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Abstract

Abstract
The increasing tension within the water-energy-food nexus in face of climate change
requires the sustainable use and management of available water resources. This is par-
ticularly relevant in semi-arid regions of South America, Africa and West Asia: already,
these regions are facing high precipitation variability, and are additionally exposed to
high population growth rates, politically induced unsustainable use of water resources,
and transboundary water management conflicts. It is shown that for the climate-sen-
sitive regions of Northeast Brazil, Iran, West Africa, and Northeast Africa, the relative
frequency of droughts has increased significantly from 10 to 30 % in recent decades.
This calls for proactive measures to aid climate proofing and mitigate climate risks.
For water allocation during drought or for flood control, improved knowledge of the
upcoming rainy season in semi-arid regions can be the basis for a more robust and
sustainable water management. Here, seasonal forecasts with forecast horizons up to
seven months ahead can offer great opportunities to support regional water manage-
ment. State-of-the-art seasonal forecasting systems already reach resolutions that are
suitable for regional applications, e.g., the latest seasonal forecasting system version 5
(SEAS5) of the European Centre for Medium-Range Weather Forecasts (ECMWF) with
a horizontal resolution of 36 km.

Indeed, with skillful and reliable forecasts for the coming months, decision-makers in
the water, agriculture, and energy sectors could induce a more timely, proactive and
sustainable reservoir management and seed selection, thereby reducing damage and
loss. Decision-makers, however, often still hesitate to use seasonal forecasts claiming
their lack of reliability and the inherent uncertainty due to their probabilistic nature.
In many cases, statistical performance measures for forecast quality cannot provide ac-
tual decision support. Therefore, the potential economic value (PEV) is implemented
demonstrating the possible relative savings when basing decisions for preventative wa-
ter management action on seasonal forecasts compared to optimal early action. This
measure of forecast value therewith demonstrates the economic benefit of integrating
seasonal forecasts in decisions incorporating the user’s cost-loss situation and the fore-
cast probability. The methodology used in this study allows the use of unprocessed
global seasonal forecasts for regional analysis. It is shown that a proactive approach
based on seasonal forecasts in the case of droughts can achieve potential economic sav-
ings of up to 70 % of those from optimal early action. For very warm months and
droughts, savings of at least 20 % are achieved even with forecast horizons of up to
seven months ahead. For one particular large dam in Sudan, the Upper-Atbara Dam,
the savings are explicitly quantified in monetary terms if the dam was operated with
early drought mitigation. In fact, avoidable losses of 16 Mio US$ are revealed in one
example year.

Though shown to provide substantial economic value to users, for some applications,
the seasonal forecasts SEAS5 are still not applicable. If absolute values and high spa-
tial resolution are required, the global seasonal forecasts need to be corrected for biases
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and model drifts with increasing forecast horizon (lead time), and a spatial refinement
is required. In this study, the forecast quality of global seasonal forecasts is consider-
ably improved regionally with statistical correction methods of quantile mapping for
daily data. In this approach, more than 100 000 forecast days are corrected for each
of the 25 (until 2016) and 51 (since 2017) ensemble members of a 1981-2019 reforecast
period for each of the five analyzed variables. The forecast thus provides more accu-
rate information about future precipitation amounts, temperatures and incoming solar
radiation, allowing a concrete decision support in practice. Monthly forecast biases
and lead-dependent drift effects of up to 4 mm d�1 and 2 K are corrected and the fore-
casts are spatially disaggregated to the higher resolution of 0.1� of the reanalysis dataset
ERA5-Land, further increasing the agreement of spatial patterns with ERA5-Land com-
pared to the raw forecasts. The computational efficiency of this approach allows to
provide region-tailored, corrected hydrometeorological seasonal forecasts for the study
regions in Northeast Brazil, Sudan/Ethiopia and Iran operationally in an online deci-
sion support system (viewer).

In addition to statistical approaches, spatial refinement to higher spatial resolution and
reduction of global model errors can be achieved through dynamical downscaling with
regional climate models. The dynamical approach has the advantage of resolving or bet-
ter representing smaller-scale processes that are not captured in the global model prod-
ucts, and thereby reducing possible model biases. Therefore, the potential of a physi-
cally-based refinement approach is investigated. In particular, the dependence on the
physical parameters in the atmospheric model, which are known to determine the qual-
ity of the hydrometeorological information produced, is analyzed. For this purpose, the
Weather Research and Forecasting (WRF) model is applied to dynamically downscale
reanalysis data in the climatically sensitive study regions of Ecuador/Peru and Brazil
with different parameterization setups. Downscaling is performed to a horizontal res-
olution of 9 km for both domains, and to an additional 3 km for the orographically
highly complex domain of Ecuador/Peru. This study reveals that a high uncertainty
in the simulated precipitation is introduced with the combination of physical parame-
terizations of four different cumulus convection (CU) physics, two microphysics (MP),
two planetary boundary layer (PBL) physics and two radiation (RA) physics schemes
(32 parameterization runs in total). Up to four times the monthly reference precipita-
tion can be modeled according to different setups. A special focus of this study is on
spatial patterns, which are analyzed in detail using an ensemble-tailored evaluation ap-
proach via the eSAL metric. The pooled results from ensemble-tailored distributional,
temporal and the spatial pattern evaluation metrics reveal that the CU schemes, fol-
lowed by the RA schemes, produce the dominant tendencies in the simulated precip-
itation within the WRF ensemble (too dry/wet, too large/small precipitation features
etc.). No single setup is found to be superior, but the metrics allow for appropriate se-
lection based on application needs and reference data. Future application of the setup
to SEAS5 seasonal forecasts is proving to be less than straightforward. The double ran-
dom perturbation of the initial conditions of SEAS5 impedes a necessary selection of
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ensemble members to reduce the computational cost of the dynamical downscaling.
Since the parameterization sensitivity study also shows that biases still exist after dy-
namical downscaling compared to the reference, whether in distributional, temporal, or
spatial patterns, additional dynamical downscaling of long reforecast periods would be
required for post-processing, adding an immense computational cost.

This work therewith demonstrates the opportunities and highlights the challenges in
using seasonal forecasts for decision support in water resources management, and in
refining and correcting these forecasts for impact studies and direct operational appli-
cations. It enables the final transfer of acquired scientific knowledge into practice and
provides the tools to actively contribute to sustainable water resources management in
semi-arid regions that urgently need adaptation and mitigation strategies to combat the
impacts of climate change and policy-driven water use and management challenges. It
turns out that global datasets of seasonal forecasts and reanalyses can provide concrete
value for decision support, but depending on the application, further post-processing is
needed to make these data regionally usable.
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Kurzzusammenfassung

Kurzzusammenfassung
Die zunehmende Spannung innerhalb des Wasser-, Energie-, und Ernährungssicher-
heitsnexus angesichts des Klimawandels erfordert die nachhaltige Nutzung und Be-
wirtschaftung der verfügbaren Wasserressourcen. Dies ist vor allem in den semiariden
Regionen Südamerikas, Afrikas und Westasiens von Bedeutung: Diese Regionen sind
bereits jetzt einer hohen Niederschlagsvariabilität ausgesetzt und haben zudem mit ho-
hen Bevölkerungswachstumsraten, politisch veranlasster nicht-nachhaltiger Nutzung
von Wasserressourcen und grenzüberschreitenden Wasserbewirtschaftungskonflikten
zu kämpfen. Diese Arbeit zeigt, dass in den klimasensiblen Regionen Nordostbrasiliens,
Irans, Westafrikas und Nordostafrikas die relative Häufigkeit von Dürren in den letzten
Jahrzehnten von 10 auf 30 % gestiegen ist. Diese Entwicklung verlangt nach proak-
tiven Maßnahmen zur Unterstützung des Klimaschutzes und zur Minderung von Kli-
marisiken. Für die Wasserverteilung während einer Dürre bzw. für den Hochwasser-
schutz kann eine bessere Vorhersage über die bevorstehende Regenzeit in semiariden
Regionen die Grundlage für ein robusteres und nachhaltigeres Wassermanagement bil-
den. Hier eröffnen saisonale Vorhersagen mit Vorhersagehorizonten von bis zu sieben
Monaten im Voraus große Möglichkeiten zur Unterstützung des regionalen Wasser-
managements. Moderne saisonale Vorhersagesysteme erreichen bereits Auflösungen,
die für regionale Anwendungen geeignet sind, z. B. das neueste saisonale Vorhersage-
system Version 5 (SEAS5) des Europäischen Zentrums für mittelfristige Wettervorher-
sage (ECMWF) mit einer horizontalen Auflösung von 36 km.

Mit leistungsfähigen und zuverlässigen Vorhersagen für die kommenden Monate könn-
ten Entscheidungsträger im Wasser-, Landwirtschafts- und Energiesektor das Manage-
ment von Wasserreservoirs und die Auswahl von Saatgut zeitnaher, proaktiver und
nachhaltiger gestalten und so Schäden und Verluste verringern. Entscheidungsträger
zögern jedoch oft noch, saisonale Vorhersagen zu verwenden, und verweisen auf deren
mangelnde Zuverlässigkeit und die ihnen innewohnende Unsicherheit aufgrund ihres
wahrscheinlichkeitsbasierten Charakters. In vielen Fällen können statistische Leistungs-
kennzahlen für die Vorhersagequalität keine wirkliche Entscheidungshilfe bieten. Da-
her wird der potenzielle wirtschaftliche Wert (PEV) eingeführt. Dieser zeigt die mög-
lichen relativen Einsparungen auf, wenn Entscheidungen für vorbeugende wasserwirt-
schaftliche Maßnahmen auf saisonale Vorhersagen gestützt werden, im Vergleich zu op-
timalen frühzeitigen Maßnahmen. Dieses Maß für den Prognosewert zeigt damit den
wirtschaftlichen Nutzen der Einbeziehung von saisonalen Vorhersagen in Entscheidun-
gen unter Berücksichtigung der Kosten-Verlust-Situation des Nutzers und der Vorher-
sagewahrscheinlichkeit. Die in dieser Arbeit angewandte Methodik ermöglicht die Ver-
wendung unbearbeiteter globaler saisonaler Vorhersagen für regionale Analysen. Es
wird gezeigt, dass ein proaktiver Ansatz auf der Grundlage von saisonalen Vorher-
sagen im Falle von Dürreperioden potenzielle wirtschaftliche Einsparungen von bis zu
70 % derjenigen von optimalen frühzeitigen Maßnahmen erzielen kann. In sehr war-
men Monaten und bei Dürreperioden werden sogar bei einem Vorhersagehorizont von
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bis zu sieben Monaten im Voraus noch Einsparungen von mindestens 20 % erzielt. Für
einen ausgewählten Großstaudamm im Sudan, den Upper-Atbara-Damm, werden die
Einsparmöglichkeiten explizit in Geldwerten beziffert, wenn der Damm mit frühzeiti-
gen Maßnahmen zur Dürrebekämpfung betrieben würde. Tatsächlich werden dabei in
einem Beispieljahr vermeidbare Verluste von 16 Mio US$ festgestellt.

Obwohl sie den Nutzern nachweislich einen erheblichen wirtschaftlichen Vorteil bie-
ten, sind die saisonalen Vorhersagen SEAS5 für einige Anwendungen noch immer nicht
geeignet. Wenn absolute Werte und eine hohe räumliche Auflösung erforderlich sind,
müssen die globalen saisonalen Vorhersagen um Verzerrungen und Modelldrift mit
zunehmendem Vorhersagehorizont (Vorlaufzeit) korrigiert werden, und es bedarf einer
räumlichen Verfeinerung. In dieser Studie wird die Vorhersagequalität globaler saiso-
naler Vorhersagen mit statistischen Korrekturmethoden der Quantilabbildung (Quan-
tile Mapping) für tägliche Daten regional bedeutend verbessert. Dabei werden mehr
als 100.000 Vorhersagetage für jedes der 25 (bis 2016) und 51 (seit 2017) Ensemblemit-
glieder des Vorhersagezeitraums 1981-2019 für jede der fünf analysierten Variablen kor-
rigiert. Die Vorhersage liefert damit genauere Informationen über zukünftige Nieder-
schlagsmengen, Temperaturen und die einfallende Sonnenstrahlung, und ermöglicht
so eine konkrete Entscheidungshilfe in der Praxis. Monatliche Vorhersageverzerrungen
und vorlaufzeitabhängige Drifteffekte von bis zu 4 mm d�1 und 2 K werden korrigiert,
und die Vorhersagen werden räumlich auf die höhere Auflösung von 0,1� des Reana-
lysedatensatzes ERA5-Land disaggregiert, wodurch die Übereinstimmung der räum-
lichen Muster mit ERA5-Land im Vergleich zu den Rohvorhersagen weiter verbessert
wird. Die rechnerische Effizienz dieses Ansatzes ermöglicht es, regional angepasste,
verbesserte hydrometeorologische saisonale Vorhersagen für die Untersuchungsregio-
nen in Nordostbrasilien, Sudan/Äthiopien und im Iran in einem Online-Entscheidungs-
unterstützungssystem (Viewer) bereitzustellen.

Zusätzlich zu dem statistischen Ansatz kann eine räumliche Verfeinerung auf eine höhe-
re räumliche Auflösung und die Verringerung der Fehler globaler Modelle durch dy-
namisches Downscaling mit regionalen Klimamodellen erreicht werden. Der dynami-
sche Ansatz hat den Vorteil, dass er kleinskalige Prozesse, die in den globalen Mo-
dellprodukten nicht erfasst werden, auflöst bzw. besser darstellt und dadurch mög-
liche Modellfehler reduziert. Daher wird in dieser Arbeit auch das Potenzial eines
physikalisch basierten Verfeinerungsansatzes untersucht. Insbesondere wird die Ab-
hängigkeit von den physikalischen Parametern im Atmosphärenmodell analysiert, die
bekanntlich die Qualität der erzeugten hydrometeorologischen Informationen bestim-
men. Dazu wird das Weather Research and Forecasting (WRF) Modell zum dyna-
mischen Downscaling von Reanalysedaten in den klimatisch sensiblen Untersuchungs-
regionen Ecuador/Peru und Brasilien mit unterschiedlichen Parametrisierungssetups
eingesetzt. Das Downscaling wird für beide Gebiete mit einer horizontalen Auflösung
von 9 km und für das orografisch hochkomplexe Gebiet von Ecuador/Peru mit einer
zusätzlichen Auflösung von 3 km durchgeführt. Diese Studie zeigt, dass die Kom-
bination von unterschiedlichen physikalischen Parametrisierungen mit vier Schemata
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für die Kumuluskonvektion (CU), je zwei für die Mikrophysik (MP), planetare Grenz-
schicht (PBL) und Strahlung (RA) (insgesamt 32 Parametrisierungen) eine hohe Un-
sicherheit in den simulierten Niederschlag einbringt. Dabei kann bis zum Vierfachen
des monatlichen Referenzniederschlags mit verschiedenen Konfigurationen modelliert
werden. Ein besonderer Schwerpunkt dieser Studie liegt auf den räumlichen Mustern,
die mit einem auf Ensemble zugeschnittenen Bewertungsansatz über die Metrik eSAL
im Detail analysiert werden. Die zusammengefassten Ergebnisse für Verteilungs-, zeit-
liche und räumliche Muster zeigen, dass die CU-Schemata, gefolgt von den RA-Sche-
mata, die dominierenden Tendenzen des simulierten Niederschlags innerhalb des WRF-
Ensembles erzeugen (zu trocken/nass, zu große/kleine Niederschlagsmuster usw.). Ins-
gesamt hat sich keine einzige Konfiguration als deutlich überlegen erwiesen, aber die
angewandten Metriken ermöglichen eine angemessene Auswahl auf der Grundlage der
Anwendungsanforderungen und der Referenzdaten. Eine zukünftige Übertragung des
Setups auf die saisonalen Vorhersagen von SEAS5 erweist sich jedoch als nicht ganz
einfach. Die doppelte zufällige Störung der Anfangsbedingungen von SEAS5 erschwert
eine notwendige Auswahl von Ensemblemitgliedern, um den Rechenaufwand des dy-
namischen Downscaling zu reduzieren. Da die Studie zur Sensitivität der Parametri-
sierung auch zeigt, dass nach dem dynamischen Downscaling im Vergleich zur Re-
ferenz immer noch Abweichungen bestehen, sei es bei den Verteilungsmustern, den
zeitlichen oder den räumlichen Mustern, wäre ein zusätzliches dynamisches Down-
scaling langer Vorhersagezeiträume in der Vergangenheit für das Post-Processing er-
forderlich, was einen immensen Rechenaufwand bedeutet.

Diese Arbeit zeigt damit die Möglichkeiten auf und stellt die Herausforderungen her-
aus, die sich bei der Verwendung von saisonalen Vorhersagen zur Entscheidungsun-
terstützung in der Wasserwirtschaft und bei der Verfeinerung und Korrektur dieser
Vorhersagen für Impaktstudien und direkte operationelle Anwendungen ergeben. Sie
ermöglicht den finalen Transfer der gewonnenen wissenschaftlichen Erkenntnisse in die
Praxis und liefert die erforderlichen Instrumente, um aktiv zu einer nachhaltigen Be-
wirtschaftung der Wasserressourcen in semiariden Regionen beizutragen. Denn diese
Regionen benötigen dringend Anpassungs- und Abmilderungsstrategien, um die Aus-
wirkungen des Klimawandels und die politisch bedingten Herausforderungen der Was-
sernutzung und -bewirtschaftung zu bekämpfen. Es zeigt sich, dass globale Datensätze
mit saisonalen Vorhersagen und Reanalysen einen konkreten Nutzen für die Entschei-
dungsfindung bieten können, aber je nach Anwendung sind weitere Nachbearbeitun-
gen erforderlich, um diese Daten regional nutzbar zu machen.
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1 Overview and Introduction

1 Overview and Introduction
1.1 Background and Motivation: The Need for Sustainable Water Re-

sources Management
Climate change and the projected socioeconomic development make freshwater scarcity
a global systemic risk. Since 1960, the proportion of people living under water scarcity
has increased rapidly (Kummu et al., 2010), making it one of the major issues in the
21st century. In 2000, the water supply of around 80 % of the world’s population (4.8
billion) was potentially threatened due to regionally and temporally very variable water
availability (Vörösmarty et al., 2010). In 2005, 35 % (2.3 billion) of the world’s population
lived under high (500 � 1000 m3 per capita and year) or even extreme (< 500 m3 per
capita and year) water shortage (Kummu et al., 2010). During at least one month of the
year, 4.0 billion people, i.e. almost two thirds of the global population in 2005 according
to the study of Mekonnen and Hoekstra (2016), experienced severe water scarcity. Due
to population increase, the water demand is further rising (Vörösmarty et al., 2000)
and about 40-50 % of the world’s population will live under water scarcity by 2050
(Gosling and Arnell, 2016). Posing a severe threat on biodiversity, human welfare and
economic growth, the progressing freshwater scarcity is increasingly assessed as one
of the largest global risks in terms of potential impact (Mekonnen and Hoekstra, 2016;
World Economic Forum, 2021).

Socioeconomic factors like technological progress, economic and population growth
dominate the water stress, however, climate change will further pose a major threat
to the water security and water supply of billions (Distefano and Kelly, 2017). A global
warming of +2 �C will exacerbate the level of extreme water scarcity (percentage of
world population with below 500 m3 per capita and year) expected from population
change alone by another 40 % (Schewe et al., 2014). Here, climate change will espe-
cially impact on countries that are already affected by water stress (Distefano and Kelly,
2017; Munia et al., 2020), such as on arid and semi-arid regions. Vörösmarty et al. (2010)
identified regions of high threat to human water security and biodiversity especially
in coastal Ecuador/Peru, West and East Africa, Iran, India, the western part of East
Asia and northern part of Southeast Asia. This development is even more alarming due
to the fact that poor countries cannot afford massive investments in water technology,
which makes them even more vulnerable (Vörösmarty et al., 2010).

The projected development of global water stress outlines the severe impacts that cli-
mate change and population increase are expected to have. Not incorporating effects
of current or future water resources management strategies (Arnell et al., 2011), these
studies underline the need to develop and implement advanced and sustainable con-
cepts for water resources management. Distefano and Kelly (2017) warn that business
as usual is not acceptable and will result in over-exploitation of available water re-
sources. To be able to reduce the impacts of water scarcity, a major turnaround towards
sustainable water management is urgently required (AghaKouchak et al., 2015; Ashraf
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et al., 2019). Man-made water stress and anthropogenic drought caused by unsustain-
able management of water resources must be a phenomenon of the past (AghaKouchak
et al., 2015). But still far too often, decisions that depend on water resources (e.g., on
land use, agriculture, energy management) are made without considering the sustain-
ability of water use. As a result, water is increasingly becoming a source of conflict - not
only in the crosshairs of the water-food-energy nexus, but also in the often insufficient
transboundary river basin cooperation in terms of economic, social, and environmental
consequences. The United Nations Sustainable Development Goals (SDGs) adopted at
the 2015 UN Summit as part of the 2030 Agenda for Sustainable Development therefore
rightly call for the sustainable management of water worldwide (United Nations, 2015).

1.2 Challenges of Water Resources Management in Semi-arid Regions:
Five Examples

Avoiding future water stress and conflicts in the water-food-energy nexus is particu-
larly relevant for areas that are already characterized by a lack of water, i.e., for the
arid and semi-arid areas. Approximately 40 % of the land area are drylands (hyperarid,
arid, semi-arid, sub-humid), inhabited by more than one third of the global popula-
tion (Environment Management Group, 2011). In contrast to arid regions, semi-arid
regions (15% of global land area) still have considerable water resources. However, the
water systems of semi-arid regions, i.e., the river basins, wetlands, and reservoirs, are
generally characterized by a pronounced seasonality of meteorological conditions and
natural water availability. Consequently, water scarcity is a prevalent problem, whether
in certain periods as during dry seasons or in drought years, or in sub-regions that are
not connected to the water and irrigation system or to the water supply infrastructure
(e.g., Loucks and van Beek, 2017). For most semi-arid regions, observations and pro-
jections indicate warming trends at rates above the global mean over land, enhanced
evaporative loss, and reduced and more variable precipitation (Scholes, 2020). The high
rainfall variability in semi-arid regions poses a high risk to rain-fed agriculture (Envi-
ronment Management Group, 2011). Therefore, irrigated agriculture is often essential
for the food supply of the population in these regions. In total, more than one third of
semi-arid drylands are farmed as rainfed or irrigated land (Environment Management
Group, 2011). Providing drinking water for the often large populations of these areas
in times of water scarcity is another challenge that is enabled by the construction of
dams for supplying reservoirs. As multi-purpose reservoirs, they often serve not only
for drinking water supply and irrigation, but as hydropower plants they also form an
important part of the electrical energy supply. For states comprising semi-arid regions,
the importance of hydropower generation can be immense with up to two thirds of a
state’s total power generated at hydroelectric dams (von Sperling, 2012). Thus, in the
water-food-energy nexus of semi-arid regions, the available water resources are highly
used due to the high specific water demands. While there are few options for action
in arid regions other than the provision of external water (e.g., through desalination
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1 Overview and Introduction

Figure 1: Map of the semi-arid study regions: River basins of Catamayo-Chira in Ecuador/Peru,
Extended São Francisco in Northeast Brazil, Niger and Volta in West Africa, Tekeze-Atbara and
Blue Nile in Ethiopia and Sudan, and Karun in Iran. Semi-arid regions according to an aridity
index (ratio of precipitation to potential evapotranspiration) between 0.2 and 0.5 are shown in
gray (data from Hoogeveen, 2009).

or extraction of fossil groundwater), much can be achieved in semi-arid regions with
sustainable and scientifically sound water resources management.

However, in the context of water resources management, semi-arid regions worldwide
(Fig. 1) face major challenges: Semi-arid Northeast Brazil with the São Francisco river
is just recovering from a prolonged five-year drought between 2012 and 2016 (Marengo
et al., 2018; Martins et al., 2018). The region with its wet season during austral summer
and autumn experienced large negative rainfall deviations from the long-term climate
mean leading to reservoirs at 5 % of its volume capacity, at inactive volume and in fact
to several collapsed (empty) water reservoirs. Even an interruption of water supply oc-
curred in many municipalities of Northeast Brazil (Martins et al., 2018). Climate change
is further projected to decrease the rainfall in Northeast Brazil up to 40 % (Marengo
et al., 2012). Moreover, the Caatinga biome in Northeast Brazil, the largest tropical dry
forest region in South America, is expected to experience enhanced drought and de-
sertification due to climate change, with adverse impacts especially on ecosystems and
future water supply (Torres et al., 2017).

The arid to semi-arid coastal regions of Ecuador and northern Peru including the Cata-
mayo-Chira river basin often experience intense precipitation and flooding during El
Niño events - the warm phase of the El Niño-Southern Oscillation (ENSO) associated
with an unusually warm band of ocean waters extending from the central equatorial
Pacific to off the coast of Ecuador and Peru (Takahashi, 2004). Most recently, the 2017
coastal El Niño off Ecuador and Northern Peru caused immense flooding and land-
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slides (Echevin et al., 2018). With substantial variability of rainfall from year to year, this
semi-arid region not only experiences wet extreme events, but also severe droughts (Vi-
cente-Serrano et al., 2017; Domínguez-Castro et al., 2018). With climate change, weather
patterns are expected to change, increasing the blocking at the mountains (with average
elevations above 4000 m. a.s.l and peaks above 6000 m) and intensifying the rainfall up
to 30 % in coastal Ecuador and Northern Peru (Marengo et al., 2012).

In southwestern Iran, bordering Iraq at the Persian Gulf, the semi-arid province of
Khuzestan faces serious challenges in adequately managing its available water resources.
The densely populated region of Khuzestan, that includes the Karun river and a large
portion of Iran’s irrigated croplands, has experienced major water withdrawal and sub-
stantial population growth in the last decades (Ashraf et al., 2019). In Khuzestan, the
recent years 2017 to 2019 were characterized by a rapid drought–flood transition. The
impacts of such hydrometeorological extreme events are known to be particularly se-
vere when they occur in close succession (e.g., Brunner et al., 2021). Large evacuations
and inundations were caused by broken flood protectors during the big flood in 2019
(Peyravi et al., 2019). In general, water management in Iran is a critical topic. The
country faces the need caused by international sanctions to become self-sufficient in the
production of strategic agricultural crops. This situation together with a fatally low ir-
rigation efficiency causes the unsustainable use of water resources (Ashraf et al., 2019).
Population growth and enhanced agricultural and socio-economic activities aggravate
the water withdrawal in Iran and exacerbate the water stress. The projected variabil-
ity and change in precipitation will further increase the level of water stress (Ashraf
et al., 2019). Cities in Khuzestan are also projected to experience the largest increases
in thermal stress among Iranian cities in the future (Roshan et al., 2020). Though being
expected to have a minor decline in water storage towards the end of the 21st century
compared to, e.g., the Lake Urmia basin in Northwest Iran, the aggressive withdrawal
of water - currently already 50 % of Karun’s net outflow - will aggravate the water stress
in the Karun basin (Ashraf et al., 2019).

In Sub-Saharan Africa, droughts occur more frequently than in most other regions in
the world posing a major challenge to the agricultural production that continues to be
mainly rain-fed (OECD/FAO, 2016; Masih et al., 2014). Drought hazards are further
projected to aggravate across Africa during the 21st century, in particular in Sudan (Ah-
madalipour et al., 2019). Especially the semi-arid belt of the Sahel region includes large
transboundary river basins like the Niger and Volta in West Africa and the Nile with its
main tributaries Blue Nile and Tekeze-Atbara in Ethiopia and Sudan. In transbound-
ary river basins, political consensus in the operation of reservoirs would be required
for fair and sustainable water resource management. This is particularly true given the
increasing number of people who will depend on upstream water resources by 2050
(Munia et al., 2020; Viviroli et al., 2020). However, the current example of the construc-
tion and filling of the Grand Ethiopian Renaissance Dam (GERD) just upstream of the
Ethiopian-Sudanese border in the Blue Nile basin demonstrates the difficulties of polit-
ical consensus between the three involved countries Ethiopia, Sudan and Egypt. Still
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agreements are missing, e.g., on how the chain of dams along the Blue Nile and Nile
including the two world’s largest dams - the High Aswan Dam and the new GERD -
will operate in times of water scarcity (Wheeler et al., 2020).

1.3 Global Information for Improved Water Resources Management:
Seasonal Predictions

All these examples - from increasing drought risks and precipitation variability due
to climate change, to being at the mercy of the globally recurring weather and ocean
phenomenon ENSO, to politically induced unsustainable use of water resources and
transboundary water management conflicts - demonstrate that sustainable water man-
agement in these semi-arid regions requires transparent decisions based on evidence.
Especially in the case of the targeted fair transboundary water management, publicly
available hydrometeorological data are crucial to find viable solutions for all stakehold-
ers involved. The need for high-quality precipitation and water resources information
at the present time and for the future contrasts with the decline in in-situ monitoring
stations observed worldwide and especially in the presented semi-arid regions (Lorenz
and Kunstmann, 2012; Lorenz et al., 2014). Therefore, global gridded datasets from re-
mote-sensing and model systems need to be used in those regions. For managing water
resources in advance, such as for water allocation and prioritization, as well as for an-
ticipated demands during drought or for the operation of reservoirs for flood control,
improved knowledge of the upcoming rainy season in semi-arid regions can be the ba-
sis for sustainable water management. While climate research has been trying for many
years to derive statements about climate conditions and long-term mean water avail-
ability (e.g., regional climate projections up to 2100), in practice seasonal forecasts, i.e.
expected weather conditions up to 7 months in advance, can offer greater opportuni-
ties with respect to climate change adaptation and mitigation (Troccoli, 2010). Global
seasonal forecasts of hydrometeorological variables can thus become a strong tool for
decision support in regional water management when proofed to be skillful.

Seasonal forecasting in the form of statistical models has a long tradition since the late
1800s, but the use of complex dynamical numerical models to simulate the major Earth
system components is a fairly new endeavor due to its high computational demand
(Troccoli, 2010). Dynamical seasonal forecasts owe their development mainly to the
great technological progress in weather forecasting (e.g., Bauer et al., 2015) with known
relevance of tropical atmospheric dynamics and model initialization. Since their first
operational runs in the mid-1990s, 13 Global Producing Centres (GPCs) of Long-Range
Forecasts as accredited by the World Meteorological Organization (WMO) are now pro-
ducing global seasonal forecasts operationally and with well-defined standards (World
Meteorological Organization (WMO), 2021). Dynamical seasonal forecasts are based on
the existence of interactions between the atmosphere and slowly changing land sur-
face variables, such as sea surface temperature (SST), sea ice cover or soil moisture (i.e.,
drivers and feedbacks of longer duration extreme events). These slow variations due to
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Initial condition
uncertainty

Time

Forecast 
uncertainty

Figure 2: The uncertainty of the initial conditions results in ensemble predictions. Their diver-
gence determines the uncertainty of the forecast. Predictions, e.g., of precipitation, are therefore
always expressed in terms of probabilities (e.g., the probability of exceeding 10 mm d�1 in the
Tekeze-Atbara and Blue Nile region in Sudan and Ethiopia). Figure motivated from Bauer et al.
(2015).

large adjustment times and heat capacities compared to the atmosphere allow the ex-
tension of the forecast horizon well beyond usual weather predictions (Troccoli, 2010).
Therefore, the model atmosphere is tightly coupled to the land component, and the rela-
tionships between SST or sea ice extent and weather patterns are represented by the cou-
pling of state-of-the-art computer models of the atmosphere, ocean and sea ice (Johnson
et al., 2019; Saha et al., 2014). Especially in regions that experience strong links between
SST and seasonal weather trends, like the tropics, seasonal forecasting is most promis-
ing. As the major climate signal after the seasonal cycle that impacts global climate, the
most prominent atmosphere-ocean connection ENSO can be said to be the dominant
driver of seasonal forecasts (Troccoli, 2010). Thus, for successful seasonal forecasting,
a good representation of such large-scale and long-term phenomena in a seasonal fore-
casting model is key (Troccoli, 2010; Johnson et al., 2019). Although strongest links to
variations in SST exist in the tropics, lower-latitude regions can likewise benefit from
seasonal forecasts due to teleconnections and effects of sea ice extent and soil moisture
inertia (Johnson et al., 2019). Also other signals play a role for seasonal forecasting in
different regions worldwide (Johnson et al., 2019), such as the North Atlantic Oscilla-
tion (NAO, e.g., Lamb and Peppler, 1987), the Pacific-North American pattern (PNA,
e.g., Frankignoul and Sennéchael, 2007) and the Indian Ocean Dipole (IOD, e.g., Luo
et al., 2008). Further possible sources of seasonal predictability are dynamical processes
in the stratosphere (Johnson et al., 2019). The stratosphere is not only the mediator of
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teleconnections from the tropical oceans to the mid-latitudes (e.g., Bell et al., 2009), the
quasi-biennal oscillation (QBO) of the tropical stratosphere may also represent one of
the few purely atmospheric sources of seasonal predictability (e.g., Folland et al., 2012).
To represent the model and initial condition uncertainty, seasonal forecast models are
run several times for the same period of time, using slightly different atmospheric and
oceanic fields (Johnson et al., 2019). Therewith, an ensemble of seasonal forecast runs
predicts the future weather conditions up to seven months ahead. Seasonal forecasts are
therefore not deterministic, but always stated in terms of probability (ensemble forecast
with resulting probability in Fig. 2). Detailed day-to-day variations in weather are cer-
tainly not possible to predict on seasonal timescales, however, seasonal forecasts are
able to give information on likely conditions averaged over a month or the next few
months ahead. As the initial-value predictability decreases and the ensemble spread of-
ten increases with lead time (increasing forecast horizon), seasonal forecast skill is often
higher for a few months ahead than for long forecast horizons.

1.4 From Global to Regional Information: Spatial Refinement and
Correction of Model Errors

Progress in seasonal forecasting systems, with better representation of large-scale and
long-term phenomena such as El Niño and corresponding gains in performance, par-
ticularly for affected regions (e.g., Johnson et al., 2019), is increasingly driving their
application. Advances in computing weather models and substantial increases in data
storage capacity have pushed us to a level where reasonably accurate forecasts and
data analysis are possible for extended forecast horizons (e.g., Bauer et al., 2015; Troc-
coli, 2010). The spatial resolution of global seasonal forecast models, such as the latest
seasonal forecast system version 5 (SEAS5) of the European Centre for Medium-Range
Weather Forecasts (ECMWF) of 36 km (Johnson et al., 2019), already extends into areas
formerly covered only by regional models. So it appears appropriate to use them for re-
gional applications in semi-arid regions. In addition, the raising awareness of probabil-
ity forecasts in the public helps for the dissemination of seasonal forecasting products,
but suitable measures still need to be provided to translate probabilistic knowledge
about the upcoming season into supportive action (Bruno Soares et al., 2018). Model
biases and drifts further need to be taken into account to increase the credibility and
legitimacy of the generated seasonal forecast information.

In general, weather forecasting models can exhibit large biases, i.e., large mean forecast
errors, in some regions and may still fail in simulating important dynamical patterns,
circulation and energy exchanges (e.g., Sillmann et al., 2017; Manzanas, 2020). Forecast
model biases can arise from incomplete or imperfect representation of the current envi-
ronmental state (assimilation of observations from satellites, balloons, ground stations,
etc.) in the initial conditions due to misfits to the model grids or biases in the obser-
vations themselves (e.g., Privé and Errico, 2013). The resolution of the model grid can
also lead to biases caused by insufficient representation of the underlying topography

7



1 Overview and Introduction

Figure 3: Representation of topography at different model grid resolutions for the Tekeze-Atbara
and Blue Nile basins in Sudan and Ethiopia.

