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Abstract: Analyses of the relationships between climate, air substances and health usually concentrate
on urban environments because of increased urban temperatures, high levels of air pollution and the
exposure of a large number of people compared to rural environments. Ongoing urbanization, demo-
graphic ageing and climate change lead to an increased vulnerability with respect to climate-related
extremes and air pollution. However, systematic analyses of the specific local-scale characteristics
of health-relevant atmospheric conditions and compositions in urban environments are still scarce
because of the lack of high-resolution monitoring networks. In recent years, low-cost sensors (LCS)
became available, which potentially provide the opportunity to monitor atmospheric conditions with
a high spatial resolution and which allow monitoring directly at vulnerable people. In this study, we
present the atmospheric exposure low-cost monitoring (AELCM) system for several air substances
like ozone, nitrogen dioxide, carbon monoxide and particulate matter, as well as meteorological
variables developed by our research group. The measurement equipment is calibrated using multiple
linear regression and extensively tested based on a field evaluation approach at an urban background
site using the high-quality measurement unit, the atmospheric exposure monitoring station (AEMS)
for meteorology and air substances, of our research group. The field evaluation took place over a
time span of 4 to 8 months. The electrochemical ozone sensors (SPEC DGS-O3: R2: 0.71–0.95, RMSE:
3.31–7.79 ppb) and particulate matter sensors (SPS30 PM1/PM2.5: R2: 0.96–0.97/0.90–0.94, RMSE:
0.77–1.07 µg/m3/1.27–1.96 µg/m3) showed the best performances at the urban background site,
while the other sensors underperformed tremendously (SPEC DGS-NO2, SPEC DGS-CO, MQ131,
MiCS-2714 and MiCS-4514). The results of our study show that meaningful local-scale measurements
are possible with the former sensors deployed in an AELCM unit.

Keywords: electrochemical sensors; metal oxide semiconductor sensors; particulate matter sensors;
urban air quality; smart environment monitoring (SEM)

1. Introduction

Worldwide, one of the greatest and most challenging problems is the degradation of
air quality, especially when caused by human activities. In the year 2019, according to the
World Health Organization (WHO), 99% of the Earth’s population was living in regions
where the air quality guideline levels given by the WHO were not achieved [1].

Recently, the WHO global air quality guidelines were updated based on the latest
systematic reviews of exposure-response studies [2]. For the classical air pollutants, which
include particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), carbon monoxide
(CO) and sulfur dioxide (SO2), an improved assessment of their adverse effects on health
in low-, mid- and high-income countries took place in the last 15 years, achieved, for
instance, through the progress in measurements, modelling, data availability and exposure
analysis [2]. Olschewski et al. have shown that high-mortality events of patients with
cancer are strongly linked with above-average levels of NO2 and PM2.5 during unfavorable
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weather conditions in late winter until spring, which leads to the accumulation of polluted
air [3]. Generally, weather conditions and the atmospheric state influence the transport,
mixing ratio, transformation and deposition of air substances; hence they are important
factors defining the air quality level [4–6]. Many studies show that short- as well as
long-term exposures to O3 are associated with a higher morbidity and mortality [7–9].
Moreover, major evidence exists that cardiovascular mortality and morbidity is related to
PM exposure [10–12]. CO, a highly poisonous gas [13], is another air pollutant detrimental
to human health, being associated with acute respiratory and cardiovascular diseases, for
example [14,15]. The combination of the high impact of ambient air pollution on human
health with a still not satisfactory spatial resolution of air quality monitoring worldwide
points at the need for an increase in measurement resolution of health-deteriorating air
pollutants. The lack of high-resolution air pollutant monitoring is due to the high initial
and maintenance costs of regular devices for monitoring air pollution [16–18].

Therefore, it is reasonable to aim at developing custom multipollutant air-quality
monitoring systems to characterize the variation of those classic pollutants in a high spatial
resolution and which are also far less cost-intensive compared to official measurement
devices. In the last decade, an increasing number of companies started to produce low-cost
sensors (LCS) or even whole sensor systems (SSys), which include supporting components
(e.g., enclosure, power supply, hardware and software for data treatment). This also
sparked the endeavors of researchers to build low-cost air quality monitoring networks as a
complementary source of information [16]. While these manufactured sensor systems were
evaluated, for instance, through collocation experiments [18], researchers also evaluated
the sole sensors or sensor systems embedded in their own custom-built measurement
systems [19–22]. In this work, we do the latter and introduce the atmospheric exposure low-
cost monitoring (AELCM) device, which can deliver high spatial and temporal resolution
data of air pollutant concentrations and climate parameters for Internet of Things (IoT)
applications using an Arduino and Pycom microcontroller board.

Generally, lower-cost monitoring devices for gaseous pollutants in ambient air use
electrochemical sensors (EC) or metal oxide sensors (MOS), while optical particle counters
(OPC) are used the most for the detection of PM [23]. All these sensor types are incor-
porated in the first version of the AELCM, which also includes a low-cost sensor for the
measurement of temperature and humidity inside the box. The sensor output can be highly
dependent on the variation of these meteorological variables [24–26]. The incorporated
sensors in the AELCM box are supposed to measure the classic pollutants PM2.5, NO2,
O3 and CO. While low-cost sensors offer many potential advantages, there are also major
disadvantages. Their overall short lifespan, lack of long-term stability, signs of inter-sensor
unit variability, cross-sensitivity and the need to calibrate them using reference instruments
because of the lack of sufficient conversion formulas for individually purchased sensors
are detrimental to their overall use in a systematic and beneficial way [16].

In addition to a technical presentation of the AELCM, we also want to address the
performance of the used sensors (some of them are rarely evaluated, such as the digital gas
sensors manufactured by SPEC Sensors) in the context of some of the issues these sensors
entail. For this purpose, we are using the reference measurements of the atmospheric
exposure monitoring station (AEMS) for air substances and meteorological variables, while
our AELCM boxes are mounted next to the station.

2. Materials and Methods
2.1. AELCM Design and Collocation Experiment

The first version of the atmospheric exposure low-cost monitoring box uses an Ar-
duino Mega 2560 Rev3 board for the collection of sensor measurements. Moreover, the
Arduino device is used for the control of the other embedded hardware in the AELCM
box. The board uses an ATmega 2560, which is a power-efficient and performant 8-bit
microcontroller [27].
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The Arduino Mega 2560 provides a wide variety of features, while the most important
features for our measurement system were the 16 MHz crystal oscillator, an available
USB connection, the high number of digital input/output pins and analogue input pins,
as well as the amount of memory. For communication with external devices, such as a
secure digital (SD) card module (which enables storage of measurement data on a memory
card) or a real-time clock (RTC), the board provides SPI, four UARTs (hardware serial
ports) and I2C. The synchronous serial data protocol called the serial peripheral interface
(SPI) is used to communicate with the SD card module and to control it. The universal
asynchronous receiver-transmitter (UART) protocol and the serial communication bus
I2C (inter-integrated circuit) are two additional communication protocols being used. The
connection between the board and its external devices was mostly realized through different
self-designed printed circuit boards (PCBs). These custom-built PCBs included a so-called
bus board, a sensor board and a communication board. The PCBs have individual slots
for different hardware (for instance, sensors, SD card module, data modem and optional
GPS module).

