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In this work, we combine quantum renormalization group approaches with deep artificial neural
networks for the description of the real-time evolution in strongly disordered quantum matter. We find that
this allows us to accurately compute the long-time coherent dynamics of large many-body localized
systems in nonperturbative regimes including the effects of many-body resonances. Concretely, we use this
approach to describe the spatiotemporal buildup of many-body localized spin-glass order in random Ising
chains. We observe a fundamental difference to a noninteracting Anderson insulating Ising chain, where the
order only develops over a finite spatial range. We further apply the approach to strongly disordered two-
dimensional Ising models, highlighting that our method can be used also for the description of the real-time
dynamics of nonergodic quantum matter in a general context.
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Introduction.—The understanding of emergent behavior
in quantum many-body systems is largely based on the
discovery of effective descriptions of analytically unsolv-
able models [1]. An essential toolkit to find the former
constitutes renormalization group (RG) methods. They are
traditionally applied on systems in thermal equilibrium,
thereby explaining many collective phenomena including
structured phases, phase transitions, critical scaling, and
universality. In the past decade, real-space RGs have been
developed that also aim to explain analogs of these well-
known phenomena in systems where a thermodynamic
treatment breaks down due to strong quenched disorder
[2–10].
Whereas real-space RGs successfully operate in the

stationary setting at the level of individual eigenstates
[11–16], reaching a quantitative description of the dynami-
cal properties of quantummany-body systems appears even
more challenging. So far, coherent dynamics of quantum
matter far from equilibrium has been mostly simulated
using tensor networks methods [17–24] or exact diagonal-
ization [25–28], with recent developments using machine
learning methods and restricted Boltzmann machines
(RBMs) [29] or, more generally, artificial neural networks
(ANNs) [29–31]. Still, accessing quantitatively the long-
time dynamics for large quantum many-body systems,

especially in spatial dimensions beyond one, represents a
major challenge [32–34].
In this work, we show how ANNs can be utilized in a

different way for numerically exactly time-integrating
effective descriptions of generically interacting systems
generated by RG methods. As a concrete example, we
explore the temporal buildup of many-body localized
(MBL) spin-glass order out of a simple polarized state for
a large, disordered spin chain [see Fig. 1(b)], among other
long-time dynamics in one-dimensional (1D) and two-
dimensional (2D) lattices. We begin by formulating a
prototypical strong-disorder RG (SDRG) for spin-1=2
systems of arbitrary spatial dimension and map its trans-
formations into the time domain. As a result, we obtain a
quantum circuit [see Fig. 1(a)] as an effective description of
the time-evolution operator. Hereafter, we show that this
circuit can be encoded efficiently into deepANNsassociated
with typical initial conditions for quantum real-time dynam-
ics. This allows us to quantitatively represent time-evolved
many-body quantum states not only at short but also long
times. We note that our method avoids a discretization of
time but relies on a renormalized Hamiltonian that is
assumed to effectively describe the relevant physics up to
some finite but nevertheless long timescale.
The scheme we introduce in the following can be applied

for any generic, but strongly disordered, spin-1=2 system.
Concretely, we will apply it to a paradigmatic interacting
disordered quantum Ising model [35] of the form

H ¼
X

hiji
Jijσ

z
iσ

z
j þ JðxÞij σ

x
i σ

x
j þ

X

i

hiσxj ; ð1Þ

with next-neighbor couplings Jij ∈ ½−J; J� and local mag-
netic fields hi ∈ ½−h; h� drawn randomly from uniform
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distributions. We use periodic boundary conditions. For the

