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A B S T R A C T

Understanding and managing the health effects of ambient temperature (Ta) in a warming, urbanizing world
requires spatially- and temporally-resolved Ta at high resolutions. This is challenging in a large area like France
which includes highly variable topography, rural areas with few weather stations, and heterogeneous urban
areas where Ta can vary at fine spatial scales. We have modeled daily Ta from 2000 to 2016 at a base resolution
of 1 km2 across continental France and at a 200 × 200 m2 resolution over large urban areas. For each day we
predict three Ta measures: minimum (Tmin), mean (Tmean), and maximum (Tmax). We start by using linear mixed
models to calibrate daily Ta observations from weather stations with remotely sensed MODIS land surface
temperature (LST) and other spatial predictors (e.g. NDVI, elevation) on a 1 km2 grid. We fill gaps where LST is
missing (e.g. due to cloud cover) with additional mixed models that capture the relationship between predicted
Ta at each location and observed Ta at nearby weather stations. The resulting 1 km Ta models perform very well,
with ten-fold cross-validated R2 of 0.92, 0.97, and 0.95, mean absolute error (MAE) of 1.4 °C, 0.9 °C, and 1.4 °C,
and root mean square error (RMSE) of 1.9 °C, 1.3 °C, and 1.8 °C (Tmin, Tmean, and Tmax, respectively) for the
initial calibration stage. To increase the spatial resolution over large urban areas, we train random forest and
extreme gradient boosting models to predict the residuals (R) of the 1 km Ta predictions on a 200 × 200 m2 grid.
In this stage we replace MODIS LST and NDVI with composited top-of-atmosphere brightness temperature and
NDVI from the Landsat 5, 7, and 8 satellites. We use a generalized additive model to ensemble the random forest
and extreme gradient boosting predictions with weights that vary spatially and by the magnitude of the pre-
dicted residual. The 200 m models also perform well, with ten-fold cross-validated R2 of 0.79, 0.79, and 0.85,
MAE of 0.4, 0.3, and 0.3, and RMSE of 0.6, 0.4, and 0.5 (Rmin, Rmean, and Rmax, respectively). Our model will
reduce bias in epidemiological studies in France by improving Ta exposure assessment in both urban and rural
areas, and our methodology demonstrates that MODIS and Landsat thermal data can be used to generate gap-free
timeseries of daily minimum, maximum, and mean Ta at a 200 × 200 m2 spatial resolution.

1. Introduction

Ambient or near-surface air temperature (Ta) is increasingly re-
cognized as an important health risk. High or low Ta is associated with
increased morbidity and mortality across regions and climates
(Gasparrini et al., 2015; Guo et al., 2014; Song et al., 2017), and recent
work suggests that high Ta may exacerbate the effect of exposure to
particulate matter (PM), another major health hazard (Li et al., 2017).
Ta exposure is a growing concern in cities, which are often warmer than
the surrounding countryside due to increased heat accumulation and
slower heat diffusion (Arnfield, 2003). Urban areas are now home to
more than half the world's population, and this share is projected to

increase to almost 70% by 2050 (United Nations, 2018). Health effects
of Ta are also seen in rural populations (Lee et al., 2016), although
fewer studies have examined these due to the difficulty of estimating Ta

exposure. Meanwhile climate change is increasing Ta and the frequency
of extreme events such as heat waves in both urban and rural areas
(IPCC, 2013). The health burden of Ta exposure is expected to grow as
climate change and urbanization continue (Gasparrini et al., 2017;
Wang et al., 2018).

Understanding, monitoring, and managing Ta health effects requires
spatiotemporally-resolved Ta at high resolutions. Weather station net-
works measure Ta at high temporal resolution, but rarely capture spatial
variation at the scales needed for epidemiological studies (e.g. across a
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region, within a city). Failure to account for spatial variation in Ta can
introduce error in exposure assessment, which tends to bias health ef-
fect estimates towards the null (Zeger et al., 2000). Some recent epi-
demiological studies have addressed this issue by using spatiotempo-
rally-resolved Ta estimates from numerical weather prediction models
such as WRF (Ha et al., 2017b, 2017a), but computational limitations
currently restrict these models to medium spatial resolutions (e.g. 4 km)
or small geographic areas (e.g. a single city). In urban areas, studies
have used weather model Ta estimates or indicators such as sky view
factor, vegetation abundance, and land surface temperature to create
indexes that identify warmer and cooler areas within a city (Goggins
et al., 2012; Ho et al., 2017; Laaidi et al., 2012; Milojevic et al., 2016;
Smargiassi et al., 2009). Studies to date have focused on the typical
spatial distribution of Ta during a specific time period (e.g. a single heat
wave, the hot season) as the limited temporal variability of the in-
dicator variables and cost of numerical weather prediction have pre-
cluded consideration of changes in the pattern of warmer and cooler
areas over time.

Other recent studies have used Ta estimates from hybrid land use
regression models that predict Ta based on remotely sensed 1 km land
surface temperature (LST) and spatial and spatiotemporal variables
such as elevation and normalized difference vegetation index (NDVI)
(Kloog et al., 2015; Shi et al., 2016b, 2015). This approach takes ad-
vantage of the growing body of satellite earth observation data and the
fact that LST is a good indicator of spatiotemporal variation in Ta (Oyler
et al., 2016). In particular, a technique that uses linear mixed models to
calibrate the relationship between daily 1 km LST from the Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument and Ta has
been shown to perform well over large, heterogeneous areas including
the northeastern USA (root mean square error [RMSE] 2.2 °C) (Kloog
et al., 2014), the southeastern USA (RMSE 1.4 °C) (Shi et al., 2016a),

France (RMSE 1.7 °C) (Kloog et al., 2017), and Israel (RMSE 1.2 °C)
(Rosenfeld et al., 2017). These models are parsimonious compared to
numerical weather prediction, which allows them to capture both
spatial and temporal variation in Ta over large areas and long time
periods. Their spatial resolution suffices for areas where Ta varies little
at scales of less than 1 km and for studies where subjects’ locations are
only approximately known. But finer spatial resolution estimates are
needed for studies with address-level location data, particularly in
urban areas where Ta can vary markedly within a square kilometer.
Very high spatiotemporal resolutions would also benefit studies that
have time-location data (e.g. GPS tracks).

