Pressure-induced dimerization and collapse of antiferromagnetism in the Kitaev material α-Li₂IrO₃

Bin Shen[®],^{1,*} Franziska Breitner,¹ Danil Prishchenko[®],² Rudra Sekhar Manna[®],^{1,3} Anton Jesche,¹ Maximilian L. Seidler,¹ Philipp Gegenwart[®],^{1,†} and Alexander A. Tsirlin[®],^{1,‡}

¹Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany ²Theoretical Physics and Applied Mathematics Department, Ural Federal University, 620002 Ekaterinburg, Russia

³Department of Physics, IIT Tirupati, Tirupati 517506, India

(Received 8 December 2021; revised 31 January 2022; accepted 2 February 2022; published 14 February 2022)

We present magnetization measurements carried out on polycrystalline and single-crystalline samples of α -Li₂IrO₃ under hydrostatic pressures up to 2 GPa and establish the temperature-pressure phase diagram of this material. The Néel temperature (T_N) of α -Li₂IrO₃ is slightly enhanced upon compression with $dT_N/dp = 1.5$ K/GPa. Above 1.2 GPa, α -Li₂IrO₃ undergoes a first-order phase transition toward a nonmagnetic dimerized phase, with no traces of the magnetic phase observed above 1.8 GPa at low temperatures. The critical pressure of the structural dimerization is strongly temperature dependent. This temperature dependence is well reproduced on the *ab initio* level by taking into account lower phonon entropy in the nonmagnetic phase. We further show that the initial increase in T_N of the magnetic phase is due to a weakening of the Kitaev interaction K along with the enhancement of the Heisenberg term J and off-diagonal anisotropy Γ . Our study reveals a common thread in the interplay of magnetism and dimerization in pressured Kitaev materials.

DOI: 10.1103/PhysRevB.105.054412

I. INTRODUCTION

The search for a quantum spin liquid (QSL), an exotic state characterized by long-range entanglement and fractionalized excitations, has been epitomized by the proposal of the honeycomb Kitaev model that offers an exact analytical solution for a QSL [1]. In solid-state materials, this model can be realized in spin-orbit-coupled oxides and halides with the edge-sharing geometry of transition-metal octahedra [2,3]. The notable examples are Na₂IrO₃ [4], different polymorphs of Li₂IrO₃ [5], and α -RuCl₃ [6]. However, due to other interactions (such as Heisenberg *J* and off-diagonal Γ interactions) beyond the Kitaev term *K* [7], the aforementioned Kitaev candidates all display long-range magnetic order at low temperatures. The suppression of non-Kitaev interactions by a suitable tuning parameter is one of the possible strategies to reach the Kitaev limit and QSL.

At ambient pressure, α -Li₂IrO₃ reveals the Néel temperature $T_{\rm N} = 15$ K [8–10] and develops incommensurate magnetic order with counter-rotating spin spirals [11]. Whereas low-energy excitations of this material resemble magnons [12], broader spectral features at higher energies were argued to arise from fractionalized excitations [13,14] and may witness proximity to the Kitaev spin liquid, which might then be reached by a suitable tuning. Chemically tuned compounds, such as Ag₃LiIr₂O₆ [15] and H₃LiIr₂O₆ [16] prepared by the ion exchange, feature disordered magnetic states indeed, but structural randomness [17,18] appears to be integral to the breakdown of magnetic order in these materials [5]. Hydrostatic pressure is a cleaner tuning parameter that does not introduce randomness but potentially drives structural phase transitions that necessarily affect magnetism. In this context, x-ray diffraction (XRD) [19–21], optical spectroscopy [22], and Raman spectroscopy [14] on α -Li₂IrO₃ defined $p_c \simeq 3.8$ GPa as the critical pressure of the structural phase transition at room temperature. Above p_c , α -Li₂IrO₃ changes its symmetry from monoclinic to triclinic [19] and becomes nonmagnetic owing to the formation of short Ir–Ir bonds (dimerization). This would leave a relatively broad window of nearly 4 GPa for tuning α -Li₂IrO₃ without drastically changing its crystal structure.

Being common to honeycomb iridates, structural dimerization can lead to a complex behavior as a function of pressure and temperature. For example, in β -Li₂IrO₃ the dimerization also sets in at around 4 GPa at room temperature [23,24], but at low temperatures signatures of dimerization appear as low as 1.4 GPa [25], yet this dimerization is incomplete and results in a partially dimerized phase where only half of the Ir⁴⁺ sites remain magnetic [25,26]. This intermediate phase mimics a pressure-induced spin liquid [27] but features cluster magnetism of decoupled spin tetramers rather than a collective entangled state of the Kitaev model [26].

Here we investigate pressure-dependent magnetism of α -Li₂IrO₃ at low temperatures. We find that T_N of α -Li₂IrO₃ increases with pressure and ascribe this effect to the enhancement of *J* and Γ along with the reduction in *K* as the Ir–O–Ir bridging angles become smaller upon compression. Compared to the room-temperature data, the dimerization transition shifts to lower pressures as temperature is decreased. This shift is well reproduced on the *ab initio* level and interpreted as the effect of reduced vibrational entropy caused by the hardening of phonons in the dimerized phase.

^{*}bin.shen@uni-a.de

[†]philipp.gegenwart@uni-a.de

^{*}altsirlin@gmail.com

We thus establish main trends in the pressure evolution of honeycomb iridates within both magnetic (nondimerized) and nonmagnetic (dimerized) phases.