1D case, we also add random transverse couplings JðxÞij ∈
½−JðxÞ; JðxÞ� to obtain a generic and interacting model.
Solving the time evolution.—Before describing the uti-

lized renormalization procedure and the training of the
ANN in detail, let us start by outlining the general scheme
for solving quantum real-time evolution utilizing strong-
disorder RGs. Such an RG generates a sequence of local
unitary transformations Uk in order to iteratively obtain a
simplified effective description of the considered quantum
many-body system. In the time domain, we will show that
this leads to the following representation of time-evolved
quantum many-body states:

jψðtÞiQC ¼ e−iH
ðnÞ
0

tU1ðtÞ…UnðtÞjψ0i; ð2Þ

where a time dependence is added to the RG transforma-
tions Uk through a generalized interaction picture; see
below. The above equation maps quantum dynamics onto a
quantum circuit generated by the local unitaries UkðtÞ,
where we use the notion of local when the support covers
only a finite number of lattice sites. As the effective

description in terms of the final Hamiltonian HðnÞ
0 after

the end of the RG procedure can be solved exactly, the
complexity of the quantum circuit emerges solely from the
unitaries UkðtÞ. We find that such quantum circuits can
become a nonperturbative object because the spatial sup-
port of the UkðtÞ typically grows over time, developing
long-distance and higher-order couplings with large over-
laps; see Fig. 1(a). A central contribution of this work is to
outline a numerically exact scheme to encode jψðtÞiQC, and
therefore the RG transformation itself, into an ANN using
machine-learning techniques. The numerical learning effort
and memory required in obtaining jψðtÞiQC scales quad-
ratically with system size while being independent of the
spatial dimension.
Dynamical strong-disorder renormalization group.—In

principle, quantum circuits such as in Eq. (2) can be
generated using a variety of standard SDRGs. In the
following, we introduce a variant of an SDRG, which
we find improves the quantitative accuracy of the resulting
scheme.
Like other SDRGs, the dynamical variant we introduce is

based on a local separation of energy scales. Consequently,
at the beginning of each iteration k, we pick the strongest
coupling (also called the “fast mode”) whose correspond-
ing term in the Hamiltonian we call H0. For the first

iteration, this could be either a spin interaction Jij (J
ðxÞ
ij ) or a

transverse field hi; see Eq. (1). Those terms in the
Hamiltonian that are not commuting with H0 we denote
by V. These can be eliminated perturbatively using a
Schrieffer-Wolff transformation (SWT) [36] by applying
a unitary transformationWk ¼ eSk on the Hamiltonian with
a generator Sk satisfying ½H0; Sk� ¼ V and S†k ¼ −Sk [12] at
the expense of the renormalization H0 ↦ H0 þ ½Sk; V�=2.
In general, this modifies existing couplings and leads to the
generation of new terms in the Hamiltonian. After the SWT,
the fast mode is decoupled from the remainder and can then
be faithfully removed from the system as a second-order
local integral of motion (LIOM) [37–39]. After n such

iterations, an unperturbed Hamiltonian HðnÞ
0 is obtained,

which is formed by the set of LIOMs.
For a general Hamiltonian, the types of newly generated

couplings after each iteration are, of course, not known
a priori. We approach this problem by representing at each
stage of the RG the Hamiltonian as a sum of arbitrary Pauli
strings σα1l1 ;…; σαMlM with a real coefficient λl1;…;lM each.
Certainly, this approach can entail a costly handling of
numerous generated higher-order couplings (see below),
but it opens the possibility to take into account many-body
resonances, which are neglected using earlier SDRGs
[11,40] and related so-called flow equation approaches
[34,41,42].
In addition, the accuracy of the RG can be further

increased by splitting the SWT into infinitesimal unitary
transformations, closely resembling in spirit the flow
equation framework. This turns out to be particularly

FIG. 1. (a) Illustration of random quantum circuit built up from
local unitary RG transformations. In the course of the RG, long-
distance and higher-order couplings emerge. Adding time
dependence leads to further broadening with increasing time.
(b) Spatiotemporal buildup of MBL spin-glass order in a random
quantum Ising chain with 64 lattice sites after quenching a
paramagnetic initial condition into the symmetry-broken phase at
J ¼ 5h and JðxÞ ¼ h=5 (interacting case). Dashed lines indicate
emergence of light cones, except for noninteracting case JðxÞ ¼ 0,
where the order stops developing at a finite distance. Numerical
data obtained from average over 25 disorder realizations.
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helpful in the vicinity of a critical point (h ≈ J here for the
1Dmodel) where the SWT is least controlled. For a detailed
presentation of the technical details, see the Supplemental
Material [43]. To control the exponential number of
couplings fVig generated during the RG, we first neglect
those terms where jVij ≪ t�−1, which are much smaller
than the inverse of the targeted timescale t� and therefore do
not influence physics up to timescales of t�. Second, we
perform the continuous renormalization only with respect
to those Vi whose relative magnitude lies above a fixed
threshold, jVij=jH0j > ϵ ≪ 1. Therefore, we have a trade-
off that is controlled by ϵ between exactness and the total
number of couplings within the RG generators Sk and the

