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Abstract
When scheduling surgeries in the operating theater, not only the resources within the operating theater have to be considered 
but also those in downstream units, e.g., the intensive care unit and regular bed wards of each medical specialty. We present 
an extension to the master surgery schedule, where the capacity for surgeries on ICU patients is controlled by introducing 
downstream-dependent block types – one for both ICU and ward patients and one where surgeries on ICU patients must not 
be performed. The goal is to provide better control over post-surgery patient flows through the hospital while preserving each 
medical specialty’s autonomy over its operational surgery scheduling. We propose a mixed-integer program to determine the 
allocation of the new block types within either a given or a new master surgery schedule to minimize the maximum workload 
in downstream units. Using a simulation model supported by seven years of data from the University Hospital Augsburg, 
we show that the maximum workload in the intensive care unit can be reduced by up to 11.22% with our approach while 
maintaining the existing master surgery schedule. We also show that our approach can achieve up to 79.85% of the maximum 
workload reduction in the intensive care unit that would result from a fully centralized approach. We analyze various hospital 
setting instances to show the generalizability of our results. Furthermore, we provide insights and data analysis from the 
implementation of a quota system at the University Hospital Augsburg.
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Highlights 

• We introduce ICU quotas for the master surgery schedule
• We focus on the tactical level to reduce peak workload 

on the recovery units, especially the ICU
• We use a combined optimization and simulation approach 

to analyze the schedules
• We show that peak workload reduction is possible with-

out changing the master surgery schedule
• We report on the implementation of ICU quotas at our 

cooperating hospital

1 Introduction

Scheduling surgeries in the operating theater (OT) is a chal-
lenging task as a multitude of resources, e.g., physicians, 
nurses, anesthetists, operating rooms (OR), and equipment 
have to be considered. Additionally, resources of down-
stream units, e.g., bed capacity in the intensive care unit 
(ICU), the intermediate care unit (IMC), and in the regular 
bed wards of each medical specialty, are limited and need to 
be incorporated in the planning process. In practice, a master 
surgery schedule (MSS) is often used on the tactical level 
to provide planning certainty for all medical specialties and 
to reduce the complexity of daily surgery scheduling on the 
operational level. In an MSS, OT capacity is assigned to dif-
ferent specialties, in which each specialty is assigned some 
number of OR blocks each day. This allows each specialty to 
schedule its patients individually in their given OR blocks. 
The reduced complexity allows specialties to react to unfore-
seen events, e.g., emergency cases or deviations from the 
scheduled surgery time of patients, autonomously, but other 
problems may arise. For example, the decentralized planning 
of surgeries may cause significant daily fluctuations in the 
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ICU, a downstream unit of the OT shared by all specialties, 
regarding the number of admissions, the daily workload, 
and the number of discharges. On some days, the number 
of admissions can be higher than the number of planned 
discharges leading to early discharges, which harm patients’ 
recovery [3]. On other days, the number of admissions can 
be lower than the planned number of discharges, which leads 
to idle capacity in the ICU. Additional scheduling rules are 
necessary to limit the daily number of scheduled patients for 
each downstream unit in the OT. In practice, these restric-
tions are mostly considered on an operational level but not 
on the tactical level. The lack of an integrated planning 
approach on the tactical level leads to increased planning 
efforts on the operational level, especially in the ICU.

In this paper, we present an extension to the MSS using 
distinct block types for individual downstream units to con-
trol downstream resource consumption on a tactical level. We 
develop a mixed-integer program (MIP) to minimize the maxi-
mum workload for nurses and physicians in downstream units 
using patient-to-nurse ratios as well as the workload for admis-
sions, daily routines, and discharges. The model can be used to 
calculate a new MSS where ICU blocks (allowing surgeries on 
ICU and ward patients) and ward blocks (where ICU patients 
cannot be treated) of each specialty have to be allocated to 
rooms and days using capacity restrictions derived from stra-
tegic planning. Our approach can also be applied to an existing 
MSS to decide whether the given blocks should be declared 
ICU blocks or ward blocks. Maintaining an existing MSS is 
usually preferred by hospitals due to the major process dis-
ruptions that derive from changing the MSS. We evaluate the 
performance in terms of the maximum workload in each down-
stream unit of an existing MSS and a newly calculated MSS 
using a simulation model for both the traditional approach and 
our extension. We use OT and ward data from 2010 through 
2016 from the University Hospital Augsburg (UKA), a ter-
tiary care hospital in Germany with more than 1,700 beds. We 
used a modified version of our model to calculate ICU quotas 
for the OT of UKA which were implemented in practice in 
January 2020. We describe the implementation process and 
measure the impact the new process has in practice by com-
paring OT and ICU data from two two-month periods, one in 
2019, where no quota system had been implemented, and one 
in 2020, where the quota system had been implemented.

Our contributions are the following: First, in the case 
study of UKA, we show that our approach outperforms the 
traditional approach, where no downstream-related sur-
gery capacity is allocated in the OT, by up to 11.22% in the 
ICU. Second, we also show that a new MSS might not be 
necessary since our approach can realize most of the peak 
workload reduction in the ICU with an existing MSS. Third, 
our approach can yield up to 79.85% of potential maxi-
mum workload reduction compared to a central planning 
approach, scheduling surgeries considering downstream 

workload leveling on the operational level. Hence, our 
approach reaps most of the potential benefits while main-
taining most of the patient scheduling autonomy of each 
specialty. Fourth, based on LOS data from UKA, we built 64 
additional instances, ranging from small OTs with just two 
rooms up to large OTs with 16 rooms, where we show that 
the results from UKA apply in general. Fifth, based on our 
results, an adapted version of our approach was implemented 
at UKA in January 2020. The actual implementation is a 
major advantage over other MSS optimization approaches 
previously presented in the literature. We provide insights, 
lessons learned, and present OT and ICU data demonstrat-
ing the real-world effects of an ICU quota system from the 
practical implementation at UKA.

The remainder of the paper is structured as follows. In 
Section 2, the relevant literature is reviewed. In Section 3, 
we present the methodology of our approach. The results of 
the numerical study are discussed in Section 4. In Section 5, 
we present managerial insights from the implementation at 
UKA. Section 6 concludes our work.

2  Literature Overview

There has been a lot of research interest in surgery sched-
uling in the operations research/management science com-
munity. Several literature reviews with a focus on the OT 
exist. For a broad review, see Cardoen et al. [11] and Sam-
udra et al. [28] who include work up until 2009 and 2016, 
respectively. For more recent reviews, see Zhu et al. [40] and 
Gür and Eren [18]. For a more specific overview focused on 
multiple departments including the OT, see Vanberkel et al. 
[37] and Guerriero and Guido [17].

Following the framework of Cardoen et al. [11], the OT 
literature can be divided into three planning levels: strate-
gic, tactical, and operational. Planning on the strategic level 
mostly consists of problems focused on case mix planning, 
where OT time is divided between specialties for surgical 
groups to maximize revenue. For an overview of the case 
mix planning literature, see Hof et al. [20]. On the tacti-
cal level, the results from case mix planning are used and 
are distributed either in a block plan (also called MSS), an 
open scheduling approach, or a mix of both called modified 
block plan. The main feature of tactical plans, however, is 
the cyclic approach that the developed plans are repeated 
every one to four weeks. On the operational level, indi-
vidual patients are then scheduled and sequenced according 
to the tactical plan determined in the previous stage. The 
overview in the following is solely focused on the literature 
on the tactical level or a combination of the tactical and 
operational level with at least one downstream unit. Lit-
erature with a sole focus on operational surgery scheduling 
– both advance and allocation scheduling – is not included. 
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Here, we refer to Shehadeh and Padman [32] who review 
the literature on the operational level including downstream 
capacity constraints.

One focus in the literature is the combination of tactical and 
operational decision-making. Some authors use a two-stage 
approach to first solve the MSS problem and then solve the sur-
gery assignment problem. Other authors focus on an integrated 
approach. Makboul et al. [24] develop a robust two-stage 
approach with uncertainty. They use data from a mid-sized 
French hospital to demonstrate the tradeoff between conserva-
tism and robustness. Aringhieri et al. [2] present a two-level 
metaheuristic determining the MSS and the surgery scheduling 
in an integrated approach using real data from a hospital in 
Italy. They especially focus on weekend days where elective 
surgeries are not performed and show that good planning in the 
OT can utilize the reduced number of patient admissions in the 
downstream unit. Testi and Tànfani [33] develop a 0–1 linear 
program that maximizes the utilization in the OT while con-
sidering downstream capacity and waiting list priority across 
specialties. The model is an integrated approach combining 
tactical and operational decisions. In their case study, using 
data from a hospital in Italy, they perform multiple “what if” 
scenarios by increasing the block size or number to show the 
influence on the objective. Li et al. [23] develop a goal pro-
gramming approach to minimize the waiting time of patients, 
idle time in the OT, and the maximum number of required 
recovery beds. They demonstrate the tradeoffs between each 
of these goals in a case study.

