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Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-
dimensional homogeneous lattice gauge theories caused by local constraints imposed by gauge invariance.
We show that also genuinely interacting systems in two spatial dimensions can become nonergodic as a
consequence of this mechanism. This result is all the more surprising since the conventional many-body
localization is conjectured to be unstable in two dimensions; hence the gauge invariance represents an
alternative robust localization mechanism surviving in higher dimensions in the presence of interactions.
Specifically, we demonstrate nonergodic behavior in the quantum link model by obtaining a bound on the
localization-delocalization transition through a classical correlated percolation problem implying a
fragmentation of Hilbert space on the nonergodic side of the transition. We study the quantum dynamics
in this system by introducing the method of “variational classical networks,” an efficient and perturbatively
controlled representation of the wave function in terms of a network of classical spins akin to artificial
neural networks. We identify a distinguishing dynamical signature by studying the propagation of line
defects, yielding different light cone structures in the localized and ergodic phases, respectively. The
methods we introduce in this work can be applied to any lattice gauge theory with finite-dimensional local
Hilbert spaces irrespective of spatial dimensionality.
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Introduction.—Systems with local constraints play an
important role in various physical contexts ranging from
strongly correlated electrons [1,2] and frustrated magnets
[3–5] to quantum information [6] and fundamental theories
of matter such as quantum electrodynamics and chromo-
dynamics [7], where constraints take the form of local
gauge symmetries. The equilibrium properties of such
systems have been extensively studied over the past
decades, but only recently their nonequilibrium dynamics
has moved into focus. In particular, local constraints have
emerged as a new paradigm for ergodicity breaking,
besides the two known archetypical scenarios caused by
localization due to strong disorder or integrability. Systems
with local constraints can exhibit rare nonergodic
eigenstates, termed quantum many-body scars [8,9], or
extremely slow relaxation [10–12], whereas dipole con-
servation can prevent thermalization of large parts of the
spectrum in one-dimensional fractonic systems [13–16]. A

particularly generic mechanism for nonergodic behavior is
hosted in lattice gauge theories (LGTs) where local con-
straints emerge naturally due to the local gauge symmetry,
leading to an extensive number of local conserved quan-
tities. Specifically, this can lead to the absence of ergodicity
in 1D LGTs with discrete [17–19] and continuous [20]
gauge symmetries or for higher-dimensional systems in the
low-energy limit [21] or when they are noninteracting [22].
However, it has remained a key challenge to identify
nonergodic behavior in genuinely interacting quantum
systems beyond one spatial dimension.
In this work we show that the 2D U(1) quantum link

model (QLM) features both localized and ergodic phases in
the absence of disorder. This result appears especially
remarkable since for the more conventional disorder-
induced many-body localization [23,24] it is debated
whether interactions destroy localization in 2D, as it
follows from the theoretical arguments [25,26], or not,
as suggested by experiment [27] and numerics [28]. Thus,
we show that the constraint-induced disorder-free locali-
zation provides an alternative and robust localization
mechanism surviving in the higher dimensions in the
presence of interactions. Our numerical argument relies
on a mapping onto a classical correlated percolation
problem providing a bound on the localization transition
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of the quantum model. We identify a distinguishing
quantum dynamical signature of the two phases by study-
ing the propagation of an initial line defect, which leads to
two different light cone structures. For the challenging
problem of the nonequilibrium quantum dynamics of the
interacting two-dimensional system, we introduce the
method of variational classical networks (VCNs), which
provide an efficient and perturbatively controlled repre-
sentation of the quantum many-body wave function in
terms of a network of classical spins akin to artificial neural
networks (ANNs). The introduced methods can be applied
to any LGT with finite local Hilbert spaces irrespective of
dimensionality.
Quantum link model.—We study the 2D U(1) quantum

link model [29,30], which has been introduced as a
descendant of lattice quantum electrodynamics with
spin-1=2 gauge degrees of freedom. In the QLM the spins
Sr;μ reside on the links of a square lattice connecting
vertices r ¼ ðx; yÞ and rþ μ [here μ ¼ î; ĵ is one of the two
unit vectors of the lattice, Fig. 1(a)], with the Hamiltonian:

H ¼H0 þV≡ λ
X

□

ðU□ þU†
□
Þ2 − J

X

□

ðU□ þU†
□
Þ: ð1Þ

The sums run over all plaquettes □, U□ ¼
Sþ
r;î
Sþ
rþî;ĵ

S−
rþĵ;î

S−
r;ĵ

induces a collective flip of all spins on

plaquette □, and S�r;μ̂ denote the raising and lowering
operators. The first (potential) term counts the number of
flippable plaquettes and the second (kinetic) term induces
coherent dynamics. For what follows, we will consider
periodic boundary conditions and the case of a strong
potential term with J=λ ¼ −0.1. The QLM not only
appears in the context of high-energy physics, but
also shares strong connections to condensed matter
systems featuring quantum spin ice phases [31,32] or
quantum dimer models [1,33]. On the experimental side
various proposals have explored the potential realization
of the QLM in quantum simulators within the past
years [34,35].
The local gauge symmetry of the QLM is generated by

the operators Gr ¼
P

μðSzr;μ − Szr−μ;μÞ counting the total
inflow of the electric field to the vertex r. Since ½Gr; H� ¼ 0
for all lattice points and ½Gr; Gr0 � ¼ 0, eigenstates of
H can be classified by the respective eigenvalues qr ∈
f−2;−1; 0; 1; 2g of Gr. The set of q ¼ fqrg defines the
so-called superselection sector of states jψqi with
Grjψqi ¼ qrjψqi, so that each of the qr can be given a
physical meaning in terms of static background charges
located at r [20]. The QLM further has global conserved
quantities Φx ¼

P
y S

z
r;î
, Φy ¼

P
x S

z
r;ĵ
, which define the

flux sectors.
Disorder-free localization.—The existence of these

sectors, protected by gauge invariance, can lead to an
unconventional scenario for ergodicity breaking. Consider
a homogeneous superposition state jψi ¼ P

q Cqjψqi

involving many superselection sectors. As the
Hamiltonian and typical observables are block diagonal,
i.e.,Hjψqi ¼ Hqjψqi, the expectation values of an operator
O during dynamics become equivalent to hOðtÞi ¼P

q jCqj2hψqjeiHqtOe−iHqtjψqi resembling an effective dis-
order average with the disorder strength determined by the
random background charges in the typical superselection
sectors [20]. This can, in principle, lead to nonergodic
behavior of hOðtÞi, although both the initial state and the
Hamiltonian are homogeneous leading to the notion of
disorder-free localization [17].
Initial states for time evolution.—We now aim to

characterize the nonequilibrium dynamics of the QLM
for the following homogeneous initial states jψ0i.
(i) jψ0i ¼ j →i ¼⊗i ð1=

ffiffiffi
2

p Þðj↑ii þ j↓iiÞ, where j↑ii
and j↓ii are the two basis states at link i. This state is
distributed over all superselection sectors of the model.
(ii) jψ0i ¼ j →iFF which is a projection of j →i to a

single “fully flippable” (FF) sector, defined as the zero-
charge zero-flux sector. j →iFF is an equal-weighted
superposition of all states from the FF sector (i.e., the
Rokhsar-Kivelson state [1] for the FF sector).
While j →i is a product state, j →iFF is entangled.

Nevertheless, j →i can be continuously connected to a
product state from the FF sector via

jψ0ðαÞi¼⨂
i

�
sin

�
αþπ

4

�
jFFiiþ cos

�
αþπ

4

�
jFFii

�
; ð2Þ

(a) (b)

FIG. 1. (a) Illustration of the U(1) quantum link model (QLM)
with spin-1=2’s located on the links of the square lattice. Spins
pointing → or ↑ correspond to Sz ¼ þ1 and ← or ↓ to Sz ¼ −1,
respectively. Kinetics is introduced by plaquette-flip operators
U□; U

†
□
(shown for the darkened central plaquette) whenever the

spins on a plaquette are oriented clockwise or counterclockwise.
Flippable plaquettes are denoted by circular arrows. Background
charges with nonzero inflow or outflow of electric field at a
given vertex are indicated by red a blue dots. (b) Spatio-
emporal buildup of quantum correlations jhSzr;yðtÞSzrþd;yðtÞij≡
jhSz0ðtÞSzdðtÞij (d ¼ dî) starting from jψðα ¼ 0Þi ¼ j →i in the
localized phase of the QLM for J=λ ¼ −0.1 and a system of size
80 × 80, i.e., 12800 spins.
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with α ∈ ½0; π=4�. Here, jFFii and jFFii denote the
local spin orientations of the two states with all
plaquettes flippable and therefore with checkerboard-
alternating clockwise (FFi) and anticlockwise (FFi)
orientations. By construction, jψðα ¼ 0Þi ¼ j →i and
jψðα ¼ π=4Þi ¼ jFFi≡ ⊗i jFFii. Importantly, the states
jψðαÞi are spatially uniform. The resulting dynamics for
α ¼ 0 is displayed in Fig. 1(b), where we monitor the
spatiotemporal buildup of quantum correlations. We will
identify the limited spatial propagation with nonergodic
behavior below.
Variational classical networks.—Calculating the dynam-

