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HIGHLIGHTS GRAPHICAL ABSTRACT

e We modelled daily 1 km PM; 5 and PM;o
concentrations in France 2000-2019.

e We ensembled random forests, Gaussian
Markov random fields, and mixed
models.

e Imputing PM, 5 at more common PM;o
monitors increased the ensemble’s
accuracy.

e Gaussian Markov random fields were
the most accurate component of the
ensemble.

ARTICLE INFO ABSTRACT

Keywords: Understanding the health impacts of particulate matter (PM) requires spatiotemporally continuous exposure

Particulate matter estimates. We developed a multi-stage ensemble model that estimates daily mean PM; 5 and PMj¢ at 1 km spatial

Exposure assessment resolution across France from 2000 to 2019. First, we alleviated the sparsity of PMs 5 monitors by imputing PMa 5

Aerosol optical depth at more common PM;jo monitors. We also imputed missing satellite aerosol optical depth (AOD) based on

Ensemble model . . . .

Epidemiology modelled AOD from atmospheric reanalyses. Next, we trained three base learners (mixed models, Gaussian
Markov random fields, and random forests) to predict daily PM concentrations based on AOD, meteorology, and
other variables. Finally, we generated ensemble predictions using a generalized additive model with spatio-
temporally varying weights that exploit the strengths and weaknesses of each base learner. The Gaussian Markov
random field dominated the ensemble, outperforming mixed models and random forests at most locations on
most days. Rigorous cross-validation showed that the ensemble predictions were quite accurate, with mean
absolute error (MAE) of 2.72 pg/m3 and R? of 0.76 for PMys; PM;o MAE was 4.26 ug/m3 and R? 0.71. Our
predictions are available to improve epidemiological studies of acute and chronic PM exposure in urban and rural
France.
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1. Introduction

Ambient particulate matter (PM) air pollution is a leading environ-
mental health risk and the 7th overall risk factor for death and disease
worldwide (Murray et al., 2020). To protect public health, the World
Health Organization sets guideline limits (WHO, 2006) for both chronic
(e.g. annual mean) and acute (e.g. daily mean) exposure to PM with a
diameter of 10 pm or less (PM;j() and 2.5 pm or less (PMy 5), and many
countries maintain air quality monitoring networks to ensure compli-
ance with national limits. But these networks are not always sufficient
for epidemiological studies: monitors tend to be clustered in cities,
which makes it difficult to estimate exposure for suburban and rural
populations, and are often too sparse to capture spatial variation in PM
concentrations within a city.

Recently, methods have been developed to improve exposure esti-
mates for epidemiological studies by modelling the continuous spatio-
temporal distribution of PM. One approach is to use chemical transport
models that simulate the formation, dispersion, and deposition of PM
based on emissions, meteorology, and atmospheric chemistry. These are
effective at large and small scales and can be used to forecast future PM
concentrations (Zhang et al., 2012a), but are limited by the accuracy of
the input emissions and meteorological data and the completeness of
their representation of atmospheric physics and chemistry (Zhang et al.,
2012b). They are also computationally intensive, although advances in
computing have allowed increasing resolutions to be used over larger
areas and timescales. For example, a recent study estimated PM con-
centration in France in 2010 and 2011 by combining a national model at
4 km-hourly resolution, 7 regional models at 3-4 km resolution, and 43
urban models at 10-200 m resolution (Riviere et al., 2019).

An alternative approach is to calibrate a statistical model that relates
measured PM concentration to variables such as aerosol optical depth
(AOD), a measure of the absorption and scattering of light by particles
suspended in the atmosphere. AOD can be retrieved by satellite in-
struments across large areas at fairly high spatiotemporal resolution (e.
g. 1 km-daily), making it a useful proxy for the spatial and temporal
distribution of ground-level PM. However, satellite AOD is often missing
due to cloud cover, glint on snow or water, or instrument malfunction.
Early studies accommodated this by calibrating two relationships: one to
estimate PM based on AOD and another to estimate PM when AOD was
not available (Hu et al., 2014; Kloog et al., 2011). Recently, methods
have been developed to fill gaps in satellite AOD based on modelled AOD
from atmospheric reanalyses, allowing AOD-based prediction for all
days and locations (Di et al, 2016, 2019, 2016; Stafoggia et al., 2019).

