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In recent years, dynamical quantum phase transitions (DQPTs) have emerged as a useful theoretical concept to
characterize nonequilibrium states of quantum matter. DQPTs are marked by singular behavior in an effective free
energy λ(t ), which, however, is a global measure, making its experimental or theoretical detection challenging
in general. We introduce two local measures for the detection of DQPTs with the advantage of requiring fewer
resources than the full effective free energy. The first, called the real-local effective free energy λM (t ), is defined
in real space and is therefore suitable for systems where locally resolved measurements are directly accessible
such as in quantum-simulator experiments involving Rydberg atoms or trapped ions. We test λM (t ) in Ising
chains with nearest-neighbor and power-law interactions, and find that this measure allows extraction of the
universal critical behavior of DQPTs. The second measure we introduce is the momentum-local effective free
energy λk (t ), which is targeted at systems where momentum-resolved quantities are more naturally accessible,
such as through time-of-flight measurements in ultracold atoms. We benchmark λk (t ) for the Kitaev chain, a
paradigmatic system for topological quantum matter, in the presence of weak interactions. Our introduced local
measures for effective free energies can further facilitate the detection of DQPTs in modern quantum-simulator
experiments.
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I. INTRODUCTION

In the last decades the field of nonequilibrium quantum
matter [1,2] has developed into a central research field in
physics not only driven by fundamental theoretical ques-
tions, but also by impressive experimental advances in various
quantum-simulator platforms such as ultracold atoms [3] or
trapped ions [4]. The level of control and precision available in
modern experiments has facilitated the observation of various
out-of-equilibrium phenomena such as many-body localiza-
tion [5–7], the quantum Kibble-Zurek mechanism [8–13],
gauge-theory dynamics [14–18], many-body dephasing [19],
and dynamical phase transitions [20–25].

One key approach to characterize the resulting nonequi-
librium quantum states has been to extend well-established
concepts from equilibrium statistical physics [26,27] to the
out-of-equilibrium regime, such as the notion of a local or-
der parameter in the long-time steady state of a quantum
many-body system, e.g, in the wake of a quench [28,29].
Another extension has taken shape in the theory of dynam-
ical quantum phase transitions [30–32] (DQPTs). Whereas
thermal phase transitions are connected to nonanalyticities
at critical temperature in the thermal free energy [33–35],
a quantum many-body system during its temporal evolution
can undergo a DQPT when the dynamical analog λ(t ) of
the free energy exhibits nonanalyticities at critical evolution
times tc. Much the same way as equilibrium phase transi-
tions are controlled by a parameter such as temperature or
pressure that can be properly tuned in an experiment, in the
theory of DQPTs a quench parameter such as interaction or

magnetic-field strength determines the presence of DQPTs or
lack thereof. Moreover, evolution time t can be understood
as complexified inverse temperature in this analogy [30]. A
DQPT suggests that at the critical time, the state is drastically
different from the initial one, and this difference is simply a
consequence of the time evolution. Furthermore, such a devia-
tion from the initial state can be quantified with the associated
information contained in the effective free energy λ(t ), also
known as return probability or rate function. This object is
a global quantity, which in general is difficult to access in
experiments. In fact, such global measurements in quantum
many-body systems require resources that scale exponentially
in system size, leading naturally to the question of whether the
essential information on DQPTs can also be obtained through
less demanding measurements.

Guided by this experimental consideration, this work in-
troduces two local versions of the effective free energy: λM (t )
in real space and λk (t ) in momentum space, both of which
can reliably and controllably detect DQPTs, with the added
advantage that they can be experimentally obtained with much
less effort compared to the effective free energy λ(t ). As we
will show later, for specific quench protocols λ(t ) is a function
of projectors over all lattice sites of the system, and conse-
quently it is a global measure. With the aim of introducing the
real-local effective free energy λM (t ), we consider projectors
not on all the N degrees of freedom of the chain, but on only
M � N of them. Since DQPTs occur in the thermodynamic
limit N → ∞, the sharp feature emerging in λ(t ) at the criti-
cal time is smoothed out in λM (t ), but nevertheless one can
still extract the critical behavior through a scaling analysis
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[36–38]. We test the validity and efficacy of λM (t ) in the
nearest-neighbor Ising model since the exact solution of the
problem provides analytic results with which the numerical
estimation of λM (t ) can be benchmarked [27,30,33,39,40]. As
a further example, we consider the Ising chain with power-law
interactions in order to assess how well λM (t ) can predict the
presence of an underlying DQPT in this context. Moreover,
in such a setup we can focus on different kinds of DQPTs
[41–49]. Interestingly, through scaling analysis of the real-
local effective free energy λM (t ) at different configuration
sizes M we are able to extract universal critical exponents
for the various DQPTs arising in the dynamics of the spin
chains we consider. This is particularly useful in the quest
for dynamical quantum universality classes, in which many
open questions remain despite several recent studies within
the framework of DQPT [49–53].

In case experimental measurements involve operators de-
fined in momentum space, it is more suitable to use the
momentum-local effective free energy λk (t ) to detect DQPTs.
We demonstrate this measure in an interacting Kitaev chain
[54] (IKC) representing a paradigmatic model for topological
quantum matter. As a first step, we motivate the introduction
of λk (t ), which conveniently relies on the fact that the effec-
tive free energy in the noninteracting Kitaev chain [55] can be
derived exactly in terms of local observables in k space.

The theory of DQPT was developed to establish a mathe-
matical background to concepts such as phase transitions in
the dynamical regime, where tools and quantities provided by
statistical physics are not applicable. This necessitates intro-
ducing new objects, such as the Loschmidt amplitude [30,56]

L(t ) = 〈ψ |e−iHt |ψ〉, (1)

which quantifies the overlap of the time-evolved state
|ψ (t )〉 = e−iHt |ψ〉 from the initial one |ψ〉. The structure of
the Loschmidt amplitude resembles the boundary partition
function defined in statistical mechanics, but the time-
evolution operator makes it a complex quantity instead of real.
This analogy suggests the introduction of the effective free
energy

λ(t ) = − lim
N→∞

1

N
ln |L(t )|2, (2)

where N is the number of degrees of freedom. Motivated
by equilibrium physics where phase transitions are defined
at those values of the control parameter that make the free
energy nonanalytic, similarly DQPTs occur at the time tc
when the effective free energy shows a nonanalytic cusp. In
order to observe a DQPT, a specific protocol must be adopted
to bring the system out of equilibrium [57,58]. Several ways
have been studied but the most common one consists of a
global quantum quench, where an out-of-equilibrium initial
state is suddenly quenched by a given Hamiltonian. Usually,
the initial state is prepared as the ground state of an initial
Hamiltonian, a control parameter of which is then sub-
sequently suddenly switched to a different value, thereby
realizing the final Hamiltonian [59].

The equilibrium and dynamical realms do not have in
close analogy only the definition of phase transitions, but
other important properties have been found in both regimes.
For example, through renormalization group (RG) analysis it

has been found that the DQPTs emerging from quenching
the system with the classical nearest-neighbor Ising chain
show scaling and universality, clear features of continuous
phase transitions [30,41,44]. When the range of interactions is
extended to realize a long-range quantum Ising chain, differ-
ences between the equilibrium and dynamical regimes arise.
In particular, the dynamical phase diagram fundamentally dif-
fers from the equilibrium one [48] and, in particular, a new
type of cusp in the effective free energy appears that does
not correspond to any zeros in the dynamics of the order
parameter, thereby leading to the definition of anomalous
DQPTs [45–47,60]. Although these anomalous cusps have not
been investigated in experiments yet, a lot of experimental
achievements have been reached so far in the field. Using
Rydberg atoms [61–66] it is in fact possible to mimic the
time evolution of spin chains under Ising Hamiltonians whose
interaction range can be tuned properly. Employing instead
ultracold-atom platforms [21], DQPTs in topological systems
have been explored, quenching the system from different
topological classes [34,67–72]. In this context, it is possible
to relate the DQPT with the so-called topological dynami-
cal order parameter [67,73], extending the bridge between
equilibrium and out of equilibrium, where the introduction of
an order parameter on general grounds is currently a major
challenge.

