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• We investigated the association
between meteorology, air pollution
and hospital admissions for climate-
sensitive diseases

• Wavelet transform cross-correlation
analysis was applied

• Increased prevalence of pneumonia re-
lated admissions follows changes in air
quality after a time period of 10 to 15
days

• Increased admissions for malaria follow
the co-occurrence of high temperature
and rainfall after a 30-day interval

• Findings have relevance for early warn-
ing system development and climate
change adaptation planning to protect
human health
⁎ Corresponding author at: South African Medical Rese
E-mail address: Caradee.Wright@mrc.ac.za (C.Y. Wrigh

                                               
                                             
(Up) Local wavelet cross-correlation spectra of hospital admissions for pneumonia in comparison to PM2.5 con-
centrations. (Down) Local wavelet cross-correlation spectra of hospital admissions for malaria in comparison to
local rainfall data. Horizontal lines mark time delays between the onset of environmental or meteorological
drive and development of diseases.
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Background: Climate variables impact human health and in an era of climate change, there is a pressing need to
understand these relationships to best inform how such impacts are likely to change.
Objectives: This study sought to investigate time series of daily admissions from two public hospitals in Limpopo
province in South Africa with climate variability and air quality.
Methods:We used wavelet transform cross-correlation analysis to monitor coincidences in changes of meteoro-
logical (temperature and rainfall) and air quality (concentrations of PM2.5 and NO2) variables with admissions to
hospitals for gastrointestinal illnesses including diarrhoea, pneumonia-related diagnosis, malaria and asthma
cases. We were interested to disentangle meteorological or environmental variables that might be associated
with underlying temporal variations of disease prevalence measured through visits to hospitals.
Results:We found preconditioning of prevalence of pneumonia by changes in air quality and showed thatmalaria
in South Africa is amultivariate event, initiated by co-occurrence of heat and rainfall.We provided new statistical
estimates of time delays between the change of weather or air pollution and increase of hospital admissions for
pneumonia and malaria that are addition to already known seasonal variations. We found that increase of prev-
alence of pneumonia follows changes in air quality after a time period of 10 to 15 days, while the increase of in-
cidence of malaria follows the co-occurrence of high temperature and rainfall after a 30-day interval.
Discussion: Our findings have relevance for early warning system development and climate change adaptation
planning to protect human health and well-being.

                                   
1. Introduction

One of the ways in which climate change influences weather pat-
terns is by increasing the frequency, duration and intensity of extreme
events including heatwaves, floods, and droughts (Seneviratne et al.,
2012; Thomson et al., 2019). Climate models predict changes in
heatwave attributes such as increased frequency, intensity and duration
(Hales et al., 2003). These predictions show that many regions across
the world can expect warmer summers and milder winters (Hales
et al., 2003). Over the past five decades alone, South Africa has experi-
enced increases of up to 1.5 °C in mean annual temperatures which is
twice the global average (Ziervogel et al., 2014). Projections of future
conditions based on Representative Concentration Pathway (RCP)
emission scenarios demonstrate potentially large increases in flood fre-
quency in Southeast Asia, India and eastern Africa (Hirabayashi et al.,
2013). Risk of flooding is also expected to increase as global tempera-
tures rise (Hirabayashi et al., 2013). Research has also shown that the
frequency and intensity of droughts has increased in recent decades in
parts of Asia and Africa and this has been attributed to changes in
weather patterns caused by climate change (Ebi et al., 2003). Simula-
tions of future climate conditions have projected increases in the occur-
rence of droughts over the next century for many parts of the world
including most of Africa, southern Europe and the Middle East, most
of the Americas, Australia, and Southeast Asia (Dai, 2011).

Associations between changes in weather patterns and air quality
also exist (Jhun et al., 2015). In Canada, dry tropical weather was asso-
ciated with a fourfold increase of the likelihood of an extreme pollution
event due to nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2),
and particulate matter (PM) compared to moist tropical weather which
resulted in a twofold increase (Vanos et al., 2015). In Greece, air pollu-
tion was higher during heatwave days than during non-heatwave
days. Pollutants such as PM10, NO2 and O3 increased by up to 38%, 29%
and 12%, respectively (Papanastasiou et al., 2015).

Exposure to certain meteorological conditions and air pollution has
significant impacts on human health. Consequently, the number of
studies assessing the impacts of meteorological parameters and air
quality on human health has grown rapidly during the last decade
(Franchini and Mannucci, 2015; Kinney, 2008). Findings show that
high temperatures and heatwaves result in deaths, increased hospital
admissions and ambulance callouts for heat-related illnesses (see, for
example, Nitschke et al., 2011; Sun et al., 2014). Extremely high rates
of deaths and hospitalizations were reported during severe recent
heatwave events in France, Russia, Australia and India (WMO, 2013;
Fouillet et al., 2006; Akompab et al., 2013). Air pollution is another
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contributing factor to mortality and morbidity (Hanna et al., 2011;
Vanos et al., 2014). The World Health Organization (WHO) reports
that PM, O3, NO2 and SO2 are the four common air pollutants that
have the strongest effects on health (WHO, 2006; Bohnenstengel
et al., 2015). In the United States of America, exposure to PM2.5 was as-
sociated with 14,700 excess deaths from 1994 to 2012 (Jhun et al.,
2015). It is estimated that reducing PM10 to the WHO annual-mean
guideline of 20 μgm−3 would reduce attributable deaths per year in
Europe by as much as 22,000 (Bohnenstengel et al., 2015).