Another challenge is that the relationship between PM and AOD
varies over both time and space. Studies in the United States (Chud-
novsky et al, 2012, 2014; Hu et al., 2014; Kloog et al, 2011, 2014; Lee
etal., 2011, 2016), Europe (Beloconi et al., 2016; de Hoogh et al., 2018;
Nordio et al., 2013; Stafoggia et al., 2017), China (Liang et al., 2018;
Xiao et al., 2017; Xie et al., 2015; Zhang et al., 2018; Zheng et al., 2016),
Mexico (Just et al., 2015), and Israel (Kloog et al., 2015; Shtein et al.,
2018) have used mixed models to allow the PM — AOD relationship to
vary from day to day and between regions. This approach performs well
and is computationally cheap but implies sharp changes in the daily PM
— AOD relationship at the borders of predefined regions, which may be
unrealistic. Smooth spatiotemporal variation is possible for large data-
sets with a Gaussian Markov random field (GMRF) solved via integrated
nested Laplace approximations (INLA) (Lindgren et al., 2011; Rue et al.,
2009). Recently, Sarafian et al. (2019) showed that GMRFs with
spatially smooth daily random effects predicted daily PMss more
accurately than mixed models both near to and far from monitors in the
northeastern United States. GMRFs have also performed well predicting
daily PM;( in northwest Italy (Cameletti et al., 2013) and annual mean
PM across Europe (Beloconi et al., 2018).

Other studies have used various statistical approaches, including
geographically weighted regression (Hu et al., 2013; Ma et al., 2014;
Song et al., 2014; Van Donkelaar et al., 2016), geographically and

temporally weighted regression (Guo et al., 2017; He and Huang, 2018;
Liu et al., 2020), and machine learning algorithms such as random
forests (Chen et al., 2019; Hu et al., 2017; Schneider et al., 2020; Sta-
foggia et al, 2019, 2020), gradient boosting (Chen et al., 2019; Just
et al., 2020), and neural networks (Chen et al., 2019; Di et al., 2016;
Park et al., 2020; Yan et al., 2020). Machine learning algorithms perform
particularly well as they can capture complex nonlinear relationships,
and recent work has shown that performance can be slightly improved
by ensembling predictions from multiple base learners (Di et al., 2019;
Murray et al., 2019; Shtein et al., 2019; Zhai and Chen, 2018). However,
the flexibility of machine learning algorithms makes them vulnerable to
overfitting, so it is important to evaluate their accuracy on independent
data to ensure they can generalize to unmonitored locations (Just et al.,
2020; Sarafian et al., 2019). A common approach is cross-validation
(CV): data are repeatedly split into training and test sets, the model is
calibrated using only the training data, and its predictions are compared
to the held-out test data. Since PM concentrations are often spatiotem-
porally autocorrelated, the splitting must be done in a way that ensures
test data are far in space and time from training data. Recent studies
have done this using spatial blocking, holding out all data from a group
of monitors (Just et al., 2020; Meng et al., 2021; Murray et al., 2019;
Park et al., 2020; Pu and Yoo, 2021; Schneider et al., 2020; Shtein et al.,
2019; Stafoggia et al., 2019; Xiao et al., 2020) or temporal blocking,
holding out all data from one year (He et al., 2021; Meng et al., 2021; Pu
and Yoo, 2021; Xiao et al., 2020; Yan et al., 2020). Ensemble models
require special care: data held out to test the ensemble should not have
been used to train the base learners, and ensembles should be calibrated
using base learner CV predictions (predictions for held-out test data), as
these reflect each base learner’s ability to generalize to new areas
(Shtein et al., 2019).

The goal of this study was to estimate PMjy 5 and PM;( concentrations
across continental France from 2000 through 2019. To the best of our
knowledge, this is the first study to estimate daily 1 km PM concentra-
tion in France over two decades using satellite data and geostatistical
models. We incorporated recent methodological advances to mitigate
the sparsity of PM; 5 monitors and fill gaps in satellite AOD (Stafoggia
et al., 2019), and developed the first ensemble model of daily PM con-
centration that incorporates a GMRF. We wused a rigorous
cross-validation scheme to estimate accuracy and provide the first evi-
dence that GMRFs may predict daily PM concentration more accurately
than random forests.

2. Materials
2.1. Study domain

Continental France covers a roughly hexagonal area of 542,973 km?
in western Europe bounded by the Atlantic Ocean to the west and the
Mediterranean Sea to the southeast (Fig. 1). Most of the terrain is at low
elevation, but the Pyrenees in the southwest rise to over 3000 m and in
the southeast the Alps reach 4809 m. Annual mean temperature ranges
from about 0 °C at high elevations to about 17 °C in the Mediterranean
southeast (Hough et al., 2020). The population is approximately 64.5
million, of which 12.5 million (20%) live in the greater Paris metropolis.
About 20% of the population is rural, and 37% live in towns and small
cities with fewer than 500,000 residents (Insee, 2020). For this study, we
defined a grid of 632,571 approximately 1 km? cells covering conti-
nental France coincident with the pixels of the satellite AOD data (sec-
tion 2.3). We considered the 7245 days from 1 March 2000 through 31
December 2019, giving a total study domain of 4.58 x 10° cell-days.