The paper is organized as follows. In Sec. II we motivate
the reasons why we are interested in introducing new local
quantities to detect DQPTs. In particular, when experimental
measurements concern spin degrees of freedom, it is more
natural to define such a quantity in real space, called real-local
effective free energy λM (t ). On the other hand, when observ-
ables are defined in momentum space, it is sensical to use a
tool which is also defined in this framework. Such a quantity
is named momentum-local effective free energy λk (t ). Subse-
quently, we describe the models used to test both λM (t ) and
λk (t ). In the former case we consider the nearest-neighbor
and long-range quantum Ising chains. For the latter case, we
choose the Kitaev chain with small interactions. In Sec. III, we
mathematically rigorously introduce the real-local effective
free energy λM (t ), and provide results showing its efficacy
in detecting DQPTs in suitable models. A similar analysis
is carried out in Sec. IV, where we focus instead on the
momentum-local effective free energy λk (t ). We summarize
our findings in Sec. V, and furthermore we provide supple-
mental results in Appendix A, specifications of our numerical
implementations in Appendix B, and derivational details in
Appendix C.

II. EXPERIMENTALLY ACCESSIBLE QUANTITIES TO
DETECT DQPTs

The main goal of this paper is the introduction of two
quantities for the reliable detection of DQPTs that require
a significantly reduced amount of resources as compared to
the Loschmidt amplitude. Depending on the particular system
under consideration, it might be more convenient to consider
quantities in either real space or in momentum space. As a
consequence, we consider both scenarios in illustrating the
efficacy of the real-local effective free energy λM (t ) and the
momentum-local effective free energy λk (t ). The full details
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of their formal definition will be provided, respectively, in
Secs. III and IV, while for the moment we give a brief
overview of both measures. As opposed to the Loschmidt echo
|L(t )|2 which is a global quantity, the real-local Loschmidt
echo |LM (t )|2 is not since it is obtained as the expectation
value of a projector P̂M onto a given local real-space con-
figuration at M (usually adjacent) sites on the lattice, where
M is finite and therefore considered much smaller than the
system size N . The aforementioned local configuration can be
conveniently chosen on the associated M sites as the product
state that is closest to the initial state of the quench protocol
under consideration. On general grounds, we can therefore
write |LM (t )|2 = 〈ψ (t )|P̂M |ψ (t )〉, where |ψ (t )〉 is the time-
evolved state. In particular, when M = N and the initial state
is the configuration onto which P̂M projects, λM (t ) = λ(t )
becomes exact. In practice, the useful range of values that
M can assume is given by the tradeoff between being small
enough in order to feasibly measure the real-local Loschmidt
echo |LM (t )|2 in an experiment, and large enough to observe
a clear signature of the underlying DQPT in the real-local ef-
fective free energy λM (t ). As we will show in Sec. III, scaling
behavior allows us to surmise the presence of a DQPT from
a few small values of M. The real-local effective free energy
λM (t ) is useful in the context of spin Hamiltonians, such as
nearest-neighbor or power-law interacting Ising chains, where
typical experimental measurements involve spin degrees of
freedom on a lattice in real space.

On the other hand, the momentum-local effective free
energy λk (t ) is given by the product of momentum uncorre-
lated two-body correlation functions. In general, the effective
free energy λ(t ) can be formulated in terms of n-point func-
tions in momentum space. Our construction of λk (t ) captures
the information of the underlying DQPT contained only in
two-point functions, which are easily accessible in modern
ultracold-atom and ion-trap experiments [21]. In case of, e.g.,
a two-band free-fermionic model, λk (t ) = λ(t ) is exact. In
more generic models where experimental measurements con-
cern mainly observables defined in momentum space, it is
natural to study the behavior of the momentum-local effective
free energy λk (t ) to investigate the emergence of DQPTs as
an adequate approximation to λ(t ). This situation arises, for
example, in topological systems where one typically measures
expectation values of fermionic operators defined in momen-
tum space.

III. REAL-LOCAL EFFECTIVE FREE ENERGY λM (t )

Because the Hilbert space of a generic quantum many-body
model scales exponentially in system size, measurement of
the effective free energy λ(t ) due to dynamics actuated by
such a model will also require a number of resources ex-
ponentially large in system size. We are therefore interested
in defining quantities that can be efficiently obtained with
significantly fewer resources, yet that are still able to reliably
detect DQPTs.

A. Nearest-neighbor classical Ising model

We take a first step in this direction by introducing the real-
local effective free energy λM (t ) and testing it for a particular

quench protocol. We consider as initial state a chain where all
spins point along the positive z direction: |ψ〉 = |↑1 . . . ↑N 〉,
which is a paramagnetic product state. When the quench is
performed, the system undergoes time evolution propagated
by the classical nearest-neighbor Ising model given by the
Hamiltonian

H = −J
N∑

j=1

σ x
j σ

x
j+1, (3)

where σ a
j , a = x, y, z, are the Pauli matrices on site j, J = 1

sets the energy scale, and N is the number of sites. First
we examine the Loschmidt echo |L(t )|2, which is a global
measure since it can be written in terms of projectors over
all spins of the system:

|L(t )|2 = |〈ψ |e−iHt |ψ〉|2 = 〈ψ (t )||ψ〉〈ψ ||ψ (t )〉

= 〈ψ (t )|
N∏

j=1

p̂z
j |ψ (t )〉, (4)

where p̂z
j = |↑ j〉〈↑ j | is the local projector onto the state |↑ j〉

on site j. In the case of a fully z-polarized initial product state
as we consider here, the Loschmidt echo reduces to

|L(t )|2 = |(cos t )N + (sin t )N |2, (5)

leading to the effective free energy

λ(t ) = − lim
N→∞

2

N
ln |(cos t )N + (sin t )N |

=
{−2 ln | cos t |, if | cos t | � | sin t |
−2 ln | sin t |, if | cos t | < | sin t |. (6)

Therefore, the DQPT occurs at tc = π/4 when the two terms
in Eq. (5) are equal.

In order to construct a local version of the Loschmidt echo,
we define P̂z

M as a projector on a finite configuration of M
lattice sites:

P̂z
M :=

M∏
j=1

p̂z
j . (7)

We are now in the position to define the real-local
Loschmidt echo as

|LM (t )|2 = 〈ψ (t )|P̂z
M |ψ (t )〉, (8)

and consequently the associated real-local effective free
energy

λM (t ) = − 1

M
ln |LM (t )|2. (9)

We note that in the limit of M = N , we restore the full
Loschmidt echo |LM=N (t )|2 = |L(t )|2, and thus the associ-
ated real-local effective free energy λM=N (t ) = λ(t ) is exact.