In this study we extend the mixed modeling approach to predict
daily minimum, mean, and maximum Ta (Tmin, Tmean, Tmax, respec-
tively) at a 1 km resolution across continental France and at a 200 m
resolution across 103 urban areas in continental France. We improve
performance at the 1 km resolution by allowing the daily Ta ~ LST
relationship to vary between climatic regions, and we consider both
daytime and nighttime MODIS LST, which allows us to predict diurnal
(Tmax) and nocturnal (Tmin) temperature in addition to Tmean. This is
useful both for studies of urban heat islands, which exhibit different
spatial patterns and intensities during day vs. night (Arnfield, 2003),
and for studies of Ta variability, which recent work suggests may in-
dependently affect health (Guo et al., 2016; Molina and Saldarriaga,
2017; Shi et al., 2015). We also add a local stage that uses an ensemble
of machine learning algorithms to predict the residuals of the 1 km
model in urban areas based on higher spatial resolution predictors in-
cluding thermal data from the Landsat 5, 7, and 8 satellites. This allows
us to predict daily Ta over 17 years at a 200 m spatial resolution which
better captures intra-urban Ta variation across 103 urban areas.

Fig. 1. Climatic regions of France according to Joly et al. (2010) and METEO-FRANCE stations used in the current study.
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2. Data and methods

2.1. Study area and period

Our study area is continental France, comprising all French territory
in Europe except Corsica. It covers 542,973 km2 of topographically and
climatically diverse terrain with elevations that range from −10 to
4809 m. Joly et al. (2010) classify France into eight climatic regions
based on the magnitude, variability, and seasonality of temperature and
precipitation (Fig. 1). The north and west coasts have a wet, temperate
oceanic climate, which transitions to a drier, cooler modified oceanic
climate in the north center. The mountainous east, south center, and
southwest have variable montane and semi-continental climates with
cold winters. In the southeast, the Mediterranean coast has hot, dry
summers with mild wet winters; the inland southeast and isolated
segments of the west coast are similar but cooler. The southwest basin
resembles the inland southeast but with drier winters.

The estimated population on January 1, 2018 was 64,388,583
(INSEE, 2018). About 80% of the population is urban, and this share is
projected to grow to 88% by 2050 (United Nations, 2018). The largest
urban area, Paris, has a population of 12.5 million (20% of the total)
and the six next largest urban areas have a population of one to 2.3
million (combined 14% of total). A further 10% of the population lives
in cities of one half to one million, and 37% live in urban areas with
fewer than half a million residents (Fig. S1). Our study period is Jan-
uary 1, 2000 through December 31, 2016.

2.2. Meteorological observations

We use daily weather station observations from Météo France, the
French national meteorological service. About 64% of the observations
come from stations managed by Météo France; the remaining stations
are managed by other entities. All observations are quality controlled
by Météo France. We exclude stations with no metadata or that do not
record hourly Ta, and for each month during the study period we ex-
clude stations that were active for fewer than 21 days in the month.
This leaves 1710 to 2314 stations on each day. The stations are dis-
tributed over the entire study region, but are denser in populous areas
(e.g. Paris, the southeast) and the Alps (which has many ski resorts,
hydroelectric dams, and avalanche monitors) (Fig. 1). Just 3% of the
stations are located within large urban areas (as defined in section 2.7),
7% are in peri-urban areas (within 5 km of an urban area), and the
remaining 90% are rural.

The stations calculate daily Tmin as the lowest Ta observed from 18
UTC the previous day until 18 UTC on the day; daily Tmax is the highest
Ta observed from 6:00 UTC on the day until 6:00 UTC the following
day. Most stations calculate Tmean as the mean of all (at least 24) Ta

observations from 0 UTC on the day until 0 UTC the following day.
However, about 40% of the Tmean observations were calculated as the
average of Tmin and Tmax. We exclude these observations, meaning our
final dataset has fewer observations for Tmean than for Tmin or Tmax.
Daily Ta at the included stations during the study period ranged from
Tmin of −31.2 °C to Tmax of 44.1 °C; mean Tmean was 11.3 °C with a
standard deviation of 7.1 °C (Table S1).

2.3. Land surface temperature and emissivity

We use version 6 of the widely-used MODIS daily 1 km land surface
temperature and emissivity product from the Terra and Aqua satellites
(MOD11A1 and MYD11A1, respectively) (Table 1). These products in-
clude daytime and nighttime LST derived using a split-window algo-
rithm and land use classification-based emissivity and have been
masked for clouds and validated to±2 K in clear-sky conditions across
47 sites on all seven continents (Wan, 2014). We use the quality as-
sessment band to exclude pixels with LST error> 2 K. As LST retrieval
error increases over snow and water, we also exclude pixels with

NDVI< 0 or where the corresponding 1 km grid cell has land cover
of> 33% water.

2.4. Top-of-atmosphere brightness temperature

For large urban areas, we composite 30 m top-of-atmosphere
brightness temperature (Tb) from the Landsat 5, 7, and 8 satellites
(Table 1). Tb is the kinetic temperature a perfect blackbody would have
if it emitted the quantity of thermal radiation measured by the satellite
instrument. Converting Tb to LST requires correcting for atmospheric
effects and accounting for the emissivity of the earth's surface. This is
difficult in the case of the Landsat satellites because Landsat 5 and 7
have only a single thermal band and the USGS Landsat 8's second
thermal band is contaminated by stray light, precluding the use of the
split-window algorithm (Li et al., 2013). A global Landsat LST product
is under development but not yet available (Malakar et al., 2018), so for
this study we use Tb from the USGS Landsat Collection 1 Level-2 surface
reflectance products (USGS, 2018a, 2018b).