2.2. Air quality monitoring data
We obtained hourly PM; 5 and PM; (pg/m3) measurements from 12

regional air quality monitoring networks (federated by ATMO France)
through the French Central Air Quality Monitoring Laboratory. Monitors



were mostly clustered in urban areas; the number of PM;y monitors
increased from 222 to 330 and the number of PM; 5 monitors increased
from 9 to 142 over the course of the study period (Fig. 1). To limit the
impact of instrument malfunctions and rare events, we excluded hourly
PM, 5 concentrations >200 pg/m3 and hourly PM;( concentrations
>300 pg/rn3 (0.003% of all observations). We indexed each monitor to
the containing 1 km grid cell and calculated daily mean PM for days with
at least 18 hourly observations.

2.3. Aerosol optical depth

We obtained satellite-derived 0.469 pm AOD at approximately 1 km
spatial resolution from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) Multi-Angle Implementation of Atmospheric Correc-
tion (MAIAC) AOD product (MCD19A2v006) (Lyapustin et al., 2018).
MCD19A2v006 provides AOD up to four times per day (between 9:00
and 15:00 UTC in France). We used the quality assurance band to
identify all “best quality” observations; we also included “land; research
quality” and “clear; within 2 km of coast” as these represent potentially
useable observations over urban areas and coasts where there are few
“best quality” observations. We indexed these observations to the 1 km
grid (whose cells were defined to coincide with the MAIAC AOD pixels)
and calculated daily mean AOD.

To fill gaps in MAIAC AOD (mostly due to cloud cover), we obtained
modelled 3-hourly 0.469 pm AOD at approximately 80 km spatial res-
olution from the Copernicus Atmospheric Monitoring Service EAC4
Reanalysis (Inness et al., 2019). Since EAC4 begins on 1 March 2003, for
1 March 2000 to 28 February 2003 we obtained modelled hourly 0.55
pm AOD for 08:30 to 15:30 UTC at approximately 60 km spatial reso-
lution from the MERRAZ2 reanalysis (Randles et al., 2017). We bilinearly
interpolated EAC4 and MERRA2 AOD to the 1 km grid, giving 8 values
per cell-day (0 UTC, 3 UTGC, ..., 21 UTC for EAC4; 08:30 UTC, 09:30 UTC,

..., 15:30 UTC for MERRA2).

2.4. Meteorology

Meteorological parameters such as wind, rain, temperature, and the
height of the planetary boundary layer affect surface PM concentrations
and indicate the extent to which AOD represents aerosols near the sur-
face or higher in the atmosphere. We obtained hourly meteorological
parameters at approximately 30 km spatial resolution from the Coper-
nicus Climate Change Service ERAS5 reanalysis (Hersbach et al., 2020).
We bilinearly interpolated the parameters to the 1 km grid and calcu-
lated 10 daily values: boundary layer height at 0:00 and 12:00 UTC, total
precipitation, mean and standard deviation of 2m air temperature, mean
2m dewpoint temperature, mean surface pressure, mean u- and v-com-
ponents of 10m wind speed, and mean cloud cover.

2.5. Normalized difference vegetation index

Vegetation may influence PM dispersion and the density of PM
sources. We obtained monthly composite normalized difference vege-
tation index (NDVI) at approximately 1 km?> spatial resolution from the
MODIS MOD13A3v006 product (Didan et al., 2015), which is spatially
coincident with the MAIAC AOD data. We indexed NDVI to the 1 km
grid, filled rare missing values with the Gaussian kernel mean of nearby
cells, and used the same value for every day of each month.

2.6. Spatial predictors

In addition to the previous spatiotemporal predictors, we used
impervious surfaces, land cover, road and railway density, elevation,
population, climatic region, distance to coast, and PMys and PM;g
emissions as indicators of the typical spatial distribution of PM. Since

Fig. 1. Spatial distribution of PM, 5 monitors (top row) and PM;, monitors (bottom row) in continental France from 2000 to 2019. Basemap by Stamen Design, under

CC BY 3.0.



these data are time invariant, we used the value from the closest refer-
ence year for every day of each year. Supplemental Table S1 describes
how we indexed these data to the 1 km grid and derived 19 spatial
predictors.

3. Methods

We used a four-stage process to predict PMy 5 and PM; for the 4.58
x 10° 1 km grid cell-days in the study domain (Fig. 2). Briefly, we: 1)
alleviated the sparsity of PMy 5 monitors by training a random forest
(RF) to impute daily PM; 5 at monitors that only measured PM;; 2)
filled gaps in MAIAC AOD data by training monthly RFs to impute
missing MAIAC AOD based on co-located EAC4 or MERRA2 AOD; 3)
trained three base learners for each year (linear mixed models [LMM],
Gaussian Markov random fields [GMRF], and random forests [RF]) to
predict daily 1 km PM based on gap-filled AOD, meteorology, NDVI, and
spatial predictors; 4) increased accuracy by ensembling the base learner
predictions with annual generalized additive models (GAM) that weight
the base learners according to spatiotemporal variations in their per-
formance. We performed all data processing and statistical analyses in R
3.6.3 (R Core Team, 2020) using the packages Ime4 for LMM (Bates
et al.,, 2015), R-INLA for GMRF (Bakka et al., 2018), ranger for RF
(Wright and Ziegler, 2017) with mlr and mIrMBO for tuning via
model-based optimization (Bischl et al, 2016, 2017), and mgcv for GAM
(Wood, 2017).

