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Abstract: Solar ultraviolet radiation (UVR) monitoring is important since it depends on several
atmospheric parameters which are associated with climate change and since excess solar UVR
exposure and has significant impacts on human health and wellbeing. The objective of this study
was to investigate the trends in solar UVR during a decade (2009-2018) in Saint-Denis, Reunion
Island (20.9°S, 55.5°E, 85 m ASL) and Cape Town, South Africa (33.97°S, 18.6°E, 42 m ASL). This
comparison was done using total daily erythema exposure as derived from UVR sensors continuously
at both sites. Climatology over the 10-year period showed extreme UVR exposure for both sites.
Slight changes with opposite trends were found, +3.6% at Saint-Denis and —3.7% at Cape Town.
However, these two sites often experience extreme weather conditions thereby making the trend
evaluation difficult. Human exposure assessment was performed for hiking activities at two popular
high-altitude hiking trails on the Maido—Grand Bénare (Reunion) and Table Mountain (Cape Town)
with a handheld radiometer. Extreme exposure doses of 64 SED and 40 SED (Standard Erythemal
Dose, 1 SED = 100 J.m~2) were recorded, respectively. These high exposure doses highlight the
importance of raising public awareness on the risk related to excess UVR exposure at tourist sites,
especially those at high altitude.

Keywords: solar ultraviolet radiation; UV index; UV dose; UV assessment; hiking; altitude;
La Reunion; South Africa
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1. Introduction

The effects of ultraviolet radiation (UVR) on humans are well known today and depend on several
factors including atmospheric variables influencing the amount of surface solar UVR such as cloud
cover and altitude, as well as skin phototype which determines the individual risk to excess solar
UVR [1]. The Fitzpatrick Skin Phototype classification (Table 1) [2] is commonly used and classifies skin
phototypes as a function of their characteristics and sunburn susceptibility. The harmful effects of excess
ultraviolet (UV) exposure include sunburn, skin cancer, cataracts, and ocular melanoma [3,4]. About
90% of skin-related health impacts are related to UVR exposure [5]. In South Africa, the melanoma rate
is stable at 5 and 3 cases per 100,000 persons (computed for a world standard population) for males and
females, respectively [6]. Even though statistics are not deemed comprehensive, a possible increasing
trend is evident for invasive melanoma from 2006 to 2015 for La Reunion [7]. For 2006 to 2015, in a
male standard population, the increase was 2.7 to 7.1 cases per 100,000 persons and 3.0 to 6.1 cases per
100,000 persons in a female standard population [8]. Human behaviour change is another important
factor influencing solar UVR exposure and subsequent ill health effects [9]. In a social context in which
people spend time outdoors and expose themselves to the sun, public awareness and skin cancer
prevention campaigns are crucial.

Table 1. Skin phototype classification [1].

Minimal Dose to Elicit

Phototype Characteristics History of Sunburn Sunburn (SED)
I Ivory white skin, light eyes Burns easily 2-3
I White skin, hazel/brown eyes Burns easily 2.5-3
I White skin, brown eyes Burns moderately 3-5
v Lightly skin, dark eyes Burns minimally 4.5-6
\% Moderate brown skin, dark eyes Rarely Burns 6-20
VI Strong brown/black skin, dark eyes Never burns 6-20

This study focused on understanding total daily UVR exposure doses in Saint-Denis, Reunion
Island and in Cape Town, South Africa. Firstly, UVR exposure dose was analyzed from a climatological
point of view and then, by focusing on the trend over a 10-year period from 2009 to 2018. Secondly,
results from two case studies that measured ambient solar UVR exposure at points along popular
hiking sites located at altitude are presented.