The 16-day revisit time of the Landsat satellites means that Tb is
unavailable for many locations on many days. Cloud cover and sensor
malfunctions also contribute to these data gaps and can increase error
in Tb retrieval. To reduce error, we discard all scenes with cloud
cover> 75%. We also discard all scenes captured during periods of
instrument malfunction, which we identified by checking summary
statistics of each scene for unrealistic values (e.g. mean Tb > 100 °C).
We then trim the edges of Landsat 5 scenes by 2.5 km to remove ab-
normalities (Robinson et al., 2017) and mask pixels identified as high-
or medium-confidence cloud in the pixel quality assessment band. We
mask any remaining pixels where Tb ≤ −25 °C or Tb ≥ 50 °C. Finally,
for each calendar month we composite all Tb retrievals during the entire
study period (e.g. every January in 2000–2016). This yields 12 gap-free
Tb datasets representing the 17-year mean Tb of each pixel in each
calendar month.

2.5. NDVI

We use version 6 of the MODIS monthly composite 1 km NDVI
product from the Terra and Aqua satellites (MOD13A3 and MYD13A3,
respectively). For large urban areas we also composite 30 m NDVI from
the Landsat 5, 7, and 8 Collection 1 Level-2 surface reflectance pro-
ducts. We use a similar quality assurance and compositing procedure as
for Tb, first discarding all scenes with greater than 75% cloud cover or
during periods of thermal sensor malfunction (as this results in un-
reliable cloud confidence scores in the pixel quality assessment band).
We then trim the edges of Landsat 5 scenes by 2.5 km and adjust NDVI
from Landsat 5 and Landsat 7 to match Landsat 8 using equation Eq. (1)
(Robinson et al., 2017).

= + ×NDVI NDVI0.0235 0.9723L L L8 5, 7 (1)

Similar to Robinson et al. (2017), for each calendar month we create

Table 1
Satellite instruments used in this study.

Instrument Satellite Resolution Revisit time Overpassa Time period

MODIS Terra 1 km 12 hours 10:00
22:00

2000-02-02 –
present

MODIS Aqua 1 km 12 hours 13:00
01:00

2002-07-04 –
present

TM Landsat 5 120 mb 16 days 10:00 1984-03-01 –
2011-11-18

ETM+ Landsat 7 60 mb 16 days 10:00 1999-04-15 –
present

TIRS Landsat 8 100 mb 16 days 10:00 2013-02-11 –
present

a Approximate local solar time
b Resampled to 30 m
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two 17-year mean composites, one using pixels marked as clear in the
pixel quality assurance band (i.e. not cloud, cloud shadow, snow, or
water) and a second using pixels marked as snow or water. Finally, we
mosaic the two composites preferring the clear pixels composite.

2.6. Elevation, population, land cover, and climatic regions

We use version 1.1 of the European Digital Elevation Model (EU-
DEM) from the Copernicus Land Monitoring Service. These data have a
25 m spatial resolution and vertical RMSE of± 7 m (Tøttrup, 2014). We
also use 200 m gridded 2010 population from INSEE, the French na-
tional statistics agency (INSEE, 2017). We use the 100 m Corine Land
Cover (CLC) inventory for 2000, 2006, and 2012. The 2000 edition has
been validated to better than 85% thematic accuracy (Bossard et al.,
2000). We aggregate the land cover classes into four groups: artificial,
vegetation, bare, and water (Table S2). Finally, we use the eight cli-
matic regions of Joly et al. (2010), which are based on temperature and
precipitation patterns (Fig. 1).

2.7. Model grids

For the 1 km model, we create a grid covering continental France by
making a 1 km square buffer around the centroid of each MODIS 1 km
LST pixel in the ETRS89-LAEA Europe (EPSG:3035) equal-area pro-
jection. We associate each 1 km grid cell with the MODIS LST and NDVI
pixel having the same centroid and calculate the mean elevation, total
population, percent area of each land cover group, and climate region
with greatest spatial overlap.

For the 200 m model, we create a grid covering large urban areas.
Starting from a 200 m grid in the ETRS89-LAEA Europe (EPSG:3035)
equal-area projection, we select all cells in continental France con-
taining “Urban fabric” or “Industrial or commercial units” in the 2012
CLC inventory. We associate each cell with the corresponding INSEE
gridded population and select cells with 50 or more inhabitants as well
as the eight surrounding cells (i.e. including diagonal neighbors). We
define urban areas as four-wise contiguous (i.e. excluding diagonal
neighbors) groups of cells and sum the population of all cells in each
urban area. Finally, we eliminate urban areas with population<
50,000. This leaves 103 large urban areas ranging from greater Paris
(9.4 million inhabitants) to Armentières (50,260 inhabitants). For each
200 m grid cell in a large urban area or that contains a weather station
we calculate the mean 17-year composite Landsat Tb and NDVI for each
calendar month, mean elevation, and percent area of each land cover
group.

2.8. Statistical methods

We use a four-stage approach to predict Ta: stages 1 and 2 predict
daily 1 km Ta across continental France and stages 3 and 4 predict daily
200 m Ta within large urban areas. We consider each year during the
study period (2000–2016) and each Ta measure (Tmin, Tmax, and Tmean)
separately. Stages 1 and 2 are an extension of the method used in
(Kloog et al., 2017) and are detailed in Appendix A. Sections 2.8.1 to
2.8.2 detail stages 3 and 4; the following is a brief overview of all
stages.

In stage 1 we calibrate Ta at each station as a function of daily 1 km
LST and emissivity, monthly 1 km NDVI, and 1 km elevation, popula-
tion, and land cover. We use a linear mixed model to allow the Ta ~ LST
relationship to vary by day within each climatic region. We use this
calibrated relationship to predict 1 km Ta (Tap_s1) for all cell-days where
LST is available.