(see representation of topographic features at different resolutions in Fig. 3). Spatial
refinement approaches can therefore help to improve the model information region-
ally. This so called “downscaling" can be achieved with empirical statistical methods
or regional climate modeling. Statistical downscaling methods use higher-resolution
observational data to improve the climatological spatial and distributional patterns of
the forecast (Yuan et al., 2015). Dynamical downscaling, in turn, embeds (“nests") a
regional climate model into the coarser global grid, simulating regional to local climate
responses at a higher spatial (and, if needed, temporal) resolution (e.g., Yuan et al., 2015;
Skamarock et al., 2008). Here, another possible reason for (global and regional) model
biases comes into play that can be introduced by the employed physical parameteriza-
tions, i.e., approximations of the physical processes at the subgrid scale that incorporate
certain assumptions. Parameterizations are used for processes related to, e.g., incoming
solar radiation (absorption, reflection, scattering), longwave radiation emission (clouds,
earth’s surface), latent and sensible heat fluxes, water phase changes, deep convection,
turbulence, vegetation, and soil properties (e.g., Skamarock et al., 2008). Here, the choice
of different parameterization schemes can cause large changes in the atmospheric dy-
namics (e.g., Klein et al., 2015) and thus large model biases. On top of the standard bias,
or systematic mean error, a second-order bias occurs in seasonal forecast models that
depends on lead time - the time elapsing from the model initialization to the start of the
target period to be forecast (Manzanas, 2020). This is called model drift and is a con-
sequence of initial conditions that do not match the model dynamics (e.g., Alves et al.,
2004). The forecast model drifts away from the initial state well beyond the first lead
month, leading to highly spatially and temporally variable biases over large regions of
the world (Manzanas, 2020; Hermanson et al., 2018). From their initialization, models
often do not simply drift monotonically in the direction of the free-running model cli-
matology; for example, in the case of precipitation, asymptotic drifts frequently occur
(Hermanson et al., 2018). Correction for these biases and drifts is therefore required
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when absolute thresholds are to be derived from seasonal forecasts or when they are
applied as input in subsequent impact modeling.

1.5 Research Questions
With the use of seasonal forecasts, the availability of freshwater resources and periods of
drought can be predicted several months in advance. This opens up new opportunities
to actively reinforce the sustainable water management in semi-arid regions. To achieve
this, the understanding of seasonal forecasts needs to be improved and the advantages
demonstrated in a decision-making process (e.g., Bruno Soares et al., 2018). While sci-
entists typically focus on the technical skill (e.g., accuracy, sharpness) of a prediction,
decision-makers see the value of forecasts as the more important measure, especially
when the forecast skill is not clearly attributable to decision consequences, or the skill
is not made sufficiently clear. Assessments of forecast performance should therefore in-
corporate the perspective of "users" or "decision-makers" and not just that of scientists
(Bruno Soares et al., 2018; Hartmann et al., 2002; Hansen, 2002). Thus for users, it is not
only the quality of the forecasts that is critical, but the potential value and benefit of
incorporating seasonal forecasts. Therefore, to promote the use of seasonal forecasts in
decision making, the first research question to be answered is:

1. Can seasonal forecasts support decision-making and provide economic benefit for
the regional water management in semi-arid regions?

Although the spatial resolution of 36 km of ECMWF’s latest global seasonal forecasting
product SEAS5 is already at the scale of regional applications, further refinement of the
horizontal resolution is required for grid-point based regional applications and for im-
pact modeling of, e.g., hydrology, ecosystem, or sediment. Since this is a fairly common
problem in climate science (e.g., Yuan et al., 2015), there are numerous “downscaling”
methods to bridge this scale gap. For this reason, two different downscaling methods
are developed and applied for the study regions to spatially refine the most important
hydrometeorological variables of global fields. In this regard, corrections of model bi-
ases and drifts should also be incorporated. The second research question addressed in
this thesis therefore is:

2. How can empirical-statistical regionalization and post-processing techniques im-
prove the regional quality of global seasonal forecasts?

Apart from empirical statistical methods, the application of dynamical regional climate
models (RCMs) allows the refinement of global hydrometeorological fields. The under-
lying idea here is that global models are capable of correctly capturing the large-scale
forcing signals (e.g., ENSO), and RCMs, in turn, are able to correctly reproduce the re-
gional-local climate response (e.g., Yuan and Liang, 2011; Yuan et al., 2015). Especially
for orographically complex regions, physically-based refinement methods can improve
their spatio-temporal patterns. Atmospheric physics like shallow convection or land
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surface processes like frozen soil or snow can be better represented, and therewith re-
duce the forecast errors at daily-to-seasonal scales (e.g., Yuan and Liang, 2011). For that,
however, RCMs need to be adapted and calibrated in their physical setup to the selected
region prior to their use for regional weather forecasting or impact studies. With an
appropriate choice of physics parameterization schemes, model biases can be reduced
substantially (Klein et al., 2015). This leads to the third research question:

3. How robust are dynamically downscaled hydrometeorological fields with respect
to the applied physical model setup?

This sensitivity analysis of the physical setup of an RCM involves an immense com-
putational effort. Only if this computational battle indeed results in a substantial im-
provement of the spatio-temporal patterns, a dynamical downscaling of the seasonal
forecasts can be justified. In the synthesis, these two provided options of regional re-
finement will thus be discussed in terms of operational feasibility and computational
demand. Therewith the question is addressed if dynamical downscaling is suited for
the regional refinement of global seasonal forecasts from both a scientific point of view
and in an operational decision making environment.

The goals of this thesis therewith are i) to assess the performance in quality and value
of global seasonal forecasts for decision support in regional water management of semi-
arid regions and ii) to investigate the suitability and feasibility of methods for regional
refinement and improvement of the global seasonal forecasts. The overall strength of
this work is the development of methods and tools that can be applied in very differ-
ent regions together with region-specific tailoring. The opportunities and limitations
of direct application of raw global seasonal forecasts are presented together with the
necessity of their regional refinement and correction. In the latter, not only the consider-
ation of forecast operationalization in a decision support system played a role, but also
the presentation of different, potentially skillful methods for regional refinement and
improvement of seasonal forecasts, and the testing of horizontal resolutions achievable
with those techniques.

All five semi-arid study regions (Fig. 1) were selected for the global approaches with
raw seasonal forecasts:

1. Brazil - Extended Rio São Francisco catchment
2. Ecuador/Peru - Catamayo-Chira catchment
3. Iran - Karun catchment
4. Sudan/Ethiopia - Tekeze-Atbara and Blue Nile catchments
5. West Africa - Niger and Volta catchments

For four of them (1-4), the regional refinement and improvement via empirical statistical
downscaling and spatial disaggregation is performed. For two of these regions (1,2),
global hydrometeorological fields are refined via dynamical downscaling.
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1.6 Structure and Framework of the Thesis: Linking the Individual
Pieces

To answer the above mentioned research questions, this dissertation comprises three
peer-reviewed articles:

Article I: Seasonal Forecasts offer Economic Benefit for Hydrological Decision Making in Semi-
Arid Regions

Portele, T.C., Lorenz, C., Dibrani, B., Laux, P., Bliefernicht, J., and Kunstmann, H (2021). Seasonal Fore-
casts Offer Economic Benefit for Hydrological Decision Making in Semi-Arid Regions. Sci. Rep. 11, 10581.
https://doi.org/10.1038/s41598-021-89564-y

The first article addresses the potential benefits of incorporating seasonal forecasts in
water management decisions to proactively prepare for drought and extreme events
and to mitigate risk. For analyzing the development of past climatic extreme events
and, hence, underlining the urgent need for a timely and sustainable water manage-
ment, first the trend in the occurrence of drought, very warm months, and very wet
months is examined in the seven basins of the five semi-arid study regions over the
past decades with the latest ECMWF reanalysis ERA5. Here, seasonal climate forecasts
can be a strong tool in the management of climate risks. However, they still need to
overcome the perceived lack of reliability and skill, and to face the difficulties in link-
ing their probabilistic nature to practical decision processes (Bruno Soares et al., 2018;
Lopez and Haines, 2017; Rayner et al., 2005; Patt and Gwata, 2002). Classical approaches
of performance evaluation fail to show the direct effect on decision makers and users of
seasonal climate forecasts. Therefore, the performance measure of potential economic
value (PEV , Richardson, 2000; Wilks, 2001; Lopez et al., 2018) is chosen to directly link
ECMWF’s latest global probabilistic seasonal forecasts SEAS5 to users’ economic bene-
fits when they incorporate them into their decision-making process regarding extreme
events. The potential economic value includes the forecast probability and the cost-loss
ratio of a user’s early action. Two approaches are provided to decide on the most bene-
ficial probability threshold at which to take an action. One approach aims to minimize
expense, while the other additionally seeks to capture as many extreme events with the
forecasts as possible. The employed methodology in this article allows the use of un-
processed global seasonal forecasts for the regional analysis. This approach also allows
the raw forecast to be evaluated without the need for explicit bias correction. The final
example case at the Upper-Atbara Dam in Sudan provides an in-depth evaluation of
the economic cost-loss situation with respect to an early-action based drought reservoir
operation for electrical power generation. The article Seasonal Forecasts offer Economic
Benefit for Hydrological Decision Making in Semi-Arid Regions thus serves as a general in-
troduction to seasonal forecasting as decision support in semi-arid regions.
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Article II: Bias-corrected and Spatially Disaggregated Seasonal Forecasts: a Long-term Refer-
ence Forecast Product for the Water Sector in Semi-arid Regions

Lorenz, C., Portele, T.C., Laux, P., and Kunstmann, H (2021). Bias-corrected and Spatially Disaggregated
Seasonal Forecasts: a Long-term Reference Forecast Product for the Water Sector in Semi-arid Regions.
Earth Syst. Sci. Data 13, 2701–2722. https://doi.org/10.5194/essd-13-2701-2021

While the first article assesses the (economic) value of the forecasts, using relative data
values and treating the distributions of forecast and reference data separately, the sec-
ond article takes a closer look at the quality of the SEAS5 global seasonal forecasts in
terms of absolute values for four study regions. The analyzed hydrometeorological
variables are: Precipitation, incoming shortwave radiation, minimum, maximum and
mean 2-m temperature. To minimize systematic biases and model drifts in the seasonal
forecasts with respect to the reference ERA5-Land (a higher resolution replay of the
land component of ECMWF’s latest reanalysis ERA5) and to regionally refine the global
fields to be usable in impact models, empirical statistical bias correction and spatial
disaggregation (BCSD) methods (Wood, 2002) are developed and applied. Here, dis-
tribution-function based correction methods (quantile-quantile mapping) are used on a
daily basis per gridcell to correct for systematic biases and model drifts with increas-
ing lead time. The spatial disaggregation to the resolution of the reference ERA5-Land
allows the regional refinement of global seasonal forecasts from 36 km to 0.1�. With
the correction towards the reference ERA5-Land, the wet-day-probability, as well as to-
pographical effects are further controlled. The quality of the SEAS5-BCSD forecasts is
compared to the reference ERA5-Land and to raw SEAS5 forecasts, and is measured in
terms of bias, root-mean-square error and the continuous ranked probability skill score.
An entire (re-)forecast period of corrected and refined SEAS5-BCSD predictions from
1981 to 2019 is produced as driving data for hydrological, ecosystem or climate impact
models. This work thus represents a natural continuation of the first article, providing
corrected and regionally refined seasonal forecasts when absolute values and high-res-
olution gridcell information are needed.
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Article III: Ensemble-tailored Pattern Analysis of High-resolution Dynamically Downscaled
Precipitation Fields: Example for Climate Sensitive Regions of South America

Portele, T.C., Laux, P., Lorenz, C., Janner, A., Horna, N., Fersch, B., Iza, M., and Kunstmann, H., (2021).
Ensemble-Tailored Pattern Analysis of High-Resolution Dynamically Downscaled Precipitation Fields:
Example for Climate Sensitive Regions of South America. Front. Earth Sci. 9, 669427. https://doi.or
g/10.3389/feart.2021.669427

The third article focuses on the dynamical downscaling of global hydrometeorological
fields with the Weather Research and Forecast (WRF) model. For the two South Ameri-
can study regions, atmospheric global fields from ECMWF’s former reanalysis product
ERA-Interim at 79 km horizontal resolution are regionally refined to 9 km and 3 km
horizontal resolution. The 3-km resolution was applied to the topographically highly
complex Ecuador/Northern Peru region, including the coastal area and the Andes. In
this article, the sensitivity of distributional, temporal and spatial precipitation patterns
on the physical model setup is analyzed with in total 32 ensemble simulations over two
full, consecutive years. The focus of this computationally demanding experiment is the
investigation of ensemble effects formed by simulations that all employ one specific
physics parameterization scheme but differ in other schemes (parameterization sub-
-ensembles). The performance of these parameterization sub-ensembles is evaluated
with three different global gridded data sets that are available at the high resolution of
the simulations (CHIRPS, MSWEP and ERA5-Land). For the 3-km domain, also local
station data is considered. The inclusion of differently represented physical processes
in the tested parameterization schemes should demonstrate which level of complexity
of the model physics is required to best reproduce the reference data. The main mo-
tivation for this article is to present an alternative approach to regional refinement of
global fields using a physics-based atmospheric model, and to investigate whether this
is capable of substantially improving and approximating precipitation patterns relative
to the reference at high resolutions.

Figure 4 provides the link between each of these research articles by illustrating the
common framework of this dissertation, as well as the similarities and differences in
target regions, used datasets, performance metrics and methods. Finally, the synthesis
of the three pieces of this work is found in the key achievements.
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Pathways from global seasonal forecasts and 
retrospective information to regional decision support in 

semi-arid regions

Can seasonal forecasts 
support decision-making 
and provide economic 
benefit for regional water 
management in semi-arid 
regions?

• Already today: Drastic increase of frequencies of extreme warm months and droughts is 
observed in semi-arid regions across the globe.

• Even months ahead, seasonal forecasts prove to offer economic value and high quality skill.
• Regional water management can benefit from post-processed and regionalized seasonal 

forecasts and global retrospective information.
This work hence demonstrates the opportunity for the timely mitigation of extreme events and an 
improved disaster preparedness for the water management in semi-arid regions.

How robust are 
dynamically downscaled 
hydrometeorological fields 
with respect to the applied 
physical model setup?

How can empirical-
statistical regionalization 
and post-processing 
techniques improve the 
regional quality of global 
seasonal forecasts?

Key achievements

Seasonal forecasts offer
economic benefit for
hydrological decision making
in semi-arid regions

Bias-corrected and spatially dis-
aggregated seasonal forecasts: a
long-term reference forecast
product for the water sector in
semi-arid regions

Ensemble-tailored pattern analysis
of high-resolution dynamically
downscaled precipitation fields:
example for climate sensitive
regions of South America

T.C. Portele, C. Lorenz, B. Dibrani, P. Laux, J. 

Bliefernicht, H. Kunstmann

doi: 10.1038/s41598-021-89564-y

T.C. Portele, P. Laux, C. Lorenz, A. Janner, 

N. Horna, B. Fersch, M. Iza, H. Kunstmann

doi: 10.3389/feart.2021.669427 

C. Lorenz, T.C. Portele, P. Laux, H. Kunstmann

doi: 10.5194/essd-2020-177 

Study regions

Karun (Iran), Tekeze-Atbara, Blue Nile (Sudan/Ethiopia)
Niger, Volta (West Africa)

Catamayo-Chira (Ecuador/Peru), Extended São Francisco (Northeast Brazil)

Performance metrics

ensemble Structure-
Amplitude-Location (eSAL),

Correlation, STD, RMSD

Potential economic value 
(PEV)

Bias
Continuous ranked pro-

bability skill score (CRPSS), 
RMSE

Data

ERA-Interim, CHIRPS, 
MSWEP, INAMHI station 

data

SEAS5
ERA5-Land

ERA5

Methods

Dynamical downscaling 
(WRF), feature-based 

Global data, region averages
Pixel-based

Raw data with relative 
thresholds

Bias correction and spatial 
disaggregation

Figure 4: Framework of and links between the individual research articles of this thesis. Com-
mon features are represented with boxes spanning multiple columns.
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1.7 Innovation of the Thesis
The essence of this dissertation consists of:

• Innovative, ensemble-tailored, user-oriented assessment of the performance of
global and regionalized hydrometeorological fields in terms of forecast economic
value and quality, as well as distributional, temporal and spatial patterns

• Development of tools and methods that can be applied in different regions world-
wide, together with the use of global raw data and two very different regionaliza-
tion methods

• Provision of scientifically sound, concrete decision support for regional water re-
sources management through the estimation of economic savings from probabil-
ity-triggered seasonal forecast-based action and operational implementation of a
seasonal decision support system for end users

• Provision of a real-world case study at a typical, representative dam in semi-arid
regions to demonstrate the final transfer into practice.

1.8 Key Achievements
This work demonstrates the pathways from global seasonal forecasts and retrospec-
tive information to regional decision support in the water resources management of
semi-arid regions. It provides evidence that:

• Already today, the expected increase in the frequency of extreme warm periods
and droughts due to climate change can be observed in semi-arid study regions.

• Especially for those extreme events, long-term seasonal forecasts offer high eco-
nomic value for proactive water management decisions even for several months
ahead (Fig. 5).

• Proactive reservoir management in the real-case study at a typical representative
of a large dam in semi-arid regions achieves avoidable losses up to 16 Mio US$ for
one example drought year.

• Empirical-statistical post-processing methods substantially increase the quality
and accuracy of seasonal forecasts (Fig. 6) required for decisions based on ab-
solute cutoff values and for impact studies.

• Lead-dependent bias correction and spatial refinement improves the consistency
among different forecast horizons (Fig. 6) and increases the consistency with high-
resolution reference data.

• Concrete decision support and important steps towards explicit transfer into prac-
tice are achieved by operationalizing and visualizing the post-processed seasonal
forecasts in an online decision support tool.

• Independent of reference data, dynamical downscaling of hydrometeorological
retrospective information can prove beneficial for very complex regions with strong
climatic and topographic gradients in terms of convective or orographically-in-

15



1 Overview and Introduction

Figure 5: Maximum potential economic value (PEVmax) for forecast-based early action of
drought (standardized potential evaporation index, SPEI < �1) over forecast ranges of 1 (SPEI1),
3 (SPEI3), 4 (SPEI4), and 6 (SPEI6) months. PEVmax of SEAS5 with reference ERA5 is shown for
the seven river basins for rainy seasons of the hindcast period 1981-2016. Colored dots repre-
sent the fully evaluated PEVmax for the events of SPEI < �1. PEVmax is further assessed with
the confidence range between the 10% and 90% quantiles of bootstrap resampling (dashed line).
(Figure adapted from Portele et al., 2021)

Figure 6: Overall performance evaluated by the Continuous Ranked Probability Skill Score
(CRPSS) for precipitation and temperature forecasts of one month during the basins’ rainy
season of SEAS5 raw forecasts and bias-corrected and spatially disaggregated (BSCD) SEAS5.
CRPSS is shown for lead 0 to lead 6 forecasts for July for the basins of Tekeze-Atbara/Blue Nile
(TABN), and for February for the Karun (KA), Catamayo-Chira (CC) and Extended São Fran-
cisco (ESF) basins. A CRPSS > 0 defines an on median (1981-2016) better seasonal forecast than
a simple climatological forecast.
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Figure 7: WRF dynamical downscaling of ERA-Interim (79 km) to a resolution of 9 km for the
Northeast-Brazil domain (NB9). A) ERA-Interim mean precipitation for JFM 2007. B) WRF
ensemble mean (WRFENS) precipitation (left) and WRF ensemble uncertainty expressed by the
range (maximum WRF precipitation minus minimum WRF precipitation) of the individual WRF
runs (right) for JFM 2007. C) CHIRPS reference precipitation (left) and reference uncertainty
expressed by the range of reference precipitation from CHIRPS, MSWEP and ERA5-Land (right)
for JFM 2007.

duced precipitation, where a high resolution is required to represent regional to
local small-scale phenomena.

• The quality of dynamically refined information, however, highly depends on the
applied physical model setup, where precipitation amounts can be up to four
times the observed reference values and a high uncertainty of dynamically refined
information is introduced (Fig. 7).

• As a consequence, no general best model setup could be identified, as different
setups prove favorable for different applications.

• With an appropriate choice of physical setup, local meteorological services can
benefit from the extensive model experiment conducted by using the setup to
monitor hydrometeorological conditions in the regions.

• Overall, integrating global seasonal forecasts and retrospective information into
decision making hence creates beneficial opportunities for the timely mitigation
of extreme events and disaster preparedness of regional water management in
semi-arid regions.
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1.9 Contribution of the Author to the Different Articles
Article I: Seasonal Forecasts offer Economic Benefit for Hydrological Decision Making in Semi-
Arid Regions

Portele, T.C., Lorenz, C., Dibrani, B., Laux, P., Bliefernicht, J., and Kunstmann, H (2021). Seasonal Fore-
casts Offer Economic Benefit for Hydrological Decision Making in Semi-Arid Regions. Sci. Rep. 11, 10581.
https://doi.org/10.1038/s41598-021-89564-y

The research concept was developed by Tanja Portele, Christof Lorenz and Harald Kun-
stmann. Tanja Portele and Christof Lorenz conceived and designed the analysis. The
application of user-oriented forecast verification through potential economic value anal-
ysis for seasonal forecasts was designed and implemented by Tanja Portele. Christof
Lorenz managed and provided the used data of seasonal forecasts SEAS5 and reanal-
yses ERA5. All computations regarding the seasonal forecast value, the final analysis,
summary and interpretation of the results were conducted by Tanja Portele. Berhon Di-
brani performed the calculations of reservoir management and energy production. All
figures, except for the background map of study regions provided by Christof Lorenz,
were prepared by Tanja Portele. The article was mainly written by Tanja Portele with
contributions from and discussion with all coauthors.

Article II: Bias-corrected and Spatially Disaggregated Seasonal Forecasts: a Long-term Refer-
ence Forecast Product for the Water Sector in Semi-arid Regions

Lorenz, C., Portele, T.C., Laux, P., and Kunstmann, H (2021). Bias-corrected and Spatially Disaggregated
Seasonal Forecasts: a Long-term Reference Forecast Product for the Water Sector in Semi-arid Regions.
Earth Syst. Sci. Data 13, 2701–2722. https://doi.org/10.5194/essd-13-2701-2021

The article was mainly written and designed by Christof Lorenz and Tanja Portele.
Christof Lorenz collected and processed the seasonal forecasts, and developed and ap-
plied the bias-correction and spatial diaggregation algorithm. The search for a suitable
reference dataset was a lengthy preparatory task carried out by Christof Lorenz and
Tanja Portele. It involved testing several datasets for different variables in compari-
son with sparse station data and constructing a first spatially disaggregated reanalysis
dataset from ERA5 before the higher resolution ERA5-Land became available. With
the release of ERA5-Land with a horizontal resolution of 0.1�, the preliminary bias cor-
rection tasks were concretized using the new reference data set, and the final seasonal
forecast product was computed by Christof Lorenz. The evaluation of the SEAS5 BCSD
forecasts was conducted by Christof Lorenz and Tanja Portele. In particular, the per-
formance analysis of raw and post-processed forecasts with the Continuous Ranked
Probability Skill Score (CRPSS) was performed by Tanja Portele. She further provided
the figure of CRPSS and computed the climatological characteristics of the study regions
of ERA5-Land. Christof Lorenz initiated the data dissemination via DKRZ WDCC and
the KIT Campus Alpin THREDDS Server and implemented the operationalization of
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the presented approach. Christof Lorenz, Tanja Portele, Patrick Laux and Harald Kun-
stmann reviewed the paper and prepared the final version of the manuscript.

Article III: Ensemble-tailored Pattern Analysis of High-resolution Dynamically Downscaled
Precipitation Fields: Example for Climate Sensitive Regions of South America

Portele, T.C., Laux, P., Lorenz, C., Janner, A., Horna, N., Fersch, B., Iza, M., and Kunstmann, H., (2021).
Ensemble-Tailored Pattern Analysis of High-Resolution Dynamically Downscaled Precipitation Fields:
Example for Climate Sensitive Regions of South America. Front. Earth Sci. 9, 669427. https://doi.or
g/10.3389/feart.2021.669427

Tanja Portele, Patrick Laux, Christof Lorenz and Harald Kunstmann developed the re-
search concept of this article. Tanja Portele performed the WRF model simulations and
conceived the analysis of distributional, temporal and spatial patterns. In particular, the
application and implementation of the ensemble structure-amplitude-location (eSAL)
analysis was designed and conducted by Tanja Portele. Christof Lorenz managed and
provided the used global reference data CHIRPS, MSWEP and ERA5-Land. Natalia
Horna and Maylee Iza managed and provided the used Ecuadorian station reference
data. Tanja Portele performed the analysis and prepared the figures. She was assisted
by Annelie Janner in the temporal pattern analysis. Tanja Portele summarized and in-
terpreted the results. The article was written primarily by Tanja Portele, with inputs
from and discussion with all coauthors.

1.10 Further Related Article
Besides the above mentioned three articles, the author of this thesis contributed to:

Laux, P., Dieng, D., Portele, T.C., Wei, J., Shang, S., Zhang, Z., Arnault, J., Lorenz, and Kunstmann, H.,
(2021). A High-resolution Regional Climate Simulation Physics Parameter Ensemble for Sub-Saharan
Africa. Front. Earth Sci. 9, 792. https://doi.org/10.3389/feart.2021.700249

Abstract: “While climate information from General Circulation Models (GCMs) are usu-
ally too coarse for climate impact modelers or decision makers from various disciplines
(e.g., hydrology, agriculture), Regional Climate Models (RCMs) provide feasible solu-
tions for downscaling GCM output to finer spatiotemporal scales. However, it is well
known that the model performance depends largely on the choice of the physical pa-
rameterization schemes, but optimal configurations may vary e.g., from region to re-
gion. Besides land-surface processes, the most crucial processes to be parameterized in
RCMs include radiation (RA), cumulus convection (CU), cloud microphysics (MP), and
planetary boundary layer (PBL), partly with complex interactions. Before conducting
long-term climate simulations, it is therefore indispensable to identify a suitable com-
bination of physics parameterization schemes for these processes. Using the European
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product ERA-Interim as
lateral boundary conditions, we derived an ensemble of 16 physics parameterization
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runs for a larger domain in Northern sub-Saharan Africa (NSSA), northwards of the
equator, using two different CU-, MP-, PBL-, and RA schemes, respectively, using the
Weather Research and Forecasting (WRF) model for the period 2006–2010 in a horizontal
resolution of approximately 9 km. Based on different evaluation strategies including
traditional (Taylor diagram, probability densities) and more innovative validation met-
rics (ensemble structure-amplitude-location (eSAL) analysis, Copula functions) and by
means of different observation data for precipitation (P) and temperature (T), the im-
pact of different physics combinations on the representation skill of P and T has been
analyzed and discussed in the context of subsequent impact modeling. With the spe-
cific experimental setup, we found that the selection of the CU scheme has resulted
in the highest impact with respect to the representation of P and T, followed by the
RA parameterization scheme. Both, PBL and MP schemes showed much less impact.
We conclude that a multi-facet evaluation can finally lead to better choices about good
physics scheme combinations." (Laux et al., 2021b).

This article comprises the sensitivity analysis of precipitation and temperature fields
on the physical parameterization in the WRF model for Sub-Saharan Africa. Here, a
dynamical downscaling is performed to a horizontal resolution of 9 km for a five-year
period and including 16 ensemble runs. This article is thus the continuation of the test-
ing of a physics-based regional refinement approach for the West African and Sudane-
se-Ethiopian study regions. Tanja Portele substantially contributed to the design of the
study, applied the ensemble-Structure-Amplitude-Location analysis and contributed to
the writing of the article.
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2 Article I

Seasonal Forecasts Offer Economic Benefit for Hydrologi-
cal Decision Making in Semi-arid Regions

Portele, T.C., Lorenz, C., Dibrani, B., Laux, P., Bliefernicht, J., and Kunstmann, H (2021).
Seasonal Forecasts Offer Economic Benefit for Hydrological Decision Making in Semi-
arid Regions. Sci. Rep. 11, 10581. https://doi.org/10.1038/s41598-021-
89564-y

The following is reproduced with permission from Springer Nature. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 4.0 (CC BY).
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Seasonal forecasts offer economic 
benefit for hydrological decision 
making in semi‑arid regions
Tanja C. Portele1,3*, Christof Lorenz1, Berhon Dibrani2, Patrick Laux1,3,4, Jan Bliefernicht3,4 & 
Harald Kunstmann1,3,4

Increasing frequencies of droughts require proactive preparedness, particularly in semi‑arid regions. 
As forecasting of such hydrometeorological extremes several months ahead allows for necessary 
climate proofing, we assess the potential economic value of the seasonal forecasting system SEAS5 
for decision making in water management. For seven drought‑prone regions analyzed in America, 
Africa, and Asia, the relative frequency of drought months significantly increased from 10 to 30% 
between 1981 and 2018. We demonstrate that seasonal forecast‑based action for droughts achieves 
potential economic savings up to 70% of those from optimal early action. For very warm months and 
droughts, savings of at least 20% occur even for forecast horizons of several months. Our in‑depth 
analysis for the Upper‑Atbara dam in Sudan reveals avoidable losses of 16 Mio US$ in one example 
year for early‑action based drought reservoir operation. These findings stress the advantage and 
necessity of considering seasonal forecasts in hydrological decision making.

Climate extremes such as droughts and anomalous wet conditions greatly affect economic wealth, particularly 
in climate sensitive semi-arid  regions1. 40% of the global land area are drylands, inhabited by more than one 
third of the global  population2 with population growth rates up to 4% per  year3. For the majority of drylands, 
especially for semi-arid regions, sustainable water management can be key with respect to the food-energy-water 
nexus. More than one third of semi-arid drylands are cultivated rain-fed or irrigated  farmland2. The importance 
of hydropower generation for states comprising semi-arid regions can be immense with up to two thirds of a 
state’s total power generated at hydroelectric  dams4. With increasing frequencies and intensities of droughts 
and hot extremes, as well as with increasing precipitation  variabilities1,5–8, conflicts of water use and impacts of 
climate change may become critical, increasing the importance of sustainable water management and climate 
proofing in semi-arid regions.

This study addresses the crucial question of whether proactive drought- and extreme event preparedness as 
well as risk mitigation in water management could be provided by the use of seasonal climate forecasts. Deci-
sion makers still hesitate to use seasonal  forecasts9,10. They claim a lack of confidence and credibility due to their 
probabilistic nature and consequent  uncertainties10,11. No explicit action plans could have been developed on the 
basis of those forecasts and the conservative decision making environment further impeded their  use10–12. The 
debate about the value of seasonal forecasts already started in the 1970s when the provision of seasonal climate 
forecasts  emerged13, and still continues, as the optimal use and value of these forecasts is still  unclear9,10,14. To 
implement and foster the usage of seasonal forecasts, the concrete economic benefits need to be demonstrated 
when decisions and actions are forecast-based. Uncertainties have to be accounted for and economically benefi-
cial probability thresholds for decisions need to be  developed15. This would allow decision makers to understand 
the potential benefits of using probabilistic seasonal forecasts.

The assessment of the potential economic value (PEV)16–18 is a direct way to achieve action recommendations 
based on forecast probabilities without having detailed operational information and interaction with a decision 
maker. It is a superordinate base for decisions that incorporates a neutral decision environment (no risk aver-
sion) with costs and losses that arise from taking forecast-based action, and a valuation of the decisions based 
on relative economic  savings16. For water management, the estimation of costs and losses associated with deci-
sions made at reservoirs and the consideration of a decision’s economic consequences should be key approaches 
for dam operations, facilitating access to the economic value approach. Most studies about the economic value 
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of forecasts only involve theoretical examples without quantification of the expected costs and losses, or used 
the economic value as a further measure to assess the goodness of the seasonal  forecasts18–22. Monetary values 
related to forecasts are only provided by few studies, and not in the direct context of the potential economic 
value  assessment23,24. Regarding the energy production at reservoirs, costs and losses of dam operations can be 
specified quite accurately for use in this approach. With energy production at dams playing a major role in many 
 countries4, a possible optimization or improvement of the dam operations by the usage of seasonal forecasts 
could provide a huge benefit, including proactive disaster planning.

The arising benefits when basing early action on hydrometeorological seasonal forecasts for extreme events 
like drought, very warm and very wet months at forecast horizons up to seven months ahead will be demonstrated 
for seven selected climate-sensitive, semi-arid, and in parts highly-managed river basins including mountain-
ous and flat areas with extents from tens of thousand to millions of square kilometers. These are the river basins 
of São Francisco with an artificially created extension (ESF) in Northeast Brazil, of Catamayo-Chira (Chira) in 
South Ecuador and North Peru, of Karun in Southwest Iran, of the Nile tributaries Tekeze-Atbara (Atbara) and 
Blue Nile in Ethiopia and Sudan, as well as of Niger and Volta in West Africa. Hit by several severe droughts and 
floods during the last  years7,25–27, all these semi-arid study regions depend on sustainable multipurpose water 
resources management. Their severe vulnerability to climate variability can be explained by a combination of 
high shares of population living in the especially dry tailwaters of the  basins28, high dependencies on irrigation 
or rain-fed agriculture and on hydroelectric power supply by large  dams4, together with a projected aggravation 
of climate change signals with higher variability of seasonal  precipitation29 and prolonged, more intense droughts 
with intermittent heavy  rainfalls6,30,31.

For the assessment of economic value, we use the latest seasonal forecast product SEAS5 by the European 
Centre for Medium-Range Weather Forecasts (ECMWF) at a resolution of 35  km32. Providing the main input 
for water management, we focus on the PEV analysis of precipitation and temperature forecasts of SEAS5. The 
evaluation method and the selection of analyzed extreme events and evaluated quantities based on commonly 
used drought indices and separate probability distributions for reference and forecast data allow for the applica-
tion of raw, uncorrected seasonal forecasts.

With this analysis, we reveal time horizons across which economic benefits exist, and evaluate differences 
between the considered regions and extreme events. For an in-depth example for the Upper Atbara Dam in 
Sudan, we calculate the incurred economic consequences of reservoir operations adapted to drought condi-
tions. For water management policies, we further suggest forecast probability thresholds for early action plans 
based on criteria for minimizing the expenses (expense minimization) and maximizing the number of hit events 
(event maximization).

Results
Increasing frequency of extreme events in semi‑arid regions. All semi-arid study basins in South 
America (Chira, Extended São Francisco), Africa (Niger, Volta, Atbara and Blue Nile) and West Asia (Karun) 
are characterized by a distinct rainy and dry season (Fig. 1). Using the reference data of ERA5 reanalyses, peak 
monthly precipitation ranges between 120 and 300 mm. Monthly temperatures are rather constant, except for 
the Karun basin with a pronounced annual cycle of about 30 ◦ C. For consistency in the following analysis, the 
rainy season is defined as the main four months of the rainy season, plus the preceding and succeeding month 
(Fig. 1).

For the occurrence of extreme events from 1981-2018, strong signals of climate change are observed across 
the study regions (Fig. 2). On average, the relative frequency of very warm T > Q80 (cold, T < Q20) months 
increases (decreases). The trend for very wet months ( P > Q80) is negative, while the frequency of six-month 
droughts indicated by the indices of standardized precipitation (SPI6) and of standardized precipitation and 
evapotranspiration (SPEI6) smaller than -1 shows a positive trend. The annual frequency range of individual 
river basins (shaded areas in Fig. 2) is largest for the drought indices, illustrating the large variability among the 
basins with respect to droughts. All trends in the basin-averaged relative frequency of extreme events shown in 
Fig. 2 are significant at a significance level of α = 0.05 (non-parametric Mann-Kendall test, see Supplementary 
Information). Some trends of individual basins may not be significant. We excluded Chira in this trend analysis 
of climate extremes in Fig. 2, as not a single trend is found to be significant (also see Supplementary Information).