II. METHODS

The presence or absence of the magnetic ordering transition in honeycomb iridates may depend on the sample quality [18]. Therefore we performed measurements on both polycrystalline and single-crystalline samples of α -Li₂IrO₃. Previous work showed that single crystals contain the lowest amount of stacking faults and display a sharp transition at T_N [9]. This transition becomes broad in polycrystalline samples as the amount of stacking faults increases [28].

The polycrystalline sample of α -Li₂IrO₃ was prepared by a solid-state reaction similar to Refs. [8,12]. Single crystals of α -Li₂IrO₃ were grown by the vapor transport method as described in Ref. [9]. Both polycrystalline sample and single crystals were characterized by XRD and ambient-pressure magnetization measurements in which foreign phases, especially β -Li₂IrO₃, were not detected.

The protocol for measuring magnetization under pressure was similar to the one implemented in Ref. [26]. For measurements performed on single crystals, about ten randomly oriented small crystals were inserted into the cell. Pressure was determined by measuring the superconducting transition of a small piece of Pb. Daphne oil was used as a pressuretransmitting medium.

Thermal expansion was measured at ambient pressure in the physical property measurement system (PPMS) using capacitive dilatometry with high resolution of 0.05 Å at low temperatures [29]. The linear thermal expansion coefficient $\alpha = d[\Delta L/L_0]/dT$ was determined from the differential length change. Measurement was carried out on a pellet pressed inside the glove box in order to avoid air trapping inside the pellet. Thermal expansion data were obtained upon warming with a temperature sweep rate of +0.3 K/min.

On the *ab initio* level, the structural phase transition in α -Li₂IrO₃ was studied by full-relativistic density functional (DFT) band structure calculations performed in the VASP [30,31] code with the Perdew-Burke-Ernzerhof (PBE) for solids (PBEsol) exchange-correlation potential [32] that allows the best agreement with the unit-cell volume of α -Li₂IrO₃ at ambient pressure. Correlation effects were taken into account on the DFT + U + SO level with the on-site Coulomb repulsion parameter $U_d = 1.0$ eV and Hund's coupling $J_d = 0.3$ eV [26]. Phonon spectra and corresponding thermodynamic functions were calculated in PHONOPY [33] using $2 \times 2 \times 2$ supercells with 0.01-Å displacements. The $8 \times 8 \times 8$ and $4 \times 4 \times 4 k$ meshes were used for the atomic relaxations and phonon calculations, respectively.

An initial spin polarization with the ferromagnetic spin alignment was introduced for both dimerized and nondimerized phases. Calculations for the dimerized phase always converged to a nonmagnetic solution. On the other hand, magnetism could be stabilized in the nondimerized phase if a finite U was applied, whereas calculations with U = 0 produced a nonmagnetic solution that consequently evolved toward a dimerized structure when atomic positions and lattice parameters were optimized. A similar behavior has been previously

FIG. 1. (a, b) Temperature-dependent dc magnetic susceptibility M/H(T) of α -Li₂IrO₃ measured under various pressures from 4 to 300 K in the 7-T magnetic field. Solid lines show the Curie-Weiss fits at low temperatures. (c, d) Temperature derivative of M(T). The arrows denote the dimerization temperature T_d .

reported in α -RuCl₃ that also requires a finite U to stabilize the magnetic phase [34]. Experimentally, α -Li₂IrO₃ displays antiferromagnetic order at ambient pressure, but this incommensurate and noncoplanar magnetic structure [11] cannot be incorporated in DFT. The ferromagnetic state is proximate to the incommensurate magnetic phase [35,36] and serves as a reasonable approximation when calculating thermodynamics of α -Li₂IrO₃.

Additionally, we performed scalar-relativistic FPLO calculations [37] on the PBE level to obtain tight-binding parameters via Wannier projections. These calculations were run with fixed atomic positions determined from the structural optimizations in VASP. The denser $12 \times 12 \times 12 k$ mesh was used to ensure convergence.

III. EXPERIMENTAL RESULTS

Figure 1 shows the dc magnetic susceptibility M/H as a function of the temperature under various pressures for both samples. At low pressures, the single-crystalline sample displays a clear peak at T_N . In contrast, the polycrystalline sample reveals only a broad shoulder, whereas magnetic susceptibility increases also below T_N , likely due to defects.

At 1.53 GPa (1.20 GPa) for the polycrystalline (singlecrystalline) sample, a peak appears around 100 K and shifts to higher temperatures upon further compression. This peak is a broadened steplike anomaly, which would be expected upon an abrupt dimerization [38] that renders Ir^{4+} ions nonmagnetic. A hysteresis loop in M/H(T) can be detected upon cooling and warming, indicating the first-order nature of the transition and confirming its structural origin. Compared to M/H(T) collected on powders, the data measured on single crystals show a sharper feature upon dimerization, owing to

FIG. 2. Low-temperature part of the M/H(T) data for α -Li₂IrO₃ measured on (a) polycrystalline and (b) single-crystalline samples. The arrows mark the antiferromagnetic transition temperature $T_{\rm N}$. The red solid line in (b) is a temperature derivative of M(T) for the 0.08-GPa data. The data are vertically shifted for clarity.

the better structural integrity of the single-crystalline sample. The sharper dimerization transition in single crystals can be also seen from dM/dT [Figs. 1(c) and 1(d)], where the peak position is taken as the transition temperature T_d .