renormalized Hamiltonian HðnÞ
0 . In our computations, ϵ

typically ranges from 10−4 to 10−2, depending on the
closeness to the critical point h ≈ J or the ergodic transition
JðxÞ ≈ J. Later, we present a quantitative analysis of our RG
with respect to the dynamics of local observables.
Time-dependent unitaries.—To derive the time depend-

ence ofUkðtÞ, we express the time-evolution operator in the
renormalized basis,

e−iHt ¼ eS
†
1 � � � eS†ne−iHðnÞ

0
teSn � � � eS1

¼ e−iH
ðnÞ
0

teS
†
1
ðtÞ � � � eS†nðtÞeSn � � � eS1 : ð3Þ

We achieve a much more robust learning of the ANN upon
successively commuting each factor eSk to the left until its

counterpart eS
†
kðtÞ is reached. Identifying UkðtÞ ¼ eS̃

†
kðtÞeS̃k

then gives the desired form as in Eq. (2). Here, S̃k denotes
the total application of all rotations from eSl (l < k) on Sk;
see [43] for details.
Training the artificial neural network.—Utilizing ANNs

as a variational ansatz for many-body wave functions has
seen an active development recently [29,48], becoming
competitive with or partially even superior to other state-of-
the-art methods [30,49,50]. In contrast to the commonly
used time-dependent variational principle, which requires
exponential efforts for reaching exponentially long times,
we train the network with the unitaries U1ðtÞ;…; UnðtÞ
during n iterations (rows in the quantum circuit) to directly
obtain jψðtÞiQC. Because the UkðtÞ are still local operators
with a finite support in real space, we perform for each
iteration k a supervised learning procedure to find the set
of complex network parameters W̃ðkÞ that minimizes the
Fubini-Study metrics, given by L½W̃ðkÞ�2 ¼ arccos2 y≈
1 − y2, with y ¼ jhψW̃ðkÞ jUkðtÞjψWðkÞij; whereas

jψWi ¼
X

fs⃗g
exp½HANNðW; s⃗Þ�js⃗i

refers to a quantum state defined by the output of an ANN,
and fs⃗g denotes the set of all spin configurations
s⃗ ¼ ðs1; s2;…Þ; si ¼ �1. Notice that we always assume

properly normalized wave functions. Inserting the above
definition of jψWi into y results in a sum over all spin
configurations. This sum can be efficiently sampled by the
Markov chain Monte Carlo method [43]. Regarding the
UkðtÞ, we obtain them efficiently from the S̃kðtÞ again by
utilizing the Pauli-string representation [43]. After con-
vergence, the “learned” solution W̃ðkÞ is passed to the next
iteration as Wðkþ1Þ. The network HANNðW; s⃗Þ can be
considered as a deep forward extension of a complex-
valued RBM with up to three hidden layers; see [43] for
details.
Benchmarking.—In order to quantify the overall accu-

racy of our approach, we first benchmark the RG compo-
nent and the machine-learning part individually. For the
former task, we calculate Eq. (2) for small system sizes
exactly using a matrix representation of the quantum
circuit. Figure 2(a) shows a comparison of the local
magnetization with the result obtained from exact diago-
nalization for a system of L ¼ 12 spins. The plot reveals
that the accuracy of the dynamics depends crucially on the
inclusion of many-body resonances, which is tuned by the
only free RG parameter ϵ; see above. For practical
purposes, we set ϵ indirectly by imposing a maximum
total number n of couplings within all RG generators Sk.
Here, n ¼ 3ð10ÞL corresponds to the label of excluded
(included) many-body resonances and matches (exceeds)
the number of original couplings. Already for n ¼ 10L, we