Data transmissions and regular syncs of the external Adafruit DS3231 RTC are realized
through a GPy board by Pycom based on the Espressif ESP32 SoC (System on Chip) [28].
The external real-time clock is used to guarantee that the system time of an AELCM unit
is still precise, even if there is poor network connectivity. Next to location tracking, time
synchronizations in countries with a lack of IoT infrastructure could be realized through
the optional GPS module (Adafruit Mini GPS PA1010D). The GPy is a triple-bearer, offering
connectivity in form of WiFi, Bluetooth and cellular LTE-CAT-M1/NB1. We are using
long-term evolution for machines (LTE-M) to enable the AELCM box to gain a connection
to the internet, which requires an IoT Nano–SIM. We are employing an IoT SIM card by the
carrier 1NCE. Likewise, for transmitting data successfully we needed a communication
device that supports modern security standards, such as TLS version 1.2 (Transport Layer
Security). In addition, a minimal peak current consumption during transmissions was
needed. Both requirements are features of the GPy. Two uninterruptable power supplies
(Adafruit PowerBoost 1000C) provide current of up to 1 ampere at a voltage between 5 and
5.2 volts (V) for the GPy and the rest of the measurement system via the mains or batteries
separately [29]. The separation exists to avoid a possible instability of an AELCM unit
that is due to voltage drops caused by potential high current consumption greater than
1 ampere during data transmissions. Moreover, it provides more flexibility with respect
to the operation of metal oxide sensors, which consume vastly more current by design
because they use heaters in contrast to electrochemical gas sensors. The integrated LCD is
used for more comfortable deployment in the field, confirming if the boot up of an AELCM
unit is successful or if hardware components are failing.

The housing, shown in Figure 1b, is a modified ABS plastic box, which is actively
ventilated through a fan to probe the ambient air. The fan functions as an exhaust fan,
removing air from inside the box. The resulting air flow direction is toward the bottom
left of the box. The fan guarantees a constant air flow over the gas sensors and the
meteorological sensor, which are described in Table 1.

The revolutions per minute (RPM) of the fan blades are 2000 RPM, causing a flow
velocity between 0.8 and 0.9 m/s at the end of the bottom exhaust pipe of an AELCM
box [39]. 3D printing was an essential tool for customizing the box and securing the
used hardware.

The gas sensors in Table 1 can be separated into two categories: electrochemical
gas sensors (SPEC DGS) and metal oxide gas sensors (MiCS-2714, MiCS-4514, MQ131).
Electrochemical gas sensors generate a measurable current while in contact with their target
gas [40]. The amount of measured current depends on the concentration of the target gas.
This relationship is utilized to estimate gas concentrations. Metal oxide sensors on the
other hand feature a semiconductor layer. The conductivity of this layer changes with the
fractions of the gases in the air to which a metal oxide type gas sensor is sensitive [16]. We
can measure this change and translate it into estimations of gas concentrations of a specific
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gas. For the measurement of PM, an optical particle counter (OPC) was used, called SPS30.
Through the interaction of laser beams and particles, resulting in scattered light inside a
measurement cell collected by a photodetector, the mass concentration of suspended matter
with diameters smaller than or equal to specific aerodynamic diameters (PM2.5 and PM1)
can be estimated [38].
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Figure 1. Photographs of the AEMS and an AELCM unit, which is mounted on the fence next to
the AEMS: (a) the stationary air and climate measurement station of the Chair for Regional Climate
Change and Health, Faculty of Medicine, University of Augsburg; and (b) the housing of an AELCM
unit consists of a weather-proof NEMA (National Electrical Manufacturers Association) enclosure
(ABS Plastic Case, PN: NBB-22251; L ×W × H: 37 cm × 27 cm × 15 cm). The unit includes a sensor
board (equipped with gas sensors and a meteorological sensor) connected to a bus board, which in
turn is connected to an Arduino Mega 2560 Rev3 and an external RTC (A). The communication board
is equipped with an antenna-equipped Pycom GPy and an SD card module (B). An uninterruptable
power supply for the communication device (GPy) and a second one for the measurement system
and its external devices (LCD, fan and SD card module) are each connected to a LiPo battery (C).
A liquid crystal display (LCD) shows the status and functionality of the AELCM unit (D). The DC
PWM fan inside the enclosure (ODROID-H2 DC Fan; L × H × D: 92 mm × 92 mm × 25 mm) makes
use of the custom air inlet (top right) and custom air outlet (bottom left) for the exchange of air (E).
The SPS30 located at the bottom of the box directly coupled to the ambient air through a short plastic
pipe (F). Both uninterruptable power supplies are connected to a two-port USB charger plugged into
a regular power socket (G).

Table 1. Overview of the specifications of the sensors that can be used in the AELCM unit.

Measured
Variable Sensor Manufacturer Measuring

Range

Accuracy *
(Repeatability) *

[Precision] *

Approx. Price
(Euro) 2020

Temperature
Humidity BME280 [30] Bosch −40–65 ◦C

0–100%
(± 0.5)–(± 1.5) ◦C

±3% 1 5

O3 MQ131 [31] Winsen 0.01–1 ppm / 20
NO2 MiCS-2714 [32] SGX Sensortech 0.05–10 ppm / 10
CO MiCS-4514 [33] SGX Sensortech 1–1000 ppm / 14

O3 DGS-O3 968-042 [34] SPEC Sensors 0–5 ppm ±15%
(<±3%) 80

NO2 DGS-NO2 968-043 [35] SPEC Sensors 0–5 ppm ±15%
(<±3%) 80

CO DGS-CO 968-034 [36] SPEC Sensors 0–1000 ppm ±15%
(<±3%) 80

PM1/2.5 SPS30 [37,38] Sensirion 0–1000 µg/m3 [±10 µg/m3 at 0 to 100 µg/m3]
[±10% at 100 to 1000 µg/m3]

32

* This information is given if the manufacturer’s sensor data sheet provided it. 1 20–80%RH, 25 ◦C, including hys-
teresis.
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The measurement of the meteorological parameters of relative humidity and tempera-
ture are relevant for analyzing LCS output. The neglect of meteorological conditions can
lead to a sensor output and in consequence to model-estimated concentration levels, which
can be questionable as mentioned in the introduction.

In our configuration, the measurements of these two variables taken by a BME280
are an integral part of the model-based output adjustments of the sensors embedded in an
AELCM unit. The possible influence of these parameters on the sensor outputs given by
electrochemical- and metal oxide-type sensors are also evident in the official documents of
manufacturers who produce these types of sensors [31,40].

The Arduino board, a device with a 5 V logic level, was interfaced with the digital
gas sensors (DGS) by SPEC sensors using UART hardware serial ports and logic-level
converters, given that these sensors are devices operating on 3.3 V. These units give gas
concentrations in parts per billion (ppb) and were rarely analyzed in regards of their
performance in reports or other scientific literature in the past compared to the electro-
chemical sensors of the manufacturer Alphasense (e.g., B4-series and A4-series), which
are up-to-date, common sights in experiments or low-cost sensor systems for gaseous air
pollutants [22,23,41]. Therefore, we have decided to evaluate the performance of these sen-
sors as well. The communication between the SPS30, BME280, Adafruit ADS1115, Adafruit
DS3231 and Arduino board was realized by I2C. The analogue sensors MQ131, MiCS-2714
and MiCS-4514 were connected to the Adafruit ADS1115 analog-to-digital converter (ADC)
to read their outputs.

AELCM units were collocated with the air and climate measurement station of the
Chair of Regional Climate Change and Health next to the University Hospital Augsburg
in an urban background setting shown in Figure 1a named AEMS (location: 48◦ 23.04′ N,
10◦ 50.53′ E; Germany). The measurement station and its instruments are provided by the
company Horiba (APOA-370, principle: non-dispersive ultra-violet-absorption method
(NDUV), APNA-370, principle: chemiluminescence method (CLD), APMA-370, principle:
non-dispersive infrared (NDIR) absorption method, APDA-372, principle: optical light-
scattering). The AEMS provides measurements of the air constituents O3, nitrogen oxides
(NO, NO2 and NOx), CO and fine dust (PM1, PM2.5, PM4 and PM10). Additionally, the
AEMS is equipped with a Lufft WS600-UMB, which measures the meteorological variables
air temperature, relative humidity, precipitation intensity, precipitation type, precipitation
amount, air pressure, wind direction and wind speed.

An internal datalogger called the µIO-Expander averages the gas concentration mea-
surements to 3 min means, while the concentrations of PM fractions are rolling means,
averaged over 15 min time intervals by the datalogger. Measurements of an AELCM unit
take place every 10 s and get saved on an SD card inside an SD card module.