2. Experiments
2.1. UV Instruments

2.1.1. Ground-Based UVR Instrument at Saint-Denis

UVR is recorded at Saint-Denis on the roof of the Laboratoire de I’Atmosphere et des Cyclones
(20.9°S, 55.5°E, 85 m ASL, Figure 1). The instrument is a double-monochromator Bentham DTMc300
provided by Bentham Instrument Ltd. Co. (United Kingdom). Since February 2009, UV irradiance
between 280 nm and 400 nm is sampled in 0.5 nm increments every 15-minutes. The instrument is
calibrated every three months, a 150 W and a 1000 W tungsten-halogen lamp are used for spectral
calibration and a software tool developed at Laboratoire d’Optique Atmosphérique is used for the
wavelength misalignment correction [10]. These lamps are traceable to the National Institute of
Standards and Technology (NIST). The UV Index (UV]) is calculated following standard formula and
standard erythemal action spectrum [11]. The UVR doses are extracted from UVI using Equation (1):

At X UVindex
uvd = Z Ta0x100 ' 1)
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where UVd is the daily dose and At the interval time between two measurements. The UVI uncertainty
has recently been estimated to be 5% [10]. This instrument is affiliated with the Network for the
Detection of Atmospheric Composition Change (NDACC). A parametric and sensitivity study has
been done by Lamy et al., 2018 [12] on Tropospheric Ultraviolet and Visible Model (TUV) at Saint-Denis.
Ground-based and satellite data was used for clear sky UVI modelling and a relative difference of 0.5%
was found with UVI from the Bentham DTMc300 (Bentham Instruments Ltd, Berkshire, UK).
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Figure 1. Geographical locations of Saint-Denis and Cape Town ground-based solar ultraviolet radiation
(UVR) measurement sites.

2.1.2. Ground-based UVR instrument at Cape Town

The South African Weather Service (SAWS) maintains a network of six broadband radiometers
(280-340 nm) in South Africa. The Cape Town station is located at the Cape Town International Airport
(33.97°S, 18.6°E, 42 m ASL, Figure 1).

The instrument is a UV-biometer model 501 (SN#10414) manufactured by Solar Light Company,
Inc. (Glenside, PA, United States). Erythemal UVR is recorded hourly in Minimal Erythemal Dose
(MED) unit by a GaAsP diode, where 1 MED is set to 210 J.m™2[13]. UVR doses are calculated following
Equation (2):

210
UVd_Zi:Umem, )
where UVd is the daily dose and UVm the one-hour cumulative dose in MED.

A generic table is used to correct the spectral response of the instrument, depending on total
ozone and solar zenith angle [14,15]. In 2012, an inter-comparison was conducted with the SAWS Solar
Light SL-501 travelling standard instrument (SN#12010). This travelling standard instrument was
calibrated at the Deutscher Wetterdienst (DWD, Germany) with spectroradiometer SPECTRO 320D NO
15 (Instrument Systems GmbH, Munich, Germany) and had traceability to the International Bureau of

Weights and Measures (BIPM). The Cape Town biometer accuracy was estimated to be 8% [13].

2.1.3. Field UVR Instrument

The UVR instrument used for field measurements was the Solarmeter Model 6.5 UV Index Meter
(SN#03692) from Solarmeter® (Glenside, PA, USA), a trademark of Solar Light Company Inc. This
handheld instrument records erythemal weighted UV irradiance from 280 to 400 nm via a silicon
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carbide photodiode. UVl is provided with 10% manufacturer accuracy traceable to NIST. A previous
inter-comparison campaign showed that this instrument has long-term stability and good agreement
with a reference instrument (~ 5% bias) [16].

2.2. Methods and Statistical Analysis

The analyses were conducted using two variables: the daily cumulative UVR doses and the UV],
as the former provides an indication of human exposure and the latter provides UVR intensity.

2.2.1. Climatology Analysis

The climatological monthly mean of the total daily UVR dose was computed. Since daily total
cumulative UVR dose in SED units was used, days with incomplete data were removed from the
datasets. The monthly climatology mean, standard deviation, and box diagrams were computed.
Then, the UVR intensity was analyzed by investigating the UVI threshold frequency using the UVI
categories of low, moderate, high, very high, and extreme over the 10-year study period. In addition,
the half-month maximum was used, following the World Health Organization (WHO) UVR exposure
categories [17].