3.1. Stage 1: imputing PM> 5 at PM1o monitors

Most monitors in France measured PM;( but not PM5 5. To mitigate
the sparsity of PMy 5 monitors, we used all co-located daily measures of
PM> 5 and PM7g (n = 474,761) to tune and train a RF of 500 trees to
predict PM; 5 based on measured PM;( and monitor characteristics:

PMZ.S,,,, :f < PMIO,,,, ) VOImn IOCW, inflmh latnm lonrm Wday: ) ydayn datez) + Emy
(€8]

where PM,s, and PM,q, are, respectively, the PMys and PMjg
measured by monitorm (1, ..., 205) onday t (1, ..., 7245); voly,: indicates
whether on day t monitor m excluded, included, or included an estimate

of the semi-volatile fraction of PM;q; loc,, and infl,, are, respectively,
the locale (rural, suburban, or urban) and predominant influence
(traffic, industrial, or background) of monitor m on day ¢ lat,, and lon,,
are the latitude and longitude of monitor m; wday:, yday;, and date; are,
respectively, the day of week (to capture trends related to commuting or
business activity), day of year (to capture seasonal trends), and date (to
capture long-term trends); and ¢, is the error at monitor m on day t. To
reduce bias in the variable importance estimates, we sampled 63.2% of
observations without replacement for each tree and estimated impor-
tance by permutation.(Strobl et al., 2007) We tuned mtry (the number of
variables to consider at each split) to minimize mean absolute error via
model-based optimization and estimated accuracy using 5-fold CV
blocked by monitor (section 3.5). We used the RF to impute PMj s for the
1.71 x 10° monitor-days where only PM;( was measured.

3.2. Stage 2: filling gaps in MAIAC AOD

Clouds and snow cover often prevented MAIAC AOD retrieval over
part of the study area. To fill these gaps, we trained RFs to predict
MAIAC AOD based on co-located modelled AOD from atmospheric
reanalysis. For computational reasons, we used 96 trees per forest, tuned
using one spatiotemporally blocked 50% subsample of the data (section
3.5), and trained one RF for each month in the study period (mean ob-
servations per month = 4.36 x 100):

AODIV‘;I :f(Rl.ua ~~~7R8,\,7xs~,ys7 wday,,yday,) + Eq (2)

where for each month M (1, ..., 238), AODY is the MATIAC AOD observed
at 1 km grid cell s (1, ..., 632571) on day t (1, ..., number of days in
month M); Ry, is the AOD from atmospheric reanalysis (MERRA2 before
1 January 2003; EAC4 otherwise) at cell s on day t at each of eight times
(8:30 UTC, 9:30 UTC, ..., 15:30 UTC for MERRA2; 0 UTC, 3 UTGC, ..., 21
UTC for EAC4); x; and y; are the spatial coordinates of cell s; wday; and
yday; are, respectively, the day of week and day of year; and & is the
error at cell s on day t. We estimated accuracy using 5-fold CV with
spatiotemporal blocking (see section 3.5) and used the RFs to predict
AOD for the 3.54 x 10° 1 km grid cell-days without MAIAC AOD.

Fig. 2. Flowchart of four-stage process to predict daily 1 km PM, s.



3.3. Stage 3: predicting daily 1 km PM using three base learners

In stage 3, we trained LMMs, GMRFs, and RFs to predict PM5 5 (from
stage 1) and PM;( based on gap-filled MAIAC AOD (from stage 2), 11
spatiotemporal predictors (sections 2.4 and 2.5), and 19 spatial pre-
dictors (section 2.6). We scaled the predictors to have similar range, and
for the LMMs and GMRFs we log-transformed PM to approximate
normality and prevent negative predictions. We trained each base
learner for each of PMy 5 and PM; in each year, yielding 120 base
models (mean observations per year = 111,610; range 54,353 to
126,544). We estimated the accuracy of each base model using multi-
stage CV blocked by monitor (section 3.5) and used the base models
to predict PM for the 4.58 x 10° 1 km grid cell-days of the study domain.