Another focus in the literature is the sole focus on the 
tactical level. Part of the literature is concerned with the 
development of a mathematical model; some authors fol-
low a combined simulation and optimization approach. 
The following works focus on optimization models that 
minimize bed variability on downstream departments. 
Beliën and Demeulemeester [5] build a nonlinear inte-
ger programming (IP) model to determine an MSS that 
minimizes the expected bed shortage in the wards. The 
model assigns predefined MSS blocks to rooms and days 
for each specialty. Adan et al. [1] develop a MIP to find an 
MSS that minimizes the deviations between the planned 
and realized resource consumption in downstream depart-
ments. They use stochastic LOS distributions based on his-
torical data. Van Houdenhoven et al. [35] develop a MIP 
and apply the model to a dataset of a large hospital in the 
Netherlands. They show that the use of an MSS is not only 
beneficial to the utilization of the OT but also positively 
influences the leveling of workload in downstream depart-
ments, in this case, the ICU. Van Essen et al. [34] present 
an IP model to reduce the maximum number of occupied 
beds in downstream departments, and therefore the vari-
ance of bed demand. They use a local search heuristic 
and a simulated annealing approach to solve their model. 
They show that weekend days with no elective surgeries 

heavily influence the maximum number of occupied beds. 
Marques et al. [25] combine the strategic and tactical level 
by introducing case mix planning into the development 
of a new MSS while considering two downstream units. 
Britt et al. [8] present a hierarchical approach consisting 
of seven goals: minimizing idle time, variations of assign-
ments to surgeons across weekdays, the total number of 
expected patients in the recovery ward, variations in the 
recovery ward utilization, differences from planned and 
realized surgeries all while meeting external waiting time 
targets. Our approach is to level the workload in down-
stream units while maintaining the current MSS to earn 
the support of all involved medical specialties for the 
implementation of the new surgery scheduling policy.

Further objectives in the literature on the tactical level 
are either the minimization of costs or the maximization 
of throughput considering the resources in the OT and 
the ones in downstream units. Fügener et al. [14] advance 
the approach by Vanberkel et al. [38] to calculate the bed 
demand in multiple downstream departments of the OT, 
i.e. multiple wards and the ICU. They present a model that 
minimizes the costs in downstream departments, which is 
solved with exact and heuristic algorithms. Fügener [15] 
presents an IP using stochastic patient demand on down-
stream units. The goal of the model is the maximization of 
revenue by determining the position and number of blocks 
in a cyclic MSS. Fügener et al. [16] further enhance their 
previous work by also implementing emergency cases on 
weekend days. They compare the current MSS of a large 
hospital in Germany with two generated MSS and show the 
influence of each MSS on the bed utilization of downstream 
wards.

Concerning the types of methodology that have been 
applied, many papers use a combined simulation and opti-
mization approach to test the robustness of their solutions. 
Chow et al. [12] use a combination of Monte Carlo Simula-
tion and a MIP model. The goal of the MIP is to minimize 
the bed occupancy variability by scheduling both surgeon 
blocks and patient types in the OT. The simulation model is 
used to predict the bed requirements for a specific schedule. 
Cappanera et al. [10] develop a MIP model to compare three 
scheduling policies. They use multiple performance criteria 
and use a discrete event simulation to test their results for 
robustness. Their results show that no policy is superior in 
all measured performance criteria. Heider et al. [19] develop 
a MIP model to schedule groups of elective patients in the 
OT to balance the expected bed occupancy in the ICU. Using 
a simulation model, they show that more balanced occu-
pancy levels in the ICU are possible without changing the 
MSS. Rachuba et al. [27] develop a MIP combined with a 
simulation model to build a cyclic surgery plan with blue-
prints of surgical groups that result in improved OT and 
ICU utilization.
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The current literature on the tactical level is mostly focused 
on generating a completely new MSS to better level workload or 
bed demand in downstream units. Few papers focus on surgical 
groups to better control the inflow of patients in downstream units 
(e.g. [10, 19, 27, 30]). We summarize the main features of these 
works in Table 1 to compare our study with the most relevant 
papers. The literature combining the tactical and operational level 
is not considered in this comparison due to the missing cyclical 
approach. As shown in Table 1, to the best of our knowledge, 
no study has provided results on the impact of surgical sched-
ule optimization on downstream units measured before and after 
implementation at a hospital. Additionally, we are the first to build 
a model using patient quotas dependent on the downstream unit.

The goal of our approach is threefold. 1) Maintain-
ing the current MSS to prevent operational disruptions 
and potential disputes over surgery capacity between the 
involved medical specialties. 2) Introducing a quota sys-
tem for downstream capacity on the tactical level while 
maintaining the autonomy of scheduling on an operational 
level at each specialty. 3) Reducing peak workloads in 
downstream units to reduce the workload variability.

The efficacy of ICU quotas for elective patients has been 
shown on an operational level by Kim and Horowitz [22]. 
They show that daily elective surgery quotas reduce the num-
ber of canceled surgeries, therefore improving the utilization 
of the OT and the ICU. In this paper, we extend the idea of 
Kim and Horowitz and integrate the quotas for ICU patients in 
the MSS on a tactical level. We introduce an extension to the 
MSS by using distinct block types for individual downstream 
units to reduce the peak workload in those units while main-
taining the scheduling autonomy of each specialty. The intro-
duction of individual block types can be seen as an alternate 
form of surgical groups, where groups are built depending on 
the specialty and the medically required downstream depart-
ment of elective patients. Additionally, the model presented in 
this paper was used to support the implementation of an ICU 
quota system in the OT. Actual implementation of operations 
management (OM) methods in practice is limited to this date 
in the healthcare sector, as recently noted by Keskinocak & 
Savva [21], especially in the OT. Few examples of at least 
partial implementation of surgery scheduling on the tactical 
level are Blake and Donald [7], Ozen et al. [26], and Visintin 
et al. [39] with an isolated view of the OT without including 
recovery units, as well as Chow et al. [12] and Vanberkel et al. 
[38] which focus on creating a new MSS to level workload in 
downstream units.

3  Methodology

In this section, we define the functionality of our approach, 
followed by the problem description and our proposed 
mathematical model. Then, we describe our solution 

approach including the simulation model used for the 
evaluation of our results.

3.1  Problem Setting and Problem Description

An MSS is a cyclic plan usually repeated every one or 
two weeks. In the MSS, OT capacity is assigned to clini-
cal specialties in blocks. In most hospitals, one block has 
the size of one day. Two illustrative MSSs with three ORs 
can be seen in Fig. 1. In MSS A, for example, Urology is 
assigned to OR 1 on Mondays, Tuesdays, and Wednesdays 
for the whole day. On Thursdays and Fridays, Gynecology 
performs surgeries in OR 1. The research idea of MSS 
scheduling with consideration of downstream utilization 
is demonstrated at the bottom of Fig. 1, where we graph 
the resulting expected ICU bed demand of MSS A (left 
part) and MSS B (right part). The goal is to reschedule the 
blocks in the OT in a way that the resulting average bed 
demand in the ICU or the bed wards is as most balanced 
as possible. This is possible because the length of stay 
(LOS) in the ICU and the general wards varies for each 
specialty. Current literature often assumes a fixed share of 
ICU and ward patients in every block of a specialty based 
on historical data. In this example, MSS B shows better 
leveling than MSS A.

According to Van Oostrum et al. [36], the MSS combines 
the advantages of a centralized and a decentralized planning 
approach when scheduling surgeries in the OT. The most 
important benefits when using an MSS are that surgeons 
keep their autonomy, e.g., when selecting and sequencing 
patients in their respective surgery blocks. This allows fast 
decision-making when surgeries take longer or shorter than 
excepted and when urgent or emergency cases arrive. When 
an MSS is set up for the first time, a substantial amount of 
data is needed for capacity planning to assign OT blocks to 
specialties. This procedure needs to be repeated over time 
to reevaluate the capacity planning for all specialties in the 
OT. On a tactical level, an MSS reduces the communica-
tion and coordination efforts, since the system complexity 
is reduced compared to a fully centralized approach. Most 
of the operational control is handed to the surgeons. Sur-
geons are employed by the specialties so that patients can 
be moved freely between surgeons within each specialty 
– a common setup in most European hospitals [13]. The 
cyclic nature of an MSS allows easy integration of multi-
ple planning processes as well. The fixed setup of assign-
ing specialties to rooms on given days leads to robustness 
against cheating and high OT utilization levels. An MSS 
offers reasonable predictability of patient flows regard-
ing the number of patients operated on each day in each 
specialty, but not on the type of patient within a specialty. 
The type of patient, however, is extremely important for 
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predicting the patient flow within the hospital. Severe cases 
are transferred to the ICU after surgery, less severe cases to 
the general bed wards. The creation of a new MSS can lead 
to reduced expected variability of bed demand or workload 
in downstream units on a tactical level. On an operational 
level, however, additional managerial coordination is neces-
sary to control the patient flow.

