
Dissertation

Automatic Generation of Natural Language

Descriptions of Visual Data

Describing Images and Videos Using
Recurrent and Self-Attentive Models

Philipp Harzig

Department of Computer Science
University of Augsburg

Advisor: Prof. Dr. rer. nat. Rainer Lienhart
Reviewers: Prof. Dr. rer. nat. Rainer Lienhart

Prof. Dr. rer. nat. Jörg Hähner

Thesis defense: March 4th, 2022
Examiners: Prof. Dr. rer. nat. Rainer Lienhart

Prof. Dr. rer. nat. Jörg Hähner
Prof. Dr.-Ing. habil. Björn Schuller

Abstract

Humans are faced with a constant flow of visual stimuli, e.g., from the environment or
when looking at social media. In contrast, visually-impaired people are often incapable
to perceive and process this advantageous and beneficial information that could help
maneuver them through everyday situations and activities. However, audible feedback
such as natural language can give them the ability to better be aware of their surround-
ings, thus enabling them to autonomously master everyday’s challenges. One possibility
to create audible feedback is to produce natural language descriptions for visual data
such as still images and then read this text to the person. Moreover, textual descriptions
for images can be further utilized for text analysis (e.g., sentiment analysis) and infor-
mation aggregation. In this work, we investigate different approaches and techniques
for the automatic generation of natural language of visual data such as still images and
video clips.
In particular, we look at language models that generate textual descriptions with

recurrent neural networks: First, we present a model that allows to generate image
captions for scenes that depict interactions between humans and branded products.
Thereby, we focus on the correct identification of the brand name in a multi-task training
setting and present two new metrics that allow us to evaluate this requirement. Second,
we explore the automatic answering of questions posed for an image. In fact, we propose
a model that generates answers from scratch instead of predicting an answer from a
limited set of possible answers. In comparison to related works, we are therefore able to
generate rare answers, which are not contained in the pool of frequent answers. Third,
we review the automatic generation of doctors’ reports for chest X-ray images. That
is, we introduce a model that can cope with a dataset bias of medical datasets (i.e.,
abnormal cases are very rare) and generates reports with a hierarchical recurrent model.
We also investigate the correlation between the distinctiveness of the report and the
score in traditional metrics and find a discrepancy between good scores and accurate
reports.
Then, we examine self-attentive language models that improve computational effi-

ciency and performance over the recurrent models. Specifically, we utilize the Trans-
former architecture. First, we expand the automatic description generation to the do-
main of videos where we present a video-to-text (VTT) model that can easily synchronize
audio-visual features. With an extensive experimental exploration, we verify the effec-
tiveness of our video-to-text translation pipeline. Finally, we revisit our recurrent models
with this self-attentive approach.

iii

Acknowledgments

Hereby I want to pay credit to all the people, who influenced me and therefore made
this work possible. First of all, I want to thank Prof. Lienhart for all the opportunities
he gave me as well as for a lot of wonderful ideas, positive criticism, and discussions
about work and life in general. Furthermore, I want to express my gratitude towards
Prof. Hähner for taking his valuable time to review this thesis.
Besides, I want to acknowledge my colleagues Daniel Kienzle, Julian Lorenz, Katja

Ludwig, Robin Schön, especially Moritz Einfalt for his commitment to proofreading, his
valuable suggestions and countless discussions. Furthermore, I want to thank Stephan
Brehm, who accompanied me on my long way and helped me with our long discussions,
his alternative views, and different approaches on countless topics. Also, this extends to
my esteemed former colleagues Dr. Dan Zecha, and Dr. Christian Eggert, whose doors
still stands open for conversations of all kind.
I also want to express my deepest thanks towards the German non-profit market re-

search association (GfK Verein; Nuremberg Institute for Market Decisions), particularly
Carolin Kaiser, René Schaller, Holger Dietrich, Raimund Wildner, and Andreas Neus,
for a great collaboration and for the creation of a dataset, on which my first papers were
based, and therefore, helped to shape the foundation of this thesis. Francine Chen and
Yan-Ying Chen from FX Palo Alto Laboratory (FXPAL) also need to be mentioned and
thanked for giving me the chance to do an internship in California and for providing me
some more practical views and insights on the medical part of our field, while always
giving me a helping hand.
Then, a big thanks goes to my extraordinary family, in particular, my parents Manuela

and Christian Harzig. They have been and are by my side no matter what and whenever
I need them, and I hope I can make them as proud as I am to have them as parents.
Finally, I want to thank my wonderful girlfriend and partner Tizia Kretzler, who has
walked down this road with me, and although she was a severe critic, she showed me
her love and affection every day and even allowed me to decorate our whole apartment
with all kinds of exotic plants to see me happy.

v

Contents

Abstract iii

Acknowledgments v

Contents vii
List of Abbreviations . xiii

List of Symbols . xvi

1 Introduction 1
1.1 Motivation and Applications . 1

1.2 Problem Definition and Challenges . 2

1.3 Contributions . 4

1.4 List of Publications . 7

1.5 Thesis Outline . 8

I Foundations 11

2 Base Models and Metrics 13
2.1 Backbone Architectures . 13

2.1.1 Inception-v3 . 13

2.1.2 ResNet . 14

2.1.3 I3D . 15

2.1.4 Data Layout . 16

2.2 Language Models . 17

2.2.1 Words, Tokens, and n-grams . 17

2.2.2 Language Preprocessing . 18

2.2.3 Word Embeddings . 19

2.2.4 Basic Recurrent Neural Network Cell 19

2.2.5 Long Short-Term Memory Cells . 20

2.2.6 Combining Cells into Networks . 22

2.2.7 Beam Search . 23

2.3 Attention Mechanisms and Transformers 23

2.3.1 Multiplicative Attention . 24

2.3.2 Scaled Dot-Product Attention . 24

2.3.3 Multi-Head Attention . 25

2.3.4 Transformers . 26

vii

CONTENTS

2.4 Metrics . 29

2.4.1 BLEU-N . 31

2.4.2 ROUGE-L . 33

2.4.3 METEOR . 33

2.4.4 CIDEr . 35

2.4.5 MSCOCO Captions Evaluation Script 36

2.4.6 VQA Accuracy . 36

II Recurrent Language Generation Models for Image Description Gen-
eration 39

3 Template-Based Language Generation 43

3.1 Motivation . 43

3.2 Dataset . 44

3.3 Method . 44

3.4 Generating Language Without Ground-Truth Data 45

3.5 Results . 46

3.5.1 Detection Subtask . 48

3.5.2 Efficient Detection Subtask . 48

3.5.3 Report Generation . 49

3.6 Summary . 50

4 Automatic Description of Images with Branded Products in Natural Language 51

4.1 Related Work . 52

4.2 Show and Tell Model . 53

4.3 Motivation . 56

4.4 GfK-Captions Dataset . 58

4.5 Describing Brand Names through Multi-Task Training 61

4.5.1 Classification-Aware Loss . 61

4.5.2 Image Ratings . 63

4.5.2.1 Linear Regression . 63

4.5.2.2 Classification Task for Majority Ratings 63

4.5.2.3 Soft-Targets for Annotator Disagreements 64

4.5.2.4 Total Loss . 64

4.5.3 SPO Captioning Metrics . 64

4.6 Experiments . 66

4.6.1 Sentence Classification Accuracy 66

4.6.2 Training Configuration . 67

4.6.2.1 Feature Extractor CNN 67

4.6.2.2 Show and Tell Model . 67

4.6.2.3 Image Ratings . 68

4.6.2.4 Multi-Task Training . 68

viii

CONTENTS

4.6.3 Results . 68

4.6.3.1 Sentence Classification Accuracy 70

4.6.3.2 BLEU-4, METEOR and CIDEr Scores 70

4.6.3.3 Image Ratings . 71

4.6.3.4 SPO Accuracy Metrics 74

4.6.3.5 Multi-Task Learning . 76

4.6.4 Visual Results . 76

4.7 Summary . 76

5 Visual Question Answering 79
5.1 Motivation . 79

5.2 Related Work . 81

5.3 Dataset . 83

5.4 Base Model . 84

5.5 Hybrid Convolution Recurrent Model . 86

5.5.1 Understanding Questions . 88

5.5.2 Image Embedding . 91

5.5.3 Image Attention . 92

5.5.4 Multi-Modal Fusion . 92

5.5.5 Output LSTM . 93

5.6 Experiments . 94

5.6.1 Training Configuration . 94

5.6.2 Results . 95

5.6.2.1 Question Feature Extraction 95

5.6.2.2 Image Attention . 96

5.6.2.3 Multi-Modal Fusion . 97

5.6.2.4 Classical VQA Approach 97

5.6.2.5 Dataset Extension . 98

5.6.3 Less Common Answers . 98

5.6.4 Performance on the Official Test Set 99

5.7 Summary . 102

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images103
6.1 Motivation . 103

6.2 Related Work . 104

6.3 Dataset . 105

6.4 Hierarchical Base Model . 108

6.5 Dual Word LSTM Medical Image Report Generation 109

6.5.1 Hierarchical Generation with Dual Word LSTMs 110

6.5.2 Abnormal Sentence Prediction . 112

6.5.3 Multi-Task Learning . 113

6.5.4 Learning Objective . 113

6.6 Experiments . 114

6.6.1 Model Selection . 114

ix

CONTENTS

6.6.2 Analysis on Evaluation Scores and Distinct Sentences 115

6.6.3 Dual Word LSTM with Abnormal Sentence Predictor 118

6.7 Summary . 119

III Language Models with Self-Attention for Image Description Gener-
ation and Video-to-Text Translation 121

7 Transformers with FPE for Video-to-Text Translation 125

7.1 Related Work . 126

7.2 Datasets . 129

7.3 Baseline Model . 130

7.4 Video-to-Text Model . 132

7.4.1 Memory-Augmented Encoder . 132

7.4.2 Inflated 3D ConvNet . 134

7.4.3 Subword and BERT Vocabulary 134

7.4.4 Learning-Rate Scheduling . 135

7.4.5 Näıve Fusion of Audio and Video Features 136

7.4.6 Fractional Positional Encoding . 138

7.4.7 Self-Critical Sequence Training . 139

7.5 Experiments . 141

7.5.1 Training Configuration and Preprocessing 142

7.5.1.1 Implementation Details 142

7.5.1.2 Preprocessing of Videos 142

7.5.1.3 Preprocessing of Tokens 143

7.5.2 Results . 144

7.5.2.1 Memory-Augmented Encoder 144

7.5.2.2 Image Features and I3D Features 145

7.5.2.3 Näıve Fusion of Audio and Video Features 145

7.5.2.4 Dictionaries and Tokenization 145

7.5.2.5 Learning Rate Scheduling 146

7.5.2.6 FPE . 146

7.5.2.7 SCST . 146

7.5.3 Comparison with State-of-the-Art 147

7.5.4 Application on Unseen Datasets 149

7.6 Experiments and Results on the TRECVID-VTT Dataset 151

7.6.1 Model Configuration . 151

7.6.2 Training Setting . 152

7.6.3 Results . 153

7.6.3.1 Ablation Study on the Validation Set 153

7.6.3.2 Performance on the Test Set 154

7.7 Summary . 155

x

CONTENTS

8 Image Description Generation with Transformer Networks 159
8.1 Related Work . 159
8.2 Transformer for Image Captioning with Multi-Task Training 161

8.2.1 Transformer-Based Image Captioning Model 162
8.2.2 Dataset and Training Configuration 165
8.2.3 Experiments . 166

8.2.3.1 BLEU-4, METEOR and CIDEr Scores 166
8.2.3.2 Sentence Classification Accuracy 168
8.2.3.3 Image Ratings . 169
8.2.3.4 SPO Accuracy Metrics 169

8.3 Generating Answers with a Transformer for Visual Questions 171
8.3.1 Transformer-Based VQA Model . 172
8.3.2 Dataset and Training Configuration 175
8.3.3 Experiments . 175

8.3.3.1 VQA Accuracies . 176
8.3.3.2 Less Common Answers 177

8.4 Summary . 178

9 Conclusion and Outlook 181
9.1 Summary . 181
9.2 Outlook . 182

List of Figures 185

List of Tables 187

Bibliography 189

xi

Glossary of Abbreviations and Symbols

List of Abbreviations

BLEU-n Bilingual evaluation understudy. Precision-based
metric to assess the quality of generated sentences
against a set of human sentences. 31

CAM Class activation map. Probability distribution over
a DCNN’s output feature map that highlights areas
of interest which contributed most to a classification
outcome. 46

CIDEr Consensus-based image description evaluation. Spe-
cific metric developed for the task of image captioning
in order to assess the quality of generated sentences
against a set of human sentences. 35

DCNN Deep convolutional neural network. 13
FFN Feed-forward network. 27
FPE Fractional positional encoding. A variant of the

traditional positional encoding which we present in
Chapter 7. 138

GI The human gastrointestinal (GI) tract. 43
GLU Gated linear unit. A unit consisting of two con-

volutions with a gate that can control the amount
(∈ [0, 1]) of features forwarded to the next layer. 89

GRU Gated recurrent unit. Simpler alternative to an
LSTM cell. 85

HLSTM Hierarchical LSTM. A model that stacks multiple
LSTMs on top of each other hierarchically. E.g., the
output of an LSTM is input to the second hierarchy
level. 110

IDF Inverse document frequency. 35
LCA Less common answers. Answers contained in a VQA

dataset, but not represented by the top-k most prob-
able answers. These answers cannot be generated by
a classification model, but a recurrent text generation
model. 98

LCS Longest common subsequence. 33

xiii

List of Abbreviations

LE LogosExtended dataset. The GfK-Dataset combined
with the MSCOCO dataset. 60

LM Language model. A probabilistic model for repre-
senting language on computers, e.g., a model that
assigns probabilities to words of sentences is called a
LM. 17

LS LogosSimple dataset. Just the GfK-Dataset. 60
LSTM Long short-term memory cell. A specialized version

of an RNN cell that allows to generate language re-
currently. 20

MA Mean accuracy metric. 67
MCA Most common answers. Top-k most common answers

in the VQA task. These are the answers which can
be generated by a classification model. 98

MCC Matthews correlation coefficient. 48
METEOR Metric for evaluation of a translation with explicit

ordering. Specific metric for machine translation to
assess the quality of generated sentences against a set
of human sentences. 33

MHA Multi-head attention. A special attention layer used
in the Tranformer architecture. 25

MSCOCO The Microsoft common objects in context dataset.
58

MSR-VTT Microsoft research video-to-text large-scale video
captioning dataset. 129

MSVD Microsoft research video description corpus dataset.
129

MTI Medical text indexer encodings. MTI encodings are
automatically extracted keywords from the indica-
tion and findings of a medical report. 106

MTL Multi-task learning. A learning objective that con-
siders multiple learning tasks at the same time. 76

NLP Natural language processing. An active area of re-
search in the field of linguistics, computer science and
machine learning. 17

NMT Neural machine translation. Task that deals with
the automatic translation of languages with artificial
neural networks. 24

OA Overall accuracy metric. 67
PA Posteroanterior view of a chest X-ray image. When

taking an x-ray shot, the x-ray beam enters through
the posterior (back) aspect of the chest and exits out
of the anterior (front) aspect. 107

xiv

List of Abbreviations

PE Positional encoding. An artificial signal mostly con-
sisting of sine and cosine waves that encode indices
within a sequence. 29

RNN Recurrent neural network. In our work an RNN
mostly consists of a single cell that is calculated re-
currently. 19

ROUGE Recall-oriented understudy for gisting evaluation.
Recall-based metric to assess the quality of generated
sentences against a set of human sentences. 33

SCA Sentence classification accuracy. An accuracy metric
that evaluates whether the correct brand of a class is
contained in a generated sentence. 66

SCST Self-critical sequence training. 139
SGDR Stochastic gradient descent with warm restarts learn-

ing rate schedule. 135
SPO Subject-predicate-object metrics. A set of accuracy

metrics that check whether the correct subject, pred-
icate, object, or combinations of these are contained
in a generated sentence. 64

TF Term frequency. 35
VATEX Video And TEXt large-scale multilingual video cap-

tioning dataset. 129
VQA Visual question answering. A task that tries to au-

tomatically answer questions about a given image.
79

VTT Video-to-text. Task that tries to automatically infer
short descriptions for videos. 126

xv

List of Symbols

List of Symbols

α Relative importances of elements of a vector within
an attention mechanism. 24

b Beam size. Number of sentences that should be sam-
pled with the beam search algorithm. 23

c Context vector c. Typically used as initialization
for an LSTM decoder when raw image features are
not sufficient. For example, when attention is ap-
plied to an image given some query, we call the at-
tended features context features, i.e., a context vec-
tor. Also denotes a topic vector, which is an inter-
mediate representation for a single sentence in a hi-
erarchical LSTM. 86

c̃ Denotes the distinct sentence count, i.e., absolute
number of times a distinct sentence occurs in a
dataset. 107

d Size of a dimensionality. For example, d is the num-
ber of channels of a feature map while dmodel is the
dimensionality of a Transformer model. 25

E[X] The expectation of a random variable X, i.e., E[X] =∑
x p(x)x. 139

f(·) An arbitrary function with input ·. Projects the in-
put to an output. Can also stand for an arbitrary
layer in a neural network. For example, fatt is a non-
linear layer on page 92. 84

F Feature Map. Usually an output produced by a Deep
Convolutional Neural Network (e.g., Inception-v3)
for a given input image. 46

F̂ Attended Feature Map, i.e., a spatial feature map
that is modified by some attention query and re-
weighted to represent the relative importance of im-
age regions given a query. 92

F̃ Average-pooled Feature Map. Usually computes the
average of an input feature map by averaging across
the spatial dimensions, i.e., the height and width di-
mension. 44

Fe Embedded feature map. For example, FI
e stands for

an embedded image feature map. 108
ht Hidden state of an RNN cell at iteration step t. For

example, hsent
m is the hidden state of the sentence

LSTM for sentence m (see page 110). 20

xvi

List of Symbols

I Image used as an input to a model. I then denotes
the set of all images in a dataset. 54

K Number of feature maps. 87
κ Kernel size. 89
L Loss function. L represents a generic loss function,

i.e., an error function for a task. For example, Lr

represents the loss for an image rating r. 44
λ A weighting factor. For example, we weight different

losses L· with respective weighting factors λ·. 113
M Number of sentences in a paragraph. 108
m Mask vector. Defines a mask for words within the

vocabulary V. For example, a mask that filters out
classwords from the vocabulary. 62

µ Dimension of the word embedding. 88
N Number of words in a sentence. Also used to denote

the number of image frames (N I) or the number of
audio frames (NA) in a video. 23

N Number of repetitions for building blocks of our mod-
els. 27

nt+1 Projected LSTM output at iteration step t. The hid-
den state, i.e., the output of the LSTM is projected
to the length of the Vocabulary |V| with a fully-
connected layer. 54

ν Number of output neurons. 89
Φ Set of generated candidate sentences. 67
ϕ Softmax activation function. 24
π A policy for a reinforcement learning agent. 139
pt+1 Probability distribution over the whole vocabulary of

the LSTM’s output at iteration step t, i.e., pt+1 =
ϕ(nt+1) = Softmax(nt+1). 139

r(·) A reward function which is used for self-critical learn-
ing. 139

ρ A regular fully-connected/dense layer. 44
σ Sigmoid activation function. 21
t Defines the index of a word within a sentence/se-

quence, i.e., yS
t is the t-th word within the ground-

truth sentence yS . We also use t to denote the iter-
ation step during the unrolling of an RNN cell. Re-
lated works often denote t as the time step. 20

τ Duration of a video clip. Durations of a single au-
dio frame or a video frame are denoted by τA or τ I ,
respectively. 138

θ The whole parameter set of a neural network model.
55

xvii

List of Symbols

V Vocabulary of words that can be used to construct
sentences. 17

W· Weight matrix for some layer/operation ·. 20
x/X Input data in form of a vector or matrix. 14
y· Ground-truth vector for a machine-learning task.

The superscript · denotes the kind of task, e.g., yS is
a ground-truth sentence. 17

· Regular product of two scalars or a matrix product.
• In this work, we denote a dot-product between two

vectors with a slightly bigger product symbol.
◦ Element-wise product or hadamard product.

xviii

1 Introduction

1.1 Motivation and Applications

When humans are asked to describe an image that is shown, they can come up with
appropriate descriptions in a short amount of time. These descriptions may vary greatly
but all describe the image or parts of it correctly. Even young kids are able to describe
scenes depicted in children’s books with natural language. This task may seem trivial
at first but it consists of multiple sub-tasks, which are complicated on their own. First,
persons need to see and understand the scene. Furthermore, they need to identify
objects and relations between them to make sense of the given image. Also, they might
need to interpret things that are not directly visible in the scene but are important
for an accurate description. Besides all these steps, they need to have prior knowledge,
e.g., know properties of objects or know what objects, persons, or things can do. Finally,
persons need to have the ability to transform all this information into a natural language
sentence.

Significant leaps have been made in the field of machine learning and computer vision
that has allowed computers to automatically classify images with better-than-human
accuracy (i.e., the human top-5 ImageNet classification error rate is 5.1% [122] whereas
a ResNet ensemble has a top-5 classification error of 3.57% [58]). These big advances
were led by the advent of end-to-end trainable Deep Convolutional Neural Networks
(DCNNs) that could be trained on a corpus of multiple million images. These DCNNs
have then been applied to other tasks such as object detection or segmentation. In
addition, Recurrent Neural Networks (RNNs) have made breakthroughs in the domain
of Natural Language Processing (NLP), especially in the related subdomain of machine
translation. However, RNNs have been mostly replaced lately by the newer and more
powerful Transformer architecture.

Image Captioning, as we also call the problem stated above, is a complex - yet seem-
ingly easy - task for humans. But to implement this technique in a way that computers
can perform it automatically faces challenges of its own. In this thesis, we investigate the
automatic generation of descriptions for visual data with models that make use of the
aforementioned DCNNs and RNNs/Transformers to interpret visual data (e.g., images
or videos) and generate text.

The ability to accurately describe everyday scenes can help visually-impaired people
to understand what is happening in their environment. However, there may not always
be another person around to help out the person in need. Having an algorithm or app
that can describe the surrounding captured by a mobile phone camera can support these
people in everyday activities. Moreover, this technique can be extended to video clips,

1

1 Introduction

i.e., moving images. This allows for more applications such as video summarization or
automatic tagging of YouTube videos.

Generated textual descriptions for images can also be used for retrieval tasks such as
a textual search for images. Datasets consisting of millions of pictures can be indexed
by automatically generating captions and storing them in a database. By using existing
text search techniques, we can then quickly search this database for matches and return
related images. Furthermore, other text analysis tools such as sentiment analysis can be
applied to a collection of texts and then associated with the images.

1.2 Problem Definition and Challenges

When we speak of Image Description Generation or Image Captioning, we refer to
the task of understanding an image and then giving a short concise natural language
description of the image’s contents. This task may seem trivial at first, but even humans
struggle in coming up with a comprehensive description for a given image. Different
people may prefer to describe different aspects of that image. Nevertheless, humans
mostly suggest a reasonable sentence when they are asked to describe a given image.

However, when we look at the complexity of this task, we realize that we need to
understand the image, recognize relations and links between objects and then transfer
this intermediate information into a natural language sentence. Even much simpler tasks
like only classifying an image are hard to solve in an algorithmic way. With the advent
of end-to-end learnable computer vision models, the focus has shifted from manually
engineering a mapping function to data-driven models that solely learn on image-label
pairs in order to deduce a mapping function through optimization techniques.

In this thesis, we address the problem of automatically generating short textual de-
scriptions for images and videos with data-driven models. Furthermore, we examine the
area of Visual Question Answering (VQA) which is somewhat remotely related to image
description generation. In the following, we discuss common problems and challenges of
generating textual descriptions for visual data.

Modeling Language Before even trying to describe an image with natural language, we
have to think about how natural language can be generated. This is a huge problem on
its own, but a model somehow needs to find out how language works and how to generate
a sentence word by word in a way that a human can understand it. This includes using
a vocabulary to generate grammatically and semantically correct sentences.

Another problem in language generation are long-term dependencies (see Chapter 2.2.5)
where a connection between two words cannot be established if the words are far apart
in a sentence. For example, a language generation model may have forgotten the gender
of the subject by the time it has to emit personal pronouns.

Recognizing and Understanding Images Even if our model is able to produce reason-
able captions, i.e., language that is sound and correct, we first need to tell that language
model what to describe. Therefore, a deep understanding of the input image is crucial

2

1.2 Problem Definition and Challenges

for a model that tries to infer captions for it. In particular, objects need to be found,
relations between these objects have to be identified and the common setting (e.g., out-
doors or in a supermarket) has to be detected. This information has to be summarized,
correlated, and then transformed into a representation that aids our language model.

Paragraphs of Sentences The problem of language generation manifests even more if
we try to generate more than one sentence as a description. That is, multiple consecutive
sentences which we call paragraphs in this work. It is even harder to identify and connect
long-range dependencies in a paragraph than in a single sentence. That is, if language
models have a hard time connecting words that have a distance of a few words, it is
inherently more difficult to make connections between words that have a distance of
multiple sentences to each other.

In addition, richer contextual information has to be passed to a language model in
order to generate a more detailed description that spans multiple sentences. Also, the
language model has to have a sense of temporal succession if the individual sentences
depend on each other.

Evaluation Criteria Another problem that comes with natural language is to auto-
matically assess the quality of a generated sentence. Even for humans, this is quite
subjective, i.e., humans tend to describe different aspects of an image or have different
emphases they personally like to describe. For example, different parts of the images
could be described or we could lay focus on the mood or emotional context of the image.
Furthermore, we could describe the setting of the picture, e.g., location, or only give a
description of what we see but not what happens in the image.

As we see, language is very complex and not even humans can agree on what is a
good description or a bad one. Furthermore, there are many correct descriptions of
an image: First, there can be multiple synonymous descriptions, which are formulated
differently. Second, the description could focus on different parts or aspects of the image.
Nonetheless, humans can say whether a given caption does match an image correctly to
a certain extent or not. However, assigning humans to evaluate a number of sentences
is both time-consuming and expensive. Therefore, a quick, reliable, and automatic way
of evaluating generated captions is indispensable. In contrast to standard accuracy-
based classification metrics, there is no straightforward or easy way to quantitatively
measure the correctness of a sentence. Parts of this thesis try to find alternative metrics
that expand the capabilities of traditional metrics in order to measure caption quality
regarding different criteria.

Correctly Answering Questions about Images The VQA task goes one step beyond
image captioning. It not only gives a short description of an image but has to give a
precise answer to a posed question. Thus, in comparison to common challenges in image
captioning, the resulting text has to be more appropriate given a question. Answers can
be just as complex as natural language descriptions. However, most VQA models are

3

1 Introduction

designed to select an answer out of a small pool of predefined answers. Therefore, new
and unexpected answers can not be given with such a model.

Generating answers from scratch - just as in the task of image captioning - is a possible
solution, which we tackle in this work. However, datasets with more extensive answers
are not readily available. Furthermore, we cannot evaluate the positive or negative
effects of newly generated answers as the official metric for VQA is based on accuracy.
Generated answers may be more diverse or different but still correct and cannot easily
be matched against a predefined set of answers.

Dataset Biases As language models are only probabilistic models, they generate the
most probable word given a history of previously generated words. Thus, they tend to
generate the most likely sentence given some preconditioning, e.g., an input image. As
such, language models are very prone to dataset biases such as repeating formulations
for different dataset samples. This presents a huge problem as some datasets consist of
repeating samples. For example, in a dataset of doctors’ reports, most of the depicted
cases are normal cases and only a few cases show abnormalities. As a consequence, the
ground-truth reports are the same for the majority of the dataset samples. Thus, normal
descriptions are far more likely than descriptions for abnormal cases. However, this is
not the desired behavior as we want to generate fitting descriptions for the respective
input images. Furthermore, it is difficult to quantify this behavior as common metrics
also reward generating normal descriptions. This is because the abnormality is usually
only described in just a few words within an entire paragraph.

Video Inputs When going from still images to short video clips, more challenges arise
during description generation. First, the added dimension along the time-axis leads to a
higher computational complexity as more images have to be analyzed. Second, important
information which we want correctly described may only be visible for a few frames. In
contrast, most frames of a video could show the same thing or some things which are
unimportant for the final description. Third, some videos come with audio information,
which also might be important for the video clip’s content. Fourth, in comparison to
image captioning, it is harder for a machine learning model to generalize as training data
grows while the number of annotations does not. Specifically, one video that can consist
of hundreds of frames still comes with the same number of ground-truth captions.

1.3 Contributions

Classification-aware Image Description Generation We present an adapted image cap-
tioning model, which is based on the Show and Tell [139] model. Our model is aimed at
generating answers with a focus on images depicting persons that interact with branded
products, e.g., a Coca-Cola can. Our model operates on a new dataset created in collab-
oration with the GfK-Verein e.V. (Nuremberg Institute for Market Decisions). Particu-
larly, we introduce the classification-aware loss [50], which forces the model to generate
at least one word in the sentence that is of the brand name. We find that this extra

4

1.3 Contributions

loss function improves the overall caption scores and ensures that the generated caption
contains the correct brand name.

In combination with the classification-aware loss, we present the sentence classification
accuracy (SCA) metric, which allows to calculate the accuracy of certain classes within
a generated caption. More specifically, we want to know if a brand name is contained
in a generated sentence or not. Thus, we search for the brand names in sentences and
can, therefore, calculate the accuracy over generated sentences whether they contain the
correct brand name.

SPO metrics As traditional machine translation metrics are mostly precision-based or
recall-based, they do not necessarily check for the semantical correctness of a sentence.
That means that few - yet important - words may change the whole meaning of a
sentence. For instance, if a model correctly generates a caption word by word but
misinterprets a female hand as a male hand, the BLEU-4 score is still very high with
0.827 for the ground-truth sentence “A female hand holds a can of cocacola above a tiled
floor.”. However, in our setting, identifying the subject correctly is crucial. Therefore,
we introduce the subject-predicate-object (SPO) [57] metrics that analyzes a sentence if
the correct subject, predicate, and object are found. We annotate our whole dataset
with those SPO annotations and define eight different accuracy metrics derived from
the subject, predicate, and object accuracies. Additionally, we collect synonym tables
specific to our problem domain to allow the usage of synonyms for the subject and object.
For the predicates, we create conjugation tables.

Finally, we collect the SPO automatically for the MSCOCO dataset. By doing so, we
can show the effectiveness and the feasibility of the SPO metrics on other datasets.

Multi-Task Learning with Image Ratings Human-product interactions can often be
assessed in a different way as only generating a textual description. For this purpose,
the GfK-Verein e.V. (Nuremberg Institute for Market Decisions) re-annotated the whole
dataset with integer-valued ratings that measure the human-product interaction depicted
in three ways: (1) whether a branded product appears in a positive, neutral or negative
light, (2) whether a person is involved with a branded product and (3) whether the
branded product is used in an emotional or functional way. We propose a multi-task
learning objective [50] for our image captioning model such that we train the captioning
task in parallel with the image ratings subtask and the classification-aware loss. Fur-
thermore, we train image ratings with three different training objectives including a
soft-target training objective. Finally, we are able to improve traditional sentence eval-
uation metrics, the SCA metric, and SPO metrics by employing the multi-task training
strategy.

Diverse Answers for VQA In the task of visual question answering, a model tries to
answer a question about an image. Traditionally, this task is modeled as a classification
problem. This means, there is a fixed catalog of possible answers and a model has to
choose the most probable answer given a question and an image. We argue that a fixed

5

1 Introduction

number of possible answers (e.g., 3000) does not cover the vast space of natural language
answers to questions about images. Therefore, we propose a new VQA architecture [52]
that allows to dynamically generate answers - even including previously unseen ones.
Also, we introduce a convolution-based feature extraction for questions instead of em-
ploying RNNs. Judging from our experiments, this change further improves the question
feature extraction and in turn, our final scores.

With numerous experiments, we compare different approaches and justify our param-
eter and architectural decisions. We show that - even though our accuracies are not
better than related works - the generated answers make a lot of sense and are sometimes
more detailed than the predefined answers. In contrast to other works, we are able to
generate new answers and less common answers (LCA).

Addressing Data Bias Problems for Chest X-ray images In the medical domain, high-
quality and well-annotated data is scarce. Due to regulations and privacy concerns, most
data is kept in hospitals and cannot be released to the public. But there is one public
dataset for chest X-ray images, which are annotated with natural language doctors’
reports. However, this dataset has some undesirable biases: For instance, there are few
abnormalities and many normal cases. Furthermore, the textual descriptions for normal
cases are highly repetitive. Following the theme of our thesis, we want to generate
these doctors’ reports automatically given a chest X-ray image [51]. We first annotate
every sentence of the dataset with abnormality labels, i.e., labels stating whether a
sentence describes an abnormality or not. Second, we implement a hierarchical language
generation module that can distinguish between abnormalities and use two different
individual LSTMs to generate descriptions for abnormalities and normal cases. Finally,
we discuss the correlation between traditional metrics and the variability in generated
doctors’ reports. We also find that the repetition of the same sentence can yield a high
score but does not necessarily mean that a generated report is of high quality.

Video-to-Text and Synchronization of Audio-Visual Frames Video clips carry con-
siderably more information than single images. Thus, generating a description for short
video clips is way more complex than just trying to understand one static scene. A model
has to simultaneously understand single images, the temporal correlation between those
frames, and optimally extract information from the corresponding audio track. For in-
stance, a video clip with 300 frames has 300 times the raw visual information compared
to a single image. Yet, we want to generate a single sentence that correctly describes
the video clip’s content. Transformers [137] which operate on sequences are a natural
choice for this problem as video clips are - by definition - sequential data, i.e., the time
dimension defines the sequence. Thus, we develop a straightforward and easy-to-use
video-to-text (VTT) model [54] that can be trained on huge corpora of videos (e.g.,
YouTube videos) while still being reasonably efficient. Our model utilizes state-of-the-
art ideas from image captioning and is easy to implement. Furthermore, we do not train
an ensemble of dozens of models as competing models do. Moreover, we introduce an
fractional positional encoding which allows synchronizing audio frames and visual frames

6

1.4 List of Publications

that are input to a Transformer’s encoder. This allows the model to attend more easily
to audio and vision information while generating a description for a video clip. Finally,
we evaluate our VTT model on the default datasets for video-to-text generation and
generate descriptions for the TRECVID-VTT challenge [55, 56].

Validating Ideas on the Transformer Architecture Because of its success, the Trans-
former architecture has lately found its way into many areas of computer vision and
NLP. Especially in the machine translation task and the image captioning task, recur-
rent models are more and more replaced with Transformers. Motivated by this success,
we first port our image captioning model for describing human-product interactions to
the Transformer architecture. We validate whether the Transformer also yields better
results in our setting. Furthermore, we check if our extensions such as the classification-
aware loss and the multi-task learning objective with image ratings are also applicable
to the Transformer-based model.

Second, we show that the Transformer can also be used to generate answers for visual
questions. In the same fashion as before, we want to generate answers instead of selecting
one out of a predefined set of answers. Particularly, we implement a Transformer that
can generate answers at once when observing an image and a question. This method is
in contrast to autoregressive decoding which is usually employed in language generation
models but perfectly suited for the nature of the VQA task where an image and a
complete question are available at the inference case.

For both models, we are able to improve the scores in contrast to the respective
recurrent models. However, we observe some disadvantages because other metrics such
as the SCA decrease. Moreover, the Transformer-based VQA model does not generate
as many new answers as its recurrent counterpart.

1.4 List of Publications

Parts of this thesis have been published in the academic literature and have been pre-
sented at international conferences:

Automatic Disease Detection and Report Generation for Gastrointesti-
nal Tract Examination [53], Philipp Harzig, Moritz Einfalt and Rainer Lienhart,
ACM International Conference on Multimedia 2019, Nice, France, October 2019.

Multimodal Image Captioning for Marketing Analysis [50], Philipp Harzig,
Stephan Brehm, Rainer Lienhart, Carolin Kaiser and René Schallner, IEEE Confer-
ence on Multimedia Information Processing and Retrieval 2018, Miami, FL, April
2018.

Image Captioning with Clause-Focused Metrics in a Multi-Modal Set-
ting for Marketing [57], Philipp Harzig, Dan Zecha, Rainer Lienhart, Carolin

7

1 Introduction

Kaiser and René Schallner, IEEE Conference on Multimedia Information Process-
ing and Retrieval 2019, San José, CA, March 2019.

Visual Question Answering with a Hybrid Convolution Recurrent
Model [52], Philipp Harzig, Christian Eggert and Rainer Lienhart, ACM Inter-
national Conference on Multimedia Retrieval 2018, Yokohama, Japan, June 2018.

Addressing Data Bias Problems for Chest X-ray Image Report Gener-
ation [51], Philipp Harzig, Yan-Ying Chen, Francine Chen and Rainer Lienhart,
30th British Machine Vision Conference 2019, Cardiff, Wales, September 2019.

Synchronized Audio-Visual Frames with Fractional Positional Encoding
for Transformers in Video-to-Text Translation [54], Philipp Harzig, Moritz
Einfalt and Rainer Lienhart, submitted to: IEEE International Conference on Im-
age Processing, ICIP, 2022.

Transforming Videos to Text (VTT Task) Team: MMCUniAugs-
burg [55], Philipp Harzig, Moritz Einfalt, Katja Ludwig and Rainer Lienhart,
TRECVID Workshop, 2020, virtual.

Extended Self-Critical Pipeline for Transforming Videos to Text (VTT
Task 2021) – Team: MMCUniAugsburg, to be published [56], Philipp Harzig,
Moritz Einfalt, Katja Ludwig and Rainer Lienhart, TRECVID Workshop, 2021,
virtual.

1.5 Thesis Outline

This thesis consists of three parts:

Part I introduces foundations important for this work. We start by presenting DCNN
backbone feature extractors, which we included in our models. Next, we introduce
the concept of language adapted to the domain of machine learning. That is, we define
common concepts like words, tokens, and n-grams, that are the basis of language models.
Additionally, we introduce attention mechanisms and the Transformer architecture that
are used in Part III of this work. Finally, we introduce metrics that can automatically
assess whether a generated sentence is good in comparison to ground-truth sentences
written by humans.

In Part II, we discuss models which generate natural language descriptions for images
in a recurrent way. We will first look at a dataset for image captioning with a focus on
branded products. This dataset was created in conjunction with the GfK-Verein e.V.
(Nuremberg Institute for Market Decisions). We implement a model that specifically
focuses on branded products and creates natural language captions for these images.
Second, we explore the task of VQA in the light of generating new answers whereas
traditional VQA models are limited to a fixed set of answers. At the end of this part, we

8

1.5 Thesis Outline

consider the task of automated generation of doctors’ reports for chest X-Ray images.
As reports consist of more than a single sentence, we examine a hierarchical RNN in
order to generate paragraphs of sentences.
Part III deals with the more recent Transformer architecture. These networks yield

significantly better results than RNNs. First, we extend the task of image captioning to
video-to-text, i.e., we try to generate reasonable descriptions for short video clips. We
present a straightforward Transformer architecture that allows us to reliable generate
short descriptions for these video clips and extend it with the ability to synchronize
audio and vision frames. This increases caption quality even further. Then, we re-
visit two models from Part II in the light of Transformers. Particularly, we include
the Transformer into the image captioning model from the second part and present a
Transformer-based VQA model that can generate answers at once instead of generating
them word by word.
Ultimately, we conclude this thesis and we illustrate interesting and compelling ideas

for future research in the domain of automatic description generation of images and
video clips.

9

Part I

Foundations

11

2 Base Models and Metrics

In this chapter, we present important foundations such as basic concepts that we make
use of intensively in this thesis. First, we give a short overview of Deep Convolutional
Neural Networks (DCNNs) that extract representative features from input images or
videos and are a vital part in order to generate textual descriptions for said inputs. We
follow this with a quick introduction to language models that allow the processing and
generation of natural language in a machine learning setting. Furthermore, we explore
attention mechanisms in the realm of Natural Language Processing (NLP) and transfer
these concepts to the task of image captioning. Based on attention mechanisms, we
introduce the Transformer [137] architecture which we apply to our models in Part III
of this thesis. At the end of this chapter, we investigate different metrics that allow us to
evaluate generated textual descriptions against reference sentences written by humans.

2.1 Backbone Architectures

For extracting visual features, we include different DCNNs into our models. We only
give a short overview of the main feature extractor networks used in this thesis. In the
task of image description generation or video-to-text, a good understanding of the image
or video is needed in order to create reasonable captions. Thus, feature extractors like
DCNNs play an important role in all our models. In Part II, we process image features
from Inception-v3 [132] and ResNet [59] networks. In Part III, we utilize image and
video features from ResNet [59] and the Inflated 3D ConvNet (I3D [15]). We briefly
explore features from MobileNet-v2 [124] and DenseNet-121 [67] in Chapter 3. But as
these DCNNs are not employed in other models, we refer the reader to the respective
papers for more details.

2.1.1 Inception-v3

Inception-v3 [132] is based on the famous GoogLeNet [131] architecture. GoogLeNet
aka Inception-v1 both increased width and depth compared to DCNNs of that time.
However, it is computationally more efficient than the VGG-16 [125] while performing a
little bit better. Inception-v3 implements multiple tricks to increase the computational
efficiency again. First, the authors split 5 × 5 convolutions into two subsequent 3 × 3
convolutions. Therefore, they can reduce the number of parameters by 28%. Second,
they factorize some 3 × 3 convolutions into one 3 × 1 convolution followed by a 1 × 3
convolution, which reduces parameters by 33%. In total, Szgedy et al. present three
Inception modules that reduce the number of parameters in the network. By using
this technique, the network can have more layers while being less prone to overfitting.

13

2 Base Models and Metrics

Furthermore, they make changes to the auxiliary classifier from the original GoogLeNet
and change its purpose to be a regularizer. In addition, they replace traditional max
pooling operations (as used in AlexNet [79] and VGG [125]) with the efficient grid
size reduction. That is, they split a max pool operation into two halves: convolutions
with stride 2 and max pooling. This new operation is computationally less expensive
and keeps the network efficient. Finally, the whole DCNN is normalized with batch
normalizations [68]. Note that the Inception-v3 has a different input resolution than
most other DCNNs (299 × 299 vs. 224 × 224). We depict the Inception-v3 DCNN in
Figure 2.1.

Figure 2.1: Network architecture of the Inception-v3 [132] DCNN. This particular Inception-v3
is trained on the 1000 classes from ImageNet and a background class, hence, it
has 1001 output neurons. Image from the TensorFlow Cloud TPU documentation
homepage [31].

2.1.2 ResNet

He et al. [59] presented ResNets as an alternative to VGG [125] which are both deeper
but with lower computational complexity (i.e., the number of FLOPs is reduced). They
motivate their new network architecture that deeper networks should have at least the
same expressiveness as shallower ones. However, they show that a 34-layer network
has a higher error rate than an 18-layer network, for instance. Residual Networks (i.e.,
ResNets) follow a very simple idea: They introduce shortcut connections between every
two convolutional layers. The shortcut connection is merely an identity mapping. Thus,
the layers in between are able to learn the residual. We depict a residual block in
Figure 2.2, where x is the input to a residual block and the output is calculated as
f(x) + x. Note that f(x) can be an arbitrary operation. In a classical residual block
this operation consists of two convolutional layers with a ReLU non-linearity after the
first layer. The shortcut connection is then added channel-wise on top of the second
convolutional layer’s output.
Coming back to the previous example, the authors claim “that if the added layers [of the

14

2.1 Backbone Architectures

Input x

weight layer

weight layer

+f(x) + x

f(x) ReLU
x

ReLU

Figure 2.2: Visualization of an arbitrary residual block in the ResNet.

34-layer network] can be constructed as identity mappings, a deeper model should have
training error no greater than its shallower counterpart [e.g., an 18-layer network]” [59].
Additionally, the authors add batch normalization [68] layers after each convolution and
before every activation. Furthermore, every time the resolution is halved, i.e., when the
number of channels is doubled, we need to adopt the number of channels of the shortcut
connection as well. The authors implement this with a strided 1 × 1 convolution. In
Figure 2.3, we show a 34-layer ResNet with residual connections. Note that dashed
lines represent a residual connection combined with a convolution layer with a kernel
size of 1× 1, a stride of 2 and double the number of output channels as input channels.
Therefore, this convolution reduces the resolution while doubling the number of channels.
This ensures that both the number of channels and spatial resolution matches the other
computation stream in the add operation.

image

7
×

7
c
o
n
v
,

6
4
,

/
2

p
o
ol,

2

3
×

3
c
o
n
v
,

6
4

3
×

3
c
o
n
v
,

6
4

3
×

3
c
o
n
v
,

6
4

3
×

3
c
o
n
v
,

6
4

3
×

3
c
o
n
v
,

6
4

3
×

3
c
o
n
v
,

6
4

3
×

3
c
o
n
v
,

1
2
8
,

/
2

3
×

3
c
o
n
v
,

1
2
8

3
×

3
c
o
n
v
,

1
2
8

3
×

3
c
o
n
v
,

1
2
8

3
×

3
c
o
n
v
,

1
2
8

3
×

3
c
o
n
v
,

1
2
8

3
×

3
c
o
n
v
,

1
2
8

3
×

3
c
o
n
v
,

1
2
8

3
×

3
c
o
n
v
,

2
5
6
,

/
2

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

2
5
6

3
×

3
c
o
n
v
,

5
1
2
,

/
2

3
×

3
c
o
n
v
,

5
1
2

3
×

3
c
o
n
v
,

5
1
2

3
×

3
c
o
n
v
,

5
1
2

3
×

3
c
o
n
v
,

5
1
2

3
×

3
c
o
n
v
,

5
1
2

a
v
g

p
o
o
l

fc
10
00

Figure 2.3: Network architecture of the ResNet-34 [59] DCNN. Figure redrawn from [59].

2.1.3 I3D

In Chapter 7, we switch from using still images as inputs to videos. Traditional DCNNs
trained on the task of image classification have shown good results on image-related tasks
such as object detection [119] or image captioning (see Chapters 4 and 6). Yet, these
network architectures can still be used to extract image features on a frame-per-frame
basis and produce tolerable results in the task of video-to-text (see Chapter 7). However,
traditional DCNNs trained on the task of image classification are not optimal to catch
temporal dependencies on an inter-frame level. To remedy this problem, Carreira and

15

2 Base Models and Metrics

Zisserman [15] introduced the Two-Stream Inflated 3D ConvNet (I3D) that is trained
on the Kinetics Human Action Video [74] dataset.
The I3D network is based on the Inception-v1 [131] DCNN. First, the authors inflate

the 2D operations into 3D, that is, they inflate all filters and pooling layers into an
additional time dimension by expanding square filters (N×N) into cubic ones (N×N×
N). Second, they bootstrap the newly created 3D filters from 2D filters pre-trained on
ImageNet [122] by repeating the weights N times along the time dimension and scaling
the weights by 1

N . Third, they make some other small architectural design choices such
as not performing temporal pooling in the first two max-pooling layers. Also, the final
pooling layer uses a 2×7×7 max-pooling operation. Finally, as the name suggests, they
introduce two separate streams, i.e., one RGB stream as described above and one stream
that utilizes optical flow information. In Chapter 7, we only extract features with the
RGB stream as two-stream features did not yield better results. In Figure 2.4, we depict
the modified Inception-v1 network that allows for spatio-temporal feature extraction.

Figure 2.4: Network architecture of the RGB stream from the I3D [15] spatio-temporal DCNN.
“Inc.” stands for an Inception-v1 [131] block, “Rec. Field” is short for receptive
field. Figure taken from the original paper [15].

2.1.4 Data Layout

All our models in this thesis are implemented in the machine learning framework Ten-
sorFlow [2]. In particular, we implemented our models in both major versions 1 and
2. Inputs, intermediate results and outputs are commonly represented in mulidimen-
sional arrays in this work. These multidimensional arrays are also called tensors. For
example, a matrix is represented as a tensor with rank 2 within TensorFlow. Scalars in
TensorFlow have rank 0 and vectors rank 1.

16

2.2 Language Models

The input images to DCNNs are represented by 4-rank tensors with RB×H×W×C . The
first dimension is the Batch dimension, which refers to the number of samples passed
to any operation (i.e., the DCNN in this case). In this work, we usually omit the batch
dimension but discuss the batch size in the training details for each model. The batch
dimension is followed by two spatial dimensions (i.e., the Height and Width of each
image). The final dimension represents the number of Channels (e.g., for an RGB
image C = 3). We often refer to this last dimension as depth of the tensor. Different
layer types such as fully-connected layers and convolution layers often output tensors
with a new last dimension. For example, a fully-connected layer with 5 output neurons
projects inputs to outputs with a channel dimension size of 5. Same goes for the number
of filters in a convolution layer. Layers can also operate on other dimensions such as the
spatial dimensions. For example, pooling layers can reduce the spatial dimensions of an
input tensor.

There are some exceptions to the typical tensor rank of 4: In this thesis, we often
operate on sequences of words. If looking at the nature of text, we see that the two
spatial dimensions that are typical for images are not present in text. A sentence is
usually represented by a sequence of words. More specifically, sentences have a sequence
length dimension instead of spatial dimensions. Thus, we represent a sentence with N
words as a 3-rank tensor with dimensions B ×N × C.

2.2 Language Models

In this thesis, we combine the domain of understanding the contents of images with the
domain of Natural Language Processing (NLP). NLP is a widely studied topic [9, 99,
23, 108] and an essential part of this thesis. Therefore, in this chapter, we give a short
overview of the concepts for working with language.

2.2.1 Words, Tokens, and n-grams

Sentences and Words When working with language, we first need to define basic
entities and building blocks before introducing models for language processing. Second,
when we speak of language we mostly mean a single sentence, e.g., in the task of image
captioning, we generate a single sentence for a given input image. However, there is one
exception in this thesis: In Chapter 6, our goal is to generate a paragraph of text that
consists of multiple sentences. A sentence can be seen as a sequence of N words. We
denote a ground-truth sentence with

yS =
[
yS
0 ,y

S
1 , . . . ,y

S
N−1

]
(2.1)

in this work. We represent a word yS
t with a one-hot vector with depth |V| (the number of

words in the vocabulary V). Furthermore, yS
0 and yS

N−1 are the special start-of-sequence
and end-of-sequence words (see Section 2.2.2), respectively. As the name suggests, we
also call sentences captions in the task of image captioning.

17

2 Base Models and Metrics

Tokens As outlined before, a sentence is a sequence of words or tokens. A token is a
general building block for natural language and can stand for different things depending
on the context. If we tokenize a text fragment, we split it up into smaller units such as
words, subwords, or even characters. In this work, a token mostly is a word. However, in
Chapter 7.3 we make use of subword tokenization. Architectures like Transformers [137]
and RNNs/LSTMs [64] process natural language on a token level. Thus, multiple tokens
{yS

i }, i ∈ {0, . . . , N−1} form a sentence. We usually represent a token yS
i with a one-hot

encoded vector.

n-grams In this paragraph, we adapt some of the notations and definitions from Juraf-
sky and Martin [72, Chapter 4]. An n-gram is a sequence of n words. We call sequences
of 1 word, 2 words, and 3 words with the terms unigram, bigram, and trigram. In com-
parison to a token, a unigram is always a single word in our context (character n-grams
are sequences of n characters but we only consider word n-grams). When we speak of
n-grams, we mostly mean n-gram language models (LMs). A language model assigns
probabilities to sequences of words. Even though a n-gram LM is a much simpler model
than an RNN or LSTM language model, n-gram LMs have an important role in lan-
guage processing and are a foundation for language modeling. For example, we make
use of different length n-grams during the definition of the evaluation metrics for image
description generation in Chapter 2.4.

2.2.2 Language Preprocessing

In this thesis, we present multiple models and applications for translating images or
videos into a textual description. Accompanying datasets come with textual ground-
truth annotations for these images and videos. However, before we can utilize these
annotations for training, we need to preprocess the raw text data.

The first step is to change each ground-truth sentence to lowercase and then to tokenize
the sequence into word tokens. Second, these tokens are accumulated for the whole
dataset and sorted top-down by their frequency, i.e., we get a vocabulary with the most
common words having the smallest index. In all our use cases, we limit the vocabulary
V to have a maximum number of words or restrict the maximum number of words by
enforcing a minimum frequency for each word of the vocabulary. We replace words in
the ground-truth sentences that do not appear in the vocabulary with the unknown
token (<UNK>). As we mentioned earlier, for some experiments in the video-to-text
task, we employ subword tokenization. In this case, we do not build a vocabulary like
described above. For more details, we refer the reader to Chapter 7.3, where we describe
the concept of subword tokenization. Furthermore, we preprocess each ground-truth
sentence and add special tokens at the beginning and end of each sentence. We prepend
the start-of-sequence token (<S>) and append the end-of-sequence token (</S>) at the
beginning and end of each sentence, respectively. The special tokens <S>, </S>, and
<UNK> are also part of our vocabulary. First, we encode each individual token yS

t as a
one-hot vector with depth |V|. Second, yS

0 is the start-of-sequence token and yS
N−1 is

the end-of-sequence token. We do this to tell our LMs to start generating a sentence and

18

2.2 Language Models

on the other hand, the LM tells us to discard tokens after it emits an end-of-sequence
token. Thus, we represent each sentence as a sequence of one-hot vectors starting with
the special start-of-sequence token and ending with the special end-of-sequence token.

2.2.3 Word Embeddings

One-hot vectors have a fundamental flaw: Each word of the vocabulary is represented
with a vector that has a one at the index of the word and zeros otherwise. First, these
vectors are huge and do not carry a lot of information about the word itself, i.e., they
are maximally sparse and not dense. Second, each word has the same distance to every
other word. This leads to a problem since LMs cannot easily make connections between
similar or related words without having huge datasets to train on such as the Wikipedia.
Mikolov et al. [101] argue that continuous space LMs can have several advantages and
learn vector-space word representations. In this paper, they argue that their model
can learn the female/male relationship such that calculating the result of the vectors
for “King - Man + Woman” results in a vector that is very close to “Queen”. Later
Mikolov et al. [100] present the well-known Word2Vec model, which is able to learn even
better vector representations for words. They construct two models that learn to predict
a missing word given context words or predict preceding and posterior words given a
single word. These tasks contain an embedding layer that transforms one-hot encodings
into a continuous vector space that has a significantly lower dimension d than the length
of the vocabulary. These continuous vector representations also have the advantage that
words have different distances to each other. Synonymous words (e.g., dog and puppy)
are closer to each other than unrelated words. Depending on the dataset, use-case,
and training objective the words can get clustered by other similarity concepts than
synonyms.
Word embeddings are just linear projections that can be learned in parallel to some

surrogate tasks such as predicting a missing word. In our thesis, we employ word embed-
dings to project an input one-hot vector word yS

i into a vector-space word representation

WeyS
i , (2.2)

where We ∈ Rd×|V| with d ≪ |V| is the word embedding matrix that we learn from
scratch.
However, in our case, the surrogate task is the main task. For instance, for the

task of image captioning, we embed our one-hot vectors into a lower dimension with a
word embedding layer before feeding them to our LSTM language model. Vinyals et
al. [139] found that learning word embeddings from scratch yields a similar performance
as initializing them with pre-trained embeddings learned on a text-only dataset.