At 1.2-1.8 GPa, both the dimerization transition and the low-temperature anomaly at T_N are observed, whereas above 1.8 GPa the anomaly at T_N disappears. At the highest pressure reached in each of the runs, the low-temperature susceptibility is featureless and follows the Curie-Weiss law [Figs. 1(a) and 1(b)] $\chi = \chi_0 + C/(T - \theta_{\rm CW})$, where χ_0 stands for the residual temperature-independent term, C is the Curie constant, and θ_{CW} is the Curie-Weiss temperature. The Curie-Weiss fit returns the effective moment of about 0.8 (0.6) $\mu_B/f.u.$ and $\theta_{\rm CW} \simeq -24 \, (-28) \, \text{K}$ in the polycrystalline (single-crystalline) sample at 2.09 (1.86) GPa. These values are nearly constant in the narrow pressure range between the completion of the structural phase transition (1.7-1.8 GPa) and the highest pressure of our measurement (around 2.1 GPa). At lower pressures, the presence of the magnetic transition strongly affects the results of the Curie-Weiss fitting.

From the aforementioned Curie-Weiss parameters, using the effective moment of 1.83 (1.80) $\mu_B/f.u.$ extracted between 200 and 300 K at ambient pressure, we estimate that about 17 (10)% of the weakly coupled $j_{eff} = \frac{1}{2}$ moments should be responsible for the Curie-like upturn in the dimerized phase at low temperatures. A similar low-temperature contribution was observed in pressurized β -Li₂IrO₃ and assigned to impurity spins, either intrinsic or introduced upon the compression [26]. The higher concentration of the impurity spins in the polycrystalline sample of α -Li₂IrO₃ is consistent with the presence of the susceptibility upturn below T_N already at ambient pressure.

Having established the pressure-induced dimerization in α -Li₂IrO₃, we also address the evolution of $T_{\rm N}$ at lower pressures. The Néel temperature is determined from the peak position in dM/dT, as shown in Fig. 2. Even though the

FIG. 3. Thermal expansion coefficient of α -Li₂IrO₃ measured as a function of temperature in zero field.

polycrystalline sample shows only a weak feature at T_N , the magnetic ordering transition in this sample can be traced up to 1.71 GPa, similar to the single-crystalline sample. We find a good match between the T_N values in both samples and the systematic increase with the slope of 1.5 K/GPa.

This pressure dependence of T_N can be cross-checked by thermal expansion measurement at ambient pressure. Figure 3 shows the thermal expansion coefficient of α -Li₂IrO₃. According to the Ehrenfest relation $dT_N/dp = V_{mol} \times T_N \times$ $\Delta\beta / \Delta C$, where $\Delta\beta$ and ΔC are changes in, respectively, volume thermal expansion and specific heat upon the transition. By using the molar volume $V_{mol} = 3.6 \times 10^{-5} \text{ m}^3 \text{ mol}^{-1}$, $\Delta\beta = 3\Delta\alpha = 1.8\pm1.0 \times 10^{-6} \text{ K}^{-1}$ (the uncertainty is derived from the broad transition in thermal expansion), and $\Delta C =$ $0.75 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ taken from Ref. [9], one can estimate a pressure dependence of the transition temperature of α -Li₂IrO₃ in the zero-pressure limit $(dT_N/dp)_{p\to0} = 1.3\pm0.7 \text{ K/GPa}$, which agrees well with our direct estimate of $T_N(p)$ from magnetization measurements.

Based on the magnetization measurements, we construct the temperature-pressure phase diagram of α -Li₂IrO₃, as depicted in Fig. 4. The region of the antiferromagnetically ordered phase increases upon compression following the increase in T_N . Above 1.2 GPa, the nondimerized phase coexists with the dimerized phase, which is characterized by a phase boundary with the rapidly increasing T_d . Above 1.8 GPa, the nondimerized phase disappears. Both single-crystalline and polycrystalline samples show a similar trend in T_d , but the corresponding phase boundaries are shifted by 0.3–0.4 GPa relative to each other. This discrepancy may be caused by a broader dimerization transition in the polycrystalline sample and by the lower accuracy of T_d determined therein.

Phase coexistence between 1.2 and 1.8 GPa is typical for a first-order phase transition. However, this hysteresis is notably broader than that in β -Li₂IrO₃, where a mixture of the magnetically ordered and partially dimerized phases was seen over a narrow pressure range of 0.2 GPa only [26]. The expansion of the coexistence region in α -Li₂IrO₃ may indicate a more substantial structural transformation upon the transition. Indeed, β -Li₂IrO₃ develops only a partially dimerized phase above p_c [25], whereas in α -Li₂IrO₃ one should expect

FIG. 4. Temperature-pressure phase diagram of α -Li₂IrO₃ derived from the magnetic susceptibility data. T_N stands for the antiferromagnetic transition temperature, and T_d marks the dimerization transition temperature. The black dashed line marks the *ab initio* estimate of T_d as a function of pressure. The inset shows the pressure evolution of T_N .

a complete dimerization, as further confirmed by our *ab initio* results below.

IV. AB INITIO MODELING

A. Thermodynamic stability

In the following, we compare total energies of the magnetic nondimerized (monoclinic, C2/m) and nonmagnetic dimerized (triclinic, $P\bar{1}$) phases of α -Li₂IrO₃ [19]. Figure 5(a) shows total energies calculated for fixed unit-cell volumes upon a full relaxation of the lattice parameters and atomic positions. The global energy minimum is that of the nondimerized phase, but a transformation toward the dimerized phase is expected upon compression. To assess the transition pressure, we fit energy-vs-volume curves with the Murnaghan

FIG. 5. Energetics of the nondimerized (C2/m) and dimerized $(P\bar{1})$ phases of α -Li₂IrO₃: (a) volume dependence of energy (symbols) and its fit with Eq. (1) (dashed lines) and (b) pressure dependence of enthalpy. The arrows indicate the transition between the two phases. The nondimerized phase is chosen as reference.