Fig. 2 illustrates this problem. In this example, MSS B 
(as shown in Fig. 1 on the right) is used. The percentages 
in the tables show the share of ICU patients operated in 

each block. While the share of ICU patients in realization 1 
(left part) leads to the exact ICU bed demand forecasted in 
Fig. 1, the ICU bed demand for realization 2 is drastically 
different from the forecast. The problem is that with no addi-
tional rules or quotas, specialties have full autonomy and 
can schedule severe cases with a high probability of being 
transferred to the ICU in every block that is assigned to the 
specialty. Independent planning of specialties can lead to 
higher than average demand on some days and to lower than 
average demand on other days.

Fig. 1  Two MSS examples with resulting ICU bed utilization

Fig. 2  Two possible realizations of the ICU share in the OT and the resulting ICU utilization with MSS B
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Current research, however, assumes that the share of ICU 
patients is equal in each block of a given specialty, namely the 
average or a distribution based on historical data. We relax 
this assumption. For general bed wards, this problem is not as 
serious as for the ICU since specialties have a good overview 
of available beds and the status of recovery of the patients 
in their respective wards. In the ICU, however, a shared unit 
between all specialties, the decentralized planning of each 
specialty can result in high bed utilization variability, caus-
ing canceled surgeries or early discharges when no ICU beds 
are available. Additionally, a vast operational coordination 
effort is necessary to manage the decentral planning of each 
specialty for ICU patients in the OT. Nevertheless, the ICU 
share in each block influences the regular bed wards, since the 
remaining share of patients represents those transferred to the 
regular wards, which can lead to a high variability as well.

The general MSS approach allows specialties to sched-
ule ICU and ward patients in every block assigned to them 
which may lead to overbooking of available ICU beds on 
some days. The absence of these controlling mechanisms 
on the tactical level requires additional work on the opera-
tional level due to the daily rescheduling of surgeries to not 
exceed the capacity in the recovery wards. Work for limiting 
and rescheduling the number of ICU patients is often not 
supported by a computer system which leads to a multitude 
of phone calls and handwritten lists. Without these manual 
mechanisms, an even higher variability of ICU and ward 

admissions is likely, which would result in unnecessarily 
large fluctuations of workload and bed demand. We address 
this problem by introducing multiple block types for indi-
vidual downstream resources to better control the patient 
flow on a tactical level, i.e., ward blocks and ICU blocks. 
In a ward block, only surgeries of ward patients should be 
scheduled. In an ICU block, the available time may be freely 
assigned to ICU patients and ward patients. The likelihood 
of an ICU transfer can be retrieved from historical data and 
is usually determined by an anesthesiologist beforehand. 
Recent studies show that machine learning algorithms can 
successfully support physicians in forecasting patients’ 
pathways post-surgery [29]. The block type for each spe-
cialty, day, and room is determined with the mathematical 
model described in Section 3.2.

In Fig. 3, we illustrate the difference between a tradi-
tional MSS and our approach using MSS B from Fig. 1 
(right-hand side). On top of the assignment of ORs to spe-
cialties on each day, there is also an indication of whether 
or not ICU patients can be scheduled within each block. 
ICU blocks are shaded in grey. Ward patients can be oper-
ated on in both ICU and ward blocks.

As previously stated, the absence of control over the 
patient flow on a tactical level is especially critical in the 
ICU, a shared downstream resource of all clinical specialties. 
We illustrate this problem in Fig. 4, showing a simplified 
version of possible patient paths where each specialty has 

Fig. 3  Example of a traditional 
MSS next to an MSS with ICU 
blocks, shaded grey

Fig. 4  Simplified patient flow 
of the mathematical model with 
ICU as the bottleneck
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only one OR and one ward station. ICU patients in the OT 
are first transferred to the ICU and then later to the regu-
lar bed ward of each specialty. Regular patients are directly 
transferred to the regular bed ward of each specialty. Accord-
ing to our data, 88% of all patients with at least one surgery 
took one of the two modeled paths. Hence, the chosen sim-
plification of patient flow strikes a balance between realism 
and model complexity reduction.

The goal of the MIP is to find an MSS with distinct block 
types for each downstream unit, which minimizes the maxi-
mum workload for physicians and nurses in the ICU and the 
general bed wards. Additionally, the number of ICU blocks 
is minimized to implicitly introduce daily ICU quotas for 
each specialty. The workload for physicians and nurses 
as well as the number of ICU blocks are weighted in the 
objective function, allowing the decision-maker to find an 
appropriate balance between flexibility and peak workload 
reduction. We discuss the influence of the weights on the 
solution of the model in a sensitivity analysis in Appendix 
C (online supplements). For modeling purposes, an ICU 
share is introduced in each block, which can only be larger 
than zero if a block is an ICU block. The average share over 
all blocks has to meet a total ICU share for each specialty, 
which may, e.g., be based on historical demand. The share 
of ICU patients in each block represents the mathemati-
cally optimal solution to minimize the maximum workload 
in downstream units as best as possible. The workload in 
downstream units is calculated separately for nurses and 
physicians. Nurses and physicians work in three shifts rep-
resenting the early, late, and night shift. The nurse workload 
in downstream departments is determined by a patient-to-
nurse ratio for each shift, similar to regulatory requirements 
in other countries [31]. Since a patient to physician ratio 
is not suggested in the literature or by regulatory require-
ments, we assign a workload for admissions, daily routine 
work, and discharges for every shift in the ICU and the 
ward stations of each specialty. This total workload in every 
shift is then divided by the working hours to determine the 

full-time equivalent (FTE) of physicians required to be pre-
sent in each shift. The workload associated with admissions 
and discharges falls into the early shift (e.g., 7:30 am to 
4:30 pm) of each day. The discharge probabilities and prob-
ability distribution of patient length of stay in the ICU and 
the bed wards are calculated during preprocessing and are 
rounded to whole days. The process is described in detail 
in Section 3.2 and Appendix B (online supplements). Other 
specific parameters for each specialty can either be derived 
from historical data or should be determined on a strate-
gic level. These parameters include: the average number of 
patients in each block; the number of blocks in the planning 
horizon; the maximum number of daily blocks; the patient-
to-nurse ratio in every shift for the regular bed wards; the 
physician workload for admissions and discharges in the 
regular bed wards; additionally, an existing MSS can be 
used as input parameter if it should be maintained. Other 
parameters are the patient-to-nurse ratio in the ICU as well 
as the physician workload for admissions, daily routine, and 
discharges in the ICU.

3.2  Mathematical Model and Evaluation Procedure

In the following section, we explain the mathematical model, 
the solution procedure, and our evaluation approach. First, 
we describe the process to derive the LOS distributions for 
the optimization model. Second, we present our mathemati-
cal model to generate an MSS with distinct block types. 
Third, we illustrate our simulation model, which is used to 
evaluate the operational workload that derives from the tacti-
cal MSS calculated in the optimization model. Our overall 
solution approach is shown in Fig. 5. All solid arrows repre-
sent the connection to the next step in the solution approach, 
all dashed arrows represent data flows.

In the first preprocessing step, patient demand in the OT 
is determined. The average number of patients in a block 
P#
c
 and the ICU share PShare

c
 for each specialty c ∈ C are 

calculated from historical data. The number of blocks per 

Fig. 5  Overview of solution and 
evaluation approach
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specialty BTotal
c

 and the maximum number of daily blocks 
per specialty BMax

c
 are determined by the preexisting MSS.

Additional historical data required in preprocessing are the 
probabilities that a patient of specialty c stays q ∈ Q days after 
surgery in the ICU (dICU

c,q
) as well as the probabilities that a 

patient of specialty c stays q days in the ward after surgery or a 
transfer from the ICU (dWard

c,q,i
) with q = 0 for the day of surgery 

or the transfer from the ICU. Since the decision of admission 
or discharge is made once per day, historical LOS values are 
rounded to whole days to build the LOS distributions. From 
these probabilities, the LOS distributions for the ICU (lICU

c,q
 ) and 

the general bed wards (lWard

c,q,i
) can be calculated. The parameters 

lICU
c,q

 and lWard
c,q,i

 are the cumulative distribution functions of dICU
c,q

 
and dWard

c,q,i
.They represent the probability that a patient stays at 

least q days in the ICU after surgery or q days in a bed ward 
after surgery or a transfer from the ICU. Finally, all probabilities 
are convolved into the planning horizon to allow for the cyclic 
approach of our proposed MIP. The calculations are shown in 
Appendix B (online supplements).