ics of interacting quantum systems in 2D is an inherently
hard problem without a general-purpose computational
method available to date. Representing a generic quantum
many-body state as jψi ¼ P

s⃗ ψðs⃗Þjs⃗i requires, in princi-
ple, the storage of exponentially many amplitudes ψðs⃗Þ
[here s⃗ ¼ ðs1;…; sNÞ]. Recently, it has been proposed to
use networks of classical spins to solve this problem
[36,37] by avoiding to store the ψðs⃗Þ’s. The amplitudes
ψðs⃗Þ ≈ exp½Hðs⃗;WÞ� are rather generated on the fly when
needed via a complex classical spin model with
Hamiltonian Hðs⃗;WÞ determined by a set of couplings
W between the involved spins. Here, we constructHðs⃗;WÞ
using a perturbatively controlled expansion and extend
the recently proposed classical networks [37] upon impos-
ing an additional optimization principle. The resulting
approach can be interpreted as encoding jψi in an ANN
with a specific simplified network structure.
Within the VCNs we perform an expansion around a

classical limit, which in the case of the QLM is the potential
term H0 in Eq. (1). By representing the evolution operator
in the interaction picture WðtÞ ¼ T exp½− R

t
0 dt

0Vðt0Þ�,
we can write ψðs⃗; tÞ ¼ hs⃗jeiHtjψ0i ¼ hs⃗jeiH0tWðtÞjψ0i ¼
eiEs⃗ths⃗jWðtÞjψ0i, where H0js⃗i ¼ Es⃗js⃗i. For the remaining
term hs⃗jWðtÞjψ0i we perform a cumulant expansion for
time-ordered exponential operators [37–39], which, e.g., to
the first order yields H ¼ −iEs⃗t − hs⃗j R t

0 dt
0Vðt0Þjψ0i=

hs⃗jψ0i. Taking jψ0i ¼ j →i one obtains for the QLM
Hðs⃗; tÞ ¼ −iEs⃗t − iJ

P0
□

R
t
0 dt

0eiλω□ðs⃗Þt0 . Here
P0

□
denotes

the sum over all flippable plaquettes in the spin configuration
s⃗, and ω□ ¼ −4;…; 4 counts the difference between num-
ber of flippable plaquettes surrounding the given □ before
and after its flip (i.e., λω□ gives the potential energy
difference before and after the flip). For example, for the
configuration in Fig. 1(a) we have ω□ ¼ 3–1 ¼ 2 for
the central plaquette. Going beyond previous work [37]
we promote λt and its functions such as

R
t
0 dt

0eiλω□t0

to variational parameters WkðtÞ ¼ ðWð0Þ;Wð1Þ
−4 ;…;Wð1Þ

4 Þ
yielding Hðs⃗;WkðtÞÞ ¼ −iEs⃗Wð0Þ − iJ

P0
□
Wð1Þ

ω□ðs⃗Þ. The

local connectivity of the VCN is encoded in the
function ω□ðs⃗Þ. For the actual shown numerical
simulations we use a second-order ansatz and more complex
initial states (see Refs. [39,40]). TheWkðtÞ’s are determined

by a time-dependent variational principle translating
quantum dynamics into a system of coupled classical
differential equations