In South Africa, associations between weather and health outcomes
have been explored. Vulnerable groups such as children (Relative Risk
(RR): 1.24, 95% Confidence Interval (CI): 1.15–1.34) and older adults
aged 65 and older (RR: 1.13, 95% CI: 1.07–1.20) were at higher risk of
mortality due to exposure to high temperatures compared to persons
between 19 and 64 years of age (Scovronick et al., 2018; Wichmann,
2017). Children under 5 years of age were reportedly more vulnerable
to developing diarrhoea during very dry, hot conditions as well as dur-
ing periods of high rainfall because hospital admissions for diarrhoea in
that age group increased significantly during these conditions (Ikeda
et al., 2019). The risk of hospitalization due to cardiovascular disease
on warm days increased with increasing levels of SO2, NO2 and PM in
Cape Town (Lokotola et al., 2020).

The research that quantifies effects of air pollution, temperature and
rainfall on public health are, however, lacking. Therefore, this study
aimed to explain the possible relations between weather variables and
air pollution on four health outcomes known to be weather and/or en-
vironment sensitive (Godsmark et al., 2019). We used wavelet trans-
form (WT) analysis to establish possible associations between
temperature, rainfall, PM and NO2 (air pollutants for which data were
available) on hospital admission symptoms relating to asthma, pneu-
monia, malaria, and gastrointestinal ailments obtained from admission
records at two provincial hospitals in Limpopo province, South Africa.

Wavelets have been used as a data analysis tool across several scien-
tific disciplines providing important new insights into the underlying
characteristics of the signals involved (Addison, 2018). The property of
WT procedure - in that it does not assume stationarity of records
(Lancaster et al., 2018) - renders its applicability to research of a range
of natural or human-made complex systems outputs. In this paper, we
calculated wavelet power spectra (WTS), a wavelet energy density
functions relatable (Perrier et al., 1995) to Fourier power spectra
(PwS) to investigate global (i.e., over entire time of recording) and
local (i.e., at a specific point in time) temporal behaviour of individual
time series in our dataset. We furthermore used cross-wavelet trans-
forms (CWT) comparable to cross-correlation functions (Addison,



                                                                                
2002) and cross-correlation coefficients (Frick et al., 2001) to discern as-
sociations between admission records in our dataset with meteorologi-
cal and air quality changes, by monitoring local temporal regions of
their coincidental energy (Torrence and Compo, 1998; Addison, 2018).
The study findings have relevance for early warning system develop-
ment and climate change adaptation planning to protect human health
and well-being.

2. Methods and data

2.1. Study area

Giyani is a town in the Limpopo province of South Africa, in the far
north-eastern parts of the country at approximately 525 m above sea
level. We present a map of a geographic area surrounding the town in
Fig. 1. The region experiences summer rainfall although summers can
be extremely hot and dry. During the summer rainfall season, the area
is prone to seasonal malaria which has a negative impact on public
health (Gerritsen et al., 2008). This study area is vulnerable to the ad-
verse effects of exposure to regional (from neighbouring provinces
and countries) and household air pollution from the burning of wood
and coal.

2.2. Hospital admission data

Handwritten, non-digitised hospital admission records for 1 January
2002 to 31 December 2017 were collected from two large public hospi-
tals - Nkhensani Hospital and Maphutha L. Malatjie Hospital, located in
Fig. 1. Study area depicting the two hospit
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Mopani District Municipality in Limpopo province (Fig. 1). Research
ethics clearance to obtain the data for analyses was granted by the
South African Medical Research Council (EC005-3/2014).

Hospital records were scanned using an SV 600 overhead snap
scanner, pageswere saved as soft copies (i.e., PDFfiles) and later printed
for double data entry into an electronic database using EpiData
(Christiansen and Lauritsen, 2010). Each hospital admission record
included patient's date of birth, patient's age, date of admission and
reason for admission. The medical records included those from the
children, female, and male wards only.

Gastrointestinal illnesses (GE) including diarrhoea, pneumonia-
related diagnosis (hereafter called pneumonia), malaria and asthma
cases were extracted from the hospital admission records database
using the criteria and terms provided by South Africanmedical doctors.
Abdominal distention was not included in GE as it could be associated
with a variety of medical conditions other than GE. Data were unavail-
able in 2006 (for reasons unknown, e.g., missing hospital admission
books) for both hospitals as well as at one hospital for weeks 1–23 in
2002 and weeks 1–40 in 2007. Entries for the day of admissions were
sparse for the period before 2011. Therefore, we chose the time period
from the beginning of 2011 to the end of 2017 for the statistical analysis
in this study, to avoid bias to the statistical function estimation that
comes from artificial jumps due to the amount of missing data (Rust
et al., 2008) or amplification of cyclic influence coupled with the reduc-
tion of noise due to homogenization and optimization of the raw data
(Blesić et al., 2019). This provided for time series of N = 2557 data
points for data analysis. It should be emphasized that the count for
total admissions is not necessarily the total admissions at that hospital
als in Limpopo province, South Africa.