In stage 2, we fill gaps in Tap_s1 where 1 km LST was not available by
calibrating Tap_s1 as a function of daily 1 km inverse distance weighting
interpolated observed Ta (TIDW). We use a linear mixed model to allow
the Tap_s1 ~ TIDW relationship to vary by location. We use this calibrated
relationship to fill gaps in Tap_s1, producing gap-free daily 1 km

predicted Ta (Tap_1km). This is the 1 km Ta model.
In stage 3, we calculate the daily 200 m residuals of the 1 km Ta

model (R) and train random forest (RF) and extreme gradient boosting
(GB) models to predict R based on latitude, longitude, Julian day, cli-
matic region, 200 m composite Tb and NDVI, and 200 m elevation,
population, and land cover. We use each of these models predict the
residual for all 200 m cell-days (Rp_rf and Rp_gb, respectively).

In stage 4, we calibrate a generalized additive model that ensembles
Rp_rf and Rp_gb. We use a tensor product smooth with interaction to
allow the relative performance of the RF and GB models to vary by
location and with the magnitude of the predicted residual. Finally, we
add the ensemble predictions to Tap_1km to get daily 200 m predicted Ta

for large urban areas (Tap_200m). This is the 200 m Ta model.

2.8.1. Stage 3: increasing spatial resolution to 200 m across large urban
areas

In stage 3 we increase the spatial resolution of our predictions over
large urban areas. We start by associating each 200 m grid cell with
Tap_1km (Ta predicted in stage 2 by the final 1 km model) from the 1 km
grid cell that contains the 200 m grid cell. Next, we calculate the re-
siduals (R) for all 200 m grid cell-days with a weather station Ta ob-
servation by subtracting observed Ta from Tap_1km. The number of cell-
days with a weather station observation varies by year; on average
there are about 462 thousand for Tmean and 789 thousand for each of
Tmin and Tmax. We use these cell-days to train a random forest and an
extreme gradient boosting (XGBoost) model with the equation:

⎜ ⎟= ⎛

⎝

⎞

⎠
+f εR

T _ , T , NDVI , Land Cover ,
Climate , Elevation , Population , x , y, jij

im ily

i i i i i
ij

ap 1km bij im

(2)

where Rij is the residual of the 1 km Ta model associated with 200 m
grid cell i on day j; f designates the random forest or extreme gradient
boosting function; Tap_1kmij is the 1 km Ta model prediction associated
with 200 m grid cell i on day j; Tbim is the Landsat top-of-atmosphere
brightness temperature of cell i for the calendar month m in which day j
falls; NDVIim is the Landsat NDVI of cell i for the calendar month m in
which day j falls; Land Coverily is the fraction of cell i occupied by each
land cover group l in the CLC inventory year y closest to day j; Climatei
is the climatic region of cell i; Elevationi is the elevation of cell i;
Populationi is the population of cell i; xi and yi are the geographical
coordinates of cell i; j is the Julian day; and εij is the error for cell i on
day j.

We use the R packages ranger (Wright and Ziegler, 2017), XGBoost
(Chen and Guestrin, 2016), and mlr (Bischl et al., 2016) to train the
random forest and XGBoost models. We tune the models using the se-
quential model-based optimization of package mlrMBO (Bischl et al.,
2017). Briefly, mlrMBO estimates optimal hyperparameter values by
iteratively training and evaluating a model using hyperparameter va-
lues that are chosen based on the performance of previous iterations.
We use a fixed number of iterations and evaluate performance as the
mean RMSE of two random 80% holdouts (i.e. we train the model on a
20% random sample of the data, predict and calculate RMSE for the
held-out 80%, repeat, and take the mean of the two RMSEs). Initial
exploration showed that this resampling approach produced stable es-
timates of RMSE at a lower computational cost than cross-validation.

For the random forest, we use 400 trees and a minimum of 5 ob-
servations per node, and tune mtry (the number of variables to consider
for each split) from 3 to 12 (25%–100% of the explanatory variables)
using 6 mlrMBO iterations. Initial exploration showed that using more
than 400 trees only marginally increased performance and had a high
computational cost. For the XGBoost model, we use the gbtree booster
with 100 rounds and set gamma (the minimum loss reduction for a
split) to 5. We use 24 mlrMBO iterations to tune eta (the learning rate)
from 0.1 to 0.3, the maximum tree depth from 5 to 20, the minimum
number of observations per node from 3 to 30, and the fraction of
features used in each tree from 0.75 to 1.
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We evaluate the performance of the stage 3 models using 5-fold
cross-validation with nested tuning. We use the final stage 3 random
forest and XGBoost models to predict the residual of the 1 km Ta model
(Rp_rf and Rp_xgb, respectively) for all 200 m cell-days.

2.8.2. Stage 4: improving 200 m predictions
In stage 4 we improve the stage 3 predictions by ensembling. We use

all 200 m grid cell-days with a weather station Ta observation to cali-
brate a generalized additive model (GAM) with the formula:

= × + × +t t εR (x , y) R _ (x , y) R _ij i i i i ijp rf p gbij ij (3)

where Rij is the residual of the 1 km Ta model associated with 200 m
grid cell i on day j; t(xi, yi) is a tensor product smooth of the x and y
coordinates of cell i; Rp_rfij and Rp_gbij are the predicted residuals of the
1 km Ta model from the stage 3 random forest and XGBoost model,
respectively, for cell i on day j; and εij is the error for cell i on day j. The
GAM averages the random forest and XGBoost predicted residuals using
weights that vary both by location and with the magnitude of each
model's predicted residual. Finally, we add the ensemble-predicted re-
siduals for all 200 m grid cells to Tap_1km (Ta predicted in stage 2 by the
final 1 km model) to obtain daily 200 m predicted Ta (Tap_200m) across
large urban areas.