TABLE I. Equation-of-state parameters for the nondimerized (C2/m) and dimerized $(P\bar{1})$ phases of α -Li₂IrO₃, see text and Eq. (1). The energies E_0 are given relative to the energy minimum of the C2/m phase.

Space group	E_0 (meV/f.u.)	V_0 (Å ³ /f.u.)	B_0 (GPa)	B_0'
C2/m	0	55.48(2)	103(1)	4.5(3)
$P\bar{1}$	7(1)	54.19(2)	112(1)	6.1(2)

equation of state,

$$E(V) = E_0 + B_0 V_0 \left[\frac{1}{B'_0(B'_0 - 1)} \left(\frac{V}{V_0} \right)^{1 - B'_0} + \frac{1}{B'_0} \frac{V}{V_0} - \frac{1}{B'_0 - 1} \right].$$
 (1)

where E_0 stands for the energy minimum for a given polymorph, V_0 is its equilibrium volume, B_0 is the bulk modulus, and B'_0 is the pressure derivative of B_0 . The fitted parameters listed in Table I reveal the anticipated compression and lattice hardening upon dimerization.

Equation-of-state parameters for the nondimerized phase show an excellent agreement with the experimental values determined from room-temperature x-ray diffraction, $B_0^{exp} =$ 106(5) GPa and $V_0^{exp} = 55.03(3) \text{ Å}^3$ [19]. The parameters for the dimerized phase show a slightly less favorable agreement, $B_0^{exp} = 125(3)$ GPa and $V_0^{exp} = 53.6(2) \text{ Å}^3$ [19], probably because this phase could only be accessed above 4 GPa in the experiment, and its equilibrium volume could not be measured directly. Nevertheless, the trend of the lattice hardening is quite robust and well reproduced by our calculations. Moreover, we get the same dimerization pattern (all the X or all the Y bonds dimerized) and the shortest Ir–Ir distance of 2.63 Å at 4 GPa, in reasonable agreement with the experimental value of 2.68(2) Å [19].

Pressure-dependent enthalpy calculated from the parameters given in Table I reveals the dimerization transition at $p_c \simeq 0.9$ GPa [Fig. 5(b)]. This value of $p_c|_{T=0}$ corresponds to zero temperature, as no thermal effects have been taken into account. Such a critical pressure is much lower than 3.8 GPa expected from the previous room-temperature measurements [14,19,22], yet it nearly coincides with the low-temperature value of p_c inferred from our magnetization data (Fig. 4). It is worth mentioning that DFT calculations for β -Li₂IrO₃ predicted a transformation from the nondimerized phase to the fully dimerized phase at around 2.2 GPa, and this critical pressure is clearly higher than 1.4 GPa determined experimentally for the same compound at low temperature [26]. Such a discrepancy indicates that an intermediate partially dimerized phase should appear in β -Li₂IrO₃, and indeed this phase becomes stable around 1.4 GPa before giving way to the fully dimerized phase at higher pressures. On the other hand, in α -Li₂IrO₃ the fully dimerized and nondimerized phases are much closer in energy, and no intermediate phase occurs.

Our experimental data further suggest the strong temperature dependence of p_c (Fig. 4). We assess it by calculating thermodynamic functions for both phases of α -Li₂IrO₃ in a harmonic approximation and adding both phonon energy and

FIG. 6. (a) Phonon free energy $\Delta G_{\text{phon}} = G_{\text{phon}}^{p_{\bar{1}}} - G_{\text{phon}}^{C2/m}$. Positive values of ΔG_{phon} indicate that at elevated temperatures phonon contribution to the free energy stabilizes the nondimerized phase. (b, c) Total and atomic-resolved phonon density of states for the (b) nondimerized and (c) dimerized phases.

phonon entropy to the enthalpy difference shown in Fig. 5(b). Phonons were calculated for the 1-GPa crystal structures where enthalpies of both phases are nearly equal.

Figure 6(a) shows that phonon free energy of the dimerized phase is systematically higher compared to the nondimerized phase. Their difference $\Delta G_{\text{phon}}(T) = G_{\text{phon}}^{P\bar{1}} - G_{\text{phon}}^{C2/m}$ increases with temperature, suggesting that difference in phonon entropy plays the main role. Even if the dimerized phase becomes stable at zero temperature above $p_c|_{T=0} =$ 0.9 GPa, at higher temperatures $\Delta G_{\text{phon}}(T) > 0$ renders the nondimerized phase more stable. This corresponds to the increase in T_d with pressure and, consequently, to the upward shift in p_c upon heating.

From the $\Delta G_{\text{phon}}(T)$ values and the zero-temperature enthalpies at different pressures, we determine the temperature dependence of p_c , which shows a remarkably good agreement with the experimental results for the single-crystalline sample (Fig. 4). At higher temperatures, the DFT prediction deviates from the experiment. Our calculation predicts the room-temperature dimerization at 2.6 GPa, at odds with the critical pressure of 3.8 GPa observed experimentally by x-ray diffraction [19]. This discrepancy may be caused by anharmonic effects that become more important at higher temperatures and also by the pressure dependence of the phonon energies neglected in our model. Nevertheless, even with this simple model we are able to pinpoint the origin of G_{phon} and of the temperature-dependent p_c .