                                                                                
for that day/month/year, but rather a total of the admissions that was
captured by the hospital staff, collected by the researchers and entered
by the data enterers.

For the purposes of detailed WT analysis – calculations of WT cross-
correlation spectra - we excluded GE records for this time series in-
cludes different GE-related complications and is a complex variable
that would not allow for conclusions that lead to clear dependences be-
tween the environment and ‘single’ disease development. We also ex-
cluded asthma records because their wavelet spectra displayed
significant low-frequency cycles (annual cycle and probably higher,
multi-annual cycles, please see Results below); we did not have enough
data points for asthma to be able to assess effects of these cycles in a sta-
tistically meaningful way.

2.3. Temperature and rainfall data

Daily temperature data from 2011 to 2017 were obtained from the
South African Weather Service. The closest operational automatic
weather stationwas about 50 km from the area inwhich the two public
hospitals were located. Rainfall estimate data (RFE) were obtained from
RFE version 2.0 (v2.0) implemented by the National Oceanic and Atmo-
spheric Administration's (NOAA) Climate Prediction Centre (CPC,
2001). RFE v2.0 obtains the final daily rainfall estimation by combining
all satellite data using the maximum likelihood estimation method,
thereafter, Global Telecommunication System (GTS) station data are
used to remove bias. The daily data are then summed up to produce de-
cadal (10-day) totals in mm for each month at a resolution of 8 km × 8
km.

2.4. Air pollution reanalysis data

Air pollution data were taken from the Copernicus Atmosphere
Monitoring Service (CAMS) global reanalysis dataset. The CAMS con-
sists of 3-dimensional atmospheric composition data, including aerosols
and chemical species. It is assimilatedwith the European Centre forMe-
dium range Weather Forecast's (ECMWF) Integrated Forecast System
(IFS). The CAMS reanalysis data consist of 25 pressure levels with a spa-
tial resolution of approximately 80 km at 12-hour intervals (Inness
et al., 2019; ECMWF, 2021). The CAMS reanalysis dataset uses observa-
tions including O3, NO2, CO, methane (CH4) and CO2 from various satel-
lites for input into the reanalysis data. The validation of the CAMS
reanalysis data has shown that seasonal cycles of air quality parameters
compare well to the observed surface data (Christophe et al., 2017). In
this study, the surface daily mean values of PMwith a diameter smaller
than 2.5 μm (PM2.5) and NO2 data between 2011 and 2017 for an area
over the study site were used in the WT analysis.

We provide graphs of the raw data of meteorological and air quality
records that we used,with their local wavelet power spectra (please see
Section 2.5 below) in the Supplementary material to this paper.

2.5. Wavelet transform analysis

Wavelet transform analysis uses localized waveform functions,
called wavelets, to decompose signals akin to classical Fourier transfor-
mation (FT) decompositions (Singh et al., 2017). The advantages of the
WT over FT and corresponding linked data analysis techniques lie in the
method design that is based on two dimensional time (or space) and
scale decomposition, which disassemble data with a basis of self-
similar functions constructed by scaling (i.e. expanding by scale) and
translating along the time (or space) of a specifically chosen basicwave-
let function, largely referred to as ‘the mother wavelet’ (Torrence and
Compo, 1998). This property enables investigation and visualization of
dominant modes of variability (or cycles, or peaks, which are global
properties of signals) and, unlike in Fourier transformations, how
those modes form in time (or space, a local property of a signal)
(Torrence and Compo, 1998). This is the advantage of WT that we
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specifically applied in this study to inspect and compare local temporal
behaviours of meteorological, environmental and hospital admissions
data.

In general, the continuous wavelet transforms of any data series xi
(i = 1…N) is defined as:

Wx a,bð Þ ¼ 1ffiffiffi
a

p ∑
N−1

k¼1
xkψ

∗ k−b
a

� �
, ð1Þ

where (*) marks the complex conjugate, while a and b are scale (dilata-
tion) and time or space coordinate (translation) parameters that iden-
tify dilatated and translated version of the original analysing wavelet
ψ(t); in what follows we will mention only time as a coordinate, for
we usedWT to analyse time series. The general wavelet theory assumes
that the whole set of wavelets ψ a, bð Þ ¼ 1

√ aψ
k−b
a

� �
is made from a single

mother wavelet; to be able to properly decompose signals, mother
wavelet functions are expected to meet a specific set of mathematical
criteria. For further theoretical details, we refer to original articles that
introduced WT analysis such as (Morlet, 1983) or (Grossmann and
Morlet, 1984), or to comprehensive reviews, practical and tool guides
such as (Astaf'eva, 1996), (Torrence and Compo, 1998), or (Addison,
2002).