The occurrence of extreme events in reanalyses is shown together with the respective probability of sea-
sonal (re-)forecasts SEAS5 from 1981–2018 in Fig. 3, for the example of drought conditions (over one month: 
SPEI1 < −1 , and over six months: SPEI6 < −1 ) during the basins’ rainy seasons. An increasing occurrence and 
accumulated SEAS5 probabilities of drought conditions can be identified in the last decade (except for Chira). 
Here, special emphasis can be placed on the 2011–2017 period of long-term drought conditions (SPEI6 < −1 for 
ERA5) in ESF, also forecast with probabilities of up to 80 and 90% (SPEI6 < −1 for SEAS5), during all included 
rainy seasons. However, lower forecast probabilities of around 40% are also present. For Niger and Volta, the 
period of 1981-2001 is mainly dominated by three drought events in 1983, 1987 and 1997; after 2001 both long-
term and short-term drought events become more frequent and are frequently forecast. For all sub-Saharan 
African basins between 2015 and 2017, an accumulation of occurred drought periods and elevated forecast 
probabilities can be identified. Long-term drought conditions (SPEI6) in the study basins, e.g. for Karun in 
1999–2001, 2007–2010 and 2018/2019, for the sub-Saharan African basins in 2009 and 2015, and for Chira from 
2002–2005, were forecast with variable probabilities ranging from 10 to 90%. A strong variability in monthly rainy 
season’s precipitation can be observed in the ESF (1990–1994, 2002–2007) and Karun (1985–1987, 1991–1999, 
2010–2016) basins with various single months with SPEI1 < −1 . For the other basins in Africa, in contrast, 
short-term and long-term drought conditions coincide to a higher degree, suggesting less variability within 
single months of the rainy season.
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Economic benefit of forecast‑based action for extreme events. The comparison of forecast prob-
abilities and drought occurrences in Fig. 3 already demonstrated the complexity of deciding whether an event 
was forecast or not, and the need to identify a probability threshold pth with which this decision is made. For the 
seven semi-arid river basins, the potential economic value PEV is shown for the extreme events of very warm 
months ( T > Q80), very wet months ( P > Q80), and for drought months (SPEI < −1 and SPI < −1 ) during the 
rainy seasons as a function of the cost-loss ratio C/L and pth in Fig. 4. Per event, two lead times, i.e., for how many 
months ahead the forecast is valid (Lead 0: current month ahead, Lead 5: six months ahead), or two aggregation 
scales (SPI1/SPEI1: one month, SPI6/SPEI6: six months), are provided. Figure 4 includes all information needed 
for the choice of a beneficial pth for each C/L considering the two criteria of expense minimization and event 
maximization. For both criteria, the range of pth with maximum PEV of each C/L is relevant; however, the event 
maximization criterion further includes the condition that the highest possible number of extreme events should 
be caught by preventative early action, i.e., a maximization of the hit rate H. Here, we suggest H > 0.5 as the 
lowest threshold for this criterion to always ensure a higher hit rate than miss rate of an event ( H > 0.5 is cross-
hatched in Figs. 4 and 5). This therewith involves a certain degree of risk aversion of the decision maker. For the 
example of a warm extreme event ( T > Q80) with Lead 0 in the Karun basin and for expense minimization, a 
user with C/L = 0.4 would identify probability thresholds between 0.45 and 0.85 as a beneficial trigger range. 
However, for event maximization, the same user ( C/L = 0.4 ) would need to use 0.15 < pth < 0.45 when only 

Figure 1.  Map of basin areas and climate diagrams with temperature and precipitation. For the seven semi-
arid river basins from West to East: Chira and Extended São Francisco (ESF) in South America, Niger and 
Volta in West Africa, Blue Nile and Atbara in Northeast Africa, and Karun in West Asia. Basin sizes range from 
O(104) km2 to O(106) km2 , with basin altitudinal differences of less than 500 m to about 4000 m. The location 
of the Upper Atbara Dam Complex is shown with a black dot on the map. The grey shaded area in the climate 
diagrams defines the main four months of the rainy season, plus the preceding and succeeding month, used for 
the analysis as “rainy season”. The red bars denote the six-month aggregation periods of a drought index for the 
analysis during the respective rainy seasons. Coastlines in the map originate from the Global Self-consistent, 
Hierarchical, High-resolution Geography Database (GSHHG)48. Basin boundaries were produced with the 
HydroSHEDS  dataset49 and modified for consistency with their respective definitions by local authorities and 
stakeholders in the study regions.
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including potential economic values with high hit rate ( H > 0.5 ). When further considering the uncertainty of 
estimation of PEV, i.e., the robustness of the choice of pth (red line in Fig. 4, where 90% of bootstrap samples 
give a PEV > 0.1 ), a beneficial range of pth for the user with C/L = 0.4 could only be provided for the expense 
minimization criteria. For the event maximization criteria, this user would be well-advised to base decisions 
on the climatological strategy. In this case for C/L = 0.4 , this would be never to act as C/L is smaller than the 
climatological frequency of the event.

For all study regions, actions based on short forecast horizons (Lead 0, SPEI1/SPI1) possess higher potential 
economic values (PEV) and larger ranges of possible user situations and beneficial probability thesholds (ranges 
of C/L and pth with PEV > 0.1 ) than actions based on the respective long-range forecasts (Lead 5 and aggregation 
periods over 6 months SPEI6/SPI6). Provided that action protocols are already established, the SEAS5 seasonal 
forecasts released on the 6th of each month can thus provide promising decision support for monthly action 
adaptations in addition to medium-range weather forecasts. Later release dates would diminish the usefulness of 
high-valued Lead-0 or SPEI1/SPI1 forecasts. The actual range of users (C/L) that can benefit from forecast-based 
action depends on the region and pth : Among the basins, Chira provides the largest ranges of possible users and 
of beneficial probability thresholds for the warm ( T >Q80) and wet ( P >Q80) extreme events of both shown 
lead times. For drought forecasts of SPEI1 and SPI1, however, the ESF and Atbara basins show the largest areas 
of PEV. For Karun, mainly forecast horizons of one month (Lead 0 and SPEI1/SPI1) can offer economic value to 
users. For all regions, basing action on temperature forecasts ( T > Q80) of Lead 0 is beneficial for a wide range 
of pth . The regions have in common that very limited PEV can be achieved by action based on Lead 5 forecasts 
of P > Q80 and for forecasts of SPI6 < −1 . Generally, the consideration of sampling uncertainty in the PEV 
estimation (red contour in Fig. 4) further reduces the ranges of users and probability thresholds with value. The 
comparison of the two drought indices SPEI6 and SPI6 for long-term drought events reveals that the inclusion 
of temperature in SPEI can increase the value of seasonal forecast-based action for most basins. Despite limited 
ranges of users and probability thresholds, PEV values above 0.4 are still possible for SPEI6 < −1 , allowing a 
longer-term decision-support for drought conditions over the rainy seasons.

Considering the maximum potential economic value PEVmax over all users (black solid line in Fig. 5), the 
event maximization criterion (cross-hatched) clearly cuts down the range of beneficial pth towards lower thresh-
olds. Here, the definition of the maximum potential economic value as the difference between hit and false 
alarm rate ( PEVmax = H − F ) further reveals that the hit rate can still be higher than the false alarm rate when 
PEVmax > 0 , however, the event maximization criterion of H > 0.5 (hit rate higher than miss rate) may no longer 
be valid. Exemplary for individual cost-loss ratios, we chose C/L = 0.36 and 0.2, that are also relevant for the real 
case study at the Upper Atbara Dam of the next section (also see Table 1). For C/L = 0.36 (blue line in Fig. 5), the 
effects of the different criteria on the choice of pth become even more pronounced: Although the maximum PEV 
for this C/L would be achieved at higher threshold probabilities (expense minimization), e.g. around pth = 0.6 
for wet extreme events of Lead 0 in Chira, or around pth = 0.4 for warm extreme events of Lead 5 in ESF, lower 
pth around 0.35 and 0.2, respectively, would be preferable in the same examples for event maximization. For other 
events and basins, like for the Lead 5 warm extreme events in Blue Nile, or for drought conditions SPEI1 < −1 
in Niger, the probability threshold with maximum PEV for the cost-loss ratio of 0.36 does not change with the 
inclusion of the event maximization criterion. For some regions and events, no beneficial pth might even be found 
under the event maximization criterion for higher cost-loss ratios like C/L = 0.36 , though showing potential 
economic value around 0.2 at higher pth . This is for example the case for Chira and P >Q80 for Lead 5, and for 
Volta and SPI1/6 < −1 . For lower cost-loss ratios, e.g. C/L = 0.2 (red line in Fig. 5), this difference in the two 
criteria is less evident, as higher PEV values occur at lower probability thresholds for the extreme events, i.e., 
beneficial forecast-based action for those users is already provided at higher forecast uncertainty.

Figure 2.  Relative frequency of climate variables from 1981–2018. From left to right the relative frequency of 
ERA5 mean temperature (T, left), total precipitation (P, middle) and drought index (SPEI, right) exceeding the 
respective quantile event thresholds (< Q20, > Q80,< −1 ) are shown for the basin-averages of Extended São 
Francisco, Niger, Volta, Atbara, Blue Nile and Karun. The thick solid lines denote the mean relative frequency 
over the 6 basins, and the shaded areas encompass the thin solid lines for the 5-year moving averages of relative 
frequencies of the individual basins.
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Further summarizing PEVmax over all probability thresholds, the effect of lead time and aggregation scale 
on the value of forecast-based action for the different extreme events can be studied (Fig. 6). For most regions, 
forecast-based action for warm extreme events ( T > Q80) is most valuable and maintains higher maximum 

Figure 3.  Forecast probability and occurrence of short- and long-term drought. The probability of SPEI1 < −1 
(1) and SPEI6 < −1 (6) for SEAS5 (S) and ERA5 (E) are provided for the rainy seasons of the seven semi-
arid regions from 1981-2018. The confinement of the analysis to the basins’ rainy seasons allows a simplified 
overview of drought events and respective forecast probabilities when droughts are mainly driven by rainfall 
shortage. The used time periods for aggregation of SPEI6 are depicted with the red bars in Fig. 1.
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potential economic value with increasing lead time than those for wet extreme events ( P > Q80). For warm 
extreme events, Lead 0 forecasts attain maximum potential economic values between 0.55 and 0.8, whereas 
for wet extreme events, PEVmax of Lead 0 forecasts ranges between 0.38 and 0.64. The uncertainty of PEVmax 
estimation is taken into account with the bootstrap confidence range (dashed lines in Fig. 6), e.g., specifying a 
range of 0.64 < PEVmax < 0.98 for warm extreme events of Lead 0 in Chira with the 10% and 90% of bootstrap 
percentiles. Except for Chira with a smooth decrease of maximum potential economic value for warm extreme 
events with lead time, all regions show an abrupt decline of PEVmax from Lead 0 to Lead 1. For most regions, 
this strong drop is larger than the decline of PEVmax from Lead 1 to Lead 5. The most abrupt drop of PEVmax is 
evident for wet extreme events in ESF from 0.75 of Lead 0 to 0.24 of Lead 1. For drought conditions, the decline 
with longer aggregation scales is less pronounced than the decline with single lead times for the wet extreme, 
as still higher-valued months of lower forecast horizon are included in SPI/SPEI. In basins like ESF, Blue Nile 

Figure 4.  Potential economic value for forecast-based action as a function of probability threshold and user 
cost-loss ratio. The filled contours denote the potential economic value PEV of SEAS5 with reference ERA5 
for extreme events of the seven river basins for rainy seasons of the hindcast period 1981-2016. The extreme 
events include T > Q80 and P > Q 80 for leadmonths 0 (L0) and 5 (L5), as well as SPEI < −1 and SPI < −1 for 
aggregation scales over one (SPI1/SPEI1) and 6 months (SPI6/SPEI6). Only valuable conditions are color-coded, 
i.e., PEV > 0.1 . The uncertainty of the estimation of PEV is assessed with bootstrap resampling, with the red 
contour indicating where 90% of bootstrap samples give a PEV > 0.1 . The hatched area further represents 
where PEV > 0.1 and the hit rate H > 0.5 to base the choice of pth on the event maximization criterion.
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and Volta, where PEVmax of Lead 5 for wet extreme events is close to zero, longer aggregation scales of the dry 
extreme (SPI6 < −1 ) still attain values between 0.24 and 0.38. For SPEI the decrease of PEVmax with longer 
aggregation scales more resembles the one of the warm extreme with increasing lead time, with relatively high 
maximum potential economic values between 0.28 and 0.54 still for longer aggregation scales. The inclusion of 

Figure 5.  Maximum potential economic value as a function of probability threshold. PEVmax of SEAS5 with 
reference ERA5 is depicted for extreme events of the seven river basins for rainy seasons of the hindcast period 
1981-2016 (black line). The uncertainty of the estimation of PEVmax is assessed with the confidence range 
between the 10% and 90% quantiles of bootstrap resampling (shaded area). The red and blue lines denote the 
PEV for cost-loss ratios of 0.2 and 0.36, respectively. The extreme events include T > Q80 and P > Q 80 for 
leadmonths 0 (L0) and 5 (L5), as well as SPEI < −1 and SPI < −1 for aggregation scales over one (SPI1/SPEI1) 
and 6 months (SPI6/SPEI6). The cross-hatched area further represents where the hit rate H > 0.5 to base the 
choice of pth on the event maximization criterion. Note: From its definition, PEVmax represents the PEV when 
the cost-loss ratio C/L is equal to the climatological frequency of the event (see Equation 2), as in this special 
case both options of never or always acting create the same expense. Climatology can not advise the decision 
maker and any forecast is of maximum value. The climatological frequency of a Q80-event and SPI/SPEI < −1 
is 0.2 and 0.159, respectively. Therefore, PEV(C/L = 0.2) (red line) and PEVmax (black line) for the Q80-events 
overlap and accordingly cannot be seen separately.
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temperature attaining high values still at longer lead times in the drought index of SPEI allows for higher PEVmax 
at long aggregation scales relative to the solely precipitation based drought index of SPI.

Water level management and energy production during drought reservoir operations: the 
Upper Atbara Dam case. The calculation of the cost-loss model for drought events is demonstrated for 
the water level management and energy production at the Upper Atbara Dam in Sudan. Though having two 
dam operation examples including and neglecting sediment restrictions for a reservoir drawdown, this study 
cannot suggest completeness of all relevant processes, decisions and measures. However, it is a demonstration of 
application of the cost-loss model and the above generated results.

Having no operation restrictions on the Upper Atbara Dam, water level changes are governed only by a 
reservoir operation to maximize electrical energy generation. The standard operation at the Upper Atbara Dam 
with the peak of the rainy season in July/August is a gradual lowering of the reservoir water level from the full 
supply level (FSL) at 521 m asl by about 10 m from January on to be able to take advantage of the stored reservoir 
volume and to absorb the inflow during the rainy season (red dashed line in Fig. 7a). As the expected inflow 
comes, the reservoir is filled again to the FSL.

In a dry year, the water level curve differs in July and August when the operator first still awaits the maximum 
inflow to come, but needs to fill the reservoir until September to FSL (black dashed line in Fig. 7a). The latter 
requires a high amount of the inflow for filling as the expected peak inflow was absent. Compared to a normal 
year, this results in a strong decline by about 30% in energy production from July to September (black dashed 
line in Fig. 7b).

With prior knowledge of drought conditions during the rainy season, i.e., applying drought operations, the 
reservoir is kept at a higher water level with higher heads (black solid line in Fig. 7a), lowering the energy pro-
duction in the first phase by about 25%, but allowing for considerably higher energy production (+40%) in the 
second phase compared to the standard operations (black solid line in Fig. 7b).

If a normal year was falsely operated as a dry year, e.g., a seasonal forecast falsely predicted drought condi-
tions for the rainy season of a normal year, the reservoir with the reduced water level by only 3 m in the first 
phase is not able to absorb the normal amount of inflow (red solid line in Fig. 7a). The reservoir operates at its 
maximum capacity and part of the inflow needs to be passed through the spillway, without the usage for energy 
production (red solid line in Fig. 7b).

For the decision whether to modify the reservoir operation, i.e., to take preventive action for a coming 
drought event or not, the decision-maker needs to evaluate the economic consequences. The losses ( Ldrought ), 
when the drought occurs but no action is taken, are calculated from the yearly difference of the earned money 
applying standard operations during a normal year (Normal-Standard, 203.5 · 106US$ a−1 ) and during a dry year 
(Dry-Standard, 172.4 · 106US$ a−1 ), and amount to 31.1 · 106US$ a−1 (Table 1). The costs C = 6.0 · 106US$ a−1 
arise from the yearly difference of the earned money during a normal year with standard operations (Normal-
Standard) and a normal year that is falsely treated as a drought year (Normal-Drought, 197.5 · 106US$ a−1 ). For 
correctly-taken action, costs C and unavoidable losses Ldrought− L of in total 20.9 · 106US$ a−1 incur, determined 
from the difference of earned money in a normal year with standard operations and of a dry year with drought 
operations (Dry-Drought, 182.6 · 106US$ a−1 ). L are the potential losses protected by the action, and result in 
16.2 · 106US$ a−1 . The characteristic cost-loss ratio C/L of preventive drought operations for the Upper Atbara 
Reservoir, i.e., the cost of acting as a fraction of the potential loss prevented by the action, thus is 0.37.

With the closest resolvable C/L = 0.36 , the resulting maximum PEV of 0.4 (expense minimization) for 
drought events of SPEI1 in the Atbara basin is obtained for pth = 0.6 (Fig. 5). Considering the event maximi-
zation criterion, a lower threshold around pth = 0.32 is beneficial, however with lower PEV of 0.35. For the 
larger timescales of SPEI6, both expense minimization and event maximization criteria result in most beneficial 
forecast-based action for pth = 0.32 with PEV = 0.27.

Table 1.  Contingency table for forecast-based action. For the four action-event scenarios, the economic 
consequences are shown. For the case study of drought and standard reservoir operations at the Upper Atbara 
Dam in Sudan, the costs and losses for different outcomes of the decision model without operation restrictions 
(upper line of reservoir operations) and with sediment sluicing (lower line of reservoir operations) are 
provided. The resulting ratio of costs for action (C) and avoidable losses (L) for a drought operation without 
restrictions and with sediment sluicing are 0.37 and 0.19, respectively.

No extreme event Xcrit is not exceeded Extreme event occurs Xcrit is exceeded

Early action based on forecast pth is exceeded
False alarms (f)
Futile action (C)
Unnecessary costs for action

Hits (h)
Valuable action
(Part of) losses avoided, costs for action 
( Levent− L+ C)

Drought reservoir operation C = 6.0 · 106US$ a−1

C = 0.3 · 106US$ a−1

Ldrought− L+ C = 20.9 · 106US$a−1 → 
L = 16.2 · 106US$ a−1

Ldrought− L+ C = 16.4 · 106US$ a−1 → 
L = 1.6 · 106US$a−1

No early action pth is not exceeded
Correct rejects (r)
Valuable inaction
No costs or losses (-)

Misses (m)
Erroneous inaction
No losses avoided ( Levent)

Standard reservoir operation 0
0

Ldrought = 31.1 · 106US$ a−1

Ldrought = 17.7 · 106US$ a−1
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At high sediment-trapping dams in semi-arid regions often sediment sluicing operations during the peak of 
the rainy season are required. Here, the reduction of the reservoir water level to the minimum operation level 
(MOL) during high inflows increases the bottom shear stress maintaining incoming sediment in suspension and 
remobilizing deposited sediment with only limited or no reservoir deposition.

At the Upper Atbara Dam, the MOL at 510 m asl is usually held for six weeks during July and August and 
may be extended if inflows still exceed 3000 m3 s−1 . In general, the operation restriction by sluicing reduces the 
energy production in a normal year by about 13% due to lower heads (dark blue dashed line in Fig. 7b).

In a dry year, the same operation restriction for sluicing with a steady drawdown to MOL is performed (light 
blue dashed line in Fig. 7a). As inflows are lower, about 23% less energy is produced from July until September 
compared to a normal year (light blue dashed line in Fig. 7b).

With the application of drought operations, i.e., having prior knowledge of drought, the water level is first 
more slowly lowered, also reducing the produced energy in this phase by 14% (light blue solid line in Fig. 7). 
Then, the water level is more rapidly lowered down to the sluicing level, thus allowing for a higher energy pro-
duction (+17%) from July until September compared to standard sluicing operations due to higher heads. As 
the expected inflow is low and carries less sediments than high inflow, the period of sediment sluicing is reduced 
to four instead of six weeks.

Falsely applied drought reservoir operations in a normal year first show a lower energy production and then 
a higher energy production (dark blue solid line in Fig. 7b). The yearly difference in energy production between 
the standard (Normal-Sluicing-Standard, 177.3 · 106 US$ a−1 ) and drought reservoir operation (Normal-Sluicing-
Drought, 177.0 · 106 US$ a−1 ) only amounts to 0.17%.

Similarly to the case without reservoir operation restrictions, the costs and losses for the drought oper-
ation including sediment sluicing can be calculated (Table 1). The costs for drought operations amount to 
0.3 · 106 US$ a−1 . The total losses of a dry rainy season Ldrought are 17.7 · 106 US$ a−1 (with Dry-Sluicing-Standard: 

Figure 6.  Maximum potential economic value for forecast-based action. PEVmax of SEAS5 with reference 
ERA5 is shown for the seven river basins for rainy seasons of the hindcast period 1981-2016. Colored dots 
represent the fully evaluated PEVmax for the events of T > Q80 and P > Q 80 for leadmonths 0 (L0) and 5 (L5), 
and for the events SPEI < −1 and SPI < −1 for aggregation scales over one (SPI1/SPEI1) and 6 months (SPI6/
SPEI6). The uncertainty of the estimation of PEVmax is assessed with the confidence range between the 10% and 
90% quantiles of bootstrap resampling (dashed line). PEVmax is also given for temperature and precipitation 
of leadmonths 1-4 and 6, and for drought events of scales over 3 and 4 months (black dots) with respective 
bootstrap confidence ranges.
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159.6 · 106 US$ a−1 ), of which L = 1.6 · 106 US$ a−1 can be avoided by drought reservoir operations (with Dry-
Sluicing-Drought: 160.9 · 106 US$ a−1 ). The resulting cost-loss ratio is 0.19.

With these identified costs and losses (closest resolvable C/L = 0.2 ), seasonal drought forecasts of ECWMF 
SEAS5 generate potential economic values between 40 and 55% for both short (SPEI1) and long (SPEI6) time 
horizons, and for both the event maximization and expense minimization criteria (Fig. 5). The most beneficial 
pth is therewith identified at around 30% for high hit rates above 50%.

Discussion
This study presents how decision-makers can optimize water management by the use of seasonal forecasts and 
directly obtain robust beneficial probability thresholds triggering preventive action on the chosen criterion of 
either expense minimization or event maximization. This valuation approach is a tool for user-oriented, economic 
decision-related verification of probability forecasts, away from the classical approach of evaluating forecasts 
based on skill  scores33,34, whose statistics may not be conclusive in a decision making environment. Of course, 
the classical quality assessment based on skill scores and the economic value assessment should complement each 
other. However, the aims and advantages behind both approaches are  different35: The skill/quality approach aims 

Figure 7.  Reservoir management at the Upper Atbara Dam Complex in Sudan. (a) Reservoir water level 
(shown as 5-day moving average) and (b) energy production (shown as 30-day moving average) for a rainy 
season in a normal year without operation restrictions (red lines, “Normal”), for a rainy season under drought 
conditions without restrictions (black lines, “Dry”), for a rainy season in a normal year including sediment 
sluicing (dark blue lines, “Normal-Sluicing”), and for a rainy season under drought conditions including 
sediment sluicing (light blue lines, “Dry-Sluicing”, in (a) identical to dark blue line). The dashed lines 
denote reservoir management with standard reservoir operations. The solid lines show the altered reservoir 
management for drought conditions, i.e., having prior knowledge of drought. In (b), the light gray dashed line 
marks the maximum possible energy production (7.5 GWh d−1 ), i.e., the maximum reservoir capacity. Any 
additional inflow would need to be passed through the spillway, without the usage for energy production.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10581  |  https://doi.org/10.1038/s41598-021-89564-y

www.nature.com/scientificreports/

at the improvement of correspondence of forecasting systems with observations as well as the intercomparison 
of different forecasting systems. It has the advantage of identifying their strengths and flaws with respect to dif-
ferent quality skill measures (e.g., forecast bias, distribution, sharpness). The valuation approach has so far been 
applied for, e.g., promoting the usage of ensemble  forecasts16, verification of seasonal  forecasts20,36, and even for 
decision-support of preventive humanitarian  action18. Compared to a quality skill score analysis, the valuation 
approach as used in our study aims at building customer confidence in forecast products by demonstrating the 
economic benefit realized by decision-makers through the use of the forecasts. It has the clear advantage of 
providing decision-support for individual users with an individual choice of beneficial probability thresholds 
for a special event. A common skill score of forecast quality aggregates the forecast performance over all users 
(cost-loss ratios) and probability thresholds. For example, PEVmax = H − F , also known as the Kuipers Skill 
 score16, is the maximum economic value over all C/L and pth . In our case, skillful forecasts ( PEVmax > 0 ) for 
all lead times and scales were found for all considered extreme events (except for Blue Nile P > Q80 of Lead 5, 
Fig. 6), however, the individual cost-loss situation of an action determines the individual value and action trig-
ger. For certain users, skillful forecasts might involve non-positive economic value (Figs. 4 and 5). Considering 
the aggregation timescale of the drought index SPEI < −1 , the forecast skill PEVmax only decreases slightly with 
longer timescales (Fig. 6). However, the confident range of pth and cost-loss situations with PEV > 0.1 may 
shrink drastically from SPEI1 to SPEI6 (Fig. 4), demonstrating the necessity of a detailed look at PEV for each 
C/L and pth (Fig. 4). Therefore, skillful seasonal forecasts of hydrometeorological events per se are not necessarily 
valuable to a specific decision maker and a considered action.

In our analysis, we used uncorrected, possibly biased forecasts. This is reasonable due to the usage of relative 
thresholds, i.e., quantiles of the distributions of forecast and reference data separately, instead of absolute values, 
as well as drought indices of separate forecast and reference distributions. Other  studies37,38 merged the reference 
and forecasts data in their calculation of drought indices and therefore required the two datasets to have at least 
the same mean climate, i.e., they required linear-scaling bias correction of monthly data per lead time. With our 
separate treatment of distributions of forecast and reference data, mean and distributional biases that would be 
removed by linear scaling or quantile mapping bias correction are implicitly taken into account. Even ensemble 
calibration  methods39 won’t have an effect on the relative quantile values of separate reference and forecast dis-
tributions, as they do not change the relative location of the quantile value within the system’s distribution when 
only mean and standard deviation of the ensemble are changed. Forecast distributions are further used for each 
lead time and scale separately, diminishing the evident effect of model drift with lead time. Uncorrected raw 
forecasts can thus be used as long as (1) distributions are separately treated for reference and forecast data, (2) the 
temporal (e.g. monthly; per lead time) and spatial (basin-averages) resolutions are preserved and (3) no absolute 
values or event thresholds (e.g., > 5 mm) are used. Nevertheless, more sophisticated post-processing measures, 
such as multivariate bias  correction40 or even dynamical  downscaling41 may show an effect on the forecast value.

Regarding the transferability of the results, the catchment size was found to have only a minor impact on the 
economic value of seasonal forecasts. The results rather seem to be independent of the basin size. For differences 
in economic value between the basins, general circulation patterns and their predictability may play a larger role 
(e.g., ENSO temperature effect in Chira, influence of short predictability of westerlies in Karun). Consistently 
among all considered semi-arid basins that are far apart from each other in South America, Africa and West-Asia 
and with different dominating weather systems, higher PEV and larger beneficial ranges of probability thresholds 
and possible user situations were evident for lower forecast timescales than for higher ones (Fig. 4). The warm 
extreme events ( T > Q80) were shown to provide the respective highest values of seasonal forecasts, even for 
higher lead times (Fig. 6). Similarly, drought forecasts (SPEI) allowed for high PEV even at high aggregations 
scales (SPEI6). This consistency of a high value among all different study regions might indicate a transferability 
of the results to other regions. Economic benefits could likewise be expected from temperature and drought 
forecasts of even high forecast horizons up to six months, and from precipitation of at least one month ahead. As 
in our study regions, certain users may thus still benefit from large forecast horizons. However, further studies 
still must confirm this validity for other regions of the world.

We provided an in-depth example for water reservoir management at the Upper Atbara Dam in Sudan for 
energy production as a real-case practical application of the cost-loss decision model. For this example, dam 
operation standards are based on practical experiences of the dam management agency, however, flexibility of 
the reservoir manager is also possible when using other fix dates or even when considering energy demand and 
price. Thus, a wide range of cost-loss ratios can be obtained controlled by different underlying assumptions. 
Furthermore, the cost-loss situation was focusing on hydropower generation, not yet considering, e.g., costs and 
losses for irrigation. With this, we provided a straightforward application of the cost-loss decision model for 
forecast-based action. We further promote the implementation of seasonal ensemble forecasts for concrete water 
management operations at the Upper Atbara dam. The given example there, though including limitations and 
being demonstrated for only a specific year so far, showed that up to one half ( 16.2 · 106 US$) of the losses associ-
ated with the energy production in a drought year can be avoided if altered management operations are applied.

The increase shown in the frequency of droughts and warm extremes during the last decades together with 
high population growth rates in semi-arid regions, raise the pressure on multipurpose reservoirs, such as the 
Upper Atbara Dam. Longer-term sustainable planning several months ahead prior to the next rainy season 
becomes even more crucial. With rising demands on the water management, switching towards beneficial sea-
sonal-forecast-based early actions saves expenses and aids climate proofing. Consequently, we stress the advan-
tage and necessity of considering seasonal forecasts in hydrological decision making.
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Methods
Seasonal climate forecast and reference data. SEAS532 is the latest global seasonal forecast system of 
the European Centre for Medium-Range Weather Forecasts (ECMWF) launched in 2017 including 51 ensem-
ble members. For verification purposes, SEAS5 reforecasts are provided for the period 1981-2016 including 25 
ensemble members. Both forecasts and reforecasts are initialized on the first day of each month and provide a 
forecast horizon of 7 months. Its horizontal resolution is approximately 36 km. SEAS5 is a coupled atmosphere-
ocean-sea-ice model that is particularly powerful in the prediction of El Niño Southern Oscillation (ENSO)32.

Being aware of the uncertainty of global precipitation reference products, and further requiring intrinsic 
dependence structure and interaction between, as well as the temporal coincidence and physical consistency of 
precipitation and temperature, the climate reanalysis product  ERA542 is used as reference for both precipitation 
and temperature. Being system-consistent with SEAS5, ERA5 is offered by the ECMWF with a reanalysis period 
from 1979 to within 3 months of real time. Historical observations are combined using advanced modelling and 
data assimilation systems producing global, consistent estimates of climate variables at a horizontal resolution 
of 30 km.

For this study, monthly area-weighted basin averages of ERA5 and SEAS5 2-m mean temperature and pre-
cipitation are used. To preserve the original data and to avoid artifacts due to interpolation methods, basin 
averages were produced with masks for reference and forecast grids separately. The applied evaluation methods 
are all based on relative values, i.e., quantiles of the distribution of values per ERA5 and per SEAS5 separately. 
This approach of separate distributions of reference and forecast data implicitly performs a bias correction of 
systematic biases in mean and quantile values and therefore does not require additional prior bias correction of 
the forecast data. Also model biases of the seasonal forecasts, i.e., biases that drift over lead time, are implicitly 
taken into account by comparing only the same lead times of each month with one another. This implies differ-
ent distributions and thus quantile values for individual lead times per month making use of the long period of 
available re-forecasts.

Drought indices. The standardized precipitation index (SPI) is a drought index based only on precipitation 
 data43. The use of SPI assumes that droughts are controlled mainly by the temporal variability in precipitation, 
neglecting the variability in temperature or potential evapotranspiration (PET).

As the efficiency of drying resulting from temperature anomalies can be as high as that due to rainfall short-
age, the standardized precipitation evapotranspiration index (SPEI) also includes  PET44. Consequently, unlike 
SPI, SPEI is sensitive to global warming and also indicates drought conditions for increased evapotranspiration 
due to increased temperature despite of normal precipitation  conditions44.

Both SPI and SPEI have a multi-temporal nature and their variables of precipitation and water surplus/deficit, 
respectively, are aggregated at different time  scales43,44. Unlike in historical analyses, the application of seasonal 
forecasts suggests the calculation of the multi-month scale of SPI/SPEI in a forecast - not in a retrospective - man-
ner, i.e., SPI6 and SPEI6 of June specify the accumulation from June to November for both reference and forecast. 
For the calculation of both SPI and SPEI, probability distributions of reference and forecast data are separately 
treated, i.e., data are not merged, allowing again the use of uncorrected raw forecasts. With the relationship of 
empirical cumulative probability to the respective aggregated variable of reference and forecast data separately, 
the associated inverse normal of the respective cumulative probability is estimated. The then derived deviation for 
a standard normally distributed quantity with zero mean defines the standardized drought indices SPI and SPEI 
(also see Supplementary Information). In this study, we chose the threshold of SPI/SPEI < −1 for the drought 
analysis, representing all negative anomalies larger than one standard deviation. This encompasses the drought 
categories of moderate, severe and extreme drought and approximately 15.9% of the  data43.

Potential economic value. The benefit from including seasonal climate forecasts in the decision process 
for water management can be quantified by the potential economic value (PEV)16,17. In this decision process, 
actions taken in the water management would be based on seasonal climate forecasts.

For this, we evaluate the performance of the seasonal forecast by combining the outcomes of a binary forecast 
(hit, false alarm, miss and correct reject) with a cost-loss approach (Table 1). As seasonal forecasts are proba-
bilistic forecasts, i. e., consist of 25 (reforecasts) or 51 (forecasts since 2017) ensemble members, the definition 
of “the event is forecast” depends on a probability threshold pth . Seasonal forecast-based action will be induced 
whenever the pth of the ensemble forecast for an event is exceeded. No action is taken for lower probabilities. 
The cost-loss ratio C/L defines the ratio of the cost for action over the avoidable losses by action and is a char-
acteristic of the individual user.

PEV is a measure of relative savings. The savings arise from the comparison of the expenses for the forecast-
based action to expenses of a reference strategy, the climatological approach ( Eclimate − Eforecast ). The climato-
logical approach involves either always acting or never acting, with an optimal course defined by the relation of 
C/L and the climatological frequency of the event o : always act if C/L < o , and never act otherwise. The savings 
Eclimate − Eforecast are set into relation with the savings of having a perfect forecast available, i.e., optimal early 
action due to perfect knowledge of the future weather with which the decision maker acts only when the event 
was going to occur. This results in:

The upper boundary ( PEV = 1 ) is defined by the savings of a perfect forecast and the lower boundary ( PEV = 0 ) 
by the climatological approach. The user benefits from the forecast-based action if PEV > 0 . For PEV ≤ 0 , the 

(1)PEV =
Eclimate − Eforecast
Eclimate − Eperfect
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usage of the climatological approach is more beneficial. Depending on H and F, PEV can be calculated for dif-
ferent C/L and pth:

To estimate the uncertainty of H, F and PEV due to sampling errors of the extreme events, bootstrap resampling is 
 applied20 (also see Supplementary Information for more details on the bootstrapping algorithm). The advantage 
of the bootstrap approach is that no assumption regarding the distribution of the values is  required45. Here, at 
the equal size of the original data set, pairs of event-based forecast probability time series and binary reference 
time series are randomly selected with replacement. This resampling was repeated up to the bootstrap sample 
size of 1000. To assess the robustness of forecast  thresholds18, confidence intervals for PEV are provided based 
on the 10 % and 90 % quantiles of the bootstrap samples.

The choice of beneficial pth can be based on the expense minimization or event maximization  criteria18. For 
expense minimization, the range of pth with highest PEV for a specific user (C/L) is chosen. For event maximi-
zation, this is further put under the constraint that H should be high to catch as many events as possible and 
to avoid losses. This event maximization criterion therefore involves a certain degree of risk aversion of the 
decision maker.

Water level management and energy production at the Upper Atbara Dam. The Upper Atbara 
Dam Complex has a watershed area of about 100,000 km246. The location of the dam in the Atbara basin is shown 
in Fig. 1. The complex was built as a twin dam just upstream of the confluence of the Upper Atbara and Setit 
rivers with a power generation of up to 320 MW. The Full Supply Level (FSL) of the Upper Atbara Dam Complex 
is at 521 m asl, the Minimum Operation Level (MOL) or Sluicing Level is at 510 m asl.

A spreadsheet simulation model was applied based on the reservoir operation model that had been developed 
by the responsible dam planning company Tractebel Engineering GmbH to guide the reservoir impounding dur-
ing and after the dam construction period for the Dam Implementation Unit (DIU) in Sudan, i.e. the stakeholder 
responsible for the erection of this scheme. The model considers the necessary components of a mass balance 
and power production, such as inflow, reservoir operation rules, an elevation-volume-area curve, evaporation 
from the reservoir surface, a tailwater rating curve, hydraulic losses, efficiencies for turbines, generator and 
transformer, and own electrical energy consumption.