2.8.3. Performance assessment
We use 10-fold out-of-sample cross-validation to assess the overall

performance of the models. For the random forest and XGBoost model
we use nested tuning (i.e. within each cross-validation fold we tune the
model as described in section 2.8.1). To evaluate the models’ ability to
capture both spatial and temporal patterns in Ta, we also calculate the
spatial and temporal components of the errors. The spatial component
is the difference at each station between the annual mean of daily ob-
served Ta (Ta ), and the annual mean of daily predicted Ta (Tap). The
temporal component is the difference at each station between ΔTa and
ΔTap where ΔTa is the difference between daily observed Ta and Ta and
ΔTap is the difference between daily predicted Ta and Tap .

We use Google Earth Engine (Gorelick et al., 2017) to quality assure
and composite Landsat Tb and NDVI and aggregate them to the 200 m
grid cells. For all other data processing and analyses we use R version
3.4.4 (R Core Team, 2018).

3. Results

Table 2 presents the mean 10-fold cross-validated performance of
the stage 1 models (predicting daily 1 km Ta from LST) across all years.
The models perform very well, with R2 of 0.92 or higher, RMSE of less
than 2 °C, and mean absolute error (MAE) of less than 1.5 °C. All models
have very low bias: the slope of observed vs. predicted Ta is 1.00 while
the intercept ranges from 0.01 to 0.02. The Tmean models perform best
overall (MAE 0.94), followed by the Tmax (MAE 1.35) and Tmin (MAE
1.43) models. The models capture both spatial and temporal variation
in Ta and show little variation in performance between years, although
overall Tmean performance decreases slightly after 2010, possibly re-
flecting degradation of the Terra MODIS instrument (Table S4). Con-
sistent with previous studies, nighttime LST is the best predictor of Tmin

and Tmean while daytime LST is the best predictor of Tmax (Oyler et al.,

2016; Rosenfeld et al., 2017; Yoo et al., 2018). Aqua LST is a better
predictor of Tmin and Tmax while Terra LST is a better predictor of Tmean.
This is expected as the Aqua overpasses (approximately 1:30 and 13:30
local solar time) are closer to the time at which Tmin and Tmax typically
occur in France. However, Aqua LST is only available since July 2002,
so we use Terra LST for all models prior to 2003.

Table 3 presents the 10-fold cross-validated performance of the
stage 1 models across all years by calendar month and season and
Table 4 presents the performance by climatic region and urban vs. rural
locations. The Tmin and Tmean models perform slightly less well in
winter months, possibly due to higher LST missingness from more fre-
quent cloud cover. The Tmax model performs best in late winter, early
spring, and fall. The models perform less well in the mountain, semi-
continental, and modified Mediterranean climates. These climates
occur in mountainous areas where large contrasts in topography and
land cover make modelling particularly challenging; other factors not
included in the model may also reduce performance in these areas. The
models perform slightly better in peri-urban areas than in urban and
rural areas, possibly due to the higher density of weather stations (peri-
urban areas have the most stations per km2).

Fig. 2 shows the spatial pattern of the daily 1 km Ta predictions of
the stage 2 model on selected winter and summer days. On the cold
winter day of Feb 18, 2003, predictions range from Tmin of −17 °C in
parts of the Alps, the Massif Central, and the Pyrenees to Tmax of 11 °C
on the Mediterranean coast. The urban heat island of Paris is faintly
visible in the north center of the Tmin and Tmean maps but disappears on
the Tmax map. Spatial contrasts corresponding to terrain features are
well resolved, and the spatial pattern of Tmin vs. Tmean vs. Tmax varies
most in the north, northeast, and southwest.

On the hot summer day of Aug 10, 2012, predictions ranged from a
Tmin of 3 °C in parts of the Alps to a Tmax of 39 °C in the southeast and
southwest. On the Tmin map, the southwestern cities of Toulouse and
Bordeaux stand out as hotspots, while Paris and Rouen are faintly
visible as warm spots in the north. The north is colder than the Vosges
mountains in the northeast and the Pyrenees in the southwest are
warmer than the alps. The warmest areas are the southern Rhone river
valley in the southeast and a patch of the southwestern Atlantic coast.
On the Tmean map, Paris and Rouen are still visible, Lyon stands out in
the east, and a few northwestern cities appear. Much of the southwest is
as warm as the southeast, and the southwestern cities are harder to
distinguish from the countryside. On the Tmax map, Lyon, Rouen, and
some northwestern cities remain faintly visible, Pau and Tarbes appear
in the southwest, and the north is warmer than the Vosges.

Table 5 presents the 10-fold cross-validated performance of the
stage 4 models (predicting daily 200 m residuals of the 1 km model
using an ensemble) across all years and by month and season; Table 6
presents the performance by climatic region and urban vs. rural loca-
tions. These models also perform well, with overall R2 of 0.79–0.85,
RMSE of 0.41–0.63, and MAE of 0.26–0.39 (residual scale). As with the
stage 1 models, the RTmean predictions are slightly better than the RTmin

or RTmax predictions and the models perform least well in the mountain,
semi-continental, and modified Mediterranean climates. The RTmin

model performs slightly worse in late summer; otherwise performance
is quite consistent across months and seasons. The models have low
bias, with a slope of observed vs. predicted of 1.00 and intercept of zero

Table 2
Stage 1 model (predicting daily 1 km Ta from LST): 10-fold cross-validated performance across all years (2000–2016), overall, spatial, and temporal components.

Na Overall Spatial Temporal

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Tmin 354 0.92 1.89 1.43 0.89 1.10 0.80 0.94 1.61 1.19
Tmean 205 0.97 1.29 0.94 0.95 0.83 0.57 0.97 1.15 0.84
Tmax 324 0.95 1.81 1.35 0.88 1.23 0.89 0.96 1.52 1.12

a N=mean thousands of observations used to fit each annual model.
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for every year. Performance is consistent across years except for the
RTmin model, which performs slightly better in 2000–2002, and the
RTmean model, which performs best in 2004 (Table S6).