According to the definitions given in Eq. (1), wavelet coefficientsWx

(a,b) contain information about both the investigated signal
and analysing wavelet function. Even if some properties of WT coeffi-
cients are independent from the choice of the analysing wavelet
(Stratimirović et al., 2007), it is always important to choose the mother
wavelet which is adequate for data series and the goals of the analysis.
For analyses that focus on local time properties, as was the case in this
study, it is better to use wavelet functions that have good localization
in physical space (Frick et al., 2001). In this paper,we usedMorletwave-
lets as the analysing wavelet basis. Morlet wavelets (Goupillaud et al.,
1984) are the most commonly used complex wavelets (Aguiar-
Conraria and Soares, 2014; Addison, 2018); the analysing wavelet is a
complex sinusoid in a Gaussian envelope, defined as:

ψ kð Þ ¼ 1
π1=4 e

i2π f 0ke−k2=2: ð2Þ

In Eq. (2), f0 represents the order, or the central frequency of the
wavelet; in this study, we used Morlet wavelets of the 6th order. The
choice of the order f0 = 6 is determined by the mathematical criteria
that in theory wavelets must meet (please see explanation of admissi-
bility criterion in (Farge, 1992)). Morlet wavelets have to date been
used to study non-stationary time series across disciplines – for analysis
of records in geosciences and geophysics, in remote sensing of vegeta-
tion, in engineering, hydrology and finance, medicine, ecology and so-
cial sciences (Rhif et al., 2019). We used Morlet wavelets of the 6th
order to study time series in neurosciences, economy and finance, and
in climate sciences (Stratimirović et al., 2001; Stratimirović et al.,
2018; Blesić et al., 2019), alone or in comparison to other wavelet
groups (Stratimirović et al., 2001, 2007).

In this paper, we firstly estimated the local wavelet power spectra
(LWTS), the localized contributions of the analysed time series energy
at a specific time scale a and time point b, defined as:

E a, bð Þ ¼ W a, bð Þj j2: ð3Þ

A plot of E(a,b) is also called a scalogram and is usually presented as
a colour map of intensities of WT coefficients (that is, |W(a,b)|2) in real
time (x-axis) and over the time scale (y-axis) plots. Such presentations
enable detection of locations in time of data recordingwhen someprop-
erty developed, which manifest as changes in |W(a,b)|2 values at the
very onset of y-axis, and investigation of how those events contribute
to dominant modes, by following their vertical (along the y-axis) varia-
tions. Each vertical line in LWTS represents a local wavelet power



                                                                                
spectrum for a particular time t (position at the x-axis). Finally, LWTS
can be integrated (or summed, in the case of discrete datasets) over
time b to produce distribution of data series energy over scale a, the
global wavelet power spectrum (WTS):

E að Þ ¼ 1
N

∑
N−1

b¼1
E a, bð Þ: ð4Þ

The WTS E(a) are mathematically comparable to Fourier spectra
PwS (Perrier et al., 1995). In the case of records with long-range auto-
correlations (the long-term persistent, or LTP data), both WTS and
PwS are due to the inherent dynamics connected to such order of the
power-law type (Climate Dialogue, 2014). If this is the case, both
functions are linear in log-log presentations, with the same slope –
power-law exponent that can be used for further characterization of
such records (Blesić et al., 2019).

In this paper, we also used the cross-wavelet transform (CWT) to in-
vestigate effects of meteorological and environmental variables on hos-
pital admission data by monitoring coincidence or similar structures
between theirWT energy levels. For this purpose, we used local wavelet
cross-correlation spectra (LCWTS) that are for any two data series xi and
yi (i = 1…N) defined (Torrence and Compo, 1998; Addison, 2002) as:

CEx,y a, bð Þ ¼ E∗x a,bð ÞEy a, bð Þ: ð5Þ

The LCWTS are complex functions. In this study, we used their abso-
lute values |CEx, y(a,b)| that can be visualized and inspected in the same
way aswavelet scalograms LWTS. LCWTS give local covariance of differ-
ent time series at eachmoment in time and scale and thus provide local
insight into the similarity of LWTS of the two records (Aguiar-Conraria
and Soares, 2014). In analogy to the global wavelet spectra, a global
cross-correlation wavelet spectrum can be defined as an integral or a
sum of LCWTS over time or space. Assessments of wavelet cross-
correlations are usually followed by assessments of phase differences
between the two records xi and yi. We did not calculate phase differ-
ences in this study becausewe assumed that the public health outcomes
under investigation here tend to followmeteorological or environmen-
tal variations (Godsmark et al., 2019; Raymond et al., 2020).
Fig. 2.All hospital admission records (regardless of disease/illness type) for the period January 2
The global spectrum (WTS) presentswith several cycles that aremarked by the vertical light gr
week, m – month and y – year.
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To obtain statistically significant results and avoid effects of records'
finite sizes on WTS statistics, we calculated WTSs between the time
scales of a = 1 and a = N/5 (in our dataset, with time series length of
N = 2557 data points (given in days), this limits investigations to
approximately 17 months). We used this scale range for visualization
of our results. In drawing conclusions, however, we limited ourselves
to a more rigorous, maximum meaningful scale of amax = N/10
(Koscielny-Bunde et al., 2006), which in this paper corresponds to
approximately 8.5 months. To assess the significance of our results we
used tests of significance for detection of cycles inWTS and CWTS func-
tions in this study; we used the technique explained in (Torrence and
Compo, 1998) against the analysed signals as LTP noise backgrounds.
We provide illustration of the results of this significance testing on the
wavelet spectrumof the ‘all admissions’ record fromour dataset (please
see explanation in Results below) in Supplementary material to this
paper and explain our choice of the background noise. For critical as-
sessment of some of the results related to significance testing for WT
please also see Aguiar-Conraria and Soares (2014) and Rodríguez-
Murillo and Filella (2020).