The presented model is focused on the tactical level, thus 
aiming to find an optimal MSS that will be maintained over 
months or even years. Therefore, the number of patients in 
each block and the ICU share in a block are both assumed 
to be continuous. This is also true for the LOS and dis-
charge probabilities, which determine the share of patients 
who are still in the ICU or the regular wards after a certain 
number of days. The model uses a cyclic approach. Hence, 
patients with a LOS that exceeds the planning horizon will 
be added to the beginning of the planning horizon. The goal 
is to minimize the weighted maximum workload measured 
in FTEs in each shift – early, late, and night – in the plan-
ning horizon to reduce the workload variability as well as 
the weighted number of ICU blocks for each specialty to 
implicitly limit the number of ICU patients on an opera-
tional level.

Index ∈ set Description
c ∈ C Specialties
r ∈ R OT-Rooms
t ∈ T Days in the planning horizon
t ∈ O Days without elective sur-

gery,O ⊆ T

i ∈ I Block or Patient type (Ward 
block = 0 or ICU block = 1)

s ∈ S Shifts in a day (early, late, night)
Parameters
LICU
c,t

Probability that a patient from 
specialty c stays at least t  days 
in the ICU

EICU
c,t

Probability that a patient from 
specialty c stays exactly t  days 
in the ICU

LWard
c,t,i

Probability that a patient from 
specialty c stays at least t  days in 
the ward with prior transfer from 
the ICU (i = 1) or OT (i = 0)

EWard
c,t,i

Probability that a patient from 
specialty c stays exactly t  days in 
the ward with prior transfer from 
the ICU (i = 1) or OT (i = 0)

BMax
c

Maximum number of daily MSS 
blocks for specialty c

BTotal
c

Required number of MSS blocks 
in the planning horizon for 
specialty c

P#
c

Average number of patients in 
each block for specialty c

PShare
c

Target ICU share for specialty c 
over the planning horizon

NICU
s

Patient-to-nurse ratio in the ICU 
in shift s

NWard
c,s

Patient-to-nurse ratio in ward c in 
shift s

AICU
s

Physician time associated with an 
ICU admission in shift s

RICU
t,s

Physician time associated with 
ICU daily routine for each 
patient on day t  in shift s

DICU
s

Physician time associated with a 
discharge from the ICU in shift s

AWard
c,s

Physician time associated with a 
patient admission in a ward with 
specialty c in shift s

RWard
c,t,s

Physician time associated with 
daily ward routine for each 
patient in time slot t  for spe-
cialty c in shift s

DWard
c,s

Physician time associated with 
a discharge from a ward with 
specialty c in shift s

Ht,s Shift length for ICU and ward sta-
tions on day t  in shift s

Mc,r,t
Preexisting MSS assignments (if 

necessary); 1 if specialty c has 
room r on day t  , 0 otherwise

� Penalty weight for the maximum 
nurse workload in the ICU and 
wards

� Penalty weight for the maximum 
physician workload in the ICU 
and wards

� Penalty weight for the number of 
ICU blocks

Decision variables
mc,r,t,i 1 if specialty c has room r on day t  

with block type i , 0 otherwise
bShare
c,r,t

ICU share in a block of specialty c 
in room r on day t

nICU
t,s

FTE of ICU nurses required on 
day t  in shift s

319



 S. Heider et al.

1 3

nICUMax
s

Maximum FTE of ICU nurses 
in shift s within the planning 
horizon

pICU
t,s

FTE of ICU physicians required 
on day t  in shift s

pICUMax
s

Maximum FTE of ICU physicians 
in shift s within the planning 
horizon

nWard
c,t,s

FTE of ward nurses required for 
specialty c on day t  in shift s

nWardMax
c,s

Maximum FTE of ward nurses for 
specialty c in shift s within the 
planning horizon

pWard
c,t,s

FTE of ward physicians for spe-
cialty c on day t  in shift s

pWardMax
c,s

Maximum FTE of ward physicians 
for specialty c in shift s within 
the planning horizon

yc,t,i Auxiliary variable for the ward 
admissions of patient type i 
specialty c on day t

zc,r,t   Auxiliary variable for lineariza-
tion

s.t.
(1)

min� ⋅

∑
s∈S

�
nICUMax
s

+
∑
c∈C

�
nWardMax
c,s

��
+ � ⋅

∑
s∈S

�
pICUMax
s

+
∑
c∈C

�
pWardMax
c,s

��
+

+� ⋅
∑
c∈C

∑
r∈R

∑
t∈T

mc,r,t,1

(2)
∑

r∈R

∑

t∈T

∑

i∈I

mc,r,t,i = BTotal
c

∀c ∈ C

(3)
∑

r∈R

∑

i∈I

mc,r,t,i ≤ BMax
c

∀c ∈ C, t ∈ T

(4)mc,r,t,i ≤ 0∀c ∈ C, r ∈ R, t ∈ O, i ∈ I

(5)
∑

c∈C

∑

i∈I

mc,r,t,i ≤ 1∀r ∈ R, t ∈ T

(6)bShare
c,r,t

≤ mc,r,t,1∀c ∈ C, r ∈ R, t ∈ T

(7)

∑
r∈R

∑
t∈T b

Share
c,r,t

BTotal
c

= PShare
c

∀c ∈ C

(8)
∑

c∈C

∑

r∈R

∑

k∈T

LICU
c,k

⋅ P#

c
⋅ bShare

c,r,t−k
≤ NICU

s
⋅ nICU

t,s
∀t ∈ T , s ∈ S

(9)nICU
t,s

≤ nICUMax
s

∀t ∈ T , s ∈ S

The objective function (1) minimizes the weighted maximum 
number of nurses in the ICU and bed wards for each specialty 
in every shift, the weighted maximum number of physicians in 
the ICU and bed wards of each specialty in every shift, and the 
weighted number of ICU blocks. The number of nurses and phy-
sicians as well as the maximum number of nurses and physicians 
are measured as FTE. The constraints consist of three major 
groups. The first group, Constraints (2) to (7), represents all con-
straints required for the OT. The second group, Constraints (8) to 
(11), deals with patient flow and workload in the ICU. Finally, 
Constraints (12) to (17) handle the patient flow through the ward 
stations as well as the workload.

Constraints (2) and (3) assure that the number of weekly 
blocks for each specialty is maintained and the number of daily 
blocks for each specialty is not exceeded. Blocks should not be 
scheduled on weekend days (4). Constraints (5) ensure that a 
room can be assigned to no more than one specialty and must 
be used either as an ICU block or a ward block. Constraints 
(6) assure that a block can only have a positive ICU share if 
the block is an ICU block. Constraints (7) ensure that the total 
share of ICU patients has to meet the target share for each 
specialty.

(10)

∑
c∈C

∑
r∈R

AICU
s

⋅ P#
c
⋅ bShare

c,r,t
+

∑
c∈C

∑
r∈R

∑
k∈T

RICU
t,s

⋅ P#
c
⋅ LICU

c,k
⋅ bShare

c,r,t−k
+

+
∑
c∈C

∑
r∈R

∑
k∈T

DICU
s

⋅ P#
c
⋅ EICU

c,t
⋅ bShare

c,r,t−k
≤ Ht,s ⋅ p

ICU
t,s

∀t ∈ T , s ∈ S

(11)pICU
t,s

≤ pICUMax
s

∀t ∈ T , s ∈ S

(12)
∑

r∈R

∑

k∈T

P#

c
⋅ EICU

c,t
⋅ bShare

c,r,t−k
= yc,t,1∀c ∈ C, t ∈ T

(13)

∑

r∈R

P#

c
⋅

(
mc,r,t,0 +

(
1 − bShare

c,r,t

)
⋅ mc,r,t,1

)
= yc,t,0∀c ∈ C, t ∈ T

(14)

∑

i∈I

∑

k∈T

LWard
c,k,i

⋅ yc,t−k,i ≤ NWard
c,s

⋅ nWard
c,t,s

∀c ∈ C, t ∈ T , s ∈ S

(15)nWard
c,t,s

≤ nWardMax
c,s

∀c ∈ C, t ∈ T , s ∈ S

(16)+

∑
i∈I

AWard
c,s

⋅ yc,t,i +
∑
i∈I

∑
k∈T

RWard
c,t,s

⋅ LWard

c,k,i
⋅ yc,t−k,i+

+
∑
i∈I

∑
k∈T

DWard
c,s

⋅ EWard

c,t,i
⋅ yc,t−k,i ≤ Ht,s ⋅ p

Ward
c,t,s

∀c ∈ C, t ∈ T , s ∈ S

(17)pWard
c,t,s

≤ pWardMax
c,s

∀c ∈ C, t ∈ T , s ∈ S

(18)mc,r,t,i{0, 1}

(19)bShare
c,r,t

, nICU
t,s

, nICUMax

s
, pICU

t,s
, pICUMax

s
, nWard

c,t,s
, nWardMax

c,s
, pWard

c,t,s
, pWardMax

c,s
, yc,t,i ≥ 0
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Constraints (8) calculate the nurse workload in the ICU 
for every shift. Nurse workload is determined by a patient-
to-nurse ratio in the ICU. The subscript t − k in these and the 
following constraints is treated as the modulo of the surgery 
cycle length (t − k)mod|T| to represent the cyclic approach. 
Constraints (9) compute the maximum nurse workload in 
every shift over the planning horizon. Constraints (10) are 
similar to Constraints (8), only that the workload of physi-
cians in every shift is calculated. Instead of a physician-
to-patient ratio, the amount of work for admissions, daily 
routine, and discharges is computed and divided by the 
hours worked by one physician. Similar to Constraints (9), 
the maximum physician workload in every shift over the 
planning horizon is calculated in Constraints (11).