We show in Fig. 1(a) the real-local return probability λM (t )
for different values of M = 2, 4, 8, 16, 32, 64, 128 sites,
along with the exact effective free energy λ(t ). In Fig. 1(b)
we provide a zoom-in around the cusp occurring at the critical
time tc = π/4. The sharp feature is visible for large M, while
λM (t ) becomes smoother with decreasing M. Interestingly,
λM (t ) shows a maximum at t = tc, indicating accurate estima-
tion of the critical time of the DQPT. In order to better outline
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FIG. 1. (a) Effective free energy λ(t ) (black crossed line) and
real-local effective free energy λM (t ) (colored dotted lines) as a func-
tion of time t for different values of M = 2, 4, 8, 16, 32, 64, 128
sites. Recall that λM=N (t ) = λ(t ). We find that even when M � N →
∞, λM (t ) reliably detects the DQPT, even yielding a practically
exact estimate of the critical time tc = π/4. (b) Zoom-in of λM (t )
as a function of t − tc around the critical time. (c) Time derivative
of real-local free energy, dλM (t )/dt , as a function of t − tc. As
M increases, the discontinuity jump at the critical time tc becomes
sharper. (d) |λM (t ) − λM (tc )|M as a function of |t − tc|M. The plot
shows good collapse of the curves for different M, particularly when
t is close to tc, and reveals a critical exponent α = 1.

such behavior, we show in Fig. 1(c) the time derivative of the
real-local effective free energy dλM (t )/dt . In this case, the
nonanalyticity occurring at the critical time is more evident
in the limit of large M and manifests itself as a discontinuity
in dλM (t )/dt . Much the same way as for generic phase transi-
tions in equilibrium, DQPTs also occur generically only in the
thermodynamic limit (see, e.g., Ref. [74] for a specific coun-
terexample), i.e., N → ∞, and a finite local configuration of
M sites will in general not allow λM (t ) to exhibit a nonan-
alyticity. Nevertheless, finite-size scaling analysis overcomes
the problem of detecting phase transitions when dealing with
finite M.

Renormalization group [75,76] (RG) analysis shows that
for the quench considered the DQPT occurring at critical time
tc is continuous [41,44]. As a consequence, we expect scal-
ing and universality, such that the singular part of the return
probability in the vicinity of the critical time assumes the form

λ(t ∼ tc) ∼ N−α/ν fλ(N�tν ), (10)

which is inspired from scaling behavior in equilibrium [27],
with �t = |t − tc|, fλ a universal scaling function, α is an a
priori generic critical exponent, while ν is the one related to
the free energy and also the critical exponent of the correlation
length in thermal equilibrium [26] ξ ∼ |T/Tc − 1|−ν , where
T is temperature and Tc is its critical value. In our case we
expect α = ν since both the free energy at equilibrium and
the return probability in the DQPT theory are proportional to
the logarithm of the same partition function, which is only real
in the former case, while complex in the latter.

In the quench considered here, RG analysis indicates ν = 1
[41,44]. Taking all these considerations into account, we ex-
pect therefore that

λ(t ∼ tc) ∼ 1

N
fλ(N�t ). (11)

In general, one can use Eq. (10) when the cutoff scale is N and
not �tν , meaning that N < �t−ν . After defining x = N�t ,
the condition required to use Eq. (10) for our case reads as

N <
1

�t
→ x < 1. (12)

The scaling function of Eq. (11) suggests that by plotting
|λ − λ(tc)|N as a function of |t − tc|N , the curves for different
system sizes N collapse onto each other.

When we consider the real-local return probability λM (t ),
the parameter M represents the inverse distance to the criti-
cal point, which is at M → ∞. As a consequence, we have
to update the scaling function in order to account for this,
leading to

λM (t ) ∼ 1

M
fλM

(M

N
, M�t

)
−→
M�N

1

M
gλM (M�t ), (13)

where fλM and gλM are universal scaling functions. One can
show that for the quench considered here, in the range M <

2N , λM (t ) assumes the form

λM (t ) = − 1

M
ln |(cos t )2(M+1) + (sin t )2(M+1)|. (14)

We compute a Taylor expansion of λM (t ) close to the critical
time to obtain

λM (t ∼ tc) 	 ln 2 − 2(M + 1)(t − tc)2. (15)

From the Taylor expansion in Eq. (15) we notice that λM (t =
tc) = ln 2. Furthermore, in the limit of M 
 1 Eq. (15) can be
rewritten as

|λM (t ) − λM (tc)|M 	 2(M|t − tc|)2, (16)

which is consistent with the scaling prediction outlined in
Eq. (13). In Fig. 1(d) we plot λM (t ) according to the prescrip-
tion in Eq. (13): |λM (t ) − λM (tc)|M as a function of |t − tc|M.
In the small x = |t − tc|M limit, the curves for different values
of M collapse onto each other exhibiting a parabolic behavior
as suggested by the Taylor expansion in Eq. (16). Towards
the end of validity of the scaling function (13), x → 1, some
deviations between the curves appear, in particular when M is
small.

B. Long-range transverse-field Ising chain

We now further probe the efficacy of the real-local effective
free energy λM (t ) by considering long-range quantum Ising
chains. Our theoretical interest is based on the experimental
fact that Rydberg atom platforms [61–66] and systems of
trapped ions [20] can realize quench dynamics in the long-
range transverse-field Ising model given by the Hamiltonian

H = −
∑
m<n

Jm,nσ
x
mσ x

n − h
N∑

m=1

σ z
m. (17)
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In experiments, the spin-spin coupling can be tuned to be
of the kind Jm,n ∼ |m − n|−μ in the limit of large distance
|m − n| 
 1. While for Rydberg atom architectures typical
exponents are either μ = 3 and 6 [61,62], in systems of
trapped ions μ can range from 0 to 3 [20,77–80]. For the
sake of numerical feasibility, we will assume that Jm,n =
J|m − n|−μ for any distance |m − n| � 1 rather than only
when |m − n| 
 1, with J = 1 setting the energy scale. This
is nevertheless a good approximation for the aforementioned
experimental implementations, especially when the dynami-
cal properties unique to long-range interactions are due to the
interaction-profile tails [29,81].

In equilibrium, this model exhibits a rich phase diagram,
with the equilibrium quantum critical point he

c(μ) being μ

dependent. Whereas for μ � 3 it falls in the short-range uni-
versality class, for μ < 5

3 mean-field analysis is exact [82].
For μ < 2, the power-law interacting quantum Ising chain
hosts a finite-temperature phase transition [83–86], while at
μ = 2 the model exhibits a Berezinskii-Kosterlitz-Thouless
(BKT) transition [86].

The dynamical phase diagram of the long-range quantum
Ising chain is also quite rich. A dynamical critical point
[42,87,88] hd

c (μ, hi ) emerges that is dependent on both μ

and the initial condition hi at which the quench starts, where
for hi � he

c(μ) numerical studies [45–47,89] suggest that
hd

c (μ, hi ) < he
c(μ), while for hi > he

c(μ), the dynamical and
equilibrium critical points are the same, hd

c (μ, hi ) = he
c(μ).

Generically, the dynamical critical point hd
c (μ, hi ) is the value

of transverse-field strength across which the quench from
hi must be carried out in order to see regular DQPTs in
the effective free energy. At the same time, particularly in
the presence of sufficiently long-range interactions and for
hi < he

c(μ), hd
c (μ, hi ) separates between an ordered long-time

steady state for h f < hd
c (μ, hi ), and a paramagnetic long-

time steady state for h f > hd
c (μ, hi ) [45,47,89,90]. Indeed,

in the fully connected limit μ = 0 of Hamiltonian (17), a
closed-form expression can be found for the dynamical crit-
ical point, where starting in the ordered phase hi < he

c(μ =
0) at zero preparation temperature, for example, hd

c (μ =
0, hi ) = [he

c(μ = 0) + hi]/2 upon Kac-normalizing the inter-
action term [91]. This dynamical critical point then separates
a ferromagnetic long-time steady state and an effective free
energy dominated by anomalous DQPTs for h f < hd

c , from
a paramagnetic long-time steady state and an effective free
energy dominated by regular DQPTs for h f > hd

c . This has
been shown in exact numerics [45,89] and through an analytic
semiclassical approximation [92].