The Arduino board averages the collected data to 3 min means and sends them
to the GPy via a software serial port established on the Arduino board. This step was
necessary because all hardware serial ports (UART) are occupied by digital gas sensors.
The GPy sends the averaged data in real time to our database, being embedded in the
server infrastructure of the University of Augsburg.

2.2. Data and Data Treatment

We deployed three AELCM units with slightly different sensor configurations and
different deployment dates, which are summarized in Table 2. The general analysis period
ended on 24 October 2021. The longest time series is available for the unit AELCM003,
which was deployed in late February 2021. The units AELCM004 and AELCM005 were
deployed in June 2021. The different deployment dates are a result of the development of a
custom surface-mounted device (SMD) socket for the MiCS-2714 and MiCS-4514, which
was not completed by the end of February 2021 (Figures S1.1 and S1.2). A custom SMD
socket was developed to avoid manually soldering the MiCS devices to the sensor board,
possibly damaging them in the process.
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Table 2. General information about the deployed AELCM units’ individual LCS configurations
including the amount of available data for the first atmospheric exposure monitoring network
(AEMN) experiment for every deployed AELCM unit since their individual deployment dates.

No. AELCM
Unit Deployment Date Missing Sensors * Available Data

Logger/Database

003
MiCS-271426 February 2021
MiCS-4514 100%/95.56%

004
4 June 2021

DGS-CO21 June 2021 100%/94.95%

005 4 June 2021 DGS-CO n. A./96.91%
* The standard sensor equipment of the first version of an AELCM unit is shown in Table 1. Therefore, missing
sensors relate to the introduced sensors in Table 1.

Eventually, we decided to deploy the first AELCM box called AELCM003 without
MiCS sensors. Originally, the box AELCM004 was deployed at the same date as the unit
AELCM005, but we had to readjust the SMD sockets for the MiCS sensors multiple times
for this box, so that the official measurement start was 21st of June for the AELCM004 unit.

The issues with the current MiCS socket made us redesign it. The latest MiCS socket
board could not be implemented in the first version of the AELCM units anymore be-
cause it was not compatible with the current sensor boards in the already deployed units
(Figures S1.3 and S1.4). We also decided not to employ any SPEC DGS-CO devices in
later units anymore after looking into its initial performance in the field experiment. The
reasoning behind this decision is given in Section 3.

Overall, saving the measurement data with the microSD breakout by the manufacturer
SparkFun on a SD memory card worked well. We could retrieve all the measurement data
for the AELCM units 003 and 004. Unfortunately, the SD memory card of AELCM005
stopped functioning, so the raw data for this measurement system were not available (n. A.).
Nevertheless, we could still use the 3 min averages saved to our database.

During the field experiment, the GPy boards were able to send most of the averaged
measurement data to our database. Approximately 95% or more of the averaged data were
successfully sent. The missing averages in the database can be explained with ongoing
network issues on the carrier side or with a rare problem, where the GPy is losing its
internet connection and cannot recover solely with a board reset. Only a manual power
cycle resolved this issue. We recommend integrating a metal–oxide–semiconductor field-
effect transistor (MOSFET) controlled by a microcontroller or microcontroller board, such
as in our case an Arduino board, to power-cycle the GPy automatically in those cases.

While called SPEC DGS-O3, this EC sensor has a 1:1 sensitivity to NO2; hence, it must
be deployed with a NO2 sensor to estimate the concentration of O3 correctly [34]. Thus,
the AEMS measurements for NO2 were subtracted from the measurements of the DGS-O3
units. Most of the data sheets of the different employed gas sensors recommend a warm-up
time before actually using the sensor output for estimates. The digital gas sensors by SPEC
sensors show a startup output profile after getting powered. The length of the output
stabilization process may depend on the length of time the sensor was unpowered or the
sensor type [34–36]. The observed stabilization periods of the digital outputs were different
between the DGS used in the field experiment, but in general were shorter than a day. On
that account, the first 24 h of measurements of the SPEC DGS devices were not included in
this analysis. Another important detail is that the digital gas sensors and even the AEMS
gas measurement devices show a slight degree of noise in their measurements. This is a
normal feature inherent to their technical design and becomes most evident in negative
gas-concentration measurements (DGS, AEMS). Consequently, negative hourly means of
gas concentrations were flagged and set to zero ppb.

The noise levels for the AEMS gas measurement devices have been kept between
±0.5 ppb (APOA, APNA) and ±10 ppb (APMA) through recalibrations. Subtracting
the AEMS NO2 levels from the output of the DGS-O3 could also result in negative ppb
concentrations, showing that there are limitations in sensing lower levels of O3 and/or NO2
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with the DGS-O3. A warm-up phase also exists for the MQ131 according to its data sheet.
Because we do not know how long a sensor was not operated after being manufactured and
stored at a sensor distributor’s warehouse, we decided to exclude a week of sensor data
from the MQ131 before evaluating its actual output. This amount of removed data is related
to a storage time of more than six months for the MQ131 [31]. The data sheets for the MiCS
sensors do not provide any information about a needed warm-up duration. Consequently,
we also removed the first week of measurements of the MiCS sensors. Our decision is based
on the data sheet of the MQ131 (another metal oxide sensor), which was described earlier.
All low-cost gas sensor data were averaged to hourly means, while the sensor data of the
low-cost PM sensor SPS30 were averaged to 15 min means. Since the SD memory card data
were not available for the unit AELCM005, we used the transmitted 3 min averages for this
unit. For this measurement system, hourly means and 15 min means were only calculated,
when all data were available for the averaging process, otherwise an hourly mean or 15 min
mean was flagged as a missing value. Furthermore, we limited the evaluation of the SPS30
to its output for the fractions PM1 and PM2.5 because of its technical limitation to provide
proper estimates for the fractions PM4 and PM10 [38]. We also removed the first 24 h of
measurements for the SPS30 after observing on multiple occasions that there is an initial
stabilization period (the PM2.5, PM4 and PM10 measurements become identical after some
time) after powering this device.

The 3 min averages for the gaseous air pollutants given by the reference measurement
station AEMS were averaged to hourly means. Because the concentrations of the PM
fractions are provided as rolling averages by the AEMS over a time span of 15 min, we
extracted the data at the minutes 0, 15, 30 and 45 for every hour (e.g., 14:00, 14:15, 14:30 and
14:45 CET) and used these as a reference basis for the evaluation of the SPS30. The system
time of the AEMS is CET, while the system time of the AELCM units is UTC. Subsequently,
we adjusted the time stamps of the AELCM measurement data to CET. Portions of the
reference data had to be excluded or were not available. The reason is, on the one hand,
regular maintenance work involving the power grid of the University Hospital, where
no power is available to operate the measurement station. On the other hand, the AEMS
must be regularly maintained and checked (e.g., feeding of reference gas or reference dust,
recalibration of measurement devices and filter exchange) to guarantee a reliable operation
and high-quality data output.