FIG. 2. (a) Comparing dynamics of transverse magnetization to
exact diagonalization, averaged over lattice sites and 250 disorder
realizations, with and without treatment of many-body resonan-
ces. Here, L ¼ 12 and h ¼ f4; 1; 1=4gJ from top to bottom, and
JðxÞ ¼ J=8. (b) Lower bound F� on many-body fidelity, using
L ¼ 64, of trained ANN state with state given by hypothetical,
exact application of quantum circuit for different numbers of
hidden units M in each layer of deep forward ANN. System
parameters are J ¼ 5h and JðxÞ ¼ h=5 (interacting case). Shaded
areas indicate uncertainties due to finite disorder ensemble of 25
realizations. Result from first-order cumulant expansion of
quantum circuit shown for comparison.

PHYSICAL REVIEW LETTERS 127, 050601 (2021)

050601-3



observe a very good agreement, even for the longest times.
Importantly, the result can be systematically improved by
increasing n.
For benchmarking the ANN, we ideally would like to

check the overlap F ¼ jhψWðnÞðtÞjψQCðtÞij of the final
ANN state to the one obtained from an exact application
of the quantum circuit, which is impossible for large system
sizes. Nevertheless, we can offer a lower bound

F� ¼
Y

k

F�
k < F;

where F�
k ¼ jhψWðkþ1ÞðtÞjUðkÞðtÞjψWðkÞðtÞij denotes the par-

tial overlaps measured at the end of each iteration k, which
are byproducts of the training procedure. We plot F� in
Fig. 2(b) as a function of time for the interacting 1D case
and in the inset of Fig. 3 for a 2D lattice. It shows a high,
macroscopic overlap, even for large system sizes, and a
systematic improvement on adding more units and hidden
layers to the ANN. From this finding, we conclude that the
quantum circuit can be applied essentially numerically
exactly on the ANN. For comparison, we also plot the
result of a perturbative treatment,

jψQCðtÞi ≈ e−iH
ðnÞ
0

t
X

s⃗

Y

k

exp ðhs⃗jSk − SkðtÞjψ0iÞjs⃗i;

in Fig. 2(b) (i.e., a cumulant expansion of the quantum
circuit) that neglects (higher-order) commutators between
different Sk. It shows a rapid decay, and thus confirms the
circuit’s nonperturbative nature. In the Supplemental
Material [43], we show further benchmarks of the whole
framework for a large integrable system.
Let us add a few remarks on our choice of ANNs and the

overall computational effort. Although ANNs are by
definition universal function approximators (with stricter
conditions in the complex case [51]), we most importantly
demonstrate their practical ability to efficiently represent
the relevant physical information of long-time-evolved

wave functions. It might also be interesting to use tensor
networks for the quantum circuit encoding but, there, the
central challenge remains to represent volume-law entan-
glement for large systems and long times using reasonable
bond dimensions [52].
The computational bottleneck of the overall procedure is

clearly in the training process of the ANN. We estimate an
ANN forward pass to effectively scale between OðLÞ and
OðL2Þ, depending on whether the network structure exhib-
its short-range or long-range interconnections, respectively.
With L evaluations for a MC sweep, this results in a total
scaling between OðL2Þ and OðL3Þ. In contrast, the RG
scales only linearly with L (regarding time and memory)
since the number of LIOMs is controlled by n ∝ L. In
practice, thanks to the Pauli-string representation being
much more efficient than sparse matrices here, the RG
always runs orders of magnitude faster than the training.
Memory requirements of both parts are negligible com-
pared to the resources available today.
Numerics.—As an application of our framework, we now

explore nonequilibrium dynamics involving global
quenches that has been difficult to access so far in the
large system size and long-time limit. It is known from
previous RG studies that a symmetry-broken state will keep
a nonzero Edwards-Anderson order parameter in the long-
time limit starting from symmetry-broken states if the
system is in the MBL-spin-glass (MBL-SG) phase [40].
Here, we aim to address the buildup of spatiotemporal order
starting from a Z2-symmetric state upon quenching into the
MBL-SG phase. We detect the spatiotemporal dynamics of
the MBL-SG order via [53]