One of the intriguing out-of-equilibrium phenomena of
the model in Eq. (17) is that it allows for the effective free
energy λ(t ) to exhibit different kinds of cusps, depending on
the quench protocol employed. Generically, quenches from
the ordered phase hi < he

c(μ), across the dynamical critical
point hd

c (μ, hi ) give rise to regular DQPTs that are con-
nected to zeros in the order-parameter dynamics [30,47,90].
In systems with finite-range interactions, such as nearest- or
next-nearest-neighbor interactions, quenches within the or-
dered phase generically give rise to a fully analytic effective
free energy. However, when the interactions are expansive,
such as, e.g., power law or even exponentially decaying,
if the quench Hamiltonian contains local “spin-flip” excita-

tions as its lowest-lying quasiparticles [60,81], anomalous
DQPTs can emerge in the effective free energy even when
the order parameter does not change sign during the time
evolution. Such anomalous signatures have been seen in
one-dimensional power-law [46,47] and exponentially [48]
decaying transverse-field Ising chains, two-dimensional quan-
tum Ising models [93,94], and the Lipkin-Meshkov-Glick
(LMG) model at zero [45] and finite [89] temperature. In the
following, we will consider these different kinds of DQPTs,
and analyze the reliability of the real-local effective free en-
ergy in discerning them. For numerical feasibility we shall
consider in our analysis only the first or second DQPT that
arises in the effective free energy.

Our numerical results are calculated using infinite matrix
product states [95–98] (iMPS) based on the time-dependent
variational principle [99–101] (TDVP). In particular, we
benchmark our results using two independent implementa-
tions of the same method. Both toolkits give identical results
within machine precision. We achieve convergence at a max-
imal bond dimension D = 400–450 for the regular cusps we
consider in this work, and D = 450–500 for their anomalous
counterpart. We add supplemental results to this model in
Appendix A, and discuss the implementation of Hamiltonian
(17) with power-law interactions in Appendix B.

1. Quenches from the paramagnetic phase

The dynamical phase diagram of the power-law quantum
Ising chain shows that DQPTs appear in the effective free
energy λ(t ) for quenches from the paramagnetic phase to the
ferromagnetic phase [47], just as in the case of the nearest-
neighbor quantum Ising chain [41]. Accordingly, we perform
two quenches starting in the paramagnetic ground state of
Eq. (17) with interaction exponent μ = 2 at initial transverse
field-strength values hi = 5 ≈ 2he

c(μ = 2) and hi → ∞, and
ending in its ferromagnetic phase at final value h f = 0.25 <

he
c(μ = 2) of the transverse-field strength.

The ensuing dynamics of the effective free energy λ(t ) and
its approximation, the real-local effective free energy λM (t ),
are shown in Figs. 2(a) and 2(b) for the quench starting at
hi = 5 and hi → ∞, respectively. Both panels show the ef-
fective free energy (black crossed line) exhibiting a DQPT,
with critical time tc ≈ 0.75 for hi = 5 in Fig. 2(a) and tc ≈
0.79 for hi → ∞ in Fig. 2(b). For the range of configuration
sizes, M = 128, 256, 512 sites, that we use for the real-local
effective free energy λM (t ), the case of hi → ∞ shows a
sharper feature at t ≈ 0.79 with larger M (see insets). The
approximate critical time tc,M predicted by λM (t ) is taken as
the time of the corresponding peak in λM (t ), which sharpens
into an actual DQPT at M → ∞. As we see in Fig. 2(a), tc,M
nontrivially differs from the actual critical time tc obtained
from λ(t ), and does not approach it with increasing M. This
is due to fact that the initial state for the quench starting at
hi = 5 does not consist of a chain with all spins aligned along
the z direction, which is the alignment configuration used in
the projection employed in Eq. (4) for quenches starting in the
paramagnetic phase. Indeed, in Fig. 2(b) where the initial field
is fully z polarized, the critical times tc,M and tc predicted by
λM (t ) and λ(t ), respectively, are almost the same, with tc,M →
tc with increasing M. In principle, the projection in Eq. (4)
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FIG. 2. DQPTs arising in the long-range quantum Ising chain
given by the Hamiltonian (17) at μ = 2 in the wake of a quench
from the paramagnetic [hi > he

c(μ = 2)] to the ferromagnetic phase
[h f = 0.25 < he

c(μ = 2) ≈ 2.5]. The initial value of the transverse-
field strength is hi = 5 in (a) and (c) and hi → ∞ for (b) and (d).
In (a) and (b) we show the real-local effective free energy λM (t )
as a function of evolution time t (colored dotted lines), while the
black crossed line represents the effective free energy λ(t ). The
insets contain a zoom-in of the sharp feature occurring at the critical
time, showing λM (t ) − λM (tc,M ) as a function of t − tc,M , where tc,M

is the estimated critical time from λM (t ), taken as the time of the
corresponding peak in the latter. Note how the estimate tc,M is off in
the case of hi = 5, while it is very accurate in the case of hi → ∞,
and this is because in the latter case the configuration projected on in
λM (t ) has the same spin alignment as the ground state of Hamiltonian
(17) at hi → ∞. In (c) and (d) we present the scaling analysis of
λM (t ) shown in (a) and (b), respectively. The collapse is obtained by
plotting |λM (t ) − λM (tc,M )|M as a function of |t − tc,M |M. Despite
having the same critical exponent α = 1, the scaling function here
is linear, unlike the case of the classical Ising model where it is
quadratic; cf. Fig. 1.

can be generalized to a configuration that can accommodate
any initial state, such as the partial trace of the ground state of
Eq. (17) at hi = 5 along M sites, and this would allow for a
better estimation of the critical point through λM (t ). However,
as Fig. 2(a) shows, this is not necessary to detect a signature
of DQPT, albeit it may be crucial when an accurate estimation
of the critical time is desired.

We perform a scaling analysis for the results in Figs. 2(a)
and 2(b) and show the corresponding collapse at times around
the DQPT in Figs. 2(c) and 2(d), respectively. This is done
upon rescaling the y axis as |λM (t ) − λM (tc,M )|M and the x
axis as |t − tc,M |αM. We show only scaling-analysis results
for times t < tc,M (as we do throughout the whole paper) since
iMPS results at earlier times are numerically always more
accurate, and because we have also checked that the same
universal scaling behavior occurs at t > tc,M within the pre-
cision of our results. We obtain the best collapse upon setting
the critical exponent α = 1. This is the same result observed
with the nearest-neighbor Ising model described in Sec. III.
We have checked that our conclusions are not restricted to
the case of h f = 0.25, and hold for other values of h f <

he
c(μ = 2). In particular, we have obtained the same critical

FIG. 3. Quench in the transverse-field strength of the long-range
quantum Ising chain of Eq. (17) for μ = 1.8 from hi = 0 to h f =
5 > hd

c (μ = 1.8, hi = 0) ≈ 2.05, which results in a regular DQPT at
tc ∼ 0.371. (a) Real-local effective free energy λM (t ) (colored dotted
lines) as a function of time t for three values of the configuration
size M = 128, 256, 512 sites, along with the exact effective free
energy λ(t ) (black crossed line). The DQPT can be detected in λM (t ),
where the corresponding peak sharpens with increasing M. The ap-
proximate critical time tc,M estimated from λM (t ) also becomes more
accurate at larger M. The inset shows a zoom-in of λM (t ) − λM (tc,M )
as a function of t − tc,M , where the shifted real-local and exact
effective free energies overlap nicely. (b) |λM (t ) − λM (tc,M )|M as a
function of |t − tc,M |αM. The value of the critical exponent α should
be such that the curves exhibited in (a) collapse onto each other. The
best overlap achieved occurs for α = 1.

exponent when repeating the above quenches for h f = 0 (not
shown).