Constraints (12) and (13) calculate the inflow of patients 
to the ward stations from the ICU and the OT, respectively. 
Constraints (14) to (17) are similar to Constraints (8) to (11), 
only that in this case the workload, as well as the maximum 
workload for nurses and physicians, are calculated for the 
ward units instead of the ICU. Constraints (18) and (19) 
define the domain of all decision variables.

Due to the nonlinear nature of Constraints (13), we 
replace these constraints with a linear reformulation shown 
in (20)—(24).

In settings where the room assignments must remain 
unchanged from an existing MSS, Constraints (25) are added 
to the model.

If a new MSS should be calculated, Constraints (26) are 
added to the model. In this case, all blocks are ICU blocks 
since ICU patients can be scheduled in every block.

After an optimal MSS is obtained by solving the math-
ematical model, we use a simulation model to evaluate the 
resulting workload for nurses and physicians in the down-
stream departments on an operational level, drawing from 

(20)zc,r,t ≤ mc,r,t,1∀c ∈ C, r ∈ R, t ∈ T

(21)zc,r,t ≤ 1 − bShare
c,r,t

∀c ∈ C, r ∈ R, t ∈ T

(22)
zc,r,t ≥

(
1 − bShare

c,r,t

)
−
(
1 − mc,r,t,1

)
∀c ∈ C, r ∈ R, t ∈ T

(23)
∑

r∈R

P#

c
⋅

(
mc,r,t,0 + zc,r,t

)
= yc,t,0∀c ∈ C, t ∈ T

(24)zc,r,t ≥ 0

(25)
∑

i∈I

mc,r,t,i = Mc,r,t∀c ∈ C, r ∈ R, t ∈ T

(26)bShare
c,r,t

= PShare
c

⋅ mc,r,t,1∀c ∈ C, r ∈ R, t ∈ T

historical patient data. In the simulation model, we use inte-
ger values for the number of patients in a block as well as 
for the LOS in downstream units. The share in each block 
can lead to results that cannot be realized in practice, e.g., 
1% ICU patients in a block with 5 total patients. Therefore, 
in the simulation model, we only consider the block type of 
each block and neglect the shares. Consequently, the ICU 
capacity in the OT is only implicitly limited, not explicitly.

A flowchart of the simulation procedure is shown in 
Fig. 6. The model simulates 50,000 consecutive weeks so 
that the resulting confidence intervals around the reported 
averages are sufficiently small. The maximum workload is 
evaluated for each week separately. The number of patients 
per block is random but limited to a maximum level, depend-
ing on the specialty. The number of ICU patients in a block 
is random as well. ICU patients can only be scheduled in 
ICU blocks and ward patients in both blocks. The simulation 
is built for our approach using an MSS with distinct block 
types. If a regular MSS needs to be simulated, all blocks are 
labeled as ICU blocks, since ward patients can be scheduled 
in every block, as already mentioned in the description of 
Constraints (26).

Each of the 50,000 simulation runs is divided into two 
parts. In the first part, all ICU and ward blocks of each 
specialty are randomly filled with ICU and ward patients 
according to the block type. The blocks are not yet assigned 
to a day and room. The block-to-day-and-room assignment 
follows in the second step in random order according to the 
generated MSS from the mathematical model. Both parts 
are repeated until all specialties in a certain week have 
been simulated. The steps in a single simulation run can 
be described as follows: For each specialty, the first step 
is the random assignment of ICU patients to ICU blocks. 
When all ICU patients are scheduled into ICU blocks, poten-
tial remaining space is filled with ward patients. Next, all 
remaining ward patients are scheduled into ward blocks. All 
ICU and ward blocks are then randomly assigned to a room 
and day according to the MSS with block types determined 
by the mathematical model. This is done to prevent potential 
trends that could occur, e.g., having more ICU patients in 
blocks at the beginning of the planning horizon compared 
to the end of the planning horizon. Next, the LOS for each 
ICU and ward patient, as well as the ward LOS for ICU 
patients after being discharged from the ICU are randomly 
picked from historical data. This is repeated for all special-
ties. In total, 50,000 weeks are simulated and therefore each 
run, as described before, is repeated 50,000 times. Differ-
ent from the formulation in the mathematical model, the 
LOS of patients who stay longer than the planning horizon 
is extended into the following week or weeks. The workload 
is calculated according to the mathematical model, however 
not all weeks of the 50,000 are included in the results since 
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a warmup phase is needed with the length of the maximum 
LOS a patient could stay in the hospital i.e., 33 weeks.

4  Numerical Study

In the following section, we first present a case study with 
data from UKA. We present the results of the mathematical 
model, followed by the results of the simulation model to 
show the influence of the tactical plans on the operational 
level in various analyses. The influence of weights used in 
the objective function is further discussed in Appendix C 
(online supplements). A benchmark, comparing our approach 

to individual surgery scheduling on the operational level, 
where we show that our approach can realize up to 79.85% 
of the maximum workload reduction in the ICU, is shown in 
Appendix B (online supplements). Lastly, to generalize our 
findings, we create 64 instances by varying the total number 
of ORs, the number of specialties, the number of total ICU 
and ward patients, as well as the number of ORs and ICU and 
ward patients per specialty. We use our described evaluation 
procedure on all 64 instances and present the results.

We analyze four different policies: the current MSS of 
UKA with no distinct block types (in the following: CMSS), 
a new MSS and no distinct block types (NMSS), the cur-
rent MSS of UKA using our approach with distinct block 

Fig. 6  Flowchart of the simulation procedure for MSS with distinct block types
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types (CMSSB), and a new MSS with distinct block types 
(NMSSB). We use two different types of distinct blocks, one 
for the ICU and one for the general ward. For all different 
policies, we first calculate an MSS in the optimization model 
– except for CMSS – and then use our simulation model to 
evaluate the tactical MSS on an operational level.

We use seven years of data from UKA, one of the larg-
est hospitals in Germany, to generate an MSS for different 
policies with the generic model presented in Section 3.2. 
The data is prepared in preprocessing as described in Sec-
tion 3.2. The maximum number of daily MSS blocks for 
each specialty, the required number of MSS blocks for each 
specialty, the target ICU share for each specialty, and the 
average number of patients in each block for each specialty 
are all based on historical data. The day is divided into three 
eight-hour shifts. The penalty weights for the maximum 
nurse and physician workload are set according to the aver-
age costs of a nurse and physician: � = 2 and � = 3 . The 
weight for the number of ICU blocks � is set to 0.18, which 
we found to achieve the maximum peak workload reduction 
on the operational level in a sensitivity analysis which we 
discuss in detail in Appendix C (online supplements). The 
patient-to-nurse ratios for all shifts and specialties are based 
on the ratios recently introduced by the German govern-
ment [9]. The physician workload associated with admis-
sions, daily routine, and discharges is set according to the 
results of time studies performed by the hospital. In total, 
there are 16 rooms in the central OT with eight specialties 

in the current setup. Surgeons are not independent but rather 
are employed by a specialty, allowing for a relatively free 
assignment of patients to surgeons within a specialty – a 
feature commonly used in German hospitals. The considered 
planning horizon is one week.

4.1  Results

The mathematical model is implemented in IBM ILOG 
CPLEX 12.8. All policies are solved to optimality within 
a few seconds. The solutions for each of the four policies 
(CMSS, CMMSB, NMSS, NMSSB) are shown on an aggre-
gated level in Table 2. The table is divided into four quad-
rants, two at the top, and two at the bottom – one quadrant 
for every policy. The quadrants at the top display the number 
of ICU and ward blocks for the policies with the existing 
MSS. The first quadrant shows CMSS and the second one 
represents CMSSB. When a traditional MSS is used or gen-
erated, all blocks are ICU blocks, as already described in 
Section 3.2. The quadrants in the bottom show the number 
of ICU and ward blocks for the policies with a new MSS. 
The first quadrant displays NMSS, the second one NMSSB. 
In each quadrant are the number of ICU and ward blocks 
for every specialty every day, followed by the total. For 
example, for a new MSS with distinct block types, which 
is represented by the second quadrant at the bottom, there 
are two ICU blocks and one ward block on a Thursday for 
specialty 4.