χijðtÞ ¼
X4

ν¼1

pðνÞ
ij ðtÞhϱðνÞij ðtÞjσziσzjjϱðνÞij ðtÞi2; ð4Þ

where ϱij denotes the reduced density matrix of two lattice
sites i and j, whereas ν enumerates its four eigenvectors

jϱijiðνÞ and eigenvalues (probabilities) pðνÞ
ij . Fixing a dis-

tance ji − jj, we average χijðtÞ across all associated pairs
and disorder realizations. This quantity can be interpreted
as a local version of the Edwards-Anderson order param-
eter, which is otherwise mostly used to detect MBL-SG
order in a static context, but which does not exhibit a
natural extension to the dynamical regime considered here.
Figure 1(b) shows χdðtÞ for both an interacting MBL

(JðxÞ ¼ h=5) and a noninteracting Anderson localized
(JðxÞ ¼ 0) case for a 1D chain of 64 spins. At short times
of tJ≤̃J=JðxÞ ¼ 25, an almost identical light cone for the
buildup of MBL-SG correlations is visible, which appears
consistent with a logarithmic growth. On longer timescales,
we observe a fundamental difference between the Anderson
and MBL cases. For the noninteracting Anderson-localized
limit, the growth of MBL-SG order stops; whereas for
JðxÞ > 0, a second light cone arises at a timescale that we

FIG. 3. Quench dynamics on L ¼ 12 × 12 periodic simple
square lattice with disordered next-neighbor Ising couplings and
disordered transverse field. Local magnetization along initial
direction of polarization plotted as average over lattice sites and
25 disorder realizations for various bounds of external field
strengths. Inset shows lower bound of many-body fidelity as
stated in Fig. 2(b).
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estimate as ∼1=JðxÞ. Interestingly, we find that all light
cones do not become more open as we quench deeper into
the MBL-SG phase but the more close we quench to the
critical point. This behavior is reminiscent of the l-bit
picture (see below), where LIOMs become more extended
on approaching criticality. Right at criticality, J ¼ h, even
without interaction; we find that the order becomes
genuinely long range as it decays algebraically with
distance within the light cone. For the interacting case,
inside the spin-glass phase, we observe an exponential
decay with distance but with an essential difference from
the noninteracting case: the order at any fixed distance does
not saturate but increases strictly monotonically for all
observed times within the light cones. This is a drastic
nonperturbative effect of the interacting model. It is
particularly obvious for next-neighboring spins; see
Fig. 1(b). The important question of whether this growing
will eventually lead to a finite plateau for ji − jj → ∞
requires access to even much later times, which we
currently cannot access.
When initializing the system in a symmetry-broken state,

as studied in previous works, the stability of MBL-SG order
originates from the large overlap with the LIOMs. The
mechanism for the buildup of long-range order from
symmetric states as targeted in this work is of fundamen-
tally different origin because the initial state is oriented
orthogonal to the LIOMs. Here, it is essential to gene-
rate long-distance quantum correlations between LIOMs.
This is not possible in the Anderson localized limit because
the LIOMs are independent, as we also see from our results
in Fig. 1. Only in the interacting MBL limit can the
MBL-SG order develop. Quantum correlations between
two lattice sites i and j can emerge on a timescale
½JðxÞ�−1eji−jj=ξ, where ξ denotes a typical localization length.
Consequently, at a given time t, the MBL-SG order can be
generated over distances of d ∼ ξ log½JðxÞt�, explaining the
appearance of the logarithmic light cone in Fig. 1(b).
As a closing point, we now turn briefly to quantum

many-body dynamics in two dimensions. Whether a non-
ergodic phase due to strong disorder exists there has
remained an outstanding challenge [54]. Its difficulty
originates from the percolation of many-body resonances
[55,56]. We find that, at least for sufficiently small or large
external fields, the latter can be effectively captured using
our framework up to an unprecedented long timescale.
Figure 3 shows the temporal evolution of the local
magnetization in a periodic simple square lattice, using
essentially the same quench protocol as above. In contrast
to the glassy dynamics of a chain, the lattice exhibits a rapid
decay of magnetization at h ≪ J, which is consistent with
thermalization; see Fig. 3. On the other hand, for h ≫ J, a
stable nonthermal plateau is reached. Our result therefore
numerically confirms a presumed quasilocalization [55,56]
in the disordered 2D transverse-field Ising model at infinite
temperature.