The main purpose of the reservoir operation rule is maximizing the energy production while not leading to 
excessive reservoir sedimentation and in turn reducing reservoir storage. Thus, the reservoir water surface is 
lowered either down to sluicing level for sediment transport and removal (case of sluicing)47, or to a reservoir 
level that is able to absorb the peak inflows of the rainy season (no sluicing). Subsequent to the sluicing or water 
surface lowering operation, reservoir filling is initiated. Energy production usually maximizes during reservoir 
filling due to high inflows towards the end of the rainy season.

Inflow data provided by the DIU in Sudan and used in the simulation model of Tractebel Engineering GmbH 
were recorded on a daily basis at gauging stations Kubur/El Sofi and Wad El Heliew at the Upper Atbara river 
and at the Setit river, respectively. Both gauging stations were located upstream of the dam with a negligible 
intermediate catchment between their locations and the twin dam. These data were also used for the construc-
tion planning of the Upper Atbara Dam. For the calculations of drought- and standard-reservoir operations, the 
daily inflow of the year 2015 was taken as an example for a dry year. For a normal year, an average inflow of the 
period 1963-2016 was chosen. The latter ensures a reservoir management designed for average conditions and 
average energy production. To convert the produced energy into US$, a price of 0.2 US$ per kWh was assumed.

Data availability
Basin-averaged seasonal forecast and reanalysis data that support the findings of this study are available under 
https:// radar. kit. edu/ radar/ en/ datas et/ XqHmF KADBY NNKqTi (doi: https:// doi. org/ 10. 35097/ 441). Regarding 
the reservoir operations at the Upper Atbara Dam, the supporting data are available from Tractebel Engineering 
GmbH but restrictions apply to the availability of these data, which were used under license for the current study, 
and so are not publicly available. Data are however available from the authors upon reasonable request and with 
permission of Tractebel Engineering GmbH. Data of the Multivariate ENSO Index Version 2 (MEI.v2) can be 
accessed via https:// www. psl. noaa. gov/ enso/ mei/ (Supplementary Information 1).
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SUPPLEMENTARY INFORMATION

Supplementary Results

As stated in the main text, the Chira basin was excluded in the analysis of increasing occurrence of extreme events in the recent

decades (Fig. 2), as it does not show significant trends there. Instead, for the Chira basin, elevated frequencies of warm and wet

months are significantly correlated to El Niño (Multivariate ENSO Index, MEI, Version 2
1 > 1), and increased frequencies of

cold months significantly to La Niña (MEI<�1) at a = 0.05 (Supplementary Fig. S1; also see Supplementary Methods for

MEIv2). Except for the Karun basin with significant correlation for the frequencies of T <Q20 and MEI> 1 (El Niño), no

temperature or precipitation extreme event of the other study basins was significantly correlated with either El Niño or La Niña.

Supplementary Figure

Figure S1. Relative frequency of climate variables for the Catamayo-Chira basin from 1981-2018. Grey bars show the

relative frequency of ERA5 mean temperature > Q80 (left) and < Q20 (middle), and total precipitation > Q80 (right). Blue

and red bars depict the relative frequency of multivariate ENSO index MEIv2 > 1 (El Niño) and <�1 (La Niña), respectively.



Supplementary Methods

Drought indices
The Standardized Precipitation Index (SPI)

2
is calculated by the following steps:

1. Define the monthly precipitation dataset for an at least 30-year period, separately for the ensemble forecast and the

reference.

2. Aggregate each dataset over the selected timescales, e.g., over i =1, 3, 4 or 6 months, in a forecast - not in a retrospective

- manner. This is done movingly in the sense that for each month new aggregated values are calculated from the current

and the next i� 1 months. That means for SPI6 of June, values from June to November are accumulated. For the

forecasts, this implies using lead 0-5 from the forecast issued in June for each ensemble member.

3. Determine the cumulative probability distributions of the respective aggregated values for each start month including all

available years for the reference, and all available years and ensemble members for the forecast. For not being dependent

on the fit of parametric statistical distributions, we chose to use the empirical distribution for the calculation of SPI. Please

note, the empirical cumulative probability distributions are separately calculated for reference and forecasts, instead of

merging them, to allow the use of uncorrected, probably biased forecasts.

4. Estimate the inverse normal of the probability of aggregated values to determine the SPI value for the each data point,

i.e., the derived deviation for a standard normally distributed probability density with zero mean.

With separate distributions for reference and forecasts, current values are only compared within the system’s (reference

or forecast) distribution. A chosen threshold of SPI< �1 thus defines a system’s specific quantile value, representative of

one negative standard deviation from the system’s mean. Accordingly, standard bias correction approaches like linear scaling

(correction of the mean) or quantile mapping (correction of absolute quantile values) at the same temporal (monthly) and spatial

(basin-mean) resolutions have no effect.

For the Standardized Precipitation Evapotranspiration Index (SPEI), a simple water balance between precipitation (P) and

potential evapotranspiration (PET) is calculated to derive the water deficit or surplus D. According to Vicente-Serrano et al.,

2010
3
, for the use of PET in the drought index, the method to calculate PET is not critical. Therefore, we followed their

calculation of monthly PET (mm) with the simple approach by Thornthwaite 1948
4
, requiring only data on monthly-mean

temperature (T in
�
C):

PET = 16K

✓
10T

I

◆
m

(S1)

For the temperature-dependent heat index I, the coefficient m depending on I and the correction coefficient K depending on

latitude and month, we refer to Vicente-Serrano et al., 2010
3
. The water deficit or surplus is then calculated for each year,

month and lead time, separately for the forecasts and reference, as

D = P�PET. (S2)

Similarly to SPI, the derived values of D are then aggregated over different timescales and above steps 2-4 are applied.

Bootstrapping algorithm
As stated in the main text, the bootstrapping algorithm is applied to estimate the uncertainty of the hit rate H, false alarm rate F

and the potential economic value PEV that may come along due to sampling errors of the considered extreme events. The

applied algorithm for pairwise data is based on Bliefernicht et al., 2019
5

and Efron and Gong, 1983
6
. First, the bootstrap

sample size m (here 1000) is defined. For each event (T > Q80, P > Q80, SPI<�1 and SPEI<�1), each target region and

each probability threshold pth, the following steps are applied to calculate the bootstrapped H, F and PEV :
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1. Define the binary forecast-reference pairs of sample size n each. The reference time series x = (x1,x2, ...,xn) becomes

binary according to the event threshold xth (e.g., Q80), and the event-based forecast probability p = (p1, p2, ..., pn) is

transformed to a binary array according to the current probability threshold pth.

2. Resample the pairs of binary time series by randomly selecting with replacement (one sample pair can also be selected

several times) n new binary forecast-reference pairs.

3. Calculate H, F and PEV for each new binary forecast-reference pair.

4. Repeat steps 2 and 3 m-times to obtain m bootstrapped versions of H, F and PEV .

5. To assess the robustness of forecast thresholds
7
, calculate the confidence intervals for PEV based on the 10 % and 90 %

quantiles of the m bootstrap samples of PEV .

Mann-Kendall trend significance test
The Mann-Kendall test is a non-parametric test for trend significance, that does not require any particular distribution of the

tested timeseries
8
. The null hypothesis of the test is the absence of consistently increasing or decreasing trend in a timeseries

x = (x1,x2, ...,xn). The test analyzes differences in signs between earlier and later data points. The Mann-Kendall statistic S is

defined as

S =
n�1

Â
i=1

n

Â
j=i+1

sgn(x j � xi), (S3)

where n is the length of the timeseries and sgn denotes the sign function that allows values of +1, 0 and �1. For increasing or

decreasing trends, the value of the Mann-Kendall statistic S should be highly positive or negative, respectively. To statistically

test the trend, the probability associated with the Mann-Kendall statistic S is required. A normal distribution of the Mann-

Kendall statistic S can be assumed for datasets with more than 10 sample points and including less equal values, i.e. ties. The

normalized test statistic, the Z-value associated with S, is calculated as

Z =

8
>>>>><

>>>>>:

(S�1)p
(VAR(S))

, if S>0 (S4a)

0, if S=0 (S4b)

S+1p
VAR(S)

, if S<0, (S4c)

where the variance of the Mann-Kendall statistic VAR(S) for a non-tied dataset is defined as

VAR(S) =
1

18
· {n(n�1)(2n+5)} . (S5)

Finally the probability (p-value) associated with the Z-value is calculated using the standard normal cumulative distribution

function for a two-tailed test. Based on the chosen significance level a , typically 0.05, the null hypothesis is accepted or

rejected. If the p-value of the test is less than a , the test rejects the null hypothesis, i.e., the test signifies the presence of trend

in x. Otherwise, if the p-value is greater than a , the null hypothesis of trend absence is accepted.

Multivariate ENSO Index Version 2 (MEIv2)
The phases of El Niño Southern Oscillation (ENSO) are described by the Multivariate El-Niño-Southern-Oscillation (ENSO)

Index Version 2 (MEIv2)
1

that is based on the principal-component analysis of standardized anomalies of sea level pressure,

sea surface temperature, 10-m zonal and meridional wind, and outgoing longwave radiation. For consistency with the monthly

analysis, the two-month MEIv2 product (i. e., data for December-January, January-February, ... November-December) was

linearly interpolated to monthly values. Data are available since 1979.
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Abstract. Seasonal forecasts have the potential to substantially improve water management particularly in
water-scarce regions. However, global seasonal forecasts are usually not directly applicable as they are pro-
vided at coarse spatial resolutions of at best 36 km and suffer from model biases and drifts. In this study, we
therefore apply a bias-correction and spatial-disaggregation (BCSD) approach to seasonal precipitation, tem-
perature and radiation forecasts of the latest long-range seasonal forecasting system SEAS5 of the European
Centre for Medium-Range Weather Forecasts (ECMWF). As reference we use data from the ERA5-Land of-
fline land surface rerun of the latest ECMWF reanalysis ERA5. Thereby, we correct for model biases and
drifts and improve the spatial resolution from 36 km to 0.1�. This is performed for example over four pre-
dominately semi-arid study domains across the world, which include the river basins of the Karun (Iran), the
São Francisco River (Brazil), the Tekeze–Atbara river and Blue Nile (Sudan, Ethiopia and Eritrea), and the
Catamayo–Chira river (Ecuador and Peru). Compared against ERA5-Land, the bias-corrected and spatially dis-
aggregated forecasts have a higher spatial resolution and show reduced biases and better agreement of spa-
tial patterns than the raw forecasts as well as remarkably reduced lead-dependent drift effects. But our anal-
ysis also shows that computing monthly averages from daily bias-corrected forecasts particularly during pe-
riods with strong temporal climate gradients or heteroscedasticity can lead to remaining biases especially in
the lowest- and highest-lead forecasts. Our SEAS5 BCSD forecasts cover the whole (re-)forecast period from
1981 to 2019 and include bias-corrected and spatially disaggregated daily and monthly ensemble forecasts for
precipitation, average, minimum, and maximum temperature as well as for shortwave radiation from the is-
sue date to the next 215 d and 6 months, respectively. This sums up to more than 100 000 forecasted days
for each of the 25 (until the year 2016) and 51 (from the year 2017) ensemble members and each of the five
analyzed variables. The full repository is made freely available to the public via the World Data Centre for
Climate at https://doi.org/10.26050/WDCC/SaWaM_D01_SEAS5_BCSD (Domain D01, Karun Basin (Iran),
Lorenz et al., 2020b), https://doi.org/10.26050/WDCC/SaWaM_D02_SEAS5_BCSD (Domain D02: São Fran-
cisco Basin (Brazil), Lorenz et al., 2020c), https://doi.org/10.26050/WDCC/SaWaM_D03_SEAS5_BCSD (Do-
main D03: basins of the Tekeze–Atbara and Blue Nile (Ethiopia, Eritrea, Sudan), Lorenz et al., 2020d), and
https://doi.org/10.26050/WDCC/SaWaM_D04_SEAS5_BCSD (Domain D04: Catamayo–Chira Basin (Ecuador,
Peru), Lorenz et al., 2020a). It is currently the first publicly available daily high-resolution seasonal forecast
product that covers multiple regions and variables for such a long period. It hence provides a unique test bed
for evaluating the performance of seasonal forecasts over semi-arid regions and as driving data for hydrologi-
cal, ecosystem or climate impact models. Therefore, our forecasts provide a crucial contribution for the disaster
preparedness and, finally, climate proofing of the regional water management in climatically sensitive regions.

Published by Copernicus Publications.
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1 Introduction

Since the launch of seasonal hydrometeorological forecasts,
it is widely agreed that subseasonal to seasonal forecasts of-
fer the promise of improved hydrological management strate-
gies (Rayner et al., 2005). Various studies showed high po-
tential when such information is used for planning the har-
vests from subsistence farmers (Patt et al., 2005), predict-
ing and monitoring drought conditions in data-sparse regions
(Dutra et al., 2013; Yuan et al., 2011), driving hydrolog-
ical models (Thober et al., 2015), proactive drought plan-
ning (Lemos et al., 2002), predicting heavy rainfall events
(Tall et al., 2012), managing irrigated agriculture (Ritchie
et al., 2008), operating hydropower (Block, 2011), or pre-
dicting high and low river flow during El Niño (Emer-
ton et al., 2019). Washington et al. (2006) even state
that for the African continent, the adaptation to current
(seasonal) climate anomalies through operational decision-
making may reduce vulnerability to climate change. It is
hence obvious that these promising perspectives led to the
establishment of many global initiatives and forecast prod-
ucts like the Long-Range Forecast Multi-Model Ensem-
ble from the World Meteorological Organization (https:
//www.wmolc.org, last access: 2 June 2021), the C3S
multi-model ensemble from Copernicus (https://climate.
copernicus.eu/seasonal-forecasts, last access: 2 June 2021),
the North American Multi-Model Ensemble (NMME,
https://www.cpc.ncep.noaa.gov/products/NMME/, last ac-
cess: 2 June 2021) and the recalibrated forecasts from
the International Research Institute for Climate and Soci-
ety (https://iri.columbia.edu/our-expertise/climate/forecasts/
seasonal-climate-forecasts/, last access: 2 June 2021). On the
regional scale, the Intergovernmental Authority on Devel-
opment (IGAD) Climate Prediction and Applications Cen-
tre (ICPAC) has developed operational seasonal forecasts for
the IGAD region across northeast Africa (https://www.icpac.
net/seasonal-forecast/, last access: 2 June 2021), while fore-
casts for South America were developed within the EURO–
Brazilian Initiative for Improving South American seasonal
forecasts (EUROBRISA, http://eurobrisa.cptec.inpe.br, last
access: 2 June 2021). Nevertheless, many water managers
are still unaware of most sources of seasonal climate fore-
casts (Bolson et al., 2013) or claim that the forecasts are not
reliable enough for improving the decision-making (Rayner
et al., 2005). Hence, if seasonal forecasts are to be used ef-
fectively, it is important that, along with science advances,
an effort is made to develop, communicate and apply these
forecasts appropriately (White et al., 2017). Patt and Gwata
(2002) defined six constraints that currently limit the useful-
ness of seasonal forecasts particularly in developing coun-
tries: credibility, legitimacy, scale, cognitive capacity, proce-
dural and institutional barriers, and available choices.

Some of these constraints are based on societal aspects.
They hence have to be overcome through the adaptation of
seasonal forecasts to accommodate for variations in the inter-
pretive abilities of decision makers and other potential user
groups (Hartmann et al., 2002). It is particularly the scale
constraint (which refers to the inconsistency between the
global forecast models and regional conditions) that can be
addressed through post-processing techniques. Furthermore,
evidence of bias, e.g., in global circulation model (GCM)
and regional circulation model (RCM) precipitation data, has
prompted many investigators to avoid direct use of climate
model precipitation outputs for hydrological climate change
impact analysis (Teutschbein and Seibert, 2013). Among
other factors, one can loosely categorize these biases into
systematic model errors (e.g., Xue et al., 2013; Magnusson
et al., 2013) and drifts (e.g., Hermanson et al., 2018), as well
as issues due to the coarse resolution of the global forecasts
which prevent the models from properly representing local
features in regions with complex orography (Manzanas et al.,
2018a). For seasonal forecasts, particularly the model drifts
are a crucial issue with their forecast horizon up to 7 months
as they lead to statistical inconsistencies between forecasts
from different issue dates.

Since these shortcomings of seasonal or longer-term pre-
dictions are known for a long time, there is a range of meth-
ods and techniques for correcting model biases and drifts as
well as to improve the spatial resolution. For downscaling,
we generally distinguish between dynamical and empirical-
statistical approaches. While the dynamical methods using a
RCM are computationally highly expensive (e.g., Manzanas
et al., 2018b), empirical-statistical techniques usually require
reliable reference data, which are often not available, partic-
ularly in data-sparse regions. Nevertheless, due to their lower
computational demand and relatively simple implementation
in operational systems, there have been significant develop-
ments in the empirical-statistical correction approaches in the
recent years. One of the most widely used methods is the
so-called bias correction and spatial disaggregation (BCSD,
Wood et al., 2002) which was developed for downscaling
climate model outputs to a higher spatial resolution. Since
its introduction, there have been numerous adjustments and
changes to the classic BCSD approach. One can distinguish
between parametric and non-parametric techniques (e.g., La-
fon et al., 2013; Crochemore et al., 2016). Abatzoglou and
Brown (2012) and Ahmed et al. (2013) reversed the order
in which the forecasts are bias-corrected and spatially dis-
aggregated, which they refer to as SDBC. Thrasher et al.
(2012) applied the BCSD to daily data, Voisin et al. (2010)
used rank-based scaling factors between the forecasts and a
random reference ensemble to allow for different daily pre-
cipitation patterns, and Hwang and Graham (2013) replaced
the interpolation-based spatial disaggregation with a stochas-
tic approach to preserve observed local rainfall character-
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istics, while Vandal et al. (2019) recently combined BCSD
with machine-learning methods. Besides the adjustments to
the univariate BCSD technique, recent publications also aim
at multivariate extensions (e.g., Cannon, 2018), which allow
for the joint correction of different variables (e.g., tempera-
ture and precipitation) or values at different locations. There
have also been numerous studies where different downscal-
ing approaches have been compared (Tryhorn and DeGae-
tano, 2011; Chen et al., 2013; Gutmann et al., 2014).

Despite all these efforts, most studies focus on selected re-
gions and only short periods of time. Furthermore, the cor-
rected data are usually not made available to the public.
In this study, we therefore present a comprehensive dataset
which contains bias-corrected and spatially disaggregated
seasonal (re-)forecasts for daily precipitation, temperature
and radiation from 1981 to 2019 for four semi-arid do-
mains in Brazil (Rio São Francisco basin), Ecuador and Peru
(Catamayo–Chira Basin), Sudan and Ethiopia (basins of the
Tekeze–Atbara river and Blue Nile), and Iran (Karun Basin).
Our study regions are marked by a strong dependency on wa-
ter, food and energy supply from water reservoirs and, hence,
on a sustainable multipurpose water resources management.
All regions have been hit by several severe droughts and
floods particularly during the last years (e.g., Elagib and El-
hag, 2011; Marengo et al., 2018; Martins et al., 2018). More-
over, the Blue Nile Basin, which will undergo tremendous
changes due to the construction of the Grand Ethiopian Re-
naissance Dam (GERD) near the Ethiopian–Sudanese bor-
der, has been controversially debated in the public and the
scientific literature (Kidus, 2019) as the filling and operation
of the GERD will change downstream flow patterns signif-
icantly (e.g., Wheeler et al., 2020). This underlines the ur-
gent need for longer-term forecasts to mitigate the impacts
of climatically extreme events and improve the regions’ dis-
aster preparedness (e.g., Tall et al., 2012) as well as improve
the regional water management, especially in transboundary
catchments (e.g., Gerlitz et al., 2020).

Reanalysis data of the ERA5-Land (ECMWF, 2019) rerun
of the land component of ERA5 climate reanalyses (Hers-
bach et al., 2018) are used as reference for applying the
BCSD on raw forecasts from the seasonal forecasting sys-
tem SEAS5 (Johnson et al., 2019) of the European Centre for
Medium-Range Weather Forecasts (ECMWF). While reanal-
yses have clear limitations, they still provide the most com-
prehensive and reliable (and sometimes only) source of hy-
drometeorological information in such data-sparse regions.

Our final product provides a temporally and spatially con-
sistent high-resolution dataset that can be used for assess-
ing the skill of state-of-the-art seasonal forecasts, e.g., for
drought forecasting, for driving hydrological or ecosystem
models, as decision support for the regional water manage-
ment, or as a comprehensive repository for teaching the use
of state-of-the-art seasonal forecast products to water man-
agers, decision makers, and other potential end users. It is
made freely available to the public through the World Data

Center for Climate (WDCC), which is hosted by the German
Climate Computing Center (DKRZ) in Hamburg, Germany.
Therefore, our approach and published dataset address sev-
eral of the abovementioned constraints of seasonal forecasts
and hence provide a significant contribution towards improv-
ing the usefulness of such information and practice trans-
fer particularly in developing countries. It therefore marks
a large step towards a more sustainable and timely planning
of the regional water management and, hence, the adaptation
to a changing climate.

2 Data and study areas

2.1 Reference data

Daily reference precipitation, average, minimum and maxi-
mum temperature at 2 m and surface solar radiation at a high
spatial resolution of 0.1� is obtained from the ERA5-Land of-
fline land surface rerun of ECMWF’s latest reanalysis prod-
uct ERA5.

ERA5 is currently produced within the Copernicus Cli-
mate Change Service (C3S) and is the successor of the
older ERA-Interim reanalysis, which has been extensively
used in numerous hydrological and hydrometeorological
studies (e.g., Lorenz and Kunstmann, 2012; Lorenz et al.,
2014, 2018). In contrast to ERA-Interim, ERA5 is based on
the Integrated Forecasting System (IFS) cycle 41r2 which is
run at a higher resolution of 31 km and is planned to cover the
whole period from 1950 to 5 d before the present, which al-
lows its usage in near-real-time and operational applications.
It has been reported in numerous studies that the performance
of ERA5 is superior compared to ERA-Interim (Albergel
et al., 2018; Urraca et al., 2018; Mahto and Mishra, 2019).
Besides improvements in the underlying model systems, this
can also be attributed to the huge number of assimilated in
situ, satellite and snow observations. ECMWF states that this
number has increased from approximately 0.75 million per
day on average in 1979 to around 24 million per day until
2018 (Hersbach et al., 2019).

ERA5-Land uses atmospheric forcing from the ERA5 re-
analysis to consistently estimate hourly land surface vari-
ables at an enhanced spatial resolution of 9 km. While no
observations are directly assimilated during the production
of ERA5-Land, the millions of observations that are used for
constraining the atmospheric forcing data from ERA5 have
an indirect influence on the estimated land surface parame-
ters. Furthermore, air temperature, air humidity and pressure
are corrected to account for the altitude difference between
the spatial resolution of the grids of ERA5 and ERA5-Land,
respectively (ECMWF, 2019, 2020).

2.2 SEAS5 seasonal forecasts

The fifth generation of ECMWF’s seasonal forecasting sys-
tem has been operational since November 2017. The mod-
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Figure 1. Overview of the four study domains: the Karun Basin
(KA, Iran, D01, top left), the Extended São Francisco Basin (SF,
Brazil, D02, bottom left), the Tekeze–Atbara (to the north) and Blue
Nile (to the south) basins (TA and BN, Sudan, Ethiopia and Er-
itrea, D03, top right), and the Catamayo–Chira Basin (CC, Ecuador
and Peru, D04, bottom right). The distance scales in the top left
corner of the maps are given in units of kilometers. The basin to-
pography is based on the high-resolution ETOPO1 Global Relief
Model (Amante and Eakins, 2009), while coastlines, rivers and po-
litical borders are taken from the Global Self-consistent, Hierar-
chical, High-resolution Geography Database (GSHHG, Wessel and
Smith, 1996). The basin boundaries are based on the HydroSHEDS
dataset (Lehner and Grill, 2013) with some slight modifications and
adjustments for ensuring the consistency with boundary definitions
from local authorities and stakeholders from the study regions.

eled variables are provided on a reduced O320 Gaussian
grid, which corresponds to a spatial resolution of approxi-
mately 36 km. SEAS5 covers the period from 1981 to the
present with forecasts issued on the first of each month. Dur-
ing the re-forecast period from 1981 until 2016, ECMWF
provides 25 ensemble members, while this number increased
to a total of 51 ensemble members in 2017. The seasonal
forecasts are initialized with atmospheric conditions from
ERA-Interim until 2016 and the ECMWF Operational Anal-
ysis since 2017. Highlights of SEAS5 compared to previous
versions include a marked improvement in sea surface tem-
perature drift, especially in the tropical Pacific, and improve-
ments in the prediction skill of Arctic sea ice (Haiden et al.,
2018).

With its release in 2017, so far only a limited number of
studies exists discussing the performance of SEAS5. For a
case study over Indonesia, Ratri et al. (2019) report that after
bias-correcting the seasonal forecasts towards the Southeast
Asia observations (SA-OBS van den Besselaar et al., 2017)
gridded rainfall product, predominantly positive predictive
skill during the first 2 forecast months is achieved. Recently,
Gubler et al. (2019) performed a comprehensive performance
analysis of bias-corrected SEAS5 forecasts against homoge-
nized station data across South America. They found that,
in general, the prediction skill of temperature forecasts is
higher than the skill of precipitation forecasts and that partic-
ularly regions which are influenced by Niño 3.4 show higher
skills. The highest prediction performance can be observed,
amongst some other areas, over the highlands of Ecuador and
the northeastern part of Brazil. This result is beneficial for
our forecast product as these South American regions include
two of our study domains.

2.3 The four semi-arid study areas

We apply the bias-correction and spatial disaggregation of
the global seasonal forecasts over four domains of different
size and orographic complexity which contain five semi-arid
river basins: the Karun Basin (Domain D01, Iran), the Ex-
tended São Francisco Basin (D02, Brazil), the basins of the
Tekeze–Atbara river and the Blue Nile (D03, Ethiopia and
Sudan), and the Catamayo–Chira Basin (D04, Ecuador and
Peru). Main characteristics and the location of the domains
and basins are shown in Table 1 and Fig. 1, respectively. It
should be noted that we label the domains with numbers from
D01 to D04 while the basins are labeled with two-letter ab-
breviations (see Table 1). This allows us to easily add further
domains and basins in the future.

All domains and basins are characterized by a semi-arid
climate with an extended dry period and one rainy season.
The headwaters are located in mountainous areas and ex-
hibit relatively high seasonal precipitation amounts (e.g., due
to convective effects), while the downstream conditions are
mainly arid. The Karun has its source in Zard-Kuh moun-
tain with an altitude of more than 4000 m, which is located

Earth Syst. Sci. Data, 13, 2701–2722, 2021 https://doi.org/10.5194/essd-13-2701-2021



C. Lorenz et al.: A long-term reference forecast product for the water sector 2705

Table 1. Overview and basic characteristics of the five river basins with climate data from ERA5-Land. In addition to the yearly mean
temperature, the yearly temperature range is given by the monthly minimum and maximum temperature in brackets. The main 4 months of
the rainy season are provided, and the respective seasonal precipitation is given as a share of the total annual precipitation. In brackets, the
percentage of precipitation of the 6-month rainy season (1 month prior to and after the main 4 months) is also provided.

Karun Ext. São Francisco Blue Nile Tekeze–Atbara Catamayo–Chira
KA (D01) SF (D02) BN (D03) TA (D03) CC (D04)

Area [km2] 67 313 740 820 308 197 205 097 17 761
Annual rainfall [mm] 640 ± 128 858 ± 196 1336 ± 132 727 ± 95 1666 ± 399
Mean temperature [K] 289 ± 0.8 298 ± 0.5 297 ± 0.5 298 ± 0.5 293 ± 0.4
Min. temperature [K] 265 ± 0.5 289 ± 0.9 287 ± 0.8 286 ± 0.8 287 ± 0.6
Max. temperature [K] 310 ± 1.5 307 ± 0.5 308 ± 0.6 310 ± 0.7 301 ± 0.6
Rainy season DJFM DJFM JJAS JJAS JFMA
Seasonal precipitation [%] 73 (94) 60 (85) 73 (90) 83 (92) 65 (81)

in the Zagros Mountains in the southwestern part of Iran. It
is the main source of water for irrigation, hydropower gener-
ation and drinking water supply for the Khuzestan Province
and its capital Ahvaz with a population of more than 1 mil-
lion. The much longer Rio São Francisco originates in the
Canastra mountain range in the state of Minas Gerais and
enters, after more than 3000 km, the Atlantic Ocean. In or-
der to transfer water to the water-scarce states of Ceará, Per-
nambuco, Paraíba and Rio Grande do Norte in the Brazilian
northeast, it was decided in 2005 to conduct a water division
project and extend the natural basin of the Rio São Fran-
cisco. This Extended São Francisco Basin has a drainage
area of more than 700 000 km2, and the water is heavily
used for irrigation and hydropower generation. The sources
for both the Blue Nile and the Tekeze–Atbara river are lo-
cated in the Ethiopian Highlands, with altitudes of more than
4000 m. After they pass the Ethiopian–Sudanese border, they
flow through mainly flat and dry areas. The Blue Nile joins
the White Nile in the Sudanese capital Khartoum while the
Tekeze–Atbara river enters the main Nile near the city of At-
bara. Together, the Blue Nile and Tekeze–Atbara river de-
liver approx. 80 % of the mean annual discharge of the main
Nile, which underlines the importance of these two tribu-
taries for Ethiopia, but also the downstream countries of Su-
dan and Egypt. The Catamayo–Chira river has its source in
the Andes at an altitude of more than 3000 m. After it passes
the Ecuadorian–Peruvian border, it enters the Poechos Reser-
voir, which is mainly used for water storage, irrigation, hy-
dropower generation and flow regulation across the Chira
valley.

While the average temperatures do not change substan-
tially from year to year across all study domains, standard de-
viations of up to 25 % of the total annual rainfall (e.g., in the
Catamayo–Chira Basin) indicate a highly variable amount of
incoming freshwater resources, which underlines the neces-
sity for longer-term forecasts. Moreover, particularly in the
Karun and Catamayo–Chira basins, there is a very strong cli-
matic and elevation gradient from the headwater to the tail-
water within only a few hundred kilometers. For obtaining

realistic estimates of precipitation and temperatures for these
mountainous headwaters, we hence need models and datasets
with a reasonable spatial resolution capable of describing
the climate dynamics in such complex terrain. Furthermore,
the basins are heavily managed, including many reservoirs
which are used for maintaining water security and also elec-
trical power supply throughout the year, and all basins suffer
from a lack of continuous in situ observations.

This combination of dependency from incoming water re-
sources and lack of observations is particularly worrying in
the context of climate change. Almost all of our study re-
gions have been hit by severe extreme events during the re-
cent years and are assumed to experience an increase in the
frequency and severity of droughts and floods in the coming
years (e.g., Marengo et al., 2012; Torres et al., 2017; Andrade
et al., 2021). For southern Iran, Vaghefi et al. (2019) project
a climate of extended dry periods interrupted by intermittent
heavy rainfalls, which is a recipe for increasing the chances
of floods. Accordingly, the first months of the rainy season
2017/2018 had the lowest ever recorded amounts of precip-
itation, which then led to water shortages and even societal
unrest during the coming months. Only 1 year later, excep-
tionally heavy rainfall events during March and April 2019
caused severe flooding in at least 26 of Iran’s 31 provinces.
Similarly, the Northeast Brazil region, which also includes
the Rio São Francisco Basin, suffered from a prolonged
drought period from 2012 to 2016 (Martins et al., 2018) or,
according to Marengo et al. (2018), even from 2010 to 2016.
Elagib and Elhag (2011) report that there has been a drastic
increase in temperatures over the Sudan in line with a signif-
icant decline of rainfall over the northern half of the country.
Masih et al. (2014) further state that there is a clear need
for increased and integrated efforts in drought mitigation to
reduce the negative impacts of droughts anticipated in the fu-
ture across the African continent. Finally, Domínguez-Castro
et al. (2018) analyzed wet and dry extremes in Ecuador
and reported that droughts have intensified in frequency and
length since the middle of the 20th century.
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Besides these climatically challenging conditions, the
Tekeze–Atbara, Blue Nile and Catamayo–Chira basins are
transboundary river basins. The headwaters of the Tekeze–
Atbara and Blue Nile are located in Ethiopia and contribute,
together with the Baro–Akobo–Sobat River, about 85 % of
the Nile water (Yitayew and Melesse, 2011). Both rivers
cross the Ethiopian–Sudanese border after several hundred
kilometers. The Blue and White (which comes from the
south) Nile merge in the Sudanese capital Khartoum while
the Tekeze–Atbara enters the main Nile near the city of
Atbara. In both Ethiopia and Sudan, reservoirs of the two
rivers exist or are currently under construction. Similarly, the
Catamayo–Chira river originates in Ecuador, is dammed in
the Poechos reservoir right after the Ecuadorian–Peruvian
border and finally flows into the Pacific Ocean. While the
Catamayo–Chira Basin is jointly managed by Ecuadorian
and Peruvian authorities, coordinated management of water-
related infrastructure across the international borders of the
Blue Nile and Tekeze–Atbara basins rarely exists (Wheeler
et al., 2018). A recent study has analyzed the potential of a
joint transboundary water management for hydro-economic
sectors particularly through the integration of the newly built
Grand Ethiopian Renaissance Dam (GERD) (Digna et al.,
2018).

Hence, the four study domains not only provide an optimal
test bed for the performance of seasonal forecasts in semi-
arid regions but also mark regions for which a sustainable
regional water management is crucial, particularly due to the
increase in the frequency and severity of climatic extreme
events and the transboundary challenges.

3 Methods

The bias-correction and spatial-disaggregation approach
(BCSD, Wood et al., 2002) is a widely used two-step tech-
nique for calibrating, e.g., climate forecasts towards any kind
of reference data. First, a quantile-mapping (QM) approach
is used for matching the statistical distribution of the fore-
casts to the reference data at the coarse forecast resolution.
The coarse-scale climatology of the reference data is then
removed from the bias-corrected forecasts. The remaining
anomalies are then interpolated to a higher-resolution grid.
Finally, the high-resolution climatology is added back to
the interpolated anomalies to obtain a bias-corrected and
spatially disaggregated forecast. The BCSD approach has
demonstrated its potential for improving particularly climate
predictions and is hence still used in many recent studies
(e.g., Thrasher et al., 2013; Ning et al., 2015; Briley et al.,
2017; Nyaupane et al., 2018). However, we found that par-
ticularly the spatial disaggregation, which is often similar to
a simple bias correction via linear scaling including interpo-
lation to a higher-resolved grid, can lead to unrealistic values.
The disaggregation of precipitation and radiation is based on
a multiplicative scaling factor, which is simply the ratio be-

tween the climatology from the forecasts and the reference
data. During dry months with average precipitation values
close to zero, this scaling factor can become unreasonably
large (especially if there are large discrepancies between the
climatologies from the forecasts and the reference) and can
therefore cause unreasonable, corrected values.

Consequently, to avoid the calculation of scaling factors,
we also reversed the order of bias-correction and spatial dis-
aggregation as in Abatzoglou and Brown (2012). For the
spatial-disaggregation step, we apply a simple bilinear inter-
polation of the full precipitation, temperature and radiation
forecasts. The spatially disaggregated (or interpolated) full
fields are then bias-corrected using a quantile-mapping ap-
proach. However, for our final product, we still stick to the
technical term BCSD, as introduced in Wood et al. (2002).

The different steps are depicted in Appendix A. Here, we
only summarize the key characteristics of our BCSD imple-
mentation.

– Spatial disaggregation from the coarse SEAS5 to the
higher-resolved ERA5-Land grid is achieved by apply-
ing a bilinear interpolation technique to the full precip-
itation, temperature and radiation forecasts and not, as
in most other studies, to the anomalies.

– The cumulative distribution functions (CDFs) for the
(re-)forecasts and reference data are based on daily data
from the period 1981 to 2016.

– To estimate the CDF of the reference data and
(re-)forecasts, we apply a ±15 d window around the
forecasted day.

– The seasonality is taken into account by estimating the
forecast distributions with forecasts from the same issue
date only.