3. Results

Fig. 2 presents all extracted admissions records used for this study
(in what follows: all admissions records or data) for the period January
2011 to December 2017 in the form of raw data (upper panel of Fig. 2)
and their global wavelet spectrum (WTS, lower panel in Fig. 2). The raw
admissions data show visible annual variability in all records except for
year 2015 that hasmoremissing data than other years (123 data entries
for the entire year) and less daily variability (daily entries are largely for
the days in the first halves of each month). In addition, records after
2015 show a slight increase in daily number of admissions in compari-
son to period from 2011 to 2015. Due to the amount of missing data,
we were cautious when interpreting events in 2015 from our results.

TheWTS spectrumof all admissions records in Fig. 2 shows cycles that
are typical for human activity in the lower time scales (or high frequency)
region. The cycles of five days (one working week, probably showing
larger number of entries during the working week than over the week-
ends), 10 days (two working weeks), two weeks, and one month appear
011 to December 2017: (upper panel) raw data and (lower panel) global power spectrum.
ey lines. The abbreviations in cycle annotations are the following: ww –workingweek, w –



Fig. 3.Daily admission records for (A)GE, (B) pneumonia (PN), (C)malaria (MLR), and (D) asthmaor asthmatic conditionswith (E)WTS functions for thesedisorders, comparedwithWTS
of all admissions data. In (E) vertical grey lines serve as visual guides for significant cycles.

                                                                                
at these scales. At these higher time scales, visible cycles inWTS appear at
two, four and sixmonths, followed by an annual peak. All the peaks in this
record are statistically significant against the corresponding LTP noise as
noise background,whichwas our choice for statistical significance testing,
as shown in Supplemental material to this paper. The same overall signif-
icance was obtained for the white noise background of the stochastic AR
(1) process used by (Torrence and Compo, 1998), while only cycles at 5
days, 30 days, 60 and 365 days are significant against the (Torrence and
Compo, 1998) red noise AR(1) spectrum. This result was consistent for
other records that we analysed.
Fig. 4. LWTS for pneumonia (left) and malaria (right) admissions. Horizontal green lines at
interpretation of the references to color in this figure legend, the reader is referred to the web
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In Fig. 3, we depict raw data for time series of GE, pneumonia, ma-
laria and asthmaadmissions, togetherwith theirwavelet power spectra.
The WTSs of these different diseases or conditions are presented in
comparison with the WTS of all admissions data, displaying different
slopes of WTS functions (which are given on log-log graphs in Fig. 3)
with different cyclical consistency. This is especially prominent for
pneumonia, malaria and asthma WTS functions that display promi-
nence of higher order peaks (from 30 days onwards, particularly in
the case of malaria) that could arise as effects of meteorological and en-
vironmental factors.
time scales (y-axis) values of 180 and 365 days are given to serve as visual guides. (For
version of this article.)



                                                                                
We further investigated pneumonia and malaria admissions data
with respect to their potential meteorological or environmental drivers.
In Fig. 4, we show LWTS of pneumonia and malaria admissions. We
present pneumonia local wavelet spectra for the whole time period of
Fig. 5. LWTS of pneumonia admissions (top), with LCWTS of pneumonia admissions in compa
pneumonia - Tmax coincidence that is present throughout the entire period of recording.

7

2011–2017, and malaria local wavelet spectra only for the period
2011–2015. Namely, in the case of themalaria data, because of a sudden
increase in hospital admissions in 2015 and especially for the abrupt in-
crease in cases in 2017 (see raw data in Fig. 3C) the LWTS and WTS
rison to Tmax records (a) and rainfall data (b). Panel (a) shows a visible 6-month cycle of



                                                                                
spectra of malaria display a prominent event over the time period from
2015 tomid-2017 (results not shown here). This is amethodological ef-
fect of the presence of extreme values in malaria record that appears
Fig. 6. LWTS of pneumonia admissions (top), with LCWTS of pneumonia admissions in comp
variables are visible at lower scales, particularly for the period from 2014 onwards. In panel (a
is visible.

8

due to the sensitivity of Morlet wavelets to significant singular events
in data (Grossmann et al., 1987). It extends over all scales and signifi-
cantly affects wavelet cross-spectra that compare malaria with other
arison to PM2.5 (a) and NO2 data (b). Significant cross-correlations with both air quality
) a formation of a continuous 30-day cycle in cross-correlations of pneumonia with PM2.5



                                                                                
variables. Therefore, to avoid false detection of cross-correlations due to
methodological limitations, we further limited the analysis that relates
to malaria admissions to the time period 2011–2015.

It is visible from Fig. 4 that admissions for pneumonia and for
malaria are statistically different variables. Admissions for pneumonia
display complex structure, with appearance of events (admissions)
distributed over the entire year (see structures that form at the onset
of y-axis), and cycles (repetitions of events) forming visibly at short
time scale values of less than 50 days, as well as at seasonal – 6-
months and annual scales. In contrast, admissions formalaria are clearly
events isolated to winter months, where they form at the start of y-axis
and extend vertically to contribute to the dominant annual cycle and
not so prominent 6-month cycle. In the case of admissions for malaria,
and in the absence of physical causes or lower time scale structures
from which those can originate, the appearance of a semi-annual cycle
may present only as a sub-harmonic component of a dominant annual
cycle.

