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  Abstract 

The digital age requires companies to invest in value-creating rather than routine 
activities to drive innovation as a future source of competitiveness and business success. 
Thus, many companies are reluctant to invest in large-scale, costly backend integration 
projects and seek adaptable solutions to automate their front-office activities. Bridging 
artificial intelligence and business process management, robotic process automation 
(RPA) provides the promise of robots as a virtual workforce that performs these tasks in 
a self-determined manner. Many studies have highlighted potential benefits of RPA. 
However, little data is available on operationalizing and automating RPA to maximize 
its benefits. In this paper, we shed light on the automation potential of processes with RPA 
and operationalize it. Based on process mining techniques, we propose an automatable 
indicator system as well as present and evaluate decision support for companies that seek 
to better prioritize their RPA activities and to maximize their return on investment. 

Keywords: Robotic Process Automation, Quantifiable Method, Organization of Work, 
Decision Support, Process Mining 

Introduction 

The digital age is changing the nature of business sustainably (Matt et al. 2015). Technological advances 
have paved the way for innovations that are tailored to increasingly sophisticated customer demands 
(Agarwal et al. 2010; Prahalad and Ramaswamy 2004; Zysman et al. 2011). Many of these new business 
opportunities arise from data, which is collected, stored, and analyzed for insights and patterns that 
facilitate more unique customer experiences (Davenport et al. 2012). 
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As a key driver of future competitiveness, companies must establish the strategic capabilities to retrieve 
data from different sources of which they derive valuable information to strengthen, expand, or adjust their 
actions (Imgrund et al. 2018; Sebastian et al. 2017). This demands a new organization of work, which 
promotes agility and as well as collaboration and puts a stronger focus on cognitive, knowledge-intensive, 
and value-creating activities. However, in many organizations, significant resources are tied up in work 
routines and repetitive tasks (van der Aalst et al. 2018). Despite a widespread use of process-aware 
information systems (PAIS), companies still rely on employees to trigger or terminate processes, adapt 
them to cope with different cases, or use their outcomes for a variety of purposes (van der Aalst et al. 2018). 

Using the example of e-commerce, many retailers use multiple distribution channels (e.g., Amazon 
Marketplace and self-run web shops) to address different customer segments. These platforms compile and 
forward incoming orders to employees that are responsible for entering the data into internal management 
systems for further processing. Besides the significant continuous resource consumption, this procedure 
often involves media breaks, is prone to human error, and hampers business performance. Nevertheless, 
the project cost and duration of a comprehensive integration project is prohibitive. Another economically 
viable option must be found that allows improving (parts of) existing structures. One potential solution to 
address this is robotic process automation (RPA), an emerging concept in the field of business process 
automation technology. 

RPA essentially builds on software robots that replicate human tasks without requiring adaptations to the 
underlying information system (Geyer-Klingeberg et al. 2018; van der Aalst et al. 2018) invalidating the 
need for said integration efforts. Enabling companies to free up resources and to reallocate them to activities 
with a focus on creating business value and customer satisfaction, RPA can foster the emergence of new 
work forms and drive organizational competitiveness in the digital age. Although research and practice 
show a growing interest in RPA, its full potential remains poorly understood. In fact, most research focuses 
on case studies or market research (Aguirre and Rodriguez 2017; Geyer-Klingeberg et al. 2018; Lacity et al. 
2015a; Mendling et al. 2018; Schmitz et al. 2019; Dunie and Tornbohm 2017). This conforms to van der 
Aalst et al. (2018), who suggest that urgent questions pertaining to RPA have not been answered yet. 

One major challenge of RPA projects is to select the most suitable processes for automation (van der Aalst 
et al. 2018). Complex organizations operate on differentiated architectures with processes that differ 
concerning various characteristics such as their execution frequency and length, their number of involved 
departments and stakeholders, and their variability in inputs and outcomes. As these characteristics 
influence a process’s automation potential, RPA is not a one-size-fits-all solution but rather demands 
careful analyses and informed decision making (Geyer-Klingeberg et al. 2018). Hence, companies must 
obtain a detailed understanding of their processes to ensure a sufficient economic value and the overall 
success of their RPA initiatives. 