2.3. Methods
2.3.1. Calibration

We built multiple linear regression models (MLR) for the LCS to calibrate the hourly
means of the gaseous sensor data and 15 min means of PM sensor data. We did not expect
that adding every possible predictor in our MLR models would result in a significant im-
provement of the model, so we selected a reasonable set of predictors using the following
steps: (1) using a Spearman rank correlation to obtain a first general impression about the
strength of the relationship between low-cost sensor output and reference measurements;
(2) building MLR models (calibration functions) for each sensor based on their data out-
put considering environmental influences on sensor output and reference measurements
(AEMS); and (3) predictor selection for the final regression models for every individual
LCS deployed based on the found models in step (2). The last step is realized through a
stepwise regression involving a sequential replacement algorithm and an out-of-sample
(OOS) approach using the RMSE as an evaluation parameter. The sequential replacement
algorithm was provided by the package leaps in statistics software R [42]. The final regres-
sion models are introduced in Section 2.3.4 for every LCS. For the development of the MLR
models in step (2), we start with a common set of predictors for each model, which includes
the sensor data output, atmospheric humidity and air temperature. This can be regarded
as the simplest model realization (baseline model, see Equation (3)). We adjust this baseline
model where necessary, considering the usual MLR model assumptions, including the
inspection of the residuals.
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It must be mentioned that a common problem of a linear regression on atmospheric
time-series data with a high temporal resolution is also apparent in this analysis. A standard
assumption for building an MLR model is independent residuals, which is violated in this
work. Additionally, multicollinearity (e.g., between air temperature and relative humidity)
is another common issue within the subject of modelling air pollution based on LCS
data. Air temperature also has a positive effect on the buildup of O3 near the surface.
Nevertheless, we are using MLR models because MLR is still the most common basic
approach for building calibration functions to process LCS data given by new measurement
systems such as our AELCM unit before developing or approaching more sophisticated
calibration models in future works [23,41,43]. We thoroughly evaluate every final regression
model and estimate the RMSE and coefficient of determination as recommended in other
literature [23].

2.3.2. Evaluation Statistics

To obtain a first guess about the (monotonic) relationship between the raw LCS output
and the reference data given by the AEMS and the meteorological parameters, we use the
Spearman rank correlation [44]. The Spearman rank correlation is defined as:

rrank =
Cov

(
R(LCSRaw), R

(
AEMSre f

))
σR(LCSRaw)

σR(AEMSre f )
, (1)

given by the standardized covariance of the ranked data values of the raw LCS measurements

(R(LCSRaw)) and ranked observations of the AEMS
(

R
(

AEMSref

))
. The standard deviations

that belong to these ranked data values are œR(LCSRaw)
and œR(AEMSref )

, respectively.
For evaluating the calibration functions, we use two measures of the model fit: co-

efficient of determination (R2) and the root-mean-square error (RMSE) [44]. R2 can be
understood as a measure of the proportion of variation of the predictand accounted for or
described by a regression model. The mean squared error (MSE) is the arithmetic average
of the squared difference between predictions and observations, reflecting the average
forecast accuracy. The MSE is defined as:

MSE =
1
N

N

∑
i=1

(
LCSadji − AEMSre fi

)2
, (2)

where LCSadji and AEMSref i
describe the ith pair of N pairs of model-adjusted LCS measure-

ments and observations of the AEMS. The MSE is particularly sensitive to outliers caused
by the squaring of errors. We use the RMSE, which can be expressed as the square root
of the MSE, RMSE =

√
MSE, to describe the error between calibration (adjusted) data and

reference data.

2.3.3. Stepwise Regression

For a given air pollutant LCS, we are building linear regression models (MLR) as
calibration functions for the LCS output. Hence, we are using the raw LCS output and the
meteorological measurements of air temperature and relative humidity as predictors and
the AEMS output as the predictand. We are screening the group of predictor candidates
using a stepwise regression method to decide upon which and how many predictors to use.
A stepwise regression is an automated filtering procedure that follows systematic rules in
adding or removing variables with predictive power from a regression model according to
a selection criterion [44,45]. After every regression step (final found p predictor model), an
out-of-sample (OOS) procedure is performed.

The autocorrelation functions for the hourly and 15 min means of the AEMS data
show an autocorrelation pattern for every pollutant (Figure S2.1). This indicates that the
observational data at the analyzed time scales were dependent. Cerqueira et al. show that an
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OOS approach is an appropriate choice for model validation under this circumstance [46].
For this reason, we rely on the OOS approach to evaluate the models, considering the
apparent dependence structure of the data.

Summarizing this method, which is described in detail in [46], a random point t in time
(e.g., 10 September 2021 12:00:00 CET) of the time series ts is chosen to separate the training
and evaluation data. The previous window with reference to t comprising 60% of ts is used
for training and the following window of 10% of ts is used for testing. For 10 repetitions,
we receive 10 randomly chosen dates t, which separate the training and evaluation sets.
The sizes of the training and evaluation sets depend on the length of the available LCS time
series and reference data (see Table 2 and Section 2.2). Finally, considering the average,
minimum and maximum RMSE for the training and evaluation period for every p predictor
model, we have chosen the final regression equation for a LCS (S3). In the case different
predictive variables for a p predictor model were chosen between repetitions, the most
chosen predictor combination defined the final p predictor regression model. In addition,
results of a fivefold cross validation (CV) are included in the supplement of this study
because of its common use in model evaluation (S4). The conclusions drawn from the CV
approach are similar to the findings for the OOS approach in this study.

2.3.4. Regression Models

First, we introduce the baseline linear regression model:

LCSadj = b0 + b1LCSRaw + b2T + b3RH, (3)

where LCSRaw is the raw output of the low-cost pollutant sensor, while T and RH are tem-
perature and relative humidity, respectively, given by the meteorological low-cost sensor
inside the AELCM unit. LCSadj is the model-predicted low-cost sensor output. Transforma-
tions of predictors and/or predictands are the result of a lack of homoscedasticity and/or
Gaussian distributed residuals. Based on the calibration strategy introduced in Section 2.3.1,
we build the following models, where:

[DGS-O3]adj = b0 + b1[DGS-O3]Raw + b2
[DGS-O3]2Raw − 1

2
+ b3T + b4RH, (4)

is the final calibration function for all deployed DGS-O3 units. DGS-O3Raw is corrected
by AEMSref for NO2 considering that the DGS-O3 has a 1:1 sensitivity to O3 and NO2
(DGS-O3Ox), so that:

[DGS-O3]Raw = [DGS-O3]Ox − [AEMS-NO2]re f , (5)

while for the DGS-NO2, we used the following regression models:

log
(
[DGS-NO2]adj

)
= b0 + b1[DGS-NO2]Raw + b2T + b3RH, (6)

[DGS-NO2]adj = b0 + b1[DGS-NO2]Raw + b2T + b3RH, (7)

where the former calibration function was used for unit AELCM003 and the latter one for
the other deployed AELCM units. For the deployed DGS-CO device the regression model

[DGS-CO]adj = b0 + b1[DGS-CO]Raw + b2T + b3RH, (8)

was chosen. For all MQ131, MiCS-2714 and MiCS-4514 sensors we used the following
calibration functions:

[MQ131]adj = b0 + b1[MQ131]Raw + b2T + b3RH, (9)

[MiCS-2714]adj = b0 + b1[MiCS-2714]Raw + b2T + b3RH, (10)
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log
(
[MiCS-4514]adj

)
= b0 + b1[MiCS-4514]Raw + b2T + b3RH. (11)

For adjusting the measured concentrations of a SPS30 for the fractions PM1 and PM2.5,
we used the regression model:

log
(
[SPS30]adj

)
= b0 + b1 log([SPS30]Raw) + b2T + b3RH, (12)

for the unit AELCM003, while using the calibration function:

log
(
[SPS30]adj

)
= b0 + b1log([SPS30]Raw) + b2RH, (13)

for the other units.

3. Results and Discussion

The environmental conditions and pollution concentrations based on hourly (15 min)
means are provided in Table 3. Erroneous measurements of the ambient air temperature
and relative humidity were removed. At least 85% of the data of both variables had to be
available for the calculation of the mean values.

Table 3. Statistics based on the hourly (15 min) means of the different atmospheric variables measured
by the AEMS between the 27 February 2021 and 24 October 2021. For O3, NO2 and CO hourly gas
[ppb] and for PM 15 min concentration means [µg/m3]) were used. The temperature [◦C] and relative
humidity [%] statistics are based on hourly means.