Conclusion.—We have demonstrated how many-body
quantum dynamics can be simulated for generic spin-1=2
systems up to exponentially long times given that suffi-
ciently strong disorder breaks ergodicity at least up to the
targeted timescale. Importantly, this includes an unbiased
treatment of many-body resonances, which allowed us to
obtain quantitative results in general and to go beyond one-
dimensional systems. We could show that our proposed
framework does not fundamentally rely on any specific
details of the model and scales up to system sizes far
beyond what is possible with exact diagonalization. This
opens up broad investigations, e.g., of nonthermal behavior
and quantum aging dynamics in higher dimensions [57,58],
long-range interacting systems [59–61], or localization in
lattice gauge theories [62]. Since this work has shown that
deep ANNs are able to apply the proposed quantum circuit
numerically exact, the ansatz could also be well suited for
random unitary circuit models, e.g., to study operator
spreading [63–65] or measurement induced localization
transitions [66,67].

We are grateful to M. Schmitt, M. Schiró, G. De Tomasi,
and M. Schulz for helpful discussions. This project has
received funding from the European Research Council
under the European Union’s Horizon 2020 Research and
Innovation Programme (Grant Agreement No. 853443),
and M. H. further acknowledges support by the Deutsche
Forschungsgemeinschaft via the Gottfried Wilhelm Leibniz
Prize program. Moreover, the authors gratefully acknowl-
edge the Gauss Centre for Supercomputing e.V. (GCS;
www.gauss-centre.eu) for funding this project by providing
computing time through the John von Neumann Institute
for Computing on the GCS Supercomputer JUWELS at the
Jülich Supercomputing Centre.

*burau@pks.mpg.de
[1] P. W. Anderson, Science 177, 393 (1972).
[2] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[3] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys.

(Amsterdam) 321, 1126 (2006).
[4] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev.

Lett. 95, 206603 (2005).
[5] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[6] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
[7] R. Nandkishore and D. A. Huse, Annu. Rev. Condens.

Matter Phys. 6, 15 (2015).
[8] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.

Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat. Phys. 12,
907 (2016).

[9] I. V. Protopopov, R. K. Panda, T. Parolini, A. Scardicchio, E.
Demler, and D. A. Abanin, Phys. Rev. X 10, 011025 (2020).

[10] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I.
Bloch, Science 349, 842 (2015).

PHYSICAL REVIEW LETTERS 127, 050601 (2021)

050601-5

https://doi.org/10.1126/science.177.4047.393
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevX.10.011025
https://doi.org/10.1126/science.aaa7432


[11] R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204
(2013).

[12] D. Pekker, G. Refael, E. Altman, E. Demler, and V.
Oganesyan, Phys. Rev. X 4, 011052 (2014).

[13] E. Altman and R. Vosk, Annu. Rev. Condens. Matter Phys.
6, 383 (2015).

[14] A. Morningstar and D. A. Huse, Phys. Rev. B 99, 224205
(2019).

[15] P. T. Dumitrescu, A. Goremykina, S. A. Parameswaran,
M. Serbyn, and R. Vasseur, Phys. Rev. B 99, 094205
(2019).

[16] A. Goremykina, R. Vasseur, and M. Serbyn, Phys. Rev. Lett.
122, 040601 (2019).

[17] M. Žnidarič, T. Prosen, and P. Prelovšek, Phys. Rev. B 77,
064426 (2008).

[18] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[19] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[20] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.

Mech. (2004) P04005.
[21] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
[22] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, Phys. Rev.

Lett. 93, 207204 (2004).
[23] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205

(2004).
[24] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U.