Table 2  Overview of the 
number of ICU and ward blocks 
for each specialty on each day

ICU blocks/ 
ward blocks
c

Traditional MSS MSS with distinct block types

Mo Tu We Th Fr Sum Mo Tu We Th Fr Sum

CMSS CMSSB
Existing MSS 1 4/0 3/0 3/0 4/0 4/0 18/0 0/4 0/3 1/2 1/3 1/3 3/15

2 1/0 2/0 2/0 1/0 1/0 7/0 0/1 0/2 1/1 0/1 0/1 1/6
3 1/0 2/0 2/0 2/0 1/0 8/0 0/1 0/2 0/2 0/2 0/1 0/8
4 3/0 3/0 3/0 3/0 3/0 15/0 3/0 1/2 1/2 2/1 2/1 9/6
5 1/0 0/0 1/0 0/0 1/0 3/0 0/1 0/0 0/1 0/0 0/1 0/3
6 2/0 2/0 1/0 2/0 2/0 9/0 0/2 2/0 0/1 0/2 0/2 2/7
7 3/0 3/0 3/0 3/0 3/0 15/0 1/2 0/3 0/3 0/3 0/3 1/14
8 1/0 1/0 1/0 1/0 1/0 5/0 0/1 0/1 0/1 0/1 0/1 0/5
Sum 16/0 16/0 16/0 16/0 16/0 80/0 4/12 3/13 3/13 3/13 3/13 16/64

NMSS NMSSB
New MSS 1 4/0 4/0 4/0 3/0 3/0 18/0 0/3 1/3 1/3 1/3 0/3 3/15

2 1/0 2/0 1/0 2/0 1/0 7/0 0/2 0/1 1/1 0/1 0/1 1/6
3 2/0 1/0 1/0 2/0 2/0 8/0 0/2 0/2 0/0 0/2 0/2 0/8
4 3/0 3/0 3/0 3/0 3/0 15/0 3/0 1/2 1/2 2/1 2/1 9/6
5 1/0 0/0 1/0 0/0 1/0 3/0 0/1 0/0 0/1 0/0 0/1 0/3
6 1/0 2/0 2/0 2/0 2/0 9/0 1/0 1/1 0/2 0/2 0/2 2/7
7 3/0 3/0 3/0 3/0 3/0 15/0 0/3 0/3 0/3 0/3 1/2 1/14
8 1/0 1/0 1/0 1/0 1/0 5/0 0/1 0/1 0/1 0/1 0/1 0/5
Sum 16/0 16/0 16/0 16/0 16/0 80/0 4/12 3/13 3/13 3/13 3/13 16/64
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In all policies, all 80 total blocks are scheduled, covering 
all 16 rooms on five days of the week. For both the exist-
ing MSS with distinct block types and the new MSS with 
distinct block types, there are 16 ICU blocks in total. The 
reduction of blocks in which ICU patients could be sched-
uled from 80 to 16 leads to better control of the patient flow 
from the OT to the recovery units, especially in the ICU 
which we show later. Single days are different for both poli-
cies, e.g. Specialty 1, whereas in CMSSB the ICU blocks are 
scheduled from Wednesday to Friday and in NMSSB from 
Tuesday to Thursday. This is similar to other specialties and 
ward blocks.

Overall, there is little change for both new MSS, with or 
without distinct block types, compared to the CMSS. The 
main reason for this small change is the maximum number of 
daily blocks per specialty. Even though the workload within 
the OT is not minimized in the objective function, it is still 
considered through Constraints (1.3). Usually, hospitals try 
to distribute the blocks of each specialty as best as possible 
throughout the planning horizon. If the blocks of some spe-
cialties would not be more or less evenly distributed, more 
physicians, anesthetists, and nurses would be required on 
some days to handle the demand in the OT and would be 
idle on other days. In multiple what-if scenarios, [34] and 
[19] show how the violation of various necessary constraints 

limiting the resource availability in the OT can benefit the 
bed or workload leveling on downstream units. Relaxing 
these constraints would therefore have the potential of better 
workload leveling in downstream units but would also result 
in imbalanced OT workload levels.

In the next step, we use our simulation model to evaluate 
the workload on an operational level that results from each 
MSS of the four policies. The workflow of the simulation is 
described in detail in Section 3.2. The results of the simula-
tion model are shown in Fig. 7.

The boxplots show the total weighted maximum workload 
in each of the 49,967 simulated weeks for each policy. The 
total weighted maximum workload represents the objec-
tive function value (OFV) without the weighted number of 
ICU blocks. The whiskers are set at 1.5 IQR (interquartile 
range). The mean total weighted maximum workload which 
has a strong influence on the workload variability is almost 
equal for both policies without distinct block types (CMSS: 
233.81, NMSS: 233.43) and both policies with distinct block 
types (CMSSB: 228.95, NMSSB: 228.92). Therefore, both 
new MSS perform only slightly better than both current 
MSS. Both MSS with distinct block types perform consid-
erably better than the ones without. Not only is the peak 
maximum workload within each week, which influences 
the day-to-day variability, lower for the MSS with distinct 

Fig. 7  Comparison of the total weighted maximum workload for each policy
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block types, but also the variance over all weeks, which 
reduces the week-to-week variability. The variance of the 
total weighted maximum workload, and therefore the week-
to-week variability of the total weighted maximum work-
load, is 74.25, 75.32, 62.42, and 64.02 for CMSS, NMSS, 
CMSSB, and NMSSB, respectively. Both the day-to-day and 
week-to-week reductions of the total weighted maximum 
workload result in a constant buffer that could be available 
for emergency patients and reduces the probability that an 
elective surgery needs to be canceled due to the capacity 
limit. In Table 3, a more detailed comparison of the statisti-
cal measures is shown for both types of downstream units 
and both human resource types, namely the ICU and wards, 
as well as nurses and physicians, respectively, each shown 
in one of the four quadrants of the table.

Especially the physicians and nurses in the ICU benefit 
from a lower total maximum workload when using an MSS 
with distinct block types with a reduction of the mean maxi-
mum workload of up to 10.43% for nurses and up to 13.61% 
for physicians. Moreover, most of the week-to-week vari-
ability reduction is achieved in the ICU with a reduction of 
the variance of up to 27.22% for nurses and up to 57.03% for 
physicians. An overview of the resulting relative change in 
the ICU and wards for both nurses and physicians is shown 
in Fig. 8. The figure shows the mean relative changes of the 
total weighted maximum workload compared to the results 
of the CMSS.

While the distinct block types are most beneficial for 
reducing the peak workload in the ICU, the maximum 
workload in the ward stations also sees a small reduction. 
A reduction of the peak workload is especially beneficial in 
the ICU due to its service character since it acts as a shared 
downstream unit used by all surgical specialties in the OT. 
When comparing CMSSB with NMSSB, there are only 
small improvements gained from a new MSS. The mean 
total weighted maximum workload in the ICU for physicians 
and nurses is 33.68, 29.86, and 29.90 for CMSS, CMSSB, 
and NMSSB, respectively. This shows that CMSSB can cap-
ture all of the potential reduction in the ICU compared to 
NMSSB. Our approach of maintaining the existing MSS is 

preferable to hospitals due to the already discussed oper-
ational changes associated with the redesign of an MSS. 
Implementing a new MSS without distinct block types 
results in a small increase in the total weighted maximum 
workload in the ICU. As the increase is outweighed by the 
decrease in the ward stations, there is a small overall reduc-
tion. This decrease, however, yields only 7.87% of the reduc-
tion that would be possible with NMSSB.

Lastly, we perform an analysis of variance (ANOVA) 
on the results of the simulation to test for statistical sig-
nificance of the total maximum workload reduction, as well 
as the nurse ICU, physician ICU, nurse ward, and physi-
cian ward maximum workload reduction of all four policies 
(CMSS, NMSS, CMSSB, NMSSB). The resulting p-values 
of all possible policy combinations are then adjusted with 
the method proposed by Benjamini and Yekutieli [6] to 
account for multiple hypotheses testing errors. The method 
by Benjamini and Yekutieli strikes a good balance between 
unadjusted inference and multiple testing conservatism [4]. 
The resulting adjusted p-values are shown in Table 4.