To date, research has proposed a few high-level concepts to measure the suitability of processes for RPA 
(Aguirre and Rodriguez 2017; Geyer-Klingeberg et al. 2018). Typically, these approaches neglect objectivity 
and generalizability. We seek to close this gap by developing and operationalizing a multi-dimensional 
indicator system, which sets the groundwork for a decision-support method to guide companies in planning 
and designing RPA initiatives in practice. Our approach focuses on maximizing the (short-term) economic 
success of RPA projects. If RPA projects are selected and managed appropriately over time based on our 
framework, the (short-term) value realization can translate into long-term strategic value of RPA, which is 
freeing up resources and shifting focus to value-creating activities. The transparency created also 
counteracts the agency problem between short-term benefit promises of consulting companies and long-
term strategic opportunity of their clients. We employ design science research (DSR) to answer the 
following research question (RQ): 

(RQ) How can we guide companies in selecting processes that are beneficial for their RPA projects? 

Answering this question comes with several contributions. First, we provide a first and software- as well as 
industry-independent conceptualization of indicators relevant for immediate success of RPA projects. 
Second, we present a method for process selection for RPA that provides decision support applicable in 
practice. Third, we validate the method by incorporating expert knowledge derived from an extensive 
interview study. Fourth, we open up several avenues for future research. 

The remainder of this paper is organized as follows: in Section 2, we introduce fundamental knowledge on 
RPA and its related topics. We describe our research methodology in Section 3. In Section 4, we convey the 
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current state-of-the-art in the field of RPA and integrate findings from several expert interviews. We 
introduce our decision framework in Section 5, before discussing and evaluating our approach in Section 6. 
Ultimately, in Section 7 we summarize findings, limitations, and future research opportunities. 

Fundamental Knowledge 

Business Process Management 

Business process management (BPM) comprises methods, techniques, and technologies to constantly adapt 
and improve business processes by identifying, prioritizing, and analyzing, and monitoring them in a 
recursive manner. Thus, it helps companies to cope with competitive market conditions and is becoming 
increasingly important to cope with digital transformation (Dumas et al. 2018; Imgrund et al. 2018). 
Typically based on life cycle models and maturity models, companies use BPM to achieve organizational 
flexibility, agility, and responsiveness (Dumas et al. 2018). Along with the widespread adoption of BPM, 
several studies report of initiatives that do not deliver expected returns or that result in project failure. 
According to vom Brocke et al. (2016), reasons for this lie in the narrow focus of most BPM approaches, 
which are designed to fit a specific business context with structured processes as well as clear goals and 
requirements. Processes managed in these initiatives typically represent only the tip of the iceberg, as a 
large number of unstructured and widely implicit processes remain beneath the surface. In line with that, 
Imgrund et al. (2017) state that most companies only improve a handful of their processes at a time and, 
thus, neglect large parts of their process architecture. They conceptualize this observation in the theory of 
the long tail of business processes. Based on their importance, dysfunctionality, and feasibility, the 
traditional Pareto distribution model implied that approximately 20 % of a company’s processes (short 
head) provide roughly 80 % of the available improvement potential. Due to their disadvantageous ratio of 
benefits to costs, lower-value processes are often not identified as suitable improvement candidates and 
neglected. A long-tailed distribution, however, suggests that the remainder of 80 % of the processes long 
tail constitutes more than 50 % of the available improvement potential rather than 20 %. As a consequence, 
companies must apply innovative approaches to access the, in sum, considerable improvement potential in 
the long tail of their process distribution (van der Aalst et al. 2018). One approach can be automation, which 
frees up resources in less valuable parts of an organization and reduces the need for continuous 
management and control.  

Robotic Process Automation 

RPA builds upon a set of tools that operate virtual robots on the user interface of PAIS in a human manner 
(van der Aalst et al. 2018). It is part of the broader discipline of business automation, which comprises 
related concepts such as business process automation (Scheer et al. 2004) or workflow automation 
(Georgakopoulos et al. 1995). While all approaches share similar goals and outcomes, RPA widens the scope 
of traditional automation solutions, as it is neither limited to a single software system nor require the use 
of APIs for data exchange and data processing. Instead, RPA works on the user layer, is compatible with a 
wide range of different software systems, and can thus automate processes that run through multiple 
systems and environments. RPA is suitable especially for ‘swivel chair work’, which entails that employees 
take inputs from one type of system, process it in a rule-based manner, and enter corresponding outputs 
into other types of systems (Willcocks et al. 2015a). More specifically, the robot can log into applications, 
copy and paste data, extract and process structured or semi-structured content from documents, scrape 
data from the Internet, or perform calculations. In contrast to traditional automation solutions, RPA does 
not require changes to applications but can be adapted to a wide range of application interfaces. Hence, it 
can be used to automate back office activities in different industries and application contexts without the 
need of application programming interfaces (API). From a technical perspective, RPA executes tasks based 
on simulating keyboard and mouse controls. Instead of accessing a system’s backend, RPA integrates with 
its frontend to mimic human tasks by reacting to events on a computer screen (Asatiani and Penttinen 
2016). This entails that RPA projects focus on frontend automation not backend automation. Software 
robots can either be programmed, configured using a graphical user interface, or setup based on macro-like 
recordings. More sophisticated approaches include self-learning systems or machine learning that access 
and analyze recorded employee activities to learn automatable tasks. 
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Several studies report that RPA offers benefits in the dimensions of quality, compliance, efficiency, and 
effectiveness (Aguirre and Rodriguez 2017; Lacity et al. 2015a; Schmitz et al. 2019). Other reports further 
project that the widespread use of RPA yields significant increases in productivity and a large-scale 
automation of back-office operations (Willcocks et al. 2015a) associated with a faster time to value. Further, 
economic research suggests that firms adopting (physical) robots as work force are more successful than 
non-adopters (Koch et al. 2019). While the research has not been transferred to virtual robots yet, the 
analogy is compelling. 