Atmospheric
Variable Min 25th Percentile Mean 75th Percentile Max

O3 0.00 16.79 27.79 38.01 85.65
NO2 0.38 2.59 6.24 8.39 36.99
CO 93.44 141.55 176.89 196.69 1366.96

PM1 0.20 3.21 7.46 10.36 44.23
PM2.5 0.32 4.14 8.72 11.91 136.51

Temperature −4.27 8.21 12.94 17.46 31.68
Relative

Humidity 17.94 58.54 71.15 86.22 95.46

In our work, not every LCS shows the premise of being a good-quality source of
information according to the employed evaluation parameters. It was evident that some
LCS could not reflect the patterns in the reference data well or at all, making them factually
useless. Table 4 gives a general overview about the suitability of the deployed LCS in
building a low-cost monitoring network for air constituents.

Generally, the results of our field experiment indicate that only the electrochemical
sensor SPEC DGS-O3 and the PM sensor SPS30 are reasonable choices for LCS used in a
low-cost atmospheric exposure monitoring network.

The other electrochemical sensors, DGS-NO2 and DGS-CO, showed no capability to
measure the given concentrations at the measurement station according to the coefficient of
determination and the Spearman rank correlation. The correlations were close to zero for
two DGS-NO2 devices. For the longest running DGS-NO2, the Spearman rank correlation
only amounted to 0.18. The low predictive power of these NO2 sensors is also reflected
in the coefficients of determination (R2: 0.28–0.59). Since they are not able to sense their
target gas at all or only in a very weak way, they cannot describe the variability of ambient
NO2 to a satisfying degree. The DGS-CO even showed a negative correlation (Rs: −0.25),
implying that it only produced noise. Thus, we have decided not to employ any SPEC
DGS-CO devices in later AELCM units anymore after looking into their initial performance
in the field experiment and testing different units, which all showed the same behavior as
the SPEC DGS-CO operated in the field experiment. During a field experiment done by
the Air Quality Sensor Performance Evaluation Center (AQ-SPEC), out of the DGS-CO,
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DGS-NO2 and DGS-O3 measurement units, only for the DGS-CO was there evidence that
the LCS is able to sense ambient CO [47]. The concentration levels of ambient CO at the
University Hospital Augsburg were, overall, lower in our field experiment compared to
the measured concentrations in the field experiment of AQ-SPEC. This implies that the
DGS-CO (at least the ones purchased from sensor distributors) is not useable for sensing
lower concentrations of CO (Figure S6.2).

Table 4. Evaluation statistics for every LCS used in the AELCM units: Spearman rank correlation
(Rs), root-mean-square error (RMSE) and the coefficient of determination (R2). For the calculation of
R2 and RMSE, all model-adjusted LCS data (hourly gas [ppb] and 15 min PM concentration means
[µg/m3]), while for Rs all raw LCS data for every individual sensor are used (excluding the data
taken during the warm-up duration). The AEMS data are used as reference. For all LCS data, besides
the SPS30, the RMSE is in ppb. For SPS30 data, the RMSE is in µg/m3.

No. AELCM
Unit DGS-O3 DGS-NO2 DGS-CO MQ131

(O3)
MiCS-2714

(NO2)
MiCS-4514

(CO)
SPS30

(PM1/PM2.5)

003

Rs: 0.90 Rs: 0.18 Rs: −0.25 Rs: −0.55 / / Rs: 0.97/0.94
RMSE: 6.74 RMSE: 3.47 RMSE: 53.67 RMSE: 6.53 / / RMSE: 1.07/1.96

R2: 0.80 R2: 0.59 R2: 0.20 R2: 0.81 / / R2: 0.96/0.90

004

Rs: 0.50 Rs: −0.02 / Rs: −0.26 Rs: 0.28 Rs: 0.39 Rs: 0.97/0.95
RMSE: 7.79 RMSE: 3.61 / RMSE: 7.81 RMSE: 4.16 RMSE: 30.53 RMSE: 0.77/1.27

R2: 0.71 R2: 0.35 / R2: 0.71 R2: 0.15 R2: 0.66 R2: 0.97/0.94

005

Rs: 0.97 Rs: −0.01 / Rs: −0.28 Rs: 0.53 Rs: −0.49 Rs: 0.96/0.94
RMSE: 3.31 RMSE: 3.80 / RMSE: 6.31 RMSE: 3.51 RMSE: 44.95 RMSE: 0.87/1.51

R2: 0.95 R2: 0.28 / R2: 0.83 R2: 0.40 R2: 0.27 R2: 0.96/0.91

In contrast to the results of the AQ-SPEC field evaluation experiment, we found that
most of the deployed DGS-O3 were able to detect changes in O3 concentration levels, albeit
with differences, as can be seen in the evaluation statistics in Table 4. The raw output
of the DGS-O3 deployed in AELCM005 shows the strongest relationship with the refer-
ence measurements (Rs: 0.97) and the smallest error (RMSE: 3.31 ppb), and provides the
highest coefficient of determination (R2: 0.95). As a result, it is evident that the DGS-O3
deployed with AELCM005 shows the best level of agreement with the reference measure-
ments, while the other DGS-O3 units show a lesser performance (RMSE: 6.74–7.79 ppb;
R2: 0.71–0.80). Therefore, we conclude that every DGS-O3 (or any other promising LCS)
must be individually screened (evaluated) and calibrated before considering them for use
in any monitoring application, since even identical sensors show different characteristics
in response to the same environmental conditions, such as temperature, humidity and
ambient O3 concentrations (Figure S7.1; Table 3).

Figures 2 and 3 show the model-adjusted and the raw and model-adjusted hourly
means of measured O3 concentrations in ppb given by SPEC DGS-O3 units deployed
with the low-cost monitoring systems AELCM003, AELCM004 and AELCM005 plotted
against the hourly means of the reference measurements of ambient O3 given by the AEMS.
Additionally, the time series data in Figure 2 were smoothed using rolling 24 h averages to
make deviations from the reference data more detectable. The figures for the other sensors
in Supplement S6 are presented in the same manner. The AELCM boxes were deployed
at different points in time because of the reasons mentioned in Section 2.2. Generally, box
AELCM003 offers the longest time-series data for most of the LCS. The top panel in Figure 2
belongs to AELCM003 and indicates that the found model for the DGS-O3 describes the
variability in the reference measurements reasonably well. On the other hand, quite large
discrepancies between the model-adjusted LCS output and reference measurements can
also be found (top panels in Figures 2 and 3), resulting in a rather high error expressed
through an RMSE of 6.74 ppb. The calculated average of the RMSE for the repeated hold-
out procedure (10 evaluation periods) is also high and amounts to 8.21 ppb (Table S3.1).
Therefore, we doubt that quantitative predictions for this DGS-O3 are possible with the



Sensors 2022, 22, 3830 12 of 24

current model approach. Qualitative predictions in the form of an estimation of trends in
the O3 concentration levels could still be possible with the current model approach but
must be investigated in future works. The DGS-O3 deployed with AELCM004 was the
worst performing sensor out of the three DGS-O3 considering the reference measurements,
which is evident from the deviations between the rolling 24 h averages in the middle panel
of Figure 2. The higher deviations compared to the DGS-O3 deployed in AELCM003 and
AELCM005 are also shown through the RMSE statistic, which is 7.79 ppb. Considering
the strength of the deviations and the only moderate relationship with the reference mea-
surements (Rs: 0.50), a qualitative and quantitative use of the DGS-O3 deployed with
AELCM004 with the current model is questionable. This is also evident from the scatterplot
in the middle panel of Figure 3. Looking at the bottom panels of Figures 2 and 3, a far
more positive outlook for this LCS is provided through the results for the DGS-O3 of
AELCM005. The DGS-O3 deployed in AELCM005 exhibits the strongest relationship
(Rs: 0.97; R2: 0.95) and the smallest deviation from the reference measurements (RMSE:
3.31 ppb). In addition, the calculated root-mean-square errors for the predictions indicate
the robustness of the final regression model (Table S3.1). The model robustness is evident
by comparing the determined average, minimum and maximum RMSE for the training
periods with their corresponding counterparts of the evaluation periods, which produce
quite similar errors. For the selected training periods, the average RMSE is 3.09 ppb, while
the individual root-mean-square errors lie between 2.49 and 3.65 ppb for the 10 training
periods. For the selected evaluation periods, the average RMSE is 2.67 ppb, while the
individual root-mean-square errors lie between 2.42 and 3.09 ppb for the 10 evaluation
periods (Table S3.1). We would consider the DGS-O3 deployed with AELCM005 as the
most promising LCS for realizing reasonable predictions of ambient O3 concentration using
an MLR model.