– To avoid inconsistencies in the temperature data, we
correct the deviations from the mean daily temperature
instead of the full maximum and minimum tempera-
tures. After bias correction, maximum and minimum
temperature are restored by adding and removing the
corrected deviations from the corrected mean tempera-
ture, respectively.

– Forecast values above or below the maximum and mini-
mum reference quantile are corrected using the constant
correction technique from Boé et al. (2007).

– Precipitation intermittency is corrected using the
method by Voisin et al. (2010) to ensure the agreement
of the wet- and dry-day frequencies from ERA5-Land
and SEAS5 BCSD.

While several studies report that using parametric distribu-
tions can lead to more stable results (e.g., Lafon et al., 2013),
we prefer to use an empirical distribution as we (a) have a
fairly large number of samples for both the reference and
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forecast CDFs and (b) do not want to force precipitation,
temperature and radiation to follow a certain fixed parametric
distribution. A drawback of empirical distributions, however,
is the need for extrapolation when a forecasted value is be-
yond the maximum or minimum values from the reference
period. While this is crucial for climate projections where
we are interested in the occurrence of, e.g., temperatures be-
yond the current maximum values, we do not assume such
extremely high or low values in current seasonal forecasts. If,
however, a forecast contains a value beyond the maximum or
minimum reference quantile, we apply the constant correc-
tion method from Boé et al. (2007).

The usage of moving windows for estimating the distri-
butions requires special attention. This step is necessary to
obtain a reasonable sample size for the reference data and
to allow for some climatic variability during the calibra-
tion period. However, such a moving window can lead to
blurred distributions, particularly during pronounced transi-
tion phases, e.g., from dry to wet, wet to dry, cold to warm,
or warm to cold seasons. If the onset and end of the rainy
season is well known and less variable throughout the years,
it might be more appropriate to adapt the moving window to
such climatic conditions. However, in this study, for our ap-
proach to be as general as possible, we are using a window
with constant length.

4 Results

To assess the performance of the bias-corrected and spatially
disaggregated SEAS5, we compare the seasonal forecasts be-
fore and after applying the BCSD against the reference data
from ERA5-Land. For a better understanding of the impact
of the correction, we separate the results according to model
biases, lead-dependent effects, topographic and resolution-
dependent effects, and overall performance. That being said,
it is difficult to separate these effects completely. As an ex-
ample, the low spatial resolution of the global data can result
in different amounts of convective and large-scale precipita-
tion compared to higher-resolved reference data. The result
is a bias between the forecasts and the reference data due to
the different spatial resolutions and the resulting description
of precipitation. It is therefore not within the scope of this
study to discuss all details of differences between seasonal
forecasts and reference data. This holds also true for the de-
tailed discussion of results across all five variables and four
domains. We focus on selected results which should show the
example differences between SEAS5 and ERA5-Land and
how the BCSD is able to correct for these.

4.1 Model biases

The most obvious effect of the bias correction is the correc-
tion of systematic model biases in the raw forecasts. Figure 2
shows the bias of area-averaged SEAS5 forecasts before and
after applying the BCSD for the five study basins. First, no

simple over- or underestimation of SEAS5 with respect to
ERA5-Land can be observed. During certain months, the pre-
cipitation, temperature and radiation biases can reach values
of up to ±5 mm/d (CC), ±2 K (KA) and ±30 W/m2 (TA and
BN), respectively. The biases show strong annual cycles for
most basins and variables. Precipitation biases reach peak
values during the main months of the rainy season (KA, SF,
TA, BN, CC) and also during the transition from the dry to
the rainy season (SF).

The temperature biases show much more complex pat-
terns. While the SF and CC basins show an annual cycle in
the temperature forecasts, particularly the forecasts for the
TA and BN basins also reveal highly lead dependent effects.
As an example, over the TA Basin, the lead-0 and lead-2
forecasts for July (i.e., the forecasts that have been issued in
July and May, respectively) show biases of about �1.3 and
�0.4 K, respectively. Such large gaps between the tempera-
ture forecasts from different issue dates can also be observed
over the KA and BN basins.

For the KA Basin, the biases of average and minimum
temperature from SEAS5 reach peak values during the main
months of the rainy season (around January), while the biases
of maximum temperature show an opposite behavior with
maximum biases during the dry season. Over the SF Basin,
the biases of mean and maximum temperature both show a
tendency towards positive biases during the dry season. Min-
imum temperature, however, is generally underestimated in
the raw SEAS5 forecasts of the SF Basin, which leads to a
negative bias throughout the year.

The biases of mean and minimum temperature forecasts
over the CC Basin also show an annual cycle with the max-
imum deviations from ERA5-Land around April, which also
marks the end of the rainy season. But in contrast to the SF
Basin, the biases of mean and minimum temperatures show a
very similar cycle, while there is a positive bias of maximum
temperature almost throughout the year in the CC Basin.

The bias from the radiation forecasts also shows an annual
cycle with peak values either at the transition from the dry to
the wet season (SF) or during the main months of the rainy
season (KA, SF, TA, BN, CC).

All these effects are almost completely removed after ap-
plying the BCSD. The bias-corrected forecasts do not show
any systematic positive or negative biases when compared
against ERA5-Land. However, while the biases of the BCSD
temperature forecasts for lead 1 to lead 6 for the KA Basin
are reduced compared to the raw forecasts, there are remain-
ing biases of up to 0.7 K for the lead-0 and lead-7 forecasts.

The effect of the BCSD on the root mean squared errors,
which are shown in Fig. 3, is much more diverse. In gen-
eral, the RMSE of SEAS5 BCSD is lower compared to the
raw forecasts. As an example, the RMSEs of the precipita-
tion and radiation forecasts for February over the CC Basin
are reduced from around 6 mm/d and 30 W/m2 to less than
4 mm/d and 20 W/m2, respectively. The minimum tempera-
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Figure 2. Bias of monthly (from top to bottom) precipitation (pr), average temperature (tas), minimum temperature (tasmin), maximum
temperature (tasmax) and radiation (rsds) forecasts from SEAS5 (dashed lines) and SEAS5 BCSD (solid lines) with respect to ERA5-Land
during the period 1981 to 2016 for all five study basins. The colors of the lines indicate the 12 different issue months from January to
December. The vertical line between December and January indicates the end of the year; the values right of this line belong to the higher
lead forecasts issued in September until December. The blue-shaded area depicts the 6 months of the rainy season.

ture RMSE during the rainy season of the KA Basin could be
reduced from 3 K to less than 2 K.

However, there are other cases where the bias correction
shows almost no improvement. While the biases of the raw
precipitation, temperature or radiation forecasts for the SF
Basin are much lower after applying the BCSD, the RMSE
remains almost unchanged. The same holds true for the pre-
cipitation forecasts for the BN Basin. Moreover, there are
still some lead-dependent effects of the bias-corrected fore-
casts, which can be seen from the gaps and jumps in the RM-
SEs of the temperature and radiation forecasts over the SF
Basin.

4.2 Topographic and resolution-dependent effects

To evaluate the impact of the improved spatial resolution,
Fig. 4 shows the total accumulated precipitation and its stan-
dard deviation during the 4 months of the rainy season from
the raw and bias-corrected lead-0 forecasts, respectively, and
ERA5-Land. The precipitation sums of the raw forecasts are
generally lower than those from ERA5-Land. This is par-
ticularly visible for the mountainous headwaters of the KA
(D01) and CC (D04) basins, where the raw forecasts pre-
dict seasonal precipitation sums of less than 500 mm (D01)
and 2000 mm (D04), respectively, while ERA5-Land show
values of more than 750 mm (D01) and 2400 mm (D04), re-
spectively. Furthermore, there is a single connected precipi-
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Figure 3. Same as Fig. 2 but for the RMSE of SEAS5 and SEAS5 BCSD compared to ERA5-Land.

tation pattern along the Andes in the D04 domain and multi-
ple precipitation bands in the D03 domain over the Ethiopian
Highlands. ERA5-Land, however, shows much more distinct
spatial precipitation peaks, which agree very well with the
complex topography in the mountainous headwaters. After
applying the BCSD, the patterns and values of the seasonal
forecasts match almost perfectly with the reference data and,
hence, also the higher-resolved topography. The same holds
true for the standard deviation of seasonal precipitation. The
raw forecasts tend to underestimate the precipitation vari-
ability across all four domains. Especially in the mountain-
ous areas of D01 and D04, ERA5-Land and, hence, SEAS5
BCSD show maximum standard deviations of ±600 mm and
more, while the raw forecasts only reach values of less than
±450 mm. On the other hand, the raw forecasts show a
higher precipitation variability particularly across the south-

western corner of D03, which is reduced in SEAS5 BCSD
and therefore agrees better with ERA5-Land.

4.3 Lead-time-dependent effects

The BCSD approach further corrects for lead-dependent ef-
fects. The magnitude of these effects strongly depends on the
lead time, which can be seen when comparing, e.g., the cli-
matologies of the raw forecasts from different issue months.
As an example, Fig. 5 shows the difference between the July
forecasts for D03 from different issue months. These differ-
ences obviously increase with increasing lead time. While
precipitation amounts are decreasing for higher lead times,
temperatures and radiation are increasing.

One reason for these drifts is a shift of higher temper-
atures and higher radiations with increasing lead times to-
wards south. This is visible in Fig. 6, which shows the July
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Figure 4. Total precipitation (left three columns) and the corresponding standard deviation (right three columns) during the 4 main months
of the rainy season for the four study domains from raw SEAS5 and SEAS5 BCSD lead-0 forecasts and ERA5-Land, averaged over the
period 1981 to 2016.

forecasts from SEAS5 and SEAS5 BCSD from different lead
times, compared to ERA5-Land. Despite the biases in abso-
lute magnitudes, the climatology of the higher-lead SEAS5
temperature and radiation forecasts match better with the
climatology from ERA5-Land. The differences between the
lead-0 and lead-5 forecasts in Fig. 5 also show the largest
deviations in the northern part of D03.

In most other cases, however, the climatologies from lower
lead times show a better agreement with the ERA5-Land cli-
matology.

The SEAS5 BCSD forecasts show only minor lead-
dependent effects (Fig. 5). The remaining differences for
precipitation, temperature and radiation between the low-
and higher-lead forecasts are below 0.5 mm/d, 0.5 K and

10 W/m2, respectively. Similarly, as depicted in Fig. 5, the
lead-0 and lead-5 forecasts for precipitation, temperature and
radiation forecasts in July as well as the ERA5-Land based
estimates agree almost perfectly in magnitude and spatial
patterns, indicating that the model drift of SEAS5 is almost
completely removed after applying the BCSD approach. This
is also true for the other three study domains (not shown).

4.4 Wet- and dry-day frequencies

Besides biases in the absolute values from raw forecasts, we
usually also have to take into account biases in the frequen-
cies of wet and dry days. Figure 7 shows the wet-day prob-
ability from the lead-0 and lead-5 forecasts, respectively, for
a single month for all four domains. Similar to the drifts in
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Figure 5. Differences between the July forecasts from different issue months for precipitation (top row), temperature (middle row) and
radiation (bottom row) for the African Domain D03.

the absolute values and patterns, there is also a clear differ-
ence between the wet-day probabilities from different lead
times. For example, the lead-0 forecasts for June over the
D03 domain predict a wet-day probability during June of
about 100 % across large parts of the Ethiopian Highlands.
This means that there is at least 1 mm of precipitation on ev-
ery single day in June. In the lead-5 forecasts (which are is-
sued in January), this probability is reduced to 80 % and less.
In other words, only 80 % of the forecasted days in June re-
ceive precipitation amounts of at least 1 mm per day. Sim-
ilarly, the higher-lead forecasts over the D01 domain also
predict lower wet-day probabilities across the Zagros Moun-
tains. After correcting for this lead-dependent wet-day fre-
quency, the BCSD forecasts show spatial patterns very sim-
ilar to the reference data and more consistent frequencies
across the different lead times.

4.5 Overall performance

The change in overall performance of the seasonal fore-
casts due to the bias-correction and spatial-disaggregation
approach with respect to ERA5-Land is evaluated with the
continuous ranked probability skill score (CRPSS, Sect. B).
In general, the overall performance of SEAS5 BCSD im-
proves compared to raw SEAS5; i.e., the cumulative distri-
bution functions (CDFs) of SEAS5 BCSD better correspond
to the reference ERA5-Land than the CDFs of raw SEAS5
(Fig. 8). Largest improvements for all basins are found for the

minimum temperature, with frequent CRPSS values > 0.4
indicating an improvement in the distributional distances by
40 % compared to raw SEAS5. Among the basins, largest
improvements by BCSD are produced for the CC Basin, es-
pecially for precipitation and maximum temperature. For the
TA and BN basins, the abovementioned lead-dependent ef-
fect is evident with larger improvements for the lower lead
times of the temperature and radiation forecasts. For the KA
Basin, precipitation forecasts for November and April may
be worsened in their performance by BCSD. In contrast, the
main 4 months of the rainy season of KA show improvements
mainly above 30 %. Also for the SF Basin, the December pre-
cipitation forecasts may be worsened, whereas other months
only show little improvement of SEAS5 BCSD compared
to raw SEAS5 for precipitation forecasts. Similarly, there is
only slight improvement for the maximum temperature fore-
casts for the KA Basin or the higher-lead temperature fore-
casts from December to March for the CC Basin.

5 Discussion

The BCSD forecasts show a much better agreement with
ERA5-Land as the raw SEAS5 product across most vari-
ables, domains and forecast months. However, to understand
the performance of the BCSD across the different study re-
gions, the regional climatic conditions are important.
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Figure 6. Average July predictions from SEAS5 lead 0 and 5 (first two columns), SEAS5 BCSD lead 0 and 5 (center columns), and
reference values from ERA5-Land (right column) for precipitation (top row), average temperature (middle row) and radiation (bottom row)
for the African Domain D03.

Over regions like the East African D03 domain, the rainy
season is dominated by the East African monsoon. This is
usually associated with daily convective precipitation and,
hence, many continuous wet days during the rainy season.
According to Figs. 6 and 7, the African monsoon is predicted
with higher rainfall intensities, higher wet-day frequencies,
and especially towards the northern parts of the domain with
lower temperature and radiation at shorter forecast horizons
than at longer lead times. Hence, it is assumed that in contrast
to the model climatologies from SEAS5 and ERA5-Land,
the initial conditions (which strongly influence the low-lead
forecasts) cause the low-lead forecast to show higher inten-
sities as well as a more northern extension of the summer
monsoon. The comparison with the reference ERA5-Land re-
veals that the spatial extent of the monsoon is predicted too
far towards the north at low lead times. However, the rainfall
intensity and wet-day frequency is more realistic than at long
forecast horizons.

Such spatial and temporal inconsistencies in the forecasted
spatial extent and intensity of the monsoon from different is-
sue dates impede the direct application of raw forecasts for
the regional water management. Therefore, as we correct the
raw forecasts to the same ERA5-Land reference data across
all lead times, this lead dependency is eliminated during the

bias correction. This simplifies the use as well as the inter-
pretation of our BCSD forecasts compared to the raw SEAS5
products.

For some regions and variables, e.g., for the maximum
temperature forecasts across the KA Basin, the precipitation
or radiation forecasts across the SF Basin or the precipitation
forecasts across the BN Basin, almost no or little improve-
ments for most forecast months can be identified, indicated
by CRPSS values of around 0 in Fig. 8 and almost identi-
cal RMSE values of SEAS5 and SEAS5 BCSD in Fig. 3. In
such cases, there is only a limited effect of the bias correc-
tion which can be explained by, e.g., an already good corre-
spondence between the raw forecasts and ERA5-Land (indi-
cated by low biases in Fig. 2) and/or rather random biases.
According to, e.g., Thrasher et al. (2012), variables that are
systematically biased usually benefit more from a quantile-
mapping-based bias correction than randomly biased vari-
ables.

Hence, large improvements of overall performance, indi-
cated by high CRPSS values (Fig. 8), usually point to large
systematic discrepancies between the raw SEAS5 and the
reference ERA5-Land. This is obvious for, e.g., the minimum
temperature forecasts which show a negative bias of the raw
forecasts (Fig. 2), high CRPSS values (Fig. 8) and reduced
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Figure 7. Wet-day (> 1 mm/d) probability for the four study domains for a single month (D01: December, D02: December, D03: June, D04:
May) from SEAS5 and SEAS5 BCSD for both lead 0 and lead 5, respectively, and the reference ERA5-Land.

RMSEs after the bias correction (Fig. 3) across almost all
basins and forecast months.

Besides these mostly positive results for BCSD, the mixed
impact of the BCSD approach across the D01 domain, indi-
cated by negative CRPSS values for the KA Basin in Fig. 8,
requires a closer look. Iran’s climate during the rainy season
is dominated by migrating low-pressure systems mainly from
the west and the Mediterranean Sea (Khalili and Rahimi,
2014). The precipitation over the D01 domain hence occurs
intermittently and spatially variable, which is usually diffi-
cult to predict especially with higher lead times and over the
mountainous headwaters of the Karun. For such regions, it
is necessary to correct for the amount and spatial location
of precipitation as well as the wet- and dry-day frequency.
While, according to Fig. 7, the wet-day frequency even for
high lead times could be improved, the CRPSS values in
Fig. 8 show worse agreement with ERA5-Land after the bias

correction during the transition from the dry to the wet season
(November) or the transition from the wet to the dry season
(April). We assume that this is caused by the application of a
31 d window for estimating the distribution functions, which
might not be adequate in such strongly varying climate con-
ditions during the transition months between the wet and dry
seasons. This can also be seen in Fig. 2, where particularly
the lead-0 and lead-7 temperature forecasts show remaining
biases with values of up to 0.7 �K. The temperature bias in
the first and last forecast months appears strongest in the KA
Basin due to the large annual temperature variations with
an annual temperature range of up to 45� (Table 1). Nev-
ertheless, mostly positive CRPSS values at these lead times
(Fig. 8) result from still reduced biases compared to the raw
forecasts (Fig. 2).

In general, during the first and last days of a forecast, we
cannot fill the complete 31 d window for estimating the fore-
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Figure 8. Median continuous ranked probability skill score (CRPSS) of area averages over the five basins (from top to bottom) of SEAS5
BCSD against raw SEAS5 forecasts with respect to the reference ERA5-Land. The CRPSS values are derived for precipitation (pr); mean
(tas), maximum (tasmax), and minimum (tasmin) temperature; and shortwave radiation (rsds) as monthly medians for each of the 6 months
during the wet season (x axis) of the period 1981 to 2016 for each lead time (y axis) separately. Blueish (reddish) colors indicate better
(worse) correspondence with ERA5-Land after applying the BCSD to the SEAS5 forecasts.

cast CDF. As an example, the reference CDF for 1 January
is based on the values from 17 December until 16 January,
while the CDF of the January forecast for 1 January only
uses the values from 1 to 16 January. If there are strong tem-
poral climate gradients or heteroscedasticity, e.g., during the
transition from a cold to a warm period, a bias correction
using moving windows can lead to remaining biases and,
hence, to statistical inconsistencies particularly on non-daily
timescales. An approach to account for such gradients would
be to use a dynamic moving window, where the length of the
window is based on, e.g., the gradient of the daily climatol-
ogy. It will be subject of future studies if such an approach is
able to improve the statistical consistency particularly during
the first and last days of the forecast.

The representation of small-scale features in SEAS5
BCSD, particularly in complex and mountainous terrain,
benefits from the explicit altitude correction in ERA5-Land,

which was necessary due to the higher spatial resolution
compared to ERA5: when correcting the SEAS5 forecasts
towards such a reference, we automatically include an indi-
rect correction for altitude. For the small basins of KA and
CC with large altitude differences, the added value of spatial
disaggregation (better representation of small-scale features)
and bias correction (indirect altitude correction) is therefore
most evident. Particularly at high elevations of the Zagros
Mountains in KA and the Andes in CC, the higher resolu-
tion and subsequent bias correction allows for locally dis-
tinct precipitation intensities (Fig. 4). Also in the Ethiopian
Highlands of D03 higher resolution produces more com-
plex (at this resolution circular shaped) structures around
the Ethiopian mountains. Independent of the accuracy of
the seasonal forecasts, we strongly assume that the higher
spatial resolution and, hence, better representation of small-
scale precipitation patterns make the BCSD SEAS5 forecasts
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more suitable for the regional water management. As already
shown in, e.g., Westrick and Mass (2001), a higher spatial
resolution of the atmospheric forcing (i.e., precipitation) usu-
ally leads to more accurate streamflow modeling.

We would also like to discuss the choice of the bias-
correction method used. As reported by, e.g., Anghileri et al.
(2019), bias correction is crucial to improve both forecast
quality and value. The quantile-mapping method that is used
in this study serves this purpose and is a widely used, well
understood and robust technique that is not computationally
demanding and can be easily implemented (Siegmund et al.,
2015). During the recent years, there have been numerous
studies in which new approaches were presented. While other
techniques can lead to more skillful, reliable and accurate
forecasts (e.g., Schepen et al., 2018; Manzanas et al., 2019;
Khajehei et al., 2018), or lower biases (e.g., Alidoost et al.,
2019) as quantile mapping for example tends to produce neg-
atively skillful forecasts when the raw forecasts are not sig-
nificantly positively correlated with observations (Zhao et al.,
2017), it should be considered that quantile mapping still
serves as the reference method in most of the recent bias-
correction studies. In other words, there is currently no other
bias-correction method that is similarly widespread. This not
only improves the comparability of our data with similar
studies, but also marks our SEAS5 BCSD forecasts as a ref-
erence product for exploring new forecast products and de-
veloping and evaluating new bias-correction techniques.

6 Data availability

The bias-corrected and spatially disaggregated seasonal
forecasts are published via the World Data Center for
Climate (WDCC), which is hosted by the German Climate
Computing Center (DKRZ), within the project Seasonal
Water Resources Management for Semiarid Areas: Re-
gionalized Global Data and Transfer to Practise (SaWaM,
https://cera-www.dkrz.de/WDCC/ui/cerasearch/project?
acronym=SaWaM, last access: 2 June 2021). In this project,
we have created the four experiments SaWaM D01, SaWaM
D02, SaWaM D03 and SaWaM D04 (i.e., one experiment
for each study domain), which contain all products for the
respective region. Our SEAS5 BCSD forecasts are available
via the dataset group SaWaM SEAS5 BCSD, which contains
all daily and monthly forecasts:

– SaWaM D01 SEAS5 BCSD
(https://doi.org/10.26050/WDCC/SaWaM_D01_SEAS5
_BCSD): Seasonal Water Resources Management for
Semiarid Areas: Bias-corrected and spatially disag-
gregated seasonal forecasts for the Karun Basin (Iran)
(Lorenz et al., 2020b).

– SaWaM D02 SEAS5 BCSD
(https://doi.org/10.26050/WDCC/SaWaM_D02_SEAS5
_BCSD): Seasonal Water Resources Management for

Semiarid Areas: Bias-corrected and spatially disag-
gregated seasonal forecasts for the Rio São Francisco
Basin (Brazil) (Lorenz et al., 2020c).

– SaWaM D03 SEAS5 BCSD
(https://doi.org/10.26050/WDCC/SaWaM_D03_SEAS5
_BCSD): Seasonal Water Resources Management for
Semiarid Areas: Bias-corrected and spatially disag-
gregated seasonal forecasts for the Tekeze–Atbara and
Blue Nile Basins (Ethiopia/Eritrea/Sudan) (Lorenz
et al., 2020d).

– SaWaM D04 SEAS5 BCSD
(https://doi.org/10.26050/WDCC/SaWaM_D04_SEAS5
_BCSD): Seasonal Water Resources Management for
Semiarid Areas: Bias-corrected and spatially disaggre-
gated seasonal forecasts for the Catamayo–Chira Basin
(Ecuador/Peru) (Lorenz et al., 2020a).

Each of these four groups contains six datasets:
BCSD_daily_pr and BCSD_monthly_pr (daily and
monthly precipitation forecasts), BCSD_daily_tas and
BCSD_monthly_tas (daily and monthly average, minimum
and maximum temperature forecasts), and BCSD_daily_rsds
and BCSD_monthly_rsds (daily and monthly surface solar
radiation forecasts). All datasets contain forecasts from the
issue date (i.e., the first of each month) for the next 215 d
(daily) and 6 months (monthly), respectively.

Users interested in a teaser product are advised to use the
monthly averaged forecasts. They have a maximum down-
load size of around 2 GB for precipitation, 2.4 GB for ra-
diation and 6 GB for the three temperature variables over
our largest domain across Brazil for the whole period from
1981 to 2019 and all ensemble members. The data size
for the other domains is of course much smaller. Some of
the products as well as derived forecast measures like cat-
egorical precipitation and temperature forecasts are visual-
ized through an online decision support system for the re-
gional water management at https://sawam.gaf.de/ (last ac-
cess: 2 June 2021). This system is currently under joint de-
velopment with the company GAF AG (https://www.gaf.de,
last access: 2 June 2021, Munich, Germany). As of now, fore-
casts for the Brazilian and Sudanese and Ethiopian domain
are included. The data for Iran will be implemented in the
near future.

We also publish the BCSD forecasts through the Karlsruhe
Institute of Technology (KIT) – Campus Alpin THREDDS
Data Server. In contrast to the products available via the
WDCC, the operational forecasts are only available via the
THREDDS Data Server. These are published with a delay of
about 1 d after the release of the official seasonal forecasts
from ECMWF on the fifth of each month. For getting access
to the operational products, contact christof.lorenz@kit.edu.
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7 Conclusions

In this study we present a comprehensive dataset of bias-
corrected and spatially disaggregated seasonal forecasts for
four different semi-arid domains across three continents. The
forecasts are based on the most recent version of ECMWF’s
seasonal forecast system SEAS5, which are corrected to-
wards the ERA5-Land land surface rerun of the ERA5 re-
analysis with an enhanced spatial resolution of 9 km (here:
0.1�). The final SEAS5 BCSD repository contains seasonal
forecasts at daily and monthly resolution for precipitation,
mean, minimum and maximum temperature as well as for
radiation for the period from 1981 until 2019 with a spa-
tial resolution of 0.1�. For each of the 468 issue dates, we
provide ensemble forecasts with 25 or 51 members (since
2017) for the coming 214 d. Currently, the data cover do-
mains in Iran (D01), Brazil (D02), Ethiopia/Sudan (D03) and
Ecuador/Peru (D04), but it is planned to extend this list to
further domains.

The comparison of our SEAS5 BCSD product with the
raw SEAS5 forecasts against reference data from ERA5-
Land clearly indicated a reduction of biases and root mean
squared errors across most study regions and variables. Fur-
ther, the spatial resolution of the forecasts is improved from
36 km to 0.1�, and the patterns of precipitation, temperature
and radiation show much better agreement with the reference
data. Finally, model drifts are reduced, which leads to tem-
porally more consistent forecasts.

Besides these improvements, we could also observe re-
maining biases after bias correction particularly during the
low- and high-lead temperature forecasts for the KA Basin.
This is explained with a highly variable climate with strong
gradients and heteroscedasticity, where a moving window
can introduce statistical inconsistencies when, e.g., monthly
averages are derived from daily data. The impact of a
highly dynamic climate on the statistical consistency of bias-
corrected forecasts obviously has also huge implications for,
e.g., global approaches. Therefore, future works have to fur-
ther examine methods and approaches to account for such
strong gradients in the reference climatologies.

Our bias-corrected and spatially disaggregated seasonal
forecasts are freely available on both daily and monthly tem-
poral resolution via the World Data Center for Climate. To
our knowledge, this is the first multi-variable and multi-
domain high-resolution seasonal forecast for a period of al-
most 40 years. It provides a unique product for a wide variety
of researchers, stakeholders and other experts from the wa-
ter sector who are interested in a consistent dataset of post-
processed seasonal forecasts. This product gives local ex-
perts from the four study domains, who often do not have the
computational framework conditions or access to the opera-
tional products from ECMWF, the opportunity to investigate
the potential of high-resolution seasonal forecasts for, e.g.,
the regional water management, drought forecasting or irri-
gation planning. Derived products like categorical forecasts,

based on our SEAS5 BCSD product, have therefore already
been adopted by several weather services and other higher-
level authorities in the study domains. As SEAS5 BCSD
also covers all months during the re-forecasting period since
1981, it can be used to review and refine currently existing
decision calendars and dates when actions and management
strategies for the coming rainy season are defined.

That being said, the published SEAS5 BCSD dataset cur-
rently contains only the daily and monthly ensemble fore-
casts and no derived information like, e.g., probabilistic fore-
casts or drought indicators. Hence, for transferring this prod-
uct into practice, we have to (a) identify and compute region-
ally suitable forecasting measures and indicators, (b) make
this information accessible, e.g., via a user-friendly online
platform and (c) ensure a proper communication of the po-
tential but also the limitations of such current seasonal fore-
casting products to all end-user sectors like authorities, water
managers or farmers.

For these subsequent steps, SEAS5 BCSD can be used as
consistent data resource and, hence, serves as a further el-
ement for ensuring a sustainable and timely regional water
management in our semi-arid study regions. Ultimately, in
the context of global climate change with increasing risks of
climatic extreme events, we have to ensure that longer-term
forecasts like SEAS5 BCSD are adopted by authorities and
included in the water resources planning for improving future
disaster preparedness.
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Appendix A: Empirical quantile mapping

A1 Empirical quantile mapping

We follow the classical empirical quantile-mapping approach
as depicted in, e.g., Wood et al. (2002); Voisin et al. (2010).
The bias correction is performed separately for each single
pixel. For each forecasted day, we select a window of ±15 d
around the forecasted day from all ensemble members and all
re-forecasts of the period 1981 to 2016 which have been ini-
tialized in the same month. The CDF for the forecasts is then
computed from this large sample. As an example, the CDF
for 1 January from the January forecast is based on 16 (days
in January) ⇥25 (ensemble members) ⇥36 (years) = 14 400
values. The CDF for the 31 January from the same issue
month is based on 27 900 values (as we use the 15 d be-
fore and after the 31 January). Obviously, during the first
and last 15 d of a forecast, we have to use fewer samples as
we cannot extend the window before or after the forecasted
period. While this might introduce inconsistencies particu-
larly during the first and last days of a forecast, we think
that this approach of a daily moving window is still more cli-
matically reasonable than estimating a single CDF for each
month. This approach, while computationally less expensive,
can lead to large jumps between consecutive days at the end
of the previous and beginning of the next month. The CDF
for the reference data is estimated in the same way by using
31 (days) ⇥ 36 (years) = 1116 samples for each forecasted
day. Using the CDFs for the forecasts Fi,✓,mod and the ref-
erence Fi,✓,ref for the forecasted day i and pixel ✓ , the bias
correction of each forecasted value Xi,✓ is performed through

bXi,m,✓ = F
�1
doy,ref

�
Fdoy,mod

�
Xi,m,✓

��
. (A1)

This is shown for example in Fig. A1a.

A2 Bias correction of extremes

As we are using ensemble-based forecasts, we usually have
more samples from which we can estimate the forecast CDF
compared to the reference data. If further an empirical quan-
tile mapping is applied, we can get forecasted probabilities
outside the range of the empirical reference quantiles (i.e.,
below 1/ (n + 1) or above n/ (n + 1), where n is the number
of samples from which the reference CDF is derived; upper
dashed line in Fig. A1). To apply the bias correction to such
extreme values, some extrapolation is required. Here, we use
the constant correction method from Boé et al. (2007). We
first calculate the correction that corresponds to the lowest
and highest reference quantile, respectively. These constant
corrections are then applied to all forecast values below or
above the lowest and highest reference quantile. Due to its
simple application and robustness, this approach is a good
choice particularly in cases where no climate change signal
is expected or when the parametric distributions for the vari-
ables to be corrected are unknown or difficult to estimate.

A3 Correction of the precipitation intermittency

Besides the correction of the absolute values, there might
also be a bias between the wet- and dry-day frequencies. For
correcting these frequencies, we apply the same approach as
in Voisin et al. (2010). We first compute the dry-day proba-
bility of the forecasts and the reference data. If a forecast falls
below the reference dry-day probability, it is set to zero. This
is demonstrated for example in Fig. A1c. If, however, the dry-
day probability of the forecasts is higher than the reference
data and we obtain a zero-precipitation forecast, we draw a
uniform random sample between 0 and the dry-day proba-
bility of the forecasts (depicted by the arrow in Fig. A1d). If
this value is below the dry-day probability of the reference
(the lower dashed line in Fig. A1d), the forecast is again set
to zero. If not, it is corrected using the inverse CDF of the
reference.

A4 Consistent correction of minimum, maximum and

average temperature

Due to the very nature of QM-based bias correction, the cor-
rected temperatures can become physically unrealistic as

1. the corrected minimum (maximum) temperatures are
higher (lower) than the corrected maximum (minimum)
temperatures or

2. the corrected average temperature is higher (lower) than
the corrected maximum (minimum) temperature, re-
spectively.

The first two cases are comprehensively discussed in
Thrasher et al. (2012). For bias-correcting daily temperature
data, they propose to first calculate the diurnal temperature
range from the maximum and minimum temperature. The
bias correction is then applied to the maximum temperature
and diurnal temperature range (instead of the minimum tem-
perature). Afterwards, the corrected minimum temperature is
derived by subtracting the bias-corrected diurnal temperature
range from the bias-corrected maximum temperature. As we
are interested in correcting the average temperature as well,
we apply a slightly modified version of this approach. In-
stead of computing the diurnal temperature range, we com-
pute the difference between the maximum (minimum) and
average temperature, respectively. Then, we apply the bias
correction to the two ranges as well as the average temper-
ature. Corrected maximum and minimum temperatures are
then computed by adding and subtracting the ranges to and
from the corrected average temperature, respectively.
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Figure A1. (a) Empirical quantile mapping between model-based (red) and reference (blue) data; (b) delta approach for correcting extreme
values above the maximum Weibull quantiles; (c) correction of precipitation intermittency when the dry-day probability of the reference
(lower dashed line) is higher; (d) correction of precipitation intermittency when the dry-day probability of the reference is lower.

Appendix B: Verification metrics

To compare the bias-corrected and spatially disaggregated
forecasts against the reference data, we use three different
verification metrics. First, for evaluating the overall level of
agreement of the corrected data, we compare the BCSD and
raw SEAS5 forecasts against the ERA5-Land dataset using
the bias and root mean squared error (RMSE). For a pixel or
basin average, these are

Bias = 1
N

�
Xp � Xo

�
(B1)

and

RMSE =
r

1
N

�
Xp � Xo

�2
, (B2)

respectively, where Xp and Xo are the predictions and refer-
ence values, respectively and N the number of samples. In
our case, for monthly forecasts, N is 36 (years). Obviously,
the bias and RMSE can be computed for different lead times,
which then gives information about the dependency of the
error from the lead time.

While the bias and RMSE are suitable for comparing the
overall agreement of the ensemble mean against a reference,
there is a wide range of metrics particularly for ensemble
forecasts. A comprehensive overview and discussion of en-
semble forecast verification measures can be found in, e.g.,
Casati et al. (2008). In this study, we use the continuous
ranked probability skill score (CRPSS, e.g Hersbach, 2000)
for the evaluation of overall performance. The CRPSS is the
continuous extension of the widely used Brier skill score
(BSS Brier, 1950) and compares relative distributional dis-
tances of forecast and reference data. While the BSS aims at
the verification of specific events like the probability of pre-
cipitation amounts > 10 mm/d, the CRPSS extends this to all
possible events. As a skill score, comparing the prediction
skill of different forecasts, the CRPSS is defined as

CRPSS = 1 � CRPSforecast

CRPSreference forecast
. (B3)

Here, the continuous ranked probability score (CRPS) for a
forecasted quantity x is defined as

CRPS(Fp,x) =
+1Z

�1

�
Fp (x) � Fo (x)

�2dx, (B4)

where Fp
�
xp

�
and Fo (xo) are the cumulative distribution

functions from the ensemble seasonal forecasts and the ref-
erence data, respectively. In this study, we use the empirical
CDF for approximating the ensemble CDF of the forecasts,
and the CDF of the reference data is defined as

Fo (x) = H (x � xo) , (B5)

where H (x) is the Heaviside function. Obviously, for each
observation, we compute a single CRPSS. For evaluating the
CRPSS across multiple points in time and/or space, we cal-
culate the average from the single CRPSS values.