In Figs. 5 and 6, we present results of the wavelet cross-correlation
analysis of hospital admissions for pneumonia and the four physical var-
iables: maximum temperature (Tmax), rainfall, PM2.5 and NO2 concen-
trations. The LCWTS given in Fig. 5 indicates that the Tmax may
probably be a factor influencing pneumonia variability at larger scales.
The temperature seasonality, due to the restriction of statistical signifi-
cance of analysed scales here, visible only at a 6-months cycle in Fig. 5,
is probably influencing seasonality in appearance of this disease. In ad-
dition, it is visible from Fig. 6 that the air quality variability probably sig-
nificantly influences appearance of pneumonia at lower time scales.
From Fig. 6, it appears that changes in concentrations of ambient
PM2.5 and NO2 may influence prevalence of pneumonia on scales of up
to 120 days, where patterns of pneumonia-air quality correlations fol-
low in shape pneumonia LWTS patterns. This is particularly prominent
in the period January 2014 to December 2017.
Fig. 7. Local wavelet cross spectra of pneumonia in comparison to PM2.5 (A) andNO2 (B) concen
days in (A) and (B) are given as visual guides. In the pneumonia WTS graph (C) cycles are m
pneumonia may appear because of the change in air quality with 10-, 15- or 30-day delays.
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To investigate the co-dependence of admissions for pneumonia from
air quality data at lower time scales, we narrowed the range of LCWT
time scales (y-axis on LCWT graphs) to up to 64 days (Fig. 7). From
Fig. 7, the structures forming cycles at 15 (and even 10) and 30 days
are visible from LCWTSs of pneumonia in comparison to PM2.5 and
NO2 concentrations. Considering that the appearance of pneumonia fol-
lows changes in air quality, the cycles at certain scales represent the
delay of appearance of disease after physical events that may have
been associated with them. In that respect, we added a global WTS of
pneumonia records to Fig. 7 (graph on the right labelled (C)), where
we marked cycles that could be attributed to physical variables that
we investigated, alongwith other influences thatwe did not investigate.
The cycles that are not marked are probably results of combinations of
these and other effects that cannot be clearly differentiated by the anal-
yses in this study.

In Figs. 8 and 9, results of the cross-correlation wavelet analysis of
malaria records with meteorological and air quality data are presented
and are analogous to results in Figs. 5 and 6. It is visible from Fig. 8
that the prominence of seasonal variations in malaria record translates
into dominance of seasonal cycles in malaria versus Tmax cross-
correlogram (Fig. 8a), and to an extent in cross-correlograms with air
quality data in Fig. 9. Due to statistical significance, seasonality at annual
time scales is outside of the range of our analysis, but we can presume
that the annual seasonality is also present in malaria LCWTSs. The events
on lower scales, when these appear, are probably connected to the com-
bination of influences of temperature and rainfall. To inspect this, we cal-
culated LCWTS of Tmax and rainfall (results are given in Supplemental
material to this paper) – changes in those two meteorological variables
indeed coincide almost exclusively during the rainy season, establishing
conditions for combined effect on development of malaria.

Detailed analysis of Tmax and rainfall influence on malaria appear-
ances for time scales of up to 128 days presented in Fig. 10 suggest
trations, for time scales on y-axes of up to 64days. Horizontal lines at scales of 10, 15 and 30
arked that may result as effects of air quality or temperature. According to our results



Fig. 8. LWTS of malaria admissions (top), with LCWTS of malaria admissions in comparison to Tmax records (a) and rainfall data (b). Figure shows probable combined influence of
temperature and rainfall on formation of malaria LWTS structures on smaller (than 6 months) time scales.

                                                                                
that intermediate cycles visible in malaria globalWTS at 30 and 60 days
(Fig. 10 (C)) may be related to combined effects of temperature and
rainfall. It is visible from LCWTSs of malaria versus Tmax and rainfall
10
data that these cycles are aperiodic, that is, they do not stretch across
the entire time range of recording, but are isolated events caused by
co-occurrence of heat and rainfall. They appear with changing strength



Fig. 9. LWTS ofmalaria admissions (top), with LCWTS ofmalaria admissions in comparison to PM2.5 (a) andNO2 data (b). No significant cross-correlations of prevalence ofmalariawith air
quality variability are visible at lower time scales.

                                                                                
of cross-correlationswithmalaria prevalence during summermonths of
each year.

4. Discussion

We investigated the time series of daily hospital admissions for GE,
asthma, pneumonia and malaria from two large public hospitals in
Limpopo Province, in relation to time series of temperature, rainfall
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and air quality ground-based records or satellite data from the same
geographical area. We were interested to disentangle physical, specifi-
cally, meteorological or environmental variables that might be associ-
ated with underlying temporal variations of disease prevalence
measured through visits to hospitals. We used wavelet transform anal-
ysis and specifically local wavelet cross-correlation analysis for this pur-
pose; to the best of our knowledge this is the first time these methods
have been applied in weather/climate-health analyses.