The adjusted p-values from the ANOVA show that the 
differences between the means of the total maximum work-
load are all statistically significant except for the CMSSB-
NMSSB pair. Looking more closely, the adjusted p-values 
in this pair show that the differences of means in the nurse 
ICU maximum workload, as well as the physician ward maxi-
mum workload, are not statistically significant with p-values 
> 0.05 . The results of the CMSS-NMSS pair show that the 
differences of means are also not statistically significant for 
both the nurse ICU and the physician ICU maximum work-
load. These results underline our previous findings and show 
that with our approach a new MSS is not necessary to level 
the workload on downstream departments and that a new 
MSS might not have the desired effect, especially in the ICU.

4.2  Analysis of additional instances

In the last section, we have shown that by introducing two 
different block types in the MSS of UKA, the workload 
variability in the ICU can be drastically reduced. However, 

Table 3  Comparison of 
statistical measures of total 
weighted maximum workload 
for each policy

Nurse Physician

Median Mean Variance Median Mean Variance

ICU CMSS 21.71 22.56 14.89 10.97 11.12 2.41
NMSS 21.71 22.53 14.88 10.97 11.12 2.41
CMSSB 19.54 20.26 10.97 9.56 9.61 1.03
NMSSB 19.54 20.21 10.83 9.56 9.69 1.09

Ward CMSS 103.50 103.47 17.38 96.56 96.66 10.39
NMSS 103.00 103.24 17.32 96.56 96.54 10.13
CMSSB 103.00 103.14 16.86 96.00 95.95 9.63
NMSSB 103.00 103.05 17.12 96.00 95.97 9.61
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UKA is one of the largest hospitals in Germany, so it is yet 
unclear if these results also apply in general, e.g., in smaller 
hospitals. Therefore, we create multiple instances varying 
the number of specialties, the size of the OT, and the num-
ber of blocks per specialty as well as ICU and ward patient 
demand in total and per specialty depending on the number 
of blocks for each specialty. In total, 64 instances are gener-
ated. In the first step, 32 base instances are generated. The 
base instances are constructed as follows: The number of 
specialties ranges from two to eight, incremented in steps of 
two. The number of rooms is dependent on the number of 
specialties and either equal to the number of specialties or 
twice that number. The total number of ICU patients is set 
to the number of rooms or twice the number of rooms. The 
total number of ward patients is generated similarly, only 

that it is set to five or ten times the number of rooms. In the 
second step, the 32 base instances are used to generate the 
final 64 instances with some random parameters: The num-
ber of blocks per specialty is generated sequentially starting 
from the first specialty and is picked from a uniform distri-
bution ranging from zero to half of the remaining blocks 
that are not assigned yet. However, a minimum of two total 
specialties is set. The number of ICU and ward patients per 
specialty is allocated from the total number of ICU and ward 
patients in relation to the number of blocks per specialty. 
Lastly, the LOS distributions for the ICU and the ward for 
each specialty are randomly picked from the eight LOS dis-
tributions from UKA. An overview of the parameters for 
each of the generated instances is shown in Table 5. The 
CMSS of each instance is generated by evenly distributing 

Fig. 8  Mean relative change of weighted maximum workload  for physicians and nurses in the ICU and wards for NMSS, CMSSB, and NMSSB 
compared to CMSS

Table 4  Adjusted p-values from 
ANOVA post hoc analysis using 
Benjamini & Yekutieli method

*: Statistically significant with � = 0.05

Total workload ICU workload Ward workload

Nurse Physician Nurse Physician

CMSS-NMSS  < 0.0001* 0.6791 1.0000  < 0.0001*  < 0.0001*
CMSS-CMSSB  < 0.0001*  < 0.0001*  < 0.0001*  < 0.0001*  < 0.0001*
CMSS-NMSSB  < 0.0001*  < 0.0001*  < 0.0001*  < 0.0001*  < 0.0001*
NMSS-CMSSB  < 0.0001*  < 0.0001*  < 0.0001* 0.0005*  < 0.0001*
NMSS-NMSSB  < 0.0001*  < 0.0001*  < 0.0001*  < 0.0001*  < 0.0001*
CMSSB-NMSSB 1.0000 0.1291  < 0.0001* 0.0025* 1.0000
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the number of blocks per specialty in the planning horizon 
– except for weekend days – to level the workload of each 
specialty in the OT as best as possible.

Using the generated CMSS of each instance, the three 
remaining policies NMSS, CMSSB, and NMSSB are 
applied using the mathematical model and then evaluated 
using the simulation model. Each instance is evaluated 
separately by determining the mean maximum workload 
over all simulated weeks, as well as the standard deviation 
over all simulated weeks within one policy. The results of 
NMSS, CMSSB, and NMSSB are then compared to the 
results of CMSS. The aggregated results are shown in 
Table 6, showing the mean difference of each policy com-
pared to CMSS showing the mean maximum workload and 
the mean difference of each policy compared to CMSS 
showing the standard deviation of the maximum workload. 
Equal to the results from UKA, it can be seen that NMSS 
is outperformed by CMSSB and NMSSB, especially in 
the ICU, not only lowering the mean maximum workload 
but also lowering the week to week variability measured 
with the standard deviation. On average, CMSSB reduces 
the mean maximum workload by 11.06% and 12.40% for 
nurses and physicians in the ICU, respectively, compared 
to CMSS. The standard deviation – which represents the 
week-to-week variability of the maximum workload – could 
also be decreased by 15.18% and 26.29% for nurses and 
physicians in the ICU, respectively, on average compared to 
CMSS. A new MSS with ICU blocks (NMSSB) can reduce 
the total maximum workload even further by 3.10% com-
pared to the 2.40% reduction when the current MSS of each 
instance is maintained.

The results of all instances are separated into eight 
groups, differentiated by the number of rooms and the num-
ber of specialties, to assess if these results not only hold on 
average but also for various OT sizes. In Fig. 9, the mean 
maximum workload reduction compared to CMSS is shown 
for NMSS, CMSSB, and NMSSB for nurses and physicians 
in the ICU and the wards. Similar results as presented in 
our previous analysis can be observed. The charts show the 
mean value over all 64 instances divided into eight groups 
depending on the number of specialties and rooms.

All studied instances show an outperformance of 
CMSSB and NMSSB compared to NMSS in the ICU 
independent from the number of rooms and special-
ties. The reduction of the maximum ICU workload 
for CMSSB and NMSSB is on a similar level for all 
instances ranging from small to large, except for the 
smallest instances with just two rooms and two spe-
cialties. The maximum workload on the ward stations 
shows also no clear trend depending on the size of the 
instances, here only NMSSB is outperforming CMSS. 
The results of all instances are shown in Appendix D 
(online supplements). Ta
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5  Implementation of ICU quotas at UKA

The presented model was developed in close collabora-
tion with the OT manager of UKA. Due to the convinc-
ing improvement potential, the medical director of UKA 
decided to use the developed model to implement a similar 

quota system at UKA. Before the implementation of the new 
model, there were no rules for allocating ICU beds or daily 
quotas on a tactical level for each specialty, which resulted in 
major coordination efforts to determine the medical priority 
of patients relative to the number of available ICU beds on 
a daily basis. The absence of a controlling mechanism on 

Table 6  Mean difference of 
maximum workload from 64 
instances compared to CMSS 
of each instance using the 
simulation model

Policy Total workload ICU workload Ward workload

Nurse Physician Nurse Physician

Mean NMSS -0.82% 0.20% 0.29% -0.90% -1.14%
CMSSB -2.40% -11.06% -12.40% -0.36% -1.01%
NMSSB -3.10% -10.17% -11.29% -1.32% -2.09%

Std.dev NMSS 0.27% 0.44% 1.34% -0.88% -2.14%
CMSSB -8.10% -15.18% -26.29% -1.03% -2.67%
NMSSB -7.79% -13.74% -23.41% -1.72% -3.83%
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the tactical level led to a multitude of problems. First and 
foremost was the impression of an unfair allocation of avail-
able ICU beds for all surgical departments since there was 
no transparent guideline to allocate available ICU beds for 
elective operations to different specialties. This feeling could 
also be observed in a questionnaire that was sent out before 
the new system was implemented, where surgical coordina-
tors of the OT, anesthesia, and all surgical specialties par-
ticipated. 13 out of 16 participants voted that they were dis-
satisfied with the current system. Only two participants were 
neutral, and one participant was somewhat satisfied. Another 
issue is the high organizational effort that was needed to 
coordinate the available ICU beds with all involved parties 
daily, which resulted in an abundance of phone calls between 
all coordinators. These were symptoms of reactive response 
management rather than forward-looking active planning. 
Third, unequal distribution of intensive care patients over the 
working week was an essential factor for workload distribu-
tion into the OT. On some days, this led to a disproportion-
ate rate of delayed or canceled surgeries and a lower overall 
performance of the OT. Among other things, this was due to 
a lack of coordination between the surgical specialties and 
no planning rules.