The difference in the phonon entropies should be traced back to the upward shift in the phonon energies upon dimerization [Figs. 6(b) and 6(c)]. For the low-energy modes dominated by Ir, this shift is explained by the formation of the Ir–Ir bonds in the dimerized state. An equally strong shift seen for the Li- and O-related modes is caused by the overall deformation of the structure. For example, at 1 GPa the Ir–O distances are in the range of 2.02–2.03 Å in the nondimerized phase and 2.00–2.05 Å in the dimerized phase. Likewise, the spread of the Li–O distances increases from 2.07–2.15 Å to 2.03–2.24 Å, respectively. The shorter Ir–O and Li–O distances become possible in the dimerized phase and cause the hardening of the phonons. This effect correlates with the lattice hardening, as revealed by the increased bulk

FIG. 7. Electronic density of states calculated on the DFT+SO level for the fully optimized crystal structures of the (a) nondimerized phase at 0 GPa and (b) dimerized phase at 4 GPa. The Fermi level is at zero energy. Note that the nondimerized phase is metallic in DFT+SO and thus requires Hubbard U as well as magnetism in order to open the band gap, whereas the dimerized phase is insulating already in DFT+SO owing to the formation of quasimolecular orbitals on the Ir–Ir dimers.

modulus (B_0) and its pressure derivative (B'_0) in the dimerized phase (Table I).

B. Electronic structure

According to Refs. [20,23,39,40], the dimerization leads to a major change in the electronic structure of Kitaev materials. Indeed, band structures of α -Li₂IrO₃ calculated on the DFT+SO level using fully optimized crystal structures of the nondimerized phase at 0 GPa and the dimerized phase at 4 GPa reveal a major reconstruction of the Ir t_{2g} states in the vicinity of the Fermi level (Fig. 7). In the absence of U, the nondimerized phase shows a metallic energy spectrum with a relatively narrow $j_{\text{eff}} = \frac{1}{2}$ band that can be split by a moderate U to induce the insulating state observed experimentally. On the other hand, the dimerized phase is insulating even on the DFT+SO level, because the Ir t_{2g} states transform into several narrow bands that manifest the formation of quasimolecular orbitals of the Ir–Ir dimers.

C. Magnetism

We now discuss why T_N of the nondimerized phase increases with pressure. To this end we analyze pressureinduced changes in the atomic positions and exchange interactions using the crystal structures obtained by a full relaxation at 0 and 0.8 GPa. Different microscopic models were proposed to explain magnetism of α -Li₂IrO₃ and its unusual magnetic structure [35,36,41–43]. While there is no consensus on the relevant interaction terms and the role of interactions beyond nearest neighbors, one expects that nearest-neighbor couplings mediated by the Ir–O–Ir bridges show a much stronger pressure dependence than any of the long-range couplings [44]. Therefore the pressure dependence of T_N should be mainly caused by pressure-induced changes

P	d_{XY}	φ_{XY}	J_{XY}	K_{XY}	Γ_{XY}	d_Z	φ_Z	J_Z	K_Z	Γ_Z
0.0 GPa	2.988	94.89	-3.3	-14.4	11.2	2.968	93.57	-5.3	-7.9	14.2
0.8 GPa	2.980	94.67	-3.7	-13.6	11.8	2.958	93.28	-5.8	-6.5	15.0
difference			+12%	-6%	+5%			+9%	-18%	+6%

TABLE II. Pressure-induced changes in the X/Y-, Z-bond distances d (in Å), Ir–O–Ir bridging angles φ (in degrees), and exchange parameters J, K, Γ (in meV).

in the parameters of the nearest-neighbor spin Hamiltonian,

$$\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \mathbf{S}_j + \sum_{\langle ij \rangle} K_{ij} S_i^{\gamma} S_j^{\gamma} + \sum_{\langle ij \rangle} \Gamma_{ij} (S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha})$$

where J_{ij} , K_{ij} , and Γ_{ij} stand, respectively, for the Heisenberg exchange, Kitaev exchange, and off-diagonal anisotropy, and $\alpha \neq \beta \neq \gamma$.

We utilize superexchange theory developed in Ref. [45] and take advantage of its extension reported in Ref. [36] in order to calculate the parameters J, K, and Γ for the two nonequivalent nearest-neighbor bonds that correspond to the X/Y, and Z bonds of the Kitaev model, respectively. A significant difference between these bonds is in agreement with the recent measurement of the magnetic diffuse scattering [46] that also indicated a departure of spin-spin correlations from the threefold symmetry and the sizable in-plane bond anisotropy in α -Li₂IrO₃. We note in passing that the 0-GPa values in Table II are slightly different from those reported in Ref. [36] because we did not include crystal-field terms and interactions due to multiple hoppings and, further, used the crystal structure relaxed at a constant pressure.

Table II compares the Ir–O–Ir bridging angles as well as the *J*, *K*, Γ parameters. Lattice compression shortens the Ir–Ir distances and reduces the Ir–O–Ir angles. Whereas *J* and Γ increase in magnitude, the *K* values decrease. These trends are well in line with theoretical expectations of the $|K| \ll \Gamma$ regime as the bridging angle approaches 90° [36].

Considering that there are three *J* terms and three Γ terms per bond vs one *K* term per bond, we estimate, on average, the 17.5% increase in the coupling energy on the *X* and *Y* bonds and the 7.5% increase in the coupling energy on the *Z* bonds. These changes are compatible with the 8% increase in *T_N* in the same pressure range. Therefore we conclude that the increasing *T_N* can be a result of the decreasing Ir–O–Ir bridging angles, which enhance the more abundant *J* and Γ interaction terms and reduce the less abundant *K* terms in α -Li₂IrO₃.