Fig. 10. Local wavelet cross spectra of MLR in comparison to Tmax (A) and rainfall (B) data, for time scales on y-axis of up to 128 days. MLRWTS is given in (C), in the samemanner as in
Fig. 6. Horizontal lines at time scales of 30 and 60 days in (A) and (B) serve as visual guides.

                                                                                
All our admission records have global wavelet power spectra (WTS)
of the power-law type, indicating that they are outputs of complex sets
of causes acting on different time scales. The ‘all hospital admissions’
dataset that we analysed showed the existence of cycles, or peaks in
WTS that result from societal organization of daily life, on admission
time scales of one to several working weeks or weeks.

We investigated WTS cycles that appeared on higher time scales in
global admissions data in more detail for prevalence of pneumonia
and malaria in our records. We used local wavelet cross-correlation
spectra (LCWTs) to monitor coincidences in changes of meteorological
(i.e., temperature and rainfall) and air quality (specifically concentra-
tions of PM2.5 and NO2) variables with admissions to hospitals for
these diseases. It is important to note here that, while in general no
direct causal attribution is possible based on the power spectral or cross-
power spectral analysis, the existence of auto- or cross-correlations
between variables and established connections with triggered variable's
(admissions, in this paper) significant WTS peaks are used to suggest a
possible causal relationship. By using such an approach, we were able to
provide new (other than already known seasonal variations) statistical
estimates of time delays between the change of weather or air pollution
and hospital admissions for pneumonia and malaria. In order to assess
uncertainties related to provided associations between the hospital
admissions and meteorological or air quality variables time series on a
case-to-case basis, it is necessary to extend in the future our work in
time series analysis to event-based event coincidence analysis (Donges
et al., 2016).

The LCWTs for pneumonia data showed the existence of seasonality
in the prevalence of pneumonia that could be ‘connected’ to changes in
temperature. Even if admissions for pneumonia in our dataset occurred
throughout all seasons, this result is in agreementwith several other re-
cent studies that investigated links between seasonal variations in
pneumonia with changes in meteorological variables (Adegboye et al.,
2020; Cilloniz et al., 2017; Tian et al., 2017). Those point to increased as-
sociation of pneumonia hospitalization with low temperature; low
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temperature effects are probably causing the annual seasonality of
pneumonia in our dataset too. This pattern could be explained by find-
ings that colder temperatures are associated with increased viral activ-
ity in regions of warmer climates (Lin et al., 2009). The influenza virus
has been identified as a common cause of pneumonia and cold temper-
atures favour the spread of the virus (Lowen et al., 2007). Thus, the in-
creased presence of circulating pathogens in the winter/colder months
could result in the increased hospital admissions for pneumonia that
were observed in our study. Furthermore, it has been suggested that ex-
posure to cold air increases the incidence of respiratory infections by
cooling the nasal epithelium thereby inhibiting respiratory defences
against infection (Eccles, 2002). Another explanation for the increase
in pneumonia hospital admissions with low temperatures, although
controversial, is that cold stress alters the immune system and increases
susceptibility to respiratory infections (Mäkinen et al., 2009). In addi-
tion, pneumonia admissions in this paper display a prominent semi-
annual cycle that appears in pneumonia-Tmax LCWTSs in our sample
too. The appearance of this cycle may be attributed to the impacts of
the increase of rainfall in wet seasons on pneumonia (Adegboye et al.,
2020; Xu et al., 2014) that, by way of high temperature-rainfall coinci-
dence, presents in pneumonia-Tmax LCWTSs as well. High rainfall and
low temperatures could also lead to increased crowding of people in-
doors thus increasing contact between people and increasing the distri-
bution of pathogens (Chowdhury et al., 2018). Rain-wetting was also
found to be associated significantly with the development of influenza
pneumonia (Singh et al., 2014). Furthermore, heavy rainfall can result
inwater intrusion into buildings and populations living in damp, indoor
environments have been shown to experience increased prevalence of
respiratory illnesses (CDC, 2020). Overall, the factors influencing sea-
sonal appearance of pneumonia with the change of temperature and
rainfall could be caused by the human activity, seasonal variability in
human immune system function, or effects of cold air on respiratory de-
fences against infections (Fares, 2013; Eccles, 2002; Adegboye et al.,
2020). Our results have not clearly indicated lag times between changes



                                                                                
in meteorological variables and seasonal prevalence of pneumonia.
Adegboye et al. (2020) used time-varying distributed lag nonlinear
model for the purpose and found time lags of 0–6 weeks for effects of
low temperature and 0–8 weeks for effects of rainfall on hospitalization
for pneumonia in North Australia.