2.2.2. Trend Analysis

The second objective was to estimate the trend in UVR dose over the period of one decade. This
was performed in two steps. The first year (2009) and the last year (2018) of the decade were compared.
Correlation, bias, and standard deviation were computed using Equations (3)—(5), respectively:

Yo (UViaons,; = UVidyo00)(UVedaors  — UVelons) @)
r = ,

N —\2
\/ (Z?:l(UVdZOO% - UVd2009) )(27:1(UV€12018,1‘ - Udeols) )

. 1 xon (UVdyig; — UVidagg,i
Bias = - Zi_l( UVl , 4)
1 n ((UVday1g,; — UVidagpg,i \
Std = \/n -1 Zn'—l(( UVds009,i b ®

where UV is the daily dose in SED unit, r the correlation coefficient, n the number of days.

Secondly, the evolution of UVR doses was analyzed for the decade using monthly mean values to
reduce dispersion due to the influence of clouds. The trend was estimated from the difference between
the monthly mean of daily doses and the climatological monthly mean of daily doses. Months without
data were replaced using the monthly climatology mean. The trend analysis was performed for the
whole period and by season. Based on the least-squares method, the linear trend, and a 90% confidence
interval were computed.

2.2.3. Case Study

Ambient erythemal UVR measurements were made at two popular hiking sites at relatively high
altitude, namely, Maido—Grand Bénare (GB) hike in La Reunion and Table Mountain (TM) via Platteklip
Gorge hike in Cape Town. TM in Cape Town is annually visited by approximately 800,000 people.
The UVI was recorded by volunteers with the handheld Solarmeter Model 6.5 every 10 min while
hiking on the mountains, following the supplier measurement recommendations, and UVR doses
were calculated using Equation (1) (above). This instrument and method have been used in a previous
study [18]. While many environmental parameters can affect the direct and diffuse UVR here only the
presence of cloud and topography [19,20] occulting the direct sun were visually recorded, even though
the diffuse UV irradiance is an important part of the global irradiance [21].
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The GB hike took place on the 2 December 2018 and the TM hike took place a week later on the
10 December 2018. Topographic maps and photos of the two study sites are shown in Figure 2. The
two mountain hikes environments have short (<2 m height) or very little vegetation and therefore the
presence of vegetation did not interfere with the measured UVR levels. At both sites, there was the
direct sun for the full duration of the hikes. The diffuse UVR was likely reduced in the Platteklip gorge
on the TM hike due to the proximity of the cliff in the gorge.

Maido-Grand Benare hike Table Mountain hike
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A Wi
1035m
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Figure 2. On the top panels, the red lines show the route of the Maido—Grand Bénare hike (left side)
and Table Mountain hike (right side). The departure (D), intermediate (I), and arrival (A) locations are
indicated as well, in addition to the direction of the hike. The lower panels present photos of the 2 sites
on the days of the hikes.

3. Results and Discussion

3.1. Climatology

The monthly climatology of total daily erythemal UVR doses for both locations over the period of
study (2009-2018) is presented in Figure 3. The black boxplots provide the UVI median, interquartile
range and absolute extreme values, while the orange lines illustrate the mean values framed with
+1 standard deviation. As expected, the most important forcing that drives the annual course of
UVR doses is the annual oscillation, with maximum UVR doses during austral summer for both
sites but showing a greater amplitude for Cape Town. In fact, for Reunion and Cape Town the total
daily dose is at a maximum during austral summer (December, January, February) and at a minimum
during austral winter (June, July, August). By focusing on the monthly mean (solid orange line), the
seasonal minimum is lower at Cape Town than at Saint-Denis. This could be due to latitude effect.
However, the maximum seasonal dose is higher at Cape Town than at Saint-Denis (~ 63 SED and
55 SED, respectively). This likely depends on the seasonal variability of cloud cover at each site. In fact,
the Reunion site of Saint-Denis, located 13° latitude to the north of the Cape Town site, is dominated
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by a tropical climate which is characterized by strong cloud cover during austral summer [22,23]. This
may explain the lower amplitude of surface UVR recorded in Reunion in comparison with Cape Town.
Moreover, as indicated by the SED standard-deviations (superimposed with orange lines in Figure 3),
Saint-Denis shows more variability (larger standard-deviations). This seems to reflect the intermittent
aspect of the cloud cover over the site. Also, the monthly maximum dose, presented by the top of
the vertical black thin lines reveals a higher austral summer total daily doses in Saint-Denis than in
Cape Town. Outliers are present, but only for days when the total daily doses are very low due to
cloud cover.