Finally, it is important to note that robots typically do not automate complete end-to-end processes but 
only sub-processes or certain tasks thereof. Consequently, we distinguish processes, referring to end-to-
end or sub-processes, and tasks, referring to individual activities within a process. An RPA project might 
yield the automation of one process, or one or multiple tasks respectively. While our unit of analysis is a 
process, the results of our analyses do not necessitate automating processes rather than only parts thereof. 

Process Mining 

Process mining focuses on collecting, analyzing, and interpreting execution data extracted from event logs 
of PAIS (van der Aalst et al. 2012). It assumes that events are recorded sequentially and refer to certain 

activities that together form cases (van der Aalst et al. 2004). Transaction logs provide various types of 
information including activity names, timestamps, and user identifications, which can be operationalized 
to shed light on a company’s work routines, performance, and social structure (van der Aalst et al. 2007). 
Process mining provides companies with the means to achieve various objectives such as obtaining a better 
understanding and control of their processes or finding the root causes of performance deficiencies (Li et 
al. 2008). van der Aalst et al. (2012) distinguish three forms of process mining: discovery, conformance 
checking, and enhancement. Discovery techniques are used to derive the control flow of a process. They 
seek to produce process models without any a-priori information and often determine the starting point of 
process mining initiatives. With conformance checking, companies can compare the to-be design with the 
as-is design of a process to detect yet unknown structural deviations. Ultimately, enhancement builds upon 
process execution data to extend existing process models with additional information. This includes the use 
of timestamps to highlight for example bottlenecks, service levels, throughput times, or execution 
frequencies. Geyer-Klingeberg et al. (2018) describe process mining and RPA as complementary concepts. 
More specifically, they argue that process mining supports companies in capturing an end-to-end view on 
their processes, identifying high-value automation candidates, quantifying the economic value of 
corresponding initiatives, and eliminating costly and often subjective manual process evaluations. 

Research Method 

We employ DSR to develop our contribution (Hevner et al. 2004). DSR consists of multiple iterative steps, 
including problem identification, the definition of objectives, design and development, demonstration, 
evaluation, and communication (Peffers et al. 2007). 

It is the goal of this research to design a quantifiable method of decision making for process selection in 
RPA initiatives. This conforms to van der Aalst et al. (2018)’s call for research, who emphasize the 
importance of understanding which characteristics make a process suitable for RPA. Based on our RQ, we 
derive more detailed objectives by conducting a literature analysis for requirements engineering. While the 
systematic literature review follows the recommendations proposed by Webster and Watson (2002), we 
base the process of empirical theory building on the principles of case study research (Yin 1989). This entails 
examining the current state-of-the-art and combining its implications with insights from practice to identify 
the most significant challenges and requirements of successful RPA projects. 

For design and development, we use these insights to construct our method. Thereby, we analyze common 
event log configuration and define a set of indicators that can be used to assess the automation potential of 
process tasks. In addition, we specify procedures to analyze the benefits and costs of process task 
automation and to maximize the returns of RPA at project level. During the demonstration, we formalize 
our indicator system, specify the decision situation, and describe each step of our method. To do justice to 
the iterative character of DSR, we develop a first version of our method based on case studies before 
assessing the preliminary result model based on expert interviews. This enables us to include a practical 
real-world perspective that is less prone to factual theorization. We repeated the design and development 
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phase until the benefit of including further insights by the means of literature or interviews became 
neglectable. In total, this resulted in three iterations of the design and development phase (cf. Section ‘Best 
Practices’). Ultimately, we evaluate the usefulness and quality of our method by applying it to several 
process logs collected from companies and institutions of different industries. 

