXCITED
STATES OF THE NONINTEGRABLE ISING MODEL

BASED ON DIFFERENT ENTANGLEMENT MEASURES

We explore the network performance on excited states of
the nonintegrable Ising model based on different entangle-
ment measures (Fig. 6). For both measures investigated –
the entanglement entropy S and the logarithmic negativity
EN – the network performs equally well as compared to the
integrable cases shown in Fig. 1(c) of the main text.

FIG. 7. Characterization of network performance on weakly en-
tangled states. (a) The mean μ and (b) the standard deviation σ

of the binning error of the network for all possible training-test
combinations from these three classes. The results shown are for the
case of Nbin = 10.

APPENDIX E: GENERALIZABILITY OF ANN TO
GROUND STATES OF DIFFERENT CLASSES

We explore the capabilities of the ANN to generalize to
unfamiliar data by testing the network with states from model
classes different from those it was trained on. A respec-
tive summary of all training-test combinations is shown in
Figs. 7(a) and 7(b) for Nbin = 10 containing both the mean μ

and the standard deviation σ of δS. As expected, the network
performs best when tested on the same class of states that it
was trained on. However, it can also generalize to different
states in some instances, e.g., when testing on TFI+ states,
albeit with a slightly poorer performance and in a nonrecip-
rocal fashion. These observations suggest that while the ANN
primarily learns model-specific features of the entanglement,
it does in fact learn also about some universal features of
quantum entanglement, the extent of which appears to depend
on the type of states used for training.

APPENDIX F: ENTANGLEMENT QUANTIFICATION
WITH ALTERNATE PROTOCOLS

In addition to the (simplest) protocol Ui = ui,1 ⊗ · · · ⊗ ui,L

presented in the main text, we have considered statistical
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FIG. 8. Analogs of (a) the right panel of Fig. 2(a) in the main text and (b) and (c) Figs. 7(a) and 7(b), respectively, for protocol U A
i>1.

FIG. 9. Analogs of (a) the right panel of Fig. 2(a) in the main text and (b) and (c) Figs. 7(a) and 7(b), respectively, for protocol U B
i>1.

FIG. 10. Analogs of (a) the right panel of Fig. 2(a) in the main text and (b) and (c) Figs. 7(a) and 7(b), respectively, for protocol UC
i>1.
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image generation via alternate protocols. To illustrate the
independence of protocols respecting the symmetry of the
(half-chain) entanglement measures, we show in Figs. 8–10
the network performance based on the following multiqubit
unitary transformations:

U A
i>1 = ui,(1,5) ⊗ ui,2 ⊗ ui,3 ⊗ ui,4 ⊗ ui,6 ⊗ · · · ⊗ ui,L, (F1)

U B
i>1 = ui,(1,4,5) ⊗ ui,2 ⊗ ui,3 ⊗ ui,6 ⊗ · · · ⊗ ui,L, (F2)

UC
i>1 = ui,(1,2,3,4,5) ⊗ ui,(6,7,8,9,10), (F3)

with i = 2, . . . ,W , where ui,( j1, j2,..., jn ) denotes an SU(2n) uni-
tary operator drawn independently from the circular unitary
ensemble (CUE) [24] that acts on sites j1, j2, . . . , jn. The
performances based on the different protocols are essentially
identical when testing on the same class of ground states that
the ANN was trained on but vary in the extent to which they
are able to generalize to the other classes.

APPENDIX G: ABILITY OF THE NETWORK
TO INTERPOLATE

We show here an interesting finding that the network
is able to interpolate for the case of dissipative dynamics.
Specifically, we trained a network on images drawn from
states evolved under ∂tρ = −i[HTFI+, ρ] + γ

∑L
i=1(σ x

i ρσ x
i −

ρ) with γ = 0.01 and γ = 0.03 and tested it on states evolved

0.0

0.0

FIG. 11. Ability of network to interpolate in the dissipation pa-
rameter space. (a) The mean μ(t ) and (b) standard deviation σ (t ) of
the prediction error in EN (t ) analogous to Figs. 4(a) and 4(b) for the
network trained on dissipative evolution with γ = 0.01 and γ = 0.03
but tested on γ = 0.02.

under the same dissipative dynamics but with γ = 0.02. The
network performance is shown in Fig. 11. In the absence of
image noise, remarkably, the network is able to accurately
predict the entanglement dynamics with a performance com-
parable to the case in which it was tested with the same
dissipation parameter as it was trained on, shown for the
case of γ = 0.01 in Figs. 4(a) and 4(b) of the main text. In
the presence of sampling noise, the quantitative deviation is
two to three times worse compared with those of Figs. 4(a)
and 4(b).
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