In most cases, the comparison with the reference forecast
in the denominator of the CRPSS simply uses climatology.
However, in this study, we are interested in the increase in the
level of agreement of the SEAS5 forecasts with the ERA5-
Land reference data after applying the BCSD. We therefore
compute the skill score from the CRPS between the SEAS5
BCSD and the raw SEAS5 forecasts against the ERA5-Land
reference, respectively.
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High-Resolution Dynamically
Downscaled Precipitation Fields:
Example for Climate Sensitive Regions
of South America
Tanja C. Portele1,2*, Patrick Laux1,2, Christof Lorenz1, Annelie Janner3, Natalia Horna4,
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For climate adaptation and risk mitigation, decision makers in water management or
agriculture increasingly demand for regionalized weather and climate information. To
provide these, regional atmospheric models, such as the Weather Research and
Forecasting (WRF) model, need to be optimized in their physical setup to the region of
interest. The objective of this study is to evaluate four cumulus physics (CU), two
microphysics (MP), two planetary boundary layer physics (PBL), and two radiation
physics (RA) schemes in WRF according to their performance in dynamically
downscaling the precipitation over two typical South American regions: one
orographically complex area in Ecuador/Peru (horizontal resolution up to 9 and 3 km),
and one area of rolling hills in Northeast Brazil (up to 9 km). For this, an extensive ensemble
of 32 simulations over two continuous years was conducted. Including the reference
uncertainty of three high-resolution global datasets (CHIRPS, MSWEP, ERA5-Land), we
show that different parameterization setups can produce up to four times the monthly
reference precipitation. This underscores the urgent need to conduct parameterization
sensitivity studies before weather forecasts or input for impact modeling can be produced.
Contrarily to usual studies, we focus on distributional, temporal and spatial precipitation
patterns and evaluate these in an ensemble-tailored approach. These ensemble
characteristics such as ensemble Structure-, Amplitude-, and Location-error, allow us
to generalize the impacts of combining one parameterization scheme with others. We find
that varying the CU and RA schemes stronger affects the WRF performance than varying
the MP or PBL schemes. This effect is even present in the convection-resolving 3-km-
domain over Ecuador/Peru where CU schemes are only used in the parent domain of the
one-way nesting approach. The G3D CU physics ensemble best represents the CHIRPS
probability distribution in the 9-km-domains. However, spatial and temporal patterns of
CHIRPS are best captured by Tiedtke or BMJ CU schemes. Ecuadorian station data in the
3-km-domain is best simulated by the ensemble whose parent domains use the KF CU
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scheme. Accounting for all evaluation metrics, no general-purpose setup could be
identified, but suited parameterizations can be narrowed down according to final
application needs.

Keywords: weather research and forecasting (WRF) model, sensitivity, CHIRPS 2.0, northeast Brazil, Ecuador, Peru,
eSAL, parameterizations

1 INTRODUCTION

Increasing demands for water until 2050 will aggravate the
impacts of water scarcity on agricultural production and
livelihood activities (Food and Agriculture Organization of the
United Nations, 2015). To successfully deal with this projected
development, sustainable management of available water
resources is mandatory. For improved decision support in
regional water management or agriculture, high-quality
regionalized weather and climate forecasting increasingly
matters (Soares et al., 2012; Müller et al., 2016) and is a key
requirement for successful hydrological and crop impact
modeling (Decharme and Douville, 2006; Barbosa and
Lakshmi Kumar, 2016; Parkes et al., 2019). Especially in semi-
arid regions and areas affected by El-Niño-Southern-Oscillation
(ENSO) more profound knowledge of variations in seasonal
rainfall, estimated streamflow and crop yield from regionalized
model output, can help to better prepare against climate
extremes. Here, our focus is on the downscaling of global
hydrometeorological fields over two typical regions of South
America: one area of rolling hills in Northeast Brazil and one
orographically complex area in Ecuador/Peru. Hit by a multiyear
drought in the last decade (Marengo et al., 2018; Martins et al.,
2018) and strongly influenced by El Niño (Domínguez-Castro
et al., 2018), respectively, those regions are facing high climate
variability especially during their rainy seasons. Water availability
in those regions not only determines the production of rainfed
and irrigated agriculture, it also limits the hydroelectric energy
production in their highly managed river basins (von Sperling,
2012).

One way to achieve regionalized hydrometeorological
information is the application of regional atmospheric models,
such as the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008), to dynamically downscale coarse-
grained, large-scale fields over selected areas. The performance
of regional simulations highly depends on the used physical
parameterization model setup, and it may vary from region to
region. Therefore, these models need to be adapted in their
physical setting to the region of interest. Sub-grid scale
processes such as cloud microphysics (MP), cumulus
convection (CU), planetary boundary layer physics (PBL), and
radiation physics (RA) are parameterized in these models, and
their choice and combination highly influences the modeled
hydrometeorological variables (Flaounas et al., 2011; Crétat
et al., 2012; Yang et al., 2012; Zhang et al., 2012; Efstathiou
et al., 2013; Klein et al., 2015; Que et al., 2016; Gbode et al., 2019;
Yang et al., 2021). As precipitation amounts result from the
complex interaction of the applied physical schemes, they
combine all uncertainties due to the model setup and are a

major source of impact model uncertainty (e.g., Decharme and
Douville, 2006; Barbosa and Lakshmi Kumar, 2016; Parkes et al.,
2019). This study therefore focuses on the performance of the
WRF setup in terms of reproduction of precipitation patterns.

Comprehensive parameterization studies are common
practice to decide on the best-suited regional model setup
before conducting operational weather forecasts, long-term
climate projections or impact studies. Previous WRF
parameterization studies, relevant for our focus regions, did
not reach high resolutions below 10 km for regional
applications (e.g., 30 km in the Amazon basin; Fersch and
Kunstmann, 2014), chose a very limited domain (e.g., 15 km
resolution over a 225 × 225 km domain in Southern Ecuador;
Ochoa et al., 2016), included only parts of our study domains
(e.g., 40 km resolution over South America between −10° and
−50°S; Ruiz et al., 2010), did not pursue a full factorial
combination of applied physics schemes (e.g., high-resolution
runs at 18–6–3 km over the Peruvian Andes; Moya-Álvarez et al.,
2018) or studied only short-term events (e.g., high-resolution
runs at 25–5–1.66 km in Northeast Brazil for a 10-day period;
Comin et al., 2020). Ochoa et al. (2016) and Ruiz et al. (2010)
further lacked a profound analysis with respect to the effects of
different physics schemes on precipitation. Fersch and
Kunstmann (2014) already showed difficulties of the different
WRF setups in reproducing the observed precipitation. Our study
therefore aims at a detailed, multi-target evaluation tailored for
the use of ensembles (ensemble-tailored) of the conducted high-
resolution WRF physics ensemble runs including four CU, two
MP, two PBL, and two RA physics in a full-factorial combination
of physics schemes over a continuous 2-years period. With high-
resolution, daily, global gridded precipitation reference data
available, the regionalized WRF precipitation at target
resolutions of 9 and 3 km can be extensively validated:
gridpoint-based, domain-based and feature-based, allowing the
consideration of different aspects needed when used as input for
spatially distributed impact models or for running regional
climate projections or weather forecasts. We first demonstrate
the necessity of model parameterization studies in these regions
of South America, and then differentiate the impact of different
physical parameterization schemes on the distributional,
temporal and spatial patterns of the high-resolution
dynamically downscaled precipitation fields.

2 METHODS

2.1 WRF Model Configuration
The Weather Research and Forecasting (WRF) model is a
numerical weather prediction (NWP) model, used for both
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research and operational applications (Skamarock et al., 2008). In
this project, WRF Version 3.9.1 with the Advanced Research
WRF (ARW) solver was used for dynamical downscaling. Initial
and lateral boundary conditions for our simulations were used
from interpolated data of the European Center for Medium-
Range Weather Forecasts (ECMWF) Re-Analysis (ERA) Interim
(Dee et al., 2011) with a spatial resolution of 79 km, 60 vertical
levels and a model top at 0.1 hPa. The initial and lateral boundary
conditions used in WRF are wind components, temperature,
water vapor, surface pressure, sea surface temperature (SST)
and soil moisture, all of them in different atmospheric and
soil height levels, respectively. The boundary conditions were
updated at every WRF model time step from the linearly
interpolated 6-hourly global fields.

The spatial setup of WRF consists of four domains, with the
first domain (SA27) representing the 27-km-resolution parent
domain with 288 × 206 grid points. In a 1-way nested approach
(no feedback), the horizontal grid resolution was stepwise
increased from 27 km (SA27) to 9 km (EP9 and NB9), and
finally to 3 km (EP3, Figure 1). This last step to 3 km was
only performed over the highly mountainous Ecuadorian-
Peruvian region to be able to represent topographically
induced processes. Over the topographically more
homogeneous Brazilian region, the final horizontal grid
resolution was 9 km. The simulated time step was 90 s for
SA27 with a parent time step ratio of 1:3. For some
simulations, the time step of SA27 needed to be reduced to
30 s for numerically stable simulations. In the vertical, the
domains consisted of 100 terrain-following hydrostatic
pressure levels with a model top at 10 hPa.

Simulations were continuously run over a period of
2.5 years (Jan 2006 to Jun 2008) to capture different wet
and dry conditions during the rainy and dry seasons of the

regions and including a 6-months spin-up for soil moisture
equilibrium adjustment. In their sensitivity study on the effect
of spin-up length to atmospheric variables like precipitation
and 2-m temperature, Jerez et al. (2020) recommend a six-
months spin-up period as the best compromise between
required computational expense and any remaining
imbalance of the soil subsystem. Analyzing the behavior of
relative soil moisture content in different parameterization
experiments for the 2.5 years simulation period suggests that a
6-months period is sufficient for obtaining the dynamical soil
moisture equilibrium in all domains (not shown). The time
period from Jan 2006 to Jun 2008 was chosen to obtain
continuous simulations of medium years in the domains
with respect to precipitation (Figure 2A). To allow for a
better representation of regionalized climatological
conditions, these years were further selected to be within
the period of maximum assimilated observations in the
atmospheric analysis component of ERA-Interim from 2002
till 2010 (Dee et al., 2011; Simmons et al., 2014). Ochoa et al.
(2016) further recommend to include ENSO neutral years for
physics parameterization studies, as high uncertainties can be
introduced by ENSO especially in the western coastal regions
of Ecuador and Peru. The inclusion of El-Niño-years would be
an additional research question and would require the
simulation of at least 10 years to average out the strong
effects of El Niño. This study focuses on years with typical
average climatological conditions. By excluding the spin-up
period, we focus our analysis on the period Jul 2006–Jun 2008.
For the validation against gridded reference data, theWRF grid
was bilinearly interpolated from 9 km to 0.1° for EP9 and NB9,
and from 3 km to 0.05° for EP3. For the comparison with
station observation data, the nearest grid cell to the station
location of the 3 km EP3 grid was used. The relaxation zones of
the nested domains were omitted for the analysis.

2.2 Tested WRF Physics Parameterization
Schemes
Testing all possible combinations of all available physics schemes
for several years is computationally too expensive. Therefore, we
chose a representative sample ofWRF physics schemes, including
different levels of complexity and formulation of particular
processes. For precipitation generation, the cumulus and
microphysics schemes are mainly responsible, representing
convective and non-convective precipitation, respectively.
Testing four different CU schemes, our main focus is on the
performance of CU schemes that are already reported to have
major impact on the simulated precipitation among the different
physics scheme groups (Crétat et al., 2012; Sikder and Hossain,
2016; Ochoa et al., 2016; Yang et al., 2021), particularly in regions
producing predominantly convective precipitation like in the
tropics. However, also different MP, PBL and RA schemes
largely contribute to precipitation uncertainties (Klein et al.,
2015; Ulate et al., 2014; Efstathiou et al., 2013; Flaounas et al.,
2011), especially for high spatial resolution <5 km for which
convective processes are expected to be captured and CU schemes
should not be used (Hsiao et al., 2013; Skamarock et al., 2008). For

FIGURE 1 | Regional dynamical downscaling over the Ecuadorian-
Peruvian and Brazilian domain. In a nested approach, the input data of the
ERA-Interim reanalyses is downscaled to 27 km (SA27), 9 km (EP9) and 3 km
(EP3) over Ecuador-Peru and to 9 km (NB9) over Northeast Brazil. The
dots in EP3 represent 106 selected precipitation gauges of the Ecuadorian
Weather Service INAMHI that have less than 5% of missing values during Jul
2006–Jun 2008.
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this reason, we also tested two different schemes each for MP,
PBL and RA. In total, 32 simulations from the full factorial
combination of the selected schemes were run (Table 1).
Regarding land surface physics parameterizations, we fixed the
Noah Land surface model (LSM; Chen and Dudhia, 2001), with
soil temperature and moisture in four levels, for all runs, as
previous studies (e.g., Crétat et al., 2012; Tariku and Gan, 2017)
found smaller effects of different LSMs over the amount of
precipitation compared to the other mentioned physics
parameterization groups. Using the nested approach, all study
domains (Figure 1) were run in one simulation at the same time
using the same physics setup. For the 3-km-domain, CU schemes
were not used, but explicitly resolved convection was assumed.

The cumulus physics schemes manage subgrid-scale
convection processes and shallow clouds. The timing and
location of cumulus convection is controlled by a trigger
function, and the adjustment method controls how profiles of
temperature and moisture are modified according to the
triggering in the convection scheme. The used schemes of

Grell-3 (improved Grell-Devenyi scheme; G3D, Grell and
Dévényi, 2002; Skamarock et al., 2008), New Tiedtke (Tiedtke,
Zhang andWang, 2017) and the modified version of Kain-Fritsch
(KF, Kain and Fritsch, 1990; Kain, 2004) are mass-flux schemes.
Mass-flux schemes have explicit updrafts to transport air from the
updraft source layer upwards while reducing the convective
available potential energy (CAPE). They also include
compensating environmental subsidence, i.e., downdrafts,
around clouds. Among the mass-flux schemes, G3D produces
an ensemble of triggers and closures (determines cloud strength)
and feeds back the ensemble mean to the model. G3D is especially
suitable for small grid sizes as it allows the spreading of
subsidence effects to neighboring grid columns (Skamarock
et al., 2008). However, this subsidence spreading is only
recommended for grid sizes ≤5 km (Skamarock et al., 2008;
Grell and Freitas, 2014) and is therefore not used for the 9 km
domain. For G3D, also the shallow convection (“ishallow”),
i.e., an additional scheme for non-precipitating shallow clouds
by enhanced mass-flux, is used. In contrast to the other schemes,

FIGURE 2 | (A) Annual domain-averaged precipitation anomalies (mm a−1) of CHIRPS for EP9 (upper), EP3 (middle) and NB9 (lower) with respect to the
climatological mean from 1981 to 2016. Simulated years of 2006–2008 are marked with black. (B) CHIRPS timeseries and 1981–2016 climatology, together with WRF
ensemble uncertainty of monthly domain-averaged precipitation (mm d−1) for Jul 2006 till Jun 2008 for EP9 (upper), EP3 (middle) and NB9 (lower). The uncertainty in
the reference data by including MSWEP and ERA5-Land for EP9 and NB9 is depicted by shaded areas.
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Tiedtke is able to include momentum transport. The fourth used
scheme of Betts–Miller–Janjic (BMJ, Janjic, 1994; Janjic, 2000) is
based on convective adjustment of atmospheric profiles to post-
convective (mixed) soundings and does not have explicit updrafts
or downdrafts. In contrast to the others, BMJ also does not
include cloud and ice detrainment at the cloud top.

Microphysics schemes produce clouds by resolved-scale
radiative, dynamical or convective processes. They include
latent heat release, cloud and precipitation processes and
different particle types associated with the phase changes of
water between the vapor, liquid and solid phases (Skamarock
et al., 2008). The microphysics therewith provide atmospheric
heat and moisture tendencies, as well as resolved-scale surface
precipitation. The conditions at grid cells, e.g., supersaturation or
temperature below 0°C, −40°C, determine the distribution of
water among the represented species. For our study, we chose
the WRF single moment 3-class simple ice scheme (WSM3) and
the more complex WRF single moment 6-class (WSM6) scheme.
WSM3 (Hong et al., 2004) includes simulated mixing ratios for
water vapor (Qv), cloud ice crystals (Qi), and snow (Qs) and their
interactions below 0°C, as well as water vapor (Qv), cloud liquid
water (Qc), and rain liquid water (Qr) and their interactions
above 0°C. Compared to WSM3, WSM6 (Hong and Lim, 2006)
also represents graupel (Qg) and more interactions between the

classes. Both WSM3 and WSM6 do not include hail (frozen
drops, Qh) and do not predict number concentrations of species
like double moment schemes.

Planetary boundary layer physics schemes control sub-grid-
scale vertical fluxes of heat, momentum and other quantities like
moisture via eddy transports in the whole atmospheric column.
To obtain turbulent fluxes, a closure scheme is needed to relate
the unknown turbulent flux terms in the equations to known
variables like mean state or gradients. Whether fluxes depend on
local or nonlocal values and gradients defines if mixing with
nearby (local) or distant (nonlocal) grid cells is allowed. The two
selected schemes of Yonsei University (YSU, Hong et al., 2006)
and Asymmetrical Convective Model version 2 (ACM2, Pleim,
2007) are both first-order closures. YSU is a nonlocal closure
scheme and explicitly treats the entrainment layer at the PBL top
based on results from large-eddy simulations. As a hybrid local-
nonlocal scheme, ACM2 combines explicit nonlocal exchange of
the surface layer to all layers above with local eddy diffusion
between the other layers and the immediately next layer above,
together better representing the effect of diurnal heating (Pleim,
2007).

Radiation physics schemes are used to describe longwave and
shortwave radiation processes, including absorption, reflection,
and scattering, and they determine the heating of the ground and
the atmosphere. We tested the combination of the rapid radiative
transfer model (RRTM, Mlawer et al., 1997) for longwave
radiation and the Dudhia shortwave scheme (Dudhia, 1989),
and the rapid radiative transfer model for general circulation
models (RRTMG, Iacono et al., 2008) for both longwave and
shortwave radiation. Whereas shortwave Dudhia only performs
downward integration of the solar flux per column, shortwave
RRTMG considers both downward and upward (reflected) fluxes.
In contrast to shortwave RRTMG, Dudhia has no ozone effect
that would maintain a warm stratosphere. Both shortwave
Dudhia and longwave RRTM work with a binary cloud
fraction (0/1), whereas RRTMG includes subgrid-scale cloud
variability with a statistical method of maximum-random
cloud overlap in different layers. Longwave RRTMG uses the
same basic physics and absorption coefficients as longwave
RRTM, but includes some modifications to improve
computational efficiency.

2.3 Validation Reference Datasets
For the validation of simulated WRF precipitation, the steady
decrease in the number of precipitation gauges and the lack of a
consistently best-performing global dataset (Lorenz et al., 2014)
has to be kept in mind. Especially in Northeast Brazil and coastal
Ecuador-Peru, the number of rain gauges dramatically decreased
between 1980 and 2009 (Lorenz et al., 2014). Hence, for the
validation of WRF precipitation, we focus on global publicly
available daily datasets of different observational origin, that are
natively provided at roughly the horizontal resolution of theWRF
domains of 9 and 3 km. We use 1) blended gauge-satellite
precipitation estimates of the Climate Hazards Group Infrared
Precipitation with Stations version 2.0 (CHIRPS, Funk et al.,
2015), 2) merged precipitation estimates from satellite and
reanalysis data of the Multi-Source Weighted-Ensemble

TABLE 1 | Tested 32WRF setups of parameterization combinations of 4 cumulus
convection (CU), 2microphysics (MP), 2 planetary boundary layer (PBL), and 2
radiation (RA) physics schemes.

Run # CU MP PBL RA
1 G3D + shallow WSM3 YSU RRTMG
2 G3D + shallow WSM3 YSU RRTM + Dudhia
3 G3D + shallow WSM3 ACM2 RRTMG
4 G3D + shallow WSM3 ACM2 RRTM + Dudhia
5 G3D + shallow WSM6 YSU RRTMG
6 G3D + shallow WSM6 YSU RRTM + Dudhia
7 G3D + shallow WSM6 ACM2 RRTMG
8 G3D + shallow WSM6 ACM2 RRTM + Dudhia
9 Tiedtke WSM3 YSU RRTMG
10 Tiedtke WSM3 YSU RRTM + Dudhia
11 Tiedtke WSM3 ACM2 RRTMG
12 Tiedtke WSM3 ACM2 RRTM + Dudhia
13 Tiedtke WSM6 YSU RRTMG
14 Tiedtke WSM6 YSU RRTM + Dudhia
15 Tiedtke WSM6 ACM2 RRTMG
16 Tiedtke WSM6 ACM2 RRTM + Dudhia
17 BMJ WSM3 YSU RRTMG
18 BMJ WSM3 YSU RRTM + Dudhia
19 BMJ WSM3 ACM2 RRTMG
20 BMJ WSM3 ACM2 RRTM + Dudhia
21 BMJ WSM6 YSU RRTMG
22 BMJ WSM6 YSU RRTM + Dudhia
23 BMJ WSM6 ACM2 RRTMG
24 BMJ WSM6 ACM2 RRTM + Dudhia
25 KF WSM3 YSU RRTMG
26 KF WSM3 YSU RRTM + Dudhia
27 KF WSM3 ACM2 RRTMG
28 KF WSM3 ACM2 RRTM + Dudhia
29 KF WSM6 YSU RRTMG
30 KF WSM6 YSU RRTM + Dudhia
31 KF WSM6 ACM2 RRTMG
32 KF WSM6 ACM2 RRTM + Dudhia
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Precipitation version 2.1 (MSWEP, Beck et al., 2019), and 3) a
pure reanalysis product of a land component replay of the
ECMWF ERA5 (Hersbach et al., 2020) climate reanalysis
(ERA5-Land, ECMWF, 2019).

The CHIRPS dataset is quasi-global (50°S–50°N) and has a
spatial resolution of 0.05°. It is available from 1981 to near
present, as a daily, pentadal and monthly precipitation dataset
(Funk et al., 2015). In their final product, best available
precipitation gauge data are blended with high resolution cold-
cloud-duration-based rainfall estimates producing precipitation
fields that are, as a monthly product, similar to gridded monthly
station data of those like Global Precipitation Climatology Center
(GPCC, Becker et al., 2013) or University of Eeast Anglia’s
Climate Research Unit (CRU, Harris et al., 2014).

The MSWEP dataset wants to take full advantage of the
complementary strengths of gauge, satellite and reanalysis data
(Beck et al., 2017, 2019). Applying weighted averages of
precipitation anomalies of gauge observations, satellite
remote sensing and atmospheric model reanalyses, MSWEP
provides reliable global 3-hourly precipitation estimates at a
horizontal resolution of 0.1° from 1979 to 2017 (Beck et al.,
2019).

ERA5-Land (ECMWF, 2019) provides hourly data at a
horizontal resolution of 0.1° from 1981 to 2–3 months before
the present. Despite no direct usage of observations in the
production of ERA5-Land, the assimilation of observations in
the ERA5 atmospheric forcing as well as the lapse rate correction
of input air temperature, air humidity and pressure in the
interpolation step ensure a high quality and high resolution
information of surface variables.

For the comparison with the high resolution domain EP3,
precipitation station data was provided by the national
weather service of Ecuador (INAMHI) for the coastal and
Andes region of Southern Ecuador. For our analysis, we
included up to 132 stations having less than 5% of missing
values during the WRF simulation period. Precipitation was
measured from 07 to 07 am local time (12–12 UTC). The usage
of local station data, though only for a limited part of the
domain, should provide an indication for the robustness of
obtained results.

2.4 Analysis Methods
For the performance analysis of the WRF ensemble, the WRF
runs are grouped according to their applied physics
parameterization schemes (similar to Klein et al., 2015).
This ensemble approach generalizes the impact of and
allows to identify the uncertainties introduced by
individual physics schemes. For the four cumulus physics
groups, each ensemble consists of eight members using the
respective scheme. The two microphysics, two planetary
boundary layer and two radiation physics groups have 16
members each.

For the validation of timeseries of domain average
precipitation, we use the Taylor diagram (Taylor, 2001) which
allows to compare the standard deviation, Pearson correlation
coefficient and root mean square difference (RMSD) of the
simulations and the reference in a single plot.

For the spatial verification of the simulated precipitation fields,
we apply the ensemble Structure-Amplitude-Location (eSAL)
analysis (Radanovics et al., 2018; Wernli et al., 2008, 2009) to
daily precipitation fields of each domain. This feature-based
method compares the simulated ensemble with a reference
field in terms of amplitude A, i.e., the total precipitation of the
domain, location L, i.e., the location of the center of mass of the
total domain and the location of the centers of mass of individual
precipitation features, and structure S, i.e., the size and shape, or
volume, of the precipitation features. Any contiguous gridpoints
of precipitation above a given threshold are defined as a
precipitation feature or object. This threshold is independently
calculated for the simulation ensemble and the reference field as
R95 × f, with R95 being the 95th percentile of all nonzero gridpoint
values in the domain for the current timestep (Radanovics et al.,
2018). For the simulations, R95

sim is defined by all nonzero
gridpoint values of all relevant ensemble members together. f
is a threshold factor, for daily values determined as

f # max⎛⎝ 1
15
,
0.01 mm
R95
sim

,
0.01 mm

R95
ref

⎞⎠. (1)

f is thus always set to 1/15, except if this resulted in a threshold
below the minimum reasonable nonzero value of 0.01 mm in the
data (Radanovics et al., 2018). Both S and L depend on this
threshold. In general, eSAL is only defined for nonzero
precipitation fields in both the reference field and in at least
one ensemble member of the simulations.

The ensemble amplitude error is defined as the relative
difference of the ensemble mean (〈〉) of domain average
precipitation (rr) in the simulation ensemble and the
reference field:

eA # 〈rrsim〉 − 〈rrref〉
0.5(〈rrsim〉 + rrref). (2)

eA ranges from −2 to 2, with perfect agreement for eA # 0, too
little simulated precipitation for eA < 0 and too high simulated
precipitation for eA > 0. The ensemble structure error (eS)
determines the relative difference of the ensemble mean (〈〉)
of weighted averaged scaled precipitation volumes (V) in the
simulation ensemble and the reference field:

eS # 〈Vsim〉 − Vref

0.5(〈Vsim〉 + Vref), (3)

with

V #
∑
i
(rri rri

rrmax
i
)

∑
i
rri

. (4)

Here, rri is the precipitation sum of all connected gridpoints in
feature i and rrmax

i the maximum gridpoint precipitation of this
feature. eS thus indicates if the ensemble as a whole is able to
simulate, on average, the right scaled precipitation volumes.
Similar to eA, eS ranges from −2 to 2, with equally average
scaled volumes for eS # 0, too small or too peaked simulated
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features for eS < 0 and too large or too flat simulated features for
eS > 0.

The ensemble location error (eL) consists of two parts, relating
to both the entire domain (eL1) and individual features (eL2):

eL # eL1 + eL2. (5)

eL1 is defined as the relative distance of the ensemble mean (〈〉)
centers of mass in the simulation ensemble and the reference
field:

eL1 #
∣∣∣∣∣〈x(rrsim)〉 − x(rrref)∣∣∣∣∣

d
, (6)

where d is the largest distance between two domain borders and
x(rr) is the coordinate vector of the center of mass of all
precipitation in the domain. eL2 is finally specified as twice the
squared distance between the cumulative distribution functions
P, i.e., the continuous ranked probability score (CRPS, Hersbach,
2000), of the relative weighted average distances between the
centers of mass of individual features and the total center of mass
in the simulation ensemble and in the reference field:

eL2 # 2 × CRPS[P(rsim
d
), P(rref

d
)], (7)

with

r #
∑
i
rri|xi − x|

∑
i
rri

, (8)

and

CRPS(Psim, Pref) # ∫∞

−∞
[Psim(x) − Pref(x)]2dx. (9)

Here, xi is the coordinate vector of the center of mass of
precipitation in the feature i. For the reference field, the
cumulative distribution function Pref is a step-function. Both
L1 and L2 range between 0 and 1. A value of L # 0 defines a
perfect ensemble in terms of location. L # 2 would be found for
total centers of mass located at the opposite domain border (eL1
close to 1) and for contrarily organized features, e.g., far from
each other in one field and close to each other in the other field
(eL2 close to 1).

2.5 Climatological Domain Characteristics
According to CHIRPS, the 9-km-Ecuador-Peru (EP9) domain
that includes parts of Brazil, Colombia and Venezuela, has a mean
annual precipitation of 2,455 mm. The smaller 3-km-Ecuador-
Peru (EP3) domain shows a long-term mean of 1597 mm a−1.
With 1266 mm a−1, the 9-km-Northeast-Brazil (NB9) domain
exhibits the lowest value. Yearly precipitation anomalies for EP9
and EP3 reach up to ±200 and ±300 mm a−1, respectively, and for
NB9 even up to ±400 mm a−1 (Figure 2A). In most years, annual
domain-averaged precipitation anomalies of EP9 and EP3 have
the same sign, but with different magnitudes. The years
2006–2008 are characterized by small positive precipitation
anomalies around 50 mm a−1 for EP9. In the smaller domain
EP3, the conditions in 2006 and 2007 roughly correspond to the

long-termmean value, and the year 2008 is wetter by 100 mm a−1.
For NB9 a wet year in 2006 alternates with a dry year in 2007 and
another wet year in 2008 with anomalies up to ±140 mm a−1. In
sum, the selected years 2006–2008 are a continuous period of
mean precipitation conditions in the domains well suited for the
WRF physics ensemble simulations.

Most of South America is dominated by a monsoon-like
seasonal cycle of precipitation, with strongly contrasting
conditions during austral winter and summer (Grimm, 2003;
Gan et al., 2004). Correspondingly, NB9 has a distinct wet and dry
season in austral summer and winter, respectively, with mean-
monthly precipitation ranging between 0 and 6 mm d−1 for
CHIRPS (Figure 2B). EP9 and EP3 show a less pronounced
seasonal cycle with a range between 5 and 9 mm d−1, and 3 and
7 mm d−1, respectively, which seems to be related to the spatial
average over different precipitation regimes (Grimm, 2003;
Celleri et al., 2007). Maximum domain-averaged monthly
mean precipitation in EP9 is found between March and May,
in EP3 between February and April, and in NB9 between January
and March (Figure 2B). The observational uncertainty when
further includingMSWEP and ERA5-Land as reference data is up
to 2 mm d−1 for EP9 and up to 0.5 mm d−1 for NB9. For the
analysis period of Jul 2006–Jun 2008, major deviations from the
climatological mean are evident for February 2007 for all
domains, with drier conditions in EP9 and EP3, and wetter
conditions in NB9. For March 2007, anomalies reverse for
EP9 and NB9 with wetter and drier conditions, respectively.
Distinct positive anomalies are further found for NB9 in
March and April 2008.

3 RESULTS

3.1 Necessity of Model Parameterization
Studies
For the selected 2-years analysis period, the simulated WRF
ensemble uncertainty in domain-averaged monthly mean
precipitation is shown in the boxplots of Figure 2B. Among
differently parameterized simulations, the simulated
precipitation can deviate by up to 20 mm d−1 when the
respective reference precipitation is around 6 mm d−1. Both
too dry and too wet WRF simulations are possible, though
with an overall tendency of overestimation in all three
domains. By demonstrating this large ensemble spread of
simulated precipitation over EP9, EP3 and NB9, the necessity
for the present model parameterization study becomes evident.
The ensemble spread is by far higher than the uncertainty
introduced by the different reference datasets that range
between 1 and 2 mm d−1 for EP9 and around 0.5 mm d−1 for
NB9. A remarkably lower WRF ensemble spread (<5 mm d−1) is
only found for the distinct dry season of the Northeast Brazil
domain (NB9) and for the anomalously dry February 2007 in the
9-km-Ecuador-Peru- domain (EP9).

To further demonstrate the necessity of model
parameterization studies based on a spatial pattern evaluation,
the WRF-simulated precipitation is compared against gridded
observations from CHIRPS. This is shown exemplary for the
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three-months season of JFM within the rainy season in 2007
(Figures 3–5) in which largest interannual variability was evident
for all three domains (Figure 2B). For CHIRPS, the JFM season is
characterized by mean precipitationmainly above 4 mm d−1 in all
three domains (Figures 3–5 CHIRPS). In EP9 (Figure 3A
CHIRPS), high precipitation values >10 mm d−1 are evident
especially in the Amazon region of West Brazil, Southeast
Bolivia, at the Border of Ecuador–Peru (also for EP3,
Figure 5A CHIRPS) and in the Andes region of North
Ecuador, Bolivia and Peru. Values below 4 mm d−1 are found
in the northern domain borders of Bolivia and Venezuela, as well
as at the Peruvian coast and in the lee of the Ecuadorian Andes
(also for EP3, Figure 5A CHIRPS). In NB9 (Figure 4A CHIRPS),
values above 10 mm d−1 concentrate at the northwestern domain
border, whereas low precipitation amounts of <4 mm d are found
in the easternmost region and in the core of Northeast Brazil
around 10°S and 40°W.

To also provide a spatial overview of reference uncertainty,
fields of precipitation (Figures 3A, 4A) and biases against
CHIRPS (Figures 3B, 4B) of MSWEP and ERA5-Land are

presented for EP9 and NB9. For EP3, precipitation of
INAMHI stations is shown along with CHIRPS
(Figure 5A). Whereas only small and little structured
deviations around ±2 mm d−1 against CHIRPS can be
observed for MSWEP and ERA5-Land in NB9 (Figure 4B),
larger bias of MSWEP or ERA5-Land against CHIRPS,
i.e., larger reference uncertainty, is found for EP9
(Figure 3B). Here, ERA5-Land shows wetter conditions
especially for the mountainous Andes region, in parts by
more than 10 mm d−1. Drier conditions by around
4 mm d−1 are found for the Amazon region in West Brazil
and Southeast Colombia. MSWEP is rather drier than CHIRPS
by around 4 mm d−1, only the Amazon region in Northeast
Peru shows wetter conditions. INAMHI station data and
CHIRPS generally coincide for Southwest Ecuador in EP3,
only some stations deviate from CHIRPS where both higher
and lower values of mean precipitation are possible.

In all three domains, the WRF ensemble median (WRFENS)
shows an overall positive bias against CHIRPS, especially for the
mountainous regions with more than 10 mm d−1 (Figures 3–5

FIGURE 3 | (A) Observed and simulated mean precipitation in JFM 2007 of CHIRPS, MSWEP, ERA5-Land and WRF ensemble median (WRFENS) over EP9. (B)
Bias of MSWEP, ERA5-Land and WRFENS against CHIRPS. (C) Deviation of the parameterization sub-ensemble median from WRFENS.
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WRFENS). Only some coastal and inland areas are drier than
CHIRPS. For EP3 (Figure 5B WRFENS), WRFENS bias against
INAMHI station data generally follows the patterns of bias
against CHIRPS, with a too dry simulated Ecuadorian coast
and too wet simulated Ecuadorian mountain regions.
Especially for EP3, higher resolved topography in WRF seems
to play a role as more distinct features of higher precipitation
amounts are evident in the Andes region at the Ecuador-Peru
border and in the southern part of the domain. CHIRPS does not
show these distinct features, resulting in a large positive bias of
WRFENS. For the Ecuadorian Andes, the lack of station data
within the area of largest positive bias ofWRFENS against CHIRPS

can also not bring further clarity to this high simulated
precipitation by WRF.