3.3.1. Linear mixed models

For each PM size fraction in each year, we calibrated a LMM with a
random effect that allowed the PM-AOD relationship to vary daily for
each of 8 climatic regions:

IOg(PMFY) ((1 +ﬂzr) (ﬂAOD ""”rr AOD ""Z( FYXM) Y 3

where for each PM size fraction F (2.5 or 10) and year Y (2000, ...,
2019), log(PMEY) is the log-transformed PM concentration at 1 km grid
cells (1, ...,632571) onday t (1, ..., number of days in year Y); ofY is the
fixed 1ntercept and ufY is the random intercept on day t for the climatic
region r that contains cell s; 15, is the fixed slope of AOD and v£Y is the
random slope of AOD on day t for the climatic region r that contains cell
5; AODy; is the AOD at cell s on day t. 5" is the coefficient and X, the
value at cell s on day t for each of the 11 spatiotemporal predictors, 19
spatial predictors, and sine and cosine transforms of the day of week;
and €fY is the error at cell s on day t.

3.3.2. Gaussian Markov random fields

For each PM size fraction in each year, we calibrated a GMRF with a
spatiotemporal random effect that varied smoothly over space on each
day:

log(PM") = a” + B2 AOD,, + Z( rYpr,) +afY + e %)

where F, Y, s, t, log( MEY), ofY, Y, AODy, f,
equation (3), and »fY is the spatiotemporal random effect at cell s on day
t. We assumed that the error was independent and identically distributed
(i.i.d.) following .#7(0,02) and the spatiotemporal random effect was
temporally i.i.d. with Matérn spatial covariance, i.e.:

Y, X, and €Y are as in

0, t#1¢

Cov(wy, wy,) = > 7 , 5)
0,Cdy3p,), 1=t

where 62 is the variance of the spatiotemporal random effect, ¢ is the

Matérn function, dyy is the Euclidean distance between locations s and s’,
and p,, is a hyperparameter that governs the range (distance at which the
correlation falls to less than about 10%). We assigned penalized
complexity priors to ¢2, 62, and p, that shrank the spatiotemporal
random effect towards the null (Fuglstad et al., 2019; Simpson et al.,

2017) and fit the model using INLA.
3.3.3. Random forests
For each PM size fraction in each year, we trained a RF with the

equation:

Pm! :f(AODm Xigiy-es Xsog X, s, wlaay,, yday,> +e, ©

whereF, Y, s, t, PMEY, AODy, and €fY are as in equation (3); X1, ..., X305
are, respectively, the value for each of the 11 spatiotemporal predictors
and 19 spatial predictors at cell s on day t; x; and y; are the spatial co-
ordinates of cell s; and wday, and yday, are the day of week and day of
year. We used 250 trees and fixed mtry at 5 because exploratory tuning
suggested that mtry >5 provided little benefit and risked overfitting.

3.4. Stage 4: ensembling daily 1 km PM predictions to improve accuracy

In stage 4, we calibrated a GAM to ensemble the predictions of the
stage 3 base learners. We used predictions for held-out monitors to
calibrate the GAMs because these reflect accuracy at unmonitored lo-
cations (section 3.5). We fit a GAM for each PM size fraction in each year
(20 GAMs total; mean observations per year = 111,610; range 54,353 to
126,544) using tensor product smooths that allowed the coefficient for
each base learner’s predictions to vary smoothly over space and time:
PMTY = te(x,,y5, ) LMMEY + te(x,,y,,t) GMRF" + te(x;,y,, ) RFEY + €F)

@)

where for each PM size fraction F (2.5 or 10) and year Y (2000, ...,
2019), PMEY is the PM concentration at 1 km grid cell s (1, ..., 632571)
on day t (1, ..., number of days in year Y); te(xs,ys,t) is the tensor
product of penalized cubic regression splines of the spatial coordinates
of cell s (x; and y;) and the temporal index t; LMMLY, GMRFEY, and RFFY
are, respectively, the CV prediction at cell s on day ¢ from a LMM, GMRF,
and RF that were trained while holding out all data from the fold that
contains cell s; and £} is the error at cell s on day t. We estimated ac-
curacy using multi-stage CV blocked by monitor (section 3.5) and used
the GAMs to predict AOD for the 4.58 x 10° 1 km grid cell-days of the
study domain.

3.5. Cross-validation

To limit bias due to spatiotemporal autocorrelation and avoid in-
formation leakage between the base learners and the ensemble, we
extended the blocked CV scheme described by Shtein et al. (2019).

In stage 1 (imputing PM> 5 at PM;¢ monitors), we estimated accuracy
at monitors that never measured PM, s using 5-fold CV blocked by
monitor: we randomly assigned each monitor that measured both PMj 5
and PM;¢ to one of 5 folds. This ensured that no observations from test
monitors were in the training set.

In stage 2 (filling gaps in MAIAC AOD data), we estimated accuracy
at locations far from same-day MAIAC AOD observations (because
MAIAC AOD tends to be missing in spatial clumps). We used 5-fold CV
with spatiotemporal blocking: we split the study area into 50 regions
and randomly assigned MAIAC AOD in each day-region to one of 5 folds
(Fig. S1). This ensured that no same-day observations from test regions
were in the training set.