Monthly mean of total daily dose at Saint-Denis Monthly mean of total daily dose at Cape Town
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Figure 3. Monthly climatology of total daily erythemal dose at Saint-Denis (a) and at Cape Town (b).
Box diagrams are represented in black for each month (the central value is the median, the box edge
is set at 25t and 75th percentiles, the whiskers show the extreme values, excluding outliers, which is
represented by single black dots). The orange line shows the monthly mean and the orange shading
shows one standard deviation. Months on the X-axis have been reorganized to highlight the austral
summer, which appears in the middle of the plot.

The UVR climatology at Cape Town can be compared to the Cape Point UVR station as these
stations are located within a short geographical distance one from each other (~50km). However, the
UVR behaviour is different due to different atmospheric conditions—Cape Town is in the airport area,
near the city center, and Cape Point station is on the Cape Point peninsula which is an isolated site
protruding into the ocean. A previous study on the total daily UVR dose during 2009 showed a lower
dose during the austral summer at Cape Point compared to Cape Town [24].

With a special focus on user-oriented presentations, the relative frequency of the WHO UVI
exposure categories (low, moderate, high, very high, extreme) [25] was calculated for half-month
means of UVI (Figure 4). Regarding the Reunion site (Figure 4a), the pattern of UVI distribution is
dominated by “High”, “Very-High”, and “Extreme” UVI values almost all-year-round. However, we
can differentiate two dominant seasons in Reunion: wet/summer (October to March) and dry/winter
(April to September) seasons. During summer, UVI levels reach “Extreme” thresholds and represent
more than 80% of the total number of observations, while during the winter season, UVI frequencies
are distributed between “Moderate” and “High” categories. In addition, for the Reunion site, the
“Low” UVI category remains infrequent regardless of the month and season, with an average frequency
less than 5%. For Cape Town site (Figure 4b), the relative frequency distribution shows that “Low” and
“Moderate” UVI categories dominate (about 100%) during winter, while during summer there was a
preponderance of “High”, “Very-High”, and “Extreme” UVI thresholds, almost at 100% of the total
number of observations. Overall, UVI is extreme during summer for both sites, but for a longer period
at Saint-Denis. During winter, UVI is “Low” at Cape Town and “Moderate” to “High” at Saint-Denis.
During summer, one can see that UVI shows “Extreme” values with relative frequencies from 60% up
to 80% per fortnightly.
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Figure 4. Relative frequency of ultraviolet (UV) index thresholds (WHO) based on the half-month
maximum UV Index (UVI) over the decade (2009 to 2018), (a) for Saint-Denis UV station and (b) for
Cape Town UV station. Months on the X-axis have been reorganized to highlight the austral summer,
which appears in the middle of the plot.

Considering the high UVI levels calculated for the two studied sites, and considering the high
exposure of populations to solar UVR due to outdoor activities for leisure or professional reasons, our
results raise an important question: are the UVI thresholds, as defined by WHO classification [25],
relevant for tropical and subtropical regions? Historically, the UVI scale was defined in Canada and
it is indeed not adapted for the tropical and sub-tropical region [26,27]. While seeking an answer to
the question above was not part of this work, specific studies on solar UVR and health impacts are
necessary, and the concerned populations must be informed of the associated health risks using the
most meaningful metrics.