Our LCWTS analysis additionally showed probable ‘preconditioning’
(Zscheischler et al., 2020) of pneumonia by changes in air quality. In a
preconditioned event, a hazard such as disease can develop only be-
cause of a pre-existing climate-driven health condition (Zscheischler
et al., 2020). In our data, the effects of air quality on pneumonia ap-
peared on time scales of 10 to 15 and 30 days. This gave a period (also
called a lag or delay) of 10–15 days between the change in air quality
and development of pneumonia or pneumonia-related diseases, with
the cycle at 30 days that can be a multiple of this period or an indepen-
dent air quality-related delay. The relation of change in air quality with
development of respiratory diseases is well documented (Schwartz
et al., 1991; Gruzieva et al., 2013; Wu et al., 2020). Previous research
has shown that long-term exposure to pollutants such as PM2.5 or NO2

reduces lung function (Kwon et al., 2020; Adam et al., 2015; Chen
et al., 2019) and can cause persistent inflammatory response that in-
creases the risk of infection by viruses that target the respiratory tract
(Croft et al., 2019; Domingo and Rovira, 2020). Our study adds to this
body of knowledge by both confirming the causal relation between air
quality and prevalence of respiratory diseases, and by additionally pro-
viding a statistical estimate of the time delay between the change in air
quality and hospital admissions for pneumonia specifically.

We found seasonal correlation in hospital admissions for malaria
with temperature variations. Local wavelet cross-correlation analysis
additionally showed that malaria is probably a multivariate event
(Zscheischler et al., 2020) caused by co-occurrence of specific tempera-
ture conditions (namely heat) and rainfall. Aside from a visible season-
ality in malaria prevalence, our LCWTS data showed that it probably
follows the co-occurrence of high temperature and rainfall after a 30-
day interval. This association was most noticeable during the summer
months of November, December, January, and February which are char-
acterized by high temperature and rainfall. This finding is corroborated
by previous studies conducted in Limpopo province that have found
malaria prevalence peak during these months (Gerritsen et al., 2008;
Ikeda et al., 2017). High temperatures increasemalaria transmission be-
cause warm conditions promote malaria parasite development and
growth and increase the survival rate (Craig et al., 1999). Also, since
mosquitoes develop faster as temperature increases, they feed at
shorter intervals because bloodmeals aremore rapidly digested thus in-
creasing risk of malaria transmission (Grover-Kopec et al., 2006; Hay
et al., 2000; Musa et al., 2012).

In South Africa, variations in air quality can be caused by anthropo-
genic aerosols, such as biomass burning, vehicle and industry emissions,
as well as population, geography, climate and economy (Kumar et al.,
2014). Although a seasonality of these changes exists for thewinter sea-
son, there also exist multiple factors that can cause air quality change
during the entire year that therefore pose challenges when planning
preventive public health interventions. Characterization and quantifica-
tion of physical causes and connected delay (disease development)
times for respiratory diseases of the kind presented in this study may
be a way forward to assist such efforts.

Our study furthermore provides ameasure of time needed for all the
conditions for malaria to develop after the onset of its meteorological
driver. It thus links observed seasonality in prevalence of malaria with
climate change and its impacts on multivariate events caused by co-
occurrence of heat and humidity (Raymond et al., 2020).

A few limitations were identified during this study. Firstly, all the
hospital records were handwritten and posed numerous challenges
such as faded ink and handwriting being illegible, daily use of books
leading to torn pages, errors in recording (for example: a male patient
captured in a female ward) and missing data (for example: date of ad-
mission and patient age). In this way a large part of the collected dataset
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was unusable for the statistical analysis. This in turn constrained our
analysis to time scales of up to approximately 250 days and prevented
our insight into annual and multiannual cycles of hospital admissions
data. It specifically prompted us to exclude asthma records from de-
tailed statistical analysis. In our dataset, admissions for asthma records
showed prominent seasonal variations for which we did not have
enough data points to conduct statistically significant analysis. Addi-
tionally, we decided to exclude GE records from detailed WT analysis
due to inability to differentiate between various gastrointestinal ail-
ments. Therefore, we were not able to investigate climate or environ-
mental drivers of, for example, diarrhoeal disease, which is a major
contributor to the burden of infectious disease among young children
in sub-Saharan Africa (WHO, 2018). This limitation could be mitigated
in the future by digitalization of hospital records thatmay offer possibil-
ities to flag diarrhoeal diseases and thus include it in hospital statistics.

With respect toweather data, due to the lack of ground-based obser-
vations of air quality in the Giyani region, reanalysis data were used. Al-
though the current CAMS model has smaller biases O3, CO and NO2

compared with observations than previous versions there are still un-
certainties due to the inherent properties of numerical models, relating
to observational datasets, parameterizations, and spatial and temporal
resolution. It is possible that the data pre-processing averages out de-
tails of statistical behaviour of air quality variables in time (Bunde and
Lennartz, 2012) and over space (Blesić et al., 2019). This leads to lack
of complexity in their wavelet cross-correlations with disease preva-
lence too. In that respect it is preferable to use data with better spatial
resolution whenever it is possible to avoid methodological uncertainty
and obtain more accurate or even novel results (Blesić et al., 2019).

5. Conclusions

Causal relationships identified in this study – i.e., preconditioning
and joint occurrence – between meteorological or air quality variables
and health outcomes, togetherwith specified timedelay parameters be-
tween the onset of a driver and development of a disease, may be of use
as parameter inputs to and non-trivial realistic tests for the predictive
models and early warning systems of exposure and health impacts of
climate change. They can additionally serve as a data-led understanding
to inform relevant local actors and help facilitate novel adaptationmea-
sures in public health systems.
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