In stages 3 and 4 (predicting daily 1 km PM with three base learners
and ensembling the predictions), we estimated accuracy at unmonitored
locations. We also trained the stage 4 ensembles on base learner pre-
dictions for held-out monitors (to emulate performance at unmonitored
locations) and ensured that data held out to test the ensemble had not
been used to train the base learners. We used multi-stage CV blocked by
monitor (Fig. S2). In stage 3, we randomly assigned each monitor to one
of 5 folds, and for each combination of three of the folds (10 combina-
tions total) we trained the base learners and predicted for the two held-
out test folds. In stage 4, we used the test predictions from all base
learners that held out the same one of the five folds to train an ensemble
and predict for the held-out fold. This ensured that the ensemble was
trained on base learner predictions for held-out monitors and evaluated
at monitors that were held out from both the base learners and the
ensemble.



3.6. Performance metrics

We evaluated the models using mean absolute error (MAE), which
reflects the typical difference between a model’s predictions and
measured PM, R?, which reflects the fraction of spatiotemporal variation
in PM captured by a model, and root mean squared error (RMSE), which
can be compared with the standard deviation (SD) of measured PM to
see by how much a model improves upon a naive prediction of the mean.
We also split each of these metrics into a spatial and temporal compo-
nent as described by Kloog et al. (2011).

4. Results
4.1. Stage 1: imputing PM> 5 at PM;o monitors

Mean PMy s was 13.7 pg/m> (standard deviation [SD] 9.9 pg/m®)
and mean PM;o was 21.6 pg/m> (SD 12.5 pg/m?) across all monitors in
continental France for 2000-2019 (Fig. S3). PM concentrations declined
over the study period and were generally highest in winter and lowest in
summer (Fig. S4). The cross-validated predictions of the stage 1 RF
showed good correspondence with observed PM; 5 at monitors that were
not used to train the RF (R? = 0.87, MAE = 2.48 ug/m°>) with little bias
(mean error = —0.157) but a tendency to underestimate very high
concentrations (Fig. 3). Performance was good even in early years when
there were few PMy 5 monitors (R? > 0.82 in every year except 2008;
MAE <2.5 pg/m? in most years) (Table S2). The drop in performance in
2007 and 2008 coincided with a change in monitor technology that
increased measured PM;o concentrations and likely complicated the
relationship between PM;y and PMy 5. PM;( concentration was by far
the most important predictor of PMj 5 concentration (Fig. S5).

4.2. Stage 2: filling gaps in MAIAC AOD

Mean MAIAC AOD over continental France for 2000-2019 was 0.126
(SD 0.084); MAIAC AOD was missing for 77% of the 1 km cell-days in
the study domain (Fig. S6), similar to other areas (Di et al., 2019;

Fig. 3. Cross-validation (CV) predicted vs. observed daily PM; s concentrations
from the stage 1 random forest. Dashed black line shows 1:1 relationship; solid
blue line shows actual relationship (R? = 0.873; MAE = 2.48 ug/mB; mean
error = —0.157). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Schneider et al., 2020; Stafoggia et al., 2019). Cross-validated R? for the
stage 2 RFs typically ranged from about 0.55 in winter to about 0.78 in
summer (Fig. S7), coinciding with fewer MAIAC observations in winter
and more in summer. MAE typically ranged from about 0.025 in fall to
about 0.034 in summer, coinciding with lower AOD in fall and higher
AOD in summer. Performance was similar between periods that used
modelled AOD from MERRA2 vs. EAC4 as predictors. There was a slight
tendency to overestimate high AOD (slope = 0.94), but average per-
formance was good (mean R? = 0.70; mean MAE = 0.030) (Table S3).
Prior to 2003, the most important predictors of MAIAC AOD were
modelled AOD at 12 UTC, the day of year, and the spatial y coordinate
(Fig. S8). From 2003 on, modelled AOD at 15 UTC was the second most
important predictor. This likely related to the mid-2002 launch of the
Aqua satellite, which passes over continental France around 13 UTC;
previously, MAIAC AOD was only available around 11 UTC from the
Terra satellite. Fig. S9 shows an example of gapfilled AOD.

4.3. Stages 3 and 4: predicting daily 1 km PM;¢ and PM, 5 with three
base learners and ensembling the predictions to increase accuracy

Table 1 shows the average cross-validated performance of the stage 3
base learners and stage 4 GAM ensemble. GMRF was the most accurate
base learner (mean PM, 5 R? = 0.75, MAE = 2.72 pg/ms; mean PM;o R?
= 0.70, MAE = 4.26 pg/m>), followed by RF, with LMM the least ac-
curate. The stage 4 GAM ensembles slightly improved performance
(mean PM; 5 R? = 0.76, MAE = 2.72 pg/m>; mean PM;o R? = 0.71, MAE
= 4.26 ug/m®), almost eliminating the GMRFs’ slight bias and increasing
spatial R compared to both the GMRFs and RFs. The relative impor-
tance of the base learners in the GAM ensemble varied over space and
time (Fig. S10), but GMRF predictions usually had the highest weight,
consistent with their high cross-validated accuracy.