V. DISCUSSION AND SUMMARY

Our study elucidates two major aspects of the pressure evolution of honeycomb iridates. Their magnetic phase shows a systematic increase in T_N upon compression, with dT_N/dP of 0.7 K/GPa (β -Li₂IrO₃ [27]), 1.5 K/GPa (α -Li₂IrO₃, present study), and 1.7 K/GPa (Na₂IrO₃ [47]). Microscopically, this increasing T_N can be ascribed to the reduction in the Ir–O–Ir angles upon the shortening of the Ir–Ir bonds and the overall lattice contraction. Indeed, as the Ir–O–Ir angles decrease toward 90°, one expects the increase in the absolute values of J and Γ [36]. Even if |K| concomitantly decreases, the overall coupling energy increases and boosts T_N . Additionally, the reduction in |K| implies that hydrostatic pressure tunes honeycomb iridates away from the Kitaev limit [5].

At higher pressures, dimerization instability comes into play and drives a structural phase transition toward a nonmagnetic phase with the Ir-Ir dimers. An interesting and initially unexpected feature of this transition is the strong temperature dependence of p_c in both α and β polymorphs of Li₂IrO₃. While the dimerization is observed around 4 GPa at room temperature, it starts already at 1.0-1.5 GPa when temperature is decreased. We explain this effect by a phonon contribution to the free energy. The phonons of the dimerized phase are harder, thus leading to a lower phonon entropy and a higher phonon free energy compared to the nondimerized phase. This difference causes the systematic upward shift of $p_{\rm c}$ upon heating. The same reasoning should apply to α -RuCl₃, where p_c also shows a strong temperature dependence [38,48]. Moreover, a similar phenomenology may be expected in Na₂IrO₃, albeit at much higher pressures, because a larger unit-cell volume should shift the dimerization transition to pressures on the order of 50 GPa [49].

A comparison between the single-crystalline and polycrystalline samples of α -Li₂IrO₃ reveals that neither pressure evolution of T_N nor the onset of the dimerized phase are affected by the stacking faults, although an increased concentration of these structural defects broadens all transition anomalies and renders them less discernible than in high-quality single crystals. Therefore pressure-induced dimerization should be expected even in honeycomb iridates like Ag₃LiIr₂O₆ and H₃LiIr₂O₆ that are strongly affected by structural randomness. Indeed, recent pressure work on Cu₂IrO₃ revealed the formation of Ir–Ir dimers despite abundant stacking faults in that compound [50].

In summary, we have shown that hydrostatic pressure drives α -Li₂IrO₃ away from the Kitaev limit and at low temperatures causes a structural dimerization already at 1.2 GPa. No pressure-induced spin-liquid state occurs in this compound, similar to β -Li₂IrO₃. The dimerization transition is first order in nature and evolves in the same way as in several other Kitaev candidates. This generic behavior is explained microscopically by the phonon hardening in the dimerized phase. An interesting question for future studies would be the fate of γ -Li₂IrO₃ upon compression. The suppression of magnetic Bragg peaks above 1.4 GPa without any change in the lattice symmetry [51] would on one hand manifest a difference from the α and β polymorphs, where dimerization is accompanied by a symmetry lowering. On the other hand, the critical pressure of 1.4 GPa is conspicuously close to the zero-temperature critical pressures of the other two polymorphs, whereas structural dimerization in honeycomb iridates does not require a symmetry lowering [25]. Magnetization measurements on γ -Li₂IrO₃ under pressure could shed further light on this issue.

ACKNOWLEDGMENTS

This work was funded by the German Research Foundation (DFG) via Project No. 107745057 (TRR80) and via the Sino-

- A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006).
- [2] G. Jackeli and G. Khaliullin, Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models, Phys. Rev. Lett. **102**, 017205 (2009).
- [3] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler, Concept and realization of Kitaev quantum spin liquids, Nat. Rev. Phys. 1, 264 (2019).
- [4] Y. Singh and P. Gegenwart, Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na₂IrO₃, Phys. Rev. B 82, 064412 (2010).
- [5] A. A. Tsirlin and P. Gegenwart, Kitaev magnetism through the prism of lithium iridate, Phys. Status Solidi B, 2100146 (2021).
- [6] A. Loidl, P. Lunkenheimer, and V. Tsurkan, On the proximate Kitaev quantum-spin liquid α-RuCl₃: Thermodynamics, excitations and continua, J. Phys.: Condens. Matter **33**, 443004 (2021).
- [7] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegenwart, and R. Valentí, Models and materials for generalized Kitaev magnetism, J. Phys.: Condens. Matter 29, 493002 (2017).
- [8] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart, Relevance of the Heisenberg-Kitaev Model for the Honeycomb Lattice Iridates A₂IrO₃, Phys. Rev. Lett. **108**, 127203 (2012).
- [9] F. Freund, S. C. Williams, R. D. Johnson, R. Coldea, P. Gegenwart, and A. Jesche, Single crystal growth from separated educts and its application to lithium transition-metal oxides, Sci. Rep. 6, 35362 (2016).
- [10] K. Mehlawat, A. Thamizhavel, and Y. Singh, Heat capacity evidence for proximity to the Kitaev quantum spin liquid in A_2 IrO₃ (A =Na, Li), Phys. Rev. B **95**, 144406 (2017).
- [11] S. C. Williams, R. D. Johnson, F. Freund, S. Choi, A. Jesche, I. Kimchi, S. Manni, A. Bombardi, P. Manuel, P. Gegenwart, and R. Coldea, Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α-Li₂IrO₃, Phys. Rev. B **93**, 195158 (2016).
- [12] S. Choi, S. Manni, J. Singleton, C. V. Topping, T. Lancaster, S. J. Blundell, D. T. Adroja, V. Zapf, P. Gegenwart, and R. Coldea, Spin dynamics and field-induced magnetic phase transition in the honeycomb Kitaev magnet α–Li₂IrO₃, Phys. Rev. B **99**, 054426 (2019).
- [13] A. Revelli, M. Moretti Sala, G. Monaco, C. Hickey, P. Becker, F. Freund, A. Jesche, P. Gegenwart, T. Eschmann, F. L. Buessen, S. Trebst, P. H. M. van Loosdrecht, J. van den Brink, and M. Grüninger, Fingerprints of Kitaev physics in the magnetic excitations of honeycomb iridates, Phys. Rev. Research 2, 043094 (2020).
- [14] G. Li, L.-L. Huang, X. Chen, C. Liu, S. Pei, X. Wang, S. Wang, Y. Zhao, D. Yu, L. Wang, F. Ye, J.-W. Mei, and M. Huang, Probing the continuum scattering and magnetic collapse in single-crystalline α–Li₂IrO₃ by Raman spectroscopy, Phys. Rev. B **101**, 174436 (2020).