2. Quenches from the ordered phase: Regular DQPTs

Let us now consider quenches starting in the ground state
of Hamiltonian (17) at initial transverse-field strength hi = 0
and quenching to h f > hd

c (μ, hi ). Quenches from the ordered
phase to above the dynamical critical point hd

c (μ, hi ) lead
to regular cusps that generically correspond to zeros in the
dynamics of the order parameter [47,90]. As an example, we
set μ = 1.8 and h f = 5 > hd

c (μ = 1.8, hi = 0) ≈ 2.05. The
resulting effective free energy and its real-local counterpart
are shown in Fig. 3(a), where again we see that λM (t ) reliably
discerns the DQPT and its associated critical time at large
M, and even matches λ(t ) very well (see inset). The scaling
analysis shown in Fig. 3 yields the best collapse at a criti-
cal exponent α = 1, just as in the case of a regular DQPT
when quenching from the paramagnetic to the ordered phase,
which we have presented in Fig. 2. Note here that the scaling
function itself is roughly linear, differently from the quadratic
ones of Figs. 2(c) and 2(d) for the regular DQPTs due to a
quench from the paramagnetic phase. As we will show later,
this seems related to μ rather than the quench direction.

We repeat this analysis for μ = 1.6 while quenching
from hi = 0 to h f = 6 > hd

c (μ = 1.6, hi = 0) ≈ 2.35. The
performance of the real-local effective free energy, shown in
Fig. 4(a), is qualitatively identical to that of Fig. 3(a). The
critical time of the regular DQPT is approximated well by tc,M ,
which approaches the actual critical time tc with larger M. The
corresponding scaling analysis is shown in Fig. 4(b), where
the best collapse seems to occur with a roughly linear scal-

075130-6



LOCAL MEASURES OF DYNAMICAL QUANTUM PHASE … PHYSICAL REVIEW B 104, 075130 (2021)

FIG. 4. Quench in the transverse-field strength of the long-range
quantum Ising chain of Eq. (17) for μ = 1.6 from hi = 0 to h f =
6 > hd

c (μ = 1.6, hi = 0) ≈ 2.35, which results in a regular DQPT.
(a) Real-local effective free energy λM (t ) (colored dotted lines) as
a function of evolution time t for three values of configuration size
M = 128, 256, 512 sites, in addition to the effective free energy λ(t )
(black crossed line). The DQPT can be detected in λM (t ) through
the sharpening of the associated peak occurring at the estimated
critical time tc,M , which comes closer to the exact critical time tc

with larger M. The inset shows a critical time tc ∼ 0.3, where we
plot and zoom in on λM (t ) − λM (tc,M ) as a function of t − tc,M . The
real-local and exact effective free energies fall nicely on top of each
other, indicating good robustness of λM (t ) to capture this DQPT.
(b) |λM (t ) − λM (tc,M )|M as a function of |t − tc,M |αM. The scaling
analysis reveals the best collapse at a critical exponent α = 1.05.

ing function at a critical exponent α = 1.05. This is slightly
different from its counterpart in Fig. 3(b), which stands at
unity. However, one has to be careful not to interpret too
much into such a small difference, as the scaling analysis is
not a highly accurate procedure. In principle, α = 1 or 1.05
cannot conclusively determine whether these two DQPTs are
of different universality given the imperfect precision of our
scaling analysis. Indeed, we have also considered different
quenches that lead to regular DQPTs, and we find in all of
them that the critical exponent is in the range α = 1–1.1; cf.
Appendix A for corresponding results and scaling analysis.

Nevertheless, we have two main take-home messages here.
First, the real-local effective free energy λM (t ) is a robust
detector of regular DQPTs independent of what phase the
quench starts in and of the range of interactions. Second,
the regular DQPTs exhibit universal scaling behavior even
in a nonintegrable model such as the power-law interacting
quantum Ising chain described by the Hamiltonian (17).

3. Quenches from the ordered phase: Anomalous DQPTs

Anomalous DQPTs occur for quenches within the ordered
phase when low-lying quasiparticles in the spectrum of the
quench Hamiltonian are local excitations, which in the case of
one-dimensional Ising Hamiltonians amounts to domain-wall
binding [48]. A suitable model for the observation of anoma-
lous cusps is the Hamiltonian (17) with μ = 2 [47], while
quenching from hi = 0 to h f = 1.25 < hd

c (μ = 2) ≈ 1.85.
In Fig. 5(a) we show the real-local effective free energy

λM (t ) as a function of time for three different values of
projective-configuration size M = 128, 256, 512 sites, and
the effective free energy λ(t ). We notice that this quantity

FIG. 5. Quench in the transverse-field strength of the long-range
quantum Ising chain described by the Hamiltonian (17) for μ = 2
from hi = 0 to h f = 1.25 < hd

c (μ = 2) ≈ 1.85, which results in an
anomalous DQPT. (a) Real-local effective free energy λM (t ) (colored
dotted lines) as function of time t for three values of configuration
size M = 128, 256, 512 sites, along with the exact effective free
energy λ(t ) (black crossed line). Much the same way as in the case
of regular DQPTs, here with increasing M the real-local effective
free energy λM (t ) exhibits a sharper peak and its estimated criti-
cal time tc,M approaches its exact counterpart tc ∼ 1.84 at which
λ(t ) shows the anomalous DQPT. The inset displays a zoom-in of
λM (t ) − λM (tc,M ) as a function of t − tc,M , indeed showing a sharpen-
ing peak with increasing M. (b) |λM (t ) − λM (tc,M )|M as a function of
|t − tc,M |αM. The value of the critical exponent α should be such that
the curves exhibited in (a) collapse onto each other. The best overlap
achieved occurs for α = 1.3, although the result is conclusive only at
relatively small |t − tc,M |.

exhibits a DQPT around tc ∼ 1.84, and with increasing M
the real-local effective free energy λM (t ) becomes sharper
while the approximate critical time tc,M approaches its exact
counterpart tc also.

We now probe the universality of this anomalous DQPT
through scaling analysis. The results are presented in
Fig. 5(b), which shows |λM (t ) − λM (tc,M )|M as a function of
|t − tc,M |αM. The critical exponent α should be chosen such
that the curves for different values of M collapse onto each
other. The best overlap occurs for α = 1.3 although the result
is not conclusive except for very small times. Therefore, we
cannot conclude that the real-local effective free energy λM (t )
is suitable to detect this anomalous DQPT.