Figure 3 shows clearly how differently identical LCS units can behave under the same
environmental conditions and pollution concentrations. While the bottom panel shows a
strong linear relationship between the raw LCS data and the reference measurements, the
top panel suggests a strong nonlinear relationship with the reference. The middle panel
indicates highly noisy raw LCS data of little quality. The problem of inter-sensor unit
variability is thus apparent.

After discussing the electrochemical sensors, we are looking with more detail at the
deployed metal oxide sensors.

While for the model-adjusted MQ131 sensor output moderate to high coefficients
of determination were determined (R2: 0.71–0.83), the raw sensor output only shows a
weak-to-moderate relationship with the reference measurements (Rs: −0.55–−0.28).

A negative relationship exists because the sensor resistance increases with higher
concentrations of O3 [31]. The only moderate relationship for the MQ131 with its target
gas reference measurements is also indicated in the stepwise selection process of predictor
variables during the initial model-building process. During the model-training process,
none of the MQ131 sensors could be selected as best 1-predictor model in our stepwise
regression. Thus, a meteorological variable or two meteorological variables, in this case
relative humidity or/and temperature, yielded a better performance than the sensor output
itself. As a result, for most training periods, relative humidity was chosen as the best
variable with the most predictive power in a one-predictor model. The stronger relationship
between meteorological variables and ambient O3 is also reflected in the Spearman rank
correlation between LCS measurements and reference measurements (relative humidity Rs:
−0.76–−0.80; temperature Rs: 0.47–0.74; Table S5.1). Based on our analyses, we question
the usefulness of the MQ131 in a low-cost monitoring network.
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Figure 2. Model-adjusted hourly concentration means of different deployed SPEC DGS-O3 using
multiple linear regression vs. hourly concentration means of reference measurements given by the
AEMS for ambient O3 in ppb. The RMSE is in ppb. For smoothing the hourly concentration means, a
rolling 24 h average is used: (Top) SPEC DGS-O3 deployed in AELCM003; (Middle) SPEC DGS-O3
deployed in AELCM004; and (Bottom) SPEC DGS-O3 deployed in AELCM005.

We draw the same conclusion for the MiCS LCS. Neither the MiCS-2714 nor the
MiCS-4514 showed promising results in our field experiment considering the evaluation
parameters shown in Table 4. After gaining a first impression about the usefulness of these
sensors (MiCS-2714 Rs: 0.28–0.53; MiCS-4514 Rs: −0.49–0.39), their sensor output as a
predictor for ambient NO2 and ambient CO is rather questionable. This is also reflected in
the quality of the model-adjusted output of these sensors. The coefficients of determination
are quite low (MiCS-2714 R2: 0.15–0.40; MiCS-4514 R2: 0.27–0.66). On the one hand, the
reason could be that the overall concentration levels during the measurement campaign
were too low for the sensors to sense their target gases. According to their data sheets, the
MiCS-2714 has a detection range between 0.05 and 10 ppm, while the MiCS-4514 has a
detection range between 1 and 1000 ppm. An ambient hourly mean of NO2 of 50 ppb was
never reached during the measurement period of these sensors.
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Figure 3. Raw (left) and model-adjusted (right) hourly concentration means of different deployed
SPEC DGS-O3 vs. hourly concentration means of reference measurements given by the AEMS for
ambient O3 in ppb: (Top) SPEC DGS-O3 deployed in AELCM003; (Middle) SPEC DGS-O3 deployed
in AELCM004; and (Bottom) SPEC DGS-O3 deployed in AELCM005. Multiple linear regression is
used for adjusting the raw LCS data.

For the analysis periods of the deployed MiCS-4514, no hourly mean of ambient
CO higher than 1 ppm was reached. Another reason could be that our former custom-
built, initial prototype SMD socket for the MiCS sensors worked insufficiently, so the
measurements were taken under unfavorable circumstances. The issues could be potentially
resolved by our latest version, which needs to be investigated by another field experiment
(Figures S1.3 and S1.4).

Considering the evaluation statistics given above for the deployed LCS, the metal
oxide gas sensors performed the worst in our field experiment; therefore, we do not
consider using them for future AELCM units.

Because of the poor performance of the used electrochemical and metal oxide NO2 LCS,
we used the NO2 reference measurements of the AEMS to correct the raw measurements of
the SPEC DGS-O3 units (see Section 2.2) before applying any calibration function.

In our analyses, the PM sensor SPS30 was the best performing LCS. Each of the SPS30
devices showed for PM with aerodynamic diameters smaller than or equal to 2.5 and 1 µm
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strong agreements with the reference measurements, indicated through the evaluation
statistics in Table 4 and in the stepwise regression results (Tables S3.7 and S3.8). The raw
LCS data show a strong relationship with the reference measurements of the AEMS for
both PM classes, but also an increasing spread with increasing reference measurements
(Figures 4 and 5). For PM2.5, the Spearman rank correlation lies between 0.94 and 0.95 and
for PM1 between 0.96 and 0.97. The high level of agreement is also visible in the model-
adjusted LCS output shown in Figures 6 and 7, in the RMSE values and in the R2 values.
Furthermore, the scatterplots show that the model-adjusted data align much better with
the reference data. For PM2.5, the coefficients of determination are between 0.90 and 0.94
and for PM1 they are between 0.96 and 0.97. The model-adjusted LCS PM1 values describe
the variability of the reference measurements slightly better than the model-adjusted LCS
PM2.5 measurements.
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Figure 4. Raw (left) and model-adjusted (right) 15 min concentration means of different deployed
SPS30 vs. 15 min concentration means of reference measurements given by the AEMS for PM2.5 in
µg/m3: (Top) SPS30 deployed in AELCM003; (Middle) SPS30 deployed in AELCM004; and (Bottom)
SPS30 deployed in AELCM005. Multiple linear regression is used for adjusting the raw LCS data.

The slightly worse agreement of model-adjusted PM2.5 values with the reference
measurements is also reflected in the higher errors. These discrepancies expressed through
the RMSE are between 1.27 and 1.96 µg/m3 but are between 0.77 and 1.07 µg/m3 for
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the model-adjusted PM1 values. The calibration functions found for the deployed SPS30
devices create good estimates overall. However, the figures and scatterplots also show that
for higher PM2.5 and PM1 concentrations the error between estimate and reference can
increase, resulting in underestimations of particulate matter concentrations. This behavior
is less apparent for the model-adjusted PM1 concentrations.
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Figure 5. Raw (left) and model-adjusted (right) 15 min concentration means of different deployed
SPS30 vs. 15 min concentration means of reference measurements given by the AEMS for PM1 in
µg/m3: (Top) SPS30 deployed in AELCM003; (Middle) SPS30 deployed in AELCM004; and (Bottom)
SPS30 deployed in AELCM005. Multiple linear regression is used for adjusting the raw LCS data.

It should be noted that we cannot explain the high peaks in some of the PM reference
measurements so far. After explicitly checking the provided logs of the datalogger for
these measurements producing the peaks in Figure 6, we could not find any error mes-
sages related to them, so therefore they appear to be regular measurements. Because the
deployed SPS30 consistently show great agreement with the reference measurements and
are deployed with the AELCM boxes just next to the AEMS, we assume that the probed air
of the AEMS during these moments was highly different to the probed air by every single
deployed SPS30. One of the reasons could be that suspended matter in the form of pollen
could have entered the AEMS locally, which affected the measurements in these points in
time, while the measurements of the deployed SPS30 did not get affected.
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Figure 6. Model-adjusted 15 min concentration means of different deployed SPS30 using multiple
linear regression vs. 15 min concentration means of reference measurements given by the AEMS for
PM2.5 in µg/m3. The RMSE is in µg/m3. For smoothing the 15 min concentration means a rolling
24 h average is used: (Top) SPS30 deployed in AELCM003; (Middle) SPS30 deployed in AELCM004;
and (Bottom) SPS30 deployed in AELCM005.