R? for all models increased in early years with the number of mon-
itors and remained high from 2009 to 2019; MAE covaried with mean
observed PM (Fig. 4). The sharp increase in PM;g MAE in 2007 coincided
with a change in monitor technology: in 2007, all PM;, monitors were
modified to measure semi-volatile particles in addition to non-volatile
particles, increasing observed PMj( concentrations. PMys monitors
were modified in 2008 and 2009, corresponding to the increase in PM; 5
MAE in 2008 and 2009. R? was highest in winter and spring and lowest
in summer; MAE was highest in winter and lowest in summer, corre-
sponding to typically higher PM concentrations in winter and lower
concentrations in summer (Fig. S11).

The base learners and GAM ensemble captured day-to-day variation
in PM concentration at individual locations better than between-
locations differences in annual mean PM concentration (GAM
ensemble spatial R ~ 0.46, temporal R2 ~ 0.80). This is in part because
PM concentration varies more over time than space; spatial MAE was
lower than temporal MAE (PMsy 5 GAM ensemble spatial MAE = 1.6,
temporal MAE = 2.2), indicating that predicted annual mean PM con-
centrations were quite accurate. It may also reflect difficulty capturing
spatial variation in PM concentrations in urban areas. The lowest spatial
R%and highest spatial MAE were in Ile-de-France, the densely populated
region that contains Paris, which also had the highest and most variable
PM concentrations (Table S4, Fig. S12). There may not have been
enough monitors for the model to capture complex spatial variation in
PM concentration over greater Paris.

Since the majority of our PM; 5 data consisted of imputed PM; s
concentration at PM;y monitors from the stage 1 RF, we performed a
sensitivity analysis comparing the cross-validated predictions of the
GAM ensemble to only observed PM, 5 concentration at PMy 5 monitors.
Apart from 2000 (when there were only 5 PM; 5 monitors), performance
was similar at PM5 5 monitors (mean R? = 0.77, mean MAE = 2.98) and
across all monitors (mean R® = 0.77, mean MAE = 2.71). We also
constructed an alternate model by retraining the base learners and
ensemble using only PMy 5 monitors for all years except 2000. This
alternate model was less accurate (mean R? = 0.66, mean MAE = 3.62)



Table 1

Cross-validated (CV) performance (averaged over 2000-2019) of the stage 3 base learners (LMM, GMRF, RF) and stage 4 ensemble (GAM) predicting daily 1 km PM

(ng/m%).
Multi-stage CV Performance

Observed PM Model Total Spatial Temporal
Mean SD* RMSE Bias” Slope* R? MAE R? MAE R? MAE
PM, 5 13.8 85 LMM 5.03 0.67 0.63 0.63 3.35 0.38 1.82 0.68 2.92
GMRF 4.09 0.46 0.75 0.75 2.72 0.45 1.68 0.81 2.24
RF 4.52 —0.14 0.63 0.70 3.18 0.47 1.69 0.74 2.68
GAM 4.02 —-0.01 0.76 0.76 2.72 0.49 1.63 0.81 2.23
PM;o 21.5 11.9 LMM 7.65 1.04 0.60 0.58 5.21 0.32 2.98 0.64 4.39
GMRF 6.40 0.73 0.72 0.70 4.26 0.39 2.79 0.78 3.36
RF 7.07 —-0.19 0.57 0.64 5.00 0.41 2.80 0.70 4.11
GAM 6.28 —-0.02 0.72 0.71 4.26 0.43 2.71 0.78 3.34

# Standard deviation.
> Mean error.
¢ Slope of regression of CV predicted PM on observed PM.

Fig. 4. Annual cross-validated R? (top) and MAE (bottom; pg/m?) of the stage 3 base learners (LMM, GMRF, RF) and stage 4 ensemble (GAM) predicting daily 1 km

PM, 5 (left) and PM;q (right).

than the stage 4 GAM ensemble evaluated only at PMys monitors
(Fig. 5), indicating that increasing the quantity of training data by
imputing PMj 5 at PM;( monitors resulted in more accurate final PMj 5
predictions than if we had relied solely on PM; 5 monitors.