We have also checked other anomalous DQPTs for dif-
ferent values of μ and h f < hd

c (μ, hi ), and we also find
that the best collapse occurs at α ≈ 1.2–1.3. Nevertheless,
since anomalous DQPTs occur at later times than their reg-
ular counterparts, the numerically accessible maximal bond
dimension specified in iMPS is usually reached before the
associated critical time, leading to higher inaccuracy in es-
timating the critical exponent α. Nevertheless, one must also
be open to the possibility that the collapse is less conclusive
for the anomalous DQPT of Fig. 5 simply because it may
not be universal like its regular counterparts. This is indeed
possible here because the exact and real-local effective free
energies associated with this anomalous DQPT are completely
converged with respect to maximal bond dimension (see
Appendix B). Further analysis of the universality of anoma-
lous DQPTs is warranted, particularly in models that are
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numerically more tractable than the power-law interacting
Ising chain. An ideal candidate model is the quantum Ising
chain with exponentially decaying interactions, where anoma-
lous cusps are known to arise [48]. We leave such a study,
which is beyond the scope of this paper, for an upcoming
work.

IV. MOMENTUM-LOCAL EFFECTIVE FREE
ENERGY λk(t )

Next, we turn to systems where observations are more
naturally made in momentum space, such as ultracold-atom
implementations where time-of-flight measurements are a
standard procedure [102]. Specifically, we will focus in the
following on the Kitaev chain [55] as a paradigmatic model
for topological quantum matter, but with the addition of
nearest-neighbor interactions at strength U , described by the
Hamiltonian

H = −
∑

j

[(Jc†
j c j+1 + �c†

j c
†
j+1 + H.c.)

+ h(1 − 2c†
j c j ) + Uc†

j c jc
†
j+1c j+1], (18)

where c j is the fermionic annihilation operator on site j,
obeying the canonical anticommutation relations {c j, cl} = 0
and {c j, c†

l } = δ j,l , and J and � are the coupling and pairing
constants, respectively. This interacting Kitaev chain (IKC) is
of particular interest in investigations of interaction effects on
the stability of Majorana edge modes [103–105], and has been
shown to be experimentally realizable in Josephson junctions
[106], and also in optical lattices [107,108] by mapping it onto
the XYZ model in a magnetic field through a Jordan-Wigner
transformation (see Appendix C for derivation and further
details). In order to better understand the reasons lying at the
basis of the definition of the momentum-local effective free
energy λk (t ), which is suitable for this class of problems, it
is useful to consider the dynamics emerging when a chain
prepared in the ground state of Eq. (18) in the limit of h → ∞
is subsequently quenched by the same model at a finite h in
the noninteracting limit U = 0. Our interest in such a quench
protocol resides in the fact that the resulting effective free
energy λ(t ) can be derived analytically, and will serve as
the starting point for the introduction of the momentum-local
return probability λk (t ). As such, we set U = 0 in Eq. (18)
and employ the Fourier transformation

c j = 1√
N

BZ∑
k

eik jck, (19)

where BZ denotes the Brillouin zone [−π, π ), leading to

H = −
BZ∑
k

�
†
k Hk�k,

�k =
(

ck

c†
−k

)
, (20)

Hk =
(

h − J cos k −i� sin k
i� sin k J cos k − h

)
.

The Bogoliubov–de Gennes Hamiltonian of Eq. (20) can be
diagonalized by a Bogoliubov transformation

ck = cos θk γk − i sin θk γ
†
−k, (21a)

c†
−k = cos θk γ

†
−k − i sin θk γk, (21b)

θk = 1

2
arctan

(
� sin k

h − J cos k

)
, (21c)

where γ
(†)

k are Bogoliubov fermionic operators with
the canonical anticommutation relations {γ j, γl} = 0 and
{γ j, γ

†
l } = δ j,l . This allows us to rewrite Eq. (18) at U = 0

in the diagonal form

H =
∑
k>0

Ek (γ †
k γk − γ−kγ

†
−k ), (22a)

Ek =
√

(h − J cos k)2 + �2 sin2 k. (22b)

We note here that the Bogoliubov operators γk are not the
same prequench and postquench, corresponding to h = hi and
h = h f , respectively, since for each value of h, there is generi-
cally a unique set of Bogoliubov operators γk that diagonalize
the Hamiltonian (20). Following the approach of BCS theory
[109], the ground state of Eq. (22) at h = hi in terms of the
postquench Bogoliubov operators reads as

|GS〉 = 1

N exp

(
i
∑
k>0

�kγ
†
k γ

†
−k

)
|0〉

= 1

N
∏
k>0

(1 + i�kγ
†
k γ

†
−k )|0〉, (23)

where |0〉 is the vacuum of the postquench fermionic operator
γ

†
k , and N is a normalization factor given by

N 2 =
∏
k>0

N 2
k =

∏
k>0

[
1 + �2

k

]
, (24a)

�k = tan
(
θ

f
k − θ i

k

)
, (24b)

where the superscript i ( f ) corresponds to h = hi (h = h f ) in
Eq. (21c).

Applying the unitary time-evolution operator e−iHt , with H
as given in Eq. (22) at h = h f , to the initial state of Eq. (23),
we obtain for the time-evolved state at a generic time t

|ψ (t )〉 = 1

N
∏
k>0

[1 + ie−2iEkt�kγ
†
k γ

†
−k]|0〉. (25)

The Loschmidt amplitude LU=0(t ) is momentum factorizable
in the noninteracting case we consider here and, as such, it can
be written as

LU=0(t ) = 〈ψ (0)||ψ (t )〉 = 1

N 2

∏
k>0

〈ψk (0)||ψk (t )〉

= 1

N 2

∏
k>0

[
1 + �2

ke−2iEkt
]
, (26)

where |ψk (t )〉 = (1 + ie−2iEkt�kγ
†
k γ

†
−k )|0〉. The Loschmidt

amplitude can be expressed in terms of momentum-
uncorrelated two-body observables at the same time t . The
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final result yields

LU=0(t ) =
∏
k>0

dk (0)dk (t ) − bk (0)bk (t )

dk (0)dk (0) − bk (0)bk (0)
, (27)

where

bk (t ) = 〈ψ (t )|γkγ−k|ψ (t )〉 = i

N 2
k

�ke−2iEk t , (28)

dk (t ) = 〈ψ (t )|γkγ
†
k |ψ (t )〉 = 1

1 + �2
k

= 1

N 2
k

. (29)

As mentioned, one of the advantages of the form of the
Loschmidt amplitude in Eq. (27) is in its factorization in terms
of two-body observables, which are local measures from an
experimental perspective. Defining the momentum-local ef-
fective free energy

λk (t ) = − lim
N→∞

1

N
ln |LU=0(t )|2, (30)

with LU=0(t ) given by Eq. (27), we see that whereas when
U = 0 it is identically the effective free energy λ(t ) of the
model in Eq. (18), for U 
= 0 when interactions are on λk (t )
becomes an approximation for λ(t ), because in this case the
expectation values of the quadratic terms in Eqs. (28) and (29)
provide a mean-field type of approximation for higher-order
terms that generically contribute to the effective free energy
in the presence of interactions. As we demonstrate in what
follows, this allows the use of λk (t ) as a reliable measure of
DQPTs that is local in momentum space.