Preparatory Work for Quantifying RPA Process Selection 

Requirements Analysis 

We build a catalog of general requirements for RPA from literature. As exposed by van der Aalst et al. 
(2018), we seek to provide decision support for the prioritization and selection of processes or process tasks 
that are most suitable to be automated in RPA projects, thereby answering a research question that has not 
adequately been addressed yet. In a first step, we rely on findings from academic literature to conceptualize 
three essential challenges of RPA. Summarized in Table 1, we link them to their causes and implications, 
before we give actionable recommendations on how to address them. 

Table 1: Problem Definitions and Implications from Current RPA Projects 

Challenge Cause Implication Approach Source 

Ad hoc and 
demand-driven 
implementation of 
RPA 

Complexity of RPA 
projects and lack of 
methods to 
systematically 
identify suitable 
processes 

RPA requires a 
structured 
approach to process 
selection to avoid 
rework and project 
failure 

A comprehensive 
indicator system to 
support companies 
in selecting 
processes for RPA 

(Lindström et 
al. 2018; 
Marrella 
2018) 

RPA fails to 
deliver expected 
cost savings 

Inaccurate 
predictions on the 
economic value of 
RPA at process 
level 

RPA demands a 
system to 
accurately pin down 
the economic value 
of automating a 
process 

A decision-support 
system for process 
selection as a means 
for detailed cost-
benefits-analysis 

(Willcocks et 
al. 2015a) 

Processes vary in 
their automation 
potential over 
time 

Changing 
requirements may 
alter the feasibility 
of processes to be 
automated with 
RPA 

RPA requires 
methods that detect 
and account for 
changes in 
environmental 
requirements 

Recurring and 
periodic evaluations 
of the automation 
potential of 
processes 

(Lacity and 
Willcocks 
2016; 
Schmitz et al. 
2019) 

The summary of implications suggests that RPA projects demand a comprehensive indicator system for 
process task selection, a way to evaluate the profitability and advantageousness of process task automation, 
and an agile approach that accounts for dynamics in process task requirements. 

Best Practices 

To approach the challenges related to process task selection in RPA projects, we built our research on case 
studies (Iteration I) and streamlined its results by interviewing practitioners that we regard as experts in 
the researched domain based on their profession and experience (Iteration II). We further evaluated the 
developed indicator system with these experts to incorporate additional and yet neglected implications 
(Iteration III). 

Case Studies 

We examined six case studies with a focus on challenges during RPA projects (Aguirre and Rodriguez 2017; 
Asatiani and Penttinen 2016; Lacity et al. 2015a; Lacity et al. 2015b; Schmitz et al. 2019; Willcocks et al. 
2015b). Three case companies are highly automated businesses that provide outsourcing services in the 
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area of insurance (Xchanging), finance (OpusCapita), and CRM-systems (anonymous). Furthermore, we 
include insights of Deutsche Telekom and Telefonica O2 from the sector of telecommunication, as well as 
one of Europe’s biggest utilizing company (anonymous - bAN). Despite several preparatory steps to initiate 
RPA projects, such as defining objectives, deciding for a software provider, or establishing a Center of 
Excellence (Lacity et al. 2015a; Schmitz et al. 2019), all companies started with collecting processes before 
entering into the phase of process task selection for RPA automation itself. 

First, we encountered a lack of indicators ensuring measurability and comparability. We found that none 
of the case companies used standardized tools to select the most appropriate process tasks for RPA. Instead, 
they attempted to quantify the automation potential of their process tasks with a wide set of highly 
individualized measures. In particular, the cases of bAN and Xchanging show that a lack of adequate 
measures can yield low decision quality, eventually jeopardizing the success of the entire venture (Lacity et 
al. 2015b; Willcocks et al. 2015b). Better results were achieved by companies that used measurable 
indicators such as complexity and execution frequency (Asatiani and Penttinen 2016; Lacity et al. 2015a; 
Schmitz et al. 2019). All companies provide a set of lessons learned from their first experiences with RPA. 
By consolidating these insights, we identified four measures for quantifying the automation potential of 
process tasks in RPA projects: (1) execution frequency, as volume of transactions; (2) degree of stability, as 
little or almost no exceptions occur while completing a task, (3) degree of rule-based procedure, as process 
tasks and decisions can be easily disassembled into steps without misinterpretation; and (4) degree of 
standardization, as mature process tasks with extensive knowledge about known deviations and outcomes. 