3.2. Trend Analysis

Although the observation period is rather short (i.e., 2009-2018), we used ground-based UVR
data from the two study sites to investigate changes and trends over a decade. Trend analyses were
performed based on daily and monthly values obtained from observations at Saint-Denis and Cape
Town sites. All UVR data were integrated into daily erythemal doses (Figure 5). There is a larger
dispersion of UVR doses at Saint-Denis (Figure 5a) in comparison with Cape Town distributions
(Figure 5b). There was a moderate correlation at Saint-Denis, 63% (220/365 points), and a high
correlation of 90% (289/365 points) at Cape Town. For both study sites, by comparing UVR doses
recorded in 2009 and 2018, positive differences are evident. A bias of +15 + 90% at Saint-Denis and
+4 + 50% at Cape Town was found by comparing 2009 and 2018. There was no significant difference
in the total daily UVR doses between 2009 and 2018 for both sites. Overall, total daily doses were
very high during austral summer, reaching 80 SED for both sites, and decreased as low as 30 SED and
10 SED during austral winter for Saint-Denis and Cape Town, respectively. Even though winter doses
are lower than summer doses, they are still higher than the threshold for potential sunburn for almost
all sun phototypes (Table 1) represented by the horizontal lines in Figure 5, except for sun phototypes
V and VI at Cape Town. Similar high ambient UVR exposures were reported in a previous study [24].

We applied the least-squares method to the monthly mean UVR values derived for the two sites to
estimate linear trends over a decade (2009-2018). For both sites, UVR trends were investigated in two
ways: on a global and a seasonal basis. For each site, total daily erythemal doses (in SED unit) were
averaged monthly and used from January 2009 to December 2018. The trend analyses are shown in
Figure 6a,b. The relevance of this analysis depends on the total number of daily observations applied.
The histograms at the bottom of each plot show the number of days with available data. The two sites
had a rate of observational measurement higher than 60%: 62% for Saint-Denis and 92% for Cape
Town over the studied period. Figure 6 shows two opposed global daily erythemal UVR trends for the
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two sites: an increasing trend at Reunion Island (+3.7%) and a decreasing trend at Cape Town (—3.6%).
Fountoulakis et al., 2018 found an increase in UVR of about 3% per decade over Europe, Canada and
Japan, by using a 25-year ground-based database while zonal trend analysis (20 years) from Total
Ozone Mapping Spectrometer (TOMS) also showed an increase of 3% per decade for latitudes similar
to our study sites [28,29]. The two opposite trends may be explained by the wavelength range of the
UV-biometer (280-340 nm). Since the spectral response is corrected by coefficient depending only on
ozone and solar zenith angle, differences on atmospheric conditions (aerosols, clouds, ... ) can induce
bias in dataset. Moreover, the trend estimates for Saint-Denis site should be interpreted with care since
38% of daily observations were missing, while 8% of daily observations were missing for Cape Town.

Total daily dose at Saint-Denis Total daily dose at Cape Town
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% » Legend
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Figure 5. Total daily erythemal doses at Saint-Denis (a) and Cape Town (b). The grey dots represent all
daily values recorded from 2009 to 2018. The blue and red dots highlight data from 2009 and 2018,
respectively. The horizontal lines show the threshold for one dose to sunburn (Table 1) as a function of
skin phototype. Months on the X-axis have been reorganized to highlight the austral summer, which
appears in the middle of the plot.
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Figure 6. Total daily erythemal dose trend estimates in Saint-Denis (a) and Cape Town (b). The grey
dots represent the relative difference from the monthly mean of daily doses to the climatological
monthly mean of daily doses. The histogram shows the numbers of days with data available in each
month. The black solid line represents a linear fit and the black dashed lines the 90% confidence interval.

As UVR depends on seasonal variability and on changes in the forcings that modulate UVR
fluxes at the surface, we broke down the trend analysis by season (DJF: December-January-February,
MAM: March-April-May, JJA: June-July-August, and SON: September-October-November), as shown
in Table 2. The seasonal decomposition showed two positive trends in Saint-Denis, about +5.4% for
summer (DJF) and autumn (MAM), and +1.8% for winter (JJA) and spring (SON), while it shows
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opposite trends for Cape Town site: negative trends from spring, summer and autumn, with about
—5% in average, and a slightly positive trend (+1%) during winter.

Table 2. Annual and seasonal UV trend estimates (in percentages) computed from daily total doses (SED)
as derived from UVI observations at Saint-Denis in Reunion Island and Cape Town in South Africa.