We prepare our system in the ground state of the IKC at
hi → ∞. This corresponds to an empty chain in the phys-
ical space of the fermionic operators c j . We then quench
to h f = 0.2, with J = � = 1, while setting the interaction
strength to one of several values U = 0, 0.05, 0.1, 0.2, 0.4.
The ensuing dynamics of the effective free energy λ(t ) and its
momentum-local approximation λk (t ) are shown in Figs. 6(a)
and 6(b), respectively. Interestingly, we see that λk (t ) reliably
captures the sharp feature of a DQPT even when U = 0.4. Let
us denote by tc the exact critical time at the DQPT arising
in λ(t ), while calling its approximate counterpart from λk (t )
as t̃c. As shown by comparing the insets that zoom-in on
λ(t ) − λ(tc) as a function of t − tc around t ≈ tc in Fig. 6(a),
and on λk (t ) − λk (t̃c) as a function of t − t̃c around t ≈ t̃c
in Fig. 6(b), the feature of a sharp DQPT is reproduced re-
liably in the momentum-local approximation. Moreover, the
estimated critical times t̃c reliably approximate their exact
counterparts tc, where at small U they are roughly identi-
cal, with both shifting to the left with large U . However,
nonuniversal features, such as amplitudes of the effective free
energies, are not as robustly approximated. Overall, this bodes
well for experimental efforts focused on detecting DQPTs in
momentum space in models of topological quantum matter
with added interactions.

V. CONCLUDING DISCUSSION

In this work we have introduced two local measures for the
reliable and experimentally feasible observation of DQPTs.
Whereas the exact effective free energy is a global quan-
tity, its real-local and momentum-local counterparts involve

FIG. 6. Dynamics of the interacting Kitaev chain given by
Eq. (18) for J = � = 1, and upon quenching h from hi → ∞ to
h f = 0.2. (a) Effective free energy λ(t ) as a function of time t for
different values of U = 0, 0.05, 0.1, 0.2, 0.4. For each of these val-
ues λ(t ) shows a cusp around tc ∼ 0.8. The inset shows a zoom-in of
λ(t ) − λ(tc ) as a function of t − tc around t − tc ≈ 0. (b) Momentum-
local effective free energy λk (t ) as a function of evolution time t for
the same values of the interaction strength U considered in (a). For
U = 0, we have the exact limit λk (t ) = λ(t ). The momentum-local
effective free energy reliably detects the underlying DQPT exhibiting
a sharp feature around t̃c ∼ 0.8, where we see that the approximate
critical time t̃c extracted from λk (t ) approaches tc with decreasing U .
The inset shows a zoom-in of λk (t ) − λk (t̃c ) as a function of t − t̃c

while zooming in around t − t̃c ≈ 0.

a projection of the time-evolved wave function onto a finite
configuration in real space and two-point correlations in mo-
mentum space, respectively. These measures can be beneficial
in modern ultracold-atom and ion-trap experiments in that
they allow for robust detection of DQPTs with exponentially
fewer resources than in the case where measurement of the
exact effective free energy is attempted. We have demon-
strated the efficacy of these measures on several paradigmatic
models.

The real-local effective free energy efficiently captures
DQPTs in systems with degrees of freedom well defined
in real space, such as spin models. We have tested this
measure there in a quench involving the nearest-neighbor
Ising model, in addition to various quenches in the quantum
Ising chain with power-law decaying interactions. In various
cases, the real-local effective free energy proves a reliable
tool for discerning universal behavior and extracting associ-
ated critical exponents of DQPTs. Indeed, scaling analysis
through this local measure indicates that anomalous and regu-
lar DQPTs exhibit significantly different dynamical criticality.
Even though scaling analysis produces strong evidence of
universal behavior in regular DQPTs with a critical exponent
α ≈ 1–1.1, such a conclusion is less clear when it comes
to anomalous DQPTs. Notwithstanding this difference, the
real-local effective free energy shows impressive reliability in
detecting both types of DQPTs and approximates their critical
times accurately.

The momentum-local effective free energy is demonstrated
on the interacting Kitaev chain, which is a stability test bed
for Majorana edge modes in the presence of interactions. This
local measure, exact in the noninteracting limit, reliably cap-
tures DQPTs at finite U . This is a remarkable result because
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in interacting fermionic systems the effective free energy
generically involves arbitrarily high orders of correlations
in momentum space because the system cannot be decom-
posed into disconnected momentum sectors. Nevertheless, the
momentum-local effective free energy, which involves only
two-point correlations defined by a single momentum value,
even reliably captures the critical time of the DQPT at finite
U , albeit the difference between the captured critical time and
the actual one increases with U .
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APPENDIX A: FURTHER RESULTS ON THE
LONG-RANGE QUANTUM ISING CHAIN

In the main text, we have presented scaling-analysis results
on various DQPTs in the long-range transverse-field Ising
chain of Eq. (17) for quenches from initial value hi of the
transverse-field strength to a final value of h f . The aforemen-
tioned results suggest that regular DQPTs, which occur for
quenches from hi > he

c(μ) to h f < he
c(μ) or from hi < he

c to
h f > hd

c (μ, hi ), exhibit a critical exponent α = 1–1.05. On
the other hand, anomalous DQPTs, which occur in quenches
hi < he

c to h f < hd
c (μ, hi ) when the quench Hamiltonian at h f

hosts domain-wall binding in its spectrum, seem to have a
different critical exponent α = 1.2–1.3, although it is possible
that they may simply not be universal.

Here, we add results for three further regular DQPTs for
the same quench in the long-range quantum Ising chain from
hi = 0 to h f = 3 > hd

c (μ, hi = 0) for μ = 2, 2.2, 2.4. Fig-
ure 7(a) shows the effective free energy and its real-local
counterpart λM (t ) for several values of the configuration size
M = 128, 256, 512 sites for the long-range quantum Ising
chain at μ = 2, where hd

c (μ = 2, hi = 0) ≈ 1.85. As in the
results of the main text for regular DQPTs, λM (t ) shows a
sharper peak at the approximate critical time tc,M with increas-
ing M (see inset), while tc,M also approaches the exact critical
time tc. A scaling analysis is carried out in Fig. 7(b), where
we find the best collapse to occur at α = 1.1. This is different
from the values we get for this critical exponent for the regular
DQPTs of Secs. III A and III B, but within the precision of our
scaling analysis, still not different enough to conclusively rule
that this DQPT is of different universality. Note how unlike
the cases of the regular DQPTs for hi = 0 in the main text, the
scaling function for the regular DQPT in Fig. 7(b) is nonlinear.

We repeat this analysis for two more values of μ = 2.2
and 2.4 in Figs. 8 and 9, respectively. The respective dy-

FIG. 7. Dynamics in the long-range quantum Ising chain given
by Eq. (17) with μ = 2, in the wake of a quench in the transverse-
field strength from hi = 0 to h f = 3 > hd

c (μ = 2, hi = 0) ≈ 1.85,
leading to a regular DQPT. (a) Effective free energy (black crossed
line) λ(t ) and its real-local counterpart (colored dotted lines) λM (t )
for configuration size M = 128, 256, 512 sites as function of time
t . Whereas λ(t ) shows a clear DQPT, λM (t ) is smooth, although
we see a sharpening of the associated peak with increasing M, as
well as better accuracy in estimating the approximate critical time
tc,M in the associated peak of λM (t ). The inset shows a zoom-in of
λM (t ) − λM (tc,M ) as a function of t − tc,M . (b) Scaling analysis where
we show |λM (t ) − λM (tc,M )|M as a function of |t − tc,M |αM. The best
collapse occurs for α = 1.1, and seems rather conclusive.

namical critical points for the quantum Ising Hamiltonian
(17) at these interaction ranges are hd

c (μ = 2.2, hi = 0) ≈ 1.7
and hd

c (μ = 2.4, hi = 0) ≈ 1.51. Much the same way as in
the case of other regular DQPTs considered in this work,
with increasing configuration size M, the real-local effective
free energy approximates its exact counterpart well, with a
sharpening peak λM (tc,M ) at the approximate critical time
tc,M , which in turn approaches tc; cf. Figs. 8(a) and 9(a)
and corresponding insets. The associated scaling analyses
are shown in Figs. 8(b) and 9(b), where in both cases we
find that the best collapse is achieved at α = 1.05 with a
nonlinear scaling function, just as in the case of Fig. 7(b).
Also here, we note that due to the absence of indefinite