To illustrate the divergence within the WRF ensemble for
different applied parameterization schemes, theWRF ensemble is
grouped into several sub-ensembles that all use one fixed
parameterization scheme. For example, the G3DENS or
RRTMGENS encompass all eight or 16 runs, respectively, that
use the G3D cumulus or RRTMG radiation physics scheme. The
deviation of the median of these sub-ensembles from the total
WRFENS is shown in Figures 3–5. In all three domains, the
variation of the deviations fromWRFENS is largest within the CU
and RA sub-ensembles. The MP and PBL sub-ensemble medians

FIGURE 4 | As Figure 3, but for NB9.
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rather represent WRFENS. Only slight tendencies of wetter runs
for WSM6ENS and drier runs of WSM3ENS are found. For the
cumulus sub-ensembles in EP9 (Figure 3C), G3DENS and
TiedtkeENS, as well as BMJENS and KFENS seem to behave in
opposite ways: the G3DENS simulates more precipitation
especially for the mountainous (more than +10 mm d−1) and
Brazilian Amazon (up to +6 mm d−1) region whereas TiedtkeENS
gives less precipitation in these regions with similar magnitudes.
Opposite behavior for G3DENS and TiedtkeENS is also found
north of the equator with a drier tendency for G3DENS and a
wetter tendency for TiedtkeENS. A similar north-south division of
positive and negative deviations from WRFENS is evident for
BMJENS and KFENS that also behave in opposite ways, but with
smaller magnitudes than G3DENS and TiedtkeENS. For NB9
(Figure 4C), the picture is more clear: G3DENS and KFENS

compose the wetter runs of WRFENS, whereas TiedtkeENS and
BMJENS yield drier conditions. Similar to EP9, highest
magnitudes of deviations from WRFENS are found for G3DENS

with large areas above +10 mm d−1 and for TiedtkeENS with
regions especially in the Northwest and West up to −8 mm d−1.
For EP3 (Figure 5C), the deviations fromWRFENS among the CU
sub-ensembles are more diverse. The pattern of higher (less)
precipitation in the Andes region of G3DENS and BMJENS
(TiedtkeENS and KFENS) of EP9 passes through to EP3.
However, the negative deviations from WRFENS in the Andes
region seem to be even amplified for EP3 KFENS, whereas the
negative deviations of EP3 TiedtkeENS are dampened compared to
EP9. Here, it needs to be recalled that EP3 was simulated with
explicit convection, i.e., the CU parameterization was switched
off. However, for the parent domain EP9 the respective CU

FIGURE 5 | As Figure 3, but for EP3. Apart from CHIRPS, in (A) JFM mean precipitation values of and (B)WRFENS bias against 132 INAMHI stations having less
than 5% of missing values during JFM 2007 are shown.
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parameterizations were active. For the radiation sub-ensembles,
in all three domains, RRTMGENS composes the wetter part of
WRFENS, whereas RRTMENS builds the drier part of WRFENS
with similar magnitudes up to around ±6 mm d−1.

3.2 Gridpoint-Based Validation
Figures 6, 7 show the discrete probability distribution for daily
gridpoint-based precipitation of the parameterization sub-
ensembles compared to the different reference datasets for
EP9, NB9 and EP3. Regardless of the domain, probability
distributions of CHIRPS, MSWEP and ERA5-Land differ
strongly and seem to be characterized by different shape and

scale parameters when compared to theoretical probability
distributions like the Gamma distribution. Whereas highest
probabilities of MSWEP and ERA5-Land are found for lowest
daily precipitation amounts below 1 mm d−1, the CHIRPS
probability distribution has its maximum around 7 mm d−1

and shows a strong decline of probabilities toward lower
precipitation amounts. For both EP9 and NB9, MSWEP has
an exponential decrease of probabilities and shows lower
probabilities than CHIRPS for precipitation values between 8
and 20 mm d−1. For EP9 (Figure 6A), greatly enhanced
probabilities of ERA5-Land precipitation between 5 and
18 mm d−1 are found compared to both CHIRPS and

FIGURE 6 | Probability distribution of the parameterization sub-ensembles compared to CHIRPS, MSWEP and ERA5-Land for daily gridpoint-based precipitation
of (A) EP9 and (B) NB9 from Jul 2006 till Jun 2008.
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MSWEP, with a rather constant than exponential decrease. For
NB9 (Figure 6B), the probability distribution of ERA5-Land has
a more exponential decrease and resembles the one of CHIRPS
after CHIRPS’s maximum. For EP3, CHIRPS shows the lowest
probabilities of precipitation below 2 mm d−1. The INAMHI
station data in EP3, however, show high probabilities of low
precipitation values and low probabilities of precipitation above
20 mm d−1.

Regarding the probability distributions of the WRF sub-
ensembles, largest differences in their shape and scale are
found among the sub-ensembles for EP9 (Figure 6A). With
respect to CHIRPS, all probability distributions of the sub-
ensembles of EP9 show too high probabilities especially for

precipitation amounts <19 mm d−1. The only exception is
KFENS, that matches the probabilities for CHIRPS’s maximum,
but overestimates those for both lower and higher precipitation
amounts. Apart from the in general overestimated probabilities,
the shape of CHIRPS’s probability distribution is best represented
by the one of G3DENS for values >2 mm d−1. No probability
distribution of any sub-ensemble resembles the one of MSWEP.
With respect to ERA5-Land, TiedtkeENS and RRTMENS best
reproduce the shape, only with slightly underestimated
probabilities for precipitation amounts between 8 and
19 mm d−1. Like those of MSWEP and ERA5-Land, the
probability distributions of the WRF sub-ensembles show the
general problem of overestimated probabilities for small

FIGURE 7 | As Figure 6, but for EP3, with (A) CHIRPS reference data and (B) INAMHI station data. For (B), WRF data interpolated to the location of the 106
selected stations was used.
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precipitation values <1 mm d−1, i.e., model drizzle. Lowest
probabilities of drizzle rain is found for the G3DENS among
the cumulus groups and for RRTMGENS among the radiation
physics groups. For drizzle rain, about equal performance is
found for the microphysics and planetary boundary layer
physics groups. In sum for EP9, the parameterization sub-
ensembles can be grouped in mainly two classes (classification
also in comparison with the other used parameterization scheme
for the same physics topic): 1) monotonous to exponential
decrease of probabilities with highest probabilities for drizzle
rain (TiedtkeENS, KFENS, WSM6ENS, ACM2ENS, RRTMENS), and
2) drizzle rain with highest probabilities, but enhanced
probabilities also for medium precipitation amounts around
5 mm d−1 and exponential decrease thereafter (G3DENS,
BMJENS, WSM3ENS, YSUENS, RRTMGENS).

For NB9 (Figure 6B) and EP3 (Figure 7), such a clear
distinction between the shape of the probability distribution
of the different sub-ensembles is not valid. Rather, their
shape is characterized by an exponential decrease with
highest probabilities for drizzle rain. For NB9 (Figure 6B),
only G3DENS does not show an explicit exponential decrease
for values between 4 and 15 mm d−1. YSUENS further has
slightly enhanced probabilities around 8 mm d−1. For EP3,
the WRF gridpoints interpolated to INAMHI station
locations in general show higher probabilities of
precipitation than for the entire EP3 domain. KFENS and
RRTMENS best represent the distribution of the INAMHI
station data.

3.3 Domain-Based Validation
In the Taylor diagrams (Figures 8, 9A), domain averaged
timeseries of daily precipitation of all individual WRF runs
are evaluated with respect to their Pearson correlation
coefficient (CORR), standard-deviation (STD), and root-
mean square difference (RMSD) as compared to CHIRPS.
For EP9 and NB9 (Figure 8), the values of CORR, RMSD
and STD of MSWEP and ERA5-Land compared to CHIRPS
demonstrate a lower uncertainty within the reference than
within the WRF ensemble. Both MSWEP and ERA5-Land have
high CORR (both around 0.93 for NB9; around 0.78 and 0.87
for ERA5-Land and MSWEP for EP9), and low RMSD (both
around 2.2 mm d−1 for NB9; around 2 and 1.6 mm d−1 for
ERA5-Land and MSWEP for EP9) as compared to CHIRPS.
The respective STD of CHIRPS is around 3.2 and 3.3 mm d−1

for EP9 and NB9. The STDs of MSWEP and ERA5-Land are
around 2.4 and 2.8 mm d−1 for EP9, and around 2.9 and
3.4 mm d−1 for NB9, respectively. The comparison of
WRFENS against CHIRPS for EP9 and NB9 (Figure 8)
reveals in general higher CORR with smaller spread for
NB9 (0.74–0.85) than for EP9 (0.28–0.64), but also higher
spread of RMSD and STD for NB9 (RMSD: 1.7–5.6 mm d−1,
and STD: 2–7.6 mm d−1) than for EP9 (RMSD:
2.6–5.2 mm d−1, and STD: 2.4–5.1 mm d−1).

For EP3, in addition to CHIRPS, further comparison is
made against timeseries of INAMHI station data (Figure 9B).
Here, higher CORR is found against INAMHI station data
(0.48–0.75) than against CHIRPS (0.25–0.49). RMSD ranges

between 4.6 and 7.3 mm d−1 against CHIRPS and between 2.7
and 6.5 mm d−1 against INAMHI station data. CHIRPS has a
STD of around 4.6 mm d−1, whereas INAMHI station data
has its STD around 3.7 mm d−1. Due to interpolation to
station locations and considered gaps in the timeseries of
INAMHI stations, the STD of WRFENS differs in the
comparison against CHIRPS and INAMHI station data. It
ranges between 3.2 and 7.2 mm d−1 for the entire domain and
entire analysis period (CHIRPS), and between 2.8 and
7.6 mm d−1 for INAMHI station locations and periods.

Regarding different parameterization sub-ensembles, largest
differences are found for the CU schemes for all three domains.
The two sub-ensembles of both the MP and PBL schemes cover
the entire possible range of values without clear tendencies.
Among the CU sub-ensembles, G3DENS has the largest
variance with respect to CORR, RMSD and STD with a
tendency toward the ensemble’s lowest CORR, highest RMSD
and highest STD. TiedtkeENS encompasses runs with lowest
RMSD and STD and medium to high CORR. BMJENS is
characterized by medium to high CORR, medium RMSD and
STD, and KFENS shows medium CORR, high RMSD and STD.
Only for EP3 (Figure 9), the rating especially of KFENS within the
entire WRF ensemble differs, with low to medium RMSD and
STD when compared both against CHIRPS and INAMHI station
reference data. Among the RA sub-ensembles, RRTMGENS gives
lower CORR, higher RMSD and STD than RRTMENS for all three
domains.

3.4 Feature-based Validation
The overall domain precipitation as well as the feature-based
location and volume of individual precipitation patterns in
the WRF sub-ensembles are validated in the ensemble
Structure-Amplitude-Location analysis (eSAL) of Figures
10–12. In general, for all three domains, reference domain
average precipitation <5 mm d−1 of CHIRPS is mostly
overestimated by WRFENS (eA > 0) and associated with
too large or too flat modeled precipitation features (eS >
0) and large location error eL. The overestimation of small
reference domain average precipitation is more pronounced
for EP9 and EP3 than for NB9. Larger reference domain
average precipitation is correctly estimated (eA ≈ 0), or
slightly over- or underestimated, and shows smaller eL and
too small or too peaked modeled precipitation features (eS <
0) in comparison to CHIRPS.

As for previous analysis measures in Sections 3.2 and 3.3,
largest impact on the performance of WRF runs in eSAL,
especially for EP9 and NB9, is given by the choice of different
CU schemes, followed by different RA schemes (Figures 10,
11A,B,D). eSAL characteristics for different evaluated PBL
(Figures 10, 11C), or MP (see Supplementary Material) sub-
ensembles are almost identical. For EP9 (Figure 10), best
eSAL characteristics among the CU schemes are found for
TiedtkeENS. TiedtkeENS shows highest density for correlated
eA ≈ 0 and eS ≈ 0, together with a high density of small eL. The
overestimation of reference domain average precipitation <5
mm d−1 is smallest. For NB9 (Figure 11), even both over- and
underestimation for TiedtkeENS is possible, but highest
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density is found for eA ≈ 0. BMJENS and KFENS for both EP9 and
NB9 have the disadvantage of high density of either eA > 0 or eS <
0. For NB9, however, both BMJENS and KFENS show even better eL
than TiedtkeENS. For both domains, G3DENS generally
overestimates domain average precipitation. Its structure and
location error is similar to KFENS for EP9, whereas for NB9
both largest location errors and positive structure errors of

G3DENS especially for low reference precipitation are evident.
Among the RA schemes, RRTMENS seems to be preferable with
a generally smaller amplitude error, as well as smaller structure and
location errors in particular for EP9.Whereas no distinction can be
made for EP9 regarding the PBL sub-ensembles, ACM2ENS tends
toward smaller amplitude, structure and location error than
YSUENS for NB9.

FIGURE 8 | Taylor diagram for (A) EP9 and (B) NB9 including the Pearson correlation coefficient (dashed-dotted lines), the standard deviation (dotted lines, in
mm d−1) and the root-mean-square difference (RMSD) of the anomalies (dashed lines, in mm d−1) between the simulated daily precipitation timeseries of the 32 WRF
physics ensemble members and CHIRPS reference data for the period Jan 2006–Jun 2008. Each panel shows the differences in the physics parameterization sub-
ensembles, i.e., cumulus convection (G3D, Tiedtke, BMJ, KF), microphysics (WSM3, WSM6), planetary boundary layer (YSU, ACM2), and radiation physics
(RRTMG, RRTM-Dudhia).
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For EP3 (Figure 12), the performance of WRFENS against
CHIRPS with respect to eA and eS is poorer and shows a higher
variance than for EP9 or NB9. High positive eA is common,
and both positive and negative structure errors occur
frequently. Location errors are similar to NB9, with lower
values than for EP9. A clear distinction between different sub-
ensembles turns out to be harder than for EP9 or NB9. Only

the KFENS has clearly different behavior with a tendency of
underestimation of domain average precipitation (eA < 0) and
too small or too peaked modeled precipitation features (eS <
0). As in EP9, RRTMENS tends toward smaller amplitude error
than RRTMGENS, and rather too small or too peaked modeled
precipitation (eS < 0) compared to RRTMGENS with rather too
large or too flat modeled precipitation (eS < 0).

FIGURE 9 | As Figure 8, but for EP3, with (A) CHIRPS reference data and (B) INAMHI station data. A direct comparison of CHIRPS and INAMHI station data on a
daily scale in one plot as in Figure 8 for MSWEP and ERA5-Land is not possible due to different accumulation times of 00 UTC–00 UTC (CHIRPS) and 12 UTC-12 UTC
(07–07 am local time, INAMHI stations), respectively. For the comparison with INAMHI stations, the mean of the 106 selected stations or respective modeled nearest
grid-cell data was used.

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 66942715

Portele et al. Ensemble-Tailored Precipitation Pattern Analysis

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


4 DISCUSSION AND CONCLUSION

In all evaluated categories for the physics sub-ensembles in terms
of deviation from the total WRF physics ensemble (gridpoint-
based probability distributions, domain-averaged characteristics
of standard deviation, correlation, root-mean square difference

and bias, and spatial feature-based structure and location),
switching between different cumulus physics (CU) schemes
resulted in the largest performance variability, followed by the
radiation physics (RA) schemes. The large spread among the CU
sub-ensembles confirms the strong impact of different CU
schemes on the simulated precipitation in the study regions.

FIGURE 10 | Ensemble Structure-Amplitude-Location (eSAL) analysis for EP9with respect to CHIRPS for the physical parameterization sub-ensembles of (A)G3D
and Tiedtke (B) BMJ and KF (C) YSU and ACM2, and (D) RRTMG and RRTM-Dudhia. For each physics sub-ensemble, eA, eS, eL and the reference domain average
precipitation (Mean P) are juxtaposed in density contour plots of daily values from Jul 2006 till Jun 2008. The diagonal shows the probability histograms of eA, eS, eL of
the respective physics ensemble and of the reference domain average precipitation (Mean P). When the transparently colored probability histograms of eA, eS, or
eL overlap, darker colors are produced. As all different parameterization groups use CHIRPS as reference, histograms of reference mean P always overlap.
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Even for the explicitly resolved convection in EP3, the effects of
CU schemes used in the parent domains is still larger than those
of different microphysics (MP) or planetary boundary layer
physics (PBL) schemes, but in the same order of magnitude as
between different RA schemes. Regarding the deviations from the
ensemble median for the CU sub-ensembles, many areas reached
more than ±6 mm d−1, whereas different MP and PBL sub-
ensembles deviated only by around ±2 mm d−1 (Figures 3–5).
In Klein et al. (2015), such large variations between different CU

sub-ensembles were not observed for West Africa. Instead, these
deviations were mainly in the order of ±3 mm d−1 for almost all
tested CU, and in the same range as those of theMP and PBL sub-
ensembles. Klein et al. (2015) further showed an overall dry bias
for WSM3 compared to more sophisticated schemes, and for
ACM2 compared to YSU in the Sahel and Sudano-Sahel regions.
Similar, but not as pronounced tendencies within the MP and
PBL schemes as in Klein et al. (2015) could be observed for our
South American regions. An overestimation of precipitation by

FIGURE 11 | As Figure 10, but for NB9.
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KF and an underestimation by BMJ for Northeastern Africa
found by Pohl et al. (2011) and Tariku and Gan (2017), is of
course relative to their respective reference, however, opposing
behavior of BMJ and KF sub-ensembles with respect to the
deviation from the WRF ensemble median was also evident
for our focus regions. An observed wetter climate for RRTMG
than for RRTM reported by Tariku and Gan (2017) can also be
confirmed for all our domains. Especially for EP9, the generally
small differences between WSM3 and WSM6 sub-ensembles

could be related to the limited necessity of using a graupel
scheme (e.g., WSM6) for horizontal resolutions above 10 km
(Skamarock et al., 2008). Obviously, the 9-km-domain is still in a
“gray zone” of only partly resolved updrafts producing graupel
and the simpler WSM3 scheme gives similar results. However,
also the convection-resolving 3-km-grid of EP3 does not produce
large differences between WSM3 and WSM6 sub-ensembles for
all evaluated metrics, which should be expected from Hong and
Lim (2006). Thus for our study, independent of the grid

FIGURE 12 | As Figure 10, but for EP3.
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resolution, the tested MP schemes introduced less uncertainties
than the CU or RA schemes but similar uncertainties as the PBL
schemes with respect to analyzed precipitation distributional,
temporal and spatial patterns. The generally weak dependency
of the modeled precipitation on the MP treatment in our study
could also have its origin in the choice of testedMP schemes. Other
studies (e.g., Liu et al., 2011; Klein et al., 2015) that found larger
differences between MP schemes not only used single moment
schemes like WSM3 and WSM6, but also used more complex
double moment schemes predicting number concentration of the
water and ice species that are not part of theWRF-MP series (WRF
single or double moment schemes). Here, further studies are
needed to investigate if the weak dependency on MP schemes
still holds for more complex MP schemes.

Regarding our choice of CU schemes, it should be noticed that
the 9-km grid size is at the upper end of the convective “gray
zone” and we only used conventional parameterizations of
convection such as BMJ, Tiedtke, and KF. These are
constructed so that the parameterization acts self-contained
within one grid column, assuming that the proportion of the
grid column covered by active convection is small. With small
grid sizes, however, this assumption is no longer valid (Grell and
Freitas, 2014). G3D allows subsidence spreading to neighboring
grid cells, however, this is recommended only for even smaller
grid sizes (Skamarock et al., 2008; Grell and Freitas, 2014). For the
9-km-domain, it is thus assumed that the subsidence still takes
place in the same grid column and G3D therefore acts
conventionally. Scale-aware cumulus schemes like Grell–Freitas
(Grell and Freitas, 2014) or the updated multi-scale KF (Zheng
et al., 2016) attempt to smooth the transition to cloud-resolving
scales by increasing deactivation of the parameterization with
increasing grid resolution. However, the parameterization is still
quite active at 9 km and Jeworrek et al. (2019) found a
comparable performance of the scale-aware msKF and GF
schemes to the conventional cumulus schemes such as BMJ,
Tiedtke and KF at 9 km. For the scale-aware msKF and GF, the
contribution of the resolved-scale precipitation from the
microphysics scheme was comparable to BMJ at 9 km; Tiedtke
even produced substantially more resolved-scale precipitation at
9 km (Jeworrek et al., 2019). This example shows that the
application of conventional cumulus schemes is still justifiable
at 9 km grid resolution. However, especially with respect to the
conventional KF, the msKF may be preferred: In their
comparison of conventional KF and msKF at 9 km, Zheng
et al. (2016) found superior performance of the msKF in
terms of precipitation bias, location and intensity. Future
studies should therefore consider to additionally test the scale-
aware GF and msKF schemes at 9 km resolution. The inclusion of
the simple conventional KF in our study should also be a test in
terms of required computational costs, i.e., if the simple and
computationally cheap KF scheme is also able to produce
reasonable results. Especially as parent domain for the 3 km
EP3, KFENS proved to be closest to the reference data.

The comparison of the WRF performance in the 3-km-
domain EP3 with explicit convection against the
performance in the 9-km-domain EP9 showed that the bias
of the WRF ensemble against CHIRPS in this region was not

reduced. Also Sikder and Hossain (2016) could not find
substantial improvements at higher resolution (3 km) for
their mountainous study regions around the Himalaya by
disabling cumulus parameterization. Noteworthy, many
performance measures are substantially worse for EP3 than
for EP9 with respect to CHIRPS: Correlation coefficients below
0.5, RMSD above 4.5 mm d−1 and frequent large amplitude and
structure errors for EP3. However, considering the main
patterns of precipitation in WRFENS and in CHIRPS for the
JFM season of 2007, CHIRPS seems to contain only little
topographic precipitation effects from the Andes. An
underestimation of precipitation in some mountainous
regions by CHIRPS and other thermal-infrared based
satellite products is well known (Bai et al., 2018; Dinku
et al., 2018). The better performance of WRFENS in terms of
correlation and root-mean square difference with respect to
INAMHI station data as compared to CHIRPS may thus suggest
possible limitations for the use of CHIRPS as reference data for
high-resolution simulations in mountainous domains. But still,
the areas with largest positive bias above 9 mm d−1 of WRF vs.
CHIRPS are also not covered by INAMHI and the general trend
of overestimated precipitation around those regions byWRFENS

is similarly represented if compared against INAMHI. For the
WRF physics sub-ensembles, only KFENS (KF only used in
parent domains) is able to diminish these peaks of
precipitation overestimation, however leading to a drier
Amazon basin in the Northeast of the EP3 domain.

Another aspect revealed for the 3-km-domain EP3 is that the
lack of cumulus parameterizations obviously produces very
similarly shaped probability distribution functions of
precipitation for all parameterization sub-ensembles, including
the high probabilities for precipitation below 1 mm d−1,
i.e., drizzle, that were partly compensated by G3D, BMJ and
KF schemes in the larger 9-km-domain. Interestingly, the
INAMHI stations confirm this shape of the WRF histograms
with an exponential decrease and with high probabilities for
drizzle. CHIRPS contrasts this for EP3 by showing remarkably
low probabilities of gridpoint-based daily precipitation values not
only up to 1 mm d−1 (as in EP9), but also up to 3 mm d−1, possibly
further indicating a limited use of CHIRPS in this region or at the
0.05° resolution. With the harmonization of the probability
distributions among the sub-ensembles for EP3, also the
strong overestimation of probabilities for heavy precipitation
above 20 mm d−1 within the KFENS in EP9 vanished. For EP3,
KFENS even represented best the probability distribution of
INAMHI station data.

For the two 9-km-domains EP9 and NB9, the strong similarity
of probability distributions of TiedtkeENS and ERA5-Land is
striking. ERA5-Land gets its atmospheric forcing from ERA5
whose cumulus parameterization is based on Tiedtke (1989)
(Hersbach et al., 2020). Precipitation here is only spatially
disaggregated from 31 to 9 km and a “lapse rate correction”
for altitude is performed in ERA5-Land (ECMWF, 2019). Also
bias/deviation patterns for TiedtkeENS and ERA5-Land highly
resemble each other, e.g., with a drier Amazon basin and drier
Peruvian Andes in EP9 (Figure 3), that seem to be associated with
the same underlying cumulus physics.
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Finally, we discuss several examples of how the choice of a
suitable WRF setup could be made based on the provided
performance metrics. Firstly, if one is interested in how
precipitation probability distributions might change with
future regional climate scenarios, the observed current
probability distribution needs to be first and foremost met.
The shape of CHIRPS’s statistical distribution of precipitation
values for EP9 would be best represented by G3DENS among the
CU schemes, and by RTTMGENS among the RA schemes.
However, these WRF sub-ensembles generally overestimate the
wet-day probability as compared to CHIRPS, thus requiring a
frequency correction (see e.g., Lorenz et al., 2020). For other
physics sub-ensembles, the more their distributions and the one
of the reference differ from each other, the more severe
corrections would be required and the deeper one intervenes
in precipitation processes. This could probably produce
inconsistencies in the precipitation fields especially when not
using correction methods including neighboring gridpoints. Such
large differences in the distributions would be the case, e.g., when
choosing physics schemes like Tiedtke for CU or RRTM for RA
when using CHIRPS as a reference. A choice of G3D and RRTMG
for best-fit probability distributions for EP9, however, is
connected with the highest overestimation of precipitation,
largest RMSD and lowest correlation of domain-averaged
precipitation of the WRF ensemble. On the other hand,
TiedtkeENS or BMJENS and RRTMENS have low structural
errors of precipitation features as compared to CHIRPS, as
well as high correlation, low RMSD and relatively low
amplitude errors for domain averages of EP9. Moreover, the
spread of evaluation measures for individual ensemble members
within TiedtkeENS or BMJENS is smaller than for other sub-
ensembles for EP9, indicating a high robustness of the
performance of runs when combining Tiedtke or BMJ with
different MP, PBL and RA physics schemes in this domain. So
secondly, the schemes of Tiedtke and BMJ would be best suited if
the WRF simulations are used for distributed impact models that
require spatially and temporally differentiated precipitation
input. In particular, these spatial criteria, i.e., where we can
expect how much precipitation, that means the location and
volume of precipitation patterns, are of interest and have major
impact on the model results of, e.g., simulated local streamflow or
ecosystem functionality. For NB9, similar choices would be made
1) with G3D for precipitation distributional studies, and 2) with
Tiedtke or BMJ when precipitation amplitude and structure, as
well as RMSD and correlation of domain-averages should be
best comparable to CHIRPS. In the case of NB9, the
disadvantages of G3D with respect to precipitation
overestimation and too large or too flat structured
precipitation patterns is even more pronounced than in EP9,
suggesting an even more limited suitability. We further faced the
difficulty to have suitable reference data to select a model
configuration for the 3-km-resolution EP3 domain, as
CHIRPS seemed to fail to provide reasonable precipitation
for the mountainous regions. All these examples show the
challenges when attempting to identify an overall best suited
WRF setup. Similarly to previous studies (e.g., Klein et al., 2015;
Yang et al., 2021), also in our two South American example

regions, we can not clearly conclude on a single “best” setup for
all cases and all evaluation metrics. Synthesizing all applied
performance measures in one metric (like in, e.g., Yang et al.,
2021; Gbode et al., 2019) looses the contained information on
individual performance criteria that are critical for one
application but not for another. Whatever choice is finally
met, not for all areas and not for all performance metrics
this choice is optimal. It continues to depend on the specific
requirements and on the application of the WRF output, as well
as on the observational reference. Nonetheless, with our applied
ensemble-tailored analysis methods for distributional, temporal
and spatial patterns, it is possible to narrow down the number of
suited parameterizations significantly, allowing this choice
according to application needs and reference data.

The use of explicitly resolved convection for the highest-
resolved 3-km-domain (while still using CU schemes in the
parent domains) revealed that even in this domain without CU
schemes still large differences were present between runs whose
parent domains used different CU schemes. This effect was even
larger than the effect of differently appliedMP or PBL physics. This
has far-reaching implications: tuning a WRF setup with one input
data for initial and boundary conditions, e.g. with the latest ERA5
reanalysis that uses amodified Tiedtke CU scheme (Hersbach et al.,
2020), does not allow a direct transfer of the setup to other input
data sets that may have different underlying physics
parameterizations. Sensitivity tests therefore always should be
performed with the final input data set.

Concluding, this study clearly demonstrated the necessity of
having a very detailed look at the effects of different physics
parameterization schemes on simulated precipitation. In our case,
up to four times as high monthly precipitation can be generated
compared to three different reference data. This shows that a
tremendous gain in model performance can be achieved when
the computationally expensive effort of conducting a 32-member
parameterization ensemble over two consecutive years is
undertaken. Especially for distributed impact modeling, it is
further essential that such sensitivity studies are not only based
on region-averages, but also comprise spatial pattern analysis tools as
used in this study. But only the detailed look at all distributional,
temporal and spatial patterns allows a comprehensive overview on
how different parameterization schemes effect the simulated
precipitation. The presented ensemble-tailored strategy allowed to
generalize the impacts of and uncertainties introduced by the chosen
parameterization schemes. Though failing in identifying an overall
best suited setup for each study region in South America, still a final
choice ofWRF setup according to the application and reference data
is possible that can satisfy the need for the required reliable regional
information on precipitation to be employed, e.g., for regional
climate adaptation and risk mitigation.
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Supplementary Material

1 SUPPLEMENTARY FIGURE
The general domain precipitation bias, feature-based simulated location and volume of the WRF WSM3

and WSM6 sub-ensembles precipitation patterns of all three study domains are analyzed in the ensemble

Structure-Amplitude-Location analysis (eSAL) of Fig. S1. Little differences between the performance of

WSM3 and WSM6 sub-ensembles are found for EP9 and EP3 with respect to amplitude, structure and

location errors. NB9 shows slightly smaller amplitude errors for WSM3 than for WSM6.
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Supplementary Material

Figure S1: Ensemble Amplitude-Structure-Location (eSAL) analysis for (A) EP9, (B) NB9 and (C) EP3

with respect to CHIRPS for the physical parameterization groups of WSM3 and WSM6. For each physics

ensemble, eA, eS, eL and the reference domain average precipitation (Mean P ) are juxtaposed in density

contour plots of daily values from Jul 2006 till Jun 2008. The diagonal shows the probability histograms of

eA, eS, eL of the respective physics ensemble and of the reference domain average precipitation (Mean

P ). When the transparently colored probability histograms of eA, eS, or eL overlap, darker colors are

produced. As all different parameterization groups use CHIRPS as reference, histograms of reference mean

P always overlap.
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5 Synthesis

5 Synthesis
5.1 Summary and Discussion
Seasonal forecasts offer the timescales that fill the gap between medium-range weather
forecasts and decadal climate projections. These are exactly the timescales on which
mitigation of hydrometeorological climate extremes can be provided and which are de-
cisive for the planning and development of seasonal water resources management. Fac-
ing climate change, particularly in semi-arid regions with high population growth rates
and high variability of water resources, there is increased urgency to develop and apply
methods allowing for the planning even several months ahead. With the Article I: Sea-
sonal Forecasts offer Economic Benefit for Hydrological Decision Making in Semi-Arid Regions
(Portele et al., 2021b), we provide evidence that between 1981 and 2018, the frequency
of very warm months and drought months increased significantly from 10 to 60 % and
from 10 to 30 %, respectively, in the semi-arid study regions in South America, West
and Northeast Africa and West Asia. To aid climate proofing in the face of these in-
creased frequencies of droughts and warm extreme events, the potential use and value
of global, unprocessed seasonal forecasts in hydrological decision-making was demon-
strated. It was shown that switching towards seasonal-forecast based preemptive ac-
tions in hydrological decision making offers a clear economic benefit. This was accom-
plished by evaluating the performance of the latest SEAS5 global seasonal forecasting
system for decision support in water management and dam operations in a user-ori-
ented way based on relative economic savings (potential economic value, PEV). This
method allows stakeholders to understand the forecast skill from an economic perspec-
tive, offering a broader range of possible applications of seasonal forecasts. The results
revealed that high potential economic values occur not only for short forecast horizons,
but up to seven months in advance. For droughts, potential economic savings up to
70 % of those from optimal early action could be achieved when basing preemptive ac-
tion on seasonal forecasts. Even for forecast horizons of several months, savings of at
least 20 % occur for the warm extreme and droughts. The direct, real-case application
of the underlying economic cost-loss model was demonstrated for hydropower produc-
tion at a typical representative of dams in semi-arid regions, i.e., for the Upper Atbara
Dam Complex in Sudan. In one example year, avoidable losses of 16 Mio US$ were
achieved for early-action based drought reservoir operation. The first article (Portele
et al., 2021b) thus created a paradigm for the relevance and beneficial use of ensem-
ble-based seasonal forecasts in an interdisciplinary context and their potential use for an
user-oriented transfer to regional decision-making. Both the credibility and probabilis-
tic nature of the seasonal forecasts were taken into account, and as little manipulation
as possible was applied to the raw forecast data. The applied approach allowed the use
of unprocessed forecasts and only implicitly incorporated bias correction by defining
the extreme events separately on the distributions of reference and forecast data (and
per lead time), respectively. The good performance in forecast value even for several
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months ahead confirmed the suitability of SEAS5 seasonal forecasts with a horizontal
resolution of 36 km for regional applications and statements at the catchment scale.

Limitations of this are obvious when absolute precipitation or temperature values are
actually needed or distributed gridcell information is requested. At that point, post-pro-
cessing of the global seasonal forecasts enters the scene, correcting for biases and model
drift with lead time, as well as refining the included information regionally. In partic-
ular, the horizontal resolutions of 36 km need to be increased in the areas with com-
plex topography, e.g., to capture enhanced precipitation at mountains. The Article II:
Bias-corrected and Spatially Disaggregated Seasonal Forecasts: a Long-term Reference Forecast
Product for the Water Sector in Semi-arid Regions (Lorenz et al., 2021) therefore delivered
the corresponding next step of regional refinement and post-processing. As reference
for the empirical statistical approach, ERA5-Land - the offline land surface re-run of
the latest ECMWF reanalysis ERA5 - was used. With that, an increase in resolution of
the seasonal forecasts SEAS5 from 36 km to 0.1� was achieved for four study regions
in Ecuador/Peru, Northeast Brazil, Sudan/Ethiopia and Iran. The bias correction was
performed with the method of quantile mapping on daily values, including corrections
for extreme values in the forecasts and for precipitation intermittency. The analysis
showed that the bias correction and spatial disaggregation (BCSD) approach is capable
of achieving a better match of spatial patterns with ERA5-Land than the raw forecasts
and reducing lead-dependent model drift effects. Monthly precipitation forecast biases
of up to 4 mm d�1 were successfully removed, and temperature biases were reduced
from about 2 K to about 0.5 K or were entirely resolved. Shortwave radiation errors
of up to 30 W m�2 were further reduced to 5 W m�2 or less. The agreement of raw
SEAS5 and of SEAS5 BCSD with ERA5-Land was moreover compared in the Contin-
uous Ranked Probability Skillscore quality measure, which indicates the agreement of
the entire distribution of values with the reference. Substantial improvements in distri-
butions of values were obtained for all considered variables of precipitation, tempera-
ture, and radiation, with the largest improvements for the minimum 2-m temperature.
Deficiencies of the approach were evident for some months with large gradients, e.g.,
at the beginning or end of the rainy season, for which the inclusion of distributions
of values 15 days before and after the current correction day in the quantile mapping
approach reduced forecast performance. The BCSD approach was shown to perform
well in terms of its ability to indirectly correct for altitude and to better represent smal-
l-scale features according to the higher-resolved reference. The free provision of the
whole set of post-processed variables from seasonal forecasts across several domains
for the long study period from 1981 to 2019 through the widely used portal World Data
Centre for Climate (WDCC; Lorenz et al., 2020a,b,c,d) makes it very practicable and con-
venient for potential users to a) analyze the suitability (and, more general, the overall
performance) of seasonal forecasts for the regional water management and b) use this
post-processed and refined product for driving subsequent models. By post-processing
the entire available (re-)forecast period of SEAS5, this article paves the way for opera-
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tionalizing the provision of bias-corrected and spatially disaggregated skillful seasonal
forecasts tailored to the study regions.

The refinement and correction of global fields using statistical methods for subsequent
impact modeling is always tied to the presence of a high-resolution, multi-year and mul-
ti-variable data set. In this regard, any refinement and correction, e.g., of topographic
effects, can only be as good as their representation in the reference data set. Likewise,
the final spatial and temporal resolution is limited to this reference data set and cannot
be further increased at will. Furthermore, it is possible that forecasts and reference data
map different processes due to their different resolution (e.g. convective precipitation
events). Since empirical statistical approaches do not describe the underlying physics
and only correct for the long-term bias, the error of individual events may even be in-
creased after bias correction. Therefore, their ability of correcting such scale-dependent
inconsistencies is limited.