P
k0 Sk;k0

_Wk0 ¼ −iFk in the space of
variational parameters. Here, Sk;k0 ¼ hO�

kOk0i − hO�
kihOk0i

and Fk ¼ hElocO�
ki − hElocihO�

ki, with Okðs⃗Þ ¼∂ lnψðs⃗;WÞ=∂Wk and Elocðs⃗Þ ¼ hs⃗jHjψWi=hs⃗jψWi (see
Ref. [39]). We solve these equations using a fourth-order
Runge-Kutta integrator with step size Δt ¼ 0.1λ−1 and
sample the observables using Metropolis Monte Carlo
(MC) method with 106 sweeps at each time instance, with
single spin-flip updates for j →i and plaquette flips
for j →iFF.
While our approach is numerically stable and therefore

does not face some challenges appearing in ANNs [41], it
has its own limitations due to its perturbative construction,
which is guaranteed to work only up to times t ≃ j1=Jj. We
find, however, that the errors remain perturbatively con-
trolled up to much longer times as a consequence of the
variational optimization. This can be verified, since the
method provides a self-contained way of tracking the error,
not referring to any reference solution. We present the
details of the error analysis in Refs. [39,40] together with
benchmarks and the discussion of the limitations of the
method.
Localized and ergodic dynamics.—Using the VCNs we

now compute nonequilibrium dynamics in the QLM. We
start by studying the spatiotemporal buildup of quantum
correlations, measured via hSz0ðtÞSzdðtÞi, upon initializing
the system in state jψ0i ¼ j →i. The result is shown in
Fig. 1(b), where one can see that correlations emerge only
over a limited spatial distance suggesting nonergodic
behavior. We proceed by further corroborating this obser-
vation by other measures.
Namely, we study energy transport in the QLM by

creating initial conditions with a spatial energy inhomo-
geneity in the form of a line defect with subextensive
energy contribution and use the character of energy
propagation to distinguish between ergodic and localized
dynamics. Concretely, we consider the two initial con-
ditions jψ0i ¼ j →i or j →iFF upon applying in addition
P ¼ Q

□∈C0 ½1þ ðU□ þU†
□
Þ2� along all plaquettes in col-

umn d ¼ 0; here Cd denotes the set of plaquettes in column
d. In Fig. 2 we plot the (normalized) column energy
εdðtÞ ¼ ðhHdðtÞi −HavÞ=Hav, with Hd ¼

P
□∈Cd H□

the total energy for the plaquettes in dth column,
H□¼ λðU□þU†

□
Þ2−JðU□þU†

□
Þ. Further, Hav¼hHi=L

denotes the expected hHdðtÞi in the long-time limit when
the system is thermalizing (L is the number of columns).
We have checked that other choices of the excitation
operator P (diagonal or nondiagonal) increasing the ampli-
tudes of configurations with flippable plaquettes at d ¼ 0
do not qualitatively affect the results we present next.
Comparing Figs. 2(a) and 2(c) we observe that the

dynamics differs qualitatively for the two initial conditions,

PHYSICAL REVIEW LETTERS 126, 130401 (2021)

130401-3



although the Hamiltonian parameters are identical. While
for jψ0i ¼ j →i energy transport is highly suppressed and
only visible on short distances [Fig. 2(a)], the opposite
happens for j →iFF. This becomes even more apparent in
Figs. 2(b) and 2(d), where εdðtÞ relative to the initial value
εdð0Þ is shown, therefore more directly highlighting energy
propagation. While for j →iFF we identify a linearly
propagating front, for j →i we observe a strong bending.
We argue below that this front for j →i can extend only to a
finite region as a consequence of disorder-free localization.
Bound on quantum dynamics by unconventional

percolation.—The qualitative difference in the quantum
dynamics for the initial states j →i and j →iFF originates
from a dynamical transition, which one can study system-
atically upon tuning the parameter α for the initial state (2).
For this purpose, we employ an unconventional correlated
classical percolation problem and establish a bound on the
quantum localized-ergodic transition in the QLM providing
a strong numerical evidence for an extended nonergodic
phase as a consequence of disorder-free localization.
We illustrate the idea for the initial state j →i, distributed

over all superselection sectors. Consider a typical (random)
sector from this distribution [Fig. 3(a)]. Such sector exhibits
many background charges qr whenever the “two-in two-
out” rule at vertex r is violated. Importantly, these back-
ground charges (constants of motion by gauge invariance)
impose strong kinetic constraints. For instance, qr ¼ �2
implies that neighboring spins all point either inward or

outward; hence the adjacent plaquettes remain unflippable
forever. The influence of qr ¼ �1 charges is more subtle.
They make at least two adjacent plaquettes unflippable,
while their positions might change over time.
The question we address now is whether these con-