German Cooperation Group on Emergent Correlated Matter. D.P. acknowledges financial support by the Russian Science Foundation, Grant No. 21-72-10136.

- [15] F. Bahrami, W. Lafargue-Dit-Hauret, O. I. Lebedev, R. Movshovich, H.-Y. Yang, D. Broido, X. Rocquefelte, and F. Tafti, Thermodynamic Evidence of Proximity to a Kitaev Spin Liquid in Ag₃LiIr₂O₆, Phys. Rev. Lett. **123**, 237203 (2019).
- [16] K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato, R. Takano, Y. Kishimoto, S. Bette, R. Dinnebier, G. Jackeli, and H. Takagi, A spinorbital-entangled quantum liquid on a honeycomb lattice, Nature (London) 554, 341 (2018).
- [17] K. Geirhos, P. Lunkenheimer, M. Blankenhorn, R. Claus, Y. Matsumoto, K. Kitagawa, T. Takayama, H. Takagi, I. Kézsmárki, and A. Loidl, Quantum paraelectricity in the Kitaev quantum spin liquid candidates H₃LiIr₂O₆ and D₃LiIr₂O₆, Phys. Rev. B **101**, 184410 (2020).
- [18] F. Bahrami, E. M. Kenney, C. Wang, A. Berlie, O. I. Lebedev, M. J. Graf, and F. Tafti, Effect of structural disorder on the Kitaev magnet Ag₃LiIr₂O₆, Phys. Rev. B 103, 094427 (2021).
- [19] V. Hermann, M. Altmeyer, J. Ebad-Allah, F. Freund, A. Jesche, A. A. Tsirlin, M. Hanfland, P. Gegenwart, I. I. Mazin, D. I. Khomskii, R. Valentí, and C. A. Kuntscher, Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α-Li₂IrO₃ under pressure, Phys. Rev. B 97, 020104(R) (2018).
- [20] J. P. Clancy, H. Gretarsson, J. A. Sears, Y. Singh, S. Desgreniers, K. Mehlawat, S. Layek, G.Kh. Rozenberg, Y. Ding, M.H. Upton, D. Casa, N. Chen, J. Im, Y. Lee, R. Yadav, L. Hozoi, D. Efremov, J. van den Brink, and Y.-J. Kim, Pressure-driven collapse of the relativistic electronic ground state in a honeycomb iridate, npj Quantum Mater. 3, 35 (2018).
- [21] S. Layek, K. Mehlawat, D. Levy, E. Greenberg, M. P. Pasternak, J.-P. Itié, Y. Singh, and G. Kh. Rozenberg, Electronic and structural properties of the honeycomb iridates A₂IrO₃ (A = Na, Li) at elevated pressures, Phys. Rev. B **102**, 085156 (2020).
- [22] V. Hermann, J. Ebad-Allah, F. Freund, A. Jesche, A. A. Tsirlin, P. Gegenwart, and C. A. Kuntscher, Optical signature of the pressure-induced dimerization in the honeycomb iridate α -Li₂IrO₃, Phys. Rev. B **99**, 235116 (2019).
- [23] T. Takayama, A. Krajewska, A. S. Gibbs, A. N. Yaresko, H. Ishii, H. Yamaoka, K. Ishii, N. Hiraoka, N. P. Funnell, C. L. Bull, and H. Takagi, Pressure-induced collapse of the spin-orbital Mott state in the hyperhoneycomb iridate β–Li₂IrO₃, Phys. Rev. B **99**, 125127 (2019).
- [24] S. Choi, H.-S. Kim, H.-H. Kim, A. Krajewska, G. Kim, M. Minola, T. Takayama, H. Takagi, K. Haule, D. Vanderbilt, and B. Keimer, Lattice dynamics and structural transition of the hyperhoneycomb iridate β–Li₂IrO₃ investigated by high-pressure Raman scattering, Phys. Rev. B **101**, 054102 (2020).
- [25] L. S. I. Veiga, K. Glazyrin, G. Fabbris, C. D. Dashwood, J. G. Vale, H. Park, M. Etter, T. Irifune, S. Pascarelli, D. F. McMorrow, T. Takayama, H. Takagi, and D. Haskel, Pressureinduced structural dimerization in the hyperhoneycomb iridate β -Li₂IrO₃ at low temperatures, Phys. Rev. B **100**, 064104 (2019).