Schollwöck, and C. Hubig, Ann. Phys. (Amsterdam) 411,
167998 (2019).

[25] H. Lin, Phys. Rev. B 42, 6561 (1990).
[26] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 93,

060201(R) (2016).
[27] C. Kollath, A. M. Läuchli, and E. Altman, Phys. Rev. Lett.

98, 180601 (2007).
[28] J. Richter, T. Heitmann, and R. Steinigeweg, SciPost Phys.

9, 031 (2020).
[29] G. Carleo and M. Troyer, Science 355, 602 (2017).
[30] M. Schmitt and M. Heyl, Phys. Rev. Lett. 125, 100503

(2020).
[31] M. Schmitt and M. Heyl, SciPost Phys. 4, 013 (2018).
[32] E. Guardado-Sanchez, P. T. Brown, D. Mitra, T. Devakul,

D. A. Huse, P. Schauß, and W. S. Bakr, Phys. Rev. X 8,
021069 (2018).

[33] G. De Tomasi, F. Pollmann, and M. Heyl, Phys. Rev. B 99,
241114(R) (2019).

[34] A. Hackl and S. Kehrein, Phys. Rev. B 78, 092303 (2008).
[35] D. S. Fisher, Phys. Rev. B 51, 6411 (1995).
[36] S. Bravyi, D. P. DiVincenzo, and D. Loss, Ann. Phys.

(Amsterdam) 326, 2793 (2011).
[37] V. Ros, M. Müller, and A. Scardicchio, Nucl. Phys. B891,

420 (2015).
[38] J. Z. Imbrie, V. Ros, and A. Scardicchio, Ann. Phys. (Berlin)

529, 1600278 (2017).
[39] L. Rademaker and M. Ortuno, Phys. Rev. Lett. 116, 010404

(2016).
[40] R. Vosk and E. Altman, Phys. Rev. Lett. 112, 217204

(2014).

[41] S. J. Thomson and M. Schiró, Phys. Rev. B 97, 060201(R)
(2018).

[42] S. J. Thomson and M. Schiró, Eur. Phys. J. B 93, 22 (2020).
[43] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.127.050601 for further
benchmarks and technical aspects of the methodology,
which include Refs. [44–47].

[44] J. Van Hemmen, Z. Phys. B Condens. Matter 38, 271
(1980).

[45] P. Calabrese, F. H. L. Essler, and M. Fagotti, Phys. Rev. Lett.
106, 227203 (2011).

[46] P. Coleman, Introduction to Many-Body Physics
(Cambridge University Press, Cambridge, England, 2015).

[47] J. Chen, D. Zhou, Y. Tang, Z. Yang, and Q. Gu, arXiv:
1806.06763.

[48] K. Ryczko, D. A. Strubbe, and I. Tamblyn, Phys. Rev. A
100, 022512 (2019).

[49] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko,
and J. Carrasquilla, Phys. Rev. Research 2, 023358 (2020).

[50] A. Nagy and V. Savona, Phys. Rev. Lett. 122, 250501
(2019).

[51] F. Voigtlaender, arXiv:2012.03351.
[52] D.-L. Deng, X. Li, and S. DasSarma, Phys. Rev. X 7,

021021 (2017).
[53] Y. Javanmard, S. Bera, and M. Heyl, Phys. Rev. B 99,

144201 (2019).
[54] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M.

Knap, U. Schneider, and I. Bloch, Phys. Rev. X 7, 041047
(2017).

[55] W. De Roeck and J. Z. Imbrie, Phil. Trans. R. Soc. A 375,
20160422 (2017).

[56] F. Alet and N. Laflorencie, C.R. Phys. 19, 498 (2018).
[57] T. B. Wahl, A. Pal, and S. H. Simon, Nat. Phys. 15, 164

(2019).
[58] J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal,

T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross,
Science 352, 1547 (2016).

[59] J. Zeiher, J.-Y. Choi, A. Rubio-Abadal, T. Pohl, R. van
Bijnen, I. Bloch, and C. Gross, Phys. Rev. X 7, 041063
(2017).

[60] G. Piccitto, B. Žunkovič, and A. Silva, Phys. Rev. B 100,
180402(R) (2019).