Spatial location and elevation are generally the most important
features in the random forest and XGBoost models (Fig. S2 – S3). Day of
year and predicted 1 km Ta were equally or even more important in
some models but less important in others. Landsat Tb and NDVI and
population also contributed to the models, particularly for RTmean. The
land cover and climatic region variables were the least important.

Fig. 3 shows the spatial pattern of predicted 1 km Tmin from the
stage 2 model and predicted 200 m Tmin from the stage 4 model for the
Paris metropolitan area (northern France, population 12.5 million), the
Toulouse metropolitan area (southwestern France, Population 1.3 mil-
lion), and the Nancy metropolitan area (northeastern France, popula-
tion 250,000) on the cold winter day of Feb 18, 2003. In the large city
of Paris, an urban heat island is clearly visible centered over the large
urban core where Tmin is about 5 °C warmer than the rural surround-
ings. The 200 m predictions are slightly higher than the 1 km predic-
tions in the peripheral built-up areas and capture fine details such as the
warmer Seine river and cooler parks. In the midsize city of Toulouse,
the 1 km predictions capture an urban heat island over the dense city
center and the suburbs to the northwest and southeast, with Tmin about
3 °C warmer than the rural surroundings. The 200 m predictions show
warm Tmin in the southwestern suburbs where 1 km Tmin was cool and
capture the Garonne river in the center. The northwestern and north-
eastern suburbs have greater contrast with some areas slightly cooler
than in the 1 km predictions and others slightly warmer. In the small

city of Nancy, at 1 km both the city center and an area of ponds to the
southeast have Tmin about 2 °C warmer than the surroundings. The
200 m predictions show warmer Tmin throughout most of the built-up
area with sharp contrasts between built and open areas: compared to
the 1 km predictions, Tmin is up to 2 °C higher in the center, north, and
west of the built-up area and up to 2 °C lower over parks and over fields
abutting the eastern edges of the city.

4. Discussion

Spatiotemporally-resolved Ta at high resolutions is essential to un-
derstanding, monitoring, and managing the health effects of Ta, a
pressing issue in a warming, urbanizing world. We have developed the
longest (2000–2016), highest spatial resolution (1 km) model of daily
Ta available for continental France aimed at public health research.
Furthermore, our model provides an unprecedented spatial resolution
of 200 m over large urban areas.

A key feature of our model is its ability to capture spatial variation
in Ta. Previous epidemiological research in France linked geographical
variation in mortality risk to both typical (Laaidi et al., 2006) and ex-
treme Ta (Le Tertre et al., 2006) using weather stations. Recent studies
in the USA showed that a daily 1 km Ta dataset similar to ours was
needed to detect associations with low birth weight (Kloog et al., 2015)
and mortality (Shi et al., 2015). Our model will allow future studies in
France to include participants in rural areas far from weather stations
and will also improve exposure estimates in urban areas.

Another key feature is our model's 200 m spatial resolution over

Table 3
Stage 1 model performance (predicting daily 1 km Ta from LST): 10-fold cross-validated performance across all years (2000–2016), by month and season.

Tmin Tmean Tmax

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Jan 0.83 2.16 1.60 0.89 1.54 1.11 0.86 1.87 1.37
Feb 0.84 2.03 1.51 0.91 1.37 0.99 0.89 1.74 1.28
Mar 0.80 1.92 1.46 0.91 1.22 0.91 0.89 1.72 1.28
Apr 0.77 1.82 1.39 0.91 1.17 0.85 0.87 1.75 1.32
May 0.80 1.75 1.33 0.92 1.20 0.86 0.85 1.85 1.39
Jun 0.81 1.74 1.32 0.92 1.23 0.90 0.84 1.94 1.46
Jul 0.79 1.71 1.30 0.92 1.19 0.88 0.84 1.90 1.44
Aug 0.78 1.77 1.35 0.92 1.18 0.88 0.87 1.89 1.43
Sep 0.79 1.83 1.40 0.92 1.12 0.84 0.87 1.70 1.29
Oct 0.83 1.94 1.47 0.91 1.26 0.93 0.88 1.67 1.25
Nov 0.82 2.02 1.52 0.89 1.42 1.03 0.88 1.69 1.25
Dec 0.82 2.17 1.61 0.86 1.69 1.21 0.84 1.94 1.39
Winter 0.83 2.12 1.57 0.89 1.55 1.11 0.86 1.86 1.35
Spring 0.86 1.83 1.40 0.94 1.20 0.87 0.91 1.77 1.33
Summer 0.80 1.74 1.32 0.92 1.20 0.89 0.86 1.91 1.44
Fall 0.87 1.92 1.46 0.95 1.26 0.92 0.93 1.69 1.27

Table 4
Stage 1 model performance (predicting daily 1 km Ta from LST): 10-fold cross-validated performance across all years (2000–2016), by climatic region and urban vs.
rural locations.