It should also be mentioned that for the introduced calibration functions for the raw
PM1 measurements the difference between training errors and evaluation errors are gener-
ally quite low for all deployed SPS30. This indicates also that the current models seem to
have a good skill for predicting PM1 concentrations, or rather for adjusting raw PM1 output
of an SPS30 accordingly (Table S3.8). While the calculated RMSE values for the training and
evaluation periods are higher for the model-adjusted PM2.5 measurements, we can also
see similar magnitudes of errors between the training and evaluation periods (Table S3.7).
Again, this indicates that the current models for adjusting raw PM2.5 concentrations given
by an SPS30 are showing good skill.
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Figure 7. Model-adjusted 15 min concentration means of different deployed SPS30 using multiple
linear regression vs. 15 min concentration means of reference measurements given by the AEMS for
PM1 in µg/m3. The RMSE is in µg/m3. For smoothing the 15 min concentration means a rolling 24 h
average is used: (Top) SPS30 deployed in AELCM003; (Middle) SPS30 deployed in AELCM004; and
(Bottom) SPS30 deployed in AELCM005.

The United States Environmental Protection Agency (U.S. EPA) recognizes LCS as
tools that are not useable for regulatory purposes in their current state. According to
the U.S. EPA, LCS technology could be potentially used as a complementary source of
information, including, for example, hot-spot localization, identification of potential sites
for regulatory monitoring and better understanding of local air quality [48]. For that reason,
the U.S. EPA started developing performance target reports for air-quality sensors used in
nonregulatory applications. The first performance-target reports for O3 and PM2.5 sensors
were finished in 2021 [49,50]. These are based on the findings of scientific literature reviews,
among other things, conducted by the U.S. EPA. We use both reports to further assess if
the DGS-O3 and SPS30 could be used for nonregulatory purposes based on the calculated
metrics (RMSE, R2) in this study for hourly (15 min) model-adjusted (corrected) data. The
base testing protocol for a field test recommends an RMSE smaller than or equal to 5 ppb
and an R2 value of at least 0.80 to consider an O3 LCS for nonregulatory supplemental
and informational monitoring (NSIM) applications in ambient, outdoor and fixed-site
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environments [49]. For PM2.5, an RMSE smaller than or equal to 7 µg/m3 and an R2

value of at least 0.70 is needed to regard a PM LCS for NSIM purposes [50]. The DGS-O3
employed in AELCM003 and AELCM005 both fulfill the latter requirement (R2: 0.80, 0.95),
but only for the DGS-O3 of AELCM005 is the error in an acceptable range (RMSE: 3.31 ppb)
for NSIM applications. Instead of 15 min means, the recommended performance metrics
and target values for PM2.5 are based on 24 h averages. Considering the individual results
for the model-adjusted 15 min means of all employed SPS30 (RMSE: 1.27–1.96 µg/m3; R2:
0.90–0.94), the calculated daily averages and their corresponding performance metrics and
target values fulfill the PM2.5 NSIM requirements.

For both LCS, it must be noted that not all recommended requirements for base testing
were fulfilled. For instance, three O3 and PM LCS of the same model were not deployed
at the same date (Table 2). Again, it must be said that the metrics were calculated using
corrected LCS data. The U.S. EPA emphasizes in both target reports that test protocols
were provided for estimating the out-of-the-box LCS performance and potential variation
among identical sensors. Nevertheless, considering the recommended target values for
base testing by the U.S. EPA and the calculated metrics in this study, only the SPS30 appears
to be useable for NSIM applications. The DGS-O3 needs improvement to be regarded for
NSIM purposes, considering its obvious strong inter-sensor unit variability.

4. Conclusions

In this work, besides introducing the technical aspects of our research group’s own
monitoring device, the atmospheric exposure low-cost monitoring (AELCM) for meteo-
rological variables and air constituents, we also evaluated the performance of low-cost
sensors for the air pollutants O3, NO2, CO and PM with aerodynamic diameters smaller
than or equal to 2.5 and 1 µm during a field experiment in an urban background area.

The overall quality and quantity of data for different air substances (PM and O3) and
the stability of our measurement devices in the field over their individual measurement
periods (4 to 8 months) show that our prototype AELCM devices are built on a solid
foundation for actual individual exposure monitoring. Based on our gained experiences
during the field experiment, we already included new features in our latest version of the
AELCM, which will be used in future works. The new features are as follows: we eliminated
the need of manual power cycling because of data modem instabilities by using a MOSFET.
Additionally, it is possible to retrieve all measurement data using the file transfer protocol
(FTP). This feature is especially useful for countries where the network infrastructure is not
as developed for low-power data transmissions (in our instance LTE-M) as in Germany,
but a degree of connectivity is needed without interrupting the measurement process of an
AELCM box. Furthermore, the status of an SD memory card belonging to an AELCM unit
can be checked in the database. Through this feature, we can act accordingly and replace a
damaged card immediately. The already existing and latest feature set of our AELCM units
and their flexibility given through a modular PCB design (easily switchable and stackable
custom boards with different functions) make them promising devices for further research
related to exposure monitoring.

To evaluate the sensors, we used the Spearman rank correlation for the raw mea-
surements and a multiple linear regression approach for training and testing the sensor
data. The basis of this evaluation process were the reference measurements given through
high-quality measurement devices of the atmospheric exposure monitoring station (AEMS)
belonging to the Chair for Regional Climate Change and Health of the University of Augs-
burg. Ultimately, we found that the deployed metal oxide gas sensors seem not to be
useful for exposure monitoring given the circumstances in our field experiment. Either
these sensors could not offer meaningful sensor output for the given pollution levels or
our current sockets were too flawed in their design (not including the MQ131) to use these
sensors to their full potential. The deployed electrochemical sensor for O3 called SPEC
DGS-O3 was the only electrochemical gas sensor that showed any degree of promise, but
also strong inter-sensor unit variability. It must be noted, though, that this sensor must
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be combined with another NO2 LCS to use its full potential, since its measurements get
affected strongly by NO2. Only two of these O3 sensors showed promise under the aspect
of at least qualitative predictions. We ordered this LCS (and every other LCS used in this
study) from a distributor and not from the manufacturer directly.