2.2.4 Basic Recurrent Neural Network Cell

In Part II of this thesis, we work with recurrent language generation models. These
models are constructed using Recurrent Neural Network (RNN) cells. As the name
suggests, these cells are applied in a recursive manner. This means that an RNN cell

19

2 Base Models and Metrics

shares its parameters along multiple calculation steps in a row. A basic RNN cell has
two learnable parameter matrices Wh and Wx and calculates an output hidden state
ht given an input xt and a hidden state ht−1 from the previous step. We index these
calculation steps, i.e., iteration steps with the variable t and calculate the new hidden
state for the current iteration step t as follows:

ht = tanh
(
Whht−1 +Wxxt

)
. (2.3)

A recurrent neural network computes the RNN cell for every iteration step given an
embedded input sequence. Thus, we say we can unroll an RNN cell along the time
dimension. Unrolling means that the same cell with the same weights is repeated, but
has different inputs for every iteration step. We denote the outputs as hidden states
and utilize them in two ways. First, we need them as an input for the computation
of the RNN cell in the next iteration step. Second, we use the hidden state as an
intermediate value to further process the result, e.g., we project the hidden state back
to the dimensionality of the vocabulary to predict a word. We depict a basic RNN cell
in Figure 2.5.

Input xt

WxxtWhht−1

+

tanh

Last hidden
state
ht−1

Hidden state
ht

RNN
Cell

Figure 2.5: Schematic illustration of a basic RNN cell. Arbitrary inputs and the hidden state
of the last iteration are both fed through a linear projection, summed up, and then
activated with a tanh non-linearity that yields a new hidden state.

2.2.5 Long Short-Term Memory Cells

The name RNN is a generic term for all kinds of recurrent cells. One example is the
basic RNN cell, which we introduced before. However, RNNs have some downsides that

20

2.2 Language Models

make them unpractical to use in LMs. If we look at the sentence “The grass is green”,
one can easily conclude the sentence with the word “green” given the context “The grass
is”. With their internal hidden state, RNN cells are also able to solve this task because
the distance between the information and the position where it is needed to predict
the word is short. However, as this distance grows, RNNs tend to forget contextual
information from previous iteration steps. Although in theory, basic RNN cells are able
to memorize this information, they have the tendency to forget contextual information
after a few iteration steps, i.e., they are not able to make a connection between words
that are far away from each other (long-range dependencies). Second, basic RNNs can
easily cause vanishing or exploding gradients during training if the number of iteration
steps is too big. When a gradient is small or big in magnitude and is propagated back
through multiple identical RNN cells, it may die out or explode and lead to numerical
instabilities.

To counteract these issues, Hochreiter et al. [64] presented the Long Short-Term Mem-
ory (LSTM) cell. The LSTM cell is also an RNN cell as it computes its outputs recur-
rently. To deal with exploding and vanishing gradients, the LSTM cell contains multiple
gates that control the flow of information. In Figure 2.6, we show a schematic model of
an LSTM cell. In particular, the LSTM cell contains a forget gate, an input gate, and
an output gate that control whether to forget the previous cell value, whether it should
consume its input, and whether to output a new cell value, respectively. These gates
are multiplicative layers that can keep the previous value or discard it. We calculate the
multiplicative factor of a gate with the sigmoid σ activation function. Thus, the gate can
forward any fraction (∈ [0, 1]) of its input. The calculation rule of an LSTM cell is more
difficult than the basic RNN cell as we need to calculate the gate values individually.
Furthermore, the LSTM cell has an internal cell state (ct) which memorizes information.
We can remove or add information to this cell state with the results of the cell gates.
The output ht and cell state ct for the iteration step t and input xt can be calculated as
follows:

it = σ
(
Wixxt +Wihht−1

)
(2.4)

ft = σ
(
Wfxxt +Wfhht−1

)
(2.5)

c̃t = tanh
(
Wcxxt +Wchht−1

)
(2.6)

ot = σ
(
Woxxt +Wohht−1

)
(2.7)

ct = ft ◦ ct−1 + it ◦ c̃t (2.8)

ht = ot ◦ tanh (ct) , (2.9)

where W· are learned parameter matrices of the LSTM cell and ◦ is the element-wise
product.

21

2 Base Models and Metrics

σ σ tanh σ

Whht−1

◦

◦

+

◦

tanh

ct−1

ht−1

ht

ct

xt

ft
it c̃t ot

LSTM Cell

Figure 2.6: Schematic illustration of an LSTM cell. Figure adapted to our nomenclature
from [102]. Multiple gates control whether to forget parts (ft) from the cell state,
whether to add parts (it) of the input to it, or which parts of the cell state should
be outputted (ot) as the new hidden state.

.

2.2.6 Combining Cells into Networks

In this thesis, we integrate recurrent neural networks into the decoder of our encoder-
decoder architectures. In all our cases, we generate language with a decoder network
that is fed with visual features from an encoder network. The name RNN suggests
that many RNN/LSTM cells are combined into a network. RNN cells typically are only
defined by their respective input and output dimension which we set to 512 in most cases.
However, in our models from Chapter 4 and Chapter 5, we only include a single LSTM
cell in the decoder network. Yet, we unroll (see Chapter 2.2.4) the LSTM cell multiple
times for every input word such that we consecutively re-evaluate the LSTM with the
same parameters but different inputs. Additionally, the decoder network contains a
word embedding and a fully-connected layer that projects hidden states back to the
vocabulary subspace.

In Chapter 6, we do not generate single sentences but multiple sentences, i.e., para-
graphs, at once. Therefore, we implement multiple LSTM cells in a hierarchical way, i.e.,
outputs from one hierarchy level (sentence-level) are inputs to the second hierarchy level
(word-level). Specifically, we unroll a sentence LSTM to generate vectors representing
individual sentences which are then initialization states for a word LSTM that unrolls
for every sentence to generate words. In addition, we can also stack RNN cells vertically
so that the output of one LSTM cell is input to another cell. Note that this is different
from the hierarchical way employed in Chapter 6. In hierarchical LSTM, we implement

22

2.3 Attention Mechanisms and Transformers

two layers of LSTM cells. In particular, we unroll an LSTM in the second layer for every
iteration step of the first LSTM layer.

2.2.7 Beam Search

In the inference case, i.e., when we try to predict a sentence for an unseen image,
we generate the sentence word by word. Normally, a LM is trained to maximize the
probability of a word given previous words and an input image. Thus, during inference
one way to generate a sentence word per word is to always predict the most likely word.
This method is called greedy sampling as the algorithm greedily predicts the most likely
word in every iteration.

Beam search on the other hand is an algorithm that tries to predict the b most likely
sentences. However, it is computationally infeasible to compute the probabilities for
every word and then subsequently compute all word probabilities for every possible
word from the previous iteration step. More specifically, for a sentence of length N , we
would need to evaluate the network |V|N−1 times, where |V| is the cardinality of the
vocabulary.

Beam search on the other hand always keeps the b most likely sentences up to that
point in memory. The probability of a sentence yS = [yS

0 , . . . ,y
S
t] up to an iteration

step t is calculated by multiplying each individual word probability:

p0:t =
t∏

i=0

p(yS
t |yS

0 , . . . ,y
S
t−1). (2.10)

In reality, we calculate the log probabilities log(p0:t) =
∑t

i=0 log(p(y
S
t |yS

0 , . . . ,y
S
t−1)) to

improve numerical stability. Beam search then keeps a list of the top b sentences up to
iteration step t − 1 and re-evaluates the sentence probability (log(p0:t) = log(p0:t−1) +
log(p(yS

t |yS
0 , . . . ,y

S
t−1))) for all words of the vocabulary at every iteration step for each of

the b sentences. The sentence probabilities are then sorted top-down and only the b most
likely sentences are kept for generating the next word. Beam search can help to explore
the space of possible answers while keeping the computational overhead reasonably low
(1 + (N − 1) · b≪ |V|N−1).

2.3 Attention Mechanisms and Transformers

In Part III of our thesis, we introduce models based on self-attention mechanisms by
using a Transformer architecture. This architecture has been a big leap in the machine
translation task, as it solves the problem of long-range dependencies with attention mech-
anisms. Furthermore, the architecture has set new state-of-the-art scores for multiple
tasks [29, 14, 24] and outperforms many LSTM systems.

23

2 Base Models and Metrics

2.3.1 Multiplicative Attention

Attention is a basic concept that was early introduced for the Neural Machine Trans-
lation (NMT) task [99]. Luong et al. presented an attention mechanism for NMT
architectures that is often referred to as multiplicative attention in the literature. In the
following, we explain the basic concept of the Luong attention, which we use as top-down
attention in the VQA task (see Chapter 5). Furthermore, the multiplicative attention
forms a basic building block for the scaled dot-product attention (see Chapter 2.3.2)
that is utilized in the Transformer architecture.
The motivation for the multiplicative attention in the machine translation task was

to attend to different parts of the source sentence while generating each word of the
translation. This is a huge advantage for the NMT task as sentences with the same
meaning have different structures for different languages. Thus, the model can focus on
different parts of the source sentence that correlate with the translation.
Transferred to more generic terms, we want to select elements of some matrix V by

importance given some query vector Q. For example, we want to weight parts of an
image differently given a question in the task of VQA. This can be done by calculating
weights α and subsequently weighting the elements of the value matrix.

Let the value matrix V ∈ RK×dV be an arbitrary feature map and the query vector
Q ∈ RdQ . Then, we can calculate an attention score for every spatial location Vi, i ∈
{1, . . . ,K} of a feature map

ai = watt • [Vi,Q], (2.11)

where [·, ·] concatenates two vectors, watt ∈ RdQ+dV is a learnable parameter vector, and
• is the dot-product. The attention scores a are normalized into a probability distribution
over all spatial locations {1, . . . ,K} with the softmax function ϕ(·):

α = ϕ (a) ,α ∈ RK . (2.12)

This yields attention weights α that sum up to 1, which allow us to re-weight the original
feature map according to the relative importance of each spatial location i

V̂ =

K∑

i=1

αiVi = α • V. (2.13)

This is a re-weighting of elements in the value matrix according to some query vector.
That is, the value matrix V ∈ RK×dV is reduced to V̂ ∈ RdV . This operation can replace
any final average-pooling operation in a CNN and can improve scores drastically because
the network “looks” at different parts of an image.

2.3.2 Scaled Dot-Product Attention

Vaswani et al. [137] introduced the scaled dot-product attention that is a variant of
multiplicative attention. In addition to query (Q ∈ RNQ×dK) and value (V ∈ RNK×dV),
this operation also has a key (K ∈ RNK×dK) as input. N· is the sequence length of
the inputs, e.g., of the query, key, and value inputs to the scaled dot-product attention.

24

2.3 Attention Mechanisms and Transformers

Note that the sequence length of keys and values must be the same (NK). Typically
NQ = NK in the encoder (see Section 2.3.4, Encoder) and NQ ̸= NK in the decoder (see
Section 2.3.4, Decoder). Furthermore, the depth dimension of queries and key matrices
need to match (dK). One can imagine this attention as a lookup table that looks for
the keys nearest to a query and then returns the corresponding values weighted by their
relative importance. We depict the scaled dot-product attention in Figure 2.7. The
scaled dot-product attention can be computed as follows:

V̂ = Attention(Q,K,V) = ϕ

(
QKT

√
dK

)
·V. (2.14)

In similar fashion to Section 2.3.1, ϕ
(
QKT
√
dK

)
calculates attention weights that sum up

to 1. These attention weights are then used to weight the values, which yields attended
values V̂ ∈ RNQ×dV . Vaswani et al. [137] argue that multiplicative attention has a
drawback in contrast to additive attention [9]. In particular, they suspect that larger
dimensions dK of the key K lead to an unstable behavior in the softmax function as
gradients become extremely small. As a consequence, they introduce a scaling factor√
dK , hence, the name scaled dot-product attention.

2.3.3 Multi-Head Attention

Vaswani et al. [137] extend the single scaled dot-product into a multi-head attention
(MHA). That is, they divide the dimension of the attention into multiple heads to
perform multiple attentions at once. Furthermore, the vanilla Transformer model [137]
operates on a single dimension dmodel rather than having different dimensions for dK
and dV . For the multi-head attention, we split dmodel into h parallel attention heads of
size dmodel

h ∈ N. The interested reader might have noticed that the scaled dot-product
attention from Chapter 2.3.2 does not have any learnable parameters. In contrast to
simple multiplicative attention (Chapter 2.3.1), we project queries, keys, and values into
the dimension dmodel

h for every attention head. This projection happens before feeding
them into scaled dot-product attention mechanism for every attention head.
After we performed this parallel scaled dot-product attention, we concatenate the

attended values and project them back to the model dimension dmodel. If we use h = 8
attention heads for a model dimension of dmodel = 512, we get dK = dV = dmodel

h = 512
8 =

64. We depict a multi-head attention block in Figure 2.8. The authors claim that the
multi-head attention allows the model to attend to different representation subspaces,
which would not be possible with a single scaled dot-product attention as averaging
effects would prevent this. We can calculate the multi-head attention as follows:

MultiHeadAttention(Q,K,V) = [head1,head2, . . . ,headh] ·WMHA, (2.15)

where
headi = Attention(Q ·WQ

i ,K ·WK
i ,V ·WV

i). (2.16)

Note that the actual number of columns in the input matrices Q,K,V is equal to
the model dimension. Therefore, for the MHA the input matrices are of following di-
mensions: Q ∈ RNQ×dmodel , V ∈ RNK×dmodel , and K ∈ RNK×dmodel . The projections

25

2 Base Models and Metrics

MatMul

Scale

Mask
(optional)

Softmax

MatMul

Query
Q

Key
K

Value
V

V̂

Figure 2.7: Graphical representation of the scaled dot-product attention operation. The mask
operation can hide inputs by effectively reducing the softmax attention score to
zero. The mask is only used in the decoder (see Chapter 2.3.4). Figure redrawn
from [137].

are fully-connected layers without biases and WQ
i ∈ Rdmodel×dK , WK

i ∈ Rdmodel×dK ,
WV

i ∈ Rdmodel×dV and WMHA ∈ Rh·dV ×dmodel . These parameters are the only learned
parameters in the multi-head attention module while the attention mechanism itself is
merely a calculation rule.

2.3.4 Transformers

The Transformer model is based on an encoder-decoder structure, which is commonly
used in NMT and image captioning tasks. In Part III, all our models and architec-
tures are based on the Transformer. In the following, we give a short introduction into
the Transformer architecture by describing its main components. We depict a vanilla
Transformer in Figure 2.9.

26

2.3 Attention Mechanisms and Transformers

Value
V

Key
K

Query
Q

Linear Linear Linear

Scaled Dot-Product
Attention

Concat

Linear Linear Linear

Scaled Dot-Product
Attention

Concat

Linear Linear Linear

Scaled Dot-Product
Attention

Concat

h

Linear

V̂

Figure 2.8: Schematic representation of the multi-head attention operation. Figure redrawn
from [137].

Encoder The encoder of a Transformer consists of N encoder blocks, which are all
built in the same way: A multi-head attention layer with subsequent layer normaliza-
tion, followed by a small feed-forward network (FFN), again with layer normalization.
Additionally, there is a skip connection before the multi-head attention layer to the first
normalization layer and before the FFN network and the second layer normalization.
We depict an encoder block within the gray box on the left side in Figure 2.9. Note
that an Add & Norm layer consists of the element-wise addition of the skip connection,
a layer normalization, and a dropout operation.

Decoder We depict the decoder of the Transformer on the right side in Figure 2.9. The
decoder also consists of N decoder blocks which are built in a similar manner as encoder
blocks. However, there are some key differences. First, the input to the decoder (named
as outputs in the Transformer model in Figure 2.9) is shifted to the right. This means,
that we prepend a start-of-sequence token and, thus, shift the sequence to the right.
The input to the decoder then goes through a masked multi-head attention layer, which
means that parts of the inputs can be masked out. This is important for text generation
as the decoder should not be able to look at words in the future during training. That
means, when processing a unigram with index i, the decoder can only look at unigrams
of the same sequence with index < i. Second, we feed the multi-head attention the key
and value from the encoder and the query from the masked multi-head attention. That

27

2 Base Models and Metrics

Inputs
Outputs

(shifted right)

Input
Embedding

Output
Embedding

+

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding +

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding

N×

N×

Decoder

Encoder

Linear

Softmax

Output
Probabilities

QKV

V K Q

QKV

Figure 2.9: Full Transformer architecture, which was introduced by Vaswani et al. Figure
redrawn from [137]. On the left side, we see encoder blocks while on the right side
are the decoder blocks. The input to the decoder (named as outputs) is shifted to
the right. For example, a sentence without a start-of-sequence token is shifted to
the right while a start-of-sequence token is prepended. The output probabilities on
the top of the decoder then represent the sentence without the start-of-sequence
token. We optimize these probabilities with a softmax cross-entropy loss during
training phase. In Chapter 7.4, we re-purpose this architecture for the task of
video-to-text translation.

28

2.4 Metrics

is, the decoder then weights features from the encoder given a query generated by the
attended decoder inputs. Finally, the decoder then outputs a sequence of vectors with
dimension ∈ Rdmodel which are fed through a linear layer that projects these vectors into
a vector with depth of the vocabulary’s size (|V|). A softmax function transforms these
outputs into probabilities, which are optimized with a softmax cross-entropy loss during
training. Note that the targets are the same as the decoder’s inputs but not shifted to
the right, i.e., without a start-of-sequence token.

Long-Range Dependencies The Transformer tries to solve one serious drawback of
RNNs, i.e., the inability to cope well with long-range dependencies. Even LSTMs, whose
main motivation was to solve this issue, still cannot resolve long-range dependencies over
many words. With the Tranformer’s MHA module, we can easily correlate any input
word with any other input word independently of their respective distance to each other.
Within the MHA, every input word is able to “see” every other input word.

Embedding of Tokens Similar to other models in the realm of NLP, we embed word-
s/tokens with a word embedding We into a lower-dimensional space to better seize word
properties such as described in Chapter 2.2.3.

Positional Encoding We already explored the advantage of Transformers, which allows
each word of a sequence to see each other word because of the properties of the MHA.
However, attention layers cannot get a sense of ordering as the input is a set of vectors
with no explicit ordering. Because of that, Vaswani et al. add a so-called positional
encoding onto the embedded sequences (see the bottom of Figure 2.9). The positional
encoding is a vector that is simply added on top of the embedding vector. Vaswani et
al. [137] present two types of positional encoding: a learned one and a fixed one. Most
modern works make use of the fixed positional encoding which consists of sine and cosine
functions of different frequencies:

PEpos,2i = sin
(pos

100002i/dmodel

)
(2.17)

PEpos,2i+1 = cos
(pos

100002i/dmodel

)
, (2.18)

where pos is the position index to encode and i the dimension as can be seen on the
y-axes in Figure 2.10. This figure shows the sine and cosine parts for all positional
encodings with dmodel = 64 (i.e., i ∈ [0, 31]) up to a maximum position of 31.

2.4 Metrics

As this thesis resides in the domain of NLP, we need a measure to assess whether
sentences (i.e., sequences of unigrams) are “good” or “bad”. The best way to evaluate
if a generated image description fits a given image is to ask humans to rate the caption

29

2 Base Models and Metrics

Figure 2.10: Visual representation of the positional encoding (PE) for sequences up to length
32. On top, we show cosine parts of the positional encoding according to Equa-
tion 2.18, while we depict the sinus parts according to Equation 2.17 of the PE
on the bottom. We inserted the black vertical bars to help to see the differences
between the cosine and sine parts of the PE. Visualization generated with code
adapted from 1.

quality. However, this method is time-consuming and very cost-intensive and cannot be
applied in an automatic way to a huge set of generated sentences. Yet, this problem
is not new to the machine learning community: In different tasks such as machine
translation [107] and text summarization [123] a system also needs to automatically
evaluate whether a generated sentence is good in comparison to some reference sentences
which were written by humans. Thus, even before the image captioning task was first
proposed, the machine translation community has had to come up with some possible
solutions to automatically evaluate candidate translations against some reference (i.e.,
ground-truth) sentences.

In the following, we give a short overview of metrics that we utilize to analyze the
performance of various models. This overview of metrics is based on their original
papers and adapted to our setting. We present metrics that were developed for machine

1https://www.tensorflow.org/text/tutorials/transformer#positional_encoding

30

https://www.tensorflow.org/text/tutorials/transformer#positional_encoding

2.4 Metrics

translation tasks (i.e., BLEU [108] in Chapter 2.4.1 and METEOR [10] in Chapter 2.4.3)
and for text summarization (i.e., ROUGE [89] in Chapter 2.4.2). Furthermore, we
explain the CIDEr [138] metric (see Chapter 2.4.4), which was developed for the image
captioning task. In addition, this metric has been shown to correlate better with human
judgments than the other metrics. Finally, we present the VQA accuracy metric, which
falls a little bit out of line. In contrast to the other metrics, this metric merely calculates
a modified form of the accuracy as the VQA task is modeled as a classification task.

2.4.1 BLEU-N

BLEU (Bilingual Evaluation Understudy) was proposed by Papineni et al. [108] to allow
for a quick way to evaluate machine translations. This evaluation metric is designed to
be cost-effective, thus, be automatic and not involve humans, nevertheless, correlate with
human judgement. At its essence, this metric merely calculates the precision of n-grams
occurring in reference sentences. The authors present the modified n-gram precision, a
modification to the traditional precision measure. If we look at the example from [108]
in Figure 2.11, we can easily compute precision by first counting the number of words
in the candidate sentence that occur in any of the reference sentences (Count(word)).
Second, we need to count the total number of words in the candidate sentence and
calculate the ratio between the two. However, this leads to a problem as the precision
for the candidate sentence in Figure 2.11 is 7

7 = 1, which is clearly no good score for the
given candidate sentence. Note that the precision is the same regardless of choosing the
first or the second reference sentence for comparison.

Candidate: the the the the the the the.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

Figure 2.11: Example candidate sentence and two reference sentences.

In contrast, the modified n-gram precision disallows the over-counting of words, i.e.,
words found in a reference sentence can be used up. Thus, we modify the first step by
clipping the count of found words by the maximum number of times a word is contained
within any reference sentence:

Countclip(word) = min(Count(word),Max Ref Count(word)). (2.19)

As a consequence, the modified n-gram precision for the example above becomes 2
7 . In

particular, the word the is contained twice in the first reference sentence and once in
the second reference sentence. Therefore, Max Ref Count(the) = 2 and the modified
n-gram precision evaluates to 2

7 .
It is not difficult to extend this approach from words to n-grams, i.e., n subsequent

words. Instead of counting occurrences of single words, we count whether each sequence
of n words is contained in any reference sentence. Furthermore, we only considered a

31

2 Base Models and Metrics

single candidate so far. However, we want to calculate the BLEU scores over a whole
corpus of samples. That means that for a single sample (e.g., an image from a dataset),
we generate one candidate sentence C. We denote all candidate sentences (one for each
sample) with Candidates. Thus, if we want to compute the modified n-gram precision,
we need to evaluate Countclip(n-gram) for each distinct n-gram within each candidate
sentence C and sum these counts up. Second, to compute the precision, we need to count
all n-grams of every candidate sentences. To summarize, we can define the modified
precision for n-grams of length n as

Pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)

∑
C′∈{Candidates}

∑
n-gram′∈C′

Count(n-gram′)
. (2.20)

Note that this formula counts all matching n-grams over all candidate sentences and
divides these matches by the unclipped count of all n-grams contained in the set of
candidate sentences. If the same n-gram occurs at multiple places within a candidate
sentence it is only counted once, i.e., n-gram ∈ C selects all distinct n-grams contained
in C. For example, the candidate sentence from Figure 2.11 contains the single unigram
(1-gram) the. Thus, Countclip(the) evaluates to 2 and Count(the) = 7. As Equation 2.20
describes, we sum up all counts of matches for every n-gram for all candidate sentences
C ∈ {Candidates} in the nominator. In the denominator, we sum up the counts of the
distinct n-grams within every candidate sentence C ∈ {Candidates}.

We can compute the BLEU-N scores by first computing the geometric average2 of
each modified n-gram precision Pn up to N :

N

√√√√
N∏

n=1

Pn = exp


log



[

N∏

n=1

Pn

] 1
N




 = exp

(
1

N
· log

(
N∏

n=1

Pn

))

= exp

(
1

N
·

N∑

n=1

logPn

)
.

(2.21)

Note that this transformation is only valid for Pn > 0. Finally, the BLEU-N score is
defined by

Bleu-N = BP · exp
(

1

N

N∑

n=1

logPn

)
, (2.22)

whereas BP is a sentence brevity penalty that penalizes candidate sentences which are
shorter than the reference sentence. The brevity penalty is defined as follows:

BP =

{
1, if c > r

e1−r/c, if c ≤ r.
(2.23)

2The geometric average of N data samples {a1, . . . , aN} is defined as
N
√∏N

i=1 ai.

32

2.4 Metrics

Here c is the length of the all candidate sentences and r is the effective reference corpus
length. We can obtain the effective reference corpus length by adding up all lengths (i.e.,
number of words) of the reference sentences that best match the length of the candidate
sentences. In this work, we mostly report the BLEU-4 score from all BLEU-N scores.

2.4.2 ROUGE-L

In contrast to BLUE, the ROUGE [89] (Recall-Oriented Understudy for Gisting Evalu-
ation) metric is recall-focused as the name suggests. Originally, ROUGE was developed
for evaluating summaries. In their paper, the authors presented four variants of ROUGE,
i.e., ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S. As it is common practice in
the image captioning community, we only evaluate the ROUGE-L score.
The main idea behind the ROUGE-L score is to count the longest common subse-

quence (LCS) between a candidate sentence and any reference sentence. With a can-
didate sentence n and a reference sentence yS , we can define the LCS-based recall and
precision:

RLCS =
LCS(n,yS)

|yS | (2.24)

PLCS =
LCS(n,yS)
|n| , (2.25)

whereas | · | is the length of the corresponding sequence. We can compute the ROUGE-L
score by combining the LCS-based recall and precision with the Fβ [121, 22] score:

ROUGE-L = Fβ =
(1 + β2) ·RLCS · PLCS

RLCS + (β2 · PLCS)
. (2.26)

In particular, the harmonic mean3 is a special case of the Fβ score . If we replace β
for 1, we see that F1 evaluates to the definition of the harmonic mean. Chinchor [22,
p. 25] argues that β is the relative importance which is given to recall over precision. In
fact, the Fβ score is based on Van Rijsbergen’s effectiveness measure E. In particular,
he derives the E measure such that it “... measures the effectiveness of retrieval with
respect to a user who attaches β times as much importance to recall as precision.” [121,
p. 133f.] In the MSCOCO evaluation script (see Chapter 2.4.5), β is set to 1.2 as default.
Thus, as the name of ROUGE-L implies, we weight recall slightly more than precision
in this metric.

2.4.3 METEOR

The authors of the METEOR [10] (Metric for Evaluation of Translation with Explicit
ORdering) metric specifically designed the metric to address a weakness of the BLEU

3The harmonic mean is defined as the reciprocal of the arithmetic mean of the reciprocals of given

samples. For example, the harmonic mean of precision P and recall R is defined as
(

P−1+R−1

2

)−1

=
2

1
P

+ 1
R

= 2
R+P
RP

= 2RP
R+P

.

33

2 Base Models and Metrics

metric. They argue that BLEU lacks the recall measure. Furthermore, BLEU only
considers higher-order n-grams (n > 2) as an indirect measure of grammatical correctness
instead of respecting word ordering. Also, BLEU does not pay attention to explicit word-
to-word matching (i.e., it does not consider simple morphological variants of the word
which have the same word stem). Furthermore, the geometric mean results in a score
of zero if any of the precision scores Pn = 0, i.e., the product

∏N
n=1 Pn in Equation 2.21

evaluates to zero. Also, in the transformed Equation 2.22, log(Pn) is undefined for
Pn = 0. Thus, in such cases, we set the BLEU score to zero if any of the precision scores
is zero. Because of this behaviour, the authors of METEOR [10] argue that BLEU scores
on the sentence level are meaningless.
In METEOR, for a candidate sentence, we compute a score against all reference sen-

tences, and only the best score is reported. In contrast to the aforementioned metrics,
METEOR creates an alignment between the two sequences, i.e., each unigram from the
candidate sequence is mapped to a unigram in a reference sentence or zero. Note that
in contrast to ROUGE, we align unigrams instead of the LCS. This alignment is done
in three stages subsequently, i.e., if we are unable to map a unigram in the first stage,
we may try again in the second stage and so on.
In the first phase of a stage a module tries to map the unigrams based on different

criteria. The “exact” module maps two unigrams in case of a direct match, e.g., com-
puters maps to computers, but not to computer. The second module is called “porter
stem”. This module only maps unigrams if they match after they were stemmed with
the porter stemmer [114] (e.g., in this case computers maps to computer). The last
module maps synonymous unigrams and we call it “WN synonymy”. Note that each
stage uses a different module, i.e., the first stage, the second stage and the third stage
map unigrams with the “exact” module, “porter stem” module, and “WN synonymy”
module, respectively.
The second phase of each stage selects the best alignment based on two criteria. Note

that there could be multiple alignments for a unigram, i.e., the unigram computer in a
candidate sentence can map to multiple instances of computer in the reference sentence.
However, we only want that a unigram maps to at most one unigram in the reference
sentence. Therefore, we select the largest subset of alignments. This subset is chosen
such that it only contains alignments abiding to the following: If there are more subsets
with the same cardinality, we choose the subset with the fewest crossings, i.e., literal
line crossings if we connect each unigram alignment between candidate and reference
sentence with a drawn line.
Similar to ROUGE-L (see Chapter 2.4.2), we can then calculate precision Palign and

recall Ralign. However, in contrast to other metrics and as stated above, we count the
number of unigram alignments. Banerjee et al. [10] then calculate a harmonic mean with
most of the emphasis on recall, i.e., they calculate Fβ with β = 3:

F3 =
10 · Palign ·Ralign

Ralign + 9 · Palign
(2.27)

In addition, METEOR introduces a penalty that is different from BLEU’s brevity
penalty. In a nutshell, METEOR favors sentences whose alignments can be grouped

34

2.4 Metrics

into the fewest amount of chunks. A chunk is a group of unigrams that are adjacent
to each other. For example, if the candidate sentence matches the reference translation
one-to-one, there is only one chunk, thus, there is a lower penalty. The upper bound for
the penalty is set to be 0.5, whereas the lower bound converges to zero, but is ultimately
decided by the number of unigrams matched. METEOR’s penalty is then defined as:

Penalty = 0.5 ·
(

chunks

unigrams matched

)3

(2.28)

To conclude, we can compute the METEOR score by

METEOR = F3 · (1− Penalty) (2.29)

2.4.4 CIDEr

Vedantam et al. [138] proposed a metric for image description evaluation and called
it CIDEr (Consensus-based Image Description Evaluation). They argue that metrics
like BLEU and ROUGE seem to correlate weakly with human judgement [34, 80]. Their
metric measures the consensus, that is, the similarity of a candidate sentence (i.e., a gen-
erated image caption) against a set of reference sentences that were written by humans.
Furthermore, they show that CIDEr “has a high agreement with consensus as assessed
by humans.”. Basically, CIDEr is a metric based on Term Frequency Inverse Document
Frequency (TF-IDF). In order to calculate a TF-IDF weighting over the whole corpus
for an n-gram k, we first calculate the term frequency (TF) for a reference sentence yS

i,j

as

TFk(y
S
i,j) =

ξk(y
S
i,j)∑

l∈Ω ξl(y
S
i,j)

, (2.30)

whereas ξk(y
S
i,j) is the number of times a n-gram k occurs in a reference sentence yS

i,j .
Note that i is the index of an image in the image corpus I and j denotes the j-th ground-
truth sentence of the corresponding image Ii. Furthermore, Ω is the vocabulary of all
distinct n-grams (contrary to the vocabulary of words/unigrams which we denote by V
in this work). Therefore, l is an n-gram from the vocabulary of all distinct n-grams Ω.
Thus, the TF assigns higher weights to n-grams that frequently appear in a reference
sentence for a given image. The inverse document frequency (IDF) then calculates to

IDFk = log

(
|I|∑

Ip∈Imin(1,
∑

q ξk(y
S
p,q))

)
, (2.31)

where I is the set of all images in the dataset. Similar to the traditional definition of
the IDF, we calculate the logarithm of the number of images (i.e., documents) in the
dataset divided by the number of images for which an n-gram is contained in any of its
ground-truth sentences. Intuitively, the IDF gives a higher weight to n-grams that are
rarer and a lower weight to n-grams that are more frequent in the corpus of reference
sentences. Therefore, less representative words are not seen as important as rare words
which might be more noticeable in the visual domain.

35

2 Base Models and Metrics

With these two measures, we can define the TF-IDF weighting for each n-gram con-
tained in a reference sentence yS

i,j as

gk(y
S
i,j) = TFk(y

S
i,j) · IDFk. (2.32)

Based on the TF-IDF weighting gk(·), Vedantam et al. [138] define the CIDErn score
that calculates the average cosine similarity between a generated candidate sentence ni

and all ground-truth sentences yS
i for an image Ii from the dataset as

CIDErn(ni,y
S
i) =

1

#Reference Sentences for Ii

∑

j

gn(ni) • g
n(yS

i,j)

∥gn(ni)∥ ·
∥∥∥gn(yS

i,j)
∥∥∥
. (2.33)

Here, gn(·) is a vector consisting of the TF-IDF values gk of all n-grams of length n. ∥·∥
denotes the magnitude of a vector and • is the dot-product.
Finally, we define the CIDEr score as the weighted average over all CIDErn metrics

up to N

CIDEr(ni,y
S
i) =

N∑

n=1

wn · CIDErn(ni,y
S
i). (2.34)

The weights are uniform with wn = 1
N and CIDEr considers n-grams up to a length of

N = 4.

2.4.5 MSCOCO Captions Evaluation Script

We evaluate our generated image and video descriptions extensively with the BLEU,
ROUGUE, METEOR, and CIDEr metrics. This is the same for all tasks (with the excep-
tion of VQA, see Chapter 2.4.6) discussed in this thesis. We want to be (1) comparable
to related works and (2) correctly evaluate our results. Therefore, we use an evaluation
script commonly used in image captioning, video-to-text, and related tasks. This official
evaluation script was released by Chen et al. [19] in conjunction with the release of the
Microsoft COCO captions dataset. On their GitHub page 4 they release a Python pack-
age that allows to easily evaluate generated captions against multiple reference captions.
This script automatically calculates the aforementioned metrics (BLEU-N, ROUGE-L,
METEOR and CIDEr) for generated sentences (i.e., candidate sentences) against a set
of ground-truth annotations.

2.4.6 VQA Accuracy

Previously, we discussed metrics that can automatically assess whether generated can-
didate sentences are “similar” to a set of reference sentences written by humans. In
most parts of this thesis, we use these metrics to compare generated sentences of mod-
els against other models or related works. However, one part of this thesis marks an
exception to this evaluation protocol. For the Visual Question Answering (VQA) task,

4https://github.com/tylin/coco-caption

36

https://github.com/tylin/coco-caption

2.4 Metrics

the official evaluation method is the VQA accuracy, which is a variant of the traditional
accuracy measure. In contrast to methods that explicitly generate image descriptions,
the VQA task is modeled as a classification problem, i.e., the n most probable answers
of a dataset are considered classes. This is an important fact, as most VQA models
(except ours) do not generate answers word by word, but only choose one answer.
The VQA-v2 dataset ([45]; discussed in more detail in Chapter 5.3) is annotated with

multiple questions per image and ten ground-truth answers for each question. In the
first version of the dataset, Antol et al. [5] defined that a generated answer is considered
100% accurate if at least three ground-truth answers match this answer. Otherwise, the
accuracy of a single answer is reduced proportionally

accuracyVQA(answer) = min(
humans that provided that answer

3
, 1). (2.35)

Following this variant of the accuracy, an answer can also be partially correct, i.e., 1
3 or

2
3 . With this definition, we can easily calculate the accuracy over the whole dataset by
summing up the accuracies for each question and dividing by the number of questions
asked.

37

Part II

Recurrent Language Generation
Models for Image Description

Generation

39

Overview

After the enormous success of deep convolutional neural networks (DCNNs) on the task
of image classification [79, 125], other applications in the domain of computer vision
quickly adopted DCNNs for extracting image features. In addition, recurrent neural
networks (RNNs) became popular in the machine translation community [23, 129, 9].
Inspired by these big leaps, Vinyals et al. [139] combined these two network types into an
image translation network, i.e., an architecture that allows generating natural language
descriptions for a given input image.

In the second part of this thesis, we address the task of generating textual descriptions
for images with recurrent language models, which exploit RNNs. RNNs, for example,
can take visual features as input and can be trained to maximize the probability of a
word given previous words and some conditioning. In our case, we condition the RNN
on the visual feature input. We consider different aspects of preconditioning (traditional
image captioning vs. visual question answering) and different types of RNNs (RNNs
that consist of a single layer of RNN cells as well as a hierarchical RNN).
To begin with, however, we make an exception and investigate more traditional ways

of generating language instead of employing RNNs: Templates. For a dataset consisting
of colonoscopy videos without written annotations, we create textual descriptions by
inserting detections into a template.
Second, we expand the vanilla image captioning approach by Vinyals et al. [139] to

improve description generation for images that contain certain objects, i.e., instances
of branded products. We introduce a new metric and in combination with multi-task
learning, we find that our model describes these branded products in almost all instances.
Third, we visit the task of visual question answering that answers questions about

images. One may think that this task is closely related to image captioning, however,
related works in this area do not generate answers recurrently. Rather, they try to
solve this problem with a classification approach. In contrast, we explore a model that
generates answers in a recurrent way and is even capable of generating new answers.
Finally, we attempt to generate paragraphs of text for medical images, i.e., chest

X-ray images. In contrast to the task of image captioning, we now need to generate
multiple sentences that form a paragraph. Particularly, we conduct experiments on
medical images with a hierarchical recurrent network and address data bias problems.

41

3 Template-Based Language Generation

This chapter falls out of line with the common theme of this part of our thesis. Partic-
ularly, in this chapter, we present a way of generating text for medical videos without
descriptive ground-truth annotations. To put it in other words, as we lack annotations for
the dataset used in this chapter, we will, nevertheless, try to produce plausible captions.
Template-based approaches have shown success [36] before RNNs have been success-
fully applied to the task of language generation. Thus, we present such an approach for
generating paragraphs that describe a video of a colonoscopy.

Furthermore, we explore the concept of transfer learning in the medical domain that
proves to be effective and, therefore, can be applied to other tasks. For example, in
Chapter 6, we initialize one of our hierarchical language generation models with pre-
trained weights from a chest X-Ray dataset.

This chapter is based on our Grand Challenge paper at ACM Multimedia 2019:

Automatic Disease Detection and Report Generation for Gastrointesti-
nal Tract Examination [53], Philipp Harzig, Moritz Einfalt and Rainer Lienhart,
ACM International Conference on Multimedia 2019, Nice, France, October 2019.

3.1 Motivation

In this section, we present our method for the automatic identification of diseases and
anatomical landmarks in the human digestive system. Gastroscopy and colonoscopy
are real-time examinations of the human gastrointestinal (GI) tract by using digital
endoscopes. Analyzing these videos is both time-consuming and needs a domain ex-
pert. Supporting these domain experts by machine learning techniques is one promising
approach to reduce costs.

This chapter gives a technical overview of our first place submission to the 2019 ACM
Multimedia Grand Challenge BioMedia: Multimedia in Medicine [63]. This challenge
focuses on automatically detecting normal findings, abnormalities and anatomical land-
marks in GI tract images composed from two different datasets. Pogorelov et al. [113]
presented a multi-class dataset consisting of GI tract images, which has greater variabil-
ity than other publicly available datasets [133, 13]. In addition, their dataset contains
other classes than only focusing on polyps, i.e., classes related to polyp removal and three
anatomical landmarks of the GI tract. Pogorelov et al. [112] also presented a dataset
consisting of classes that allow to assess whether the bowel was cleansed sufficiently
before colonoscopy.

43

3 Template-Based Language Generation

3.2 Dataset

We use the Medico 2018 dataset provided by the challenge organizers. The dataset
includes images for 16 classes (see first column of Table 3.3) and consists of a development
split and a test split with 5,293 and 8,740 images, respectively. The classes represent
anatomical landmarks, pathological findings or endoscopic procedures in the GI tract.
The Medico 2018 dataset comprises parts of the Kvasir [113] and the Nerthus [112]
dataset. The different classes are quite balanced with the exception of the out-of-patient
and instruments class, which only account to 0.076% (4 images) and 0.680% (36 images)
of the development split, respectively. For our models, we create a train and validation
split from the development set with a ratio of 3 : 1.
In addition, we use the Kvasir-v2 dataset [113] for two of our models to improve detection
accuracy. The Kvasir-v2 dataset provides 8000 additional images covering eight classes.
For the report generation subtask, an additional dataset consisting of six videos has been
provided by the BioMedia challenge organizers.

3.3 Method

We use two different CNNs to extract features from the input images: The MobileNet-
V2 [124] and the DenseNet-121 [67]. In order to detect the class of the input image, we
append two single fully-connected layers in parallel to the average-pooled feature map
F̃ ∈ R1×1×d of the CNN with d being the depth of the respective CNN’s feature map.
The development dataset is labeled as a single-classification problem, i.e., one correct
class per image. Thus, we train the first fully-connected layer ρ1 with a softmax (ϕ)
cross-entropy loss function

L(I,ycls) = −
[
log ϕ(ρ1(F̃))

]
• ycls (3.1)

with ycls being the one-hot encoded ground-truth label for training sample I while
• denotes the dot-product. Nevertheless, a single image could still have multiple correct
classifications, which we try to model with a second fully-connected layer. For instance,
an image could depict a pathological finding and an instrument. We train the second
fully-connected layer with a sigmoid cross-entropy loss, which allows us to output the
likelihood of every class instead of predicting the most probable class only. However,
predicting probabilities for independent classes does not impose a ranking on those
classes. Hence, we always use the prediction of the fully-connected layer trained with the
softmax cross-entropy loss first. We select the class-specific thresholds for the predictions
trained with the sigmoid cross-entropy loss by using the thresholds that yield the highest
F1-score on the validation set. If there are additional predictions after applying the class-
specific thresholds, we output those according to the softmax ranking.

Training details While training, we resize every image to a size of 256 × 256 and
extract a random crop of size 224 × 224. Additionally, for every image, we randomly

44

3.4 Generating Language Without Ground-Truth Data

decide whether to rotate the image by 90◦, to flip it horizontally, or to flip it vertically,
which results in eight possible configurations for every input image.

We employ a two-stage training. In the first stage, we freeze the weights of the
feature extractor CNN and only train each of the two separate fully-connected layers
with the softmax loss and sigmoid loss, respectively. We use the Adam [75] optimizer
with a learning rate η = 0.001 and train for up to 100 epochs with early stopping. In
the second stage, we unfreeze the weights of the CNN and train with η = 0.0001 and
an exponential learning rate schedule, which decays the learning rate by 0.5 every 20
epochs. In the fine-tuning stage, we also use an L2 regularization loss with a multiplier
of 1·10−4 for all convolution and fully-connected layer weights. We select our final model
with an early stopping strategy, i.e., we choose the model with the best accuracy on the
validation set.

3.4 Generating Language Without Ground-Truth Data

Medical report generation is a task with which is dealt in other areas as well. For
instance, with the release of the Indiana University X-ray dataset [28], many works
deal with connecting natural language and chest X-ray images. In particular, Jing et
al. [70] use a hierarchical Long Short-TermMemory (HLSTM) [77] model, which allows to
generate multiple sentences to form a paragraph that reflects a doctor’s report. However,
in contrast to our problem, this dataset [28] contains chest X-ray images combined with
natural language reports of doctors. We, however, cannot use a language model like a
RNN, trained on natural language paragraphs.

The provided dataset contains six videos which have a duration between 1 s–311 s (39–
7783 frames) and from which we extract each frame with the FFmpeg library. Then,
we use our trained model to predict the class for each frame. Given a frame index
i, we smooth the predictions over 30 frames in the past and future using a simple
algorithm: Given the future and past frames (i.e., frames with indices ∈ [max(0, i −
30), . . . , i, . . .min(num frames − 1, i + 30]), we determine the most probable prediction
with majority voting on outlier-free class predictions for the past window and future
window consisting of 31 frames each (each window includes the current frame index i):
First, we remove outliers by normalizing each prediction1 of both the past and future
windows. We then remove all predictions from the windows, which have an absolute
normalized score of ≥ 3. After we removed the outliers, we can determine the most
probable prediction for each window of 31 frames. Given these two windows, we can
determine the smoothed prediction of the current frame i based on following rules:

• If the prediction for frame i is the same as the most probable future prediction
and different from the most probable past prediction, we change the classification
result of our smoothed prediction to the prediction for frame i.

1We normalize all raw predictions X := ρ1(F̃) by calculating X−E[X]
σ(X)

, i.e., we enforce zero mean and

a standard deviation σ(·) for all predictions. E[·] and σ(·) are computed for the current window of
predictions.

45

3 Template-Based Language Generation

• Otherwise, we keep the prediction of the last frame i− 1 for the current frame i.

For each continuous sequence of frames for which the same classification result was
predicted, we create a so-called video section. For example, we identified 19 consecutive
video sections in Figure 3.3.
In addition, we use class activation maps (CAM) [160] to localize class-specific image

regions, i.e., we infer the regions that contributed most to the classification outcome.
The CAM can be seen as a probability distribution over the DenseNet-121’s unpooled
output feature map F ∈ R8×8×d (our input frames during video evaluation are resized to
256× 256). We average these probabilities over each video section that we identified in
the video. By using these averaged probability distributions, we then identify the area
(one of top-left, top-right, bottom-left, bottom-right or center) that seems to be mostly
responsible for the classification. We visualized this process in Figure 3.1.

Our final report for each video consists of three sections, (1) the main findings, (2)
a brief summary and (3) a detailed summary. In the main findings, we provide the
two most probable classifications over the whole video sequence together with their
respective frequency of occurrence. Second, we provide a brief summary which explains
all consecutive classifications of video sections in a chronological order. Finally, we give
a detailed summary that describes every event within the video sequence with an exact
time span, the classification result and the spatial location in which the event has been
detected with the highest probability.

Table 3.1: Results of all our models on the detection (detection-ver?) and efficient detection
(speed-ver?) subtasks. detection-ver2 is our model with the best performance ac-
cording to the MCC score. In Table 3.2, we list the individual times for the efficient
detection subtasks. We report the true positives (TP), true negatives (TN), false
positives (FP), false negatives (FN), precision, recall, specificity, F1 and MCC met-
rics. The specificity is also known as the true negative rate (TNR) and defined as

TN
TN+FP .

model TP TN FP FN precision recall specificity F1 MCC

detection-ver1 8291 130609 446 446 0.94442 0.90053 0.99664 0.91054 0.94332
detection-ver2 8419 130737 318 318 0.89897 0.88458 0.99752 0.88471 0.95974

speed-ver1 8108 130426 629 629 0.86063 0.85300 0.99514 0.85142 0.92009
speed-ver2 8375 130693 362 362 0.89534 0.88129 0.99713 0.87993 0.95429

hardware 8108 130426 629 629 0.86063 0.85300 0.99514 0.85142 0.92009

3.5 Results

For our submitted models, we use two different training datasets. For the -ver1 models,
we use 75% (3969 images) of the provided Medico development dataset for training while
keeping 25% for validating our model and selecting the best performing one. We extend
the training split by the Kvasir-v2 [113] dataset (3969 + 8000 = 11969 images) for our
-ver2 models.

46

3.5 Results

Figure 3.1: Average class activation map (CAM) for a video segment together with an overlay
describing our five areas of interest. This CAM is of size 8× 8 and upscaled to the
original image size of 512×512. The area with the highest attention score is chosen
as the most interesting area within the current video segment. Note that the region
scores for each area of interest are the mean of activations over the respective area.

Table 3.2: Official timings for our models. All times t are measured in milliseconds (ms). fps
stands for frames per second. The times for the model hardware were measured by
the workshop organizers and the machine configuration is unknown. speed-1 and
speed-2 times were measured on a single NVIDIA TITAN X (Pascal) GPU.

model tavg tmin tmax fpsavg fpsmin fpsmax

speed-ver1 0.3087 0.1219 18.1812 3238.87 55.00 8204.27
speed-ver2 0.3100 0.1342 17.3601 3226.04 57.60 7453.23

hardware 0.7862 0.1090 9.3824 1271.98 106.58 9175.40

47

3 Template-Based Language Generation

3.5.1 Detection Subtask

We submit two models for the detection subtask, namely
detection-ver1 and detection-ver2. We train detection-ver1 with a MobileNetV2 with
a width multiplier of 1.4. Even though the MobileNetV2 is designed as a mobile archi-
tecture, we find it to perform better than a DenseNet-121 and a DenseNet-201 when only
using the train split of the Medico development dataset. For detection-ver2, we use the
DenseNet-121 CNN that achieves better results on the validation split. We depict our
results in Table 3.1 and see that detection-ver2 performs better for almost every metric
except precision, recall and the F1-score. As we can see in Table 3.3 this is caused by the
underrepresented out-of-patient class, which does not get detected by the detection-ver2
model.

Our models are able to output multiple detections, e.g., there might be cases where
a finding and an instrument is detected. However, evaluation for multiple classes is
constrained as there are no multi-class annotations as of now.

Table 3.3: Main metrics listed by class. We report the results of models detection-ver1 and
detection-ver2 seperated by /. We report the true positives (TP), true negatives
(TN), false positives (FP), false negatives (FN), precision, recall, specificity and F1
metrics. The specificity is also known as the true negative rate (TNR) and defined
as TN

TN+FP .

TP TN FP FN precision recall specificity F1

blurry-nothing 37/35 8698/8698 0/2 2/2 0.949/0.946 1.000/0.946 1.000/1.000 0.974/0.946
colon-clear 1065/1065 7660/7634 0/0 12/38 0.989/0.966 1.000/1.000 1.000/1.000 0.994/0.982
dyed-lifted-polyps 520/540 8101/8130 36/16 80/51 0.867/0.914 0.935/0.971 0.996/0.998 0.900/0.942
dyed-resection-margins 535/564 8122/8142 29/0 51/31 0.913/0.948 0.949/1.000 0.996/1.000 0.930/0.973
esophagitis 462/543 8132/8180 94/13 49/1 0.904/0.998 0.831/0.977 0.989/0.998 0.866/0.987
instruments 131/125 8464/8464 142/148 0/0 1.000/1.000 0.480/0.458 0.984/0.983 0.649/0.628
normal-cecum 570/582 8136/8149 14/2 17/4 0.971/0.993 0.976/0.997 0.998/1.000 0.974/0.995
normal-pylorus 560/561 8171/8176 1/0 5/0 0.991/1.000 0.998/1.000 1.000/1.000 0.995/1.000
normal-z-line 512/562 8082/8162 51/1 92/12 0.848/0.979 0.909/0.998 0.994/1.000 0.877/0.989
out-of-patient 1/0 8735/8735 1/2 0/0 1.000/0.000 0.500/0.000 1.000/1.000 0.667/0.000
polyps 365/373 8261/8295 9/1 102/68 0.782/0.846 0.976/0.997 0.999/1.000 0.868/0.915
retroflex-rectum 184/179 8535/8544 8/13 10/1 0.948/0.994 0.958/0.932 0.999/0.998 0.953/0.962
retroflex-stomach 394/394 8338/8336 3/3 2/4 0.995/0.990 0.992/0.992 1.000/1.000 0.994/0.991
stool-inclusions 494/468 8221/8181 12/38 10/50 0.980/0.903 0.976/0.925 0.999/0.995 0.978/0.914
stool-plenty 1956/1886 6771/6772 9/79 1/0 0.999/1.000 0.995/0.960 0.999/0.988 0.997/0.979
ulcerative-colitis 505/542 8182/8139 37/0 13/56 0.975/0.906 0.932/1.000 0.996/1.000 0.953/0.951

3.5.2 Efficient Detection Subtask

Similar to the detection subtask, we submitted two models for the efficient detection
subtask, which make use of the two different dataset variants, which we proposed in
Section 3.5. We use a MobileNetV2 with a width multiplier of 1.0 for our efficient detec-
tion models, which allows for faster detection times while sacrificing a bit of accuracy.
However, the Matthews correlation coefficient2 (MCC) score for the model speed-ver2
is almost on par with the detection-ver2 model. In contrast, when using the smaller

2The Matthews correlation coefficient is a specific application of the Pearson correlation coefficient to
a confusion matrix.

48

3.5 Results

Main findings:
================
The video mostly shows esophagitis (70.85%), followed by blurry-nothing (14.88%).
Brief summary:
================
The video sequence shows the following events in this chronological order: colon-clear, blurry-nothing, esophagitis, normal-z-line,
esophagitis.
Detailed summary:
================
FROM - TO Description of current time period within the video.
00:00-00:00 An inflammation of the esophagus is visible mostly in the center (Esophagitis).
00:00-00:01 A clear colon can be seen mostly in the center.
00:01-00:02 An inflammation of the esophagus is visible mostly in the center (Esophagitis).
00:02-00:04 A clear colon can be seen mostly in the center.
00:04-00:09 The image is blurry and it is hard to identify what currently can be seen.
00:09-00:09 Instruments are visible within the current section of the video mostly in the bottom-left.
00:09-00:09 The image is blurry and it is hard to identify what currently can be seen.
00:09-00:10 retroflex-rectum mostly in the top-left.
00:10-00:11 The image is blurry and it is hard to identify what currently can be seen.
00:11-00:15 An inflammation of the esophagus is visible mostly in the center (Esophagitis).
00:15-00:15 A normal z-line can be seen mostly in the top-right.
00:15-00:31 An inflammation of the esophagus is visible mostly in the center (Esophagitis).
00:31-00:32 The image is blurry and it is hard to identify what currently can be seen.
00:32-00:44 An inflammation of the esophagus is visible mostly in the center (Esophagitis).
00:44-00:46 A normal z-line can be seen mostly in the center.
00:46-00:47 An inflammation of the esophagus is visible mostly in the top-right (Esophagitis).
00:47-00:48 Dyed resescected margins can be seen mostly in the top-left.
00:48-00:49 Instruments are visible within the current section of the video mostly in the bottom-left.
00:49-00:51 An inflammation of the esophagus is visible mostly in the center (Esophagitis).