Tmin Tmean Tmax

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Mountain 0.90 2.22 1.71 0.95 1.69 1.25 0.93 2.26 1.73
Semi-continental 0.91 2.11 1.61 0.96 1.44 1.07 0.95 2.00 1.52
Modified oceanic 0.94 1.53 1.16 0.98 0.98 0.73 0.98 1.33 1.01
Transitional oceanic 0.92 1.81 1.37 0.97 1.20 0.88 0.95 1.74 1.31
Oceanic 0.90 1.79 1.33 0.96 1.20 0.88 0.94 1.83 1.36
Mod. Mediterranean 0.90 2.22 1.71 0.96 1.43 1.07 0.94 2.03 1.55
Southwest basin 0.94 1.60 1.22 0.98 1.04 0.76 0.97 1.40 1.04
Mediterranean 0.93 1.81 1.40 0.98 1.11 0.84 0.96 1.62 1.25
Urban 0.93 1.85 1.35 0.97 1.32 0.96 0.95 1.79 1.35
Peri-urbana 0.93 1.71 1.29 0.97 1.18 0.87 0.96 1.71 1.27
Rural 0.92 1.90 1.44 0.97 1.30 0.94 0.95 1.82 1.36

a Non-urban locations within 5 km of a large urban area.
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urban areas. Estimating Ta exposure in cities is particularly challenging
due to complex built environments and the scarcity of representative Ta

measurements, as weather stations tend to be located outside cities (e.g.
at airports) or in large parks. Consequently, few epidemiological studies
have examined intra-urban variation in Ta. In Milan, Italy, de’Donato
et al. (2008) found that on hot summer days temperature measured at a
nearby airport tended to be higher and more strongly associated with
mortality than temperature measured in the city center, but in Turin

and Rome there was little difference in temperature or its association
with mortality between the city center and a nearby airport. In Paris,
France, Laaidi et al. (2012) used 1 km LST as a proxy for Ta and found
an association between minimum LST and mortality during the August
2003 heatwave. In Brisbane, Australia, Guo et al. (2013) found no
significant difference in the mortality ~ Ta relationship when esti-
mating Ta exposure using a central weather station vs. kriging, but
noted that there was little spatial variation in temperature across the

Fig. 2. Predicted 1 km Ta from the stage 2 model on selected days: Feb 18, 2003 (top row) and Aug 10, 2012 (bottom row).

Table 5
Stage 4 model performance (predicting daily 200 m residuals with an ensemble): 10-fold cross-validated performance across all years (2000–2016), overall and by
month and season (residual scale).

RTmin RTmean RTmax

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Overall 0.79 0.63 0.39 0.79 0.41 0.26 0.85 0.51 0.31
Jan 0.84 0.56 0.34 0.82 0.40 0.24 0.85 0.48 0.27
Feb 0.82 0.59 0.36 0.81 0.39 0.24 0.84 0.49 0.28
Mar 0.80 0.63 0.39 0.79 0.40 0.26 0.83 0.50 0.30
Apr 0.77 0.63 0.40 0.76 0.39 0.25 0.83 0.51 0.31
May 0.77 0.60 0.37 0.76 0.38 0.24 0.84 0.51 0.31
Jun 0.77 0.62 0.40 0.79 0.39 0.25 0.87 0.52 0.33
Jul 0.76 0.66 0.43 0.77 0.42 0.28 0.86 0.55 0.35
Aug 0.77 0.67 0.44 0.78 0.41 0.28 0.87 0.54 0.34
Sep 0.77 0.69 0.46 0.75 0.42 0.29 0.84 0.54 0.34
Oct 0.78 0.65 0.41 0.76 0.42 0.27 0.82 0.52 0.32
Nov 0.80 0.61 0.37 0.79 0.41 0.25 0.81 0.50 0.29
Dec 0.83 0.60 0.37 0.84 0.43 0.27 0.84 0.52 0.31
Winter 0.83 0.58 0.36 0.83 0.41 0.25 0.84 0.50 0.28
Spring 0.78 0.62 0.39 0.77 0.39 0.25 0.84 0.51 0.31
Summer 0.76 0.65 0.42 0.78 0.41 0.27 0.86 0.54 0.34
Fall 0.78 0.65 0.41 0.77 0.42 0.27 0.82 0.52 0.32
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city. In Seattle, USA, Ho et al. (2017) found a significant association
between spatial variation in mortality on extremely hot days and
modeled humidex (a measure of both Ta and humidity). Our model will
help future studies clarify the health effects of intra-urban Ta variation.

Our model's unique combination of lower spatial resolution (1 km)
predictions over a large geographical extent and higher spatial resolu-
tion (200 m) predictions over more densely populated areas will be
particularly helpful for epidemiological studies. Broad geographical
coverage is essential to including rural residents which have often been

excluded from epidemiological studies, especially in France where the
103 largest urban areas covered by our 200 m Ta model contain less
than half of the population. At the same time, high spatial resolution is
important in dense urban areas where Ta can vary at fine spatial scales
and the effect of spatial Ta variation is less well understood. Limiting
the 200 m resolution predictions to large urban areas reduces compu-
tational effort while still covering a large portion of the population.

A fourth feature of our model is its ability to predict daily Tmin,
Tmean, and Tmax. While Tmean suffices for many health studies (Barnett

Table 6
Stage 4 model performance (predicting daily 200 m residuals with an ensemble): 10-fold cross-validated performance across all years (2000–2016), by climatic
region and urban vs. rural locations (residual scale).

RTmin RTmean RTmax

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Mountain 0.83 0.67 0.42 0.83 0.46 0.30 0.88 0.58 0.36
Semi-continental 0.81 0.66 0.42 0.79 0.43 0.28 0.86 0.55 0.34
Modified oceanic 0.75 0.54 0.33 0.76 0.33 0.21 0.81 0.40 0.23
Transitional oceanic 0.77 0.62 0.39 0.78 0.39 0.25 0.84 0.50 0.30
Oceanic 0.75 0.62 0.40 0.77 0.39 0.26 0.83 0.50 0.30
Mod. Mediterranean 0.82 0.73 0.47 0.78 0.47 0.31 0.84 0.62 0.41
Southwest basin 0.75 0.59 0.36 0.69 0.38 0.24 0.78 0.48 0.29
Mediterranean 0.77 0.67 0.44 0.73 0.42 0.28 0.80 0.57 0.39
Urban 0.79 0.53 0.32 0.82 0.37 0.23 0.84 0.46 0.27
Peri-urbana 0.76 0.58 0.36 0.78 0.37 0.24 0.83 0.47 0.28
Rural 0.79 0.63 0.40 0.79 0.41 0.26 0.85 0.52 0.32

a Non-urban locations within 5 km of a large urban area.