The manufacturer SPEC Sensors offers individual calibrations of sensors from the
same production batch. Considering the inter-sensor unit variability for the SPEC DGS-O3,
it would be interesting to see if calibrated sensors from the same batch show a reduced
inter-sensor variability and measurement error. The inter-sensor variability increases
the challenge of calibrating the sensors. It hints at the possible difficulty of finding a
generalized calibration model for the SPEC DGS-O3. The PM LCS called SPS30 shows very
good calibration performance, given the reasonably small errors during the training and
testing periods. As a result, we consider this sensor to be a good choice for any future
AELCM unit.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s22103830/s1, Figure S1.1: Top view of the AELCM sensor board
with MiCS sensor sockets for the MiCS-4514 on the left and MiCS-2714 on the right side at the bottom
of the printed circuit board used in this study. Figure S1.2: Side view of the AELCM sensor board
with the MiCS sensor sockets for the MiCS-4514 on the left and MiCS-2714 on the right side used in
this study. Figure S1.3: Top view of the latest MiCS sensor socket board for the MiCS-2714 on the
left and MiCS-4514 on the right side at the top of the printed circuit board. Figure S1.4: Side view of
the latest MiCS sensor socket board for the MiCS-2714 and MiCS-4514. Figure S2.1: Autocorrelation
coefficients for different lags of different air pollutants measured by the Atmospheric Exposure
Monitoring Station (AEMS). The observation period is between the 27 February 2021 and 24 October
2021. The concentrations of the air pollutants ozone, nitrogen dioxide and carbon monoxide are
measured in the measurement unit ppb (hourly means), while the particulate matter measurements
are measured in the measurement unit µg/m3 (15-min means). From top to bottom: O3, NO2,
CO, PM2.5 and PM1. Table S3.1: Average, minimum and maximum RMSE for ambient ozone in
parts per billion (ppb) and for each p predictor model regarding LCS SPEC DGS-O3 deployed with
specific AELCM units. The performance estimation method is the repeated holdout procedure using
reference data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages.
Table S3.2: Average, minimum and maximum RMSE for ambient nitrogen dioxide in parts per
billion (ppb) and for each p predictor model regarding LCS SPEC DGS-NO2 deployed with specific
AELCM units. The performance estimation method is the repeated holdout procedure using reference
data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S3.3:
Average, minimum and maximum RMSE for ambient carbon monoxide in parts per billion (ppb)
and for each p predictor model regarding LCS SPEC DGS-CO deployed with specific AELCM units.
The performance estimation method is the repeated holdout procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S3.4: Average,
minimum and maximum RMSE for ambient ozone in parts per billion (ppb) and for each p predictor
model regarding LCS MQ131 deployed with specific AELCM units. The performance estimation
method is the repeated holdout procedure using reference data of the AEMS and model-calibrated
(adjusted) LCS data based on hourly averages. Table S3.5: Average, minimum and maximum RMSE
for ambient nitrogen dioxide in parts per billion (ppb) and for each p predictor model regarding LCS
SGX MiCS-2714 deployed with specific AELCM units. The performance estimation method is the
repeated holdout procedure using reference data of the AEMS and model-calibrated (adjusted) LCS
data based on hourly averages. Table S3.6: Average, minimum and maximum RMSE for ambient
carbon monoxide in parts per billion (ppb) and for each p predictor model regarding LCS SGX
MiCS-4514 deployed with specific AELCM units. The performance estimation method is the repeated
holdout procedure using reference data of the AEMS and model-calibrated (adjusted) LCS data based
on hourly averages. Table S3.7: Average, minimum and maximum RMSE for ambient particulate
matter PM2.5 in microgram per cubic meter (µg/m3) and for each p predictor model regarding
SPS30 deployed with specific AELCM units. The performance estimation method is the repeated
holdout procedure using reference data of the AEMS and model-calibrated (adjusted) LCS data based
on 15-min averages. Table S3.8: Average, minimum and maximum RMSE for ambient particulate
matter PM1 in microgram per cubic meter (µg/m3) and for each p predictor model regarding SPS30
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deployed with specific AELCM units. The performance estimation method is the repeated holdout
procedure using reference data of the AEMS and model-calibrated (adjusted) LCS data based on
15-min averages. Table S4.1: Average, minimum and maximum RMSE for ambient ozone in parts per
billion (ppb) and for each p predictor model regarding LCS SPEC DGS-O3 deployed with specific
AELCM units. The performance estimation method is the 5-fold cross validation procedure using
reference data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages.
Table S4.2: Average, minimum and maximum RMSE for ambient nitrogen dioxide in parts per
billion (ppb) and for each p predictor model regarding LCS SPEC DGS-NO2 deployed with specific
AELCM units. The performance estimation method is the 5-fold cross validation procedure using
reference data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages.
Table S4.3: Average, minimum and maximum RMSE for ambient carbon monoxide in parts per
billion (ppb) and for each p predictor model regarding LCS SPEC DGS-CO deployed with specific
AELCM units. The performance estimation method is the 5-fold cross validation procedure using
reference data of the AEMS and model-calibrated (adjusted) LCS data based on hourly averages.
Table S4.4: Average, minimum and maximum RMSE for ambient ozone in parts per billion (ppb)
and for each p predictor model regarding LCS MQ131 deployed with specific AELCM units. The
performance estimation method is the 5-fold cross validation procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S4.5: Average,
minimum and maximum RMSE for ambient nitrogen dioxide in parts per billion (ppb) and for
each p predictor model regarding LCS SGX MiCS-2714 deployed with specific AELCM units. The
performance estimation method is the 5-fold cross validation procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S4.6: Average,
minimum and maximum RMSE for ambient carbon monoxide in parts per billion (ppb) and for
each p predictor model regarding LCS SGX MiCS-4514 deployed with specific AELCM units. The
performance estimation method is the 5-fold cross validation procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on hourly averages. Table S4.7: Average,
minimum and maximum RMSE for ambient particulate matter PM2.5 in microgram per cubic meter
(µg/m3) and for each p predictor model regarding SPS30 deployed with specific AELCM units. The
performance estimation method is the 5-fold cross validation procedure using reference data of the
AEMS and model-calibrated (adjusted) LCS data based on 15-min averages. Table S4.8: Average,
minimum and maximum RMSE for ambient particulate matter PM1 in microgram per cubic meter
(µg/m3) and for each p predictor model regarding SPS30 deployed with specific AELCM units.
The performance estimation method is the 5-fold cross validation procedure using reference data
of the AEMS and model-calibrated (adjusted) LCS data based on 15-min averages. Table S5.1:
Spearman rank correlations between different LCS output (MQ131 output, temperature and relative
humidity) and reference measurements of ambient ozone for all AELCM units. As starting points for
AELCM003, AELCM004 and AELCM005 we use the measured data at 5 March 2021, 28 June 2021 and
11 June 2021 respectively. The ending date is the 24 October 2021. Figure S6.1: Model-adjusted hourly
concentration means of different deployed SPEC DGS-NO2 using multiple linear regression vs. hourly
concentration means of reference measurements given by the AEMS for ambient nitrogen dioxide
in ppb. For smoothing the hourly concentration means a rolling 24-h average is used: (Top) SPEC
DGS-NO2 deployed in AELCM003; (Middle) SPEC DGS-NO2 deployed in AELCM004; (Bottom)
SPEC DGS-NO2 deployed in AELCM005. Figure S6.2: Model-adjusted hourly concentration means
of a SPEC DGS-CO deployed in AELCM003 using multiple linear regression vs. hourly concentration
means of reference measurements given by the AEMS for ambient carbon monoxide in ppb. For
smoothing the hourly concentration means a rolling 24-h average is used. Figure S6.3: Model-adjusted
hourly concentration means of different deployed MQ131 using multiple linear regression vs. hourly
concentration means of reference measurements given by the AEMS for ambient ozone in ppb. For
smoothing the hourly concentration means a rolling 24-h average is used: (Top) MQ131 deployed in
AELCM003; (Middle) MQ131 deployed in AELCM004; (Bottom) MQ131 deployed in AELCM005.
Figure S6.4: Model-adjusted hourly concentration means of different deployed MiCS-2714 using
multiple linear regression vs. hourly concentration means of reference measurements given by the
AEMS for ambient nitrogen dioxide in ppb. For smoothing the hourly concentration means a rolling
24-h average is used: (Top) MiCS-2714 deployed in AELCM004; (Bottom) MiCS-2714 deployed in
AELCM005. Figure S6.5: Model-adjusted hourly concentration means of different deployed MiCS-
4514 using multiple linear regression vs. hourly concentration means of reference measurements
given by the AEMS for ambient carbon monoxide in ppb. For smoothing the hourly concentration
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means a rolling 24-h average is used: (Top) MiCS-4514 deployed in AELCM004; (Bottom) MiCS-4514
deployed in AELCM005. Figure S7.1: Raw hourly means of ambient ozone measured by SPEC
DGS-O3 units deployed in AELCM003, AELCM004 and AELCM005 compared with hourly means
of ambient ozone measurements given by the reference station AEMS. For smoothing the hourly
concentration means a rolling 24-h average is used.
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