Figure 3.2: Generated report for 3e3a7ac0-4244-46cc-89a1-44ce84dd1ccf.avi. This report
matches with the smoothed prediction (bottom bar) of Figure 3.3.

dataset, i.e., only the train split of the Medico development dataset, the performance
decreases by over two percent when using the MobileNetV2 with the smaller width
multiplier. In Table 3.2, we list the times our models take to classify a single image.
speed-ver1 and speed-ver2 are our submitted models with an average detection time for
a single image of 0.3087ms and 0.3100ms, respectively. We measured those times on a
dual-CPU workstation with 48 threads and a single NVIDIA TITAN X (Pascal) GPU.
The hardware model is the same as speed-ver1, but was submitted to the organizers of
the challenge as a Docker image to be comparable with other submissions in terms of
hardware configuration. In this disclosed hardware setup, the average processing time
per image takes longer with 0.7862ms, but the minimal processing time for an image is
shorter with 0.1090ms compared to 0.1219ms for model speed-ver1.

3.5.3 Report Generation

For generating reports, we used the detection-ver1 model from Section 3.5.1. As we al-
ready described in Section 3.4, we extracted all frames for each given video and predicted
their most probable class label. We depict such a classification result for one video in
Figure 3.3, where the top bar shows the raw classifications for every frame. The bottom
bar shows the predictions which were smoothed over a window of 30 frames in the fu-
ture and past. In the figure, we also depict one image representative for each extracted
video section. Together with a text template library and identifying the region that
mostly contributed to the classification outcome, we generated a detailed summary of
each video. We depict one such report combined with main findings and a brief summary
in Figure 3.2.

49

3 Template-Based Language Generation

0 200 400 600 800 1000 1200

fram e #

blurry-nothing

colon-clear

dyed-lifted-polyps

dyed-resect ion-m argins

esophagit is

inst rum ents

no-predict ion

norm al-z-line

out -of-pat ient

ret roflex-rectum

ret roflex-stom ach

stool-plenty

ulcerat ive-colit is

Figure 3.3: Resulting classifications on a per frame basis for 3e3a7ac0-4244-46cc-89a1-
44ce84dd1ccf.avi. The upper bar shows the raw classifications for every frame
within the video. The bottom bar shows the classification smoothed over a time
period of 30 frames. We also depict one example frame for each smoothed section
within the video.

Note that the reports were not evaluated by the challenge organizers because no
ground-truth annotations were available. Also, humans did not rate the reports in the
challenge. For the report generation subtask, the challenge organizers did not impose
rules or define the desired form of the textual reports. Rather, we did define the form
of the textual report generated in Figure 3.2.

3.6 Summary

In this chapter, we presented an architecture using a DCNN to predict abnormalities and
diseases from GI tract images. To improve our classifications, we employed augmentation
and examined different CNN feature extractors to find models that perform best given
two constraints: Inferring the best possible predictions and to return the predictions
as fast as possible while not sacrificing too much detection accuracy. In addition, we
expanded our architecture to automatically generate a detailed report for a given video
of a gastroscopy or colonoscopy. This report also describes in which spatial location of
the video the findings were observed.

50

4 Automatic Description of Images with
Branded Products in Natural Language

After we introduced a model that is able to generate a report from a video by inserting
detections into text templates, we will now focus on the task of generating descriptions
from scratch. First, we limit the number of sentences to one, i.e., we want to generate
a single sentence for a given image. This task is often referred to as image captioning.
Second, we want to learn a model that is able to generate sentences from scratch in an
end-to-end model. That is, similar to other tasks working with DCNNs, we do not want
to implement a model that acts on predefined rules (as we did in Chapter 3), but learns
to generate language on its own.

This chapter is based on the following two publications:

Multimodal Image Captioning for Marketing Analysis [50], Philipp Harzig,
Stephan Brehm, Rainer Lienhart, Carolin Kaiser and René Schallner, IEEE Confer-
ence on Multimedia Information Processing and Retrieval 2018, Miami, FL, April
2018.

Image Captioning with Clause-Focused Metrics in a Multi-Modal Set-
ting for Marketing [57], Philipp Harzig, Dan Zecha, Rainer Lienhart, Carolin
Kaiser and René Schallner, IEEE Conference on Multimedia Information Process-
ing and Retrieval 2019, San José, CA, March 2019.

Automatically generating descriptive captions for images is a well-researched area in
computer vision. However, the focus lies on describing everyday situations rather than
specific situations such as persons interacting with branded products. Furthermore, ex-
isting evaluation approaches focus on measuring the similarity between two sentences
disregarding fine-grained semantics of the captions. In our setting of images depicting
persons interacting with branded products, the subject, predicate, object, and the name
of the branded product are important evaluation criteria of the generated captions. Gen-
erating image captions with these constraints is a new challenge, which we tackle in this
chapter. By simultaneously predicting integer-valued ratings that describe attributes
of the human-product interaction, we optimize a deep neural network architecture in a
multi-task learning setting, which considerably improves the caption quality. Further-
more, we introduce a novel metric that allows us to assess whether the generated captions
meet our requirements (i.e., subject, predicate, object, and product name) and describe
a series of experiments on caption quality and how to address annotator disagreements
for the image ratings with an approach called soft-targets. We also show that our novel

51

4 Automatic Description of Images with Branded Products in Natural Language

clause-focused metrics are applicable to other image captioning datasets, such as the
popular MSCOCO dataset.

4.1 Related Work

Traditional Approaches for Image Description Generation The machine-learning com-
munity has put quite a lot of research in ranking descriptions for given images [44, 65].
These methods usually embed images and descriptions into the same vector space, such
that matching captions lie close to their corresponding image. Socher et al. [127] use
convolutional neural networks and dependency trees to embed images and sentences into
the same space. Early attempts which try to generate captions from images have not in-
corporated RNN networks. Farhadi et al. [36] try to infer triplets (object, action, scene)
from image features which are then converted into text. Li et al. [85] also use image
features to compose sentences from scratch by using n-grams collected from a web-scale
text corpus.

Recurrent Image Captioning The generation of image descriptions by recurrent neural
networks is part of recent research. Vinyals et al. [139, 140] use this approach in form
of an LSTM network. Furthermore, Karpathy et al. use a bidirectional RNN [73] for
generating captions. In contrast to Vinyals et al., Karpathy et al. gradually extend
their technique to not only describe a whole image, but parts of the image which they
call dense captioning [71]. For the task of activity recognition, image captioning, and
video description, Donahue et al. [32] provide another example of successfully applying
recurrent sequencing models. Kiros et al. [76] also use an encoder-decoder approach,
where they embed images and sentences in the same common space and use an LSTM
for encoding the sentences. Hendricks et al. [61] go one step further and describe novel
concepts not contained in the training images by incorporating information from image
datasets and text corpora independently from each other.

Soft-Targets for Classification Using soft-targets in a classification setting has also
been explored by Teney et al. [135]. In a different task called visual question answering,
they face a classification problem, where multiple annotators gave an answer to a question
regarding the content of an input image. Several thousand unique answers given by the
annotators constitute the possible classes. Obviously, annotators do not always agree
on the same answer, hence, this classification problem was modeled using soft-targets
(probability distributions of each answer) given the relative frequency of given answers.

Multi-Task Learning Multi-task learning (MTL) is a long-studied domain in machine
learning (cf. Caruana [16]). Luong et al. [98] work on MTL with focus on sequence-to-
sequence learning. They introduce three different MTL settings for sequence-to-sequence
models, i.e., the one-to-many setting, the many-to-one setting, and the many-to-many
setting using multiple decoders and encoders. Our work falls into the category of one-
to-many MTL setting, i.e., we use the same encoder (CNN) and multiple decoders to

52

4.2 Show and Tell Model

compute three image ratings and a caption from image features. Dong et al. [33] in-
troduce another work that employs multi-task learning in a natural language processing
setting. In particular, they present a model that translates a source sentence into mul-
tiple languages.

4.2 Show and Tell Model

LS
T
M

LS
T
M

LS
T
M...

LS
T
M

image

Figure 4.1: The architecture of the original Show and Tell model. Image taken from [139] and
adapted to our nomenclature. At iteration step t = −1, we precondition the LSTM
cell with the embedded image features from the encoder DCNN. Then, at iteration
step t = 0, we feed the LSTM with yS

0 , which is the special start-of-sequence token
<S>. Given this special token and the image preconditioning, we want to predict
the first real word of the sentence (see output n1 for input token yS

0). A softmax
cross-entropy loss (depicted on the top) then tries to maximize the probability of
the output n1 given the ground-truth token yS

1 . The same LSTM cell is repeatedly
fed with the embedded sentence tokens WeyS

t until we feed the second to last token
yS
N−2. Given this token, we want to predict the last token of the sentence, which

is always the special end-of-sequence token </S>.

Our model is based on the popular Show and Tell model by Vinyals et al. [139]. We
base the following explanation on their work. Similar to their architecture, our model
follows an encoder-decoder design pattern. For image captioning, this architecture was

53

4 Automatic Description of Images with Branded Products in Natural Language

inspired by prior works in machine translation [23, 129, 9], i.e., translating text from one
language into another language. On an abstract level, the encoder extracts information
from one modality (e.g., image or video) into an abstract feature vector, while the
decoder decodes this information back into the desired target modality (e.g., language).
We visualize an overview of this architecture in Figure 4.1.

Encoder In the case of image captioning, Vinyals et al. replace the LSTM encoder
network with a traditional CNN network, i.e., the Inception-v3 CNN. We employ a
pretrained Inception-v3 CNN. Like other CNNs, this network does perform well on
the task of image classification, i.e., it produces a rich image representation in order
to accurately classify images. Thus, we remove the fully-connected classification layer
because we want to utilize this representation. As a result, this encoder CNN encodes the
contents of an image I ∈ R299×299×3 into a feature map F ∈ R8×8×2048 which contains
semantic information about the depicted scene. We average-pool the feature map over
the spatial dimensions, i.e., we average over the first and second dimension. This yields
a feature vector of size 2048 which we embed into a space with dimension 512 with a
fully-connected layer. This so-called image embedding maps image features into a joint
multi-modal embedding space. This embedding space is shared with the language part
of the model (see the following decoder paragraph).

Decoder Prior works in machine translation use RNN networks to model the encoding
and decoding of natural language. RNNs are an obvious choice for modeling sequences
of tokens (i.e., natural language) of varying length. For the task of image captioning, we
want to generate a short description (i.e., caption) that matches the contents of a given
image I. For every image there are one or more ground-truth sentences

yS =
[
yS
0 , . . . ,y

S
N−1

]
, (4.1)

where N is the variable number of words within the sentence. Each word yS
i is repre-

sented by a one-hot vector encoding, i.e., we construct a vector with zeroes except for a
one at the index of the word within the vocabulary. We embed each word with a word
embedding matrix We into the same joint multi-modal embedding space as our image.
Note however, that the word embedding and image embedding do not share weights as
their respective source spaces are substantially different.

In particular, Vinyals et al. [139] model the decoder with an LSTM network [64]. The
LSTM network yields a hidden state/output for every embedded word. We forward this
resulting hidden state through a fully-connected layer which yields a vector nt+1 for the
ground-truth word yS

t at iteration step t. This fully-connected layer has |V| neurons,
i.e., it produces a score for every word within the vocabulary V. Therefore, the vectors
n are of size |V|. Note that the image embedding from the encoder network serves
as an initialization vector for the LSTM cell. As the embedded image features have
the same dimensions as embedded word vectors, we can call the LSTM cell once with
the embedded image features at iteration step t = −1 before feeding the ground-truth
sentence or before generating the caption word by word.

54

4.2 Show and Tell Model

Preprocessing of Inputs Before training the model, we need to modify our ground-
truth sentence so we can both optimize our model to generate the most probable sentence
and later predict a sentence for an unseen image. To do so, we prepend a special
start-of-sequence token <S> and append a special end-of-sequence token </S> (see also
Section 2.2.2). Note that as a consequence the sentence length N is now increased
by 2. Thus, when optimizing the model for an image-caption pair, yS

0 is always the
start-of-sequence token and yS

N−1 is always the end-of-sequence token. This has the
advantage that we can feed the model with an image and the start-of-sequence token in
order to predict a sentence word by word in the inference case (see subsection predicting
captions).

Training the model During training, we feed the ground-truth words at every word
index of the sentence. We then try to maximize the probability of the correct description
given an image I:

θ∗ = argmax
θ

∑

(I,yS)

log p(yS |I; θ), (4.2)

where θ are the parameters of the model. As our sentence has an arbitrary length N ,
we can apply the chain rule to model the joint probability

log p(yS |I) =
N−1∑

t=0

log p(yS
t |I,yS

0 , . . . ,y
S
t−1) (4.3)

for our ground-truth sentence yS . Note that we dropped θ for convenience. Because,
we always prepend the special start-of-sequence token to our ground-truth sentences at
index t = 0, the probability of p(yS

0 |I) is always 1. Thus, the joint probability does
not change regardless of whether we set the starting point of t to 0 or 1 in the sum in
Equation 4.3. We already explored a way to implement this joint probability for our
model, namely an RNN network with LSTM cells.

Before predicting captions for unseen images, we need to optimize our model for each
image-caption pair. As we already outlined, we first initialize the decoder’s LSTM cell
with the embedded image from the encoder DCNN at iteration step t = −1. Then, at
iteration step t = 0, we feed the LSTM cell the embedded start-of-sequence token <S>,
which outputs a hidden state that is fed through a fully-connected layer which outputs
n1. In the next step, we feed the LSTM cell the embedded ground-truth token WeyS

1 ,
which then outputs n2 after the fully-connected layer. We repeat this until iteration step
t = N − 2 that outputs nN−1. Therefore, we optimize our model’s outputs for iteration
steps t ∈ {0, . . . , N − 2} with a softmax cross-entropy loss

L(I,yS) = −
N−2∑

t=0

(
[log ϕ(nt+1)] • y

S
t+1

)
. (4.4)

where nt+1 is the output of the LSTM for the input WeyS
t at iteration step t and ϕ(·)

is the softmax activation function. More specifically, nt+1 is the output of the fully-
connected layer that follows the LSTM cell. yS

t+1 is the corresponding ground-truth

55

4 Automatic Description of Images with Branded Products in Natural Language

word one-hot vector, • is the dot-product, and We is a word embedding matrix. We
minimize Equation 4.4 w.r.t. all parameters of the LSTM, the image embedding layer,
and the word embedding matrix We.

Predicting captions When generating descriptions for unknown images during infer-
ence, we employ a greedy sampling strategy. First, we forward an image through the
encoder CNN network and the subsequent image embedding layer to compute an image
embedding. We feed the decoder network the resulting feature vector at iteration step
t = −1, i.e., before unrolling the LSTM cell. Then, we feed the LSTM cell the first word
token at iteration step t = 0. The first token is the same for all sentences, i.e., it is
the special <S> (start-of-sequence) token. Following this preconditioning, we can predict
the most probable word. For the next iteration step we feed the previously predicted
word and sample another word. We repeat this greedy sampling method until the most
probable output prediction is the </S> (end-of-sequence) token.

However, in our setting greedily sampling captions has a severe disadvantage. If we
compare the behaviour of the model in the prediction stage, we notice that it is sub-
stantially different from the training stage: We feed the network predicted words at
subsequent iteration steps during inference unlike the ground-truth words during train-
ing. That is, during inference the network sees sentences which are built differently
than the ground-truth sentence. This training strategy for RNNs is called teacher forc-
ing [149]. Teacher forcing uses the ground-truth value at iteration step t rather than
the output generated by the decoder at iteration step t− 1. Teacher forcing allows us to
train our model in an effective and fast way, however, it can lead to a limited model, i.e.,
the model does not necessarily know what to make of a sequence of previously predicted
words and behave unexpectedly during inference. There have been some proposals like
curriculum learning [12] that try to circumvent these limitations.

A second disadvantage of the greedy sampling algorithm is that sentence candidates
which could potentially yield a better sentence both in terms of metrics and overall
probability are eliminated early on during greedy sampling. For example, the most
probable first token of a sentence could be A, whereas The is less likely. However, the
sentence could ultimately be of better quality or yield a higher score if we generated
subsequent tokens for the The token. Still, as we argued in Section 2.2.7, exploring
all possible sentences is computationally infeasible. Though, we discussed a technique
called beam search which allows us to explore a smaller space of possible sentences. Beam
search then yields a set of probable sentences instead of only generating the sentence
with the highest individual word probabilities. For some of our final models, we utilize
beam search in order to generate more diverse sentences.

4.3 Motivation

Marketing companies have decades of experience in analyzing text fragments in order to
investigate sentiment and consumer-brand-relationships. However, large collections of
images in social media rarely come with a description connected to them. By transcribing

56

4.3 Motivation

Table 4.1: Distribution for the train and test split of the GfK-Captions dataset. The dataset
contains different modalities (images, captions and image ratings). For reference, we
list statistics for the MSCOCO dataset [91] at the bottom. Note that we created a
custom split (i.e., we split the train and validation part into train and test) for the
MSCOCO dataset.

Dataset Modality # Train # Test # Total

GfK-Captions Images 9469 1060 10,529
GfK-Captions Captions 47,345 5300 52,645
GfK-Captions Image ratings (×3) 12,175 1415 13,590

MSCOCO [91] Images 117,211 4051 121,262
MSCOCO [91] Captions 586,368 20,267 606,635

images into text, we want to enable marketing companies to rely on text analysis tools
that capture two important aspects in descriptions: (1) Occurrence of words that identify
a certain brand and (2) attributes and verbs that allow to detect sentiment and affection
to a brand and other relevant properties depicted by an image.
Encoder-decoder networks, like the one presented by Vinyals et al. [139] are promising,

when generating captions for input images. Inspired by their work, we build a model
with a multi-task objective which simultaneously predicts image ratings. Image ratings
describe three different attributes of interactions between humans and branded products
in our case. In other words, our model processes three modalities: images, textual
descriptions, and image ratings.
In particular, we look at images that contain an object which is related to a brand

by depicting a logo of this brand. Such an image, for instance, could depict persons
drinking out of a Coca-Cola bottle. Figure 4.3 shows one example image from our test
set.
It is of particular interest to us to correctly identify the brand contained in the image,

but state-of-the-art models like [139, 140] tend to produce rather generalized descriptions,
i.e., the model could just leave out the brand, because it has generalized from pictures
of persons holding bottles from different brands. For example, the caption generated by
[139, 140] for the image in Figure 4.3 is “a close up of a person holding a cell phone”.
In contrast, we want our model to correctly mention the name of the brand contained
in the image within the sentence.
Our second goal is to simultaneously predict attributes that describe the involvement

of the human with the brand, whether the branded product appears in a positive or
negative context, and whether the interaction is functional or emotional. For example,
in a functional interaction a person eats a product, while an emotional interaction might
depict people taking selfies with branded products. We encode these attributes by rat-
ings, which are integer values from 0 to 4 encoding how much the rating attribute holds.
Our goal is to simultaneously predict ratings and, thus, improve the overall quality of the
generated sentences in a joint multi-task optimization. This leads to a unique problem
we aim to address in this chapter: We want our model to create reasonable captions,

57

4 Automatic Description of Images with Branded Products in Natural Language

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction
0

Involved
0

Emotional
0

1

1

1

2

2

2

3

3

3

- Interaction
4

Uninvolved
4

Functional
4

Figure 4.2: A visualization of our three different kinds of image ratings. Each rating can have
an integer value between 0 and 4. Annotators created image ratings for a subset of
images (2718/10,529) for the GfK-Captions dataset.

while at least mentioning the brand of the logo contained in the image. In addition to
determining the standard scores (BLEU [108], METEOR [10], CIDEr [138]), we measure
the accuracy of correctly generated brand names in our sentences, i.e., we check if the
generated captions contain a certain class. With this metric, we can evaluate our model
with a focus on correct classification within the generated captions. Furthermore, we
propose a constituent sensitive metric to assess the quality of the subject, predicate,
and object of generated sentences. These metrics can also be applied to popular image
captioning datasets like MSCOCO [91].

4.4 GfK-Captions Dataset

We use a real-world dataset, which was created by a German non-profit market research
association (GfK Verein1). The GfK-Captions dataset consists of images that depict
scenarios of persons interacting with branded products, e.g., a man holding a can with
a Coca-Cola logo on it. Altogether, this dataset covers 26 different brand classes and
consists of 10,529 images.
In Table 4.1 we depict the number of examples in the train set, test set and total

examples for our dataset. Our dataset covers three different modalities. The first row
summarizes the images contained in our dataset, the second row reports the total number
of captions associated with the images. Five annotators created a caption for each image.
For a subset of all images (2718) five annotators created image ratings with five possible
values (0− 4). There are three kinds of image ratings, which we visualize in Figure 4.2.
These image ratings express the following properties of human product interactions:

• The Polarity (r1) rating states whether the person interacts with the branded
product in a positive (0) or negative (4) way.

• Involved (r2) says if the person in the image is involved (0) with the branded
product or uninvolved (4).

• Emofunc (r3) describes if there is an emotional (0) or a functional (4) interaction
with the branded product.

1We would like to thank Carolin Kaiser, René Schallner, Holger Dietrich, RaimundWildner and Andreas
Neus for the great collaboration and creation of the dataset.

58

4.4 GfK-Captions Dataset

Table 4.2: Dataset statistics for the GfK-Captions dataset. The dataset includes 26 brand
classes. However, the dataset is distributed unequally among classes, e.g., cocacola
and nutella together make up nearly 40% of all images while meggle only makes up
0.21%. Furthermore, there are multiple underrepresented classes which each make
up 0.95% of the dataset.

class train test total % of ds

bacardi 309 35 344 3.27%
barilla 90 10 100 0.95%
becks 524 59 583 5.54%
campari 90 10 100 0.95%
cocacola 1879 209 2088 19.83%
dallmayr 90 10 100 0.95%
dove 90 10 100 0.95%
gerolsteiner 90 10 100 0.95%
granini 90 10 100 0.95%
haribo 598 67 665 6.32%
heinz 89 10 99 0.94%
jacobs 90 10 100 0.95%
kinderriegel 168 19 187 1.78%
krombacher 306 34 340 3.23%
rittersport 369 42 411 3.90%
loreal 489 55 544 5.17%
maggi 90 10 100 0.95%
meggle 19 3 22 0.21%
milka 860 96 956 9.08%
nimm2 90 10 100 0.95%
nivea 216 25 241 2.29%
nutella 1888 210 2098 19.93%
pantene 90 10 100 0.95%
pepsi 617 69 686 6.52%
syoss 90 10 100 0.95%
volvic 148 17 165 1.57%

total 9469 1060 10,529 100.00%

59

4 Automatic Description of Images with Branded Products in Natural Language

Because of the small number of images in our dataset, we split it into a training and
test dataset with a ratio of 9 to 1. We use 10-fold cross-validation to select the best
performing model due to the small number of training images. Figure 4.3 depicts a
sample image from this dataset. Two problems arise with our dataset. First, images
are distributed unequally among the different classes. In Table 4.2, we outline the 26
brand classes of our dataset. We see that classes like cocacola and nutella make up a
big portion of all images within the dataset while half of the classes (13) only make up
11.60%.
In addition, we have extremely few training images compared to other datasets like

Figure 4.3: One image from the test partition of the GfK-Captions dataset. We see that this
image represents the logo class cocacola.

MSCOCO [91] (see Table 4.1). Hence, training a Show and Tell model from scratch is
not the best idea as MSCOCO contains more than 10× the images and captions than
our dataset.

As a consequence, we create two different variants of our dataset. First, we only use
images, image ratings and captions from the GfK-Captions dataset and call this variant
LogosSimple. For the extended variant of our dataset, we append the MSCOCO dataset
to LogosSimple. To compensate for the fewer examples in LogosSimple compared to the
MSCOCO dataset (see Table 4.1), we multiply LogosSimple 8 times. We call this variant
LogosExtended .

Still, generating high-quality captions for this special application of image captioning
is no easy job. Thus, in the following, we propose solutions in order to generate high-
quality captions for images that contain person-product interactions.

60

4.5 Describing Brand Names through Multi-Task Training

CNN

Ratings

Image

L
S

T
M

L
S

T
M

L
S

T
M

...

Softmax Loss

L
S

T
M

Mask

Figure 4.4: Our modified Show and Tell model that introduces the classification-aware loss
function Lcls for describing brand names within image captions. The classification-
aware loss is added on top of the standard LSTM decoder network. Furthermore,
we add three losses Lr for the image ratings.

4.5 Describing Brand Names through Multi-Task Training

As our baseline architecture, we choose the Show and Tell [139] model by Vinyals et al.
for generating short descriptions that match the images with branded products. In order
to fully adapt to the different requirements imposed by the marketing environment, we
extend the baseline architecture with additional objectives to allow for more appropriate
captions by use of multi-task training. We depict our modified model in Figure 4.4.

4.5.1 Classification-Aware Loss

From a marketing point of view, it is crucial to correctly identify and describe the brand
of a product with which a human interacts. The vanilla Show and Tell model is aimed
at generating descriptions of everyday activities and interaction. All images of the GfK-

61

4 Automatic Description of Images with Branded Products in Natural Language

Captions dataset depict everyday activities. However, these interactions are between a
person and branded products. The Show and Tell model is optimized to create captions
that are similar to sentences created by humans and does not necessarily focus on naming
the exact brand name of an object, i.e., it tends to confuse different brands. For example,
when describing a person holding a can of soda the model might not care if it is a can,
a can of Coca-Cola or a can of Pepsi.
We need to tell our model, whether or not a generated sentence contains the correct

brand. Therefore, we introduce an additional objective which encourages our model to
include the correct brand name within the generated sentence. On the contrary, this
loss punishes the model if the correct brand name is not contained within a generated
sentence. Thus, we want to urge the LSTM decoder to sample at least one word that is
of the desired brand for every input image, i.e., each caption should include one of the
26 brand classes (see Section 4.4) contained in the dataset. Each of our brand names is
part of the vocabulary and we call these words classwords. That is, a classword is a word
in the vocabulary that clearly identifies a main brand logo (e.g., the word ’cocacola’ is
a classword.). We construct a constant binary mask vector m of size |V| which has a
one at every index of a classword. To put it another way, every element mi of the mask
vector m is given by

mi =

{
1, if Vi is a classword

0, otherwise.
(4.5)

Next, we multiply the projected outputs nt+1 for every iteration step t with the mask
vector. As result, we get a filtered view

kt+1 = nt+1 ◦m, (4.6)

on the scores for the classwords only. A classword should only occur once in any sentence.
However, it could be generated at any index within this sentence. Therefore, we sum
over all iteration steps of the filtered view (k)

k =

N−2∑

t=0

kt+1. (4.7)

By applying the softmax (ϕ) function on k

k̂ = ϕ(k), (4.8)

we get a probability distribution over the classwords for the predicted sentence. Note

that k and k̂ still have the same size as the vocabulary (∈ R|V|).
Finally, we can define the classification-aware loss for the LSTM decoder. The objec-

tive acts as a classification loss for brand names that occur within a generated sentence.
Hence, we add a softmax cross-entropy loss

Lcls(I,ycls) = − log
[
k̂
]
• ycls, (4.9)

62

4.5 Describing Brand Names through Multi-Task Training

whereas ycls is the one-hot encoded ground-truth vector for the classword included within
the image I and • is the dot-product. This introduces a second modality and changes
the model’s total loss to

Ltotal = L(I,yS) + Lcls(I,ycls). (4.10)

We visualize the classification-aware loss in Figure 4.4, which we integrated on top of
the LSTM decoder network. The bottom of the figure (without the ratings module) is
identical to the vanilla Show and Tell model from [139].

4.5.2 Image Ratings

The GfK-Captions dataset contains another modality, i.e., three integer-valued image
ratings in the range of [0, 4]. For a subset of images, we have three annotations from five
different annotators each, rating the interactions between the person and product in the
following three dimensions: sentiment (r1: positive vs. negative), involvement (r2: high
vs. low), and motive (r3: emotional vs. functional). In the following r represents one of
the three ratings (r ∈ {r1, r2, r3}), e.g., ρr is a fully-connected layer for rating r, thus,
we have three separate fully-connected layers.

In order to correctly describe these image ratings, we add an image ratings module
for predicting image ratings in addition to our LSTM decoder module. In the following,
we present three different ways to train our image ratings module.

4.5.2.1 Linear Regression

First, we add a linear regression model for predicting the image ratings. These image
ratings are loosely and only indirectly related to the image captions. However, we want
to infer the ratings from the image as well as indirectly optimize the caption quality by
employing this objective for multi-task training. We append a fully-connected layer

ρr = F̃ ·Wr (4.11)

with one output neuron and weight matrix Wr for every image rating r at the last layer
(F̃ ∈ R1×2048) of the Inception-v3 CNN. Thus, we can define the loss for an image rating
r by

Lr(I,yr) = (ρr − yr)2, (4.12)

where yr ∈ R1 is the corresponding label for rating r.

4.5.2.2 Classification Task for Majority Ratings

The sentiment of the person-product interactions is perceived differently by different
annotators. When giving annotators the task to objectively judge these ratings, they
do not always agree with each other. In order to account for this issue, we determine
a majority rating and define a classification problem. Every image rating can have an
integer value between 0 and 4. We automatically determined the majority rating, i.e.,

63

4 Automatic Description of Images with Branded Products in Natural Language

the rating that most of the five annotators agree on. If there was no majority, we asked
an additional annotator to determine this rating based on the image shown. We reuse the
same fully-connected layer ρr for predicting majority ratings. However, as we change
the problem formulation from a linear regression to a classification problem with five
classes, we increase the number of output neurons to 5. In this case we train our model
with a softmax (ϕ) cross-entropy loss

Lr(I,yr) = − log [ϕ(ρr)] • yr, (4.13)

where yr ∈ R5 again is the corresponding ground-truth class for rating r but encoded
as a one-hot vector.

4.5.2.3 Soft-Targets for Annotator Disagreements

In order to account for the annotator disagreements, we additionally propose soft-targets
for learning to predict the image ratings. With soft-targets, we model the occasional
uncertainty between the 5 annotators, e.g., if 4 annotators chose 4 as rating and one
annotator chose 3 as rating, our ground-truth signal yr would be [0, 0, 0, 0.2, 0.8], which
describes the probability distribution of the 5 possible values of each rating. We use the
sigmoid (σ) cross-entropy as loss function

Lr(I,yr) = −
4∑

i=0

(yr
i · log [σ(ρri)] + (1− yr

i) · log [1− σ(ρri)]) . (4.14)

This can be seen as logistic regression, which predicts the probability of each rating
value. Note that yr is also ∈ R5 but encoded as a probability distribution. Thus, yr

i

and ρri are the i-th element of the ground-truth distribution and i-th element of the
fully-connected layer’s output, respectively.

4.5.2.4 Total Loss

If we optimize our final model with the classification-aware loss and one of the above
image ratings losses, the objective now changes to

Ltotal =L(I,yS) + Lcls(I,ycls)+

Lr1(I,yr1) + Lr2(I,yr1) + Lr3(I,yr1).
(4.15)

4.5.3 SPO Captioning Metrics

Common metrics developed for the task of machine translation are BLEU [108] and
METEOR [10]. CIDEr [138] is a metric developed specifically for image captioning and
designed to correlate well with human judgment [138]. All these metrics have shown
to score higher for machine-generated sentences than for human-generated sentences
for the MSCOCO captioning challenge [19] in some cases. We also find that captions
generated by our models score higher in comparison to the ground-truth sentences (see

64

4.5 Describing Brand Names through Multi-Task Training

Section 4.6.3.2 and Table 4.3). Common machine translation metrics also have the
downside that they do not capture tiny important pieces of generated sentences like the
object of interest or the predicate. For example, the generated sentence “A male hand
holds a can of cocacola above a tiled floor.” for the ground-truth sentence “A female
hand holds a can of cocacola above a tiled floor.” has a BLEU-4 score of 0.827, which
is very high. In our setting, such minor differences are very important and, thus, we
introduce novel metrics and make the assumption that popular metrics may disregard
the semantics of the captions.
To allow for a more fine-grained evaluation of generated captions than existing meth-

ods do, we introduce subject-predicate-object (SPO) accuracies. We show in Section 4.6.3.4
that we can also use this metric on the MSCOCO [91] image captioning dataset. There-
fore, it is presenting itself as an alternative to the common metrics that try to measure
the quality of generated sentences. For our dataset, we manually collect the subject,
predicate, and object of each of our ground-truth sentences. Since the brand names of
the objects on the images are already known, we made sure that the annotators do not
choose the brand name as object, but the actual object, i.e., the caption “A hand is
holding a Coca Cola can in a car.” results in the SPO triple (hand, hold, can). While
encoding the ground-truth annotations, our annotators faced several challenges, some of
which we list here:

• Some sentences contained predicates associated with a noun (e.g., “a man is taking
a selfie with a heinz bottle.”), which we encode as (man, take selfie, bottle).

• We code the grammatical number/numerus of the subject, e.g., “Three girls . . . ”
will be annotated as (three girls, . . . , . . .).

• We also faced sentences written in the passive case, which we also annotate in
our ground-truths, e.g., the SPO triple (woman, be covered, can) results from the
ground-truth caption ”A young woman stands indoors and her chin is covered by
a Coca Cola can.”.

• Sentences containing an object describing a location, e.g., table, which is not the
object of interest (in our case), were challenging to annotate. For example, we
encode “A boy sits at a table with a heinz ketchup on it.” as (boy, sit, ketchup).

• We had difficulties annotating sentences with wrong spelling or grammar, but fixed
these by letting the additional annotators re-annotate the corresponding image.

Because we have five sentences from different annotators per image, we also get 5
ground-truth SPO triples per image. We require the LSTM generated sentence to only
match one of the SPO triples. We first define three different matching criteria m? (? is a
wildcard, which stands for different kinds of matching criteria) per generated sentence:
(1) we set msubj = 1 if the subject of the generated sentence matches, (2) mpred = 1

if the predicate matches and (3) mobj = 1 if the object matches. msubj,mpred,mobj

are set to 0, otherwise. By combining those matching criteria, we define eight derived
matchingsm0 := ¬mpred∧¬mobj∧¬msubj, m1 := mobj, m2 := msubj, m3 := mobj∧msubj,

65

4 Automatic Description of Images with Branded Products in Natural Language

m4 := mpred, m5 := mpred ∧mobj, m6 = mpred ∧msubj and m7 := mpred ∧mobj ∧msubj.
Note that m0 = 0 if at least one of subject, predicate, and object matches. For example,
m4 describes whether the predicate was generated correctly and m7 equals 1 if subject,
predicate, and object were generated correctly. We define the accuracies SPO? to be the
fraction of generated captions over the test set which satisfy the matching criterion m?.
Thus, we have a number of different accuracies which tell us how often we generated
a sentence with the correct subject, predicate, or object, and combinations of those.
Different matching accuracies have different evaluation emphases. For example, for
a captioning task that focuses on the interactions between persons and objects, the
SPO4 accuracy may be of special interest, while for a task that specializes on correctly
identifying the actor, the SPO2 accuracy may be suited best.

Since two different words can literally have the same meaning (e.g., ad and adver-
tisement), we use synonym tables for our subjects and objects. Furthermore, we use
conjugation tables for the predicates (e.g., take, takes, take, is taking, and are taking).
Based on an analysis of captions collected by our annotators, we found that annotators
tend to avoid repeating words (e.g., they alternate between pack, package and packag-
ing). Hence, we created synonym tables consisting of manually encoded bidirectional
and unidirectional synonyms. Bidirectional synonyms are of equal meaning. Unidirec-
tional synonyms cannot be used synonymous in all contexts, e.g., the words man and
boy can be replaced by guy, but we cannot implicitly infer the age of a guy.

4.6 Experiments

In the following, we verify changes made to the original Show and Tell architecture
by conducting several experiments that justify our architectural choices. But first, we
introduce the new sentence classification accuracy that allows us to interpret generated
sentences with different accuracy measures. Furthermore, we explain our experimental
setting and the training configuration.

4.6.1 Sentence Classification Accuracy

The sentence classification accuracy (SCA) is an essential metric to assess if our model
generates correct captions. The images of our dataset always show an interaction be-
tween a person and an object belonging to a certain company logo (e.g., in Figure 4.3 a
person is holding a Coca-Cola can). While humans may think that a generated sentence
like ’A woman is holding a Pepsi can’ sounds reasonable, this sentence fails to classify
the correct company logo. Since we describe interactions between humans and branded
products, it is essential that a generated sentence mentions the correct brand logo. Our
metric measures the accuracy of correctly classified company logos within the generated
captions.
For each brand logo, we have a special word (we call these brand words classwords) in

the vocabulary that identifies this brand, e.g., “cocacola”. We generate three captions
for each image using beam search (see Section 2.2.7) with a beam size of 3. This heuristic
considers the 3 best sentences up to the iteration step t as candidate sentences for the

66

4.6 Experiments

generation of sentences of length t + 1. If the classification of an image is cocacola, we
consider the set of three generated sentences (Φ) a match if the classword is contained in
any of them, i.e., match(I,Φ,ycls) = 1 if the classword for the ground-truth class ycls is
contained in any sentence in Φ. If the ground-truth class is not contained in any of the
generated sentences, then match(I,Φ,ycls) = 0. The correct classification of an image I
is given by ycls, i.e., ycls is the one-hot encoded class label.

We then calculate the accuracy metric for each individual classword C with

accuracy(C) =
1

|IC |
∑

I∈IC

match(I,Φ, C), (4.16)

where IC is the set of all test images belonging to classword C. For evaluating our model,
we use the mean accuracy (MA) and the overall accuracy (OA) metrics. Because our
dataset is distributed unequally among classes (see Section 4.4), we introduce the mean
accuracy metric which calculates the average accuracy over all classwords

MA =

∑
C∈C accuracy(C)

|C| , (4.17)

where C is the set of all classwords. The overall accuracy (OA) is given by

OA =
1

|I|
∑

C∈C

∑

I∈IC

match(I,Φ, C) =
1

|I|
∑

C∈C
|IC | · accuracy(C), (4.18)

where I is the set of all test images. We calculate the overall accuracy and mean accuracy
and analyze them depending on the use case. In our experiments, we commonly call both
metrics under the term of sentence classification accuracy (SCA).

4.6.2 Training Configuration

4.6.2.1 Feature Extractor CNN

Similar to Vinyals et al. [139], we extract image features with a pretrained Inception-v3
CNN [132]. For our baseline model, we take a vanilla Inception-v3 pretrained on the
1000 ImageNet classes [122]. For further experiments, we also fine-tune the CNN to
our logo classes. The network is fine-tuned in two stages. First, we append a fully-
connected classification layer to the feature extractor of the CNN and train it for 50,000
iterations with a learning rate η = 0.01 while keeping the weights of the feature extractor
frozen. Second, we also adapt the weights of the feature extractor with a learning rate
of η = 5 · 10−4 for 20,000 iterations. This allows for adaption of the parameters in the
early layers to generate activations specific to our logo classes.

4.6.2.2 Show and Tell Model

The remaining parameters of the Show and Tell model match the configuration of Vinyals
et al. [139], i.e., we set the number of hidden units of the LSTM cell to 512, the dimension

67

4 Automatic Description of Images with Branded Products in Natural Language

of the word embedding We to 512 and train on image batches of size 32. We employ a
stochastic gradient descent optimizer with a learning rate η = 2.0 and clip gradients to
a maximum magnitude of 5.0. The learning rate is decayed by 0.5 every 8 epochs. We
train our models on the LogosSimple dataset for 68 epochs and decay the learning rate
8 times by a factor of 0.5. For the extended models with classification-aware loss and
ratings prediction, we optimize Ltotal according to Equation 4.15.

4.6.2.3 Image Ratings

As we described in Section 4.5.2, we train three different variants of the image ratings
classification. We denote the linear regression ratings models (Section 4.5.2.1) with
LIN, the classification models (Section 4.5.2.2) with SCE and the soft-targets models
(Section 4.5.2.3) with ST in Table 4.3. A learning rate of η = 2.0 is too high for
training a vanilla DCNN with a fully-connected layer. Thus, we reduce the learning rate
by a factor of 2000 to η = 0.001 for training the fully-connected layers for the image
ratings. For each of the image ratings r ∈ {r1, r2, r3}, we train the corresponding fully-
connected layer with the same learning rate of η = 0.001. We train the models with
linear regression (denoted by LIN in column IR in Table 4.3) with the squared error loss
defined in Equation 4.12. For the vanilla classification model ratings-cls (denoted by SCE
in column IR in Table 4.3), we train a softmax cross-entropy loss (see Equation 4.13).
For the soft-target models (denoted by SCE in column IR in Table 4.3), we optimize the
ratings according to a sigmoid cross-entropy loss (see Equation 4.14).

4.6.2.4 Multi-Task Training

The only way for the image ratings to influence the generated sentences is to fine-tune
the Inception-v3 feature extractor network. In other words, the training signal of the loss
function is backpropagated into the layers of the CNN encoder, thus, allowing the CNN
to influence the LSTM decoder network. Hence, we unfreeze the Inception-v3 encoder
network for 3,000,000 more iterations with a reduced learning rate of η = 5 · 10−4. We
employ this training strategy in Section 4.6.3 for our models with suffix +ft.

4.6.3 Results

In the following, we analyze and discuss results of our models for

• the sentence classification accuracy (SCA),

• commonly used metrics for image captioning,

• predicted image ratings and

• the subject-predicate-object metric for various model configurations.

The baseline model is the Show and Tell model trained on our LogosSimple dataset
(base) with an Inception-v3 initialized with ImageNet weights (IC-v3). Furthermore, we

68

4.6 Experiments

initialize our models with suffix +L (models #2, 3, 4, 8, 9) with the Inception-v3 model
fine-tuned to our 26 logo classes. For models trained with the classification-aware loss
(see Section 4.4), we append the suffix +CA to the model name, e.g., base+CA.

Table 4.3: Results for our models. The first column states the model number and the second
column the model name, columns 3–5 state the dataset used (DS), whether we
trained with the classification-aware loss (CA) and the kind of image ratings loss
(IR). Columns 6–8 show the BLEU-4 (B-4), METEOR (Met) and CIDEr (Cid)
scores. The last two columns show the overall accuraccy (OA) and mean accuracy
(MA).

Method (Initialization) DS CA IR B-4 Met Cid OA MA

1 base (IC-v3) LS — LIN 54.80 34.10 177.10 75.66 58.72
2 base+L (IC-v3 Logos) LS — LIN 56.30 35.10 192.50 90.94 81.34
3 base+CA+L (IC-v3 Logos) LS ✓ LIN 44.40 28.60 146.40 91.04 81.86
4 fuse+L (IC-v3 Logos) LE — LIN 54.20 34.40 185.80 88.87 79.63
5 fuse+L+ft (#4) LE — LIN 58.50 36.40 201.20 88.02 79.43
6 LIN+CA+ft (#5) LS ✓ LIN 61.20 37.10 210.70 90.75 83.20

7 base+CA (IC-v3) LS ✓ ST 53.09 32.65 155.93 74.72 56.25
8 base+CA+L (IC-v3 Logos) LS ✓ ST 53.62 33.38 174.64 91.42 81.26
9 fuse+CA+L (IC-v3 Logos) LE ✓ ST 54.30 34.40 178.01 88.17 77.31

10 fuse+CA+L+ft (#9) LE ✓ ST 51.45 32.69 162.04 77.10 46.39

11 soft-targets+CA (#10) LS ✓ ST 60.82 37.23 204.26 90.25 78.76
12 soft-targets+CA+ft (#10) LS ✓ ST 61.30 37.56 207.25 91.11 80.45
13 ratings-cls (#10) LS ✓ SCE 60.39 37.28 204.10 90.68 81.96
14 ratings-cls+ft (#10) LS ✓ SCE 61.43 37.34 206.80 91.53 83.55

— gt — — — 52.00 38.00 194.00 — —

— NICv2 [140] on MSCOCO — — — 31.00 25.00 97.00 — —

We also conduct experiments in which we merge the LogosSimple dataset with the
MSCOCO dataset (LogosExtended) to allow for learning a wider variety of sentences.
We give models trained on the extended dataset the prefix fuse. To compensate for
the fewer images in our dataset, we replicate our dataset eight times to balance both
datasets. The resulting ratio is about 0.65 : 1 for our dataset vs. the MSCOCO dataset.
For example, fuse+L is the model where both the LSTM part and the image ratings part
are trained on the larger dataset for 1,700,000 iterations. fuse+L+ft continues training
fuse+L with the parameters of the Inception-v3 networks unfreezed and a learning rate
of η = 5 · 10−4 until iteration 3,000,000. We do not use classification-aware training for
both fuse+L and fuse+L+ft.

For models that predict image ratings via the soft-targets strategy, we enable the clas-
sification-aware training, as our preliminary experiments with linear regression (LIN+
CA+ft) show that enabling the classification-aware loss benefits models with fine-tuning
enabled for the encoder network. For a final performance boost, we initialize our final
models (#6, 11, 12, 13, 14) with models trained on LogosExtended and train again on
images that only contain person-product interactions (LogosSimple).

69

4 Automatic Description of Images with Branded Products in Natural Language

In Table 4.3, we list our models with their respective BLEU-4, METEOR, CIDEr and
SCA scores. In Table 4.5 and Table 4.6, we report the results for the image ratings and
the SPO metrics, respectively.

4.6.3.1 Sentence Classification Accuracy

In Table 4.3 we also report SCA scores (i.e., mean accuracy (MA) and overall accuracy
(OA)) for our models. We see that our problem mainly profits from fine-tuning the base
network to the specific classification labels of our dataset, i.e., models #1 and #7 which
were initialized with a vanilla Inception-v3 perform significantly worse. At first glance,
the classification-aware loss does only marginally improve the SCA scores (see model
#3 vs. #2). However, when using the LogosExtended dataset (#4 vs. #2 and #9 vs.
#8), we notice a small degradation of the SCA scores, which is due to the fact that the
dataset now not only consists out of branded product images. When allowing changes
to the Inception-v3 encoder network (models #5, 10), the SCA scores decrease even
more. However, models #6 and #11 − #14 use all three modalities, allow changes to
the encoder network and are fine-tuned on the LogosSimple dataset. As a consequence
the SCA scores improve because the different tasks can influence each other through
the encoder network. In total, our multi-task architectures improve the mean accuracy
(MA) by an absolute of 24.5% (model #6 vs. #1), 24.2% (model #12 vs #7) and
27.3% (model #14 vs #7), respectively. The models also improve the overall accuracies
(OA) by 15.1%, 16.4% and 16.8%.

4.6.3.2 BLEU-4, METEOR and CIDEr Scores

In Table 4.3, we also list how our models perform according to the well-known BLEU-
4 [108], METEOR [10] and CIDEr [138] scores. We use the official script provided by the
authors of the MSCOCO dataset (see Section 2.4.5) to calculate these metrics. Note that
the scores for the ground-truth (gt) were computed by comparing each annotator against
the other four and then averaging over all scores per annotator. For the other models, we
compared the generated sentence against the five reference sentences from the LogosSim-
ple dataset, i.e., even when trained on LogosExtended we evaluate the performance of our
model on images from LogosSimple only. When training with the classification-aware
loss, all scores decrease compared to the baseline models (see models (#3,#8) vs. #2,
and #7 vs. #1). BLEU-4, which is the standard in machine-translation, only decreases
slightly in contrast to the baseline. When updating parameters in the encoder network
(#5), the parallel training of the three modalities improve the BLEU-4, METEOR and
CIDEr scores in comparison to #4. Initializing the LIN+CA+ft model with model #5
yields the best results for CIDEr. The models which train the image ratings with soft-
targets and with a vanilla classification loss (ratings-cls) reach similar performance, i.e.,
model #12 has the highest METEOR score.

Because the LogosExtended training data contains a great number of sentences that
do not only focus on interactions of humans and branded products (i.e., the MSCOCO
dataset), our models learn to generate more diverse sentences. Usually, the fuse models

70

4.6 Experiments

profit form this extended dataset (see models #4 vs. #3 and #9 vs. #8). However, if
we train too long, the model tends to generate sentences that stem from the MSCOCO
dataset, thus, decreasing performance on LogosSimple, which we test on. For example,
we see this behaviour for model #10 that looses CIDEr performance in comparison to
the initialization model (#9). For final optimization, we initialize our best performing
models with model #10 and fine-tune on the LogosSimple dataset. We see that model
soft-targets+CA+ft performs best for METEOR and performs second best for CIDEr
and BLEU-4 metrics. Thus, we conclude that using soft-targets instead of linear re-
gression (LIN+CA+ft) has no negative effect on the overall sentence quality. Using the
traditional classification approach instead of soft-targets (ratings-cls-ft) delivers similar
results.

4.6.3.3 Image Ratings

In the following, we present the results for predicting our three different image ratings
r1, r2 and r3. For each rating, we use a separate fully-connected layer ρr, r ∈ {r1, r2, r3}
and model it (1) with a linear regression (LIN), (2) with a softmax cross-entropy loss
as a classification problem (SCE) and (3) with a sigmoid cross-entropy loss as a logistic
regression problem (ST), i.e., we predict the probability distribution among the different
rating values (an integer-value between 0 and 4). For (1), we set the number of output
neurons of the fully-connected layer to 1, while (2) and (3) have 5 output neurons. We
evaluate the performance by using the accuracy measures accuracyr1 , accuracyr2 and
accuracyr3 , which tell us how often our model predicts the correct rating out of all eval-
uation examples. For LIN, we also measure the performance with a deviation measure
that describes the deviation from the ground-truth.

Linear Regression (LIN) We evaluate the LIN model with the mean deviation from
the ground-truth. For the image depicted in Figure 4.3, LIN+CA+ft infers a rather
positive interaction with the brand (ρr1 = 0.92), concludes the person is involved with
the branded product (ρr2 = 0.00) and infers that the interaction is neither emotional nor
functional (ρr3 = 1.86). We calculate the deviations from the ground-truth for a single
example with

deviationr(I) =
√
(ρr − yr)2 = |ρr − yr|, (4.19)

where yr ∈ R1 as defined in Section 4.5.2.1. Note that this is the square root of the
squared error as defined in Equation 4.12 and r can stand for any rating ∈ {r1, r2, r3}.
We calculate the mean deviation (MD) for an image rating r by averaging over all images
I in the test set:

MDr =
1

|I|
∑

I∈I
deviationr(I) (4.20)

In Table 4.4 we present the mean deviations from the ground-truth image ratings in
our test set. We notice that MDr2 increases, while MDr3 decreases when initializing
the model with Inception-v3 Logos in base+L. In base+CA+L the Inception-v3 encoder

71

4 Automatic Description of Images with Branded Products in Natural Language

Table 4.4: Mean deviations from the ground-truth image ratings on the test set for our different
models with linear regression.

Method MDr1 MDr2 MDr3

1 base 0.5703 0.8141 0.8504
2 base+L 0.5663 0.8656 0.8078
3 base+CA+L 0.5644 0.8613 0.8054

4 fuse+L 0.6071 0.9379 0.8576
5 fuse+L+ft 0.5218 0.7827 0.6974
6 LIN+CA+ft 0.5236 0.7876 0.6968

— gt 0.2541 0.1894 0.3138

network is kept frozen. Thus, the model performs about the same for all ratings, because
the classification-aware loss cannot influence the image ratings. All image rating devi-
ations increase, when using the LogosExtended dataset and start to decrease below the
values from base, base+L and base+CA+L when allowing adaptions of the parameters
of the encoder network. Note that fuse+L+ft and LIN+CA+ft only differ slightly and
we observe that training all modalities in parallel improves results for all experiments.
Again, the scores for gt were computed by comparing each annotator against the other
four and then averaging over all deviations per annotator.

Logistic Regression (soft-targets) soft-targets allows us to evaluate results from two
different perspectives. First, we can predict one rating with the argmax and compare
it to ratings-cls. Second, the sigmoid cross-entropy loss function allows us to predict a
probability distribution, which matches the distribution of the ground-truth annotations.

Table 4.5: Results for our models. The first column states the model number and the second
column the model name, columns 3–5 depict the ratings accuracies for ratings r1,
r2, r3.

Method accuracyr1 accuracyr2 accuracyr3

7 base+CA 57.26 51.34 54.72
8 base+CA+L 63.28 59.34 58.28
9 fuse+CA+L 62.22 61.85 57.04

10 fuse+CA+L+ft 76.30 66.67 69.63

11 soft-targets+CA 75.58 69.95 70.65
12 soft-targets+CA+ft 74.60 71.01 70.65
13 ratings-cls 73.15 68.15 67.51
14 ratings-cls+ft 75.26 70.40 66.74

72

4.6 Experiments

To allow comparison between ratings-cls and soft-targets, we use the majority rating
as ground-truth during evaluation for both methods. From the predicted probability
distribution, we choose the maximum argument as the predicted class. Thus, we predict
a value between 0 − 4 even though the fully-connected layer produces a probability
distribution that mimics the occasional uncertainty between annotators.

As we see in Table 4.5, our best model soft-targets+CA+ft achieves 74.60%, 71.01%
and 70.65% for the accuracies accuracyr1 , accuracyr2 and accuracyr3 , respectively. For
the image in Figure 4.3 the image ratings predict that the interaction is neither positive
nor negative (r1 = 2), the person is rather involved with the product (r2 = 1) and the
interaction is more functional than emotional (r3 = 3).

In addition to analyzing the image ratings with the accuracy measure, we also compare
the predicted probability distribution against the distribution generated by the anno-
tators, i.e., we want to examine if we can imitate the occasional uncertainty between
our human annotators. We calculate the L2 distance from the predicted value to the
majority rating for both the ground-truth values and predicted values. In Figure 4.5,
we visualize the prediction distribution of model soft-targets+CA+ft compared to the
test split ground-truth. The green bars show the fraction of predicted ratings which
have an L2 distance to the ground-truth rating of 0 − 4. The red bars show the L2
distance of each annotator to the majority rating. We can observe that the predicted
distribution closely models the annotator disagreement on the hold-out test set. In ad-
dition, we also visualize the normal distributions of the predictions and ground-truth
together with their respective mean µ and standard deviation σ. For r1 the annotators
deviate µ = 0.30 from the majority rating on average and have a standard deviation of
σ = 0.50. The distribution predicted by our model comes really close with µ = 0.28 and
σ = 0.49. Also, rating r3 has a very similar distribution and only r2 differs slightly from
the ground-truth.

For the models with linear regression, we calculate the L2 distance (i.e., deviation)
from the float value prediction to the mean of the ground-truth annotations. The best
model that uses linear regression (see fuse+L+ft in Table 4.4) achieves mean L2 distances
of 0.52, 0.78, and 0.70 for ratings r1, r2, and r3, respectively. Furthermore, the mean
deviations for the ground-truths (we compare one annotator against the mean of the
other 4 and average over all 5 annotators) are 0.25, 0.19, and 0.31. Thus, the deviations
of the predictions differ from the ground-truth by 0.27, 0.59, and 0.39, respectively. In
comparison, the best model with soft-targets (soft-targets+CA+ft) only differs from the
ground-truth mean by 0.02, 0.07, and 0.03 for ratings r1, r2, and r3, respectively.