- [26] B. Shen, A. Jesche, M. L. Seidler, F. Freund, P. Gegenwart, and A. A. Tsirlin, Interplay of magnetism and dimerization in the pressurized Kitaev material β -Li₂IrO₃, Phys. Rev. B **104**, 134426 (2021).
- [27] M. Majumder, R. S. Manna, G. Simutis, J. C. Orain, T. Dey, F. Freund, A. Jesche, R. Khasanov, P. K. Biswas, E. Bykova, N. Dubrovinskaia, L. S. Dubrovinsky, R. Yadav, L. Hozoi, S. Nishimoto, A. A. Tsirlin, and P. Gegenwart, Breakdown of Magnetic Order in the Pressurized Kitaev Iridate β–Li₂IrO₃, Phys. Rev. Lett. **120**, 237202 (2018).
- [28] S. Manni, Synthesis and investigation of frustrated Honeycomb lattice iridates and rhodates, Ph.D. thesis, University of Goettingen, 2014, https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0022-5F49-5.
- [29] R. Küchler, T. Bauer, M. Brando, and F. Steglich, A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction, Rev. Sci. Instrum. 83, 095102 (2012).
- [30] G. Kresse and J. Furthmüller, Efficiency of *ab-initio* total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).
- [31] G. Kresse and J. Furthmüller, Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
- [32] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100, 136406 (2008).
- [33] A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015).
- [34] S. Widmann, V. Tsurkan, D. A. Prishchenko, V. G. Mazurenko, A. A. Tsirlin, and A. Loidl, Thermodynamic evidence of fractionalized excitations in α-RuCl₃, Phys. Rev. B **99**, 094415 (2019).
- [35] M. L. Baez, Minimal models of α-Li₂IrO₃: Range of interactions, ground state properties, and magnetization processes, Phys. Rev. B 99, 184436 (2019).
- [36] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valentí, Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales, Phys. Rev. B 93, 214431 (2016).
- [37] K. Koepernik and H. Eschrig, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme, Phys. Rev. B 59, 1743 (1999).
- [38] G. Bastien, G. Garbarino, R. Yadav, F. J. Martinez-Casado, R. Beltrán Rodríguez, Q. Stahl, M. Kusch, S. P. Limandri, R. Ray, P. Lampen-Kelley, D. G. Mandrus, S. E. Nagler, M. Roslova, A. Isaeva, T. Doert, L. Hozoi, A. U. B. Wolter, B. Büchner, J. Geck, and J. van den Brink, Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α–RuCl₃, Phys. Rev. B **97**, 241108(R) (2018).
- [39] V. N. Antonov, S. Uba, and L. Uba, Electronic structure and x-ray magnetic circular dichroism in the

hyperhoneycomb iridate β -Li₂IrO₃, Phys. Rev. B **98**, 245113 (2018).

- [40] V. N. Antonov, D. A. Kukusta, L. Uba, A. Bonda, and S. Uba, Resonant inelastic x-ray scattering spectra in the hyperhoneycomb iridate β-Li₂IrO₃: First-principles calculations, Phys. Rev. B **103**, 235127 (2021).
- [41] J. Chaloupka and G. Khaliullin, Hidden symmetries of the extended Kitaev-Heisenberg model: Implications for the honeycomb-lattice iridates A₂IrO₃, Phys. Rev. B 92, 024413 (2015).
- [42] I. Kimchi, R. Coldea, and A. Vishwanath, Unified theory of spiral magnetism in the harmonic-honeycomb iridates α, β, and γ-Li₂IrO₃, Phys. Rev. B 91, 245134 (2015).
- [43] S. Nishimoto, V. M. Katukuri, V. Yushankhai, H. Stoll, U. K. Rößler, L. Hozoi, I. Rousochatzakis, and J. van den Brink, Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li₂IrO₃, Nat. Commun. 7, 10273 (2016).
- [44] D. A. S. Kaib, S. Biswas, K. Riedl, S. M. Winter, and R. Valentí, Magnetoelastic coupling and effects of uniaxial strain in α -RuCl₃ from first principles, Phys. Rev. B **103**, L140402 (2021).
- [45] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit, Phys. Rev. Lett. 112, 077204 (2014).
- [46] S. H. Chun, P. P. Stavropoulos, H.-Y. Kee, M. M. Sala, J. Kim, J.-W. Kim, B. J. Kim, J. F. Mitchell, and Y.-J. Kim, Optical magnons with dominant bond-directional exchange interactions in the honeycomb lattice iridate α–Li₂IrO₃, Phys. Rev. B 103, L020410 (2021).
- [47] G. Simutis, N. Barbero, K. Rolfs, P. Leroy-Calatayud, K. Mehlawat, R. Khasanov, H. Luetkens, E. Pomjakushina, Y. Singh, H.-R. Ott, J. Mesot, A. Amato, and T. Shiroka, Chemical and hydrostatic-pressure effects on the Kitaev honeycomb material Na₂IrO₃, Phys. Rev. B **98**, 104421 (2018).
- [48] Y. Cui, J. Zheng, K. Ran, J. Wen, Z.-X. Liu, B. Liu, W. Guo, and W. Yu, High-pressure magnetization and NMR studies of α -RuCl₃, Phys. Rev. B **96**, 205147 (2017).
- [49] K. Hu, Z. Zhou, Y.-W. Wei, C.-K. Li, and J. Feng, Bond ordering and phase transitions in Na₂IrO₃ under high pressure, Phys. Rev. B 98, 100103 (2018).
- [50] G. Fabbris, A. Thorn, W. Bi, M. Abramchuk, F. Bahrami, J. H. Kim, T. Shinmei, T. Irifune, F. Tafti, A. N. Kolmogorov, and D. Haskel, Complex pressure-temperature structural phase diagram of the honeycomb iridate Cu₂IrO₃, Phys. Rev. B 104, 014102 (2021).
- [51] N. P. Breznay, A. Ruiz, A. Frano, W. Bi, R. J. Birgeneau, D. Haskel, and J. G. Analytis, Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate γ–Li₂IrO₃, Phys. Rev. B 96, 020402 (2017).