straints are so strong to fragment the square lattice into sets
of kinetically disconnected islands or whether one can
contain an extensive (percolating) connected cluster. For
that purpose we study an unconventional percolation
problem using an infinite-temperature classical MC simu-
lation. We start from the initial condition (2), sampling a
random basis state (and thus a sector) with a distribution set
by the amplitudes in jψðαÞi. Then we determine which
parts of the systems are kinetically connected, using MC
search with random plaquette flips. The simulation is
stopped when every plaquette is flipped either 0 or more
than some fixed threshold (¼ 100) number of times
(or after 1011 MC steps if this condition is still not
satisfied). As a result we find the number of performed
flips for each plaquette [Fig. 3(b)]. Repeating this pro-
cedure for different initial configurations at a given α and
scanning α, we finally obtain the percolation probability
[Fig. 3(c)]. Most importantly, one can observe a clear
evidence for a percolation threshold αc ≈ 0.25. Although
the simulation termination condition is chosen such as to
minimize the number of potentially missed “weak con-
nections” between flippable clusters, we cannot exclude the
possibility of such misses. While we do not expect a
significant impact deep in the respective phases, this caveat
might become important in the vicinity of αc; thus we
restrain ourselves from studying the critical behavior.
Since αc > 0, the initial state jψðα ¼ 0Þi ¼ j →i

corresponds to the classically nonpercolating side of the
transition, while from αc < π=4 it follows that state
jψðα ¼ π=4Þi ¼ jFFi and all other states from the FF
sector (including j →iFF) lie on the percolating side.
This classical threshold is imprinted in the quantum
dynamics and ultimately leads to the strong localization
observed in propagation of correlations [Fig. 1(b)] and of
the energy [Figs. 2(a) and 2(b)] for j →i. For the FF-sector
state j →iFF there is no percolation constraint, which allows
propagation of the signal to long distances [Figs. 2(c) and
2(d)]. We emphasize that this analysis sets only a lower
bound onto the true quantum transition localization-delo-
calization threshold αðqÞc , since the quantum system might
still be localized due to interference caused by the kinetic J
term even on the classically percolating side.
Summary and outlook.—We have shown that genuinely

interacting 2D homogeneous LGTs can become nonergo-
dic as a consequence of disorder-free localization. This is
especially surprising since the conventional many-body
localization is theoretically conjectured to be unstable in
2D at elevated energy densities [25,26], implying that
gauge invariance (constraints) represent a different and
probably more robust mechanism of ergodicity breaking as

(d)

(b)

(c)

(a)

FIG. 2. Quantum energy dynamics for line defects created in
the j →i (upper panel) and j →iFF (lower panel) initial states,
displaying the normalized plaquette energy of dth column
εdðtÞ ¼ ½hHdðtÞi −Hav�=Hav [here Hav ¼ hHi=L]. (a),(c) εdðtÞ
for different columns d ¼ 2–5, where darker colors refer to larger
distances from the initial defect. Insets show the same data
including d ¼ 0, 1 in a color plot. (b),(d) Absolute deviation of
εdðtÞ from the initial value εdð0Þ. (b) Signal propagation for j →i
showing a strong bending of the light cone indicating localized
behavior and (d) for j →iFF consistent with linear propagation
indicative of ergodic behavior. For all the plots J=λ ¼ −0.1 and
system size 10 × 10.
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compared to disorder. The key element of our analysis is a
bound on the localization-delocalization transition based on
a classical correlated percolation problem implying a strong
fragmentation of Hilbert space into kinetically discon-
nected regions. Both the percolation analysis as well as
the introduced variational classical networks can be directly
applied to other quantum many-body systems with finite-
dimensional local Hilbert spaces independent of dimen-
sionality, such as 3D quantum spin ice systems, which
might be an interesting scope of the developed techniques
in the future. Further, it might be interesting to explore
how the classical and quantum transition thresholds
are related to each other as well as to determine their
respective critical behaviors, and whether the disorder-
free localization scenario holds also in the presence of
matter degrees of freedom. Our theoretical analysis
appears within reach of future experiments: significant
efforts in the past years have explored routes to realize the
QLM model experimentally in systems of Rydberg atoms
[34,35] as a next step after the recent experimental
advances on 1D LGTs [42–46].
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indicates plaquettes that can become flippable in the course of the evolution. (b) Result of the Monte Carlo simulation starting from the
state (a). The color map shows the number of times that the individual plaquettes were flipped in the course of the simulation; white color
stands only for plaquettes that have never been flipped. (c) Percolation probability versus α. The insets show typical configurations
below, at, and above the percolation threshold αc ≈ 0.25 for a 40 × 40 system.
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