Classification (ratings-cls) For a more thorough analysis, we employed the classical
classification approach, i.e., we used a softmax cross-entropy loss for the image ratings
with the majority rating as the ground-truth.

In Table 4.5, we denote the models with the classification loss as ratings-cls and
ratings-cls+ft. We see that neither ratings-cls nor ratings-cls+ft could surpass the clas-
sification accuracy of the soft-targets approach except for rating r1 (75.26%, 70.40%, and
66.74% vs. 74.60%, 71.01%, and 70.65% for rating accuracies accuracyr1 , accuracyr2 ,

73

4 Automatic Description of Images with Branded Products in Natural Language

0 1 2 3 4
L2 distance from majority rating (gt)

0.0

0.2

0.4

0.6

0.8

fra
ct

io
n

of
 ra

tin
gs

r1

pred (= 0.28, = 0.49)
gt (= 0.30, = 0.50)
Prediction Distribution
Test GT (5 Annotators)

0 1 2 3 4
L2 distance from majority rating (gt)

0.0

0.2

0.4

0.6

fra
ct

io
n

of
 ra

tin
gs

r2

pred (= 0.45, = 0.82)
gt (= 0.38, = 0.64)
Prediction Distribution
Test GT (5 Annotators)

0 1 2 3 4
L2 distance from majority rating (gt)

0.0

0.2

0.4

0.6

fra
ct

io
n

of
 ra

tin
gs

r3

pred (= 0.43, = 0.76)
gt (= 0.46, = 0.74)
Prediction Distribution
Test GT (5 Annotators)

Figure 4.5: The predicted (green) L2 deviations from the ground-truth majority rating in com-
parison to the mean L2 deviations (red) of the annotator labels to the majority
rating. (The predictions were generated by model soft-targets+CA+ft, i.e., model
#12.)

and accuracyr3 , respectively). However, the SCA scores (see Section 4.6.3.1 and Ta-
ble 4.3) are the best for the ratings-cls+ft model.

4.6.3.4 SPO Accuracy Metrics

GfK-Captions In Table 4.6, we also report the scores our models achieve with our pro-
posed SPO accuracy metrics. As we did for all other evaluation measures, we calculated
the ground-truth accuracies for SPO0 - SPO7 by calculating the accuracies for every an-
notator against the other four annotators and averaging them over the five annotators.
In our models we use beam search with a beam size of 3 during evaluation and when
infering captions for images without annotations. During evaluation, we choose the cap-
tion that matches most of the three sentence clauses defined by us (msubj, mpred, mobj).
For example, if one of the three sentences yielded by beam search has a match for sub-
ject, predicate, and object and the other sentences match two of the sentence clauses,
we choose the first caption. If multiple sentences have the same number of matches,
we randomly select one caption. With the soft-targets+CA+ft model, we achieve the
best scores, i.e., we identify the correct predicate in 85.66% of all cases and generate
completely correct sentences (according to the SPO metric) in 70.00% of all cases. In

74

4.6 Experiments

Table 4.6: Results for our models. The first column states the model number and the second
column the model name, the following eight columns represent the SPO accuracies
SPO0–SPO7.

Method SPO0 SPO1 SPO2 SPO3 SPO4 SPO5 SPO6 SPO7

7 base+CA 0.00 77.55 82.83 67.55 80.38 66.04 68.30 58.68
8 base+CA+L 0.00 81.32 77.83 65.47 80.47 68.40 64.91 56.04
9 fuse+CA+L 0.00 81.27 82.51 68.60 80.03 69.56 67.63 59.78

10 fuse+CA+L+ft 0.00 76.17 80.30 63.22 80.58 66.67 66.25 56.34

11 soft-targets+CA 0.00 85.19 86.89 76.42 85.57 74.62 76.42 68.02
12 soft-targets+CA+ft 0.00 85.94 88.87 78.49 85.66 75.75 77.74 70.00
13 ratings-cls 0.00 84.15 87.64 75.19 83.96 72.36 75.28 65.47
14 ratings-cls+ft 0.00 86.13 88.21 77.36 84.62 74.53 75.94 67.45

— gt — 68.00 98.00 67.00 98.00 67.00 97.00 66.00

— NICv2 [140] on MSCOCO 0.00 63.00 67.00 42.00 64.00 37.00 39.00 22.00

comparison, our base model only generates sentences with matching subjects, predicates
and objects only in 58.68% of all cases (base+CA). Note that SPO0 = 0 represents the
best case for the SPO0 metric. A score of 0 means that at least one of subject, predicate,
or object was matched in each generated caption of all images in the whole test set.

MSCOCO We want to show that our SPO accuracies measure can be used on other
image captioning datasets. To do so, we generated SPO ground-truth triples from the
human-annotated sentences of the MSCOCO validation split. We use the natural lan-
guage processing library spaCy2 to extract SPO triples from sentences similar to how our
human annotators extracted the triples from our dataset and publish these annotations3.
We then trained the Show and Tell [139, 140] implementation from the TensorFlow mod-
els repository on MSCOCO, which yielded scores slightly worse than those published by
Vinyals et al. [140].

We found that the ground-truth captions of MSCOCO often contain no predicate
(e.g., A room with blue walls and a white sink and door.). We were able to automatically
extract SPO ground-truth triples (including the triples without a predicate) from 184,308
out of 202,654 image captions in total. Additionally, we did not collect synonym tables
for the MSCOCO ground-truth SPO triples, which decreases the final SPO accuracies.
In the bottom row of Table 4.6, we list the different accuracies the MSCOCO model
achieves with our metric. We match at least one object in 63%, the subject in 67%,
and the predicate in 64% of all cases. However, as we see with the SPO7 accuracy, the
Show and Tell model produces captions which contain the correct subject, predicate, and
object in only 22% of all cases. We hypothesize that manually annotated SPO triples
would lead to a more accurate result.

2https://spacy.io/
3https://github.com/philm5/mscoco-spo-triples

75

https://spacy.io/
https://github.com/philm5/mscoco-spo-triples

4 Automatic Description of Images with Branded Products in Natural Language

4.6.3.5 Multi-Task Learning

To show the effectiveness of MTL, we can look at model base+CA+L (model #8).
Note that we did not unfreeze the Inception-v3 encoder network, i.e., we did not allow
fine adjustments to the parameters in the encoder. As the encoder network is the only
shared part for the different modalities (i.e., image ratings and image captions), the
image ratings cannot influence the image caption quality through the encoder network
and vice versa. Therefore, we see in Tables 4.3, 4.5, 4.6 that all scores except the sentence
classification accuracy decrease considerably when compared to a model trained in a
multi-task setting (e.g., soft-targets+CA and soft-targets+CA+ft).

4.6.4 Visual Results

In Figure 4.6, we show three more images from the GfK-Captions dataset test split.
Alongside the images, we present results generated by our model soft-targets+CA+ft.
Directly below each image, we depict the three image ratings with their predicted integer
value (class) on the scale of possible ratings. For example, the interaction of image (b)
is neither positive nor negative, the person is rather involved with the branded product
and the interaction is functional.

4.7 Summary

In this chapter, we presented an architecture capable of simultaneously generating image
captions and ratings for images depicting scenes of interactions between humans and
branded products. Our focus lies on generating captions that satisfy other constraints
than traditional image captioning pipelines.
First, we extended an image captioning model to prioritize on describing the brands of

products depicted in a scene by using a special loss function, which penalizes if a brand
name is not contained within the caption.
Second, we presented novel clause-focused accuracy metrics that focus on the correct

transcription of the subject, object, and predicate. In addition to the ground-truth
image captions, we annotated subject, object, and predicate (including synonyms) for
our dataset to be able to measure the quality of our generated sentences in terms of
these important clauses of the sentence. Furthermore, we automatically extracted sub-
ject, predicate, and object from the ground-truth annotations of the popular MSCOCO
dataset to verify our approach by applying our metrics on a different dataset.
Third, with a multi-task training objective, we were also able to simultaneously predict

ratings for the input image, which describe (1) if the person is involved with the brand,
(2) whether the interaction is rather positive or negative, and (3) whether the interaction
is functional or emotional.
Fourth, by modeling the occasional uncertainty between annotators with a soft-target

logistic regression, we were able to improve overall sentence quality in an end-to-end
multi-task optimization.

76

4.7 Summary

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction

Involved

Emotional

1

2

3

- Interaction

Uninvolved

Functional

(a) ”a female hand holds a can of cocacola above a
tiled floor.”

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction

Involved

Emotional

1

2
- Interaction

Uninvolved

Functional
4

(b) ”a hand is holding a bar of kinderriegel.”

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction

Involved

Emotional

1

2

3

- Interaction

Uninvolved

Functional

(c) ”a hand is holding a can of heinz.”

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction

Involved
0

Emotional
0

2
- Interaction

Uninvolved

Functional

(d) ”a woman is holding a nutella jar in front of
her face.”

Figure 4.6: More images from the test partition of the GfK-Captions dataset for the classes
cocacola, kinderriegel, heinz and nutella. Alongside the images, we show predicted
image ratings and generated captions by our model #12 (soft-targets+CA+ft).

77

5 Visual Question Answering

In this chapter, we address the problem of answering questions regarding an image.
Instinctively, one might think that answering a question about an image falls into the
category of image description generation similar to image captioning, which we discussed
in the previous chapter. However, Antol et al. [5] defined the task of visual question
answering (VQA) as a classification problem, i.e., there is a fixed number of possible
answers for a dataset. This contradicts the common theme of this part of the thesis as
language is not generated word by word. Particularly, we find that answering questions
is not as simple as choosing an answer from a predefined set of answers. Therefore, we
explore the possibility of generating answers from scratch, and do not choose one out of
a set of given possible answers.
The following chapter is based on our publication:

Visual Question Answering with a Hybrid Convolution Recurrent
Model [52], Philipp Harzig, Christian Eggert and Rainer Lienhart, ACM Inter-
national Conference on Multimedia Retrieval 2018, Yokohama, Japan, June 2018.

Visual question answering is a relatively new task, which infers answer sentences for an
input image coupled with a corresponding question. Instead of dynamically generating
answers, they are usually inferred by finding the most probable answer from a fixed set
of possible answers. Previous works did not address the problem of finding all answers
contained in the training set. In contrast, they only modeled the answering part of
VQA as a classification task. The classification is trained on the top-k most common
answers from the training set. Thus, by design, a fraction of the answers contained
in the dataset cannot be generated by the model. Furthermore, other works did also
not explore the generation of new, previously unseen, answers. To tackle this problem,
we infer answer sentences by using an LSTM network that allows us to dynamically
generate answers for image-question pairs. In a series of experiments, we have developed
an end-to-end trainable deep neural network structure which allows us to dynamically
answer questions referring to a given input image by using an LSTM decoder network.
With this approach, we are able to generate both less common answers, which are not
considered by classification models and more complex answers. This could be beneficial
for datasets to come that contain more answers which are longer than three words.

5.1 Motivation

The goal of the VQA task is to answer a question that asks about something related
to a given input image. This task is challenging, because a good understanding of both

79

5 Visual Question Answering

(a) Q: How many tomatoes are there?
A: 3 (b) Q: What vegetables are on the pizza?

A: olives

(c) Q: Is the trick the skateboarder is doing dif-
ficult?
A: yes

(d) Q: What is in the picture?
A: cupcakes

Figure 5.1: Original questions, images and answers from the VQA-v2 dataset [45]. The answer
is the most likely answer, i.e., the answer that was given by the majority of anno-
tators.

80

5.2 Related Work

images and natural language is essential to answer a question regarding the contents of
the image. Its difficulty lies in fusing feature representations of the image and question
into a joint representation, which then makes it possible to generate an answer for that
very image-question pair. Unlike most other approaches, we use an LSTM network
to generate the answers for the visual question. Contrary, the general practice is to
collect all answers from the training set and select the top-k most common answers.
Then, a classification model is trained that is only able to predict an answer from this
predefined set of most common answers. Teney et al. [135] treat VQA as a multi-label
classification task, i.e., for a given image and question, the answer is predicted from a
fixed set of answers. This strategy delivers good scores as the official evaluation metric
is the answer classification accuracy. Hence, a fixed set of the most common answers
has a greater influence on the score than less common answers. We tackle the serious
drawback of leaving out the less common answers altogether. We deal with this problem
by constructing the answer with an LSTM network which can produce answers out of
the entire vocabulary. In this chapter, we present the following new ideas for the VQA
task:

1. We use a CNN network to extract features from the input question, which has
been turned out to work better than an LSTM encoding in our case.

2. We compare different approaches that embed the question and image features into
a joint semantic space.

3. We do not see the VQA task as a classification problem but rather as a more
complex problem that can not be approximated by some 3000 possible answers.
Natural language is more complex than a set of predefined answers. Thus, we
replace the fully-connected classification layer with an LSTM network that can
produce arbitrary sentences.

4. Finally, we find that our architecture is able to produce new answers not contained
in the training set at all, some of which we show in a qualitative analysis.

5.2 Related Work

As we have outlined before, we need to understand the contents of an image, parse a
question and then properly fuse this information in order to answer a visual question.
This might sound simple to achieve but we have to understand and review different
subfields of research in the domain of computer vision, linguistics and machine learning
in order to build a model that is capable of generating answers for visual questions.
Therefore, we give a short overview of related work in the areas of natural language
processing, image captioning and the embedding of multiple different modalities. Finally,
we review existing VQA architecturs.

Natural Language Processing Natural language processing is a long-studied topic in
the domain of linguistics and computer science. Barnard et al. [11] present a statistical

81

5 Visual Question Answering

model that learns relationships between visual information from images and text infor-
mation coming with the images. Farhadi et al. [36] infer triplets consisting of object,
action and scene from handcrafted image features and transfer them to text afterwards.
Similarly, Li et al. [85] use image features to compose sentences from scratch by using
a text corpus comprised of n-grams gathered from the web. Lately, Recurrent Neural
Networks (RNNs) in form of Long Short-Term Memory (LSTM) [64] networks became
very popular in both understanding text and generating text.

The encoder-decoder structure used by current image captioning approaches as well as
our VQA model is heavily influenced by machine translation networks that transform a
sentence from one language into another. For example, Google [150] uses LSTM-driven
neural networks for their translation system. Facebook [43] goes into another direction
and eliminates the LSTM layers by replacing them with ordinary convolutional layers
resulting in better performance in speed and accuracy.

As of late, recurrent language generation models and convolution-based models have
been mostly replaced by self-attention models. With the introduction of the Trans-
former architecure by Vaswani et al. [137], the community soon settled on employing
this promising architecture: First, BERT [29] has set new state-of-the-art results on
multiple language processing tasks. Then, the GPT-3 [14] model has surpassed BERT’s
performance in many NLP tasks even though GPT-3 is trained in a few-shot setting,
i.e., a training setting where only few training examples with supervised information
are available. We, however, base the language parsing and language generation part of
our VQA model in this chapter on traditional CNNs and recurrent networks. But we
re-evaluate the VQA task with a Transformer architecture in Section 8.3.

Image Captioning The image captioning task is closely related to the VQA task. The
goal of image captioning is to create a sentence in natural language that describes a given
input image. VQA can be seen as a special case of image captioning, where the input
question modality is added to the model and answers instead of descriptions should be
generated. Different approaches appeared over time which try to convert the content of
images into text fragments. State-of-the-art approaches still use the idea of extracting
features from an image and converting them into a natural language sentence. They use
standard image classification DCNNs like [132] as feature extractors. One well-known
architecture is the Show and Tell model by Vinyals et al. [139, 140], which makes use of
recurrent neural networks for sequence modeling to convert image features into sentences
(see also Chapter 4). Also, Karpathy et al. [73] utilize neural networks for sequence
modeling in form of a bidirectional recurrent neural network to generate captions for
images. They refine their model to additionally describe parts of the image instead of
captioning the image as a whole and call this method dense captioning [71].

Joint Multi-Modal Embeddings There are a lot of approaches that deal with com-
bining multiple modalities in a joint embedding space. Zhou et al. [161] propose a
simple VQA architecture which concatenates image and question modalities. Other
models use simple element-wise multiplication of question and image features [5, 135].

82

5.3 Dataset

Fukui et al. [38] state that the outer product between question and image modalities are
more expressive than a vector concatenation or an element-wise product and introduce
a technique called multi-modal compact linear pooling. However, the outer product is
infeasible due to its high dimensionality. Hence they project the outer product into a
lower dimensional space. Yu et al. [156] also use a bilinear pooling model to project the
image and question into a joint embedding space (see Section 5.6.2.3).

VQA Architectures For the original VQA [5] task, many architectures have been pre-
sented. For example, Zhou et al. [161] propose an architecture that uses a simple bag-
of-words model as question features and image feature vectors extracted by a CNN.
The creators of the original VQA dataset themselves introduced a model that trains a
classification model on the 1000 most frequent answers. They use an LSTM model for
the question embedding and the VGGNet [125] as the image feature extractor DCNN.
Finally, Fukui et al. [38] won the VQA challenge by using multi-modal compact linear
pooling.

The VQA-v2 [45] dataset (we depict examples in Figure 5.1) is a balanced version
of the VQA dataset (in contrast to the first version, version 2 links the same question
with two similar images that have differing answers, see Section 5.3 for details). In their
analysis, Goyal et al. found that many VQA models take advantage of language priors
to predict the target answers and do not necessarily consider visual information. Thus,
it is harder to achieve high scores on VQA-v2 than on the first version of the dataset.
Furthermore, Teney et al. [135] present an architecture that uses soft-scores as ground
truth targets instead of one-hot targets as used in traditional classification. They also
implement a bottom-up attention to attend to specific regions of the images. With those
and other findings they won the 2017 VQA challenge. After the challenge has ended, Yu
et al. [155] even surpassed Teney et al. on the VQA-v2 open ended challenge leaderboard
by using the multi-modal factorized bilinear pooling (MFB) approach.

5.3 Dataset

We train and test our model on the VQA-v2 [45] dataset, which is a more balanced ver-
sion of the original VQA [5] dataset. Goyal et al. [45] balanced the VQA dataset in such
a way that for every question there are two similar images that have differing answers to
that question and, therefore, containing about twice the number of questions. They also
found that models trained on the first version of the dataset exploit language priors,
thus, performing worse on the VQA-v2 dataset. The VQA dataset is built upon the
MSCOCO [91] dataset and contains question-answer pairs for a subset of the MSCOCO
images. Their dataset contains 443K, 214K and 453K questions in the train split, val-
idation split and test split, respectively. The test split is divided into four subsplits:
test-dev, test-standard, test-challenge and test-reserve. There is an online evaluation
server1 for generated answers on the test-dev and test-standard split known as the VQA

1https://evalai.cloudcv.org/web/challenges/challenge-page/1/overview, test-dev allows 10 submissions
per day, while test-standard is limited to 5 submissions in total.

83

5 Visual Question Answering

Real Image Challenge 2017 (Open-Ended). On average, the VQA-v2 dataset contains
5.34 questions per image and 53.4 answers per image, i.e., every question was answered
by 10 different annotators. Every question has a ground-truth of 10 answers, where every
answer is flagged whether the annotator was confident to answer the question correctly.
There are 8.11 confident answers on average for every question in the whole dataset. We
only use confident answers for training our models.
For our experiments we rebalance the train and validation splits: We use the train split

and 90% of the validation split as training set and the remaining 10% of the validation
split as the validation set. We do this to have a larger training corpus available. For
evaluating the performance of our models, we use the standard VQA script by Antol et
al. [5]. This script calculates the overall accuracy and the accuracies over three different
answer categories (see Section 2.4.6). These are yes/no answers (Y/N), answers that are
numerical and other answers.
For some of our experiments, we extend the dataset by the popular Visual Genome

(VG) [78] dataset, which contains an additional 1.7 million Visual Question Answers on
108,077 images.

5.4 Base Model

Our VQAmodel (see Section 5.5) is inspired by the model introduced by Teney et al. [135]
and somewhat similar to their model. Our model shares the same basic architecture
and uses some of the original design elements. We depict their model architecture in
Figure 5.2. In the following we describe each part of this architecture.

Non-linear layers Teney et al. [135] introduce multiple non-linear layers in their archi-
tecture. A common non-linear layer could be a linear projection that is followed by a
non-linearity such as a ReLU. In their work, however, they make use of gated hyperbolic
tangent layers. That is, a fully-connected layer followed by a tanh activation function
which is gated by values produced by another fully-connected layer with a sigmoid acti-
vation function. This gating mechanism is similar to LSTMs and gated recurrent units
(GRU). Teney et al. argue that that these gated tanh layers show some benefit over
layers with simple ReLU activation, tanh activation or even gated ReLU activation.
In contrast to those other activation types, they improve the accuracy by nearly 1%.
Furthermore, another benefit of the gated tanh layer is that it doubles the number of pa-
rameters without doubling the channel dimension. We define the gated tanh non-linear
layer as a function fθ : x ∈ Ra → x′ ∈ Rb:

x̃ = tanh(Wθx+ bθ) (5.1)

x̂ = σ(Wθ′x+ bθ′) (5.2)

x′ = x̃ ◦ x̂, (5.3)

where Wθ,Wθ′ ∈ Rb×a are learned weight matrices and bθ,bθ′ ∈ Rb are learned bi-
ases. We can use the gated tanh non-linear layer as a replacement for a standard fully-

84

5.4 Base Model

connected layer (including activation function). The subscript θ stands for a parameter
set for the respective layer. Just as a regular fully-connected layer, the gated tanh non-
linear layer can have inputs of arbitrary dimension Ra and project these into an output
dimension of Rb. In their architecture, Teney et al. make use of these non-linear layers
at different positions. We denote these layers as “gated tanh” in Figure 5.2.

Question yQ Word
embedding

GRU gated tanh

Attention ◦

gated tanh

linear

multi-label classifier

Image CNN L2 norm
∑

gated tanh

R14 R14×300

RK

R512

R512

RK×2048

RK×2048 R2048

R512
c ∈ R512

Figure 5.2: Architecture of the base model of Teney et al. [135]. Figure redrawn from their orig-
inal paper. The question is embedded with an embedding layer and then processed
with a gated recurrent unit. Image features are extracted with a CNN and then
attended on with the question features. Both the question features and attended
image’s features are fed through a non-linear layer (i.e., a gated tanh unit, see Sec-
tion 5.4). Finally, they fuse the results of these layers with an element-wise product,
add another gated tanh layer and train the model on a multi-label classifier with a
sigmoid cross-entropy loss.

Question Processing At the top left of Figure 5.2, we depict the question processing of
the base VQA model. Teney et al. first preprocess the question by splitting the question
into unigram tokens. In contrast to our models, they do not add a special start-of-
sequence or end-of-sequence token. Then, they trim all questions to have a length of
14 tokens. About 99.75% of the questions contained in the dataset have a length of 14
or less words. For questions that have more than 14 tokens, they simply discard these.
All tokens are embedded with a word embedding that is initialized with the pre-trained
GloVe (Global Vectors for Word Representation) [110] embeddings of dimension R300.
Tokens which are not present in the pretrained embeddings are initialized with zero
vectors and optimized during training. Questions that have less than 14 tokens are filled
up with zero-only vectors that are not optimized during training. In contrast, we train
these embeddings from scratch for our base model (see Section 5.5). Next, they pass
the embedded tokens through a gated recurrent unit (GRU) [23]. A GRU is similar to
an LSTM recurrent cell but its calculation process is slightly simpler. For instance, the
forget and input gate are combined into a single gate and the cell state and hidden state

85

5 Visual Question Answering

are combined into a single state. The last resulting hidden state is then utilized in the
attention layer and forwarded through a gated tanh non-linearity.

Image Feature Extraction Teney et al. both use a standard DCNN [59] and a Faster
R-CNN [119] for their model. As our model only uses a standard DCNN and does not
rely on object-level features, we omit the R-CNN feature extractor in this description
and Figure 5.2. In particular, the authors extract features with a ResNet-200 that yields
feature maps of dimension R7×7×2048. Teney et al. found that normalizing the features
with an L2 normalization was vital for yielding good results. These features are utilized
for a multiplicative attention mechanism.

Attention The attention mechanism (see also Section 2.3.1) is visualized by the green
attention layer in the center of Figure 5.2. More specifically, the spatial dimensions of
the image features are reshaped to RK×2048 and each spatial location i ∈ {1, . . . ,K} is
concatenated with the question features from the GRU according to Equation 2.11 and
forwarded through a gated tanh layer. This is done for every spatial location and the
attention weights are calculated with the softmax function. Finally, the spatial locations
of the feature map are re-weighted with the calculated attention weights and reduced by
summation. This operation is visualized by the sum operation at the bottom center of
Figure 5.2. The resulting attended feature map is passed through another gated tanh
non-linear layer.

Fusion The results from the gated tanh layers of the question hidden state and the
attended feature map are fused on the right side of Figure 5.2 (depicted by the red
operation with the element-wise ◦ symbol). More specifically, the vectors are multiplied
element-wise and yield a context vector c. In their final model, Teney et al. also use
pretrained linguistic and visual information before fusing the features. However, we
only make use of simple element-wise fusion in our model, thus, we only discuss the
element-wise fusion in this chapter.

Multi-Label Classification These fused features are fed through another gated tanh
layer followed by a linear mapping to yield a fixed number of possible answers. More
specifically, it is modeled as a multi-label classification task with soft-targets. As not
every annotated answer is the same, the authors model the respective answers as a
probability distribution (soft-targets). For example, if 7 out of 10 annotators answered
with answer a) and 3 annotators answered with answer b), the ground-truth scores would
be 0.7 and 0.3, respectively. The model is trained with a sigmoid-cross entropy loss that
learns to predict the likelihood of each possible answer in the predefined set of answers.

5.5 Hybrid Convolution Recurrent Model

Our VQA model is composed of multiple components. We call it Hybrid Convolution
Recurrent Model as the language processing and generation is a hybrid between convo-

86

5.5 Hybrid Convolution Recurrent Model

lutional and recurrent neural networks. We depict our architecture in Figure 5.3. In
similar fashion to the base model, we first need to make sense of the question asked.
Therefore, we embed the question tokens and process these tokens with a CNN (denoted
by Q-CNN on the top stream in Figure 5.3) which yields a single question feature vec-
tor. On the bottom, we forward the input image through a DCNN (Inception-v3 [132]

Question yQ yQ · (We)
⊺ Q-CNN fq(y

Q̃)

Attention ◦

LSTM

n

Image Inception-v3
∑

fv(v̂)

RN×|V| RN×512

RK

R512

R512

RK×2048

RK×2048 R2048

R512
c ∈ R512

Figure 5.3: Architecture of our VQA model. We embed the question yQ of length N via the
word embedding matrix We and extract the question features with a residual CNN.
We forward the input image through the Inception-v3 network that yields a feature
map with K spatial locations. With an attention mechanism (depicted by the green
attention layer), we produce K attention weights. With these attention weights,
we then calculate a weighted sum over the spatial locations of our feature map
(denoted by the red sum operation on the bottom center). Furthermore, we feed
question features and attended image features through gated tanh layers fq and fv,
respectively. Next, we extract a joint multi-modal feature vector c by element-wise
multiplication which we use to initialize a regular LSTM cell with a fully-connected
layer that produces outputs n.

network in our case) that yields a feature map with K = 8 · 8 spatial locations. We
concatenate the spatial locations with the question feature vector from the Q-CNN and
calculate attention weights. With these attention weights, we calculate a weighted sum
of the spatial locations in the feature map. We then combine both the question fea-
ture vector and the attended image feature vector via multi-modal fusion into a single
representation of the image-question pair.

Lastly, we aim to produce an answer that best fits the question given the input image.
Contrary to other works in this area, we generate the answer with an LSTM network
instead of modelling the answering part as a classification task.

We see that our architecture is built in a similar manner to the base model from
Section 5.4. In the following, we describe each part of our architecture in more detail
and also highlight the differences from the baseline model.

87

5 Visual Question Answering

5.5.1 Understanding Questions

Question Preprocessing and Embedding One essential part of visual question answer-
ing is the question itself. Without understanding the question asked, we cannot properly
answer things about the image. A natural approach for understanding a sentence (i.e.,
a question) is to use an RNN. However, in our model, we implement a CNN for question
encoding, because it has shown better performance in our case (see Section 5.6.2.1). Sim-
ilar to the explanation in Section 2.2.2 and to the preprocessing of ground-truth captions
(see Chapter 4), we add a start word <S> at the beginning and an end word </S> to
the end of each question. Additionally, we tokenize each question by splitting it up into
single words. We allow questions to be of any length and construct our vocabulary V
from all words contained in the questions and answers (we tokenize answers the same
way as we do with the questions). Each word in the question yQ = [yQ

0 , . . . ,y
Q
N−1] of

length N is represented by a one-hot vector yQ
t , where t is the index of the current word

in the input question. We embed each word of the question into vectors

yQ̂
t = WeyQ

t , t ∈ {0 . . . N − 1} (5.4)

of dimension µ = 512, where We ∈ Rµ×|V|. Technically, the embedding of a sentence or
question is implemented as a single matrix multiplication instead of embedding each word
at once. Furthermore, the question is represented as a matrix yQ ∈ RN×|V|. Therefore,
the embedding operation in the top left of Figure 5.3 is written as yQ · (We)⊺.

Gated Linear Units We feed the question through a couple of convolutional layers,
which then yield a feature representation of the whole sentence. Similar to Dauphin et
al. [27], we use gated convolutions in a residual architecture. In particular, they state
that CNNs do not suffer from vanishing gradients like RNNs do. In particular, they
explain that ReLUs and gated convolutions have a linear path that allows the gradients
to easily flow through. In contrast, a LSTM-style gating mechanism or a tanh activation
can cut off the gradient as the activation functions can saturate. More specifically, the
output ht of an LSTM cell is the element-wise product of a sigmoid activation with a
tanh activation (see Equations 2.9 and 2.7). As a consequence the gradients on these
paths can easily die out because the derivatives of both tanh and σ approach 0 for
positive and negative infinity:

lim
x→∞

∂ tanh(x)

∂x
= 0 (5.5)

lim
x→−∞

∂ tanh(x)

∂x
= 0 (5.6)

lim
x→∞

∂σ(x)

∂x
= 0 (5.7)

lim
x→−∞

∂σ(x)

∂x
= 0 (5.8)

Furthermore, Dauphin et al. find experimentally that gated convolutions do not require

88

5.5 Hybrid Convolution Recurrent Model

X

conv conv

σ◦

RN×µ RN×µ

RN×νRN×ν

RN×ν

Figure 5.4: A gated linear unit (GLU). Inputs X are fed through a convolution layer twice with
different parameter sets. One convolution layer has a sigmoid activation function
while the other has no activation function. Their outputs are multiplied element-
wise. N denotes the sequence length of the input, µ is the number of input channels,
ν the number of output channels.

forget gates like LSTMs do. However, they discover that allowing the network to control
what information should be propagated through the layers via output gates is useful for
language modeling and introduce the gated linear unit (GLU). These units learn which
information should be forwarded to the next layer and which should be discarded. For
each GLU, we learn parameters for two convolution operations (∗) with the same number
of output feature maps µ and calculate its result as

GLU(X) = (X ∗Wc1 + bc1) ◦ σ(X ∗Wc2 + bc2), (5.9)

where X ∈ RN×µ is the input of the GLU and Wc1 ∈ Rκ×µ×ν , bc1 ∈ Rν , Wc2 ∈ Rκ×µ×ν ,
bc2 ∈ Rν are learned parameters. Note that κ is the kernel size of the convolution,
ν = 512 are the number of output channels and ◦ is the element-wise multiplication.
Thus, the output of the GLU is of dimensionality RN×ν . In the following, we denote the
element-wise multiplication with the sigmoid activation (◦σ(X ∗Wc2 + bc2)) as “gated
activation”. We visualize the architecture of a GLU in Figure 5.4.

Gated Blocks We combine two GLUs in a residual-style block in Figure 5.5. More
specifically, we depict a gated block in the big green rectangle. A gated block consists of
two GLUs and a skip connection over these two GLU layers. The whole figure depicts the
question embedding in the top left, which is followed by a GLU and two gated residual
blocks. Finally, we use global average-pooling across the question length N to reduce
the dimensionality of each question feature representation from RN×ν to yQ̃ ∈ Rν . We
set ν = 512 in all GLUs and we change the kernel size κ for different experiments in

89

5 Visual Question Answering

yQ yQ · (We)
⊺

GLU+BN

GLU+BN conv 1

GLU+BN conv 2

+

2×

Gated Block

avg poolyQ̃

RN×|V| yQ̂ ∈ RN×512

RN×ν

RN×ν

RN×ν

Rν

Figure 5.5: We extract a feature representation from the input questions with a convolutional
architecture. First, we embed the question yQ into a lower-dimensional represen-
tation, which we then feed through a GLU followed by two post-activation (the
batch normalization BN is appended after each GLU) gated residual blocks. We
depict the gated blocks with the green rectangle. After those blocks, we use global
average-pooling to get one vector describing the question.

Section 5.6.2.1. Note that the first GLU, the gated blocks, and the average-pooling
constitute the question CNN (Q-CNN) in Figure 5.3.

Post-Activation and Pre-Activation Furthermore, inspired by the ResNet-v2 [59] ar-
chitecture, we utilize two different gated blocks in the experimental part of this chapter.
In ResNet-v1 [58], He et al. add a batch normalization after the convolution, but before
the ReLU activation. For the second version of ResNet, they change this architecture
slightly by first feeding the inputs of a ResNet block through a batch normalization and
a ReLU activation before the convolution. This is repeated for the second convolution in
a ResNet block before adding the residual. They call these two variants post-activation
and pre-activation, respectively.

Applied to our gated block, we add a batch normalization after each GLU for the
post-activation Q-CNN just as depicted in Figure 5.5. For the pre-activation Q-CNN, we
remove the gated activation (i.e., the convolution with sigmoid activation and element-
wise product) from the GLU. Then we add a batch normalization before every GLU
followed by the gated activation we just removed. We depict the Q-CNN with pre-
activation in Figure 5.6.

90

5.5 Hybrid Convolution Recurrent Model

yQ yQ · (We)
⊺ GLU w/o act

BN

act

GLU w/o act conv 1

BN

act

GLU w/o act conv 2

+

2×

Gated Block

avg poolyQ̃

RN×|V| yQ̂ ∈ RN×512

RN×ν

RN×ν

RN×ν

Rν

Figure 5.6: The pre-activation Q-CNN. In comparison to the post-activation gated blocks in
Figure 5.5, we remove the gated activation (act) from the GLUs. Then we feed
our inputs through a batch normalization (BN) and a standalone gated activation
before each GLU (without gated activation).

5.5.2 Image Embedding

The second essential part of VQA is to perceive the input image itself. As we already
explored in Chapter 4, DCNNs are one of the state-of-the-art architectures for extracting
semantical information from an image. Of course, we also utilize a DCNN pretrained
on the ImageNet [122] classification task. Because these networks were trained on a
large set of everyday scenes, they have already encountered many examples of common
objects and activities. The VQA-v2 dataset is based on the MSCOCO dataset and,
thus, contains many such objects and scenes. Furthermore, as the Inception-v3 [132]
architecture yielded good results for the task of image captioning (see Chapter 4), we
also implement it as encoder for our VQA model.

In contrast to image captioning, we make an adaption for the case of image attention
(see Section 5.5.3). As we attend to different areas of the image, we do not reduce the
spatial dimensions in this case, i.e., we do not average-pool the resulting feature map,

91

5 Visual Question Answering

but obtain a feature tensor of size RK×2048, where K = 8 ·8 = 64. More specifically, this
feature tensor is the output of the Mixed 7c layer of the Inception-v3 network.

Note that for experiments without image attention, we use a global average-pooled
feature representation of size R2048. For experiments with image attention enabled, our
feature tensor is of size RK×2048.

5.5.3 Image Attention

Similarly to Teney et al. [135], we use a simple form of image attention that attends to
certain areas of the image. We do not use features from image regions extracted by a
object detection pipeline like Faster-RCNN [119], but only attend to spatial locations on
the feature map of the image. The feature map has a size of 8× 8 with 2048 dimensions
each, which corresponds to K = 64 image locations. We denote each location i ∈
{1 . . .K} by Fi and concatenate it with the question representation yQ̃ from the Q-
CNN. We forward the concatenated question-image feature for every location through
a gated tanh layer fatt (see Section 5.4) and optimize a parameter vector watt ∈ R2560

that produces attention scores:

ai = watt • fatt([Fi,y
Q̃]). (5.10)

As we concatenate each location of the feature map (∈ R2048) with the question repre-
sentation (∈ R512), we get a feature vector of size R2560 for each location i. Therefore,
fatt has an input dimension a = 2560. We set the output dimension to the same, i.e.,
b = 2560. Note that the calculation of attention scores is essentially the same as in
Equation 2.11 except we include the gated tanh layer fatt. After we evaluated ai for
every spatial location i, we can calculate the attention weights α with the softmax ϕ
function over all attention scores:

α = ϕ(a). (5.11)

The previous two operations are depicted by the green attention layer in Figure 5.3.
Finally, we can weight each spatial location Fi of the feature map:

F̂ =

K∑

i=1

αiFi. (5.12)

Our attention weights αi sum up to 1 and we weight each location Fi by its respective im-
portance, which yields the new feature representation F̂ . Thus, this operation (depicted
by the red sum symbol in Figure 5.3) reduces the features into the same embedding
space as average-pooling does. However, it is designed to weight spatial image locations
according to their relative importance instead of weighting each spatial location uni-
formly. For our experiments without image attention, we use the global average-pooled
feature map as described in Section 5.5.2 (F̃ = avg pool(F)).

5.5.4 Multi-Modal Fusion

We need to project the question embedding and image embedding into a joint semantic
space to be able to produce answers which are dependent both on the input image and

92

5.5 Hybrid Convolution Recurrent Model

the question. In order to do so, we first apply the gated tanh layer from [135] (see
Section 5.4) to the question features yielded by the Q-CNN. We denote this layer by
fq(·). Because this particular gated tanh layer operates on question features, we give it
the subscript q. The question features from the Q-CNN have dimensionality ν = 512,
thus, we set the input dimension of fq(·) to a = 512. We want the number of output
dimensions to match the input dimension and set b = a = 512.

As is common practice in the VQA community [5, 135], we want to fuse our image
and question features via the element-wise product into a context vector. To do this, we
need to reduce the dimensionality of the image embedding to match the question feature
vector’s dimensionality of 512. Again, we use the gated tanh layer. In particular, we
use fv(·) with input dimension of a = 2048 and output dimension b = 512 to reduce the
dimensionality of the attended image features F̂ to match the question feature vector.
Consequently, we can compute the context vector c as follows:

c = fq(y
Q̃) ◦ fv(F̂), (5.13)

where ◦ is the element-wise product. We depict the element-wise fusion operation on
the right side in Figure 5.3.

5.5.5 Output LSTM

As we pointed out, most other VQA models from the literature have the drawback of
leaving out the less common answers and model the problem of predicting the answer
to an image-question pair as a classification task. To do otherwise, we use a classi-
cal approach coming from image captioning models (see Chapter 4 and [139, 140]) and
machine translation networks. Generally speaking, those kind of models use an encoder-
decoder structure, which encodes inputs (e.g., source language sentence or input image)
into a fixed-length vector representation and decodes this feature vector into the target
sentence.

In contrast to our image captioning model, which we examine in greater detail in
Chapter 4, the input is the combination of a question and an input image instead of
only an image. We encode this combination in the context vector c and the target is
the answer described by a sentence yS = [yS

0 , . . . ,y
S
N−1], where yS

t is the word at index
t and N the length of the answer. Note that N is different from the question length,
which we also denote by N . Also note that the following notations and steps to produce
an answer works in the same way as generating an image caption, which we already
highlighted in Section 4.2. Our model then maximizes the probability p of the correct
answer yS , given the context vector c:

θ∗ = argmax
θ

∑

(c,yS)

log p(yS |c; θ), (5.14)

where θ are all variables of our model and θ∗ is the optimal parameter set. Of course,
each answer yS consists of a variable number of words and the model is optimized for

93

5 Visual Question Answering

each image-question-answer triple (i.e., question and image are contained within the
context vector c; the answer is represented by yS). Therefore, for each training triple,
the joint log probability

log p(yS |c) =
N−1∑

t=0

log p(yS
t |c,yS

0 , . . . ,y
S
t−1) (5.15)

is maximized. Note that we dropped θ for convenience. Identical to Chapter 4, the
first word of each answer always is the start-of-sequence token. Thus, the probability
for p(yS

0 |c) is always 1 and the joint probability in Equation 5.15 is the same for the
starting point t = 0 or t = 1.

Again, we can model the joint probability by using an RNN, where nt+1 is the output of
the fully-connected layer after the RNN cell for the input yS

t . Furthermore, we preprocess
the ground-truth answer yS by prepending a start-of-sequence (<S>) and end-of-sequence
(</S>) token (identical to Sections 4.2 and 2.2.2). Thus, during optimization, the first
token (yS

0) of each answer is the <S> token and the last token (yS
N−1) of the ground-truth

answer is </S>. Therefore, the original answer length N is increased by 2 in our models.
In particular, we use an LSTM network as the decoder network, where we initialize the
hidden state at iteration step t = −1 (i.e., before we unroll the LSTM cell) with the
multi-modal feature representation c of the question and image. For iteration step t = 0,
we feed the embedded <S> token to the LSTM cell, which outputs n1. Note that we
only feed c once into the LSTM network and nt+1 is the output of the LSTM cell at
iteration step t fed through a fully-connected layer that inflates the hidden state vector
to the vocabulary’s dimension |V|.

The loss that defines the error signal is then given by the sum over the log likelihoods
of the correct word at each position starting at iteration step t = 0, where log is the
natural logarithm applied element-wise to the vector nt+1:

L(c,yS) = −
N−2∑

t=0

[log ϕ(nt+1)] • y
S
t+1. (5.16)

Here • is the dot-product and yS
t+1 is the one-hot encoded ground-truth vector for the

correct word at iteration step t.

5.6 Experiments

5.6.1 Training Configuration

In all experiments, we use stochastic gradient descent (SGD) with a base learning rate
of ηb = 2.0. The base learning rate applies to the decoder LSTM network, while we use
a reduced learning rate for other parts of our model. For the question encoder CNN, the
image attention and the multi-modal fusion, we use learning rates ηQ-CNN = 0.005 · ηb,
ηatt = 0.05 · ηb and ηfusion = 0.05 · ηb, respectively. At a varying number of epochs, we
halve the learning rate. When fine-tuning the Inception-v3 network in an end-to-end

94

5.6 Experiments

fashion, we set all learning rates to η = 0.0005. We use a batch size of 128 in most of our
experiments and reduce the batch size to 32 when fine-tuning the Inception-v3 network.
All experiments were conducted on a single NVIDIA Titan X Pascal GPU.

For training, we use each image-question-answer triple as one training example. Note
that we sample multiple training examples from one image-question pair with multiple
possible answers to model the uncertainty between the annotators. Thus, we get a
slightly richer training signal because the model learns that multiple answers could be
correct.

Depending on the model, we halve the learning rate 2 to 4 times and train for 2 to 4
epochs per learning rate. In the fine-tuning stage, we train until convergence for a total
of up to 35 epochs. In addition, we increase the number of epochs per learning rate to 6.
On our GPU, training in the first stage with pre-computed Inception-v3 features takes
2 to 4 days. The fine-tuning stage takes 8 to 10 additional days.

We implement our VQA model in TensorFlow 1.0 [3] and use the prebuilt Inception-
v3 DCNN from the slim module. Our model shares code with the Show and Tell [139]
model, which is publicly available as a TensorFlow implementation.

5.6.2 Results

In the following section, we conduct a series of experiments to find an architecture
producing best results for our scenario (see Table 5.1). We review every part of our
architecture (see Section 5.5) and conduct extensive ablation experiments in order to
justify our hyperparameter selection. All models build upon an Inception-v3 DCNN
pretrained on the ILSVRC 2012 [122] corpus. We precompute the Inception-v3 features
of the input images, because every image is used multiple times and, thus, training is
sped up. Unless stated otherwise, we report accuracies on our validation split of the
VQA-v2 dataset.

5.6.2.1 Question Feature Extraction

As we described in Section 5.5.1, we use a convolutional architecture to extract a single
feature vector from a given question. In addition to the post-activation layers, we also
conduct an experiment (see model #1) with a pre-activation layer (similar to ResNet-
v2 [59], see Section 5.5.1), which performs a little worse in our case. In comparison
to model #2, we loose 0.4% in performance on all questions. Only the Y/N questions
improve by 0.12% while we loose 1.16% and 0.67% performance for number questions
and other questions, respectively.

We also compare classification accuracies for different numbers of gated residual blocks
(see the column # blocks in Table 5.1). Here we see that a larger number of residual
blocks (4) does not improve performance in comparison to our choice of using only 2
blocks (compare model #2 vs. model #4, which achieve similar performance).

Furthermore, in the first column of the question feature extraction columns, we show
our different choices for the kernel size κ of the question convolutions. As a comparison,
we also extract the question features with a simple LSTM network (one LSTM cell with

95

5 Visual Question Answering

Table 5.1: Studies on our validation split of the VQA-v2 dataset. We analyze different combi-
nations of hyperparameters in our model. The first column states the model #, Att
stands for Attention, FT for fine-tuning of all parameters (including the Inception-v3
image feature extraction DCNN) and VG if we extended our dataset with the Visual
Genome dataset. The columns under Feature Extraction yQ state the configuration
of the question feature encoder. MM-Fuse describes the kind of multi-modal fusion
used and Decoder specifies whether we used an LSTM or a fully-connected (FC)
layer for generating the answers. The columns for validation performance give the
accuracies on our validation split (10 % of the VQA-v2 validation split).

Feature Extraction yQ MM-Fuse Decoder Validation Performance

Att FT VG κ # blocks act fq(Q̃) All Y/N Num Other

1 — — — 4 4 pre — eltwise LSTM 52.02 71.69 34.82 41.38
2 — — — 4 4 post — eltwise LSTM 52.42 71.57 35.98 42.05
3 — — — 4 1 pre — eltwise LSTM 50.65 69.07 31.34 41.62
4 — — — 4 2 post — eltwise LSTM 52.44 71.52 35.48 42.28
5 — ✓ — 4 2 post — eltwise LSTM 54.67 72.63 37.04 45.55
6 — — — 5 2 post — eltwise LSTM 53.00 72.57 35.44 42.53
7 — — — — LSTM — — eltwise LSTM 41.48 63.69 28.18 27.95

8 ✓ — — 5 2 post — eltwise LSTM 53.54 73.33 34.81 43.34
9 ✓ — — 5 2 post ✓ eltwise LSTM 53.71 73.62 35.12 43.38

10 ✓ — ✓ 5 2 post ✓ eltwise LSTM 53.97 73.69 36.83 43.42
11 ✓ ✓ — 5 2 post ✓ eltwise LSTM 56.62 75.45 39.33 46.79

12 ✓ — — 5 2 post ✓ eltwise FC 49.16 72.82 33.41 35.26
13 ✓ — — 5 2 post — MFB LSTM 51.94 72.44 33.54 41.13
14 ✓ — ✓ 5 2 post — MFB LSTM 52.20 71.45 35.40 41.90

512 units), which decreases the validation accuracy about an absolute of 10%. Note that
we use gated linear units (GLU; see Section 5.5.1) for every model except model #7. We
also see that model #6 with κ = 5 performs a little better than model #4 with κ = 4.
Therefore, as a final choice of parameters for the question feature extraction part of our
model, we choose to use 2 post-activation residual blocks (see Figure 5.5) and a kernel
size of κ = 5 for the GLUs.

5.6.2.2 Image Attention

In the next step, we extend our model by implementing a simple image attention model
(see Section 5.5.3). We already mentioned earlier that we precompute the feature maps
(∈ R8×8×2048) for the encoder Inception-v3 network. In particular, we store the direct
output of the Mixed 7c layer. For the models that make use of image attention, we do
not average-pool those feature maps and attend to the output feature maps (∈ RK×2048,
K = 8 · 8 = 64).

In Table 5.1, we mark models with image attention by a checkmark in the Att column.
In the validation results, we notice that our model benefits from adding this simple form
of attention. More specific, if we compare models #6 and #8, we see that enabling
image attention improves the overall accuracy by 0.54%.

96

5.6 Experiments

Finally, if we also optimize parameters of the Inception-v3 DCNN, we get an additional
improvement of about 3% on the overall accuracy (see model #11 vs. #9). We also see
that fine-tuning has a larger impact on number questions and other questions than on
Y/N questions.

5.6.2.3 Multi-Modal Fusion

We explored a simple and effective way of combining features from different modalities
in Section 5.5.4. In particular, we combine the question and the image features into a
joint semantic space before generating an answer. More specifically, in Equation 5.13,
we fuse the image and question features via element-wise multiplication.
In addition, applying the non-linear layer fq(y

Q̃) (see Section 5.5.4) to the question

features (yQ̃) before fusion also has a small positive effect. In comparison to model
#8, model #9 improves the overall accuracy, Y/N question accuracy, number question
accuracy and other question accuracy by 0.17%, 0.29%, 0.31% and 0.04%, respectively.
These are minor improvements and could well be due to statistical uncertainty. However,
as it does not hurt performance, we apply the non-linear layer to the question features of
our final model. Besides fusing the question and image features simply by calculating the
element-wise product, we also implemented the multi-modal factorized bilinear pooling
(MFB) approach by Yu et al. [155], which was ranked second in the VQA-v2 open-ended
challenge. They project the image features and question features into a larger embedding
space, i.e., the embedding space is ∈ R5·512. These larger embedding spaces are combined
via an element-wise product and then reduced to R512 via sum-pooling, i.e., blocks of
5 values are summed up. We first calculate the element-wise signed square-root of this
vector

z ← sgn(z) · |z|0.5 (5.17)

and then normalize it with the L2-norm (∥·∥2)

z ← z

∥z∥2
. (5.18)

Yu et al. assume that MFB supports the exploitation of more complex correlations
between multi-modal features. As we can see in the MM-Fuse column of Table 5.1,
using the MFB approach (models #13 and #14) does not increase overall accuracy in
our case and we stick with using the simple fusing approach described in Section 5.5.4.

5.6.2.4 Classical VQA Approach

As we use an LSTM network as the decoder instead of a fully-connected layer (FC) with
a softmax cross-entropy loss function, we still want to compare our architecture to the
classical VQA classification approach (see Section 5.4).
For this reason, we extended our model to be able to classify the 3000 most common

answers of the train split. When we evaluate this approach (model #12) on our validation
set, accuracies drastically decrease compared to the LSTM decoder (53.71 vs. 49.61).
This may be an indicator that the classification approach performs worse than an LSTM
decoder network.

97

5 Visual Question Answering

0 5 10 15 20 25

Answer length in words

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

P
er

ce
n

ta
ge

of
to

ta
l

d
at

as
et

VQA-v2 answer lengths (in words)

VG answer lengths (in words)

Figure 5.7: The VQA-v2 dataset contains many short answers (89.41% and 6.92% of all answers
have a length of 1 and 2 words, respectively), while the VG dataset contains more
answers with more words (52.47%, 21.86% and 16.70% of all answers are of length
1, 2 and 3 words, respectively).

5.6.2.5 Dataset Extension

We also examine whether the validation accuracy can be improved by extending the
dataset with the Visual Genome (VG) dataset. Because we do not evaluate on the VG
dataset, we include the whole dataset into our train split. Models trained with the
extended dataset are indicated by the VG column in Table 5.1. In contrast to models
that use the classification approach [135, 155], we include the whole VG dataset. These
other works mostly exclude dataset samples that do not conform to the top answers
of the VQA-v2 dataset, because the classification-based models are limited by a fixed
number of possible answers (i.e., a fixed number of output neurons in the classification
layer). In both experiments (models #10 and #14), in which we extended our dataset
by VG, we notice a slight improvement in the scores. This could be attributed to the fact
that the VG dataset contains longer answers than the VQA-v2 dataset, which mainly
consists of one to two word answers. We hypothesize that our model is therefore able to
produce richer answers. We depict the distribution of answer lengths in Figure 5.7.

5.6.3 Less Common Answers

We use an LSTM network to generate answers, thus, in contrast to classification models,
we are able to generate answers which are not part of the 3000 most common answers.
Our train set contains 190,677 unique answers and the 3000 most common answers
(MCA) comprise 90.5% of all answers in the dataset. Thus, classification models with
3000 logits are unable to produce 9.5% of the less common answers (LCA) of the train

98

5.6 Experiments

Table 5.2: Fractions of unique answers generated by our models. LCA are less common answers
left out altogether by classification models. MCA are most common answers, which
are the only answers generateable by classification models. New answers are newly
generated sentences by our models not contained in the train split. The LCA ac-
curacy describes the percentage of correctly generated answers out of the LCA set,
i.e., these are correct answers given by our model that classification models are not
able to produce.

LCA LCA accuracy MCA new answers

10 14.97 % 11.91 % 62.73 % 22.30%
14 14.70 % 9.47 % 63.62 % 21.68 %
11 19.49 % 8.10 % 69.74 % 10.77 %
8 24.52 % 9.91 % 64.22 % 11.26 %

set. In contrast, our LSTM model is able to produce every answer and even new answers.
In an experiment, we determined the fraction of MCA, LCA and new answers of all
uniquely generated answers of some of our models. Our models generate between 14.70%
and 24.52% LCA and between 11.26% and 22.30% new answers. With the official
evaluation tool, we also find that the accuracy of LCA is up to 11.91%. Note that these
answers cannot be generated by classification-based models. We visualize these findings
in Table 5.2. In a qualitative analysis we depict some of the new answers generated by
our model in Figures 5.8 and 5.9. Figure 5.8 shows correct answers not detected by the
official evaluation script. Figure 5.9 depicts incorrect answers, e.g., (a) and (b) show
answers being too short (due to the short answer bias of the dataset) and (c) and (d)
show wrong answers, even though the answers are plausible given the scene.

Table 5.3: One of our models (model 10) compared to other published models on the test-dev
and test-std dataset splits.

Model / Dataset VQA-v2 test-dev VQA-v2 test-std

All Y/N Num Other All Y/N Num Other

MCB [38, 45] - - - - 62.27 78.82 38.28 53.36
d-LSTM+n [97, 45] - - - - 54.22 73.46 35.18 41.83
Single Network [135] 62.07 79.20 39.46 52.62 62.27 79.32 39.77 52.59

#10 (Ours) 56.32 75.64 36.21 44.36 56.68 76.02 36.56 44.46

5.6.4 Performance on the Official Test Set

In Table 5.3, we compare our model to other models on the test-dev as well as the test-std
dataset split. We compare our model to the MCB [38] approach as reported in [45] and
the single network model by Teney et al. [135]. In comparison to those models, we did not
train an ensemble of networks and did not implement attention on image regions with an

99

5 Visual Question Answering

(a) Q: Where is the man?
A: in a restaurant

(b) Q: Where are the trees?
A: behind the elephants

(c) Q: Where is the bus?
A: on the street

(d) Q: Where is the red carpet?
A: on the ground

Figure 5.8: Images associated with questions from the VQA-v2 dataset [45] and generated
answers by our model. All answers shown are new ones not contained in the training
set. Figures (a) - (d) show correct answers not detected by the official evaluation
script.