Seasonal Trends (%)

Sites DJF MAM A SON Annual Trend (%)
Saint-Denis 20.9°S, 55.5°E, 85 m ASL +45 463 +1.7 +1.9 +3.7
Cape Town 33.9°S, 18.6°E, 42 m ASL -5.0 =57 +1.0 -4.2 -3.6

In addition to aerosols and cloud cover, stratospheric ozone is an important atmospheric parameter
affecting surface UVR [30]. A recent study by Ball et al. [31] using satellite data showed a continuous
decrease in ozone in the lower stratosphere from 1998. However, the reasons for the continued reduction
of lower stratospheric ozone are still unclear. This decrease appeared despite positive trends in total
ozone following the Montreal protocol [32]. Models are not able to reproduce this decreasing trend of
ozone in the lower stratosphere. The latter may be due to dynamical changes in the Brewer-Dobson
circulation, which is a large-scale circulation that takes place in the winter stratosphere and depends on
planetary waves propagation in the middle atmosphere [33-35]. Moreover, by analyzing radiosonde
and satellite datasets, Toihir et al. [32] found no significant change in stratospheric ozone in the southern
tropics over the period 1998-2013. Indeed, the positive change obtained for surface solar UVR in
Reunion could not be attributed to the change in stratospheric ozone. It may be associated with a
possible change in the troposphere. Climate models predict that the geographic distribution of cloud
changes in response to anthropogenic warming, and the expected forced changes are likely to appear
in the upper troposphere [36].

The change in solar UVR levels at the surface may also be due to a change in aerosol loading [37]
or in tropospheric ozone formation. The two study sites are famous tourist sites and increasing
anthropogenic activities may have resulted in an increase in air pollution. A positive trend in
tropospheric ozone over Cape Town has been found by using ground-based, satellite-based, and
modeling datasets for past decades [38]. This change in tropospheric ozone content can explain
the change in surface UVR. However, the effect of aerosols is different for our study sites. Indeed,
Saint-Denis is continuously affected by the trade winds that result in a short residence time of aerosols.
The retrieved UVR trends derived for Saint-Denis should be interpreted with caution mainly because
1) there is missing data in the time series and 2) it is a tropical site with extensive cloud cover, especially
during the summer season, and because of the possible change in cloud cover. Reunion Island is in a
tropical region where the inter-tropical convergence zone (ITCZ) has a large impact on cloud cover.

Furthermore, within the context of climate change, there is a direct link between increasing sea
surface temperatures and the distribution of cloud cover in the tropics [39]. The negative trends
obtained for the Cape Town site could result from a combination of many processes at different scales.
Aerosols and air pollutant loading in the troposphere has a negative forcing on surface UVR [28].
Moreover, biomass burning is the most significant source of gases and particulate matter emissions
to the atmosphere. Almost 90% of all biomass burning emissions are anthropogenic [40]. Pollutants
associated with anthropogenic activities and biomass burning could lead to the formation of ozone
and other photochemical oxidants, in addition to UVR reductions at the surface. According to the
South African National Veldfire Risk Assessment, there is a marked increasing trend in fire incidence
in South Africa [41]. This is consistent with a recent review on trends of tropospheric ozone by
Cooper et al. [38]. They showed the seasonal variations in the tropospheric column of ozone over
South Africa in accordance with the biomass burning season and found a significant positive trend in
surface ozone time series at Cape Town (0.19 + 0.05 ppbv/year) for the 1986-2011 period. Our findings
support these observed changes in the troposphere composition.
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3.3. Case Study

Reunion Island and Cape Town, South Africa are well-known tourist destinations due to
their natural landscapes and varied terrains which are very popular for outdoor activities, almost
all-year-round. Given the elevation at high altitude sites, such as Grand Bénare (GB, 2898 m) in Reunion
Island and Table Mountain (TM, 1035 m) in Cape Town, intense UVR levels may be experienced by
users such as tourists, trailers or hikers, as well as employees in the local national parks. In order
to complete our comparative study between Reunion and Cape Town sites, we carried out two field
experiments under quasi-similar conditions: measurements of UVI during ascent hikes of GB and TM
with the same instrument and the same operational protocol (same time sampling and same sensor
directional pointing, etc.). The recorded UVI and cumulative UVR doses for GB and TB hikes are
shown in Figure 7. The GB hike started at 7:00 local time, while the TM hike started at 11:00. This is
because the GB hike is more challenging to complete with steep ascents and lasts longer than the TM
one. Moreover, we recorded some environmental parameters such as shading due to cloud cover or
due to the topography (e.g., gorge passageway) during the two hikes. They are shown with grey boxes
at the bottom of Figure 7a,b.