Fig. 3. Predicted 1 km Tmin from the stage 2 model alone (top row) and with predicted 200 m Tmin from the stage 4 model overlaid (bottom row) on Feb 18, 2003
over the Paris, Toulouse, and Nancy metropolitan areas.
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et al., 2010), certain research questions may benefit from having Tmin

and Tmax. For example, heatwave studies may wish to use heatwave
definitions that refer to Tmin or Tmax (Xu et al., 2016) or explore whe-
ther certain populations are sensitive to Tmin or nighttime Ta (Laaidi
et al., 2012; Murage et al., 2017). Tmax might also be of interest because
it tends to occur in the afternoon when people are more likely to be
outside and active (Guo et al., 2017). Tmin and Tmax also allow calcu-
lating diurnal Ta range for studies of Ta variability and delineating
diurnal and nocturnal urban heat islands for urban climate studies.

We demonstrate that allowing the relationship between 1 km LST
and Ta to vary by climatic region as well as by day slightly improves
performance: our stage 1 Tmean model achieves overall R2 of 0.97 with
RMSE of 1.29 whereas an initial version achieved R2 of 0.96 with RMSE
of 1.52 (Kloog et al., 2017). We also demonstrate that a GAM ensemble
of machine learning models can use higher spatial resolution predictors
including Landsat thermal data to account for some of the residual error
in our daily 1 km Ta predictions. Adding this local stage both increases
the spatial resolution of our model and improves performance.

One limitation of our method is its reliance on historical satellite
thermal data. Our model is restricted to the MODIS period of record,
which starts in 2000. Older thermal data is available from other sa-
tellites (e.g. Landsat), but not with a twice-daily revisit time. In the
USA, Oyler et al. (2015) showed that an anomaly-climatology approach
could model daily Tmin and Tmax since 1948 from 8-day composite
MODIS LST, although their approach may have smoothed spatio-
temporal Ta trends.

Our model can estimate past Ta but, unlike numerical weather
prediction models, cannot forecast future Ta. However, our model is
much simpler, which allows us to run it at relatively high spatial re-
solutions (1 km and 200 m). In comparison, Météo France's weather
prediction model has run at a spatial resolution of 1.3 km only since
2015, and the ECMWF's most recent ERA5 reanalysis has a spatial re-
solution of just 30 km. And recent studies suggest that incorporating
LST from geostationary satellites might allow us to estimate close to
real-time Ta (Bechtel et al., 2017; Keramitsoglou et al., 2016), or pos-
sibly forecast next-day Ta from present-day MODIS LST (Yoo et al.,
2018).

Another limitation of our approach is the temporal misalignment
between observations of LST and Ta in the stage 1 model: the satellite
overpass does not always coincide with the time that Tmin or Tmax oc-
curs. Our model's low MAE (typically less than 1.5 °C) suggests that it
produces good Ta estimates despite this; incorporating high temporal-
resolution (e.g. hourly) LST from geostationary satellites might improve
performance.

A fourth limitation of our model is the need to fill gaps in satellite
thermal data. This can introduce error and may make modelling im-
possible in some areas or time periods. Landsat data is particularly
challenging due to the satellites’ 16-day revisit time; parts of France
have no useable Landsat observations during some winters. The few
previous studies that used Landsat thermal data to model Ta limited
their analysis to days and locations where Landsat data was available
(Pelta and Chudnovsky, 2017) or used a few scenes that were deemed
typical of hot summer days (Ho et al., 2016, 2014; Wicki et al., 2018).
We fill gaps in Landsat Tb by compositing all scenes for each calendar
month across 17 years. This smooths spatial patterns and means we rely
entirely on MODIS to capture short-term temporal variation in LST.
Combining data from Landsat 5, 7, and 8 may also introduce error as
the sensors operate at different wavelengths and spatial resolutions
(Table 1). Future studies may benefit from the forthcoming Landsat
Surface Temperature product (Malakar et al., 2018) which might be
more consistent, and would allow using LST as a predictor rather than
brightness temperature.

Future studies could also make use of high spatial-resolution LST
from forthcoming satellites. Landsat 9 will have a spatial resolution and
revisit time similar to the previous Landsat satellites, but should offer
better LST retrieval thanks to the correction of the stray light

contamination that affects Landsat 8 (Hair et al., 2018). HyspIRI aims to
provide a 60 m spatial resolution with a revisit time of 5 days (Lee et al.,
2015), while MISTIGRI aims for 50 m spatial resolution with a daily
revisit, but with coverage only within 15 ground tracks (Lagouarde
et al., 2013). If these satellites improve LST retrieval and reduce
missingness then they could improve our method's ability to capture Ta

over urban areas.
MODIS LST also contains gaps, which we do not fill. Rather, we

predict daily 1 km Ta only where MODIS LST is available and fill gaps in
the predictions based on nearby Ta observations. Li et al. (2018)
achieved similar performance (RMSE 2.1 °C Tmin, 1.9 °C Tmax) for urban
and surrounding areas in the USA by first filling gaps in MODIS LST
using spatiotemporally nearby LST observations and then predicting
daily Ta using geographically weighted regression. These approaches
both assume that the spatial distribution of Ta or LST is similar on clear
and cloudy days. Zhu et al. (2017) used the MODIS atmospheric profile
and cloud cover products to estimate instantaneous Ta in parts of China
and the USA. Their approach had the additional advantage of not re-
quiring any weather station Ta observations to calibrate the model, but
it produced larger errors (RMSE 3.4 °C China, 2.9, USA).

Despite these limitations, our model provides very good predictions
of historical daily Ta for continental France at a 1 km or finer spatial
resolution. These predictions may help compare rural and urban po-
pulations, identify and monitor urban heat islands, and better under-
stand health effects. More broadly, our methodology and predictions
may be useful in other geographical areas and for any application
where Ta is a key variable.
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