Here, dynamical downscaling with regional climate models (RCMs) like the Weather
Research and Forecast (WRF) model can substantially contribute to the increasing need
for reliable high-resolution regional hydrometeorological information. Under the con-
straints of available computing power and model stability with the physical processes
involved, any desired horizontal resolution from several kilometers to a few hundred
meters or any temporal resolution as high as a few minutes can be achieved. According
to their model resolution, they are able to represent physical processes or at least to pa-
rameterize them accordingly. In order to minimize model bias, however, RCMs must be
adapted in their physical setup to the region of interest. For the processes of precipita-
tion generation, in particular the parameterizations of convection, cloud microphysics,
radiation, and turbulent mixing are relevant. For the two study regions in South Amer-
ica, the Article III: Ensemble-tailored Pattern Analysis of High-resolution Dynamically Down-
scaled Precipitation Fields: Example for Climate Sensitive Regions of South America (Portele
et al., 2021a) therefore involved an extensive sensitivity experiment with 32 ensemble
simulations evaluating the effect of different parameterization schemes on the simu-
lated WRF precipitation in two 9-km domains and one 3-km domain. The 32 runs were
evaluated according to the distributional, temporal and spatial patterns of simulated
precipitation and this pattern analysis was tailored on parameterization sub-ensembles
to better understand the effects on precipitation when combining one fixed scheme with
others. It was shown that there can be enormous spatial and temporal ranges of varia-
tion in precipitation, with up to four times the precipitation amounts of three different
reference datasets (CHIRPS, MSWEP, ERA5-Land). For the 9-km domains as well as for
the convection-resolving 3-km domain, the applied schemes, in particular, for convec-
tion (although only used in the parent domain for the 3-km domain) and for radiation
dominated the sub-ensemble tendencies by the largest deviations from the overall en-
semble mean and by the largest differences in the value distributions or structure of the
precipitation features. Not a single best performing physical setup could be identified
considering all distributional, temporal and spatial evaluation metrics. Nevertheless,
with the ensemble-tailored pattern analysis methods, suited parameterizations were
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narrowed down, allowing a choice according to application needs and reference data.
This computationally expensive experiment showed that, depending on the physics
setup chosen, there can be huge gains, but also losses, in model performance. For sub-
sequent impact modeling or application to seasonal forecasting, it is therefore essential
to undertake this effort of an extensive parameterization sensitivity study.

In the context of seasonal forecasting, however, the need for a preceding extensive pa-
rameterization sensitivity study for dynamical downscaling with WRF implies an extra,
indispensable, but non-negligible computational effort that comes on top of the compu-
tational demands of dynamically downscaling ensemble forecasts - for SEAS5 with 51
members - for each month and for seven months lead time. 2.5 years for each of the 32
parameterization combinations already resulted in 960 simulation months and required
18.5 Mio CPU hours including several repeated runs due to model instabilities and in-
complete output writing. For each new issue month, 357 simulations months arise from
the 51 ensemble members and the seven months lead time. Of course, national weather
services would only simulate their respective domain, and not, as in this sensitivity
study two Ecuadorian-Peruvian and one Brazilian domain at once. Also the outermost
parent domain at 27 km horizontal resolution necessary with the ERA-Interim input
data would be skipped as SEAS5 is already available at 36 km. However, for a grid and
time step ratio of 1:3, and about equally sized domains in terms of gridcell number, the
nest domain requires about four times (from the ratio and some nesting overhead) the
computing time of the parent domain. Thus, not too great savings in computational
effort are to be expected from this. In fact, an enormous amount of computational effort
still remains for the dynamical downscaling of the seasonal forecasts for each area that
exceeds the limited computational resources in many developing countries.

The sensitivity study of Article III (Portele et al., 2021a) revealed another drawback of
the dynamical downscaling approach with respect to seasonal forecasts: Depending on
the final choice of the physics setup, there still remain smaller or larger biases in the
probability distribution or discrepancies in the spatial precipitation patterns compared
to the reference. Therefore, bias correction or some additional post-processing is often
still required, although a choice of setup would be done according to the least necessary
manipulation afterwards. To perform such a bias correction, several years of simula-
tions and corresponding evaluations would be required. For seasonal forecasts, this
involves long re-forecast periods with ensemble simulations to correct the remaining
mean forecast errors relative to the reference data. In particular, the lead-dependent
effects have to be taken into account, since the global input fields suffer from model
drifts that cannot be reduced by using dynamical downscaling. An example would be
the shift of the location of atmospheric circulation patterns with lead time in the global
forecast data (as was the case for Sudan/Ethiopia in Article II (Lorenz et al., 2021) with a
southward shift of higher temperatures and higher radiation with increasing lead times)
which would result in the wrong model physics to apply during the dynamical down-
scaling. Apart from post-processing the WRF downscaled seasonal forecasts, the use
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of lead-dependent correction of global input data for the study domain might also be
promising (following the a-priori bias-correction as in Pontoppidan et al., 2018; Bruyère
et al., 2014).

Regarding the transferability of the identified setup with ERA-Interim to the down-
scaling of the seasonal forecasts SEAS5, another result from Article III (Portele et al.,
2021a) should be kept in mind: The 3-km experiment showed the large dependence
of the performance of the simulated precipitation in the convection-resolving domain
on the cumulus parameterization of the parent domain. Here, the consistency of the
ECMWF Integrated Forecast System (IFS) cycle should allow this transferability: All
IFS cycles for SEAS5, ERA5, and ERA-Interim include a convection parameterization
based primarily on the Tiedtke (1989) cumulus scheme (Johnson et al., 2019; Hersbach
et al., 2020; ECMWF, 2007), but with ongoing developments and improvements in each
cycle. Additional studies would be required for other prediction systems using different
cumulus convection physics schemes. Another approach, as in Mori et al. (2021), would
be to perform the sensitivity analysis directly on the seasonal forecasts, but again this
raises the issue of computationally expensive ensemble simulations. Mori et al. (2021)
here only tested the different parameterization schemes with the input of one SEAS5
ensemble member.

For the application of a time-consuming and computationally demanding dynamical
downscaling in the framework of meteorological services, it would be desirable to de-
velop a technique to reduce the ensemble size while conserving the specific character-
istics of an ensemble forecast. However, the complete randomness in generating the
SEAS5 ensemble due to the two step algorithm including initial condition perturba-
tions and stochastic model perturbations (i.e., no control forecast exists, Johnson et al.,
2019) does not allow the selection of the “best” ensemble members for further downscal-
ing. In this regard, the ensemble generation of the Climate Forecast System, Version 2
(CFSv2) of the National Centers for Environmental Prediction (NCEP; Saha et al., 2014)
in turn allows a selection of sub-ensembles, since the numbering of ensemble members
is fixed and refers to the lagged start dates (every 5th day up to four weeks before the
release in case of the reforecasts from 1982 to 2010, daily for forecasts since 2011) and
times of day (4 times per start date) for each monthly forecast release. This motivated
and allowed the study of, e.g., Siegmund et al. (2015), who chose a 22-member sub-
-ensemble of CFSv2 to dynamically downscale one study rainy season in West Africa.
Their analysis also showed that post-processing of WRF output in seasonal forecasts
would still be required for, e.g., the treatment of model drizzle rain, or for lead-depen-
dent effects. As another example, Yuan and Liang (2011) simulated 5 retrospective CFS
forecast ensemble members for 27 seasons and therewith allowed a more climatologi-
cal analysis of seasonal forecast improvement with WRF dynamical downscaling. For
SEAS5, however, the selection of ensemble members would be purely random and may
therefore include members that capture the true variance well or represent only parts
of the entire ensemble. Therefore, for the final application of operational WRF seasonal

94



5 Synthesis

forecasts, approaches to deal with the large, randomly generated SEAS5 ensemble still
need to be developed.

Although dynamical downscaling of the seasonal forecasts SEAS5 does not appear to
be operationally feasible at that time, dynamically downscaled reanalysis data can still
provide useful information on current water resources needed for sustainable water
management. The conducted effort of the sensitivity experiment, especially with the
identification of Tiedtke or BMJ and RRTM-Dudhia as suitable schemes in the 9-km do-
mains with high similarity of spatial precipitation patterns with CHIRPS, can finally
help local authorities to run their own high-resolution simulations. Furthermore, it con-
tributes to increase their knowledge of the hydrometeorological situation, as well as of
hydrological or ecosystem conditions of past and current years through the subsequent
application of impact modeling. In particular, with the latest reanalysis ERA5, which is
updated daily with a latency of about 5 days (Hersbach et al., 2020), the current situation
for water management could be monitored even better with high-resolution WRF sim-
ulations. The comparable high-resolution ERA5 land product, in turn, is only available
monthly with a lag of about three months relative to the current date (Muñoz-Sabater
et al., 2021).

In general, statistical post-processing methods range from very simple (e.g., linear scal-
ing) to highly complex multivariate statistical approaches. The BCSD approach, as a
quite simple approach including the empirical quantile mapping was chosen due to
several reasons: It is widely accepted in the community and has been extensively ap-
plied for post-processing all sorts of weather and climate projections (e.g., Thrasher
et al., 2013; Ning et al., 2015; Briley et al., 2017; Nyaupane et al., 2018). While there
are approaches that perform better in some aspects (e.g., Abatzoglou and Brown, 2012;
Schepen et al., 2020), a highly robust and computationally relatively cheap method was
needed that performs consistently across a very large dataset on the gridpoint-scale. To
improve the bias correction approach, spatial, temporal and inter-variable correlations
(e.g., Schepen et al., 2020) should be considered in future studies. In all downscaling
techniques, whether statistical or dynamical approaches, the performance of the poste-
rior forecasts always depends on the performance of the raw global forecast. Once the
global model poorly predicts the large-scale circulation, the refined forecast can hardly
capture the anomaly correctly (e.g., Haerter et al., 2011; Yuan et al., 2015) - the statis-
tical post-processed forecasts because of the tight constraint on the global values, and
the RCM because of the transfer of the wrong signal to local processes (e.g., precipi-
tation) and scales according to the globally forced lateral and lower boundary condi-
tions. Therefore, conditional bias correction methods (Yuan et al., 2015, for a broad
overview), i.e., the posterior forecasts becomes very close to the observation or to the
climatology depending on the model skill, are worth considering. Haerter et al. (2011)
further suggest a cascade bias correction approach that includes the correction of several
timescales, i.e., hourly, daily, monthly, depending on the final application. This could
further improve the monthly evaluated - but daily corrected (with a moving 30-day
window) - SEAS5 BCSD forecasts.
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As a robust, easy to implement, and performant approach, BCSD allows the step to the
operationalization of hydrometeorological forecasts. It is comparatively little computa-
tionally intensive, yet its application to gridded data requires consistent parallelization
of processes, user-friendly and application-oriented storage strategies, and, notwith-
standing, adequate high-performance computing facilities. The users in the study re-
gions often lack the computational power or expert knowledge for applying very ad-
vanced and complex methods. The BCSD-post-processing, however, can be easily trans-
ferred to stakeholders in the respective regions so that local experts can continue to pro-
cess the seasonal forecasts. Once the historical statistical relationship of forecast and
reference is available, all current 51 forecast ensemble members of the hydrometeoro-
logical variables of precipitation, 2-m temperature, and radiation can be bias-corrected
and spatially disaggregated within just one day after the official release of the SEAS5
forecasts (5th of each month). Thus, the high benefit and good performance of the low-
est lead month can still be used in the water management context to stimulate or update
decisions for the remaining three weeks of the current month. For global approaches,
first tests already showed that BCSD can be applied to a global gridded study area (land
areas) with reasonable computational effort when disaggregated to the 0.25� resolution
of ERA5.

The final dissemination of the post-processed SEAS5 BCSD product is achieved by re-
leasing the monthly SEAS5 BCSD forecasts in an online decision support system (DSS,
https://sawam.gaf.de). This provides access to high-resolution corrected seasonal
forecasts to local experts who often do not have the opportunity to apply the ECMWF
high-resolution operational products. Other products (e.g., CFSv2 from NCEP) are only
available in a very coarse spatial resolution and all of these data sets need some sort
of post-processing. In addition, the acquisition, analysis and application of seasonal
forecasting data is often not straightforward which hinders potential users to explore
and use such products. Thus, the SEAS5 BCSD product might currently provide the
most easy “point of entry” for potential users of seasonal forecasts. In the DSS, it is im-
portant not only to present the ensemble mean values, but to show the entire forecast
range with corresponding probabilities. Only then can additional credibility and confi-
dence in the forecasts be established. In this context, the presentation of derived forecast
quantities such as categorical forecasts plays a major role for the user-friendliness and
the understanding of probabilistic seasonal forecasts. For those, the long reforecast pe-
riod offered with the BCSD approach is decisive. Depending on the specific application
in water management, both gridded and regionally averaged data are of interest and
need to be provided in the DSS.

The SEAS5 BCSD forecasts were not only generated to provide high-resolution and cor-
rected seasonal hydrometeorological (re-)forecasts, they were further intended to offer
the opportunity for spatially distributed hydrological and ecosystem modeling for the
coming season. Proper calibration and reliable functioning of hydrological or ecosys-
tem models require long time series and a (spatially and temporally) consistent, bias-
corrected system of long-term reference data and a seasonal forecasting product. Long
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spin-up periods for the ecosystem or hydrological models are required and can be per-
formed with ERA5-Land. With the spun-up model, the consistent, bias-corrected SEAS5
BCSD are used to finally provide seasonal forecasts of hydrological and ecosystem vari-
ables. For initial testing with (re-)forecasts of SEAS5 BCSD, this model chain already
proved to be successful. However, for actual operational hydrological or ecosystem
seasonal forecasts, high-resolution reference data are still missing that reach up to the
present day. ERA5-Land is provided with a latency of three months (Muñoz-Sabater
et al., 2021) and thus does not provide a seamless link to the seasonal forecasts. To close
this gap, seamless approaches are still lacking and future work is needed.

In the three different articles (Portele et al., 2021b; Lorenz et al., 2021; Portele et al.,
2021a), the performance analysis of seasonal forecasts or simulated hydrometeorologi-
cal fields was a central issue. Depending on the specific requirements and application,
very different performance measures were required and implemented. In general, fore-
cast performance is evaluated primarily in terms of quality, but only the valuation with
potential economic benefits for forecast-based early action can provide clear decision
support, especially for probabilistic seasonal forecasts. The provision of the economic
value of seasonal forecasts is able to bridge between science and decision making (e.g.,
Bruno Soares et al., 2018; Lopez et al., 2018), which can only rarely be achieved by the
provision of statistical quality skillscores, like the CRPSS (e.g., Crochemore et al., 2016).
In turn, for the assessment of performance gain of the post-processed BCSD forecast
compared to the raw forecast exactly the CRPSS, bias, and RMSE provided the desired
information on value distribution and mean forecast error that had to be corrected. For
the analysis of WRF output, classical approaches based on correlation, standard devia-
tion, and RMSD were complemented by approaches that specifically consider the local
displacement and spatial structure errors of precipitation patterns. This spatial evalua-
tion becomes increasingly important as the horizontal resolution improves, since classi-
cal point verification scores can double penalize high-resolution fields (double-penalty
problem, Jolliffe and Stephenson, 2011): for missing the actual precipitation in the grid-
cell, and for predicting it in another gridcell where no precipitation was present in the
reference. Thus, this work presented key components for the evaluation of hydrometeo-
rological fields from very different perspectives, taking into account the final transfer to
practice, the assessment of forecast improvement, and the spatial similarity of simulated
and reference fields at high resolutions.

All articles (Portele et al., 2021b; Lorenz et al., 2021; Portele et al., 2021a) showed that a
reliable reference dataset is the basis for all performance evaluations. In particular, the
need for a multi-year and consistent multi-variable reference data set with the resolution
of SEAS5 for analyses at the catchment scale, or higher resolution for statistical bias cor-
rection and spatial disaggregation posed an additional challenge. For the data-sparse
study regions, where access to reliable local station data in a dense measuring network
is limited or where available station data often have errors and gaps, only reanalysis
data can meet these requirements. For the economic value analysis of the first article
(Portele et al., 2021b), certainly other reference data sets could have been used instead of
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ECMWF’s latest reanalysis product ERA5. The requirements for the analysis of the first
article were a global gridded data set with a continuous timeseries from 1981 to 2018
including at least precipitation and mean 2-m temperature on monthly timesteps with
roughly the horizontal resolution of SEAS5. Here, the CRU data set at 0.5� (CRU TS v4,
Harris et al., 2020) would have been a valuable alternative for ERA5, however, station
coverage especially in South America and Africa in the most recent decades was rather
poor. The search for a suitable reference data set for the bias correction and spatial dis-
aggregation of the second article (Lorenz et al., 2021), however, turned out to be much
more challenging. To allow for a regional refinement and a later application of the fore-
casts in impact modeling, the reference data set should provide a high spatial resolution
suitable for regional applications (10-20 km), at least a daily timestep and the minimum
set of variables necessary for impact modeling, i.e., precipitation, mean, maximum and
minimum 2-m temperature, as well as shortwave radiation. Moreover, a long timeseries
was essential to derive the statistical relationship. Before the release of ERA5-Land in
the second half of 2019, no data set was able to fulfill all these requirements. ERA5
lacked the high spatial resolution; CRU additionally lacked the daily timestep. For pre-
cipitation alone, higher-resolution data sets existed (like CHIRPS), however, a consistent
multi-variate data set comprising all study regions was not available. First tests of the
BCSD approach were therefore conducted with a data set that even needed to be created
specifically for that purpose: ERA5 was spatially disaggregated to 0.1� and corrected for
the climatological mean using the high-resolution climatology of WorldClim 2 (at 1 km,
Fick and Hijmans, 2017) for temperature and radiation, and using CHIRPS for precip-
itation. The statistical downscaling therefore showed all the more how dependent it is
on the existence of a long-term, spatiotemporally suitably resolved and multi-variate
reference data set. Finally, the evaluation of the WRF output in the third article (Portele
et al., 2021a) introduced new issues, particularly for the validation of the high-resolu-
tion 3-km domain. WRF is capable of producing higher resolved fields, especially in
topographically highly complex terrain, but sound reference data at this resolution are
needed to evaluate its performance. For temperature, no such high-resolution global,
gridded dataset exists at all. In turn, CHIRPS is so far the only data set providing near-
global gridded precipitation at around 5 km spatial resolution over a long time period.
However, the analysis revealed potential deficiencies of this reference product when
focusing on precipitation in high mountain areas, such as the South American Andes.
The lack of local station data in the regions where CHIRPS and WRF output differed
most also made it difficult to draw definitive conclusions about WRF performance in
these areas. Nonetheless, it seems plausible that the underlying physics in WRF could
at least capture more details of the small-scale atmospheric conditions and variability
there. Any approaches that rely on sparse or inadequate station or space-borne obser-
vational data will have even more issues in these areas. In general, global data sets pur-
port to provide a consistent level of uncertainty, but their performance in some regions
- despite state-of-the-art model and remote sensing data - can be substantially worse
than in other regions. These challenges regarding a suitable, reliable reference data set
remind us that a dense network of local station data that is quality-checked, standard-
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ized, and freely available would still be required. Only then can high-resolution global
data sets be further calibrated and improved. The assessment of other secondary fields
such as seasonal forecasts with these data sets certainly assumes fidelity to reality, but
correspondingly, these secondary fields can also only be as good as the reference used.

5.2 Answers to the Research Questions
1. Can seasonal forecasts support decision-making and provide economic benefit for

the regional water management in semi-arid regions?

Decision makers in the water resources management are often still hesitant to use sea-
sonal forecasts as a decision tool. But indeed, this work (Portele et al., 2021b) demon-
strated that for seven hot spot drought-prone basins in South America, Northeast Africa,
West Africa and West Asia, switching towards seasonal-forecast based preemptive ac-
tions in hydrological decision making offers a clear economic benefit and aids climate
proofing. This work proved that high potential economic values do not only occur
for short forecast horizons, but up to seven months ahead: Seasonal drought forecasts
achieve economic savings of up to 70 % of what would have been possible with optimal
early action; for several months ahead, savings of at least 20 % are achieved for very
warm months and drought periods. The direct, real-case application of the underlying
economic cost-loss model is demonstrated for hydropower production at a typical rep-
resentative of large dams in semi-arid regions, for the Upper Atbara Dam Complex in
Sudan. For an example drought year, losses of 16 Mio US$ could have been saved there.
This work therewith creates a paradigm for the relevance and beneficial use of ensem-
ble-based seasonal forecasts in an interdisciplinary context and their potential use for
an user-oriented transfer to regional decision-making.

2. How can empirical-statistical regionalization and post-processing techniques im-
prove the regional quality of global seasonal forecasts?

Due to their relatively coarse resolution of 36 km at best, and due to model biases and
drifts, global seasonal forecasts often cannot be used directly for high-resolution ap-
plications and impact studies. This work (Lorenz et al., 2021) showed that an applied
bias-correction and spatial-disaggregation (BCSD) of global seasonal forecasts based on
daily values successfully corrects for model biases of monthly mean precipitation of up
to 4 mm d�1, reduces mean monthly temperature biases from about 2 K to about 0.5 K or
eliminates them altogether, and decreases biases in monthly mean shortwave radiation
of up to 30 W m�2 to 5 W m�2 or less. For all considered variables - precipitation, tem-
perature, and radiation - considerable improvements of the value distributions were
obtained, with the largest improvements for the minimum 2-m temperature. Lead-
dependent bias correction further allowed to remarkably reduce model drift effects.
In addition to that, the BCSD approach was shown to improve the regional quality of
global seasonal forecasts as it is able to indirectly correct for elevation and to better rep-
resent small-scale features consistent with the higher-resolution reference. Weaknesses
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of the applied empirical-statistical regionalization and post-processing procedure were
found in relation to the used sliding window for the correction of daily values and the
limitations given the availability of a high-resolution multivariable reference dataset.
Nevertheless, the computationally cost-effective BCSD approach can provide an entire
39-years reforecast period and an operationally generated high-resolution, high-accu-
racy seasonal forecast dataset for regional applications and impact studies.

3. How robust are dynamically downscaled hydrometeorological fields with respect
to the applied physical model setup?

The refinement of global hydrometeorological information is not only possible with sta-
tistical methods, but also with dynamical downscaling using regional climate models.
However, regional climate models need to be adapted in their physical setup to the re-
gion of interest. Especially the parameterizations of convection, cloud microphysics, ra-
diation, and turbulent mixing determine the processes of precipitation generation. This
work (Portele et al., 2021a) showed that especially the applied schemes for convection
and radiation dominate the tendencies of all runs with one particular parameterization
scheme (sub-ensemble). It was also found that there can be enormous precipitation
ranges in space and time, with precipitation amounts up to four times that of reference
data. This implies that a high uncertainty is introduced into dynamically downscaled
hydrometeorological fields by different applied physical model setups, i.e. a low robust-
ness is given. It is therefore concluded that it is absolutely essential to carry out such
computationally expensive parameterization analyses before forecasts or input data for
impact studies can be produced. The applied ensemble-tailored methods for analyz-
ing temporal, distributional, and spatial patterns allow for the narrowing down of ap-
propriate and more robust parameterization schemes according to the application and
reference data, ultimately enabling the use of the dynamically downscaled information
for, e.g., hydrometeorological monitoring strategies of water resources.

5.3 Conclusions
This thesis substantially improved the understanding of seasonal forecasts and demon-
strated the clear advantage of integrating them into hydrological decision making. It
offered the tools to finally overcome the hurdle of actually incorporating seasonal fore-
casts into water management operations, and ultimately provides integral components
to support sustainable regional water management. First, the study of Portele et al.
(2021b) tackled the perceived unreliability and reluctance towards probabilistic fore-
casts. The specifically implemented approach of the potential economic benefit of fore-
cast-based early action demonstrated the potential of the global raw seasonal forecasts
SEAS5: For the semi-arid study regions, economic savings of up to 70 % of those from
optimal early action could be achieved in the case of drought forecasts. In general, deci-
sion-makers could especially benefit from seasonal drought forecasts and forecasts for
very warm months even several months ahead. The potential economic benefit includes
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the forecast probability and the user’s cost-loss situations, and therefore proved to be a
strong tool for user-oriented, economic decision-related verification of probability fore-
casts.

Classical performance analyses revealed the deficiencies in the quality of seasonal fore-
casts in terms of absolute value distributions and mean forecast error, and demonstrated
the need, in particular for spatially distributed impact modeling of hydrology or ecosys-
tems, to provide post-processed, i.e., bias-corrected and regionally refined, seasonal
forecasts. Therewith, the second tool offered was the development of an empirical sta-
tistical bias-correction and spatially disaggregation approach (Lorenz et al., 2021). The
global seasonal forecasts were thus made usable in a broader context for local stake-
holders and for impact studies by providing the required spatiotemporal time scales,
and by correcting biases against reference data and model drifts with increasing fore-
cast lead time. In the final step of operationalization, region-tailored seasonal forecasts
of hydrometeorological variables relevant to water management are made available in
an online decision support system. The online tool gives local stakeholders and experts
from the four study domains the opportunity to integrate high-resolution, corrected sea-
sonal forecasts in their decisions on water resources. This allows them to investigate the
potential of the SEAS5 BCSD forecasts for regional water management, drought fore-
casting and irrigation planning, to build trust in the performance of these forecast, and
to finally refine decision calendars and dates for management strategies of the coming
months.

The final tool was the elaboration of suitable physics parameterization schemes in the
regional climate model WRF to reproduce the temporal, distributional and spatial pat-
terns of precipitation over two semi-arid study regions (Portele et al., 2021a). This setup
should provide the entry point to be able to dynamically downscale seasonal forecasts,
and therewith provide a physically based, tailor-made alternative of regional refinement
with the freely available, community model WRF to the statistical approach. How-
ever, the tremendous computational demand of dynamically downscaling 51 ensemble
members of SEAS5 seasonal forecasts for each month with seven months lead time and
further downscaling a long period of probabilistic reforecasts for correction purposes,
makes it at the current stage not feasible to provide operational WRF SEAS5 seasonal
forecasts. Nevertheless, regionally refined information on currently available water re-
sources, i.e., applying the WRF setup (identified according to the performed sensitivity
analysis and specific for the application) to the near-present day reanalyses ERA5, could
improve the hydrometeorological data basis in the data-sparse semi-arid regions and
would allow the high-resolution monitoring of extreme events.

With all tools provided, this thesis actively contributes to a sustainable water manage-
ment in the semi-arid study regions. Tools were chosen to be user-friendly and to pro-
vide profound decision support (potential economic benefit), computationally feasible
and operationally implementable (bias correction and regional refinement) in the study
regions, but also scientifically challenging (dynamical downscaling). All types of ap-
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proaches to evaluating the performance of seasonal forecasts are important and justi-
fied to raise awareness and advance the use of seasonal forecasts. They show that even
with long lead times, information can be obtained for decision making and economic
value can still be achieved. Moreover, the tools raise the awareness of challenges facing
with the application of seasonal forecasts. Often, they cannot be treated as everyday
medium-range weather forecasts, and especially the communication of their probabilis-
tic nature needs to be reinforced. Long (re-)forecast periods with several months lead
time need to be considered for performance assessments and for common statements
about “above" or “below normal" conditions, highly increasing the storage and pro-
cessing requirements. The application of certain computationally demanding model
approaches, in particular at the gridpoint scale, may be unfeasible at that time. Differ-
ences between forecasting systems, e.g., SEAS5 and CFSv2, need to be understood to be
able to choose the proper tools, such as for further refinement. Dynamical downscaling
may be computationally too demanding for SEAS5 due to the large ensemble number
and randomness in their ensemble generation. However, systems like CFSv2 allow the
selection of fixed ensemble members and therewith ease the application of dynamical
downscaling.

However, the mere provision of tools to improve regional decision-making on water
resources is not enough. Close cooperation with local stakeholders, capacity building
and knowledge transfer through on-site workshops, including methods training in the
study regions are required for the final transfer of developed tools into practice. Start-
ing with complicated drought indicators or skill score measures, it was necessary to
use appropriate and easy-to-understand indicators and performance measures and to
demonstrate the advantages of seasonal forecasts in practical applications. Different po-
litical, societal and administrative hierarchies needed to be acknowledged in the study
regions to be able to support the regional water management decisions. In general,
local knowledge is required to properly identify the challenges and constraints (e.g.,
politically induced anthropogenic drought), to address the demands (e.g., transbound-
ary water management without upstream data), and to be able to provide reasonable
solutions according to the local conditions (e.g., refined seasonal forecasts for entire
transboundary basins). On the other hand, elaborate and in-depth studies and results
were in turn only possible with the support of local partners and with the knowledge
of regional challenges. A commensurate workflow and effective exchange with local
authorities had to be established, including the provision of (sparse) local station data.
Especially the in-depth case study at the Upper Atbara Dam was only possible with
the close cooperation and data exchange with local authorities. Despite all global ap-
proaches and global data sets, water management issues can thus only be solved by
profound expertise in the local systems and close exchange with local partners.

Finally, the detected increase in the frequency of drought months from 10 to 30 %
in semi-arid regions of Brazil, West and Northeast Africa, and Iran in recent decades
(Portele et al., 2021b) calls for consistent action against the impacts of climate change.
Global changes in precipitation and water availability in the context of climate change
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are noticeable on all spatial and temporal scales, and lead to a radical change in the basis
for action for sustainable water management. In this work, seasonal predictions proved
to be a strong tool in the management of climate extremes, and with proven value and
skill even months ahead they are suited as adaptation and mitigation strategies to cli-
mate change. Therewith, seasonal forecasts can be viewed as the product that water
managers have been waiting for and there is increasing importance of seasonal fore-
casts in decision support for a variety of socioeconomic applications. It was shown that
reservoir management in water-scarce regions can highly benefit from integrating early
action plans for, e.g., droughts (Portele et al., 2021b). The stored volume of water in a
reservoir can thus be managed more efficiently, increasing annual electricity production
in hydropower plants, and in a second step enhancing the sustainability of providing
water resources for irrigation or drinking water supply. This is of urgent importance,
as the adverse impacts of droughts on ecosystem productivity and the associated in-
creasing pressure on global food security are well known (e.g., Gampe et al., 2021). The
ability to store water resources more sustainably in large reservoirs can thus help to
better link water, energy, and food in a local-global understanding of water resources
at all levels of decision-making. This research therefore leads to a considerable increase
in competence in the field of operational reservoir management. There is a great need
worldwide and thus also a great potential for transferring the results and methods to
other semi-arid regions. The larger implication of this study can be perceived when
considering that there are more than 58,000 large dams worldwide (International Com-
mission on Large Dams (ICOLD-CIGB), 2021; Mulligan et al., 2020) for which the use
of seasonal forecasts could improve dam operations, and as a further step ensure water
supply in regions of water scarcity. This work thereby contributes towards Sustainable
Development Goal 6, that is to “ensure availability and sustainable management of wa-
ter and sanitation for all".

In conclusion, for locally to globally consistent, scientifically sound, coordinated de-
cisions leading to the sustainable use of water, the gathered scientific knowledge and
technological progress in seasonal forecasting must be integrated as an integral fac-
tor in all decisions related to the management of water resources. To this end, viable,
user-friendly solutions are key to bridging the gap from science to decision-making.
Operationalizing the developed tools and disseminating them in a decision support
system are further essential to reinforce the integration of these advanced solutions.
Science must therefore not limit itself to research on water resources or seasonal fore-
casts. Rather, it must empower society to also use the gained knowledge and actively
promote its transfer into practice. Finally, coordination across all levels of government
and all relevant sectors and stakeholder groups must be enhanced to integrate scientific
knowledge and technological progress into decision making at all levels.
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5.4 Outlook
Future work should be dedicated to the advancement and increased application of the
presented tools and methods. Bias correction methods for seasonal forecasts could be
further optimized by using multivariate (e.g. Schepen et al., 2020), skill-dependent (e.g.
Yuan et al., 2015), or temporal cascade correction approaches (e.g. Haerter et al., 2011).
Other approaches, e.g., linking the large- scale synoptic weather (circulation) patterns
with station precipitation and temperature (e.g. Laux et al., 2021a), should also be con-
sidered. In this regard, the developed SEAS5-BCSD seasonal forecasts (Lorenz et al.,
2021) can serve as a long-term reference product for new correction and regional refine-
ment approaches.

Post-processing and correction methods may not only include classical approaches, but
artificial intelligence (AI) and/or machine learning (ML) techniques should also come
into play (Haupt et al., 2021). Different algorithms can be tested here with the aim of
learning a pattern between predictor and predictand to optimize the seasonal forecasts,
and to downscale the global fields (e.g., Xu et al., 2019). AI/ML approaches have the
advantage that multi-variable, multi-source, and multi-lead-time data from the pixel to
the global scale can be easily incorporated into forecast improvement (e.g., Feng et al.,
2020). Nonetheless, feasibility in terms of Random-Access Memory (RAM) always plays
a role here as well, if many input data are included. But the general advantage of ML
models in terms of computing power, i.e., they run faster with much lower computer
resources than dynamical models, underlines the importance of considering these new
tools also for improving seasonal forecast quality in the future (Anochi et al., 2021; Co-
hen et al., 2019).

Regarding the economic benefits of seasonal forecasts, the cost-loss analysis at the Up-
per Atbara Dam could be extended to its multipurpose nature, including costs and
losses related to, e.g., irrigation. In addition, with the coupling of a hydrological model,
future seasonal inflow to the reservoir can be estimated, and simulation of, e.g., drought
events to derive real drought management plans incorporating the seasonal forecasts
should be considered. For the final operational hydrological seasonal forecasts, the
temporal gap between the reference spin-up data and the start of the seasonal forecasts
needs to be closed. Multivariable, long-term reference input data for impact modeling
are at best provided up to a few days (ERA5) or a few months (e.g., ERA5 land) before
the present day. Future work here should address the seamless link from spin-up to
seasonal forecasting.

With the chosen WRF setup according to application and reference data, a high-resolu-
tion monitoring product could be established in the study regions providing hydrom-
eteorological information close to present day with ERA5 reanalysis (Hersbach et al.,
2020) input. For the use of WRF with seasonal forecasts SEAS5, the bias-correction of
large-scale input fields (e.g., Pontoppidan et al., 2018) may provide solutions to mini-
mize the effects of SEAS5 model drifts on dynamical downscaling. Hence, future stud-
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ies should also focus on the remaining bias compared with the reference and investigate
whether the expected additional post-processing with long reforecast periods is still re-
quired.

From the promising results for the semi-arid regions, the regional seasonal forecasting
system with forecast horizons of up to seven months should be extended to other target
regions, such as Central Europe and Germany, which have been severely affected by
prolonged periods of extreme drought in recent years (e.g., Schuldt et al., 2020). In Cen-
tral Europe, climate change will increasingly call for longer-term irrigation strategies
for agriculture (e.g., Riediger et al., 2014). But well-founded indications of other ex-
treme weather events to be expected, such as most recently the July 2021 flood in parts
of Central Europe, are also needed. Here, the seamless forecasts from several days to
weeks and months, including sub-seasonal forecasts up to six weeks in advance, issued
weekly, are also essential. For this, special techniques for seamless forecast construc-
tion and validation from daily to seasonal time scales need to be developed and applied
(e.g., Dirmeyer and Ford, 2020). The ability to predict not only long-term drought or
above-average precipitation events at monthly scales, but also to provide indications of
flooding at the weekly scale, facilitates early warnings and preventive action for a wide
range of extreme weather events.

Another overarching aim for the future should be to achieve independence from cur-
rently institutional computing resources, to make the prediction system publicly and
freely available in the long term and on a sustainable basis. BCSD and also other correc-
tion methods require high-performance computing environments, which are not avail-
able in many countries. The prediction system should therefore be further developed
using cloud-based computing and storage power (e.g., Google Cloud, 2021; Helmholtz
Federated IT Services (HIFIS), 2021), so that it can be easily transferred to other IT envi-
ronments and made available to other users. This would even more allow the develop-
ment of climate change mitigation strategies with seasonal forecasts in climate-sensitive
regions in the future.

Despite these methodological and technical advances, we should also emphasize the
improvement of quality-controlled reference data to be available, reliable and consis-
tent over a long period of time, as the lack of such information is still one of the major
limiting aspects in many parts of the world. We must therefore continue to expand re-
gional station networks in climatically sensitive regions such as Africa and ensure their
maintenance. In addition, the final transfer into practice is only possible with good and
long-standing regional contacts. Therefore, close and trusting cooperation with regional
partners is urgently needed in order to actually reach the long-term sustainability goals,
to achieve the implementation of scientific results in practice and to further improve the
acquired knowledge. It is important that we work together to combat the advancing cli-
mate change, and it is precisely such regional and practice-oriented research that makes
an important contribution to this end.
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