100

5.6 Experiments

(a) Q: Who wears a cowboy hat?
A: the man on the

(b) Q: What is the woman doing?
A: feeding the

(c) Q: Where is the photo taken?
A: in a kitchen

(d) Q: Where is the boy looking?
A: at the beach

Figure 5.9: Images associated with questions from the VQA-v2 dataset [45] and generated an-
swers by our model. All answers shown are new ones not contained in the training
set. In this Figure, we show wrong answers. Especially, (a) and (b) show sentences,
where the end-of-sentence token was generated to early (dataset bias of short an-
swers). (c) and (d) show wrong answers.

101

5 Visual Question Answering

object detection model. Nevertheless, our models surpass the d-LSTM+n approach but
are worse than the best scoring approaches. However, as our focus lays on generating
less common answers and new answers, our model cannot be fairly compared against
these approaches, which are trained and evaluated on a classification task. Furthermore,
our model can produce more complex answers due to the LSTM decoder network and
can be seen as a viable approach for more complex VQA datasets to come.

5.7 Summary

In this chapter, we presented an end-to-end trainable architecture for the VQA task. In
contrast to other approaches, we use an LSTM network to generate the answers for the
image-question pairs. Furthermore, we conducted a series of experiments to find a good
combination of hyperparameters for our architecture. Competing approaches model the
VQA task as a classification task, where a fixed number of most common answers are
the possible classes, hence, they are not able to produce less common answers. With
our approach, we were able to generate such less common answers with an accuracy of
11.91% and also showed that our model generates new answers, which are not contained
in the training set. Some of these produced sentences answer questions correctly, which
the accuracy-based evaluation script cannot asses correctly. We also find out that the
ground-truth answers of current VQA datasets are biased towards a short number of
words, i.e., more than 90% of the answers have a maximum length of two words. For
datasets containing more complex answers, our model is more suitable than models using
the classification approach.

102

6 Hierarchical Language Generation of
Doctors’ Reports for Chest X-Ray Images

So far, we have discussed the image captioning and visual question answering tasks.
We tackled both tasks with an RNN network that generates descriptions in a recurrent
way. In this Chapter, we discuss the problem of generating doctors’ reports for chest
X-ray images. This task is quite similar to traditional image captioning (see Chapter 4).
However, there are two obstacles: First, a report consists of a paragraph, i.e., multiple
sentences instead of one. Second, in addition to longer textual descriptions, we have a
lack of annotated data as medical data is highly regulated and not available on a large
scale. In this chapter, we will deal with those two fundamental problems in automatic
report generation for chest X-ray images.
We base this chapter on following publication:

Addressing Data Bias Problems for Chest X-ray Image Report Gener-
ation [51], Philipp Harzig, Yan-Ying Chen, Francine Chen and Rainer Lienhart,
30th British Machine Vision Conference 2019, Cardiff, Wales, September 2019.

6.1 Motivation

Deep convolutional neural networks in combination with recurrent neural networks are
a common architecture used to automatically generate descriptions of images. These
recent advances in automatic description generation have not left other areas such as
medical research untouched. For example, Wang et al. released a dataset [145] which con-
tains thousands of chest X-ray images associated with up to 14 disease labels. Demner-
Fushman et al. [28] released an anonymized dataset which contains 7470 chest X-ray im-
ages associated with doctors’ reports and tag information specifying medical attributes.
However, annotating these domain-specific datasets requires expert-knowledge and can-
not be achieved cost-efficiently like more common datasets. In addition, medical data is
connected with high privacy concerns and also regulated, e.g., by the Health Insurance
Portability and Accountability Act (HIPAA).
Therefore, only a limited amount of data is publicly available. Especially, there is

only one public dataset [28] that connects chest X-ray images with medical reports. In
this dataset, there are far more sentences describing cases without medical conditions
than cases with medical conditions. We refer to these two types as normal and abnormal
cases, respectively. Thus, most machine learning models are biased towards generating
normal results with a higher probability than abnormal results. However, abnormalities
are more important and more difficult to detect given the small number of examples.

103

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images

In this chapter, we address this issue with a new architecture, which can distinguish
between generating sentences describing abnormal or normal findings.

Furthermore, common machine translation metrics such as BLEU [108] may not be
the best choice, when even one word - such as ‘no’ - contained in a paragraph can make
a huge difference for the indication and findings. Also, calculating these metrics over an
imbalanced dataset raises the issue that sentences about normal cases are over-weighted
and results in less diversity in the generated reports. We examine these issues of common
machine translation metrics when used on a dataset of medical reports in this chapter.

Here, we address the data bias problems for chest X-ray image report generation by
breaking the task down into the following sub-tasks:

1. We annotate each sentence of a public dataset with abnormal labels.

2. We use these labels to train a new hierarchical LSTM with a dual word LSTM.
A dual word LSTM means that we implement two word LSTMs with different
parameter sets. With an abnormality prediction module, we determine whether
a sentence will describe an abnormal finding or a normal one. Then, we can
choose one of the two word LSTMs to generate the respective sentence, i.e., one
word LSTM is responsible to create sentences that describe abnormalities. The
other one generates sentences that identify normal cases. This helps us to reduce
problems associated with the data bias of the chest X-ray dataset.

3. We analyze the correlation between machine translation metrics and the variability
in generated reports and find that a high score calculated over a dataset does not
necessarily imply a result to rely on.

6.2 Related Work

Chest X-Ray Datasets In the field of combining computer vision and machine learning
with medical chest X-ray images, Wang et al. [145] published the large Chest-Xray14
dataset, which includes a collection of over 100,000 chest X-rays annotated with 14
common thorax diseases. This dataset has been widely [88, 116, 146] used for predicting
and localizing thorax diseases. The disease labels of this dataset were automatically
extracted from the doctors’ reports. However, the doctors’ reports are not available
publicly. Demner-Fushman et al. [28] are the first to release a rather large anonymized
dataset called Indiana University chest X-ray collection consisting of chest X-rays paired
with doctors’ reports, indications and manually annotated disease labels. We use this
dataset in our work.

Hierarchical Language Generation Automatically generating captions from images is
a well-researched topic. Nowadays, most architectures use an encoder-decoder structure,
where a DCNN is used to encode images into a semantic representation and a decoder
generates the most likely sentence given this image representation. Older methods (e.g.,
[139, 73, 71], Chapters 4 and 5) utilize recurrent neural networks in the decoder. Krause

104

6.3 Dataset

et al. [77] extended on these works by introducing a hierarchical LSTM structure to
generate longer sequences for describing an image with a paragraph. In this chapter, we
define a paragraph to be the concatenation of multiple sentences. For example, an image
description consisting of 5 consecutive sentences is called a paragraph. In their work,
Krause et al. argue that LSTM cells help to catch long-term dependencies with their
gating mechanism, but present hierarchical recurrent networks as a suitable alternative
for longer sequences like a paragraph. In this approach, different parts of the model
operate on different parts within a textual description, i.e., each sentence of a paragraph
is generated with a different precondition. This precondition vector is generated by
another LSTM.

Language Generation for Doctors’ Reports Jing et al. [70] use a hierarchical LSTM to
generate doctors’ reports with multiple sentences, and use a co-attention mechanism that
attends to visual and semantic features, which are generated by medical tags annotated
within the Indiana University chest X-ray collection [28]. Li et al. [87] describe a hybrid
reinforced agent that decides during the process of creating every single sentence if
it should be retrieved from a template library or generated in a hierarchical fashion.
Instead of a hierarchical model, Xue et al. [153] use a bidirectional LSTM to encode
semantic information of the previously generated sentence as guidance for an attention
mechanism to generate an attentive context vector for the current sentence. The authors
also state that standard sentence evaluation metrics like BLEU [108], METEOR [10],
ROUGUE [89] and CIDEr [138] are not designed for medical report generation tasks
and, therefore, present the keywords accuracy (KA) metric. This metric is the ratio
of correctly generated keywords to all keywords within the ground-truth. Wang et
al. [146] presented a joint framework, which simultaneously predicts one of 14 diseases
and generates a report on the Chest-Xray14 dataset. However, the textual annotations
are not available to the public as of yet. They use a single LSTM that produces a
report conditioned on the previous hidden state, the previously generated words and
image features extracted by a CNN. In a more recent work, Li et al. [82] use a graph
transformer to decompose visual features into an abnormality graph, which is decoded as
a template sequence and paraphrased into a generated report. Our method is based on
a hierarchical LSTM structure [77, 70] and introduces an abnormal sentence predictor in
combination with a dual word LSTM for separately generating sentences that describe
abnormalities and normal cases. A dual word LSTM means that we implement two
word LSTMs with different parameter sets. One of those two word LSTMs is selected
if a sentence that describes an abnormality is more likely to be generated. If it is more
likely that the sentence should describe a normal case, we choose the other LSTM. In
contrast to [87, 82], we do not use any templates for sentence generation.

6.3 Dataset

We make use of the Indiana University chest X-ray collection [28] (IU chest X-ray
dataset), which contains 7470 chest X-Ray images associated with multiple annotations.

105

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images

Each annotation includes a textual report written by a domain expert (i.e., a doctor),

UID: CXR1001
Impression: Diffuse fibrosis. No visible focal acute disease.
Indication: dyspnea, subjective fevers, arthritis, immigrant from Bangladesh
Findings: Interstitial markings are diffusely prominent throughout both lungs. Heart size is normal.
Pulmonary XXXX normal.
Problems: Markings; Fibrosis
MeSH: Markings/lung/bilateral/interstitial/ diffuse/prominent; Fibrosis/diffuse

Figure 6.1: An example from the IU chest X-ray dataset [28], which shows an abnormal case
with findings. We highlight the sentences with our human abnormality annotation:
In particular, sentences that represent normal observations are written in blue and
sentences describing abnormalities are written in green. We define our ground-truth
doctor’s report to be the concatenation of the impression and the findings. In this
case, our ground-truth doctor’s report (i.e., paragraph) consists of 5 subsequent
sentences.

which includes an indication, findings and an impression in a textual form. Therefore, we
call these textual reports doctors’ reports. Identical to other works [70, 146] in this area,
we create our ground-truth doctors’ reports by concatenating the sentences from the
impression and findings. Both impression and findings can consist of multiple sentences.
Thus, our final ground-truth doctors’ reports also consist of multiple sentences. The orig-
inal work that generates multiple subsequent sentences with a hierarchical model [77]
for a non-medical dataset refers to multiple concatenated sentences as a paragraph. In
order to keep the terminology conistent, we also refer to the concatenated ground-truth
doctors’ reports as paragraphs in this chapter.

Furthermore, the dataset is annotated with MTI (medical text indexer) encodings.
The MTI encodings are automatically extracted keywords from the indication and find-
ings. We identify 121 unique MTI labels in the dataset and use these labels for an

106

6.4 Hierarchical Base Model

Table 6.1: Distinct sentences sorted top-down by their number of appearances in the dataset.
We denote the absolute count of the corresponding distinct sentence with c̃.

rank c̃ sentence

1 947 no acute cardiopulmonary abnormality
2 698 the lungs are clear.
3 523 no pneumothorax.
4 451 lungs are clear.
5 394 no acute cardiopulmonary findings.
...

8018 1 mild right basilar airspace consolidation may ...
8019 1 calcified granuloma is seen in the left medial...
8020 1 old rib fractures healed.
8021 1 negative for pneumothorax pneumomediastinum or...
8022 1 it is unchanged compared to a for the abdomen ...

additional training signal. Additionally, the authors manually annotated the images
with MEDLINE® Medical Subject Headings® (MeSH®).

To summarize, this public dataset contains 3955 narrative reports, each associated
with MeSH tags, MTI labels and two views of the chest, i.e., a posteroanterior (PA) and
a lateral view. Most of the narrative reports are associated with those two views but
some narrative reports only come with one view. Therefore, our dataset has nearly
double the number (7470) of images as narrative reports. We show one example from
this dataset in Figure 6.1.

It is very difficult for a machine learning model to properly learn the task of generating
full paragraphs of doctors’ reports from this small number of examples. Especially, we
notice that most of the reports consist of repeating and very similar sentences, which are
of descriptive nature and do not describe abnormalities and diseases. In Table 6.1, we list
the count c̃ of distinct sentences within the doctors’ reports, i.e., all sentences that appear
at least once in the dataset sorted top-down with most frequent sentences listed on top.
We notice a long-tail distribution with abnormal sentences often only occurring with an
absolute count of c̃ = 1 within the whole dataset. In fact, 6290 of the 8022 distinct
sentences have an absolute count of c̃ < 3. A machine learning model is optimized to
generate the most probable doctor’s report given the input image. However, most of the
images in the dataset depict normal cases and it is difficult to generate accurate reports
for abnormal cases. Considering that identifying abnormalities and diseases is the most
crucial part in this problem domain, we want to address the data bias problems for chest
X-ray image report generation.

107

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images

Image ResNet-152

Image
Embedding

LSTM
sentence m

hsent
mhsent

m−1

cmρstopm

Lstop

LSTM
word t

Lhierarchical

Generated Report

R1×1024

Fe
∈ R

1×51
2

Figure 6.2: A basic HLSTM model for generating paragraphs of sentences. The green boxes
show the CNN image encoder and the image embedding. The blue part and red
parts show the hierarchical LSTM. Our final model (see Figure 6.3) is built upon
this base model.

6.4 Hierarchical Base Model

One difficulty in generating doctors’ reports for the IU chest X-ray dataset [28] lies in
the nature of this dataset. That is, the doctors’ reports are the concatenation of the
impressions and findings and, therefore, consist of multiple sentences. Traditional RNNs
and even LSTMs have the downside that they tend to not work well on longer sentences
or even paragraphs as long-range dependencies (see Section 2.2.5) cannot be memorized
well. Krause et al. [77] introduce a hierarchical LSTM that builds two hierarchy levels
of LSTM cells on top of one another. Thus, many works that try to generate doctors’
reports for the IU chest X-ray dataset include a hierarchical LSTM into their model.
The hierarchical model separates the generation of different sentences in a paragraph
from the generation of words: We depict a simple hierarchical LSTM baseline model for
generating reports of chest X-ray images in Figure 6.2. On the top left, we forward the
input image through a ResNet-152, which was pretrained on the ImageNet dataset [122].
We average-pool the resulting feature map over the spatial dimensions which yields a
single feature map R1×1024 per image. Next, we project the feature map into a lower
dimension (Fe ∈ R1×512) with a fully-connected image embedding layer. This feature
vector is used to initialize an LSTM cell at iteration step m = −1, i.e., we call an LSTM
cell once with the embedded image features, before unrolling the cell. We call this first
LSTM cell sentence LSTM, which is responsible to generate hidden states hsent

m for every
iteration step. An iteration step of the sentence LSTM represents a single sentence from
the doctor’s report paragraph. For example, if a doctor’s report consists of M = 6
sentences, we unroll the sentence LSTM cell six times. Particularly, we iterate from

108

6.5 Dual Word LSTM Medical Image Report Generation

index m = 0 to m = 5. We visualize this unrolling by the loop arrow on top of the
sentence LSTM cell on the center top in Figure 6.2.

We first feed the sentence LSTM’s hidden state through a fully-connected layer to
generate a topic vector cm (see Section 6.5.1 for more details). The topic vector then
represents the context of a particular sentence m. We then initialize an LSTM cell with
this context/topic at iteration step t = −1, i.e., before we unroll this second LSTM cell.
We denote the second LSTM cell by word LSTM because it generates the words for a
sentence. We show the word LSTM in red on the right side of the figure. The word
LSTM is trained with a softmax cross-entropy loss (see Section 6.5.1) in similar fashion
to Chapters 4 and 5.

Second, we feed the sentence LSTM’s hidden state and the hidden state from the
previous iteration (hsent

m−1) through a second fully-connected layer with one output neuron.
This layer is called stop prediction and its sole purpose is to predict, whether the current
sentence m should be generated or not. In particular, the stop prediction signals whether
we should generate another sentence and add it to the paragraph or if we should stop
generating further sentences.

6.5 Dual Word LSTM Medical Image Report Generation

Image ResNet-152

Image
Embedding

Attention

LSTM
sentence m

hsent
mhsent

m−1

cmρstopm

Lstop

ρabnormal
m

Labnormal

LSTM
abnormal

LSTM
normal

Lhierarchical

Generated Report

MTI
Prediction

LMTI

R14×14×1024

F e
∈ R

19
6×

51
2

F̂m ∈ R512

> 0.5 ≤ 0.5

Figure 6.3: Our dual word LSTM model. The green boxes show the CNN image encoder, the
image embedding and the MTI tag prediction. The blue part depicts the sentence
LSTM, i.e., the topic generator cm and the stop prediction ρstopm . The red part shows
an abnormal sentence predictor (ρabnormal

m) and dual word LSTMs for generating
abnormal and normal sentences, respectively. Red font depicts the different loss
functions.

109

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images

We depict our extended model architecture in Figure 6.3. The input to our model are
single images, i.e., either the lateral view or PA view of a chest X-ray image. We use
the res4b35 feature map F ∈ R14×14×1024 of the ResNet-152 [59] as our image features.
Similar to the base model, we include an image embedding layer that embeds the whole
ResNet-152 feature map into a lower dimensional space Fe ∈ R14×14×512 for further
use. In contrast to the base model, we do not embed the average-pooled feature map
but the full feature map with spatial information. Concurrently, we reduce the channel
dimension of the feature map from 1024 to 512 in order to match the dimensionality
of our embedded tokens. The embedded feature map is then reshaped into a feature
map of shape R196×512 allowing a soft attention mechanism to attend to 196 different
spatial locations. Unless noted otherwise, all embedding and hidden dimensions are set
to 512 in our model. We see that the dual word LSTM model in Figure 6.3 shares
some resemblance with the base model. However, we added an attention mechanism,
an MTI label prediction module, and extended the word LSTM by a second LSTM
cell. These dual word LSTM cells are responsible for generating sentences that describe
abnormalities and normal cases, respectively. In the following, we describe our model in
more detail and highlight our additions to the base model.

6.5.1 Hierarchical Generation with Dual Word LSTMs

Even though LSTMs were designed to combat the issue of forgetting long-term de-
pendencies, they still have problems keeping information for very long time-periods,
e.g., over multiple sentences. Krause et al. [77] address this problem by splitting the
generation into a hierarchical LSTM, which consists of two independent LSTMs. The
sentence LSTM’s sole purpose is to generate topic vectors, which in turn are used for
the initialization of the word LSTM. The word LSTM then generates a single sentence
conditioned on the topic vector. Jing et al. [70] extend the hierarchical LSTM for gener-
ating medical reports from chest X-ray images. We also use a hierarchical concept with
an architecture that differs from Jing et al. [70]. For example, our model is trained in
a multi-task setting: In particular, we add a multi-label classification objective on MTI
tags (see Section 6.5.4) as a second task to our model. Furthermore, in contrast to Jing
et al. [70], we do not use the co-attention mechanism in our model.

Sentence LSTM We initialize the sentence LSTM on image features extracted by
the encoder CNN. However, we use a soft attention mechanism (see Section 2.3.1)
F̂m = Attention(Fe,h

sent
m−1) to attend to different spatial areas within the feature map

conditioned on the sentence LSTM’s hidden state hsent
m−1 of the preceding sentence. For

the sentence with index m = 0, we set hsent
m−1 to be the zero state, i.e., a vector with only

zeros. In subsequent sentences, we use the corresponding preceding hidden state, which
we remember from the previous iteration of the sentence LSTM. In order to generate
the topic vector for sentence m, we apply the sentence LSTM to the attentive image
features F̂m to get an intermediate hidden state hsent

m for the current sentence and feed

110

6.5 Dual Word LSTM Medical Image Report Generation

it through a fully-connected layer:

cm = ReLu(Wsent · hsent
m). (6.1)

The fully-connected layer has no bias terms, a ReLU activation function and generates
a topic vector cm. Wsent ∈ R512×512 is the learnable parameter matrix of the fully-
connected layer.

Stop Prediction We also use the sentence LSTM’s current and previous hidden state
to predict if we should continue generating sentences (ystop

m = 0) or stop generating them
(ystop

m = 1). The stop prediction (ρstopm) consists of three fully-connected layers without
biases. Both the sentence LSTM’s previous and current hidden state are forwarded
through two parallel fully-connected layers without activation functions. The results are
summed up and fed through the third fully-connected layer with tanh activation. The
stop prediction (ρstopm) can be calculated as follows:

ρstopm = Wstop · tanh(Wstop,m−1 · hsent
m−1 +Wstop,m · hsent

m), (6.2)

where Wstop,m−1 ∈ R512×512, Wstop,m ∈ R512×512 and Wstop ∈ R1×512 are parameter
matrices. We train the stop prediction with a sigmoid cross-entropy loss

Lstop = −
M−1∑

m=0

(
ystop
m · log

[
σ(ρstopm)

]
+ (1− ystop

m) · log
[
1− σ(ρstopm)

])
, (6.3)

where σ is the sigmoid function and M is the number of sentences in the current para-
graph.

Dual Word LSTMs A word LSTM is trained to maximize the probability of predicting
the ground-truth word yS

m,t+1 at iteration step t of sentence m. The hierarchical LSTM
softmax cross-entropy loss is then defined by

Lhierarchical =
M−1∑

m=0

Nm−2∑

t=0

([
log ϕ(nword

m,t+1)
]
• yS

m,t+1

)
, (6.4)

where Nm are the number of words in sentencem, ϕ(·) is the softmax activation function,
• is the dot-product, and nword

m,t+1 is the output of the fully-connected layer appended to
the word LSTM at iteration step t for sentence m. Note that during preprocessing we
prepend the start-of-sequence token <S> and append the end-of-sequence token </S> to
each sentence m within a paragraph. Therefore, as already described in Sections 2.2.2,
4.2, and 5.15, we only optimize the softmax cross-entropy for iteration steps t = 0
until t = N − 2. Note that the target sequence is shifted by one word, i.e., for the
input word yS

m,t in iteration step t we want to predict the ground-truth word yS
m,t+1.

Therefore, we denote the output of the fully-connected layer after the LSTM cell in
iteration step t by nword

m,t+1. Because of that, we optimize the loss for the ground-truth

words [yS
m,1, . . . ,y

S
m,Nm−1] of every sentence m.

111

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images

During inference, we then need to feed the m-th Word LSTM with the respective
topic vector cm and the start-of-sentence token <S> to sample one word at a time. The
input to the m-th word LSTM at iteration step t is the embedding of the predicted word
argmax(ϕ(nword

m,t)) from iteration step t− 1.

Depending on whether the current sentence is of type abnormal or normal, we train
two different sets of word LSTM parameters. In other words, we have an abnormal
word LSTM and a normal word LSTM, which are trained when the label of the current
sentence is abnormal and normal, respectively. In practice, we set the loss weights for the
current sentence to 1 in the abnormal word LSTM and to 0 in normal word LSTM. In
the case of a normal sentence, we set the loss weights inversely. In parallel, we optimize
the abnormal sentence prediction module (see Section 6.5.2) to predict whether a topic
vector represents a sentence describing an abnormality or a normality.

During inference phase, we use the prediction of the abnormal sentence prediction
module to decide whether we want to use the generated sentence from the abnormal
word LSTM or the normal word LSTM. We then concatenate sentences from both the
abnormal word LSTM and the normal word LSTM into our final paragraph.

6.5.2 Abnormal Sentence Prediction

As we already argued in Section 6.3, the dataset consists of many distinct normal sen-
tences, but only few different sentences exist that describe abnormalities. We integrate
an abnormality prediction module, which infers whether the semantic meaning of topic
vector cm does describe an abnormality or not. We use a fully-connected layer ρabnormal

m

with one output neuron and sigmoid (σ) activation function to predict the probability
for a sentence to be abnormal or not:

ρabnormal
m = σ

(
Wabnormal · cm + babnormal

)
, (6.5)

where Wabnormal ∈ R1×512 is a learnable parameter matrix and babnormal ∈ R1×1 is a
learnable bias term. We train the fully-connected layer with a binary cross-entropy loss
Labnormal:

Labnormal = −
M−1∑

m=0

(
yabnormal
m · log

[
ρabnormal
m

]
+

(1− yabnormal
m) · log

[
1− ρabnormal

m

])
,

(6.6)

where yabnormal
m (∈ {0, 1}) indicates whether sentence m describes an abnormality (1) or

not (0).

We manually annotated the IU chest X-ray dataset for every sentence within the
ground-truth paragraph of every sample in the training dataset. Two annotators labeled
whether a sentence is an abnormal case or not with the help of the provided MeSH tags.

112

6.6 Experiments

6.5.3 Multi-Task Learning

We use the global average-pooled image embedding F̃ ∈ R1×512 = avg pool(Fe) for
predicting the MTI annotations. As it is common in multi-label classification, we utilize
a fully-connected layer ρMTI with one output neuron and sigmoid (σ) activation function
for every distinct MTI label:

ρMTI = σ
(
F̃ ·WMTI + bMTI

)
, (6.7)

whereWMTI ∈ R512×|C| is a learnable parameter matrix and bMTI ∈ R1×|C| is a learnable
bias term. C is the set of all MTI classes and |C| = 121 is the number of unique MTI
labels. We then optimize a multi-label binary cross-entropy loss function LMTI

LMTI = −
∑

C∈C

(
yMTI
C · log

[
ρMTI
C

]
+ (1− yMTI

C) · log
[
1− ρMTI

C

])
, (6.8)

where yMTI
C represents the ground-truth label for a single class C out of all possible MTI

classes C. We set yMTI
C = 1, if a particular MTI tag C is present for a training sample,

otherwise yMTI
C = 0.

6.5.4 Learning Objective

For our experiments, we optimize the total loss

Ltotal =λstop · Lstop + λhierarchical · Lhierarchical+

λabnormal · Labnormal + λMTI · LMTI,
(6.9)

where λ(·) are the weighting factors for each loss. We set λstop = 5 and λhierarchical =
1 according to Krause et al. [77]. Furthermore, we choose λMTI = 1. We did not
experiment with other values for these weighting factors.

When we enable the dual word LSTMs with the abnormal sentence prediction module,
we set λabnormal = 1. Contrarily, we set λabnormal to 0 for experiments in which we disable
the dual LSTM approach, i.e., we only use a single word LSTM similar to Jing et al. [70].
In this case, we also calculate Lhierarchical with only one word LSTM.

When using the abnormal and normal word LSTMs, Lhierarchical is calculated with the
same loss function from Equation 6.4. However, depending on the annotation that tells
whether the ground-truth sentence with index m describes an abnormality or not, we
choose a different word LSTM with its own set of parameters. More specifically, nword

m,t+1

from Equation 6.4 is the output of the abnormal or normal word LSTM, depending on
whether the ground-truth annotation for sentence m is abnormal or normal.

We train the image embedding layer with both the hierarchical LSTM and the MTI
predictor, so the captioning task can benefit from our multi-task loss function (see Equa-
tion 6.9). We use the Adam [75] optimizer with a base learning rate of η = 5 · 10−4 and
do not use learning rate decay. We train for up to 250 epochs and use a batch size of 16.

113

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images

Table 6.2: Results on the validation and test set calculated with common machine translation
metrics. We denote the scores on the validation set first and the scores on the test
set in brackets. B-n stands for BLEU-n, which uses up to n-grams. We selected
the model configuration and hyperparameters based on the validation set. HLSTM
/ HLSTM+att are our hierarchical LSTM implementations similar to [77, 70], and
are evaluated on our dataset splits. . . .+Dual are our new models. *Scores taken
from [82], who used a different dataset split.

Model B-1 B-2 B-3 B-4 CIDEr METEOR ROUGE-L

CNN-RNN [139] 31.9 (33.3) 19.8 (20.5) 13.3 (13.6) 9.4 (9.4) 29.1 (30.6) 13.5 (14.5) 26.8 (27.2)

CoAtt* [70] — (45.5) — (28.8) — (20.5) — (15.4) — (27.7) — (—) — (36.9)

KERP* [82] — (48.2) — (32.5) — (22.6) — (16.2) — (28.0) — (—) — (33.9)

HLSTM 36.4 (37.6) 23.2 (23.8) 16.1 (16.3) 11.4 (11.4) 29.1 (29.3) 15.5 (15.7) 30.6 (30.2)
HLSTM+att 35.1 (36.6) 22.8 (23.4) 16.1 (16.4) 11.6 (11.7) 34.3 (32.3) 14.9 (15.6) 29.7 (29.9)
HLSTM+Dual 35.2 (35.8) 22.8 (23.1) 15.9 (16.0) 11.3 (11.2) 34.8 (32.2) 14.6 (15.1) 29.5 (29.6)
HLSTM+att+Dual 35.7 (37.3) 23.3 (24.6) 16.5 (17.5) 11.8 (12.6) 34.0 (35.9) 15.6 (16.3) 31.3 (31.5)

6.6 Experiments

In the following, we present an evaluation study and results generated by our hierarchical
models with dual word LSTMs: HLSTM+Dual and HLSTM+att+Dual. We choose to
compare against the CNN-RNN [139] baseline which we trained ourselves on our train
split. The CNN-RNN baseline is the baseline model from Chapter 4 and does not have
a sense of multiple sentences. Specifically, the CNN-RNN model is trained to predict
the whole paragraph consisting of multiple sentences at once. We also compared our
model against the scores reported in CoAtt [70] and KERP [82]. These models were
pretrained on a non-public dataset of chest X-ray images with Chinese reports, which
were collected by a professional medical institution for health checking [87]. KERP [82]
uses templates which is different in comparison to end-to-end generation approaches.
However, since these methods were evaluated on a different dataset split, the scores are
not directly comparable to ours. We therefore implemented hierarchical LSTM baselines
similar to [77] which were referred to in CoAtt [70]. These hierarchical LSTM baselines
with and without an attention mechanism are named HLSTM and HLSTM+att in this
chapter, and are evaluated on our dataset split. As we do not have access to the CX-
CHR dataset from [87], we did not employ any task-specific pretraining of the feature
extractor network.

6.6.1 Model Selection

We choose our dataset split by randomly shuffling the dataset and splitting it into a
train, validation and test set with a ratio of 0.9, 0.05 and 0.05, respectively. We make
sure that images of an individual patient are only present in either one of train, validation
or test set. We use the validation set for selection of hyperparameters and architectural
decisions. In practice, we select the best model checkpoint based on two criteria. First,

114

6.6 Experiments

we calculate metrics such as BLEU-n twice per training epoch. Second, we also calculate
the number of distinct sentences generated over the whole validation dataset for each
sentence index m within a paragraph.
We then choose our final models with an early stopping method by calculating these

criteria over the validation set:

1. We generate a doctor’s report/paragraph for every sample in the validation set.
We then count the number of distinct sentences for every sentence index within the
generated doctors’ reports. We only allow models that generate at least 4 distinct
sentences for the first sentence (i.e., m = 0) within the paragraphs. In other words,
we want to measure the variability of sentences generated by our model for all the
first sentences of a paragraph.

2. We select the model with the highest BLEU-4 score. We depict the scores on the
validation set in Table 6.2.

We report the scores on the held-out test set in brackets and show paragraphs gener-
ated by HLSTM and HLSTM+Dual in Figure 6.4.

Generated Caption HLSTM : exam quality limited by
hypoinflation and rotation. the heart is normal in size. the
lungs are clear. no focal consolidation suspicious pulmonary
opacity large pleural effusion or pneumothorax is identified.
no pneumothorax. no acute bony abnormalities. no pleural
effusion
Generated Caption HLSTM+Dual : technically limited
exam. basilar probable pulmonary fibrosis and scarring. the
heart is mildly enlarged. there are low lung volumes with
bronchovascular crowding. there is <unk >interstitial
opacity and left basal platelike opacity due to discoid
atelectasis scarring. there is no pneumothorax. no large
pleural effusion
GT: Stable enlarged cardiomediastinal silhouette. Tortuous
aorta. Low lung volumes and left basilar bandlike opacities
suggestive of scarring or atelectasis. No overt edema.
Question small right pleural effusion versus pleural
thickening. No visible pneumothorax.

Figure 6.4: Examples of generated paragraphs with our model HLSTM+Dual vs. HLSTM in
comparison with the ground-truth paragraph. Green sentences denote abnormal
sentences, while blue sentences describe normalities. The colors for the generated
sentence of model HLSTM+Dual indicate which of the two word LSTMs was re-
sponsible for generating the sentence. Ground-truth image taken from the IU chest
X-ray dataset [28].

6.6.2 Analysis on Evaluation Scores and Distinct Sentences

We have observed a severe disadvantage in solely using scores such as BLEU-n as the
evaluation criteria. As we mentioned before, we count the number of distinct sentences

115

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images

0 20000 40000 60000 80000 100000
training iteration

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

B-
4

sc
or

e
on

 v
al

id
at

io
n

se
t

HLSTM+att

0 20000 40000 60000 80000 100000
training iteration

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

B-
4

sc
or

e
on

 v
al

id
at

io
n

se
t

HLSTM+att+Dual

0

20

40

60

80

100

120

140

160

180

di

st
in

ct
 se

nt
en

ce
s

sentence idx m = 0
sentence idx m = 1

0

20

40

60

80

100

120

140

160

180

di

st
in

ct
 se

nt
en

ce
s

sentence idx m = 0
sentence idx m = 1

Figure 6.5: The number of distinct sentences of sentence m = 0 and m = 1 plotted against the
BLEU-4 validation score (in green) over the course of training for HLSTM+att and
HLSTM+att+Dual. The # of distinct sentences describes the number of different
sentences generated by our model over the whole validation set for a specific sentence
index m within each paragraph. We plot the # of distinct sentences for sentence
indices m = 0 and m = 1. The solid line represents the training iteration with the
maximum BLEU-4 score and the dashed line our selected model. In comparison,
the ground-truth contains 1216 and 1540 distinct sentences for sentence indices
m = 0 and m = 1, respectively.

116

6.6 Experiments

per sentence index m within a generated paragraph for each validation point by per-
forming the following steps:

1. We generate all paragraphs for the whole validation set.

2. We gather all sentences for every sentence position (i.e., index m) within the gen-
erated paragraphs.

3. Finally, we count the number of different sentences generated by our model for
every index m.

In the following, we denote this count with number of distinct sentences for a sentence
index m within all paragraphs over the validation set.
We notice that high BLEU-4 scores do not necessarily imply a high variability in

generated sentences. Most notably, the highest scores can sometimes be observed when
there are only 1 or 2 distinct sentences per sentence index resulting in very few different
paragraphs.
In Figure 6.5, we show the number of distinct sentences for sentence indices m = 0

and m = 1 compared to the BLEU-4 score over the course of training. We see that the
score of model HLSTM+att stays in the same limited range over the course of training.
For example, it has a higher score even though it generates the very same paragraph for
every sample in the validation set at training iteration 5838 (visualized by the vertical
black line) than at training iteration 73,809 (visualized by dashed line). For the model
HLSTM+att+Dual, we see that the score drops as more distinct sentences are generated.
For this model, we also see that there is much more variability of sentences from the
beginning on and also far more distinct sentences are generated in contrast to only using
a single word LSTM.

Table 6.3: Absolute number of distinct sentences in the ground-truth validation set (GT) along-
side the absolute number of generated sentences on the validation split of the dataset.
We list the absolute counts per sentence index m ∈ [0, 9] within the generated para-
graph.

Model
m

0 1 2 3 4 5 6 7 8 9

GT 1216 1540 1586 1549 1378 1086 725 477 278 171
CNN-RNN [139] 12 19 17 23 19 8 0 0 0 0

HLSTM+att 5 24 24 33 25 31 23 14 9 3
HLSTM 4 13 12 18 25 22 15 14 11 4
HLSTM+Dual 8 28 36 45 32 17 2 0 0 0
HLSTM+att+Dual 5 10 7 8 8 4 1 0 0 0

If we look at the number of distinct sentences generated per sentence index m in our
chosen models compared to the ground-truth in Table 6.3, we still see a huge gap. Note

117

6 Hierarchical Language Generation of Doctors’ Reports for Chest X-Ray Images

that paragraphs with only a single distinct sentence for any sentence index do not have
additional benefit, since they are not dependent on the input image. For example, as
we can see on the top graph in Figure 6.5, the HLSTM+att model at iteration 5838
(visualized by the vertical black line) yields the maximum BLEU-4 score. However, it
does only produce a single sentence for all generated paragraphs for the first and second
sentence indices. Considering that many sentences within the ground-truth only differ
slightly but have a synonymous meaning, we find that results which do not possibly
have the maximum score but a higher variability in generated paragraphs describe the
input images in a better way. Thus, we chose to introduce the first stopping criterion in
Section 6.6.1: We want our selected models to generate at least 4 distinct sentences for
sentence index m = 0.

6.6.3 Dual Word LSTM with Abnormal Sentence Predictor

We present the scores on the held-out test set in Table 6.2 (in brackets). Over all evalu-
ation metrics, our HLSTM+att+Dual model has the most improvement on CIDEr [138],
which is designed for evaluating image descriptions, uses human consensus and con-
siders the TF-IDF for weighting n-grams. This implies that our HLSTM+att+Dual
model can catch more distinct n-grams in the reference paragraph. In addition, our
HLSTM+att+Dual model is consistently better than other baselines in multi-gram
BLEU, METEOR and ROUGE-L, indicating that the relevance is not sacrificed while
distinctiveness is increased. In addition, we also compare our models with the dual
word LSTMs from Section 6.5.2 against the vanilla HLSTM model inspired by Jing et
al. [70]. As we already mentioned in Section 6.6.2, the number of distinct sentences per
each sentence index starts to grow more rapidly during training when using two word
LSTMs, which can be seen in the bottom part of Figure 6.5 when comparing it to the
HLSTM+att model on top. We can also see that generating more distinct sentences
does not account for better scores. However, when looking at the validation and test
scores in Table 6.2, the dual word LSTM models often have higher scores than the single
word LSTM models.

Table 6.4: Final results on the held-out test-set of the dataset for images that show abnor-
malities and normal cases. The first score describes the score over the images with
abnormalities. The score in brackets is only calculated over images with normal
cases.

Model B-1 B-2 B-3 B-4 CIDEr METEOR ROUGE-L

HLSTM+att 30.9 (44.4) 19.0 (30.1) 12.9 (21.8) 9.1 (15.8) 25.9 (42.6) 12.8 (22.2) 25.0 (38.6)
HLSTM 32.3 (43.5) 19.4 (29.7) 12.8 (21.3) 8.8 (15.3) 24.6 (37.1) 13.2 (21.7) 25.8 (38.2)
HLSTM+Dual 32.8 (41.2) 20.6 (28.1) 14.0 (20.0) 9.8 (13.9) 30.1 (31.8) 13.2 (19.5) 26.1 (36.0)
HLSTM+att+Dual 31.8 (46.9) 19.8 (33.5) 13.5 (24.9) 9.7 (18.3) 28.4 (49.5) 13.5 (22.8) 26.9 (39.9)

118

6.7 Summary

In Table 6.4, we report scores on the held-out test set for abnormal as well as normal
(in brackets) images. The best-performing model for both normal and abnormal images
is one of our dual models. The results also indicate that the performance is best on
normal images and so effort should be given to further improve performance on abnormal
images.

6.7 Summary

In this chapter, we presented a hierarchical LSTM architecture expanded by a dual
word LSTM. Paired with an abnormality prediction module, we introduced dual word
LSTMs, which are responsible for generating sentences that describe abnormal cases and
normal cases, respectively. In order to train the abnormal sentence prediction module, we
manually annotated each sentence in the IU chest X-ray dataset with a label indicating
whether it describes an abnormality.
We then examined the correlation between the BLEU-n metrics and the number of

distinct sentences generated by our model and observed that common evaluation metrics
such as BLEU-4 do not necessarily imply a good evaluation criteria for multi-sentence
medical reports. Furthermore, by introducing a dual word LSTM, we were able to
increase the number of distinct sentences faster when selecting a corresponding stopping
criterion. In contrast, a single word LSTM has the tendency to generate more probable
sentences for every single image over and over again.

119

Part III

Language Models with
Self-Attention for Image Description

Generation and Video-to-Text
Translation

121

Overview

In Part II of this thesis we discussed and presented image description models that gen-
erate natural language descriptions in a recurrent way, i.e., they include RNNs in order
to generate a sentence word by word. Even though many works claim that LSTMs are
able to alleviate or even prevent the problems associated with long-term dependencies,
we have seen in Table 6.2 of Chapter 6 that an LSTM network with two hierarchy levels
performs better than the baseline CNN-RNN model for descriptions that are longer than
one sentence.
In addition, we also saw that attention mechanisms (Chapters 5 and 6) can help an

LSTM to generate sentences with higher scores. For example, Anderson et al. [4] have
shown that an image captioning model utilizing an attention mechanism can lay focus on
different parts of the input image while generating different parts of a sentence. These
successful applications of attention have ultimately led to a new architecture in NLP that
primarily uses self-attention mechanisms in combination with fully-connected layers for
extracting features from text and even for generating text. As it has happened before,
this Transformer [137] architecture has been quickly adopted to other tasks than ma-
chine translation such as image captioning, object detection, video captioning, and many
more with significant improvements. Furthermore, as Transformers have no more recur-
rent connections, another problem of RNNs was basically removed. Through unrolling
recurrent cells, RNNs can become very deep networks, thus, vanishing and exploding
gradients are a common problem the longer a sequence gets. In Transformers, however,
each token of a sequence is fed to the same fully-connected layers before being passed
to the multi-head attention. This means that tokens are not processed sequentially but
in parallel. Therefore, Transformer networks do not get deeper as the sequence length
grows, which means that vanishing and exploding gradients arise rarely. However, the
matrix multiplication in the multi-head attention grows quadratically with the sequence
length, which can be problematic for long sequences.
Because Transformers have set a new benchmark in many tasks and they combine

multiple advantages in contrast to RNN networks, we discuss self-attentive models for
generating descriptions in this part of the thesis. First, we introduce the task of video-
to-text (VTT), which in comparison to the task of image captioning accepts video clips
as inputs. For video data, the Transformer architecture is an even more natural fit, as
videos are sequences of images and Transformers operate on sequence-based data on the
input side as well as on the output side. Second, we focus on the models introduced in
Part II and revisit them with a Transformer-based model and compare them to results
and experiments from Chapters 4 and 5.

123

7 Fractional Positional Encoding for
Transformers in Video-to-Text
Translation for Synchronizing
Audio-Visual Frames

In Part II, we discussed models that utilize RNN networks in order to generate textual
descriptions for input images word by word. In this chapter, we will utilize the Trans-
former architecture and use video clips as inputs instead of images. This comes with
a downside as it is naturally harder to describe what is happening in a video clip than
in a single image. Islam et al. [69] argue that video captioning is more difficult than
image captioning due to the following reasons: (1), in contrast to a still image, not all
objects or actions of a video may be important for description generation. (2), we need
to capture the motion and trajectory of related objects and make sense of the causality
of events and respective objects. In image captioning, this is not needed as we cannot
track these changes over time. (3), the events contained in a video can have various
lengths and potentially overlap with other events. (4), a video captioning system needs
to consider spatio-temporal features unlike an image captioning system that only oper-
ates on visual features. However, as videos are sequences of images, we can utilize the
appealing properties of a Transformer, i.e., the encoder is designed to work on inputs
that consist of sequential inputs such as video frames.

This section is based on following CVPR submission:

Synchronized Audio-Visual Frames with Fractional Positional Encoding
for Transformers in Video-to-Text Translation [54], Philipp Harzig, Moritz
Einfalt and Rainer Lienhart, submitted to: IEEE International Conference on Im-
age Processing, ICIP, 2022.

Additionally, we present the results of our participation in the TRECVID workshops.
These works have been published as notebook papers:

Transforming Videos to Text (VTT Task) Team: MMCUniAugs-
burg [55], Philipp Harzig, Moritz Einfalt, Katja Ludwig and Rainer Lienhart,
TRECVID Workshop, 2020, virtual.

Extended Self-Critical Pipeline for Transforming Videos to Text (VTT
Task 2021) – Team: MMCUniAugsburg, to be published [56], Philipp Harzig,

125

7 Transformers with FPE for Video-to-Text Translation

Moritz Einfalt, Katja Ludwig and Rainer Lienhart, TRECVID Workshop, 2021,
virtual.

In this chapter, we focus on the VTT task, which is actually quite similar to image
captioning (see Chapters 4 and 6). In the following, we develop a model that is easy
to implement and yet generates high-quality captions. We start with a Transformer
modified to cope with video inputs as a baseline and investigate several improvements
by adopting various techniques from the domain of image captioning. We focus only
on promising extensions that do not rely on training multiple models or fusing them
into an ensemble in order to design a model for transcribing videos to text that is easy
to reproduce. Ultimately, we present a way to easily align video and audio features
independent of their respective sampling rates. We align the features by extending the
positional encoding to support fractional positions.

In this chapter, we discuss the following ideas and novel approaches applied to VTT:

• We develop a simple Transformer model for generating descriptions for short video
clips. We reuse and adopt promising approaches from image captioning and human
action classification for video clips.

• We present a combination of learning rate schedules that increases performance
and shortens convergence time for VTT.

• Finally, we introduce Fractional Positional Encoding (FPE), an extension to the
traditional positional encoding, which allows to synchronize video and audio frames
independent on their respective sampling rate. By using FPE, we improve our
CIDEr score by 37.13 points in comparison to the baseline. Furthermore, we
achieve state-of-the-art scores on the MSVD and MSR-VTT datasets.

7.1 Related Work

Image Captioning with Recurrent Neural Networks Generating captions automati-
cally from images is a task that has been widely studied. Most image captioning models
are inspired by the machine translation encoder-decoder architecture and come with a
vision CNN encoder and a language generating RNN [139, 73, 32]. Shortly after these
initial works on image captioning, visual attention mechanisms have shown to benefit
image description generation [152, 4] (also see Chapters 5 and 6).

Video-to-Text VTT is the natural continuation of image captioning. Instead of gener-
ating short descriptions for still images, VTT tries to infer descriptions from short video
clips. Many works make use of 2D and/or 3D features in the encoder and generate the
descriptions with an LSTM decoder. For the VTT task, 3D means that we operate on
spatio-temporal input data. Pan et al. [104] use an encoder that utilizes 3D and 2D
CNN features while the decoder is LSTM based. Gao et al. [42] implement an attention-
based LSTM model with semantic consistency. First, they encode the visual frame-level

126

7.1 Related Work

features with a single layer LSTM and use the outputs as inputs to the attention-based
LSTM decoder. Concurrently, they optimize a cross-view model to enforce a consistency
between the visual features and the sentence features generated by the attention-based
LSTM decoder. Furthermore, Gan et al. [40] present an image captioning approach that
utilizes tag information in the LSTM decoder. Tags are just the K most common words
in the training set and trained with a multi-label classification task. More specifically,
the hidden state of the LSTM decoder is then computed with an additional dependency
on the predicted tag probabilities vector. Finally, they extend their approach to video
captioning by concatenating average-pooled features from both a 2D and a 3D CNN.
Another work by Gan et al. [39] is called StyleNet. It introduces a factored LSTM de-
coder module, that splits each of the parameter matricesWix,Wfx,Wcx, andWox from
Equations 2.4, 2.5, 2.6, 2.7, and 2.9 into three matrices. One of these three matrices
is style-specific and is trained for a specific style factor. In particular, they train their
model to generate the following three styles of sentences: factual captions, romantic sen-
tences and humorous sentences. Finally, they extend their approach to video captioning
by extracting and average-pooling features with the I3D network (see Sections 2.1.3 and
7.4.2).
Similar to image captioning works, VTT works have adopted traditional attention

mechanisms: Long et al. [94] introduce an LSTM decoder with multi-faceted attention.
In particular, they utilize semantic tags, motion features from a pretrained C3D [136],
and temporal features from a pretrained ResNet-152 model in their attention mecha-
nism. Wang et al. [142] propose a video captioning system with an attention-based
LSTM decoder. Additionally, they introduce a reconstruction task, that aims to recon-
struct visual feature vectors from the decoder LSTM’s hidden states. Liu et al. [92]
present SibNet. Its encoder is composed of two convolutional branches, i.e., a content
branch and a semantic branch, which encode video content information and video se-
mantic information, respectively. The content branch is implemented as an autoencoder
and the semantic brand learns a visual-semantic joint embedding between the captions
and videos. Both the content features and semantic features are utilized in an attention
mechanism in the LSTM decoder. The multimodal memory model (M3) [143] builds a
visual and textual shared memory that guides a visual attention mechanism. In particu-
lar, the model uses an external memory to store and retrieve textual and visual concepts.
Pei et al. [109] also implement a video captioning model that leverages memory-attended
information in a recurrent decoder. Chen et al. [18] implement a model with a two-layer
LSTM that attends to motion information. They generate a rough spatial attention
map by forwarding optical flow images through a CNN. Then a newly-introduced gated
attention recurrent unit (GARU) creates refined attention maps which are concatenated
and used in the two-layer decoder LSTM. Zhang et al. [157] also make use of optical
flow information and extract motion features with the I3D [15] network in addition to
content features extracted by a DCNN. Further works [141, 66, 159] also make use of an
attention mechanism in combination with a recurrent decoder for description generation.
In order to improve the generation of descriptions for videos even further, some other

works utilize object-level features for their architectures. For example, Aafaq et al. [1]
encode spatio-temporal dynamics of a video by hierarchically applying the short-time

127

7 Transformers with FPE for Video-to-Text Translation

Fourier transform to the output activations of both a 2D-CNN’s and a 3D-CNN’s ex-
traction layer. In addition, they utilize the features of an object detector network [118].
Zhang et al. [159] introduce a graph based object encoder that can learn an object re-
lational graph (ORG). This ORG is able to learn spatial and temporal relationships
between objects. The object-level features are extracted with a Faster-RCNN [119] pre-
trained on MSCOCO [91] and the descriptions are generated with an LSTM. Zhang
et al. [158] also present a retrieve-copy-generate network for video captioning. Their
architecture combines encoder-decoder methods with a video-to-text retriever. A copy-
mechanism generator based on an LSTM cell then generates the words under the guid-
ance of visual features and sentences retrieved from the training set by the video-to-text
retriever.

Transformer Networks One big leap for machine translation was the introduction of
the Transformer architecture by Vaswani et al. [137]. By replacing recurrence with
self-attention modules, they better utilized long-term dependencies and improved the
state-of-the-art at a fraction of the training cost. Similar to the recurrent machine
translation models, the Transformer architecture was quickly adopted in the task of
image captioning [83, 24, 60, 154] (see Section 8.1). Another noteworthy work is the
X-linear attention network (X-LAN) for image captioning [106]. X-LANs include an
upgraded self-attention block that utilizes bilinear pooling but is technically different
from the Transformer’s scaled dot-product attention. Still, we classify them under the
broad term of self-attention models. In their work, the authors also include the X-linear
attention block into a Transformer called X-Transformer. The performance of the X-
Transformer is slightly worse than X-LAN. However, during self-critical sequence training
(SCST) [120] the X-Transformer is better than the X-LAN optimized with SCST.

Transformers for VTT and Datasets As Transformers operate on sequences of fea-
tures, it is easy to modify this architecture to describe short video clips. In this work,
we mainly focus on the VATEX Captioning dataset [90], which has been widely used
in the VTT task. Furthermore, we validate our models on the MSR-VTT [151] and
MSVD [17] datasets. Other video description datasets depicting everyday activities
have been presented [7, 103]. We cover the VTT specific datasets in more detail in
Section 7.1.

Lin et al. [90] implement a model that uses seven different kinds of features including
I3D [15] features (see also Sections 2.1.3 and 7.4.2) and audio features. Then they use
an X-LAN architecture to generate a video description. Zhu et al. [163] combine object-
level features from a Faster-RCNN with motion features from three different feature
extractors, including I3D. They feed these combined features in an ensemble consisting of
17 Transformer [137] and 15 X-LAN models. Both aforementioned works optimize their
best models for the CIDEr score with the SCST [120] reinforcement learning approach.
Finally, Guo et al. [49] utilize object-level features extracted from Faster-RCNN [119] in
a Transformer encoder-decoder model.

128

7.2 Datasets

Table 7.1: Different datasets and their respective number of video clips. Captions are available
for every video. However, not every video was available for download on YouTube.
The numbers of available videos from YouTube are also listed in the table.

Dataset # Videos (clips) # Captions # Videos avail. # Captions usable

VATEX [147] 41,269 349,910 38,109 323,950
MSR-VTT [151] 10,000 200,000 7773 155,640
MSVD [17] 2089 85,550 1970 80,838
AC-GIF [103] 163,183 164,378 163,183 164,378
TRECVID-VTT [8] 7485 28,183 5971 22,547

7.2 Datasets

We use the VATEX [147], MSR-VTT [151], MSVD [17], AC-GIF [103], and TRECVID-
VTT [8] datasets for our video-to-text models. We depict details about these datasets
in Table 7.1.

VATEX We mainly use the VATEX Dataset [147] for our experiments. The main
reason for collecting this dataset was to create a new dataset with high-quality, diverse
captions. Moreover, the authors introduce a bilingual dataset with both English and
Chinese captions. The VATEX dataset is split into 4 sets, i.e., the training set, the
validation set, the public test set, and the private test set. The VATEX dataset comes
with 10 English and 10 Chinese captions per video clip. Most video clips have a length
of 10 s.

The VATEX split contains 25,991, 3000, 6000 and 6278 video clips for the train,
validation, public test split and private test split, respectively. We only use the English
captions for our model. Because some videos were not available from YouTube at time
of download we only could utilize 24,144, 2782, 5469 and 5714 video clips, respectively.

MSR-VTT Additionally, we train our final models on the MSR-VTT [151] dataset.
This dataset is older than the VATEX dataset and its main motivation was to introduce a
large-scale video description dataset that matches the scale of image description datasets
such as MSCOCO [91]. MSR-VTT consists of 10,000 YouTube videos of which 7773 were
available at the time of download. Each video clip is annotated with 20 sentences on
average. We split MSR-VTT in train, validation and test with splits containing 90%,
5% and 5% of the dataset.

MSVD Furthermore, we also validate our models on the MSVD [17] dataset. MSVD
is the oldest video description dataset and concurrently the smallest of the datasets used
in this chapter. Furthermore, it was one of the first datasets that collected linguistic
descriptions for videos with a crowd-based data collection strategy. For MSVD, we
follow the common practice and split the 1970 available video clips into three partitions
of 1200, 100 and 670 for training, validation and test, respectively.