[61] P. Hauke and L. Tagliacozzo, Phys. Rev. Lett. 111, 207202
(2013).

[62] P. Karpov, R. Verdel, Y.-P. Huang, M. Schmitt, and M. Heyl,
Phys. Rev. Lett. 126, 130401 (2021).

[63] A. Nahum, S. Vijay, and J. Haah, Phys. Rev. X 8, 021014
(2018).

[64] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and
S. L. Sondhi, Phys. Rev. X 8, 021013 (2018).

[65] V. Khemani, A. Vishwanath, and D. A. Huse, Phys. Rev. X
8, 031057 (2018).

[66] Y. Bao, S. Choi, and E. Altman, Phys. Rev. B 101, 104301
(2020).

[67] C.-M. Jian, Y.-Z. You, R. Vasseur, and A.W.W. Ludwig,
Phys. Rev. B 101, 104302 (2020).

PHYSICAL REVIEW LETTERS 127, 050601 (2021)

050601-6

https://doi.org/10.1103/PhysRevLett.110.067204
https://doi.org/10.1103/PhysRevLett.110.067204
https://doi.org/10.1103/PhysRevX.4.011052
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1103/PhysRevB.99.224205
https://doi.org/10.1103/PhysRevB.99.224205
https://doi.org/10.1103/PhysRevB.99.094205
https://doi.org/10.1103/PhysRevB.99.094205
https://doi.org/10.1103/PhysRevLett.122.040601
https://doi.org/10.1103/PhysRevLett.122.040601
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevB.42.6561
https://doi.org/10.1103/PhysRevB.93.060201
https://doi.org/10.1103/PhysRevB.93.060201
https://doi.org/10.1103/PhysRevLett.98.180601
https://doi.org/10.1103/PhysRevLett.98.180601
https://doi.org/10.21468/SciPostPhys.9.3.031
https://doi.org/10.21468/SciPostPhys.9.3.031
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.21468/SciPostPhys.4.2.013
https://doi.org/10.1103/PhysRevX.8.021069
https://doi.org/10.1103/PhysRevX.8.021069
https://doi.org/10.1103/PhysRevB.99.241114
https://doi.org/10.1103/PhysRevB.99.241114
https://doi.org/10.1103/PhysRevB.78.092303
https://doi.org/10.1103/PhysRevB.51.6411
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1103/PhysRevLett.116.010404
https://doi.org/10.1103/PhysRevLett.116.010404
https://doi.org/10.1103/PhysRevLett.112.217204
https://doi.org/10.1103/PhysRevLett.112.217204
https://doi.org/10.1103/PhysRevB.97.060201
https://doi.org/10.1103/PhysRevB.97.060201
https://doi.org/10.1140/epjb/e2019-100476-3
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.050601
https://doi.org/10.1007/BF01315667
https://doi.org/10.1007/BF01315667
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevLett.106.227203
https://arXiv.org/abs/1806.06763
https://arXiv.org/abs/1806.06763
https://doi.org/10.1103/PhysRevA.100.022512
https://doi.org/10.1103/PhysRevA.100.022512
https://doi.org/10.1103/PhysRevResearch.2.023358
https://doi.org/10.1103/PhysRevLett.122.250501
https://doi.org/10.1103/PhysRevLett.122.250501
https://arXiv.org/abs/2012.03351
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevB.99.144201
https://doi.org/10.1103/PhysRevB.99.144201
https://doi.org/10.1103/PhysRevX.7.041047
https://doi.org/10.1103/PhysRevX.7.041047
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1038/s41567-018-0339-x
https://doi.org/10.1038/s41567-018-0339-x
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1103/PhysRevX.7.041063
https://doi.org/10.1103/PhysRevX.7.041063
https://doi.org/10.1103/PhysRevB.100.180402
https://doi.org/10.1103/PhysRevB.100.180402
https://doi.org/10.1103/PhysRevLett.111.207202
https://doi.org/10.1103/PhysRevLett.111.207202
https://doi.org/10.1103/PhysRevLett.126.130401
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.101.104302