Fig. 6 shows the mean 2000-2019 PM, s and PM;( concentration
predicted by each base learner and GAM ensemble. The LMM and GMRF
predictions are similar; the RF predictions are slightly higher in rural
areas. The GAM ensemble predictions resemble those of the GMRF with
some contribution from the RF in the southeast and southwest. PM
concentrations are high in the north with a hotspot over greater Paris. In
the southeast, high concentrations extend south down the Rhone river
valley from the hotspot of greater Lyon, east into alpine valleys, and
along the Mediterranean coast. The lowest concentrations are over the
sparsely populated south centre, the Pyrenees in the southwest, and the
peninsulas of Bretagne and Cotentin in the northwest. PMs 5 concen-
trations show less contrast between urban and rural areas than PM;q
concentrations.

Fig. 7 shows PM3 5 and PM; concentrations over greater Paris pre-
dicted by the GAM ensemble on three days. PM concentrations are

higher over built-up areas; on two days major roads stand out as lines of
elevated PM.

5. Discussion

Our finding that GMRFs predicted daily 1 km PM concentration more
accurately than LMMs is consistent with results in the northeastern
United States (Sarafian et al., 2019). Our finding that GMRFs were also
more accurate than RFs is novel and of note, as RFs and other tree-based
machine learning algorithms performed well in several recent studies
(Di et al., 2019; Just et al., 2020; Schneider et al., 2020; Stafoggia et al,
2019, 2020). We emphasize the importance of careful performance
evaluation when using flexible machine learning algorithms: GMRFs
had the best cross-validated performance (corresponding to accuracy at
unmonitored locations), but RFs performed better than GMRF on
non-independent training data (corresponding to accuracy at monitors).
Evaluation methods that do not ensure independence between training
and testing data risk mistaking good performance at monitors for good
performance everywhere.



Fig. 5. Annual cross-validated performance at PM; s monitors of the stage 4 GAM ensemble (red circles) and an alternate model (blue triangles) trained on only
observed PM, 5. Top: R% middle: MAE (ug/m>); bottom: number of PMj 5 monitors. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

Fig. 6. Mean PM, 5 (top) and PM;, (bottom) concentration predicted by the stage 3 base learners (LMM, GMRF, RF) and stage 4 ensembles (GAM) for 2000-2019.

Our GAM ensemble captured temporal variation in PM concentration
better than spatial variation. We attempted to improve spatial perfor-
mance in urban areas by downscaling the residuals of the GAM ensemble
using RFs trained on the high spatial resolution predictors listed in
Table S1, as was done in a few previous studies (Di et al., 2019; Kloog
et al., 2014; Stafoggia et al., 2019). Unlike previous studies, we used
5-fold cross-validation blocked by monitor to assess whether the
downscaling improved accuracy: the downscaled predictions were less
accurate than the 1 km GAM ensemble predictions (higher MAE, lower
R?). Downscaling over cities is an area for further research, as epide-
miological studies would benefit from better estimates of differences in
PM exposure within a city.

Despite good overall performance, our approach has some limita-
tions. First, the sparsity of the monitoring network limited performance
in early years. Even in later years, most monitors were clustered in cities,
making it difficult to evaluate accuracy in smaller towns and rural areas
and risking overreliance on predictors that work well in urban areas but
may not work well elsewhere. The clustering of monitors near cities
means our model is roughly weighted by population density, which may
or may not be appropriate depending on the intended use for the pre-
dictions (Sarafian et al., 2020). New low-cost PM sensors might com-
plement the existing monitoring network, particularly since our model’s
weaker spatial performance suggests that a few PM observations at new
locations might be more useful than a long timeseries of measurements



Fig. 7. Mean 24-h PM, 5 (top) and PM;, (bottom) concentration over greater Paris predicted by the stage 4 GAM ensemble on three example days.

at a single location.

Second, MAIAC AOD was the only predictor with both a high spatial
(1 km) and temporal (daily) resolution, but since it is based on a few
daytime observations of the entire atmospheric column, it is both
vertically and temporally misaligned with surface-level daily mean PM
concentration. We included planetary boundary layer height to help
distinguish between surface-level vs. high-altitude aerosols, but it had a
much coarser spatial resolution than MAIAC AOD. Our model might
have benefitted from AOD at coarser spatial but higher temporal reso-
lution, such as from geostationary weather satellites, or from consid-
ering longer time periods and giving greater weight to rare observations
when filling gaps in MAIAC AOD.

Despite these limitations, our multi-stage ensemble approach was
able to predict daily 1 km PM; 5 and PM;( with low error across a large
area over 20 years. To the best of our knowledge, this is the first work
conducted in France with such a high spatiotemporal resolution (1 km-
daily), large spatial extent (national) and long temporal coverage
(2000-2019). We increased accuracy by supplementing sparse PMs g
observations with imputed data and by ensembling the predictions of
three base learners. We confirmed that Gaussian Markov random fields
predict daily PM concentration better than linear mixed models and
provide the first evidence that they may also outperform random forests.
Our dataset of daily 1 km PMy 5 and PMjg is available to health and
ecosystems researchers in France and may inform policy makers on air
quality issues.
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