129

7 Transformers with FPE for Video-to-Text Translation

Auto-Captions on GIF The Auto-Captions on GIF [103] (AC-GIF) dataset was de-
signed for pre-training VTT models. Because existing video-sentence datasets are mostly
task-specific, i.e., they are mainly focused on specific domains such as cooking [26], the
authors of the AC-GIF dataset tried to create a more generic dataset. They created
their dataset by collecting GIFs and their respective alt-text HTML attributes from the
web. As these alt-text attributes are mostly not accurate descriptions the dataset is
predominantly thought for pre-training models and not thought of as a VTT dataset.
The AC-GIF dataset contains 163,183 videos and 164,378 sentences. The total number
of words is 1,619,648 with a vocabulary of 31,662 words.

TRECVID-VTT We use the official TRECVID-VTT dataset [6] which contains videos
from the TRECVID-VTT challenges from 2016-2019. We only use the Twitter Vine
subset of videos. In total, this subset contains 6, 475 videos from which we use 5, 971
available videos with 22, 547 captions. In all our experiments we train on 90% and
validate the model on 10% of the videos.

7.3 Baseline Model

We utilize a slightly modified Transformer [137] as our baseline model and depict this
baseline model in Figure 7.1. The Transformer architecture is built around the idea
of transforming sequences from one domain to another. The original Transformer is
a machine translation model that operates on sequences of tokens (words). However,
we work on a different input domain (i.e., video clips) instead of sentences. Thus, we
modified the encoder of the original Transformer architecture by altering its inputs. For
the baseline architecture, we feed the encoder with embedded images

FI
e = [FI

e,0, . . . ,FI
e,NI−1] (7.1)

for every video frame instead of embedded tokens. In other words, for every frame
i in a video, we take its image features FI

i ∈ R1×2048 and forward them through a
fully-connected layer to embed these into the Transformer’s model dimension dmodel

FI
e,i = FI

i ·We,I + be,I , (7.2)

where We,I ∈ R2048×dmodel and be,I ∈ Rdmodel are the weights and biases for the image
embedding, respectively.

After embedding the image features, we add the positional encoding on top of these
embeddings in order to maintain information about absolute and relative ordering of the
sequence. As videos are sequences of frames, we can adopt the same positional encoding
that Vaswani et al. [137] utilize for sequences of tokens. Our baseline model has N = 8
encoder layers and outputs continuous representations

z = [z0, . . . , zNI−1] (7.3)

130

7.3 Baseline Model

Video Frames
Ximg

GT Sentence
yS

CNN
ResNet

Image
Embedding

Word
Embedding

We

+

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

(Fractional)
Positional
Encoding

+

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding

N×

N×

Decoder

Encoder

Linear

Softmax

Output
Probabilities p

QKV

V K Q

QKV

n

FI
e

Figure 7.1: Our baseline model architecture is slightly modified from the original Trans-
former [137] to allow video frames as input to the encoder blocks. Original image
redrawn from [137] and modified to match our baseline architecture.

131

7 Transformers with FPE for Video-to-Text Translation

of dimension dmodel = 512. Our decoder also has N = 8 layers and generates an output
sequence

n = [n1, . . . ,nN−1]. (7.4)

We use a learned word embedding to convert the decoder’s input tokens to vectors of
dimension dmodel and share the weight matrix with a learned linear projection layer to
predict the probabilities of the next word [137, 115]. Given the embedded tokens and
z, the decoder generates its output one word nt at a time. Similar to most encoder-
decoder sequence models, the decoder uses the output of the previous steps as input
to the current step in an auto-regressive way when generating text. Thus, we simply
optimize the cross-entropy loss for every target sentence yS with one-hot encoded words
yS
t during training

L(Ximg,yS) = −
N−2∑

t=0

(
log [ϕ(nt+1)] • y

S
t+1

)
(7.5)

for every (video, sentence) pair. Note that • is the dot-product, and each video clip
consists of video frames Ximg. Identical to all our models in Chapters 4, 5, and 6,
we preprocess the ground-truth sentences according to Section 2.2.2. Particularly, we
prepend the start-of-sequence token <S> and append the end-of-sequence token </S> to
every ground-truth sentence yS and optimize our model for every word except the start-
of-sequence token. Identical to these models, our goal is to predict word yS

t+1 for the
input yS

t , i.e., the Transformer’s decoder generates nt+1 at iteration step t. Technically,
we only iterate over the decoder during evaluation, i.e., when we want to generate a new
caption for a given video. During training, we generate the outputs n = [n1, . . . ,nN−1]
at once and optimize these according to Equation 7.5.

7.4 Video-to-Text Model

Our adapted Transformer baseline architecture is a model designed with natural language
transduction in mind. Therefore, in order to gradually improve the baseline model, we
employ techniques and methods from the related task of image captioning and adapt
the architecture to use video clips as inputs. In the following, we motivate the changes
made to the baseline architecture and preprocessing in order to improve the quality of
the generated sentences.

7.4.1 Memory-Augmented Encoder

The weights learned for the self-attention layers only depend on pairwise similarities
between the projected inputs, i.e., in our case the self-attention in the encoder only
models pairwise relationships between single frames. Cornia et al. [24] argue that this
property of the self-attention in Transformers leads to a limitation: A Transformer
cannot learn and remember a-priori knowledge. In our case this would include prior
knowledge about relationships between frames of videos which were already observed.

132

7.4 Video-to-Text Model

Value
V

Key
K

Query
Q

Linear Linear Linear

Scaled Dot-Product
Attention

ConcatConcat

memorymemory

Linear

V̂

Figure 7.2: The memory-augmented attention from [24], which we use in our multi-head at-
tention blocks. This image shows a single head of the multi-head attention. We
append learned memory vectors to the linear projections of the key and value.
These learned memory vectors are able to learn a-priori knowledge about the task
at hand.

To mitigate this issue, we make use of the memory-augmented encoding [24], which
encodes multi-level visual relationships with a-priori knowledge. In their original work,
a Transformer works on inputs of image regions in an image captioning setting. The
authors present a persistent, learnable memory vector which is concatenated to the key
and value of the self-attention blocks of the Transformer’s encoder (see Figure 7.2).
These memory vectors allow to encode persistent a-priori knowledge about relationships
between image regions: For example, if there is one region of a man and a second region
showing a basket ball, it is difficult for a model to conclude concepts such as player or
game without a-priori knowledge. In contrast to [24], we work with video sequences
instead of still images with regions. Adapted to our architecture, we can encode prior
knowledge about relationships between frames for each training video, which later can
be transferred to unseen video samples. For example, we see in Section 7.5.2.1 that
the same idea holds true for videos. In particular, our models seem to memorize the
information that ice hockey is played on an ice rink. Our models that do not implement
memory vectors do not generate sentences with this information.

133

7 Transformers with FPE for Video-to-Text Translation

7.4.2 Inflated 3D ConvNet

A quick and naive way to implement a simple VTT model is to use frame-by-frame
features extracted by a CNN designed for image classification. However, some actions in
a video clip can only be inferred by looking at temporal changes. A standard image-based
CNN never gets to see what happens before or after a given frame and cannot understand
these kinds of semantics, thus, is not able to reflect them in the image features. One way
to extract features over multiple frames is using 3D convolutions that not only operate
on the spatial dimensions but also convolve over the time dimension.

Therefore, we use the well-known Inflated 3D ConvNet (I3D; see Section 2.1.3, [15])
architecture in order to provide the encoder with better input features. In particular,
we extract features from the videos with the RGB-I3D model, which was pretrained on
the Kinetics Human Action Video dataset [74].

7.4.3 Subword and BERT Vocabulary

For the baseline model, we implement an ordinary dictionary that takes the |V| most fre-
quent words into account, i.e., we order the words/tokens within the captions descending
according to their frequency (e.g., a and the are the two most frequent words). How-

Scuba divers explore the USS Liberty Shipwreck from WWII that is sunken.

815 1870 4261 3 1 1 1 46 1 53 5 7513

28651 18612 8849 1996 7234 7044 2911 13088 11012 2013 25755 2008 2003 23470 1012

scuba divers explore the uss liberty ship ##wr ##eck from wwii that is sunken .

scuba divers explore the <unk> <unk> <unk> from <unk> that is sunken

Default Tokenization

WordPiece Tokenization

Figure 7.3: Example tokenization of a training sample from the VATEX dataset [147] (Video
ID: tXzq4vvGabk) with both default tokenization and WordPiece tokenization.
WordPiece tokenization splits up rare words into subwords.

ever, an ordinary dictionary is limited by its size, e.g., 12,000 words. Rare words that
are important for understanding some sentences are completely left out and replaced by
an <UNK> token.

A possible solution for this problem is the WordPiece tokenizer [150], which we employ
in this work. The WordPiece tokenizer is a model optimized to maximize the language-
model likelihood of the training data while minimizing the corpus size given a number
of desired tokens. The goal is to represent rare words by splitting them up into word-
pieces, which can later be recovered. For our vocabulary, we use the default BERT [29]
tokens. In Figure 7.3, we depict a sample tokenization of one training sample. The
default tokenization, for which we limit |V| to 12,000 words cannot tokenize rare words
such as USS, liberty, shipwreck, or WWII. When using the WordPiece tokenizer with the
BERT dictionary, we see that all words can be represented with tokens. Especially, the
rare word shipwreck is split up into three subwords (ship, ##wr, ##eck). The leading

134

7.4 Video-to-Text Model

indicate a split-up word and we can reconstruct the whole word shipwreck from the
three tokens.

7.4.4 Learning-Rate Scheduling

Similar to [137], we employ a learning rate schedule that linearly increases the learning
rate for the first Nwarm-up training steps. After the warm-up phase, we decrease the
learning rate η(i) proportionally to the inverse square root of the current step i. We set
Nwarm-up = 10000 in our use case. In the following, we call this schedule-default :

η(i) =
1√

dmodel
·min

(
1√
i
,

i

(Nwarm-up)1.5

)
. (7.6)

For our models (see Section 7.5), it stands out that the validation score increases during
the warm-up phase and continues to increase for two to three epochs during the slow
decay of schedule-default. However, after that, the validation scores decrease continu-
ously, i.e., our model starts to overfit after a short while. Since the validation scores
are strongly dependent on the learning rate according to our observations, we want to
prevent early overfitting by using a different learning rate schedule.

The SGDR (Stochastic Gradient Descent with Warm Restarts) [95] learning rate
schedule is a promising approach, as it is applied successfully in other related
works [93, 30, 47] and helps to improve scores while speeding up convergence.

0 20000 40000 60000 80000
training iteration

0.0000

0.0001

0.0002

0.0003

0.0004

Learning rate schedules for our VTT Transformer model

schedule-default
schedule-sgdr

Figure 7.4: The blue line shows the default learning rate schedule for a Transformer with 10,000
warm-up steps. The orange line shows our learning rate schedule, a combination of
SGDR [95] and the warm-up phase.

Initially, we found this technique to harm our final scores, i.e., the Transformer network
did not seem to initialize correctly. However, when combining this approach with a warm-
up phase, we did notice some improvements over schedule-default. Particularly, we find

135

7 Transformers with FPE for Video-to-Text Translation

that the learning-rate restarts harm the performance but the fast cosine decay helps our
model to converge faster and with better scores (see Section 7.5.2). We depict schedule-
sgdr alongside schedule-default in Figure 7.4. After the warm-up phase, we decay the
learning rate for T0 = 5 epochs. Other parameters according to [95] are Tmult = 1.0.

7.4.5 Näıve Fusion of Audio and Video Features

When generating descriptions from visual data of video clips, we can inherently only
describe what we “see”. However, some of the content reflected in the associated captions
can only be derived when we also inject information about what we “hear”. Since the
videos of the VATEX dataset are videos from YouTube, we are able to extract raw audio
from these video clips.

To turn these raw audio streams into usable information, we extract audio features
with the VGGish [62] architecture that yields features of dimension RNA×128. We forward
these features through a fully-connected audio embedding layer to match dmodel = 512.
We show an updated version of our model in Figure 7.5.

Note that the number of audio frames NA does not match the number of image frames
or I3D frames N I , respectively. Therefore, we cannot sum image and audio features and
use these as new encoder input features. To mitigate this problem, we find an approach
that utilizes properties of the Transformer architecture. Particularly, we speak of the
property that all Transformer inputs have the same distance from each other, i.e., the
MHA allows any input to attend to any other input. In contrast to LSTM architectures,
this is a desirable property as long-term dependencies can be recognized and utilized.
Inherently, this modeling does not take the order of the inputs into account. Thus,
Vaswani et al. [137] introduced the positional encoding to their Transformer architecture
in order to inject information about the absolute or relative position of the tokens in the
sequence. Because the sequence length of image features or I3D features are varying, we
cannot simply concatenate vision and audio features as the added positional encoding
may signal the encoder that it receives a vision feature as input when in reality it is an
audio feature.

As we still want to allow vision features to attend to audio features and vice versa,
we assume a fixed starting position for all audio features which we set greater than the
maximum number of vision input features N̂ I within the dataset. More specifically, we
concatenate N I vision and NA audio features along the time dimension while adding
the positional encodings for indices [0, . . . , N I − 1, N̂ I +0, . . . , N̂ I +NA− 1] onto them.
We visualize the näıve approach in the top part of Figure 7.6, where N̂ I = 300. Note
that the loss function from Equation 7.5 is now also dependent on audio frames Xaud:

L(Ximg,Xaud,yS) = −
N−2∑

t=0

(
log [ϕ(nt+1)] • y

S
t+1

)
. (7.7)

136

7.4 Video-to-Text Model

Video Frames
Ximg

Audio Frames
Xaud

GT Sentence
yS

CNN
ResNet/I3D

CNN
VGGish

Image/Audio
Embedding

Word
Embedding

We

+

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

(Fractional)
Positional
Encoding

+

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding

N×

N×

Decoder

Encoder

Linear

Softmax

Output
Probabilities p

QKV

V K Q

QKV

n

Fe

Figure 7.5: Our model is slightly modified from the baseline model in Figure 7.4. That is, the
model can now utilize visual I3D features in addition to CNN features. Furthermore,
our model makes use of audio features. Our embedding module can concurrently
embed visual and audio features with two different methods: näıve fusion (see
Section 7.4.5) and fractional positional encoding (see Section 7.4.6).

137

7 Transformers with FPE for Video-to-Text Translation

7.4.6 Fractional Positional Encoding

In addition to the näıve fusion of audio and video features, we present a novel way of
aligning vision and audio features within a Transformer model. Our I3D frames and
audio frames are not synchronized: for vision features, we extract single frames without
resampling the video, and audio is resampled to 16 kHz.

Thus, an I3D frame at a given position represents a different timestamp for videos
with different frame rates. If we resampled all videos to the same frame rate, we would
still have no way of synchronizing the vision frames with the audio frames, as those
sampling rates differ. In other words, the audio frame at a given position would not
match the timestamp of the I3D frame at the same position.

0 5 10 15 20 25 30 300 305 310position

default PE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0relative position

Fractional PE

FPE for a video clip with a length of 10s I3D Frame (I = 0.31s)
Audio Frame (A = 0.96s)

Figure 7.6: The default positional encoding for audio and video frames (on top) in comparison
with the FPE (bottom) for an exemplary video. The video has 32 I3D frames and
11 audio frames. The lengths (τ) of audio and video frames differ.

In the original work [137], the positional encoding has no inherent meaning other than
to define the relative position of a word. For our input data, however, vision and audio
feature frames are aligned on the same time-axis and depend on their respective frame
rate. Thus, we fix this problem by introducing the Fractional Positional Encoding (FPE)
(see Figure 7.6).

FPE is an extension to the traditional positional encoding that allows positional en-
coding on a fractional level. In order to fully utilize the audio features, the Transformer
needs to know which audio frame corresponds to which vision frame. To do so, we cal-
culate two timestamp factors for every video within the dataset, i.e., an audio (τA) and
a vision (τ I) timestamp factor:

τA =
τ

NA
(7.8)

τ I =
τ

N I
, (7.9)

where τ is the duration of the corresponding video clip. Both timestamp factors indicate
the number of seconds each frame lasts.

138

7.4 Video-to-Text Model

During training, we then multiply the integer indices for each frame with the corre-
sponding timestamp factor. Thus, we ensure that audio and video frames are properly
aligned relative to their timestamp.

7.4.7 Self-Critical Sequence Training

In our baseline model, we optimize the objective of maximizing the likelihood of the next
ground-truth word given previous ground-truth words and the encoder outputs. This
approach is called teacher forcing [149] and has the serious drawback that the training
phase is different from the inference phase (exposure bias [117]). The exposure bias prob-
lem describes that during inference, we can only sample the next word given previously
sampled words. In contrast, we maximize the probability of the next word given ground-
truth words during training. In addition, our models are trained with a cross-entropy
loss and evaluated with non-differentiable metrics (e.g., CIDEr [138] and BLEU [108]).
Preferably, we should train our model to optimize the metrics for the task and, thus,
avoid the exposure bias issue. In the work Self-Critical Sequence Training (SCST) for
Image Captioning, Rennie et al. [120] present a sequence model that is trained to miti-
gate these problems. SCST is a variation of the popular REINFORCE [148] algorithm
that utilizes the outputs of the model’s test-time inference algorithm.

First, we define terms and incorporate our model in a reinforcement learning setting
with the identical terminology as in [120]: Our video description generation system can
be seen as a single agent that interacts with an external environment. In our case,
the environment consists of the audio-visual features and words. Our model consists of
parameters θ, which define a policy πθ. The policy results in an action which is the
prediction of the next word. After each action, we update the network’s internal state,
i.e., the parameters of the network. After our model has generated the end-of-sequence
token, the agent observes a reward r. In reinforcement learning, the agent is not told
which action to take, rather the agent tries to find actions that maximize the observed
reward. This reward can be an arbitrary function that evaluates the actions taken by the
network. In our case, we choose the CIDEr and BLEU-4 metrics as the reward functions.
For now, however, we consider only the CIDEr score as a reward function. As usual,
we compute the CIDEr score by comparing a generated candidate sentence against a set
of reference sentences. With these definitions, we can now change our training goal to
minimize the negative expected reward identical to [120]:

LSCST(Ximg,Xaud,yS ; θ) = −EwS∼πθ

[
r(wS)

]
, (7.10)

where wS = [wS
1 , . . . , w

S
N−1] is a sampled caption and wS

t+1 is a sampled word at iteration
step t. Note that in case of greedy sampling wS

t+1 = argmax (pt+1) = argmax (ϕ(nt+1)).
wS ∼ πθ stands for a caption wS sampled with a policy πθ. The negative expected
reward is typically estimated with a single sample generated by πθ:

LSCST(Ximg,Xaud,yS ; θ) ≈ −r(wS), wS ∼ πθ. (7.11)

If we now want to optimize our model to minimize the negative reward, we need to
compute the gradient ∇θL

SCST(Ximg,Xaud,yS ; θ). To do so, Rennie et al. [120] make

139

7 Transformers with FPE for Video-to-Text Translation

use of the REINFORCE algorithm [148], [130, Chapter 13] that states that the expected
gradient of a non-differentiable reward function can be calculated as follows:

∇θL
SCST(Ximg,Xaud,yS ; θ) = −EwS∼πθ

[
r(wS)∇θ log πθ(w

S)
]

(7.12)

Note that we write πθ(w
S) for the probability that action wS is taken at a given time

(i.e., training iteration) when the environment is in some state with parameters θ [130,
Chapter 13]. In our case, the state of the environment is given by the image features
Ximg, the audio features Xaud and the start-of-sequence token. Similar to before, we
can approximate the expected gradient by generating a single monte-carlo sample1 wS

from πθ for each training sample in a minibatch:

∇θL
SCST(Ximg,Xaud,yS ; θ) ≈ −r(wS)∇θ log πθ(w

S). (7.13)

Specifically, we generate our monte-carlo sample with categorical sampling. In contrast
to greedy sampling, we do not select the most probable word at every iteration step of
the sampling process but choose words according to their probability. For example, our
model generates a categorical probability distribution2 pt+1 = ϕ(nt+1) over |V| words
at iteration step t. We then sample a word according to this probability distribution,
whereas words with higher probability are more likely to be drawn but words with lower
probability can still be drawn. For example, if word A has a probability of 0.2 and word
B a probability of 0.1, we can expect on average to sample word A in two of ten draws,
word B in one of ten draws, and a different word in seven of ten draws.

We could now optimize our model according to Equation 7.13. However, the gradi-
ents of the REINFORCE algorithm for monte-carlo samples typically suffer from high
variance that lead to unstable learning updates (see [130, Chapter 13] and [120]). There-
fore, the authors make use of the REINFORCE algorithm with a baseline, where they
compute a reward relative to a baseline reward b. As long as the baseline reward does
not depend on the action wS , we can compute the gradient estimate with:

∇θL
SCST(Ximg,Xaud,yS ; θ) ≈ −(r(wS)− b)∇θ log πθ(w

S). (7.14)

We compute the baseline reward by first sampling a caption using the test-time greedy
sampling with the current parameter set of our model. Then, we compute the CIDEr
score of this caption which we denote by b. Note that - as required - the sampled caption
is not dependent on the action wS as we sample it with test-time greedy sampling. By
subtracting the baseline reward, we can reduce the variance of the gradient estimate (see
[130, Chapter 13] and [120]). Furthermore, we now use the model’s test-time output
during training which addresses the exposure bias issue.

1A monte-carlo sample is a single sample drawn in a monte-carlo simulation. A monte-carlo simulation
tries to approximate a solution to a numerical problem by inspecting a large number of randomly
generated samples.

2A categorical probability distribution describes the possible outcomes of a random variable that can
fall into K possible categories. Each category has a defined probability and all probabilities sum up
to 1.

140

7.5 Experiments

In practice, we first greedily sample a caption for each video clip with our model in
inference mode (greedy decoding). Second, we sample Ñ sentences wS for the corre-
sponding video clip in training mode using categorical sampling. Then, we calculate
the CIDEr scores for the baseline caption and each sampled caption wS , respectively.
Subsequently, we adjust the reward of the sampled captions by subtracting the CIDEr
score for the baseline caption. Thus, sampled captions with a higher CIDEr score than
the baseline caption get a positive reward and vice versa. By optimizing for this objec-
tive, sampled captions with a higher CIDEr score will be increased in probability, while
we try to make bad captions less likely. Note that we assign the same reward to every
word of each sampled caption. Finally, we calculate the following loss for every training
sample

LSCST(Ximg,Xaud,yS ; θ) = − 1

Ñ

Ñ−1∑

i=0

[
(r(wS

i)− b)

N−2∑

t=0

log ϕ(ñi,t+1)

]
, (7.15)

where ñi,t+1 is the output of our model with parameters θ with categorical sampling
for the i-th caption at iteration step t. log ϕ(ñi,t+1) is then the log probability for the
respective sampled word. wS

i is the i-th entire sampled caption. We see that the loss is
calculated by weighting each word’s log probability with the baseline adjusted reward.
r(·) is the reward function as defined before.

For some our final models, we additionally optimize the BLEU-4 metric. Therefore,
our reward function becomes

r(·) = λCIDEr · rCIDEr(·) + λBLEU-4 · rBLEU-4(·), (7.16)

where λ· is a weight for the corresponding metric.
In order to be able to sample new candidate sentences, we need to start from a fairly

decent model to begin with. Therefore, we fine-tune the best model of ours with SCST.
Integrating the SCST method in our Transformer architecture is not trivial. We need to
back-propagate through the network for each generated word of each sampled caption.
Therefore, SCST requires us to hold a copy of the network in GPU memory for each word.
With Ñ = 5 sampled sentences and a maximum sequence length of 30 for a sampled
caption, we would have to keep 150 copies of the intermediate decoder in memory.

We limit GPU memory usage by only calling the encoder once, although this only
approximates the case of separately calling the encoder for every sample. Because the
dropout layers in the encoder behave differently for every execution during training, the
outputs of the encoder would be different for every one of the 5 sampled captions. As
we only call the encoder once, we feed the decoder with the same output for every single
sampled caption. Furthermore, we have to limit the batch size per GPU to 4 in order
to not exceed 40GB of graphics memory of our NVIDIA A100 GPUs.

7.5 Experiments

In this Section, we first present the training configuration and important hyperparam-
eters. Furthermore, we explain preprocessing techniques employed in order to properly

141

7 Transformers with FPE for Video-to-Text Translation

prepare the input data for our models. Then, we evaluate our models on a validation set
to find a final model, which we evaluate on the held-out test set. Finally, we compare
the model to the state-of-the-art on the VATEX, MSVD, and MSR-VTT datasets.

7.5.1 Training Configuration and Preprocessing

In the following, we present some of our implementation details, then we discuss our pre-
processing strategy. In particular, we explain how we preprocessed audio-visual contents
of the videos and how we prepared the ground-truth captions.

7.5.1.1 Implementation Details

Our model is implemented with TensorFlow 2 and we have published our code on
GitHub3. As a baseline model, we implement the model from Section 7.3 with
dmodel = 512 and set the inner-layer dimensionality of the feed-forward network to
dff = 2048. Our encoder and decoder each have N = 8 layers with 8 parallel at-
tention heads. We also adopt the the learning rate schedules from Section 7.4.4 with
10,000 warm-up steps. As optimizer, we use Adam [75] with β1 = 0.9, β2 = 0.999 and
ϵ = 1 · 10−8. We train for a maximum number of 50 epochs with a batch size of 128
and employ early stopping based on the validation CIDEr score. We choose an effective
batch size of 128, i.e., we train with 2 NVIDIA A100 GPUs and a batch size of 64 each.
The training takes about 15 hours for 50 epochs.

For fine-tuning our model with SCST [120], we repurposed our greedy sample algo-
rithm to allow for sampling further captions with categorical sampling (see Section 7.4.7).
We implemented the SCST training scheme like described in Algorithm 1. Basically, we
greedily sample a caption in inference (test-time) mode and calculate its reward as the
CIDEr score against all correct reference sentences yS . Then, we sample Ñ = 5 more
captions and calculate the reward by calculating their CIDEr scores and subtracting the
baseline reward. We then calculate the loss by weighting each word’s log probability with
the final baseline adjusted reward and average the loss over the five captions. Finally,
we calculate the gradients for this loss and update the network’s parameters. Because of
the huge memory demand of the SCST training, we lower the effective batch size to 16
(i.e. 4 GPUs with batch size 4) during the fine-tuning stage and use a constant learning
rate of η = 5 · 10−6. When fine-tuning with SCST, the training time increases to 19
hours per epoch. The best validation scores are reached within 2-3 epochs of fine-tuning.

7.5.1.2 Preprocessing of Videos

Single Images. In order to process the videos in our model, we extract every frame
of each video. We do not resample the videos to a fixed frame rate. We use ResNet-
101 V2 [59] to compute features for the extracted frames by resizing the input images to
224 × 224 and using the average-pooled features with dimension N I × 2048, where N I

3https://github.com/fpe-vtt/ftt-vpe

142

https://github.com/fpe-vtt/ftt-vpe

7.5 Experiments

Algorithm 1 Self-critical sequence training

1: for each v ∈ dataset do
2: captiongreedy,n← Greedy-Sample(v)

3: b← CIDEr(captiongreedy,y
S)

4: for i = 0 to Ñ − 1 do
5: captioncategorical, ñ← Categorical-Sample(v)

6: r ← CIDEr(captioncategorical,y
S)

7: LSCST
i ← −(r − b)

∑N−2
t=0 log ϕ(ñt+1)

8: end for
9: LSCST ← 1

Ñ

∑Ñ−1
i=0 LSCST

i

10: Calculate ∇θL
SCST and update parameters θ

11: end for

is the number of frames of the corresponding video clip. We embed the images with an
image embedding layer that projects the features into the model’s dimension N I×dmodel.

I3D Features. We extract I3D features similar to frame-level features. Instead of for-
warding frame images through the ResNet-101 V2 network, we extract video clip features
with the RGB-I3D pretrained on the Kinetics Human Action Video dataset [74]. The
I3D yields features of dimension N I × 7 × 7 × 1024, whereas in this case, N I is the
number of I3D frames, which is less than the original number of frames in the video
due to the 3D-convolutions. Furthermore, we average-pool over the spatial dimensions
(7 × 7) and use the same image embedding layer to embed the I3D features into the
model dimension N I × 512.

Audio features. We take the audio of the video, resample it to 16 kHz and extract
features with the VGGish [62] network. This network yields features of dimension NA×
128. Here, NA is the number of audio features, which is different from N I . If no audio
stream for a video is existent, we create a dummy feature vector with all zeros and
dimension 1× 128.

7.5.1.3 Preprocessing of Tokens

For our models with the default vocabulary, we employ a simple text tokenizer that
filters out special characters4. We limit the vocabulary to 12,000 tokens and replace less
occurring words with the <UNK> token.

For our WordPiece models, we use the English BERT vocabulary together with the
WordPiece tokenizer to generate the tokens. For some of our models, we load pretrained
embedding weights5 from the BERTSMALL model, which has dmodel = 512 to match our
architecture.

4!”#$%&()*+.,-/:;=?@[\]ˆ ‘{|}˜
5https://tfhub.dev/google/small_bert/bert_uncased_L-8_H-512_A-8/1

143

https://tfhub.dev/google/small_bert/bert_uncased_L-8_H-512_A-8/1

7 Transformers with FPE for Video-to-Text Translation

Table 7.2: Ablation study for our VTT Transformer models on the VATEX validation set. On
the left, we list the names of the models with their respective configurations (|mv|
= length of memory vector, ft We = fine-tuning of word embedding). On the right
we list the validation scores (B-x = BLEU-x, M = METEOR, R = ROUGE-L, C =
CIDEr).

Model Features |mv| Vocabulary ft We FPE lr Schedule B-4 M R C

baseline R101 0 Default ✓ — Default 23.47 18.72 43.60 33.72
memvec R101 64 Default ✓ — Default 24.57 18.83 43.92 35.23

i3d-baseline I3D 0 Default ✓ — Default 27.92 20.85 46.33 49.13
i3d-memvec I3D 64 Default ✓ — Default 29.21 21.77 47.33 53.01

i3d-wp I3D 64 WP ✓ — Default 29.04 21.49 47.08 50.19
i3d-wp-audio I3D+VGGish 64 WP ✓ — Default 29.99 22.11 48.10 52.64
i3d-audio I3D+VGGish 64 Default ✓ — Default 30.40 22.04 48.08 51.72
i3d-bert I3D 64 WP-BERT — — Default 28.26 21.76 47.14 51.38

i3d-bert-audio I3D+VGGish 64 WP-BERT — — Default 30.35 22.06 47.90 53.16
i3d-bert-ft-audio I3D+VGGish 64 WP-BERT ✓ — Default 30.32 21.95 48.09 52.09

i3d-bert-audio-sgdr I3D+VGGish 64 WP-BERT — — sgdr 32.16 22.70 49.07 56.92
i3d-bert-audio-sgdr-FPE I3D+VGGish 64 WP-BERT — ✓ sgdr 32.43 23.81 49.60 61.80

SCST-Cider I3D+VGGish 64 WP-BERT — — 5 · 10−6 28.73 23.08 48.20 68.87
SCST-Cider-B4 I3D+VGGish 64 WP-BERT — — 5 · 10−6 33.92 23.65 49.91 68.62

SCST-Cider-B4-FPE I3D+VGGish 64 WP-BERT — ✓ 5 · 10−6 36.30 24.52 51.91 70.85

7.5.2 Results

In the following, we discuss the results of the extensions presented in Section 7.4. In
particular, we describe how we gradually turn a vanilla Transformer architecture into an
end-to-end trainable network that generates textual descriptions for short video clips.
Several tricks and design decisions borrowed from the field of image captioning turn
a model which was designed for machine translation into a video-to-text architecture,
which can be easily adapted for multiple application scenarios. In Table 7.2, we depict
results on the validation set of the VATEX dataset. Furthermore, in Figures 7.8, 7.9, and
7.10 we show generated captions for three example videos from the VATEX validation
set for every model. Both when looking at the scores and the generated descriptions,
we see that our baseline model scores worst across all metrics. The baseline model
uses frame-level ResNet-101 features embedded with an image embedding layer in the
encoder.

7.5.2.1 Memory-Augmented Encoder

Adding a memory vector to the key and value of the multi-head self-attention allows
the encoder network to learn a-priori knowledge about relationships on an inter-frame
level. For example, when we look at sentences generated for the third video clip in
Figure 7.10, we see an ice hockey player doing some shots on a goal. Comparing the
captions generated by the *memvec models to the captions of the baseline models, we
see the models have memorized that ice hockey often is played within an ice rink. In
addition, for the model memvec with a memory vector (|mv|) of size 64, we see a slight
boost in all scores except ROUGE-L, e.g., the CIDEr score is improved by about 1.5
points.

144

7.5 Experiments

0 5000 10000 15000 20000 25000 30000 35000 40000
training iteration

0.25
0.30
0.35
0.40
0.45
0.50
0.55

CI
DE

r s
co

re

SGDR learning rate schedule vs. CIDEr score

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

×10 4

schedule-sgdr
schedule-default

Figure 7.7: The course of learning rate plotted against the CIDEr validation score of models
i3d-bert-audio and i3d-bert-audio-sgdr. We plotted the learning rates with solid
lines and the corresponding validation scores with a dotted line style.

7.5.2.2 Image Features and I3D Features

One of the two extensions gaining the most in terms of CIDEr score is replacing frame-
level image features with features from the RGB-I3D network. Looking at the model
i3d-baseline that uses no memory-augmented encoder, we see an increase of 15.41 points
and 4.45 points in CIDEr and BLEU-4, respectively. The memory-augmented encoder
benefits from the I3D features in the same way, i.e., i3d-memvec gains 17.78 points and
4.64 points in CIDEr and BLEU-4, respectively. Thus, we train all other future models
with I3D features and the memory-augmented encoder.

7.5.2.3 Näıve Fusion of Audio and Video Features

Most videos not only contain visual data but also audio data. Thus, it is obvious that
some contents of a textual description of said video clip can only be described accurately
when also using audio data. As already described in Section 7.4.5, we concatenate vision
and audio features, however, using a trick with the positional embeddings in order to
allow the network to extract vision-audio dependencies. When comparing the model i3d-
audio with i3d-memvec we can observe no gains in performance, i.e., the CIDEr score is
slightly worse with -1.29 points while BLEU-4 improves the score by 1.19, However, we
will see in the next paragraph that combining audio features with the BERT dictionary
will yield improvements.

7.5.2.4 Dictionaries and Tokenization

We already stated that by using WordPiece tokenization, we are able to generate rare
words that do not occur in a vocabulary with a fixed size. However, this does not
necessarily reflect on the scores as model i3d-wp shows. In comparison to i3d-memvec

145

7 Transformers with FPE for Video-to-Text Translation

we loose 2.82 points and 0.17 points in CIDEr and BLEU-4, respectively. Similarly,
when initializing the word embedding with BERT embeddings (i3d-bert), we lose 1.63
points and 0.95 points for CIDEr and BLEU-4, respectively. However, in combination
with the concatenated audio features, WordPiece tokenization gives us better results.
For WordPiece tokenization with no initialization of the word embedding, we loose 0.37
points (CIDEr) and gain 0.78 points (B-4). When initializing the word embeddings (i3d-
bert-audio) we get slightly higher scores. When comparing i3d-bert-audio with i3d-bert,
we also see the benefit of audio features, which could not be seen beforehand. Note that
we keep the BERT embeddings frozen during training, because fine-tuning them hurts
performance (see model i3d-bert-ft-audio).

7.5.2.5 Learning Rate Scheduling

By replacing the default Transformer learning rate schedule with our modified version
of SGDR, i3d-bert-audio-sgdr improves the performance by 3.76 points and 1.81 points
in CIDEr and BLEU-4, respectively. As we have already discussed in Section 7.4.4, the
fast decay of the SGDR schedule helps to boost our validation scores as we depict in
Figure 7.7. After the warm-up phase of 10,000 steps, the validation accuracy makes
another climb until it hits its maximum CIDEr score of 56.92 at the end of the first
decay. However, we see that restarting the learning rate leads to a drop in performance.
Our model can recover somewhat but never reaches the maximum score again and its
performance declines slowly.

7.5.2.6 FPE

In contrast to the näıve fusion of audio and video features, FPE (i3d-bert-audio-sgdr-
FPE) boosts performance across all metrics significantly. Most notably, synchronizing
audio and video features by their relative position shows the hugest benefit on the
CIDEr metric, where we gain 4.88 points. Even during self-critical fine-tuning (see
Section 7.5.2.7), FPE (SCST-Cider-B4-FPE) achieves improvements across all metrics.
FPE is also an effective way to allow for training on multiple datasets at once that have
different respective frame rates. Furthermore, it allows for transfer learning without
needing to adapt the new dataset to the frame rate that was trained on originally.
Finally, FPE adds the benefit of easily aligning features from audio data without the
need of implementing any additional synchronization logic. Thus, we conclude that FPE
is an easy and effective way to synchronize audio and video features in Transformers.

7.5.2.7 SCST

We initialize the self-critical sequence training with the best models i3d-bert-audio-sgdr
and i3d-bert-audio-sgdr-FPE. As reward function, we calculate the CIDEr score of the
baseline caption and the sampled sentences. We see that directly optimizing the CIDEr
metrics leads to big gains in the CIDEr metric, i.e., 68.87 points vs. 56.92 points. The
difference of 11.95 points is the second biggest improvement besides replacing image
features with I3D features. However, as we only optimize for the CIDEr metric in model

146

7.5 Experiments

SCST-Cider, we lose 3.43 points on the BLEU-4 metric. We also lose some performance
across all other metrics except METEOR. However, when directly optimizing for CIDEr
and BLEU-4 (see model SCST-Cider-B4 ; we set λCIDEr = λBLEU-4 = 1.0), we see that
the CIDEr score is nearly identical while all BLEU-n scores get a significant boost. When
combining SCST with FPE, our model produces the best results across all experiments
and we improve by another 2.23 and 2.38 in CIDEr and BLEU-4, respectively.

7.5.3 Comparison with State-of-the-Art

We were not able to download all video files for the VATEX dataset from YouTube
(see Table 7.1), thus we could not train, validate and test on the whole dataset. For
the private test split of the VATEX dataset, we could download 5714 of 6278 videos,
thus, missing features for 564 videos. However, the authors provide pre-extracted I3D
features. But after closer inspection, we notice that these features do not match our
I3D features. Additionally, we do not have audio features for those missing videos.
Submitting generated descriptions to the evaluation server requires descriptions for every
single of the 6,278 videos. Therefore, we used the VATEX authors’ I3D features with no
audio features for submitting results. In Table 7.3, we depict the results of our model
SCST-Cider-B4-FPE trained in the same manner on both train and validation splits.
Our model does not perform as well as the models from the VATEX video captioning

challenge (Zhu et al. [163] and Lin et al. [90]), who use ensembles of multiple mod-
els. However, across all peer-reviewed works on video captioning, we achieve similar
performance on the reported metrics.
We suspect that the poorer performance of our model is due to three reasons:

1. We cannot utilize all features for the test video, i.e., 564 of the videos are missing,
because they are unavailable on YouTube.

2. Our method does not use X-linear attention [106], which [163, 90] do use for their
models.

3. Also, [163, 90] train an ensemble of up to 19 networks to boost their performance.
As we develop an application-centric, easy to reproduce model, we do not train an
ensemble of models.

In addition, we also train our model on the MSVD and MSR-VTT datasets to prove
the effectiveness of our method. On the MSVD dataset, our scores are below SemSy-
nAN [111] but otherwise better than all other methods listed in Table 7.3. For MSR-
VTT, however, our final model outperforms SemSynAN by 10.21 points in CIDEr and
the model performs similarly to it for the other metrics.

147

7
T
ra
n
sform

ers
w
ith

F
P
E

for
V
id
eo-to-T

ex
t
T
ran

slation

Table 7.3: Comparison on VATEX, MSVD, and MSR-VTT datasets against state-of-the-art methods. For VATEX, we tested our model
on the private test set with the evaluation server. For MSVD and MSR-VTT we use the test splits discussed in Section 7.1.
I, M, O and A denote image, motion, object and audio features.

Features MSVD MSR–VTT VATEX
Model Year I M O A B-4 M R C B-4 M R C B-4 M R C

M3 CVPR 2018 [143] ✓ ✓ — — 52.8 33.3 — — 38.1 26.6 — — — — — —
RecNet ICCV 2018 [142] ✓ — — — 52.3 34.1 69.8 80.3 39.1 26.6 59.3 42.7 — — — —
PickNet ECCV 2018 [21] ✓ — — — 52.3 33.3 69.6 76.5 41.3 27.7 59.8 44.1 — — — —
MARN CVPR 2019 [109] ✓ ✓ — — 48.6 35.1 71.9 92.2 40.4 28.1 60.7 47.1 — — — —
SibNet ACM’MM 2018 [92] ✓ — — — 54.2 34.8 71.7 88.2 40.9 27.5 60.2 47.5 — — — —

OA-BTG CVPR 2019 [157] ✓ — ✓ — 56.9 36.2 — 90.6 41.4 28.2 — 46.9 — — — —
GRU-EVE CVPR 2019 [1] ✓ ✓ ✓ — 47.9 35 71.5 78.1 38.3 28.4 60.7 48.1 — — — —
MGSA AAAI 2019 [18] ✓ ✓ — ✓ 53.4 35 — 86.7 42.4 27.6 — 47.5 — — — —

POS+CG CVPR 2019 [141] ✓ ✓ — — 52.5 34.1 71.3 88.7 42 28.2 61.6 48.7 — — — —
POS+VCT ICCV 2019 [66] ✓ ✓ — — 52.8 36.1 71.8 87.8 42.3 29.7 62.8 49.1 — — — —
ORG-TRL CVPR 2020 [159] ✓ ✓ ✓ — 54.3 36.4 73.9 95.2 43.6 28.8 62.1 50.9 32.1 22.2 48.9 49.7

LSTM-TSAIV CVPR 2017 [105] 52.8 33.5 — — — — — — — — — —
aLSTMs IEEE ToM 2017 [42] ✓ ✓ — — 50.8 33.3 — — 38 26.1 43.2 — — — —
RCG CVPR 2021 [158] ✓ ✓ — — — — — — 42.8 29.3 61.7 52.9 33.9 23.7 50.2 57.5
NSA CVPR 2020 [49] — ✓ ✓ — — — — — — — — — 31.4 22.7 49 57.1

SemSynAN CVPR 2021 [111] ✓ ✓ — — 64.4 41.9 79.5 111.5 46.4 30.4 64.7 51.9 — — — —
VATEX CVPR 2019 [147] — ✓ — — — — — — — — — — 28.7 21.9 47.2 45.6

SCST-Cider-B4-FPE6 — ✓ — ✓ 51.22 34.73 72.69 103.2 45.91 30.25 64.12 62.11 33.28 22.74 49.56 54.63

Non peer-reviewed papers:
MV+HR arXiv 2019 [163] ✓ ✓ ✓ — — — — — — — — — 40.7 25.8 53.7 81.4
MM-Feat arXiv 2020 [90] ✓ ✓ ✓ ✓ — — — — — — — — 39.2 26.5 52.7 76
NITS-VC arXiv 2020 [126] — ✓ — — — — — — — — — — 22 18 43 27

4We were only able to extract I3D and audio features for 5,714/6,278 video clips as the videos were no longer available on YouTube. We could use
I3D features made available by the dataset’s authors. These features, however, were different from our I3D features.

1
4
8

7.5 Experiments

baseline: a man is standing in a restaurant and talking about it
memvec: a man is sitting at a table playing a drum set
i3d-baseline: a woman is standing in front of a faucet and she is holding a bottle
i3d-memvec: a young boy is playing with a machine and a woman is talking
i3d-wp: a young man is standing at a ball game and talking to the camera .
i3d-wp-audio: a woman is standing in front of a store and she is talking to a man .
i3d-audio: a young boy is standing at a counter and he is standing in a chair
i3d-bert: a man is standing in front of a car and he is pumping gas in the air .
i3d-bert-audio: a young girl is at a bar and she is playing the game
i3d-bert-audio-sgdr: a young girl is trying to get her balance on the machine .
i3d-bert-audio-sgdr-FPE: a young girl is playing a toy game while a man watches her .
SCST-Cider-B4: a man and a young man is playing with a football player .
SCST-Cider-B4-FPE: a young girl is using a machine to peel a game of meat .
GT: a woman moves like a robot in front of a robot exhibit.

Figure 7.8: Generated descriptions for the first of three example videos from the validation
split. We see four frames of the video together with the frame number on the left
and the generated caption for each model on the right. Video from the VATEX
dataset [147].

7.5.4 Application on Unseen Datasets

One possible application of our model is to use it as a generic video clip descriptor. Thus,
we use our model SCST-Cider-B4 to generate descriptions on other unseen datasets. In
particular, we use a validation split (i.e., 100% of the data) of the MSR-VTT dataset
and a validation split (i.e., 100% of the data) of the TRECVID-2020 VTT dataset [7].
In Table 7.4, we depict the scores on those two datasets. Looking at the scores for
TRECVID-2020 dataset, we see that the model performs reasonably well, i.e., according
to the TRECVID-2020 VTT challenge [7], our model would ranked the third-highest in
CIDEr score even though it has never seen a single sample from the whole TRECVID
dataset. For the MSR-VTT dataset, the scores are similar regarding CIDEr. For the
other metrics, we see that the scores are slightly higher. However, when looking at the
original work for the MSR-VTT dataset [151], the scores are worse than their presented

Table 7.4: Results of our best models on two different datasets (validation splits). The model
has never seen data from any of those datasets.

Unseen Dataset B-4 Met. ROUGE-L CIDEr

MSR-VTT [151] 21.5 24.6 49.4 19.8
TRECVID-2020 [7] 8.7 12.7 31.0 21.4

149

7 Transformers with FPE for Video-to-Text Translation

baseline: a man is flipping a pancake in a pan and catches it
memvec: a woman is sitting at a desk and talking about it
i3d-baseline: a man flips a pancake in the air and catches it
i3d-memvec: a woman is flipping a pancake in a pan and then she flips it
i3d-wp: a man is flipping a pancake in a frying pan .
i3d-wp-audio: a man is flipping a pancake in the air and catches it .
i3d-audio: a young girl is flipping a pancake and flipping it
i3d-bert: a man flips a pancake in a kitchen and flips it .
i3d-bert-audio: a man is flipping a pancake in a pan .
i3d-bert-audio-sgdr: a man is flipping a pancake in a pan .
i3d-bert-audio-sgdr-FPE: a man is flipping a pancake in a pan and then catches it .
SCST-Cider-B4: a man and a man flips a pancake and then in a frying pan .
SCST-Cider-B4-FPE: a young man is flipping a pancake in a frying pan .
GT: a young man flips pancakes out of a frying pan to his friend who catches them in his frying pan.

Figure 7.9: Generated descriptions for the second of three example videos from the validation
split. We see four frames of the video together with the frame number on the left
and the generated caption for each model on the right. Video from the VATEX
dataset [147].

baseline: a group of people are playing a game of curling
memvec: a man is playing a game of curling in a rink
i3d-baseline: a hockey player is skating backwards and then turns to a stop
i3d-memvec: a group of people are practicing skating on an ice rink
i3d-wp: a person is skating on an ice rink and practicing ice skating .
i3d-wp-audio: a group of people are playing hockey in an arena .
i3d-audio: a hockey game is being played on an ice rink
i3d-bert: a group of people are skating around in a hockey rink .
i3d-bert-audio: a group of people are playing hockey in a gym .
i3d-bert-audio-sgdr: a group of people are playing hockey in a rink .
i3d-bert-audio-sgdr-FPE: a group of people are playing a game of soccer in a indoor rink .
SCST-Cider-B4: a man and a person is playing a hockey goal on an ice rink .
SCST-Cider-B4-FPE: a group of people are playing a game of hockey on a rink .
GT: two boys practice shooting hockey pucks into the net on an ice rink.

Figure 7.10: Generated descriptions for the third of three example videos from the validation
split. We see four frames of the video together with the frame number on the left
and the generated caption for each model on the right. Video from the VATEX
dataset [147].

150

7.6 Experiments and Results on the TRECVID-VTT Dataset

baseline architectures. The lowest scoring baseline architecture in [151] scores 35.4 in
BLEU-4 comparing to our score of 21.5. However, our METEOR score is closer with
24.6 vs. 26.3. CIDEr scores are not reported in [151].

Naturally, if we compare the scores to models trained on the respective datasets the
scores are worse. If we look at Tables 7.3 and 7.4, we see that when applying a well-
performing model to the unseen MSR-VTT dataset, scores decrease by 24.41 and 42.31
for the BLEU-4 and CIDEr metric, respectively. However, note that Table 7.3 is eval-
uated on the test set and results from Table 7.4 are from the whole validation dataset.
Also, if we look at Table 7.7, we see that the TRECVID scores decrease by 10.1 in
CIDEr when not trained on the TRECVID-VTT dataset. Surprisingly, the BLEU-4
score is better but we suspect that the TRECVID organizers use a different script to
evaluate their BLEU scores, as these are consistently worse than the scores returned by
the MSCOCO evaluation script (see Section 7.6 for more details).

7.6 Experiments and Results on the TRECVID-VTT Dataset

In this part of the experiments, we discuss results on a different dataset, i.e., the
TRECVID-VTT dataset. The model is partly identical to the model discussed in this
chapter (i.e., Section 7.4). Results have been published in the following TRECVID
workshop papers:

Transforming Videos to Text (VTT Task) Team: MMCUniAugs-
burg [55], Philipp Harzig, Moritz Einfalt, Katja Ludwig and Rainer Lienhart,
TRECVID Workshop, 2020, virtual

Extended Self-Critical Pipeline for Transforming Videos to Text (VTT
Task 2021) – Team: MMCUniAugsburg, to be published [56], Philipp
Harzig, Moritz Einfalt, Katja Ludwig and Rainer Lienhart, TRECVID Workshop,
2021, virtual

7.6.1 Model Configuration

We implemented four models for the TRECVID-VTT task. In Table 7.5, we present the
number of training samples for the data splits used for training the base and fine-tuned
models. The first two models are pretrained on a merged dataset (data split #1 and
#2) and then fine-tuned on the TRECVID-VTT only dataset (data split #3). Models 3
and 4 are both pretrained and fine-tuned on the same merged dataset (VATEX + 90%
TRECVID (extended); data split #4).

Our models use N = 8 encoder and N = 8 decoder blocks. We use 8 attention heads
and a model dimension of dmodel = 512. For the position-wise feed-forward networks,
we set dff = 2048 as the inner-layer dimensionality. We use a memory-vector size of 64.

151

7 Transformers with FPE for Video-to-Text Translation

TRECVID-1 For our primary model, we first train a base model on the full MSR-VTT
dataset and 90% of the TRECVID-VTT dataset. We select the model by employing
an early-stopping strategy on the CIDEr score of the remaining 10% of the TRECVID-
VTT (i.e., validation split) dataset. Furthermore, we train with a vocabulary of 12,000
of complete words. For fine-tuning, we use the base model and train it on the 90% split
of the TRECVID-VTT dataset (data split #3). We also use early-stopping to select our
fine-tuned model TRECVID-1-ft.

TRECVID-2 Our second model is trained similarly, except we use AC-GIF (full), MSR-
VTT (full), and TRECVID-VTT (90%) for training the base model. For the second
model, we use a subword text encoder with 20,283 subwords. It does not use complete
words for the vocabulary but tries to build words from subwords, i.e., it splits words into
subwords if a word is not in the initial dictionary (see Section 7.4.3). For fine-tuning the
second model, we also use the TRECVID-VTT (90%) split (data split #3).

TRECVID-3 We train the third model on the full VATEX dataset and 90% of the
TRECVID dataset (data split #4). Similar to the previous models, we use an early-
stopping strategy on the CIDEr score to select a final model. In contrast to models
1 and 2, we train on I3D features instead of ResNet features. Furthermore, we add
audio features for the VATEX part of our training set (the TRECVID dataset does
not come with audio) and train the model with the modified learning rate schedule
(see Section 7.4.7). Also, we change the vocabulary to be the default BERT subtoken
vocabulary with 30,522 subword tokens. In contrast to models 1 and 2, we initialize the
fine-tuned model (TRECVID-3-ft) with the base model and train it on the same dataset
(data split #4), but enable self-critical sequence learning [120] with a constant learning
rate η = 5 · 10−6.

TRECVID-4 Our fourth model has the same configuration as model 3, except we im-
plemented X-linear attention blocks [106] within our Transformer. We fine-tune this
model in the same way as model TRECVID-3.

7.6.2 Training Setting

We train our models in a multi GPU setting, i.e., we train the model on 5 NVIDIA
Tesla V100 GPUs simultaneously. We use a batch size of 16 per GPU, resulting in an
effective batch size of 80. We use the Adam [75] optimizer with β1 = 0.9, β2 = 0.98
and ϵ = 10−9. Similar to [137], we use a variable learning rate η over the course of the
training. That is, we use a linearly increasing learning rate in a warm-up phase and
decrease it afterwards proportionally to the inverse square root of the current training
iteration. We employ the SCST strategy presented in Section 7.5.2.7 only for models
TRECVID-3 and TRECVID-4. In contrast to the original Transformer architecture,
we use 10,000 for the number of warm-up steps.

152

7.6 Experiments and Results on the TRECVID-VTT Dataset

Table 7.5: Data sources used for training our TRECVID-VTT base models. We also depict the
total number of training and validation samples used. Extended means that we were
able to use more videos for the second TRECVID challenge [56] in contrast to the
first challenge [55].

Data split # Data sources # train samples # val samples

1 MSR-VTT + 90% TRECVID-VTT 175,902 2285
2 MSR-VTT + AC-GIF + 90% TRECVID-VTT 303,380 2285
3 90% TRECVID-VTT 20,262 2285
4 VATEX + 90% TRECVID-VTT (extended) 273,314 3602

7.6.3 Results

First, we evaluate our models on a small validation part of the TRECVID-VTT dataset
(the remaining 10%) and present the results in Table 7.6. We already discussed above
that we employed an early stopping strategy on the CIDEr score to select the best-
performing models. Second, we discuss the performance on the held-out test set of these
submitted models.

7.6.3.1 Ablation Study on the Validation Set

For the base model of our first model (TRECVID-1), we observed the best validation
performance on TRECVID-VTT after 25 epochs with a CIDEr score of 17.55. We use
this model to fine-tune only on the TRECVID-VTT dataset and call it TRECVID-1-ft.
In doing so, we slightly improved the scores as can be seen in Table 7.6. We selected the
final models for the TRECVID dataset based on the CIDEr scores and depict generated
captions from model TRECVID-1-ft on the validation set in Figure 7.11.

For our second model, we chose the same approach but trained the base model on
more data sources, namely MSR-VTT, AC-GIF and 90% of TRECVID-VTT. The best
scores were also observed after 25 epochs and are in the same range as our primary
model. However, when fine-tuning the second model on MSR-VTT only, the scores
decrease except the CIDEr score as can be seen in Table 7.6.