The attempt to care for as many elective patients as pos-
sible in the OT conversely also led to lower ICU capacity 
reserves for emergency patients. It is essential to be aware 
that surgical departments have primarily planned intensive 
care patients according to their needs and restrictions. This 
can be the availability of surgeons but also device or mate-
rial requirements.

As transparency was very important to the coordina-
tors of all specialties, the developed model was slightly 
changed to introduce ICU quotas on a patient level. This 
allows every specialty to independently plan their ICU 
patients for the day with the permitted number of elective 
patients. A modified version of our model was used to 
continuously support the decision process of determining 
the daily ICU quotas for each specialty. The model solu-
tions were slightly changed to account for medical and 
organizational constraints that could not be represented 
in the model. However, the model was used with fixed 
decision variables to evaluate the manual changes to the 
schedules. The final quotas for each specialty were jointly 
agreed upon by all specialties.

On January 1, 2020, the new system was implemented 
and is now continuously being evaluated. Part of the evalu-
ation will be additional questionnaires that will be sent out in 
the future to test the acceptance of the new system amongst 
the coordinators. Additionally, regarding the acceptance of 
the system, which is important for the success of the whole 
project, the LOS in the ICU of elective patients and the num-
ber of canceled ICU patients due to bed restrictions will be 
monitored. For this purpose, a new monitoring system is 

established to observe the LOS of elective patients in the 
ICU as well as the fulfillment of the quota system for every 
specialty. This allows us to check if single specialties comply 
with the ICU quotas and if a reallocation of the total ICU 
capacity in the OT is necessary.

Due to the COVID-19 pandemic, the evaluation of 
data available so far has been impaired because a signifi-
cantly smaller number of elective patients with ICU treat-
ment needs was operated on. However, in the summer/fall 
period two months in 2020 were identified where almost 
no COVID-19 patients were treated in the ICU and the OT 
could return to regular operations. We use data from Sep-
tember to October 2019 where no quota system was estab-
lished and compare it to the same period in 2020 where the 
quota system was established. In the following, we compare 
the total number of elective surgeries that are transferred to 
the ICU after surgery with the number of canceled elective 
ICU surgeries due to bed shortages and we calculate the 
workload for physicians and nurses in the ICU. Addition-
ally, we present parts of two surveys where 16 coordinators 
from the OT, the ICU, anesthesia, and from each specialty 
participated before and after implementation of the ICU 
quota system.

From September 1, 2019, to October 31, 2019, when ICU 
quotas had not been established yet, 211 elective surgeries 
were performed on patients that were transferred to the ICU 
afterwards. In the same period, 113 surgeries were canceled 
due to a shortage of ICU beds, resulting in a 34.88% cancel-
lation rate of scheduled elective surgeries of ICU patients. 
From September 1, 2020, to October 31, 2020, when ICU 
quotas had been implemented, 208 elective surgeries were 
performed on ICU patients and only six surgeries had to be 
canceled due to a bed shortage in the ICU, resulting in a 
2.80% cancellation rate of scheduled elective surgeries of 
ICU patients. This shows that the introduction of ICU quotas 
had almost no influence on the throughput of ICU patients 
in the OT, however, the reliability of the planned schedule 
significantly increased, resulting in less work for coordina-
tors and better predictability for patients.

Since only two months of data were available for com-
parison, we did not calculate the maximum workload of 
each week, because only 8 data points would be available. 
We did calculate the workload of each day and used the 
standard deviation to measure the workload variability. 
Looking at the workload for nurses and physicians, the 
mean weighted workload decreased from 19.54 and 9.77, 
respectively, in 2019 to 16.45 and 8.23 in 2020. Since 
the admission rate is nearly equal in both years, the main 
contributor to the reduction in workload is the reduction 
of utilized beds followed by a reduction of the average 
LOS in the ICU. The standard deviation of the weighted 
workload decreased from 5.77 and 2.89 in 2019 to 5.20 
and 2.60 in 2020 for nurses and physicians respectively. 
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However, the coefficient of variation (CoV) slightly 
increased from 0.30 in 2019 to 0.32 in 2020, resulting 
in no clear indication if the ICU quotas in the OT have 
an actual influence on leveling the workload for nurses 
and physicians in the ICU in practice. An overview of the 
results from real-world implementation at UKA is shown 
in Table 7.

Lastly, when asked about the satisfaction of each sys-
tem – one without ICU quotas and one with ICU quotas 
– on a 7-point Likert scale with “very unhappy” at point 
1 and “very happy” at point 7, the 16 survey participants 
were more satisfied with the ICU quota system compared 
to having no quotas in place with average points of 3.93 
compared to 2.25, respectively.

According to the OT manager, the experience of guar-
anteed ICU beds for patients who were operated on within 
the quotas led to better discipline when planning these 
operations, reduced organizational effort, and the feeling 
of equal treatment in the surgical disciplines. This shows 
the high acceptance rate of the new system which results 
from the early involvement of all surgical specialties when 
adapting the quota system. The quotas also smoothed the 
demand for ICU beds over the working week. During the 
COVID-19 pandemic, the new system proved its worth in 
particular due to its flexibility. Since many patients had to 
be treated in the ICU because of COVID-19, fewer beds 
were available for elective surgeries. This reduction could 
be considered in the dimensioning of daily contingents. 
This avoided unnecessary cancellations of scheduled ICU 
surgeries due to bed shortages in the ICU. In addition, 
daily coordination of the medical prioritization of these 
patients was introduced at this time. This enables a daily 
priority list that can be worked through in the designated 
order regardless of the number of available ICU beds. The 
quota system has mainly contributed to major transparency 
in ICU bed allocation.

6  Conclusion

In this paper, we present an extension to the MSS using 
distinct block types for individual downstream units. We 
built a mathematical model to determine the block type of a 
specific day and room and thereby create new tactical plans 
with more information. We use a simulation model to test 

the workload on an operational level in each downstream 
unit for physicians and nurses. We show that the weighted 
maximum workload in the ICU can be reduced by up to 
11.22% compared to an MSS without distinct block types 
using data from UKA in Germany. We also show that we 
cannot only reduce peak workload within a week but also the 
week-to-week variability in the ICU using our approach. The 
main advantage of our approach is possible to capture large 
fractions of the improvements while maintaining an existing 
MSS. Compared to generating a new MSS, our approach can 
realize all of the potential reduction. When compared to a 
central planning approach, our approach can realize 79.85% 
of the maximum workload reduction. With our approach, 
however, specialties keep their autonomy when scheduling 
patients in their blocks in the OT. Based on the LOS distri-
butions of UKA, we build 64 instances from small to large 
OTs and few to many specialties combined with a random 
number of blocks per specialty, ICU patients per specialty, 
and ward patients per specialty. We show that our approach 
is not only effective at large OTs but also in smaller hospitals 
with few rooms and specialties.

Based on our model, a quota system for elective ICU 
patients in the OT was implemented at the University Hos-
pital Augsburg, one of the largest hospitals in Germany with 
more than 1,700 beds. The quota system led to an improved 
organizational structure in the OT and made coordination 
between surgical specialties easier. The new system showed 
an almost elimination of cancellations for elective ICU 
patients in the OT that were canceled due to a bed shortage 
in the ICU as well as an increased satisfaction of coordina-
tors from the OT, the ICU, and each specialty. However, the 
reduction of workload variability could not be measured in 
the observed period.

Our model is mainly focused on downstream units, OT 
resources are just assumed to be available. Future research 
could simultaneously focus on the workload within the OT 
– which we only try to level by limiting the maximum num-
ber of daily blocks for each specialty – additionally to the 
workload on downstream units since many different types of 
human resources are involved in the OT as well, i.e., physi-
cians, nurses, anesthetists, and anesthesia nurses. Another 
avenue could be the focus on actual implementation to test if 
the theoretical potential of workload leveling is transferable 
to practice, next to other benefits of an ICU quota system 
that we present in our work.

Table 7  Overview of ICU and OT data before and after implementation of ICU quotas at UKA

Mean ICU workload Std. dev. of ICU workload Total performed 
ICU surgeries

Canceled ICU 
surgeries due to bed 
shortageNurses Physicians Nurses Physicians CoV

Without ICU quota system 19.54 9.77 5.77 2.89 0.30 211 113
With ICU quota system 16.45 8.23 5.20 2.60 0.32 208 6
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To summarize our findings, we show that reducing work-
load peaks on downstream units, increasing employee sat-
isfaction, and reducing organizational costs in the OT is 
possible without changing the MSS. Using our approach, 
specialties keep most of their autonomy when scheduling 
patients in the OT and achieve a majority of the maximum 
reduction of peak workload that would only be possible with 
a central planning approach.
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