UV index on Maido - Grand Bénare hike UV index on Table Mountain hike
22
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Figure 7. UV index recorded at Maido-Grand Bénare hike (a) and Table Mountain hike (b). The
colors on the histogram represent also the UV index following the standard UV index color scale. The
grey surface at the bottom of the figure shows environmental effects affecting UV radiation, mainly
cloud cover or shade. The corresponding cumulative doses at Maido-Grand Bénare hike (c) and Table
Mountain hike (d). The black line represents the cumulated dose. The horizontal lines show the
threshold for 1 dose to sunburn (Table 1) as function of skin phototype.
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For the GB hike (Figure 7a) some clouds (cumulus humilis) were recorded from 11:30 to 14:00,
local time. During this time interval, as a result of the increase in cloud scattering, UVI increased to a
high maximum value of 20.4 then progressively decreased and dropped as low as 2.5 due to the cloud
spread and attenuation.

During the TM hike (Figure 7b) two environmental events occurred: the first one was the crossing
upward of the Platteklip gorge (from 12:30 to 13:00). The gorge is a steeply sloping and shaded area.
The second event was the crossing downward (from 14:10 to 14:40) of the gorge. One can observe
from Figure 7b a decrease in UVI during the crossing of the gorge. The effect of the decrease in diffuse
radiation by topography is noticeable where the UVI dropped by 4 units and went from 13 to about 8.

Figure 7c,d show the cumulative doses were extremely high during both GB and TM hikes, with
total exposure doses of 64 SED and 40 SED, respectively. This corresponds to 3 to 25 times the minimal
dose required to elicit a sunburn response for phototype I to phototype VI (see Table 1).

The likely difference in cumulative exposure doses between the two sites was in part due to
the differences in the hike duration as well as the maximum altitude (i.e., 7h10 duration and 2898 m
elevation for GB hike, and 4h and 1035m elevation for TM hike).

4. Conclusions

The aim of this study was to assess the level of UVR exposure doses in Saint-Denis, Reunion
Island, France and Cape Town, South Africa. This evaluation was performed by analyzing 10 years of
data (2009-2018) and by the assessment of UVR at two popular hiking sites located at high altitude.
The trend analysis showed different levels of solar UVR at the two sites: an increase of 3.7% of total
daily erythemal UVR dose in Saint-Denis and a decrease of 3.6% in Cape Town over the ten-year
period. Environmental factors such as ozone, aerosols and cloud cover are sensitive to climate change
and may be responsible for changes in UVR levels. Moreover, the evolution of UVR is difficult to
evaluate in sites such as Reunion Island and Cape Town which are subject to many different forcings
and atmospheric changes. The trends obtained must be interpreted carefully due to the relatively short
time period (10 years) and the missing data.

The climatological analysis highlighted extreme UVR levels occur during the austral summer in
Saint-Denis and Cape Town. Erythemal UVR levels are also high at Saint-Denis during the winter
season at about 30 SED. These high erythemal UVR levels may lead to sunburn in people who spend
extended periods of time outdoors without adequate sun protection. Similarly, in situ measurements
showed potentially extreme UVR exposure doses for hikers walking the GB and TM hikes. These
are two popular sites where UVR levels are very high due to latitude, altitude and environmental
conditions. Acute exposure of this nature would likely result in sunburn and skin damage [42] while
regular hiking at these sites would contribute to chronic exposure which is associated with harmful
health effects such as skin cancer [43]. Hiking is therefore deemed a potentially high sun exposure
activity and sun protection should be used. The results of this study highlight the importance of
crafting appropriate public awareness campaigns on the UVR exposure-risks from excess sun exposure
especially during outdoor recreational activities.
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