The third base model (TRECVID-3) reached its best validation scores after training
for 43 epochs with a CIDEr score of 24.94. As described above, we fine-tuned this
model with self-critical sequence learning (TRECVID-3-ft). In doing so, we significantly
improved the scores as can be seen in Table 7.6. Furthermore, we clearly see that our
observations from Section 7.5 also hold true for the TRECVID dataset: The combination
of I3D features, audio features, the updated learning rate schedule, and self-critical
sequence learning significantly boosts scores. In fact, we improve the CIDEr score by
13.14 (i.e., by 75%) in comparison to TRECVID-1-ft.

For the fourth model (TRECVID-4), we chose the same extensions as for model
3 but trained the base model with a Transformer that employs X-linear attention
blocks [106]. The best scores were observed after 15 epochs and the BLEU-4 and ME-
TEOR scores are in the same range as model TRECVID-3. However, the scores are not
as good as TRECVID-3. Similarly, when fine-tuning the third model with self-critical

153

7 Transformers with FPE for Video-to-Text Translation

sequence learning, the scores did improve in contrast to the base model. Still, our model
TRECVID-3-ft performs significantly better than TRECVID-3.

Table 7.6: Models and their respective validation scores. We highlight our final models in bold
(first column). These models were submitted in order to be evaluated on the held-out
test set. We validated all of our models after every epoch on 10% of the TRECVID-
VTT dataset to select a model with an early stopping strategy (column epoch stands
for the training iteration we selected).

Model epochs ft Features |mv| Vocabulary lr Schedule B-4 C M

TRECVID-1 25 — CNN 64 Default Default 7.60 17.55 11.61
TRECVID-1-ft 8 ✓ CNN 64 Default Default 7.13 17.61 11.69
TRECVID-2 25 — CNN 64 Default Default 7.52 13.84 11.96
TRECVID-2-ft 1 ✓ CNN 64 Default Default 6.10 15.07 10.96

TRECVID-3 43 — I3D 64 WP-BERT sgdr 10.06 24.94 13.50
TRECVID-3-ft 3 ✓ I3D 64 WP-BERT 5 · 10−6 14.22 30.75 15.99
TRECVID-4 15 — I3D 64 WP-BERT sgdr 10.88 22.63 13.65
TRECVID-4-ft 0.33 ✓ I3D 64 WP-BERT 5 · 10−6 11.54 24.37 14.18

7.6.3.2 Performance on the Test Set

We submitted captions generated on the provided test videos (1700) to the TRECVID
workshop [8, 7, 6] organizers, who evaluated these captions on the held-out test dataset.

Compared to our validation set scores, the evaluation on the test set yields worse
results as can be been in Table 7.7. Especially, the BLEU score is much lower on
the test data than on the evaluation data. We suspect that the TRECVID workshop
organizers use a different script for the BLEU metric. However, the METEOR score is
better on the test set. Our best model TRECVID-3-ft improves the CIDEr score by
17.50 (i.e., by 125%) in comparison to TRECVID-1-ft.

We depict four videos and their generated captions in Figure 7.11. We see that for
the first three videos our generated captions match the video content quite well. The
first video does indeed look like a man talking to people in a classroom. Only if we
look closer, we see that this is not a classroom, but rather some presentation in front
of adults. In the second video, our model detects a young man singing and fails to
recognize that there are two men, one of which is singing and the other is playing the
piano. In the third video, our model detects a group of people who seem to be dancing.
But it places them on a beach rather than in a pedestrian zone. In the fourth video,
our model wrongly assumes that there is snow in a parking lot. However, it recognizes
a man moving on the street in the daytime, but not the bicycle.

In Figure 7.12 we depict five more videos, but with captions generated by our better
models TRECVID-3-ft and TRECID-4-ft. We see that for the first three videos our
generated captions from the model TRECVID-3-ft match the video content quite well:
The first video description is correct. Only if we look closer, we see that one person is
giving the other person a massage instead of smiling at the camera. In the second video,
our model detects correctly that we see a football field and a group of people who are

154

7.7 Summary

indeed playing football. In the third video, our model detects a young woman who looks
into a camera. However, it fails to detect that the woman is cheering in the background
with some apples laying in front of her. For the fourth video, the model correctly detects
a man. But the man is not reading a book, rather he is showing an ad in front of his
notebook. In the fifth video, the model detects that there is a basketball game going on.
However, it shows the audience rather than basketball players sitting on a bench. But
in the first frame, we see a basketball player, hence, the model may take this as a hint
for generating the sentence.

a man talks to a group of people in a classroom

A young man playing a keyboard and singing.

A group of people are dancing on a beach.

A man in a parking lot of snow moves on a street in the daytime.

Frame #1/184 Frame #47/184 Frame #93/184 Frame #138/184 Frame #184/184

Frame #1/118 Frame #30/118 Frame #59/118 Frame #89/118 Frame #118/118

Frame #1/151 Frame #39/151 Frame #76/151 Frame #113/151 Frame #151/151

Frame #1/123 Frame #31/123 Frame #62/123 Frame #93/123 Frame #123/123

Figure 7.11: Four videos from the TRECVID-VTT [6] validation split and the corresponding
captions generated by our model TRECVID-1-ft.

7.7 Summary

In this chapter, we presented a Transformer-based video-to-text architecture aimed at
generating descriptions for short videos. Utilizing promising approaches from the re-
lated field of image captioning, we were able to gradually improve a vanilla Transformer
designed for machine translation into an architecture that generates appropriate and
matching captions for video clips. By combining motion features, audio features, a

155

7 Transformers with FPE for Video-to-Text Translation

Table 7.7: Chosen models on the TRECVID-VTT dataset and their respective performance on
the unseen test dataset.

Model BLEU CIDEr METEOR

TRECVID-1-ft 1.80 14.00 20.20
TRECVID-2-ft 1.10 13.60 20.40

TRECVID-3-ft 2.21 31.50 29.22
TRECVID-4-ft 1.52 24.70 25.98

custom learning rate schedule, and a pretrained vocabulary, we establish a solid video
captioning model. Furthermore, we introduce the novel fractional positional encoding to
properly synchronize video and audio features with different sampling rates, which sig-
nificantly improves results across all metrics. In combination with self-critical sequence
training, we were able to considerably boost the performance of a baseline model by
an absolute of 37.13 points or 210% in the CIDEr metric. Also, our final model con-
figuration performs well on the MSR-VTT and MSVD datasets and even reaches near
state-of-the-art performance without the need of an ensemble of up to 32 single models
as in [163].

Finally, we present our findings on an entirely different dataset, namely the TRECVID-
VTT dataset. In conclusion, we find that we can easily transfer our findings to other
datasets. The relative improvements did also reflect on an ablation study for the
TRECVID-VTT dataset and our models improved in the same way on the held-out
test set.

156

7.7 Summary

TRECVID-3-ft young asian boy is holding another boy in front of him and smiles at the camera .
TRECVID-4-ft a young asian woman is crying in front of a camera in a room

TRECVID-3-ft a group of people are playing football on a field .
TRECVID-4-ft a football player is running on a football field and kicks a field goal . and

TRECVID-3-ft a young asian woman talking to the camera .
TRECVID-4-ft a young asian woman is talking to the camera in a room

TRECVID-3-ft a man is sitting at a table and reading a book in a room .
TRECVID-4-ft a young man is using a knife to open a box . and

TRECVID-3-ft a group of basketball players are sitting on a bench at a game .
TRECVID-4-ft a group of soccer players are sitting in a basketball court and in front of a man

Figure 7.12: Five videos from the TRECVID-VTT validation dataset [6] and the corresponding
captions generated by our models TRECVID-3-ft and TRECVID-4-ft.

157

8 Image Description Generation with
Transformer Networks

Recurrent neural networks are a common architecture to model natural language gener-
ation tasks. Especially long short-term memory (LSTM) networks in combination with
DCNNs are used to generate descriptions of images [139, 73, 71] (see also Chapters 4,
5, and 6). The architectures have matured over the years and introduced self-attention
for LSTM layers [152]. These methods have also become more and more popular for
machine translation tasks, whose encoder-decoder architecture originally inspired the
Show and Tell model of Vinyals et al. [139]. Recently, Vaswani et al. [137] introduced
a novel network architecture that is solely based on attention mechanisms and gets rid
of convolutions altogether. Given the massive improvements in the task of sequence
transduction and machine translation, it is natural to adapt this technique to image
captioning [24].
In the following, we will revisit the models and problems from Chapters 4 and 5. The

idea is to improve performance and make the models easier to train by porting them to
the Transformer architecture [137]. Our main goal is to adapt these models to a more
recent architecture and show that our previous ideas and concepts are also applicable
and suitable for Transformers.
We will introduce modified architectures that include a Transformer style encoder-

decoder. Afterwards, we try to calculate a baseline score and then implement the same
ideas and changes from Chapters 4 and 5. Finally, in quantitative experiments, we
compare the scores against the baseline Transformer models and their respective archi-
tectures from Part II. We find that the scores improve in contrast to the older reference
models but also discover during the experimental evaluation that not every aspect of
the results behaves as desired. For example, the SCA of our image captioning models
decrease a little bit. Furthermore, the VQA-based Transformer does not generate as
many new answers as its LSTM-based counterpart.

8.1 Related Work

In the following, we review related works about Transformer architectures for image
captioning, visual question answering and also present a few works on non-autoregressive
models for sequence generation as we make use of this technique for our Transformer-
based VQA model.

Transformers for Image Captioning In the previous chapter, we already reviewed the
work by Cornia et al. [24]. They presented an image captioning Transformer that makes

159

8 Image Description Generation with Transformer Networks

use of memory-augmented attention that allows to learn a-priori knowledge about re-
lationships between image regions. Li et al. [83] introduce an entangled transformer
for image captioning. Particularly, they introduce entangled attention that allows the
Transformer to exploit semantic and visual information simultaneously. This semantic
information is gathered by extracting semantic attributes (e.g., sidewalk street, dog,
bike) with the same backbone DCNN but trained as a classification task on the 1000
most common words of the dataset [35]. Furthermore, He et al. [60] propose the im-
age transformer that contains specifically designed encoder and decoder blocks. The
encoder operates on three hierarchies of image regions: for every query region in the
image there are its neighbour regions and child regions. They combine an LSTM layer
with a decoder layer. The LSTM layer receives its inputs from the encoder and serves
as a common memory module for the decoder layer. With their modifications they
achieve state-of-the-art scores using the CIDEr metric. Finally, Yu et al. [154] also
present a Transformer-based image captioning architecture. Their encoder makes use
of region features extracted by a Faster-RCNN [119] model. Furthermore, they align
regions (i.e., same coordinates and size) from different object detector models into an
aligned multi-view before passing those to the encoder. Another model of theirs does
not align the regions and rather just uses detections from different object detectors as
encoder inputs. In the decoder, they embed the input tokens and pass them through
a one-layer LSTM network before feeding these to a standard Transformer decoder. In
combination with self-critical sequence learning, they take the lead on the MSCOCO
captioning leaderboard at time of writing of their paper. We refer the reader to the
related work in Section 7.1 for an overview of more Transformer-based architectures for
image captioning and video-to-text.

Transformers in VQA Tan et al. [134] present the LXMERT (Learning Cross-Modality
Encoder Representations from Transformers) framework that includes a large-scale
Transformer equipped with three encoders. They pre-train their model with a large
number of image-sentence pairs with multiple pre-training tasks that help to learn
cross-modal relationships. These pre-training tasks include masked language model-
ing, masked object prediction, cross-modality matching and visual question answering.
Then they fine-tune the pretrained model on VQA datasets and achieve state-of-the-art
results. Wang et al. introduce the Vision-Language pretrained Model (VLMo) [144],
which is the current leader in the VQA-v2 challenge. As the name suggests, their model
is also pretrained before being fine-tuned on other tasks. They train multiple encoders
with their new Mixture-of-Modality-Experts (MoME) Transformer that can encode mul-
tiple modalities in a single Transformer block. The MoME Transformer consists of three
experts: The vision expert for image encoding, a language expert for text encoding and
a vision-language expert for image-text fusion. They also pre-train VLMo on different
pretraining tasks and fine-tune on the VQA task. Most other Tranformer-based works
which achieved recent state-of-the art scores, are also trained on multiple pre-training
tasks [84, 86, 20, 96].

160

8.2 Transformer for Image Captioning with Multi-Task Training

Non-Autoregressive Methods for Sequence Generation In contrast to the
Transformer-based VQA models from above, our VQA model is different in three ways:
First, following the motivation of Chapter 5, we do not implement a classification ap-
proach for answering visual questions. Second, we do not employ pre-training tasks
and fine-tune on the VQA task subsequently. Third, in contrast to all other models in
this thesis, we generate answers in a non-autoregressive manner. Autoregressive models
sample a sequence word by word whereas non-autoregressive models generate a sequence
at once.

There have been some recent works for sequence generation with non-autoregressive
models. For example, Gu et al. [46] present a NMT model that avoids the autoregressive
way of generating text. By employing a few tricks such as self-critical sequence training
and employing an autoregressive Transformer network as a teacher, they reach good per-
formance scores. In particular, their non-autoregressive model performs 2.0 points worse
in BLEU-4 than the autoregressive model on the WMT14 En-De machine translation
corpus. Furthermore, Zhou et al. [162] present a semi-autoregressive model for image
captioning (SATIC) that keeps an autoregressive property of the decoder while it pre-
dicts word chunks of the caption in a non-autoregressive fashion in parallel. Still, similar
to the NMT task this model performs a little worse than its autoregressive counterpart.
Gao et al. [41] present a non-autoregressive image captioning model where they mask
different parts of the input sequences during training and remove these masks during in-
ference. The performance of their masked non-autoregressive model surpasses the scores
of the baseline non-autoregressive model by a lot but is still worse than comparable au-
toregressive models. There are other works that utilize non-autoregressive Transformers
for the image captioning task: FNIC [37], MIR [81], and CMAL [48]. However, they all
perform worse (see [162]) than autoregressive Transformer image captioning models.

In summary, most language generation models use auto-regression: For example
the GPT models [14] and our VTT model (see Chapter 7). In contrast, most non-
autoregressive models still perform worse than their autoregressive counterparts (see
above). Particularly, these non-autoregressive models suffer from problems such as word
repetition or the omission of words. However, as there is no iterative sampling involved
and the sequences are generated at once, these models can decode sequences much faster
than autoregressive models as the decoder does not need to be computed for every
iteration step.

8.2 Transformer for Image Captioning with Multi-Task Training

Note that this section builds on Chapters 4 and 7. Therefore, we make use of definitions
which we introduced in these chapters and refer the reader to these at multiple occasions.
As opposed to our VQA model in the next section, we employ an autoregressive decoding
strategy for the image captioning model in this section.

In particular, we look once more at the task presented in Chapter 4. More specifically,
our goal is to generate captions for images that depict interactions between humans
and branded products. Following the theme of this chapter, we replace the encoder-

161

8 Image Description Generation with Transformer Networks

decoder Show and Tell architecture (see Section 4.2 and [139]) with a Transformer-based
encoder-decoder architecture. By doing so, we hope to develop a model that is easier
to train and ultimately yields better scores than our LSTM-based model. Furthermore,
we add our extensions from Chapter 4 to the Transformer-based model. Namely, we
utilize the classification-aware loss (see Section 4.5.1) and image ratings module (see
Section 4.5.2). In summary, our goal is to show that we can transfer our proposed
methods from Chapter 4 to a state-of-the-art architecture based on the Transformer.
Finally, we evaluate the new architecture and examine whether our conclusions from
Chapter 4 are also valid for the Transformer-based model.

8.2.1 Transformer-Based Image Captioning Model

In Figure 8.1, we depict our Transformer-based image captioning model. The encoder
and decoder of our model are the same as in Chapter 7 which we show in the center of
the figure. Furthermore, we add the image ratings module and the classification-aware
loss to the model. We show the image ratings module on the left side. The classification-
aware loss is implemented identical to Section 4.5.1. It only operates on classwords, i.e.,
words of the vocabulary that represent brands. We depict the masking of words required
for the classification-aware loss on the top center.

Encoder Similar to the baseline model of Chapter 7 (see Section 7.3), we embed our
input with a DCNN. However, there are some differences: First, we only have a single
image instead of a video since we want to create captions for single images. Second, we
extract the image’s features with an Inception-v3 DCNN [132] instead of a ResNet [59].
We use the Inception-v3 features as we want to compare the results of our Transformer-
based models to the models from Chapter 4. Third, as the encoder of a Transformer
operates on sequences, we utilize the full feature map FI ∈ R8×8×2048 with spatial
information. We reshape the feature map into a sequence of length K = 8 ·8. Therefore,
our features are now of dimension RK×2048 and we embed these features with an image
embedding layer into the Transformer’s model with dimension dmodel:

FI
e = FI ·We,I + be,I , (8.1)

where We,I ∈ R2048×dmodel and be,I ∈ Rdmodel are the weights and biases for the im-
age embedding, respectively. Analogous to Chapter 7.3 this now yields a sequence of
embedded image features

FI
e = [FI

e,0, . . . ,FI
e,K−1] (8.2)

for every spatial location within the feature map. Note that this is in contrast to the
average-pooled features used in Chapter 4 which gives the Transformer an advantage.
Therefore, we also conduct experiments with an average-pooled feature map in Sec-
tion 8.2.3. We add the default positional encoding (see Section 2.3.4) on top of the
embedded image features.

162

8.2 Transformer for Image Captioning with Multi-Task Training

Input Image I
GT Sentence

yS

CNN
Inception-v3

Image
Embedding

Average
Pool

3× fully-
connected ρr

Word
Embedding

We

+

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding +

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding

N×

N×

Decoder

Encoder

Linear

Softmax

Output
Probabilities p

Masking

Masked
Words k

3× Image Ratings
r1, r2, r3

QKV

V K Q

QKV

n

n

FI
e

Figure 8.1: Our Transformer-based image captioning architecture for describing images that de-
pict human-product interactions. We use the Transformer from Vaswani et al. [137]
(see also Chapter 7) and add our extensions from Chapter 4. This includes the
masking of output words for the classification-aware loss and the image ratings pre-
diction.

163

8 Image Description Generation with Transformer Networks

Decoder Our decoder is implemented identical to Chapter 7 and depicted on the right
side in Figure 8.1. Our ground-truth sentences yS are preprocessed as outlined in Sec-
tion 2.2.2. In particular, we prepend a start-of-sequence token and append an end-of-
sequence token to every sentence and encode every word of a sentence with a one-hot
vector. Note that we do not employ subword tokenization (see Section 7.4.3) and use the
same vocabulary from Chapter 4 for representing our ground-truth sentences. We make
use of a learned word embedding that embeds the input tokens into vectors of dimension
dmodel. Then, we add the default positional encoding onto the embedded vectors before
feeding these to the decoder. We share the weight matrix of the word embedding with
the linear projection layer (see linear layer on top of decoder) that outputs unnormal-
ized scores for the next word. This linear layer projects the decoder’s outputs back
into the dimension of our vocabulary. Identical to the other chapters, we denote these
outputs as n. Then, we can optimize the cross-entropy loss for every input image I with
ground-truth sentence yS :

L(I,yS) = −
N−2∑

t=0

(
log [ϕ(nt+1)] • y

S
t+1

)
, (8.3)

where ϕ is the softmax activation function and • is the dot-product. Again, we optimize
this loss for every word except the start-of-sequence token, i.e., indices [1, . . . , N − 1].

Classification-Aware Loss As already mentioned, we add the classification-aware loss
which we introduced in Chapter 4 to the Transformer-based model. The outputs n of
the linear projection layer after the decoder represent scores over the vocabulary V for
every output of the decoder. Identical to Section 4.5.1, we perform an element-wise
multiplication of these outputs with a constant binary mask vector m:

kt+1 = nt+1 ◦m, (8.4)

The mask vector has a one at every index of the vocabulary where the corresponding
word is a classword (see Equation 4.5). We depict this operation by the yellow operation
Masking on the top center of Figure 8.1 which yields masked words k. Each of these
masked words kt+1 represents the scores for iteration step t over the whole vocabulary
but is set to zero for all words other than a classword. Because a classword should only
occur once in a generated sentence, we sum over all iteration steps and apply the softmax
function (ϕ):

k̂ = ϕ

(
N−2∑

t=0

kt+1

)
. (8.5)

Then we can calculate the classification-aware loss Lcls just as in Equation 4.9:

Lcls(I,ycls) = − log
[
k̂
]
• ycls, (8.6)

where • is the dot-product and ycls is the one-hot encoded ground-truth vector for the
classword included within the image I.

164

8.2 Transformer for Image Captioning with Multi-Task Training

Image Ratings Furthermore, we extend our model with the image ratings module from
Chapter 4.5.1. Again, we only use the soft-targets version (see Section 4.5.2.3) of the
image ratings prediction because we chose this particular approach for our final LSTM-
based model. We depict the image ratings module on the left side in Figure 8.1. In
contrast to our LSTM-based model, we make use of spatial features in the Transformer-
based model. For the image ratings module, however, we only need a flattened feature
vector. Therefore, we first average-pool the embedded image features. Then, for every
one of the three image ratings r ∈ r1, r2, r3, we forward the average-pooled embedded
features through a separate fully-connected layer ρr. As we use the soft-targets ap-
proach, the fully-connected layers have 5 output neurons and our ground-truth yr ∈ R5

is again encoded as a probability distribution. Then, we optimize the same loss as in
Equation 4.14:

Lr(I,yr) = −
4∑

i=0

(yr
i · log [σ(ρri)] + (1− yr

i) · log [1− σ(ρri)]) . (8.7)

Identical to Section 4.5.2.3, we want to learn the probability of each individual rating.
Thus, yr

i and ρri are the i-th element of the ground-truth distribution and i-th neuron
of the fully-connected layer’s output, respectively.

Optimizing the Transformer-Based Model For our final models with classification-
aware loss and image ratings module, we optimize all losses simultaneously:

Ltotal =L(I,yS) + Lcls(I,ycls)+

Lr1(I,yr1) + Lr2(I,yr1) + Lr3(I,yr1).
(8.8)

This is the same loss as in Equation 4.15. Depending on the model configuration, we
only optimize particular addends of the sum: For example, when the classification-aware
loss and the ratings losses are disabled, we only optimize L(I,yS).

8.2.2 Dataset and Training Configuration

Dataset Splits Like in Section 4.4, we use the LogosSimple and LogosExtended dataset
splits. First, the LogosSimple dataset that only consists of images, descriptions and
image ratings from the GfK-Dataset. Second, we make use of the LogosExtended dataset
that consists of the training split of MSCOCO [91] and LogosSimple multiplied 8 times
to compensate for the lower amount of training samples (see Table 4.1).

Training Configuration Our Transformer-based image captioning models consist of
N = 6 encoder and decoder blocks. We use 8 attention heads and a model dimension
of dmodel = 512. For the position-wise feed-forward networks, we set dff = 2048 as the
inner-layer dimensionality. We use the Adam [75] optimizer with the default learning
rate schedule from [137] (see also schedule-default in Section 7.4.4). Furthermore, we set
the optimizer parameters to β1 = 0.9, β2 = 0.999 and ϵ = 1 · 10−8. Similar to Chapter 7,

165

8 Image Description Generation with Transformer Networks

we set the number of warm-up steps to 10,000. We train all our models with a single
NVIDIA A100 GPU and a batch size of 128. We select our models with an early-stopping
strategy based on the CIDEr score and generate our captions with greedy sampling as
opposed to beam search in Chapter 4. However, we utilize beam search decoding for our
final Transformer-based model to be comparable to our older models. We implemented
our LSTM-based model from Chapter 4 in TensorFlow 1 and our Transformer-based
model in TensorFlow 2. Our weights from the Inception-v3 DCNN, which we fine-tuned
on our 26 brand classes, are not compatible with the newer TensorFlow version. A
conversion was also not possible as the networks are implemented in a different manner
in both versions of the framework. Thus, in contrast to the final models of Chapter 4,
we initialize the Inception-v3 DCNN only with weights pretrained on the 1000 ImageNet
classes [122].

8.2.3 Experiments

In this section, we compare our Transformer-based model to our final results from Chap-
ter 4. In particular, we selected the model base and the model soft-targets+CA+ft as
reference models. Note that base is initialized with an Inception-v3 pretrained on the
1000 ImageNet classes. In contrast, the Inception-v3 of soft-targets+CA+ft was initially
fine-tuned on our 26 brand classes.

base is our previous baseline, thus, we can compare it to the new baseline baseT
because both include a Incpetion-v3 DCNN trained on the 1000 ImageNet classes. We
denote all Transformer-based models with a “T” in the name. Furthermore, we chose
soft-targets+CA+ft as a second reference model as this was our finally selected model
from Chapter 4.

8.2.3.1 BLEU-4, METEOR and CIDEr Scores

We list the BLEU-4, METEOR and CIDEr scores of our models in Table 8.1. As
comparison to the model base of Chapter 4, we train the model baseT. We initialize this
model with an Inception-v3 that was pretrained on the 1000 ImageNet classes [122]. For
a fair comparison, we only use the average-pooled feature map F̃I in this experiment
because our models from Chapter 4 did not employ spatial features. We see that all scores
decrease a little bit. The CIDEr score is down by 2.25 points and BLEU-4 drops by 0.65
points. However, note that we use the full encoder even though the input sequence only
has a length of 1 in this case. This means, that N = 6 encoder blocks process a sequence
of length 1. For another comparison to the LSTM-based model base, we removed the
Transformer’s encoder blocks altogether in model baseT-Enc. This model is closest to
the LSTM-based model as we only extract average-pooled features with the Inception-v3,
embed those with an image embedding layer, and pass the embedded features to N = 6
Transformer decoder blocks. We see that this model performs similar to base. The
CIDEr score is a little higher, while the BLEU-4 and METEOR scores are slightly less.
We conclude that the Transformer’s encoder is unnecessary when working on sequences of
length 1. This comes as no surprise because the self-attention is effectively not present for

166

8.2 Transformer for Image Captioning with Multi-Task Training

Table 8.1: Results for our Transformer-based models. The first column states the model num-
ber and the second column the model name, columns 3–5 state the dataset used
(DS), whether we trained with the classification-aware loss (CA) and the kind of
image ratings loss (IR). Columns 6–8 show the BLEU-4 (B-4), METEOR (Met) and
CIDEr (Cid) scores. The last two columns show the overall accuraccy (OA) and
mean accuracy (MA). -BS denotes that the model was evaluated with beam search
decoding.

Method (Initialization) DS CA IR B-4 Met Cid OA MA

— base (IC-v3) LS — LIN 54.80 34.10 177.10 75.66 58.72

1 baseT (IC-v3) LS — — 54.15 33.22 174.84 69.15 49.84
2 baseT-Enc (IC-v3) LS — — 54.28 33.98 177.99 71.60 59.11
3 baseT+Spatial (IC-v3) LS — — 56.96 35.46 194.82 79.62 64.66
4 baseT+Spatial+ft (IC-v3) LS — — 62.74 37.61 221.27 86.42 72.65
5 baseT+Spatial+CA (IC-v3) LS ✓ ST 56.08 35.64 192.10 79.43 64.26
6 baseT+Spatial+CA+ft (#4) LS ✓ ST 60.97 38.29 214.91 86.13 72.29

7 fuseT+Spatial+CA (IC-v3) LE ✓ ST 57.19 35.88 195.25 78.81 62.69
8 fuseT+Spatial+CA+ft (#7) LE ✓ ST 61.01 37.82 214.96 84.96 74.46
9 soft-targetsT+Spatial+CA+ft (#8) LS ✓ ST 63.52 38.45 225.05 87.74 75.73
9-BS soft-targetsT+Spatial+CA+ft (#8) LS ✓ ST 65.40 38.80 226.80 89.25 80.73

— soft-targets+CA+ft (#10) LS ✓ ST 61.30 37.56 207.25 91.11 80.45

sequences of length 1. Particularly, the calculation of attention scores with the softmax
function in Equation 2.14 returns a single attention weight of 1. Therefore, each encoder
block only executes a projection of the values with layer normalization, followed by a
feed-forward network with layer normalization both of which include a skip connection.

As a Transformer’s encoder normally operates on a sequence of inputs, we embed
all spatial locations of the output feature map of the Inception-v3 DCNN and reshape
the spatial dimension into a one-dimensional sequence dimension in the models denoted
by +Spatial. We see that the model baseT+Spatial improves scores significantly in
comparison to base. CIDEr improves by 17.72 points and BLEU-4 by 2.16. When
enabling fine-tuning of the Inception-v3 DCNN, scores improve even more. Note that
models 1–3 are comparable to model base from Chapter 4 even though we did not train
the image ratings module. This is because the image ratings module can only influence
the caption generation through the Inception-v3 feature extractor network which we
kept frozen for those models. The model baseT+Spatial+ft increases CIDEr and BLEU-
4 scores by another 26.45 and 5.78 points, respectively. We see that baseT+Spatial+ft
already surpasses all three common sentence scores of our final LSTM-based model soft-
targets+CA+ft. Note that this model does not make use of the classification-aware loss
or the multi-task learning objective introduced with the image ratings module.

When enabling the classification-aware loss in models 5 and 6, we notice that the
scores decrease in comparison to models 3 and 4. This behavior is identical to the
models in Chapter 4. However, the scores only decrease a little bit in comparison to the
LSTM-based models. For instance, the CIDEr score of baseT+Spatial+CA decreases by

167

8 Image Description Generation with Transformer Networks

2.72 when compared against model #3. In Chapter 4, the model base+CA looses 21.17
points in CIDEr when compared against base.

In similar fashion to Chapter 4, we also train models on the LogosExtended (LE)
data split which includes the MSCOCO train split in addition to the GfK-Captions
dataset. First, we train model fuseT+Spatial+CA which yields slightly better results
than the model trained on LogosSimple only. Furthermore, during fine-tuning (model
fuseT+Spatial+CA+ft), we see that the scores develop into the same region as the
corresponding model (model baseT+Spatial+CA+ft) trained on the LogosSimple data
split.

Finally, just as in Chapter 4, we initialize our final model soft-targetsT+Spatial+CA
with the weights from model fuseT+Spatial+CA+ft and fine-tune on the LogoSimple
dataset only. During fine-tuning, we also allow changes to the Inception-v3 feature
extractor network. This model scores even higher BLEU-4, METEOR and CIDEr scores
for the LogosSimple dataset. In particular when compared to the LSTM-based model
base, it improves the BLEU-4, METEOR, and CIDEr scores by 8.72, 4.35, and 47.95,
respectively. Furthermore, it also boosts the scores of our final LSTM-based model
soft-targets+CA+ft by 2.22, 0.89, and 17.8 points for BLEU-4, METEOR, and CIDEr,
respectively. Until now we generated the captions for all models with greedy sampling.
In Chapter 4, however, we employed the beam search strategy for decoding. Therefore,
we additionally generated captions for our best model #9 by employing beam search
decoding. When looking at these scores (denoted by model #9-BS), we see that the
different sampling strategy yields the maximum BLEU-4, METEOR and CIDEr scores
which we could observe for the LogosSimple dataset. We show predicted captions and
the image ratings for the four images from Chapter 4 in Figure 8.2. More specifically,
we show one of the generated captions of our final model #9-BS alongside the final
LSTM-based model soft-targets+CA+ft.

8.2.3.2 Sentence Classification Accuracy

We also depict the overall accuracy (OA) and mean accuracy (MA) (see Section 4.6.1)
in Table 8.1. These two accuracies evaluate whether the brand name of the product
depicted in an input image was identified correctly. If we take a closer look to these
accuracies, we see that our Transformer-based models consistently perform worse than
our model from Chapter 4 with one exception. For example, model #4 only has an
overall accuracy and mean accuracy of 86.42% and 72.65%, respectively. Compared
to the model soft-targets+CA+ft from Chapter 4 it performs worse by an absolute of
4.69% and 7.8%. However, when employing beam search with a beam size of b = 3
just as in Chapter 4, the OA and MA increase: We additionally generated captions
with beam search decoding for model #9. As more captions per sample are allowed
to “match” the correct brand name (see Section 4.6.1), the score inherently increases.
The MA is even slightly better than for model soft-targets+CA+ft. However, the OA
is worse by nearly an absolute of 2%. One factor for inferior performance could be
attributed to the feature extractor DCNN: As we mentioned before, we were not able to
convert the Inception-v3 parameters from TensorFlow 1 to TensorFlow 2. As outlined

168

8.2 Transformer for Image Captioning with Multi-Task Training

in Section 4.6.2.1, we pretrained the Inception-v3 to classify the 26 brand classes of
the GfK-Captions dataset. The final models of Chapter 4 were all initialized with the
pretrained Inception-v3 DCNN. By employing the network that was pretrained on the
brand classes, the OA and MA of the model base in comparison to model base+L (see
Table 4.3) improved from 75.66% to 90.94% and from 58.72% to 81.34%, respectively.

Table 8.2: Results for our Transformer-based models. The first column states the model number
and the second column the model name, columns 3–5 depict the ratings accuracies
for ratings r1, r2, r3.

Method accuracyr1 accuracyr2 accuracyr3

5 baseT+Spatial+CA 69.61 68.20 61.13
6 baseT+Spatial+CA+ft 73.50 69.61 68.90

7 fuseT+Spatial+CA 67.14 66.08 60.78
8 fuseT+Spatial+CA+ft 72.44 68.55 70.32
9 soft-targetsT+Spatial+CA+ft 76.33 68.55 73.14

— soft-targets+CA+ft 74.60 71.01 70.65

8.2.3.3 Image Ratings

In Table 8.2, we show the image ratings accuracies of our Transformer-based models. The
image ratings module is implemented in the same way as in Chapter 4. In particular,
we append a single fully-connected layer ρr for every image rating r ∈ {r1, r2, r3} to
the average-pooled features of the feature extractor DCNN. The only difference to our
models from Chapter 4 is that we train with the Adam optimizer. Models #5 and #7
perform worse than our reference model soft-targets+CA+ft because we did not unfreeze
the parameters of the Inception-v3 DCNN. If we look at the models where we allow fine-
tuning of the feature extractor network, we see that the accuracies improve. Specifically,
our model soft-targetsT+Spatial+CA+ft performs considerably better for the polarity
(r1) rating and the emofunc (r3) rating. Only the involved (r2) rating is worse by an
absolute of 2.46%. When we compare the accuracies to the LSTM-based models trained
with the soft-targets approach (see Table 4.5), we see that the accuracies for ratings r1
and r2 of the Transformer-based models are within the same range. Only the accuracy
for the emofunc rating (r3) is better by over 2%.

8.2.3.4 SPO Accuracy Metrics

In Table 8.3, we list the results of our Transformer-based models regarding the subject-
predicate-object (SPO) accuracies (see Section 4.5.3). We see that all SPO accuracies of
our models with greedy sampling (models #1-9) perform worse than our reference model
soft-targets+CA+ft. For example, model #9 has a SPO7 accuracy of 65.47%, i.e., all
generated sentences match the subject, predicate, and object simultaneously in 65.47%
of all cases. This is worse by an absolute of 4.53% in comparison to the reference model.

169

8 Image Description Generation with Transformer Networks

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction

Involved

Emotional

1

2

3

- Interaction

Uninvolved

Functional

(a) LSTM: ”a female hand holds a can of co-
cacola above a tiled floor.”
Model #9: ”a hand is holding a can of co-
cacola.”

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction

Involved

Emotional

1

2

3

- Interaction

Uninvolved

Functional

(b) LSTM: ”a hand is holding a bar of kinder-
riegel.”
Model #9: ”a hand is holding a kinder-
riegel bar.”

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction

Involved

Emotional

1

2

3

- Interaction

Uninvolved

Functional

(c) LSTM: ”a hand is holding a can of heinz.”
Model #9: ”a hand is holding a can of
heinz.”

Polarity (r1)

Involved (r2)

Emofunc (r3)

+ Interaction

Involved

Emotional
0

1

2
- Interaction

Uninvolved

Functional

(d) LSTM: ”a woman is holding a nutella jar
in front of her face.”
Model #9: ”a woman is holding a nutella
jar in front of the person ’s face.”

Figure 8.2: The same images (see Figure 4.6) and the predictions by the Transformer-based
model #9 compared to our final model from Chapter 4.

170

8.3 Generating Answers with a Transformer for Visual Questions

However, there is a discrepancy on how we calculate the SPO metrics in comparison to
Section 4.6.3.4: We sample b = 3 captions with beam search in Chapter 4 and employ a
greedy sampling strategy for our Transformer-based models. Then to calculate the SPO
score, we choose the caption that matches most of the three sentence clauses defined
by us, i.e., subject, predicate, and object. For example, if one of the three sentences
generated by beam search matches two sentences clauses and another one three sentence
clauses, we select the later one. Therefore, the SPO accuracies of the LSTM-based
model soft-targets+CA+ft are naturally higher than those of model #9 that utilize
greedy sampling. However, when we generate the captions for model #9 with beam
search decoding (denoted by #9-BS), the SPO accuracies improve significantly. Now
all SPO accuracies are higher than those of the LSTM-based model. By generating 3
captions for each sample with beam search decoding, the accuracy of SPO7 rises by an
absolute of 6.42%.

Table 8.3: Results for our Transformer-based models. The first column states the model number
and the second column the model name, the following eight columns represent the
SPO accuracies SPO0–SPO7. -BS denotes that the model was evaluated with beam
search decoding.

Method SPO0 SPO1 SPO2 SPO3 SPO4 SPO5 SPO6 SPO7

1 baseT 0.00 71.32 78.21 59.15 79.62 59.91 64.91 51.32
2 baseT-Enc 0.00 75.00 80.85 63.11 77.64 61.60 65.00 53.40
3 baseT+Spatial 0.00 78.21 82.74 65.94 80.66 65.47 68.49 56.04
4 baseT+Spatial+ft 0.00 79.53 85.00 69.72 84.53 70.00 73.77 62.17
5 baseT+Spatial+CA 0.00 77.36 81.13 65.00 80.85 65.00 68.11 56.32
6 baseT+Spatial+CA+ft 0.00 83.11 87.08 73.77 84.53 72.92 75.19 65.57

7 fuseT+Spatial+CA 0.00 76.98 83.96 67.36 78.58 65.66 68.87 58.30
8 fuseT+Spatial+CA+ft 0.00 81.42 86.13 72.64 81.60 70.09 72.64 63.68
9 soft-targetsT+Spatial+CA+ft 0.00 83.30 87.36 74.62 83.11 71.32 75.19 65.47
9-BS soft-targetsT+Spatial+CA+ft 0.00 86.89 90.75 80.57 86.60 77.08 79.72 71.89

— soft-targets+CA+ft 0.00 85.94 88.87 78.49 85.66 75.75 77.74 70.00

8.3 Generating Answers with a Transformer for Visual
Questions

This section builds on Chapters 5 and 7. Similar to Section 8.2, we make use of definitions
which we introduced in these chapters and refer the reader to these at multiple occasions.

In this section, we investigate the VQA task in light of the Transformer architec-
ture. Similar to Chapter 5, we want to generate answers instead of implementing a
classification-based approach. As we already outlined in Section 8.1, most related works
implement their VQA models as a classification task. That is, they select an answer
out of a predefined set of answers. This extends to works that use the Transformer ar-
chitecture as backbone where they append a fully-connected layer to the decoder. This
fully-connected layer is then trained to maximize a classification objective.

171

8 Image Description Generation with Transformer Networks

Like motivated in Section 5.1, we want to develop a model that is able to generate
answers instead of only selecting an answer from a predefined set of answers. More
specifically, we want our model to also generate less common answers (LCA) and entirely
new answers which is not possible with a classification-based model. In contrast to our
other Transformer architectures of this work, we try to generate the answer at once in
a non-autoregressive fashion instead of generating the answer word by word. The non-
autoregressive decoding is presenting itself as an alternative to autoregressive encoding in
this case because we have a complete question available during inference. In particular,
when generating an answer for a given image and question, we can pass the complete
question to the decoder’s input and then generate an answer at once. In contrast, if we
generate a sentence word by word with autoregressive decoding, we need the previously
predicted words for generating a new word. By employing this architecture, the decoder
then also replaces the multi-modal fusion operation from Section 5.5.4.
Finally, we evaluate the new architecture and check if the VQA accuracies are better

than those of Chapter 5. Furthermore we investigate if the Transformer-based model is
also able to generate LCA and new anwers.

8.3.1 Transformer-Based VQA Model

We depict our Transformer-based VQA model in Figure 8.3. Again, we make use of
the encoder and decoder from Chapter 7 and Section 8.2. This model is very similar to
the model from Section 8.2, which we depict in Figure 8.1. First, the model is simpler
as we do not have extensions like an image ratings module or the classification-aware
loss. In fact, the encoder is built the same way as both models utilize spatial feature
maps from the Inception-v3 DCNN in a sequential manner. The decoder, however, is
built different from the VTT Transformer model presented in Chapter 7 and the image
captioning transformer from Section 8.2. Additionally, the idea of how we create answer
sentences is different from a traditional text generation model that samples sentences
word by word. Instead the decoder is given a question and predicts the answer sentence
at once. Still, we generate answers instead of using the classification-based approach
which other VQA works utilize (see Section 5.2).

Encoder As we already outlined, the encoder is essentially the same as in the image
captioning Transformer of Section 8.2. However, there is one small difference: In some
of our models we utilize the memory augmented encoder (see Section 7.4.1). We feed
an input image I through an Inception-v3 DCNN that extracts spatial features FI ∈
R8×8×2048. Then, we reshape the image’s features into a sequence of length K = 8 ·8 and
embed these image features with an image embedding layer into the Transformer’s model
dimension dmodel = 512 (see Equation 8.1). Note that we made use of the same spatial
features in Chapter 5. Afterwards, we add the positional encoding (see Section 2.10) on
the embedded features and feed the resulting sequence of vectors to our encoder blocks.

Decoder We already mentioned that the decoder of our Transformer-based VQA mod-
els is built differently than the models from Section 8.2 and Chapter 7. Although the

172

8.3 Generating Answers with a Transformer for Visual Questions

Input Image
I

Question
yQ

CNN
Inception-v3

Image
Embedding

Word
Embedding

We

+

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding +

Masked*
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding

N×

N×

Decoder

Encoder

Linear

Softmax

Output
Probabilities p

QKV

V K Q

QKV

n

FI
e

Figure 8.3: Our Transformer-based architecture that allows to generate answers at once for
visual questions. We also use the Transformer from Vaswani et al. [137] (see also
Chapter 7) and use it to generate answers for visual questions. We feed the decoder
with embedded questions on the bottom right and directly generate the answer with
the decoder. *The masked multi-head attention is different from other Transformer
models (see Chapter 7 and Section 8.2.1). Specifically, we only mask padded input
tokens instead of previous word indices (for more detail see Section 8.3.1).

173

8 Image Description Generation with Transformer Networks

basic structure is the same, we utilize this structure differently. Instead of feeding a
ground-truth sentence as input and trying to predict the same shifted ground-truth sen-
tence as output, we make use of different inputs and outputs: Our inputs to the decoder
are embedded questions and the outputs are the answers. One crucial part of the visual
question answering task is the multi-modal fusion of features (see Section 5.5.4). That
is, the combination of the visual features from the input image and the features from
the question asked. In our model, we combine the question features and image features
in the decoder.

If we look at the decoder structure of the image captioning model in Figure 8.1 more
closely, we see that the caption generation is dependent on the encoder outputs and
the input to the decoder. In all previous language generation models in this work, we
generate the captions in an autoregressive manner. That means that given the encoder
outputs and some input words, we generate the next word with a decoding strategy like
greedy sampling. Even though most non-autoregressive architectures are not superior
to autoregressive models when generating text (see Section 8.1), we implement a non-
autoregressive decoder. We made this architectural decision, because of multiple reasons.
First, the input question is completely available during inference time. Second, adding
a second decoder just for autoregressively generating answers or fusing the image and
question in a different way would make our Transformer-based model more complex
and difficult to train. Thus, a Transformer’s decoder that can attend to the encoder’s
outputs given some inputs is an natural choice for fusing image and question features.
In particular, the decoder then attends to the image features from the encoder given
an input question. Furthermore, to keep our model consistent and comparable to the
models from Chapter 5, we want to generate an answer instead of selecting the most-
probable out of a predefined set of answers. Therefore, we modify the decoder of our
Transformer-based VQA model to accept questions as inputs and train the objective of
directly predicting answers. In contrast to the task of image captioning, we do not need
to mask out input words in the decoder. The generated answer word of iteration step
t is allowed to see all words of the input question as opposed to an image captioning
decoder which is only allowed to see the words with iteration steps < t. Vaswani et
al. [137] introduced this limitation so that predictions for position t can depend only on
the known outputs at positions less than t.

We use a shared weight matrix for both embedding the questions and the linear
projection that maps decoder outputs to the answer words. We prepend a start-of-
sequence token and append an end-of-sequence token to both our questions and answers
because we use the identical preprocessed dataset from Chapter 5. Furthermore, we pad
all of our input questions to the length of the longest possible answer within the dataset.
We need to do this because the inputs to the decoder can have different lengths than
the output answers. For example, when a question only consists of five words and the
corresponding ground-truth answer has a length of eight words, we could not generate
answer words for the last three words of the answer. Thus, we would not be able to
calculate a loss for these words. By padding the question to the length of the maximum
answer length of the dataset, we make sure that the decoder always generates a sufficient
number of outputs. Note that technically we still make use of the masked multi-head

174

8.3 Generating Answers with a Transformer for Visual Questions

attention to mask out the padded tokens of the input question. As the padded tokens
are not part of the question, we do not attend over those in the decoder. We also add
positional encodings to the embedded input question.

As with all our word generation models, we optimize the softmax cross-entropy loss
for every image I with question yQ and answer yS :

L(I,yQ,yS) = −
N−2∑

t=0

(
log [ϕ(nt+1)] • y

S
t+1

)
, (8.9)

where N is the length of the one-hot encoded ground-truth answer yS and • is the
dot-product. Note that the ground-truth answer includes the start-of-sequence and end-
of-sequence token and we optimize the loss for word indices [1, . . . , N − 1]. Similar to
other models in this thesis, we do not optimize for index 0 which is the start-of-sequence
token. Still, we want to optimize for index N − 1 so our final model is able to predict
the end-of-sequence token and we are able to cut off the unwanted predictions.

8.3.2 Dataset and Training Configuration

Dataset We use the same preprocessed data splits from Section 5.3. Therefore, we
make use of the same vocabulary and do not employ subword tokenization. Our questions
and answers are also already preprocessed and include a start-of-sequence and end-of-
sequence token. We train our models on the rebalanced train split which includes the
original training split and 90% of the original validation split of the VQA-v2 dataset.
We validate our models on the remaining 10% of the validation split.

Training Configuration We train our models on a single NVIDIA A100 GPU with a
batch size of 1024. We empirically found that this batch size yields better results than
lower batch sizes and is also faster to train. When fine-tuning the architecture, we
unfreeze the Inception-v3 feature extractor network and need to lower the batch size to
128 due to memory constraints. We select our models with early stopping strategy based
on the CIDEr validation score. Our Transformer uses a differing number N of encoder-
decoder blocks which we discuss in the experiments section. We set dmodel = 512 and use
an inner-layer dimensionality of dff = 2048. As with all our other Transformer models,
we use the Adam optimizer [75] with the default learning rate schedule from [137] and
10,000 warm-up steps. We also experimented with the SGDR learning rate schedule from
[95] (see also Section 7.4.4). We initialize the Inception-v3 feature extractor networks
with weights which were pretrained on the 1000 ImageNet classes (the same weights as
in Section 8.2).

8.3.3 Experiments

Similar to Section 8.2, we compare the Transformer-based VQA models against the
LSTM-based VQA models from Chapter 5. We also selected two LSTM-based reference
models to which we compare the Transformer-based models. We depict the performance

175

8 Image Description Generation with Transformer Networks

of our models on the validation split in Table 8.4. Model numbers with the * suffix
are LSTM-based models from Chapter 5. The other models (i.e., models #1–7) are our
Transformer-based models.

8.3.3.1 VQA Accuracies

We choose the model #8 from Table 5.1 as LSTM-baseline model as it is our baseline
model from Chapter 5 that utilizes soft-attention. Because the Transformer also uti-
lizes attention over the spatial dimensions of the image’s feature map, we selected this
model as baseline to compare the Transformer-based VQA models to. We see that the
baseline VQA Transformer (model #1) improves the overall VQA accuracy by 1.82% in
comparison to the LSTM-based model #8*.

We used N = 6 encoder and decoder blocks for the baseline experiment because
Vaswani et al. [137] proposed it in their original work and this parameter worked well
for our image captioning pipeline from Section 8.2. However, as our dataset is really big
and our models trained for a long time, we experimented with the number of encoder
and decoder blocks and found that lowering the number of N improves the overall VQA
accuracy. We see that the overall VQA accuracy of model #2 with N = 5 rises by nearly
2% in comparison to the baseline model with N = 6. If we further reduce the number
of encoder and decoder blocks to N = 4, the performance starts to degrade (see model
#3). Thus, we utilize N = 5 encoder and decoder blocks for our final models.

We also experiment with the memory augmented encoder from Section 7.4.1. Models
#1–3 already made use of the memory augmented encoder with a memory vector size of
64. We conduct two comparisons for models with no memory augmented encoding. In
particular, we see that model #4 performs slightly worse than model #1 with a loss of
0.05% in overall accuracy. However, model #5 with N = 5 has a higher accuracy than
model #2 (0.41%). Because the memory augmented encoder does not harm performance
and slightly improves it in case of model #5, we enable the memory augmented encoder
with a memory vector size of 64.

For model #6, we tried to utilize the SGDR learning rate schedule from Section 7.4.4.
However, as we see in the scores, this learning rate schedule does not improve scores
as it does for our video-to-text Transformer. In fact, the overall accuracy decreases by
0.34% compared to model #2. As SGDR does have the desired effect, we do not pursue
it for our final model.

Finally, with model #7, we take the configuration of our best-performing Transformer-
based model and additionally fine-tune the parameters of the Inception-v3 feature ex-
tractor network. In Chapter 5 this yielded an improvement of 2.91% in the overall
accuracy. With the Tranformer-based model (model #7), we also see an improvement
of 2.1% in overall accuracy. This is not as much as in the LSTM-based model, but still
substantial when compared to the differences between different model configurations
(compare models #1–6). Our final Transformer-based model improves performance by
nearly 3% in contrast to our final LSTM-based model.

These are scores on our validation split of the VQA-v2 dataset. We could not calculate
the result of our final model on the test set as this is not public and the test server for

176

8.3 Generating Answers with a Transformer for Visual Questions

Table 8.4: Studies on our validation split of the VQA-v2 dataset. We analyze different com-
binations of hyperparameters in our model. The first column states the model #.
Model numbers with the suffix * are our LSTM-based models from Table 5.1. FT
stands for fine-tuning of all parameters (including the Inception-v3 image feature
extraction DCNN) and lr-schedule which learning rate schedule we used. |mv| states
if we used the memory augmented encoder (see Section 7.4.1) and the size of the
memory vector. The columns for validation performance show the accuracies on our
validation split (10 % of the VQA-v2 validation split).

Model Configuration Validation Performance

FT lr Schedule |mv| N All Y/N Num Other

8* — η = 2.0 0 — 53.54 73.33 34.81 43.34

1 — Default 64 6 55.36 72.54 35.77 46.06
2 — Default 64 5 57.33 75.63 38.33 46.89
3 — Default 64 4 56.05 75.56 37.35 45.69

4 — Default 0 6 55.41 73.59 36.49 45.53
5 — Default 0 5 56.92 75.44 34.02 48.34

6 — sgdr 64 5 56.99 74.67 35.99 47.70

7 ✓ Default 64 5 59.43 76.34 41.93 49.48

11* ✓ η = 2.0 — — 56.62 75.45 39.33 46.79

the specific dataset version used in Section 5.6.4 was not available. Note that current
state-of-the-art methods and methods employing a Transformer such as LXMERT [134],
ROSITA [25], and VLMo [144] perform substantially better than our model. However,
these methods all use the classification-based approach and are therefore only comparable
to our model in a limited degree.

8.3.3.2 Less Common Answers

A key contribution of Chapter 5 was the analysis on less common answers (LCA), most
common answers (MCA) and new answers. We showed that our models are able to
generate answers that are not contained in the 3000 most common answers and even
new ones. As our Transformer-based models also generate answers instead of performing
a classification task, we also investigate how these models perform for LCA, MCA, and
new answers similar to Section 5.6.3. In Table 8.5, we examine the distribution of the
generated answers among LCA, MCA and new answers, respectively. For example,
15.81% of all generated answers by model #3 were less common answers, i.e., answers
that are not part of the 3000 MCA within the training data split. We also list the VQA
accuracy of those LCA. Thus for model #3, 16.99% of the generated LCA were correct.
Note that these are answers that cannot be given by classification-based models that

177

8 Image Description Generation with Transformer Networks

only consider the top-3000 answers. Furthermore, we list the proportion of MCA and
new answers. New answers cannot be generated at all by classification-based models.

We see that the Transformer-based models have a higher LCA accuracy than the
LSTM-based models. However, models #3 and #7 generate fewer LCA and new answers
than models #8* and #11*. As a consequence they generate a lot more MCA than the
LSTM-based models. As one of our goals is to generate new answers, this behaviour
of the Transformer-based models is undesired. We suspect that this is an effect of the
non-autoregressive generation of answers. We do not sample answers word by word as
we did in Chapter 5, which allows for a better exploration of the room of possible answer
sentences.

Table 8.5: Fractions of unique answers generated by our Transformer-based models. LCA are
less common answers left out altogether by classification models. MCA are most
common answers, which are the only answers generateable by classification models
and new answers are newly generated sentences by our models not contained in
the train split. The LCA accuracy describes the percentage of correctly generated
answers out of the LCA set, i.e., these are correct answers given by our model, that
classification models are not able to produce. Model numbers with the suffix * are
our LSTM-based models from Table 5.1

LCA LCA accuracy MCA new answers

8* 24.52 % 9.91 % 64.22 % 11.26 %
11* 19.49 % 8.10 % 69.74 % 10.77 %

3 15.81 % 16.99 % 81.83 % 2.36 %
7 13.61 % 13.42 % 81.53 % 4.86 %

8.4 Summary

In this chapter, we adapted the LSTM-based architectures from Chapter 4 and 5 to a
Transformer-based architecture. Essentially, we swapped the LSTM decoder of these
models with a Transformer decoder. Furthermore, instead of only encoding image fea-
tures with a single image embedding layer, we utilized the encoder of a Transformer.