FIG. 8. Same as Fig. 7 but for μ = 2.2, the dynamical critical
point of which is hd

c (μ = 2.2, hi = 0) ≈ 1.7. Unlike Fig. 7, the crit-
ical exponent that gives the best collapse in the scaling analysis is
α = 1.05 rather than 1.1. Nevertheless, within the precision of our
scaling analysis, one cannot conclude that the associated DQPTs are
of different universality.
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FIG. 9. Same as Figs. 7 and 8 but for μ = 2.4, the dynamical
critical point of which is hd

c (μ = 2.4, hi = 0) ≈ 1.51. The scaling
analysis yields the best collapse for α = 1.05. The precision of our
scaling analysis cannot definitively ascertain whether this regular
DQPT is of a different universality than its counterparts in Figs. 3
and 7.

precision in our scaling-analysis procedure, we cannot rule
out that all the regular DQPTs we have analyzed are in reality
of the same universality with an equal fixed value of the
critical exponent α that lies in the range [1,1.1], the exact
determination of which is beyond our reasonable numerical
capabilities.

The conclusion drawn from the results of this Appendix
mirrors that of the main text. The real-local effective free
energy λM (t ) is an impressive tool that reliably detects the
presence of DQPTs and their corresponding critical times.
Even more, in the case of regular DQPTs, it admits a scaling
analysis that reveals universal behavior. These capabilities
would be of benefit to modern ultracold-atom and ion-trap
experiments attempting to detect nonanalytic behavior in the
effective free energy.

APPENDIX B: NUMERICAL SPECIFICATIONS

We provide here further details that render feasible our
iMPS implementation of the models and corresponding
quenches considered in this work. Additionally, we also
discuss convergence with respect to iMPS parameters, and
provide convergence results for our most computationally de-
manding calculations.

1. Long-range Hamiltonians

The power-law decaying interactions in the Hamiltonian
(17) are not possible to implement exactly in the frame-
work of iMPS because traditionally the latter is based on
matrix product operator (MPO) descriptions of exponen-
tials of Hamiltonian parts containing only commuting parts
[110,111]. This works well for systems with short-range inter-
actions since a finite MPO description is then possible, but is
generically not possible for long-range interactions. However,
a workaround exists involving the MPO representation of the
interaction term in Eq. (17), as a sum of MPO representa-
tions of exponentials whose sum faithfully approximates the
power-law interaction profile [112]. This approximation takes

the form

∑
m<n

|m − n|−μσ x
mσ x

n ≈
∑
m<n

L∑
r=1

cru|m−n|−1
r , (B1)

where cr ∈ R, ur ∈ [0, 1), and L is the number of exponen-
tials used in the approximation. The cofficients cr and ur

are computed through a nonlinear least-squares fit, with L
chosen appropriately over a distance d large enough such
that

∑L
r=1 crud−1

r < ε. In our calculations we have set ε ≈
O(10−8), which amounts to L in the range of 5–25 depending
on the value of μ.

As for the time evolution itself, this was carried out through
integrating, in the thermodynamic limit, the Schrödinger
equation by applying TDVP on the MPS variational manifold.
A Lie-Trotter scheme is employed for splitting the projector
on the tangent space of the variational manifold, allowing
the direct integration of the MPS-tensor effective differential
equations. This is distinct from conventional Lie-Trotter split-
ting schemes applied on the global time-evolution operator.
For a detailed description of the implementation, we refer the
reader to Refs. [99,101]. This splitting scheme works only
for sufficiently small time steps. In our numerical calcula-
tions we have used time steps as small as τ = 10−4, where
for convenience we have set the energy scale J = 1. This is
far smaller than the required value for convergence (τconv ≈
0.002–0.005), but has nevertheless been necessary in terms
of a reliable scaling analysis around the critical times of the
effective free energy. An indefinitely precise scaling analysis
would in principle require τ → 0, albeit this is impractical,
and within our computational resources, τ = 10−4 is ideal
at the cost of an additional contribution to the imprecision
in determining the exact critical exponent α due to a nonin-
finitesimal time step.

Another iMPS knob to control for is the maximal bond
dimension D. This severely limits the maximal evolution time
reached in an iMPS calculation due to the linear growth of
entanglement entropy in case of generic global quenches,
which is the case in our study. One of the most demanding
calculations in this study was that of the anomalous DQPT

FIG. 10. Convergence with MPS maximal bond dimension D in
the case of the anomalous DQPT discussed in Sec. III B 3 and shown
in Fig. 5, which is one of the most computationally demanding of our
calculations. (a) The real-local effective free energy at configuration
size M = 512 sites shows good convergence already at maximal
bond dimension D = 400. (b) The exact effective free energy shows
good convergence already at maximal bond dimension D = 450.
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in Sec. III B 3. These DQPTs generically occur after several
smooth cycles in the effective free energy, and are thus usually
delayed in time with respect to their regular counterparts,
thereby requiring more computational resources to reliably
capture them. We present in Fig. 10 convergence results,
where the real-local effective free energy λM=512(t ) shows
good convergence at a maximal bond dimension D = 400,
while the exact effective free energy requires a maximal bond
dimension of D = 450. Just as in a laboratory experiment,
λ(t ) is also computationally more expensive than its real-local
approximation.

2. Fermionic Hamiltonians

Fermionic models like the IKC Hamiltonian (18) are
cumbersome to implement in iMPS due to the fermionic an-
ticommutation relations, which ideally we want to avoid. One
way of achieving this is to employ a mapping onto spin or
bosonic systems. In our iMPS calculations, we implement the
IKC Hamiltonian (18) by mapping it onto the XYZ model in
a magnetic field, given in Eq. (C1).

APPENDIX C: MAPPING THE IKC TO THE XYZ MODEL
IN A MAGNETIC FIELD

The IKC Hamiltonian (18) can be mapped onto a
spin model through the Jordan-Wigner transformation c j =

[
∏ j−1

m=1 σ z
m]σ+

j , which, up to an inconsequential constant en-
ergy shift, leads to the Hamiltonian

H = −
∑

j

[
J + �

2
σ x

j σ
x
j+1 + J − �

2
σ

y
j σ

y
j+1

+ U

4
σ z

j σ
z
j+1 +

(
h − U

2

)
σ z

j

]
. (C1)

This is the XYZ chain in a magnetic field along the z direction.
It generically possesses a Z2 symmetry due to invariance upon
a π rotation around the z axis, which can be promoted to a
U(1) symmetry for � = 0 (XXZ chain in a magnetic field
where total z magnetization is conserved), and even further to
an SU(2) symmetry if additionally U = 2h = 2J (Heisenberg
chain). Another promotion occurs to Z2 × Z2 symmetry (due
to invariance upon a π rotation around each axis) when U =
2h for generic values of J and �. The XYZ model reduces to
the paradigmatic nearest-neighbor transverse-field Ising chain
(or, equivalently, the Kitaev chain at equal pairing and hop-
ping strengths) for |J| = |�| and U = 0, which also has a
Z2 symmetry. The Hamiltonian (C1) at zero magnetic-field
strength (U = 2h) and under periodic boundary conditions
has been solved by relating it to the classical two-dimensional
eight-vertex model [113,114] and through the algebraic Bethe
ansatz [115].
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