First, we adapted the image captioning model from Chapter 4. Instead of only us-
ing an encoder-decoder Transformer, we also transferred the classification-aware loss
function and the multi-task training objective to the Transformer-based architecture.
A baseline Transformer without the extensions was already able to surpass our base-
line LSTM models from Chapter 4 in terms of common sentence evaluation metrics
(BLEU-4, METEOR, and CIDEr). The same was true for models that did fine-tune the
parameters of the Inception-v3 image feature extractor network. Finally, when utilizing
the classification-aware loss and the concurrent prediction of image ratings during fine-
tuning, we were able to reach the highest scores. In total, we did improve the CIDEr
score of our best performing LSTM-based model from 207.25 to 226.80. We were also

178

8.4 Summary

able to match the performance of our image ratings module. However, one of the accu-
racies that measure whether we correctly identified brand names within the generated
caption decreased (OA). But this problem could be addressed by utilizing the same
pretraining of the Inception-v3 network from Chapter 4.
Second, we also utilized the Transformer architecture in a VQA model. Specifically,

in similar fashion to Chapter 5, we created a VQA model that generates answers instead
of selecting answers out of a predefined set of answers. In contrast to other Transformer
models in this work, we presented a non-autoregressive model that generates the answer
for the visual question at once instead of generating the answer word by word. In
particular, we fed the decoder the question as inputs and predicted the answer in one
step. Our final Transformer-based model did improve the VQA overall accuracy by
nearly an absolute of 3%. However, in contrast to our final LSTM-based model from
Chapter 5, the model did create a higher proportion of most common answers. Thus as
a consequence, the Transformer-based models do not create as many new answers as the
LSTM-based models. Even though the VQA accuracies of these models are higher, this
is an undesired behavior as one of our goals was to create previously unseen answers.
We suspect that this is one effect of the non-autoregressive model. Investigating this
downside may be one interesting idea for future research.

179

9 Conclusion and Outlook

9.1 Summary

In this work, we have explored different approaches for automatic generation of textual
descriptions of visual data.
First, we shortly visited the area of language generation by using templates. We

detected different findings within a video of a colonoscopy and determined their spatial
locations. We then fed this information to a templating engine that creates a written
report of said video by inserting the detections and their locations into a template.
Additionally, we investigated the task of image captioning in the special case of de-

scribing images that contain person-product interactions. One specific requirement was
that generated captions should contain the correct brand name of the product, which
we tackled with the classification-aware loss function. We then improved caption qual-
ity even more by optimizing a multi-task training objective that concurrently predicts
three different image ratings. These ratings express the person-product interaction with
three distinct properties. With two new metrics and traditional metrics, we performed
a detailed analysis of our proposed image captioning model.
Furthermore, we looked at the task of visual question answering. Given its definition,

this task does originally not include a language generating component but is designed
to give one answer out of a predefined set of possible answers. As this limits the space
of possible answers, we explored whether it is feasible to generate new natural language
answers just as in the task of image captioning. We found that generating answers from
scratch can have the benefit of producing new - previously unseen - and richer answers.
Also, our model was able to generate less common answers which were not included in
the predefined fixed set of answers.
In the last chapter of Part II, we discussed the generation of medical reports for

chest X-ray images. The challenges for this task were twofold: First, doctors’ reports
are longer than just a single sentence. A standard LSTM often is not adequate to
generate a paragraph of sentences as long-term dependencies of words spanning multiple
sentences cannot be learned sufficiently. Thus, we implemented a hierarchical LSTM
that allows to generate multiple sentences with two hierarchy levels of LSTM cells. In
particular, one LSTM cell generates context vectors that represent a single sentence
while the LSTM cell of the second hierarchy level then generates a sentence word by
word when preconditioned with this context vector. Second, data bias problems made it
hard to generate suitable descriptions as abnormal cases are very rare in comparison to
normal cases. Thus, probabilistic models such as language models tend to overgenerate
reports for normal cases. We addressed this problem by extending the hierarchical
LSTM with an abnormality prediction module that selects a different LSTM depending

181

9 Conclusion and Outlook

on whether it is more likely for a sentence to describe an abnormality or not. Also, we
examined the correlation between the number of distinct sentences generated over the
whole validation set and the BLEU-4 metric. These experiments allowed us to conclude
that good doctors’ reports do not necessarily have a good BLEU-4 score. Particularly,
models that generated the same sentences for multiple samples of the validation set
scored higher than models that generated sentences with higher variability.

In the third part, we looked at the Transformer architecture. Given its huge im-
provements both in computational efficiency and performance for language models, we
applied it to our problems. First, we investigated description generation models for
video clips. We implemented a Transformer to deal with the increased complexity due
to video data instead of still images. We then included promising approaches from image
captioning models into our video-to-text model. Furthermore, we presented the novel
fractional positional encoding for Transformers that allows to easily align and synchro-
nize audio-visual frames for video-to-text translation. In a series of experiments, we
showed the effectiveness of our approach and improved scores considerably in compari-
son to a vanilla Transformer video-to-text model. Second, we revisited the models from
Part II by changing the architectures to employ a Transformer with self-attention mech-
anism. The Transformer-based counterparts of the LSTM-based models from the first
part of this thesis were able to improve the performance on some metrics even more.
However, there were some downsides: Despite its higher CIDEr and BLEU-4 scores, the
Transformer-based image captioning model was not able to include the names of the
branded products with the same accuracy as its LSTM-based counterpart. The visual
question answering model also achieved a higher overall accuracy but did not generate
as much new answers as the LSTM-based model.

9.2 Outlook

The automated generation of textual descriptions of visual data (i.e., images and videos)
has made remarkable progress in recent years. The Transformer architecture has set the
bar even higher than traditional image captioning pipelines but the task of generating
good and matching captions is nowhere near a solved problem. Throughout this thesis,
we investigated interesting approaches and techniques that allowed us to automatically
transform visual data into natural language. Although the end of the road seems to
have been reached for RNN-based description generation models, there is still much
potential for further research of Transformer-based models. This starts with models that
implement many of the most recent approaches and are trained on huge datasets like
our video-to-text model. Particularly, there are different aspects of limits that current
state-of-the-art models have to struggle with: First, when we look at sentences generated
by the best of our models, they might seem to mostly match the visual input, but they
are far from perfect: For instance, rare activities, the scenery, or the actual count of
objects are sometimes described incorrectly. Second, generated descriptions could be
more detailed and vivid. This aspect, however, can only be improved by utilizing more
data and condensing this knowledge into a model. Third, a huge area for improvement

182

9.2 Outlook

are metrics that evaluate generated sentences. As we have explored a few times in this
thesis, common machine translation metrics are not always sufficient or a good choice
when trying to assess whether a generated description is good or bad. Here, different
and task-specific metrics can be helpful to automatically determine sentence quality. A
human evaluation is still the best method to detect errors in the description. Even more
pressing is the evaluation of generated medical reports which not only have to “sound”
good but also have to be correct from a medical perspective. Here, the manual evaluation
is even more difficult and cost-intensive as only domain experts have the knowledge and
experience to rate if a report is correct.
We expect future research to go into the following different directions:
One promising direction is to employ unsupervised pretraining for Transformer net-

works. The BERT [29] model has shown that with a large-scale unsupervised pretraining
on huge existing text corpora, Transformers can vastly improve performance for related
tasks such as machine translation. Also, VideoBERT [128] employed self-supervised
pretraining on joint distributions over linguistic and visual tokens and improved perfor-
mance on the related tasks of action classification and video captioning.
Another interesting aspect of future research is the area of architectural design deci-

sions. Traditional DCNNs have matured over the recent years and have been improved
greatly by the introduction of extensions to the architecture. The comparatively young
Transformer architecture could benefit from such architectural changes. Also, integrat-
ing new basic machine learning concepts and ideas from other areas of research could
improve Transformers efficiency-wise as well as performance-wise.
As we already outlined, existing metrics are far from perfect. Especially with our

model for visual question answering, the existing accuracy metric is meaningless as
generated answers are only compared to a pool of fixed answers. After all, our model is
capable to generate more diverse answers and new answers. In contrast, other approaches
predict the most probable answer from a set of candidate answers. Developing new
metrics in order to better evaluate and understand automatically generated sentences
is vital as the only alternative - manually evaluating - is far more time-intensive and
expensive.

183

List of Figures

2.1 Network architecture of the Inception-v3 DCNN. 14

2.2 Visualization of an arbitrary residual block in the ResNet. 15

2.3 Network architecture of the ResNet-34 DCNN. 15

2.4 Network architecture of the RGB stream from the I3D spatio-temporal
DCNN. 16

2.5 Schematic illustration of a basic RNN cell. 20

2.6 Schematic illustration of an LSTM cell. 22

2.7 Scaled dot-product attention operation. 26

2.8 Schematic representation of the multi-head attention operation. 27

2.9 Visualization of the original Transformer architecture. 28

2.10 Visual representation of the positional encoding. 30

2.11 Example candidate sentence and two reference sentences. 31

3.1 Average class activation map (CAM) for a video segment together with
an overlay describing our five areas of interest. 47

3.2 Generated textual report for an example video of the dataset. 49

3.3 Resulting classifications on a per frame basis for an example video of the
dataset. 50

4.1 Architecture of the original Show and Tell model. 53

4.2 Visualization of our three different kinds of image ratings. 58

4.3 One image from the test partition of the GfK-Captions dataset. 60

4.4 Our modified Show and Tell model that introduces the classification-aware
loss function. 61

4.5 The predicted L2 deviations from the ground-truth majority rating in
comparison to the mean L2 deviations of the annotator labels to the
majority rating. 74

4.6 More images from the test partition of the GfK-Captions dataset for the
classes cocacola, kinderriegel, heinz and nutella. 77

5.1 Original questions, images and answers from the VQA-v2 dataset. 80

5.2 Baseline VQA architecture. 85

5.3 Our final VQA architecture. 87

5.4 A gated linear unit (GLU). 89

5.5 Convolutional architecture for extracting features for input questions with
post-activation GLUs. 90

185

LIST OF FIGURES

5.6 Convolutional architecture for extracting features for input questions with
pre-activation GLUs. 91

5.7 Dataset distribution of answer lengths of the VQA-v2 dataset vs. the VG
dataset. 98

5.8 Images associated with questions and generated answers by our model. . . 100
5.9 Images associated with questions and wrong answers generated by our

model. 101

6.1 An example from the IU chest X-ray dataset, which shows an abnormal
case with findings. 106

6.2 A basic HLSTM model for generating paragraphs of sentences. 108
6.3 Our HLSTM model with dual word LSTM. 109
6.4 Examples of generated paragraphs with our model HLSTM+Dual vs.

HLSTM in comparison with the ground-truth paragraph. 115
6.5 The number of distinct sentences plotted against the BLEU-4 validation

score over the course of training for two hierarchical models. 116

7.1 Baseline video-to-text architecture. 131
7.2 Visualization of a multi-head attention block with memory augmentation. 133
7.3 Example tokenization of a training sample from the VATEX dataset with

both default tokenization and WordPiece tokenization. 134
7.4 Default Transformer learning rate schedule plotted against our custom

SGDR learning rate schedule. 135
7.5 Our modified Transformer architecture for the video-to-text task. 137
7.6 The default positional encoding for audio and video frames in comparison

with the fractional positional encoding for an exemplary video. 138
7.7 The course of learning rate plotted against the CIDEr validation score of

models i3d-bert-audio and i3d-bert-audio-sgdr. 145
7.8 Generated descriptions for the first of three example videos from the val-

idation split. 149
7.9 Generated descriptions for the second of three example videos from the

validation split. 150
7.10 Generated descriptions for the third of three example videos from the

validation split. 150
7.11 Four videos from the TRECVID-VTT [6] validation split and the corre-

sponding captions generated by our model TRECVID-1-ft. 155
7.12 Five videos from the TRECVID-VTT validation dataset [6] and the

corresponding captions generated by our models TRECVID-3-ft and
TRECVID-4-ft. 157

8.1 Transformer-based image captioning architecture for images with branded
products. 163

8.2 Predicted captions of our Transformer-based model. 170
8.3 Transformer-based architecture for visual question answering. 173

186

List of Tables

3.1 Results of all our models on the detection (detection-ver?) and efficient
detection (speed-ver?) subtasks. 46

3.2 Official timings for our models. 47

3.3 Main metrics achieved by our models listed by class. 48

4.1 Distribution for the train and test split of the GfK-Captions dataset. . . . 57

4.2 Dataset statistics for the GfK-Captions dataset. 59

4.3 Results of our image captioning models calculated with common machine
translation metrics. 69

4.4 Mean deviations from the ground-truth image ratings on the test set for
our different models with linear regression. 72

4.5 Image ratings accuracies for our models. 72

4.6 Subject-predicate-object accuracies for our models. 75

5.1 Studies on our validation split of the VQA-v2 dataset. 96

5.2 Fractions of unique answers generated by our models. 99

5.3 Comparison of our model against other published models on the test-dev
and test-std dataset splits. 99

6.1 Distinct sentences sorted top-down by their number of appearances in the
dataset. 107

6.2 Results on the validation and test set calculated with common machine
translation metrics. 114

6.3 Absolute number of distinct sentences in the ground-truth validation set
(GT) alongside the absolute number of generated sentences on the vali-
dation split of the dataset. 117

6.4 Final results on the held-out test-set of the dataset for images that show
abnormalities and normal cases. 118

7.1 Different VTT datasets and their respective number of video clips. 129

7.2 Ablation study for our VTT Transformer models on the VATEX valida-
tion set. 144

7.3 Comparison on VATEX, MSVD, and MSR-VTT datasets against state-
of-the-art methods. 148

7.4 Results of our best models on two different datasets (validation splits).
The model has never seen data from any of those datasets. 149

7.5 Data sources used for training our TRECVID-VTT base models. 153

187

LIST OF TABLES

7.6 TRECVID-VTT models and their respective validation scores. 154
7.7 Chosen models on the TRECVID-VTT dataset and their respective per-

formance on the unseen test dataset. 156

8.1 Results of our Transformer-based image captioning models. 167
8.2 Ratings accuracies for our Transformer-based models. 169
8.3 SPO accuracies for our Transformer-based models. 171
8.4 Validation scores of our Transformer-based VQA models. 177
8.5 Fractions of unique answers generated by our Transformer-based models. . 178

188

Bibliography

[1] N. Aafaq, N. Akhtar, W. Liu, S. Z. Gilani, and A. Mian. Spatio-temporal dy-
namics and semantic attribute enriched visual encoding for video captioning. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 12487–12496. Computer Vision Foun-
dation / IEEE, 2019.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensorflow: A system for large-scale machine learning. In K. Keeton
and T. Roscoe, editors, 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages
265–283. USENIX Association, 2016.

[4] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang.
Bottom-up and top-down attention for image captioning and visual question an-
swering. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 6077–6086. Com-
puter Vision Foundation / IEEE Computer Society, 2018.

[5] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh.
VQA: visual question answering. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 2425–
2433. IEEE Computer Society, 2015.

[6] G. Awad, A. A. Butt, K. Curtis, J. Fiscus, A. Godil, Y. Lee, A. Delgado, J. Zhang,
E. Godard, B. Chocot, L. Diduch, J. Liu, Y. Graham, G. J. F. Jones, , and
G. Quénot. Evaluating multiple video understanding and retrieval tasks at trecvid
2021. In Proceedings of TRECVID 2021. NIST, USA, 2021.

189

BIBLIOGRAPHY

[7] G. Awad, A. A. Butt, K. Curtis, J. G. Fiscus, A. Godil, Y. Lee, A. Delgado,
J. Zhang, E. Godard, B. Chocot, L. L. Diduch, J. Liu, A. F. Smeaton, Y. Graham,
G. J. F. Jones, W. Kraaij, and G. Quénot. TRECVID 2020: A comprehensive
campaign for evaluating video retrieval tasks across multiple application domains.
In G. Awad, A. A. Butt, K. Curtis, J. G. Fiscus, A. Godil, Y. Lee, A. Delgado,
J. Zhang, E. Godard, B. Chocot, L. L. Diduch, J. Liu, A. F. Smeaton, Y. Graham,
G. J. F. Jones, W. Kraaij, and G. Quénot, editors, 2020 TREC Video Retrieval
Evaluation, TRECVID 2020, Gaithersburg, MD, USA, December 8-11, 2020. Na-
tional Institute of Standards and Technology (NIST), 2020.

[8] G. Awad, A. A. Butt, K. Curtis, Y. Lee, J. G. Fiscus, A. Godil, A. Delgado,
J. Zhang, E. Godard, L. L. Diduch, A. F. Smeaton, Y. Graham, W. Kraaij, and
G. Quénot. TRECVID 2019: An evaluation campaign to benchmark video ac-
tivity detection, video captioning and matching, and video search & retrieval. In
G. Awad, A. A. Butt, K. Curtis, Y. Lee, J. Fiscus, A. Godil, A. Delgado, J. Zhang,
E. Godard, L. L. Diduch, A. F. Smeaton, Y. Graham, W. Kraaij, and G. Quénot,
editors, 2019 TREC Video Retrieval Evaluation, TRECVID 2019, Gaithersburg,
MD, USA, November 12-13, 2019. National Institute of Standards and Technology
(NIST), 2019.

[9] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learn-
ing to align and translate. In Y. Bengio and Y. LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[10] S. Banerjee and A. Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACLWorkshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, pages 65–72, Ann Arbor, Michigan, June 2005. Association for
Computational Linguistics.

[11] K. Barnard and D. A. Forsyth. Learning the semantics of words and pic-
tures. In Proceedings of the Eighth International Conference On Computer Vision
(ICCV-01), Vancouver, British Columbia, Canada, July 7-14, 2001 - Volume 2,
pages 408–415. IEEE Computer Society, 2001.

[12] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 1171–1179, 2015.

[13] J. Bernal, F. J. Sánchez, and F. Vilariño. Towards automatic polyp detection with
a polyp appearance model. Pattern Recognit., 45(9):3166–3182, 2012.

[14] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,

190

BIBLIOGRAPHY

T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[15] J. Carreira and A. Zisserman. Quo vadis, action recognition? A new model and
the kinetics dataset. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 4724–4733.
IEEE Computer Society, 2017.

[16] R. A. Caruana. Multitask connectionist learning. In Connectionist Models Summer
School, pages 372–379, 1993.

[17] D. L. Chen and W. B. Dolan. Collecting highly parallel data for paraphrase evalua-
tion. In D. Lin, Y. Matsumoto, and R. Mihalcea, editors, The 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA, pages
190–200. The Association for Computer Linguistics, 2011.

[18] S. Chen and Y. Jiang. Motion guided spatial attention for video captioning.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 8191–8198. AAAI Press, 2019.

[19] X. Chen, H. Fang, T. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zit-
nick. Microsoft COCO captions: Data collection and evaluation server. CoRR,
abs/1504.00325, 2015.

[20] Y. Chen, L. Li, L. Yu, A. E. Kholy, F. Ahmed, Z. Gan, Y. Cheng, and J. Liu.
UNITER: universal image-text representation learning. In A. Vedaldi, H. Bischof,
T. Brox, and J. Frahm, editors, Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXX, volume
12375 of Lecture Notes in Computer Science, pages 104–120. Springer, 2020.

[21] Y. Chen, S. Wang, W. Zhang, and Q. Huang. Less is more: Picking informa-
tive frames for video captioning. In V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, editors, Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part XIII, volume 11217
of Lecture Notes in Computer Science, pages 367–384. Springer, 2018.

191

BIBLIOGRAPHY

[22] N. Chinchor. MUC-4 evaluation metrics. In Fourth Message Uunderstanding
Conference (MUC-4): Proceedings of a Conference Held in McLean, Virginia,
June 16-18, 1992, 1992.

[23] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In A. Moschitti, B. Pang, and W. Daelemans,
editors, Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting
of SIGDAT, a Special Interest Group of the ACL, pages 1724–1734. ACL, 2014.

[24] M. Cornia, M. Stefanini, L. Baraldi, and R. Cucchiara. Meshed-memory trans-
former for image captioning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
10575–10584. Computer Vision Foundation / IEEE, 2020.

[25] Y. Cui, Z. Yu, C. Wang, Z. Zhao, J. Zhang, M. Wang, and J. Yu. ROSITA:
enhancing vision-and-language semantic alignments via cross- and intra-modal
knowledge integration. In H. T. Shen, Y. Zhuang, J. R. Smith, Y. Yang, P. Cesar,
F. Metze, and B. Prabhakaran, editors, MM ’21: ACM Multimedia Conference,
Virtual Event, China, October 20 - 24, 2021, pages 797–806. ACM, 2021.

[26] P. Das, C. Xu, R. F. Doell, and J. J. Corso. A thousand frames in just a few words:
Lingual description of videos through latent topics and sparse object stitching. In
2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland,
OR, USA, June 23-28, 2013, pages 2634–2641. IEEE Computer Society, 2013.

[27] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with
gated convolutional networks. In D. Precup and Y. W. Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning
Research, pages 933–941. PMLR, 2017.

[28] D. Demner-Fushman, M. D. Kohli, M. B. Rosenman, S. E. Shooshan, L. Rodriguez,
S. K. Antani, G. R. Thoma, and C. J. McDonald. Preparing a collection of ra-
diology examinations for distribution and retrieval. J. Am. Medical Informatics
Assoc., 23(2):304–310, 2016.

[29] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In J. Burstein, C. Doran, and
T. Solorio, editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers), pages 4171–4186. Association for Computational Lin-
guistics, 2019.

192

BIBLIOGRAPHY

[30] M. Ding, Z. Yang, W. Hong, W. Zheng, C. Zhou, D. Yin, J. Lin, X. Zou, Z. Shao,
H. Yang, and J. Tang. Cogview: Mastering text-to-image generation via trans-
formers. CoRR, abs/2105.13290, 2021.

[31] G. C. T. Documentation. Advanced guide to inception v3 on cloud tpu. https:

//cloud.google.com/tpu/docs/inception-v3-advanced/, 2015. accessed at
11/22/2021.

[32] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
T. Darrell, and K. Saenko. Long-term recurrent convolutional networks for visual
recognition and description. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 2625–2634.
IEEE Computer Society, 2015.

[33] D. Dong, H. Wu, W. He, D. Yu, and H. Wang. Multi-task learning for multiple lan-
guage translation. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing of the Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 1723–
1732. The Association for Computer Linguistics, 2015.

[34] D. Elliott and F. Keller. Image description using visual dependency representa-
tions. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle,
Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1292–1302. ACL, 2013.

[35] H. Fang, S. Gupta, F. N. Iandola, R. K. Srivastava, L. Deng, P. Dollár, J. Gao,
X. He, M. Mitchell, J. C. Platt, C. L. Zitnick, and G. Zweig. From captions to
visual concepts and back. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1473–1482.
IEEE Computer Society, 2015.

[36] A. Farhadi, S. M. M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hocken-
maier, and D. A. Forsyth. Every picture tells a story: Generating sentences from
images. In K. Daniilidis, P. Maragos, and N. Paragios, editors, Computer Vision
- ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete,
Greece, September 5-11, 2010, Proceedings, Part IV, volume 6314 of Lecture Notes
in Computer Science, pages 15–29. Springer, 2010.

[37] Z. Fei. Fast image caption generation with position alignment. CoRR,
abs/1912.06365, 2019.

[38] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach. Multi-
modal compact bilinear pooling for visual question answering and visual grounding.
In J. Su, X. Carreras, and K. Duh, editors, Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin,

193

https://cloud.google.com/tpu/docs/inception-v3-advanced/
https://cloud.google.com/tpu/docs/inception-v3-advanced/

BIBLIOGRAPHY

Texas, USA, November 1-4, 2016, pages 457–468. The Association for Computa-
tional Linguistics, 2016.

[39] C. Gan, Z. Gan, X. He, J. Gao, and L. Deng. Stylenet: Generating attractive
visual captions with styles. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages
955–964. IEEE Computer Society, 2017.

[40] Z. Gan, C. Gan, X. He, Y. Pu, K. Tran, J. Gao, L. Carin, and L. Deng. Se-
mantic compositional networks for visual captioning. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 1141–1150. IEEE Computer Society, 2017.

[41] J. Gao, X. Meng, S. Wang, X. Li, S. Wang, S. Ma, and W. Gao. Masked non-
autoregressive image captioning. CoRR, abs/1906.00717, 2019.

[42] L. Gao, Z. Guo, H. Zhang, X. Xu, and H. T. Shen. Video captioning with attention-
based LSTM and semantic consistency. IEEE Trans. Multim., 19(9):2045–2055,
2017.

[43] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional
sequence to sequence learning. In D. Precup and Y. W. Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning
Research, pages 1243–1252. PMLR, 2017.

[44] Y. Gong, L. Wang, M. Hodosh, J. Hockenmaier, and S. Lazebnik. Improving
image-sentence embeddings using large weakly annotated photo collections. In
D. J. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision
- ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part IV, volume 8692 of Lecture Notes in Computer Science,
pages 529–545. Springer, 2014.

[45] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V
in VQA matter: Elevating the role of image understanding in visual question an-
swering. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 6325–6334. IEEE Com-
puter Society, 2017.

[46] J. Gu, J. Bradbury, C. Xiong, V. O. K. Li, and R. Socher. Non-autoregressive
neural machine translation. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

[47] J. Gu, G. Wang, J. Cai, and T. Chen. An empirical study of language CNN
for image captioning. In IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017, pages 1231–1240. IEEE Computer
Society, 2017.

194

BIBLIOGRAPHY

[48] L. Guo, J. Liu, X. Zhu, X. He, J. Jiang, and H. Lu. Non-autoregressive image
captioning with counterfactuals-critical multi-agent learning. In C. Bessiere, edi-
tor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 767–773. ijcai.org, 2020.

[49] L. Guo, J. Liu, X. Zhu, P. Yao, S. Lu, and H. Lu. Normalized and geometry-aware
self-attention network for image captioning. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 10324–10333. Computer Vision Foundation / IEEE, 2020.

[50] P. Harzig, S. Brehm, R. Lienhart, C. Kaiser, and R. Schallner. Multimodal im-
age captioning for marketing analysis. In IEEE 1st Conference on Multimedia
Information Processing and Retrieval, MIPR 2018, Miami, FL, USA, April 10-12,
2018, pages 158–161. IEEE, 2018.

[51] P. Harzig, Y. Chen, F. Chen, and R. Lienhart. Addressing data bias problems for
chest x-ray image report generation. In 30th British Machine Vision Conference
2019, BMVC 2019, Cardiff, UK, September 9-12, 2019, page 144. BMVA Press,
2019.

[52] P. Harzig, C. Eggert, and R. Lienhart. Visual question answering with a hy-
brid convolution recurrent model. In K. Aizawa, M. S. Lew, and S. Satoh, ed-
itors, Proceedings of the 2018 ACM on International Conference on Multimedia
Retrieval, ICMR 2018, Yokohama, Japan, June 11-14, 2018, pages 318–325. ACM,
2018.

[53] P. Harzig, M. Einfalt, and R. Lienhart. Automatic disease detection and report
generation for gastrointestinal tract examination. In L. Amsaleg, B. Huet, M. A.
Larson, G. Gravier, H. Hung, C. Ngo, and W. T. Ooi, editors, Proceedings of
the 27th ACM International Conference on Multimedia, MM 2019, Nice, France,
October 21-25, 2019, pages 2573–2577. ACM, 2019.

[54] P. Harzig, M. Einfalt, and R. Lienhart. Synchronized audio-visual frames with
fractional positional encoding for transformers in video-to-text translation. CoRR,
abs/2112.14088, 2021.

[55] P. Harzig, M. Einfalt, K. Ludwig, and R. Lienhart. Transforming videos to text
(VTT task) team: MMCUniAugsburg. In G. Awad, A. A. Butt, K. Curtis, J. G.
Fiscus, A. Godil, Y. Lee, A. Delgado, J. Zhang, E. Godard, B. Chocot, L. L.
Diduch, J. Liu, A. F. Smeaton, Y. Graham, G. J. F. Jones, W. Kraaij, and
G. Quénot, editors, 2020 TREC Video Retrieval Evaluation, TRECVID 2020,
Gaithersburg, MD, USA, December 8-11, 2020. National Institute of Standards
and Technology (NIST), 2020.

[56] P. Harzig, M. Einfalt, K. Ludwig, and R. Lienhart. Extended self-critical pipeline
for transforming videos to text (TRECVID-VTT task 2021) – team: MMCUni-
Augsburg. CoRR, abs/2112.14100, 2021.

195

BIBLIOGRAPHY

[57] P. Harzig, D. Zecha, R. Lienhart, C. Kaiser, and R. Schallner. Image captioning
with clause-focused metrics in a multi-modal setting for marketing. In 2nd IEEE
Conference on Multimedia Information Processing and Retrieval, MIPR 2019, San
Jose, CA, USA, March 28-30, 2019, pages 419–424. IEEE, 2019.

[58] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer
Society, 2016.

[59] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks.
In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision - ECCV
2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part IV, volume 9908 of Lecture Notes in Computer Science,
pages 630–645. Springer, 2016.

[60] S. He, W. Liao, H. R. Tavakoli, M. Y. Yang, B. Rosenhahn, and N. Pugeault.
Image captioning through image transformer. In H. Ishikawa, C. Liu, T. Pa-
jdla, and J. Shi, editors, Computer Vision - ACCV 2020 - 15th Asian Conference
on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020, Revised
Selected Papers, Part IV, volume 12625 of Lecture Notes in Computer Science,
pages 153–169. Springer, 2020.

[61] L. A. Hendricks, S. Venugopalan, M. Rohrbach, R. J. Mooney, K. Saenko, and
T. Darrell. Deep compositional captioning: Describing novel object categories
without paired training data. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
1–10. IEEE Computer Society, 2016.

[62] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore,
M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. W.
Wilson. CNN architectures for large-scale audio classification. In 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP
2017, New Orleans, LA, USA, March 5-9, 2017, pages 131–135. IEEE, 2017.

[63] S. A. Hicks, M. Riegler, P. H. Smedsrud, T. B. Haugen, K. R. Randel, K. Pogorelov,
H. K. Stensland, D. Dang-Nguyen, M. Lux, A. Petlund, T. de Lange, P. T.
Schmidt, and P. Halvorsen. ACM multimedia biomedia 2019 grand challenge
overview. In L. Amsaleg, B. Huet, M. A. Larson, G. Gravier, H. Hung, C. Ngo,
and W. T. Ooi, editors, Proceedings of the 27th ACM International Conference
on Multimedia, MM 2019, Nice, France, October 21-25, 2019, pages 2563–2567.
ACM, 2019.

[64] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, 1997.

196

BIBLIOGRAPHY

[65] M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking
task: Data, models and evaluation metrics. J. Artif. Intell. Res., 47:853–899, 2013.

[66] J. Hou, X. Wu, W. Zhao, J. Luo, and Y. Jia. Joint syntax representation learning
and visual cue translation for video captioning. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pages 8917–8926. IEEE, 2019.

[67] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261–2269.
IEEE Computer Society, 2017.

[68] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In F. R. Bach and D. M. Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference
Proceedings, pages 448–456. JMLR.org, 2015.

[69] S. Islam, A. Dash, A. Seum, A. H. Raj, T. Hossain, and F. M. Shah. Exploring
video captioning techniques: A comprehensive survey on deep learning methods.
SN Comput. Sci., 2(2):120, 2021.

[70] B. Jing, P. Xie, and E. P. Xing. On the automatic generation of medical imaging
reports. In I. Gurevych and Y. Miyao, editors, Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers, pages 2577–2586. Association
for Computational Linguistics, 2018.

[71] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization
networks for dense captioning. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
4565–4574. IEEE Computer Society, 2016.

[72] D. Jurafsky and J. H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing,Computational Linguistics, and
Speech Recognition. Stanford University, University of Colorado at Boulder, third
edition draft edition, 2021.

[73] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3128–3137. IEEE Com-
puter Society, 2015.

[74] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan,
F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The
kinetics human action video dataset. CoRR, abs/1705.06950, 2017.

197

BIBLIOGRAPHY

[75] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[76] R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visual-semantic embeddings
with multimodal neural language models. CoRR, abs/1411.2539, 2014.

[77] J. Krause, J. Johnson, R. Krishna, and L. Fei-Fei. A hierarchical approach for
generating descriptive image paragraphs. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 3337–3345. IEEE Computer Society, 2017.

[78] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalan-
tidis, L. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei. Visual genome: Con-
necting language and vision using crowdsourced dense image annotations. Int. J.
Comput. Vis., 123(1):32–73, 2017.

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In P. L. Bartlett, F. C. N. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States, pages 1106–1114, 2012.

[80] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, and T. L. Berg. Baby
talk: Understanding and generating simple image descriptions. In The 24th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado
Springs, CO, USA, 20-25 June 2011, pages 1601–1608. IEEE Computer Society,
2011.

[81] J. Lee, E. Mansimov, and K. Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In E. Riloff, D. Chiang, J. Hockenmaier,
and J. Tsujii, editors, Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium, October 31 - November 4,
2018, pages 1173–1182. Association for Computational Linguistics, 2018.

[82] C. Y. Li, X. Liang, Z. Hu, and E. P. Xing. Knowledge-driven encode, retrieve, para-
phrase for medical image report generation. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 6666–6673. AAAI Press, 2019.

[83] G. Li, L. Zhu, P. Liu, and Y. Yang. Entangled transformer for image captioning.
In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,

198

BIBLIOGRAPHY

Seoul, Korea (South), October 27 - November 2, 2019, pages 8927–8936. IEEE,
2019.

[84] L. H. Li, M. Yatskar, D. Yin, C. Hsieh, and K. Chang. Visualbert: A simple and
performant baseline for vision and language. CoRR, abs/1908.03557, 2019.

[85] S. Li, G. Kulkarni, T. L. Berg, A. C. Berg, and Y. Choi. Composing simple image
descriptions using web-scale n-grams. In S. Goldwater and C. D. Manning, edi-
tors, Proceedings of the Fifteenth Conference on Computational Natural Language
Learning, CoNLL 2011, Portland, Oregon, USA, June 23-24, 2011, pages 220–228.
ACL, 2011.

[86] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu, L. Dong,
F. Wei, Y. Choi, and J. Gao. Oscar: Object-semantics aligned pre-training for
vision-language tasks. In A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, editors,
Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XXX, volume 12375 of Lecture Notes in Computer
Science, pages 121–137. Springer, 2020.

[87] Y. Li, X. Liang, Z. Hu, and E. P. Xing. Hybrid retrieval-generation reinforced agent
for medical image report generation. In S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 1537–1547, 2018.

[88] Z. Li, C. Wang, M. Han, Y. Xue, W. Wei, L. Li, and L. Fei-Fei. Thoracic disease
identification and localization with limited supervision. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 8290–8299. Computer Vision Foundation / IEEE
Computer Society, 2018.

[89] C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text
Summarization Branches Out, pages 74–81, Barcelona, Spain, July 2004. Associa-
tion for Computational Linguistics.

[90] K. Lin, Z. Gan, and L. Wang. Multi-modal feature fusion with feature attention
for VATEX captioning challenge 2020. CoRR, abs/2006.03315, 2020.

[91] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft COCO: common objects in context. In D. J. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer Vision - ECCV
2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V, volume 8693 of Lecture Notes in Computer Science, pages
740–755. Springer, 2014.

199

BIBLIOGRAPHY

[92] S. Liu, Z. Ren, and J. Yuan. Sibnet: Sibling convolutional encoder for video cap-
tioning. In S. Boll, K. M. Lee, J. Luo, W. Zhu, H. Byun, C. W. Chen, R. Lienhart,
and T. Mei, editors, 2018 ACMMultimedia Conference on Multimedia Conference,
MM 2018, Seoul, Republic of Korea, October 22-26, 2018, pages 1425–1434. ACM,
2018.

[93] X. Liu, H. Li, J. Shao, D. Chen, and X. Wang. Show, tell and discriminate: Image
captioning by self-retrieval with partially labeled data. In V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, editors, Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
XV, volume 11219 of Lecture Notes in Computer Science, pages 353–369. Springer,
2018.

[94] X. Long, C. Gan, and G. de Melo. Video captioning with multi-faceted attention.
Trans. Assoc. Comput. Linguistics, 6:173–184, 2018.

[95] I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with warm restarts.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[96] J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining task-agnostic vi-
siolinguistic representations for vision-and-language tasks. In H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 13–23, 2019.

[97] J. Lu, X. Lin, D. Batra, and D. Parikh. Deeper lstm and normalized cnn visual
question answering model. https://github.com/VT-vision-lab/VQA_LSTM_CNN,
2015.

[98] M. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser. Multi-task se-
quence to sequence learning. In Y. Bengio and Y. LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

[99] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. In L. Màrquez, C. Callison-Burch, J. Su, D. Pighin,
and Y. Marton, editors, Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September
17-21, 2015, pages 1412–1421. The Association for Computational Linguistics,
2015.

[100] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. In Y. Bengio and Y. LeCun, editors, 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings, 2013.

200

https://github.com/VT-vision-lab/VQA_LSTM_CNN

BIBLIOGRAPHY

[101] T. Mikolov, W. Yih, and G. Zweig. Linguistic regularities in continuous space
word representations. In L. Vanderwende, H. D. III, and K. Kirchhoff, editors,
Human Language Technologies: Conference of the North American Chapter of the
Association of Computational Linguistics, Proceedings, June 9-14, 2013, Westin
Peachtree Plaza Hotel, Atlanta, Georgia, USA, pages 746–751. The Association
for Computational Linguistics, 2013.

[102] C. Olah. Understanding lstm networks. http://colah.github.io/posts/

2015-08-Understanding-LSTMs/, 2015. accessed at 11/13/2021.

[103] Y. Pan, Y. Li, J. Luo, J. Xu, T. Yao, and T. Mei. Auto-captions on GIF:
A large-scale video-sentence dataset for vision-language pre-training. CoRR,
abs/2007.02375, 2020.

[104] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui. Jointly modeling embedding and
translation to bridge video and language. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 4594–4602. IEEE Computer Society, 2016.

[105] Y. Pan, T. Yao, H. Li, and T. Mei. Video captioning with transferred semantic
attributes. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 984–992. IEEE Computer
Society, 2017.

[106] Y. Pan, T. Yao, Y. Li, and T. Mei. X-linear attention networks for image caption-
ing. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 10968–10977. Computer
Vision Foundation / IEEE, 2020.

[107] K. Papineni, S. Roukos, T. Ward, J. Henderson, and F. Reeder. Corpus-based
comprehensive and diagnostic mt evaluation: Initial arabic, chinese, french, and
spanish results. In Proceedings of the Second International Conference on Human
Language Technology Research, HLT ’02, page 132–137, San Francisco, CA, USA,
2002. Morgan Kaufmann Publishers Inc.

[108] K. Papineni, S. Roukos, T. Ward, and W. Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA,
USA, pages 311–318. ACL, 2002.

[109] W. Pei, J. Zhang, X. Wang, L. Ke, X. Shen, and Y. Tai. Memory-attended
recurrent network for video captioning. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 8347–8356. Computer Vision Foundation / IEEE, 2019.

[110] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In A. Moschitti, B. Pang, and W. Daelemans, editors, Proceedings

201

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

BIBLIOGRAPHY

of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543. ACL, 2014.

[111] J. Perez-Martin, B. Bustos, and J. Pérez. Improving video captioning with tem-

poral composition of a visual-syntactic embedding*. In IEEE Winter Conference
on Applications of Computer Vision, WACV 2021, Waikoloa, HI, USA, January
3-8, 2021, pages 3038–3048. IEEE, 2021.

[112] K. Pogorelov, K. R. Randel, T. de Lange, S. L. Eskeland, C. Griwodz, D. Johansen,
C. Spampinato, M. Taschwer, M. Lux, P. T. Schmidt, M. Riegler, and P. Halvorsen.
Nerthus: A bowel preparation quality video dataset. In Proceedings of the 8th
ACM on Multimedia Systems Conference, MMSys 2017, Taipei, Taiwan, June
20-23, 2017, pages 170–174. ACM, 2017.

[113] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange, D. Jo-
hansen, C. Spampinato, D. Dang-Nguyen, M. Lux, P. T. Schmidt, M. Riegler, and
P. Halvorsen. KVASIR: A multi-class image dataset for computer aided gastroin-
testinal disease detection. In Proceedings of the 8th ACM on Multimedia Systems
Conference, MMSys 2017, Taipei, Taiwan, June 20-23, 2017, pages 164–169. ACM,
2017.

[114] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[115] O. Press and L. Wolf. Using the output embedding to improve language models. In
M. Lapata, P. Blunsom, and A. Koller, editors, Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 2: Short Papers, pages 157–163.
Association for Computational Linguistics, 2017.

[116] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Y. Ding,
A. Bagul, C. Langlotz, K. S. Shpanskaya, M. P. Lungren, and A. Y. Ng. Chexnet:
Radiologist-level pneumonia detection on chest x-rays with deep learning. CoRR,
abs/1711.05225, 2017.

[117] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with
recurrent neural networks. In Y. Bengio and Y. LeCun, editors, 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

[118] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pages 6517–6525. IEEE Computer Society, 2017.

[119] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing

202

BIBLIOGRAPHY

Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 91–99, 2015.

[120] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence
training for image captioning. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages
1179–1195. IEEE Computer Society, 2017.

[121] C. J. V. Rijsbergen. Information Retrieval. Butterworth-Heinemann, 2nd edition,
1979.

[122] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet
large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

[123] H. Saggion, D. Radev, S. Teufel, and W. Lam. Meta-evaluation of summaries in
a cross-lingual environment using content-based metrics. In COLING 2002: The
19th International Conference on Computational Linguistics, 2002.

[124] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 4510–4520. Computer Vision Foundation / IEEE Computer
Society, 2018.

[125] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In Y. Bengio and Y. LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[126] A. Singh, T. D. Singh, and S. Bandyopadhyay. NITS-VC system for VATEX video
captioning challenge 2020. CoRR, abs/2006.04058, 2020.

[127] R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng. Grounded
compositional semantics for finding and describing images with sentences. Trans.
Assoc. Comput. Linguistics, 2:207–218, 2014.

[128] C. Sun, A. Myers, C. Vondrick, K. Murphy, and C. Schmid. Videobert: A
joint model for video and language representation learning. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),
October 27 - November 2, 2019, pages 7463–7472. IEEE, 2019.

[129] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neu-
ral networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 3104–3112, 2014.

203

BIBLIOGRAPHY

[130] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA, 2018.

[131] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 1–9. IEEE Computer Society, 2015.

[132] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
inception architecture for computer vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 2818–2826. IEEE Computer Society, 2016.

[133] N. Tajbakhsh, S. R. Gurudu, and J. Liang. Automated polyp detection in
colonoscopy videos using shape and context information. IEEE Trans. Medical
Imaging, 35(2):630–644, 2016.

[134] H. Tan and M. Bansal. LXMERT: learning cross-modality encoder representations
from transformers. In K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 5099–5110.
Association for Computational Linguistics, 2019.

[135] D. Teney, P. Anderson, X. He, and A. van den Hengel. Tips and tricks for visual
question answering: Learnings from the 2017 challenge. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 4223–4232. Computer Vision Foundation / IEEE
Computer Society, 2018.

[136] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13,
2015, pages 4489–4497. IEEE Computer Society, 2015.

[137] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In I. Guyon, U. von Luxburg, S. Ben-
gio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5998–6008, 2017.

[138] R. Vedantam, C. L. Zitnick, and D. Parikh. Cider: Consensus-based image descrip-
tion evaluation. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 4566–4575. IEEE Com-
puter Society, 2015.

204

BIBLIOGRAPHY

[139] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural im-
age caption generator. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3156–3164.
IEEE Computer Society, 2015.

[140] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: Lessons learned
from the 2015 MSCOCO image captioning challenge. IEEE Trans. Pattern Anal.
Mach. Intell., 39(4):652–663, 2017.

[141] B. Wang, L. Ma, W. Zhang, W. Jiang, J. Wang, and W. Liu. Controllable video
captioning with POS sequence guidance based on gated fusion network. In 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pages 2641–2650. IEEE, 2019.

[142] B. Wang, L. Ma, W. Zhang, and W. Liu. Reconstruction network for video cap-
tioning. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 7622–7631. Com-
puter Vision Foundation / IEEE Computer Society, 2018.

[143] J. Wang, W. Wang, Y. Huang, L. Wang, and T. Tan. M3: multimodal memory
modelling for video captioning. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 7512–7520. Computer Vision Foundation / IEEE Computer Society,
2018.

[144] W. Wang, H. Bao, L. Dong, and F. Wei. Vlmo: Unified vision-language pre-
training with mixture-of-modality-experts. CoRR, abs/2111.02358, 2021.

[145] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 3462–3471. IEEE Computer Society, 2017.

[146] X. Wang, Y. Peng, L. Lu, Z. Lu, and R. M. Summers. Tienet: Text-image em-
bedding network for common thorax disease classification and reporting in chest
x-rays. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 9049–9058. Com-
puter Vision Foundation / IEEE Computer Society, 2018.

[147] X. Wang, J. Wu, J. Chen, L. Li, Y. Wang, and W. Y. Wang. Vatex: A large-
scale, high-quality multilingual dataset for video-and-language research. In 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pages 4580–4590. IEEE, 2019.

[148] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn., 8:229–256, 1992.

205

BIBLIOGRAPHY

[149] R. J. Williams and D. Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Comput., 1(2):270–280, 1989.

[150] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil,
W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado,
M. Hughes, and J. Dean. Google’s neural machine translation system: Bridging
the gap between human and machine translation. CoRR, abs/1609.08144, 2016.

[151] J. Xu, T. Mei, T. Yao, and Y. Rui. MSR-VTT: A large video description dataset
for bridging video and language. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 5288–5296. IEEE Computer Society, 2016.

[152] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel,
and Y. Bengio. Show, attend and tell: Neural image caption generation with
visual attention. In F. R. Bach and D. M. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, volume 37 of JMLRWorkshop and Conference Proceedings, pages 2048–
2057. JMLR.org, 2015.

[153] Y. Xue, T. Xu, L. R. Long, Z. Xue, S. K. Antani, G. R. Thoma, and X. Huang.
Multimodal recurrent model with attention for automated radiology report gen-
eration. In A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López,
and G. Fichtinger, editors, Medical Image Computing and Computer Assisted
Intervention - MICCAI 2018 - 21st International Conference, Granada, Spain,
September 16-20, 2018, Proceedings, Part I, volume 11070 of Lecture Notes in
Computer Science, pages 457–466. Springer, 2018.

[154] J. Yu, J. Li, Z. Yu, and Q. Huang. Multimodal transformer with multi-view visual
representation for image captioning. IEEE Trans. Circuits Syst. Video Technol.,
30(12):4467–4480, 2020.

[155] Z. Yu, J. Yu, J. Fan, and D. Tao. Multi-modal factorized bilinear pooling with co-
attention learning for visual question answering. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 1839–
1848. IEEE Computer Society, 2017.

[156] Z. Yu, J. Yu, C. Xiang, J. Fan, and D. Tao. Beyond bilinear: Generalized
multi-modal factorized high-order pooling for visual question answering. CoRR,
abs/1708.03619, 2017.

[157] J. Zhang and Y. Peng. Object-aware aggregation with bidirectional temporal
graph for video captioning. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 8327–
8336. Computer Vision Foundation / IEEE, 2019.

206

BIBLIOGRAPHY

[158] Z. Zhang, Z. Qi, C. Yuan, Y. Shan, B. Li, Y. Deng, and W. Hu. Open-book video
captioning with retrieve-copy-generate network. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pages
9837–9846. Computer Vision Foundation / IEEE, 2021.

[159] Z. Zhang, Y. Shi, C. Yuan, B. Li, P. Wang, W. Hu, and Z. Zha. Object re-
lational graph with teacher-recommended learning for video captioning. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pages 13275–13285. Computer Vision Foun-
dation / IEEE, 2020.

[160] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba. Learning deep
features for discriminative localization. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 2921–2929. IEEE Computer Society, 2016.

[161] B. Zhou, Y. Tian, S. Sukhbaatar, A. Szlam, and R. Fergus. Simple baseline for
visual question answering. CoRR, abs/1512.02167, 2015.

[162] Y. Zhou, Y. Zhang, Z. Hu, and M. Wang. Semi-autoregressive transformer for
image captioning. In IEEE/CVF International Conference on Computer Vision
Workshops, ICCVW 2021, Montreal, BC, Canada, October 11-17, 2021, pages
3132–3136. IEEE, 2021.

[163] X. Zhu, L. Guo, P. Yao, J. Liu, S. Lu, Z. Yu, W. Liu, and H. Lu. Multi-view
features and hybrid reward strategies for vatex video captioning challenge 2019.
CoRR, abs/1910.11102, 2019.

207

	Abstract
	Acknowledgments
	Contents
	List of Abbreviations
	List of Symbols

	1 Introduction
	1.1 Motivation and Applications
	1.2 Problem Definition and Challenges
	1.3 Contributions
	1.4 List of Publications
	1.5 Thesis Outline

	I Foundations
	2 Base Models and Metrics
	2.1 Backbone Architectures
	2.1.1 Inception-v3
	2.1.2 ResNet
	2.1.3 I3D
	2.1.4 Data Layout

	2.2 Language Models
	2.2.1 Words, Tokens, and n-grams
	2.2.2 Language Preprocessing
	2.2.3 Word Embeddings
	2.2.4 Basic Recurrent Neural Network Cell
	2.2.5 Long Short-Term Memory Cells
	2.2.6 Combining Cells into Networks
	2.2.7 Beam Search

	2.3 Attention Mechanisms and Transformers
	2.3.1 Multiplicative Attention
	2.3.2 Scaled Dot-Product Attention
	2.3.3 Multi-Head Attention
	2.3.4 Transformers

	2.4 Metrics
	2.4.1 BLEU-N
	2.4.2 ROUGE-L
	2.4.3 METEOR
	2.4.4 CIDEr
	2.4.5 MSCOCO Captions Evaluation Script
	2.4.6 VQA Accuracy

	II Recurrent Language Generation Models for Image Description Generation
	3 Template-Based Language Generation
	3.1 Motivation
	3.2 Dataset
	3.3 Method
	3.4 Generating Language Without Ground-Truth Data
	3.5 Results
	3.5.1 Detection Subtask
	3.5.2 Efficient Detection Subtask
	3.5.3 Report Generation

	3.6 Summary

	4 Automatic Description of Images with Branded Products in Natural Language
	4.1 Related Work
	4.2 Show and Tell Model
	4.3 Motivation
	4.4 GfK-Captions Dataset
	4.5 Describing Brand Names through Multi-Task Training
	4.5.1 Classification-Aware Loss
	4.5.2 Image Ratings
	4.5.2.1 Linear Regression
	4.5.2.2 Classification Task for Majority Ratings
	4.5.2.3 Soft-Targets for Annotator Disagreements
	4.5.2.4 Total Loss

	4.5.3 SPO Captioning Metrics

	4.6 Experiments
	4.6.1 Sentence Classification Accuracy
	4.6.2 Training Configuration
	4.6.2.1 Feature Extractor CNN
	4.6.2.2 Show and Tell Model
	4.6.2.3 Image Ratings
	4.6.2.4 Multi-Task Training

	4.6.3 Results
	4.6.3.1 Sentence Classification Accuracy
	4.6.3.2 BLEU-4, METEOR and CIDEr Scores
	4.6.3.3 Image Ratings
	4.6.3.4 SPO Accuracy Metrics
	4.6.3.5 Multi-Task Learning

	4.6.4 Visual Results

	4.7 Summary

	5 Visual Question Answering
	5.1 Motivation
	5.2 Related Work
	5.3 Dataset
	5.4 Base Model
	5.5 Hybrid Convolution Recurrent Model
	5.5.1 Understanding Questions
	5.5.2 Image Embedding
	5.5.3 Image Attention
	5.5.4 Multi-Modal Fusion
	5.5.5 Output LSTM

	5.6 Experiments
	5.6.1 Training Configuration
	5.6.2 Results
	5.6.2.1 Question Feature Extraction
	5.6.2.2 Image Attention
	5.6.2.3 Multi-Modal Fusion
	5.6.2.4 Classical VQA Approach
	5.6.2.5 Dataset Extension

	5.6.3 Less Common Answers
	5.6.4 Performance on the Official Test Set

	5.7 Summary

	6 Hierarchical Language Generation of Doctors' Reports for Chest X-Ray Images
	6.1 Motivation
	6.2 Related Work
	6.3 Dataset
	6.4 Hierarchical Base Model
	6.5 Dual Word LSTM Medical Image Report Generation
	6.5.1 Hierarchical Generation with Dual Word LSTMs
	6.5.2 Abnormal Sentence Prediction
	6.5.3 Multi-Task Learning
	6.5.4 Learning Objective

	6.6 Experiments
	6.6.1 Model Selection
	6.6.2 Analysis on Evaluation Scores and Distinct Sentences
	6.6.3 Dual Word LSTM with Abnormal Sentence Predictor

	6.7 Summary

	III Language Models with Self-Attention for Image Description Generation and Video-to-Text Translation
	7 Transformers with FPE for Video-to-Text Translation
	7.1 Related Work
	7.2 Datasets
	7.3 Baseline Model
	7.4 Video-to-Text Model
	7.4.1 Memory-Augmented Encoder
	7.4.2 Inflated 3D ConvNet
	7.4.3 Subword and BERT Vocabulary
	7.4.4 Learning-Rate Scheduling
	7.4.5 Naïve Fusion of Audio and Video Features
	7.4.6 Fractional Positional Encoding
	7.4.7 Self-Critical Sequence Training

	7.5 Experiments
	7.5.1 Training Configuration and Preprocessing
	7.5.1.1 Implementation Details
	7.5.1.2 Preprocessing of Videos
	7.5.1.3 Preprocessing of Tokens

	7.5.2 Results
	7.5.2.1 Memory-Augmented Encoder
	7.5.2.2 Image Features and I3D Features
	7.5.2.3 Naïve Fusion of Audio and Video Features
	7.5.2.4 Dictionaries and Tokenization
	7.5.2.5 Learning Rate Scheduling
	7.5.2.6 FPE
	7.5.2.7 SCST

	7.5.3 Comparison with State-of-the-Art
	7.5.4 Application on Unseen Datasets

	7.6 Experiments and Results on the TRECVID-VTT Dataset
	7.6.1 Model Configuration
	7.6.2 Training Setting
	7.6.3 Results
	7.6.3.1 Ablation Study on the Validation Set
	7.6.3.2 Performance on the Test Set

	7.7 Summary

	8 Image Description Generation with Transformer Networks
	8.1 Related Work
	8.2 Transformer for Image Captioning with Multi-Task Training
	8.2.1 Transformer-Based Image Captioning Model
	8.2.2 Dataset and Training Configuration
	8.2.3 Experiments
	8.2.3.1 BLEU-4, METEOR and CIDEr Scores
	8.2.3.2 Sentence Classification Accuracy
	8.2.3.3 Image Ratings
	8.2.3.4 SPO Accuracy Metrics

	8.3 Generating Answers with a Transformer for Visual Questions
	8.3.1 Transformer-Based VQA Model
	8.3.2 Dataset and Training Configuration
	8.3.3 Experiments
	8.3.3.1 VQA Accuracies
	8.3.3.2 Less Common Answers

	8.4 Summary

	9 Conclusion and Outlook
	9.1 Summary
	9.2 Outlook

	List of Figures
	List of Tables
	Bibliography