Second, RPA typically fails to deliver the expected cost savings if the company fails to conduct a detailed 
cost-benefits analysis. All companies shared the objective of reducing full-time equivalents (FTE) with RPA 
to save costs or to free up resources for more complex and creative tasks. However, prior to the project, 
most companies assessed potential savings from RPA in a widely subjective manner based on opinions 
formed by individual experiences. Only after project completion, they assessed the true savings by 
measuring the reduction in throughput time in automated process tasks (e.g. Lacity et al. 2015a). Two of 
the six case companies conducted a more precise assessment procedure. At Deutsche Telekom, the RPA 
team estimated potential savings and costs of each process candidate and conducted two-week workshops 
with stakeholders from IT, business, and consultancy to strengthen their understanding of each task’s 
characteristics (Schmitz et al. 2019). Similarly, bAN initially identified processes or tasks whose automation 
offered potential cost reductions of up to 200 % compared to the cost induced by their manual performance 
within a 12 months period. bAN included both fixed and variable cost necessary to instantiate an RPA 
project (e.g., costs for software licenses, hardware, IT service costs, and RPA staff). The company measured 
the benefits from RPA based on several metrics such as FTE avoidance, FTE redeployment or FTE savings. 
Furthermore, it incorporated manual costs by considering the throughput time of process tasks or the costs 
for salaries and organizational overhead (Lacity et al. 2015b). 

For the third problem, we found that the automation potential of processes varies over time. Due to 
changes., especially Lacity et al. (2015b) and Willcocks et al. (2015b) highlight that companies must 
continually improve their RPA initiatives projects efforts by performing the corresponding steps iteratively. 
In conclusion, this suggests that the success of RPA projects depends significantly on the availability of a 
standardized method to quantify and compare the automation potential of process tasks. This does not only 
support companies in decision making during process selection, but also helps them in identifying the 
processes that yield the highest returns on investment. 

Expert Survey 

Based on the case study analysis carried out, we have conducted a two-part expert survey on success factors 
for RPA projects in practice, in two phases (15; 8). Thereby, we found tactics and tools to address the 
challenges faced by companies during process selection (cf. Section ‘Requirement Analysis’) and to further 
improved our research artifact. As such, we encompassed used open-ended questions in a semi-structured 
interview guide questionnaire (Myers and Newman 2007) and conducted the interviews via face-to-face, 
via phone, or via web-conference. Therefore, we have been able to discuss different viewpoints of relevant 
subtopics. The survey comprises fifteen participants, all with several years of experience in the digitalization 
of business processes, who have been involved in at least three RPA projects. To avoid biases, we have 
mainly focused on RPA service providers as they deal with a wide range of customers. The participants 
themselves were from the big major RPA software vendors AutomationAnywhere, UiPath, and Blue Prism, 
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Celonis as a leader in process mining, Ernst & Young, Brightcape, and Capgemini as consulting firms, and 
four companies from different industrial sectors that have already implemented RPA solutions in their day-
to-day business operations. Foremost, there was high interest in the topic of quantifying process selection 
as this posed a key problem related to a high rate of unsuccessful RPA projects. None of the experts had an 
objective solution to quantify and compare processes and tasks but sought to have one. 

RPA software vendors with their own tools provide the most advanced indicator systems. These are based 
on a step-by-step subjective interviewing procedure of the client to identify the complexity of each process 
and to use a simple classification algorithm based on existing experiences to determine whether or not it is 
suitable to be automated using RPA. Other approaches employ similar methods as the ones reported in the 
case studies. They try to define the complexity of a process by substitution of measurable indicators. The 
result is than compared with the number of process executions as the degree of repetition, and thus of 
potential savings. Nevertheless, all approaches have in common that they are mainly based on experience 
and subjective estimation rather than on a quantifiable approach. The most common quantifiable measures 
mentioned were execution frequency (15), duration of process tasks (10), degree of standardization (9), 
degree of stability (8), failure rate (7), automation ratio (7), number of intersections (5), structure of data 
(5), and application stability (4). This confirms and extends the indicators found when analyzing the case 
studies. An exception was the degree of rule-based procedures. 

Currently, the problem of the missing cost-benefit analysis is addressed for the most part by estimation of 
the FTE that will be saved if the process (or task) is automated. To calculate the FTE equivalent, the 
frequency of each process task is multiplied with its execution time. If there is no log data available, the 
value is estimated, based on statements of internal employees directly involved in daily operations. Often, 
the comparison is simplified using a fix cost rate for the RPA robot’s implementation. To ‘keep things 
simple’, the savings are measured by the time reduction. It is determined ex post (cf. Section ‘Case Studies’). 
Afterwards, the processes are prioritized for the automation by RPA robots. The costs of each process task’s 
automation are compared to the companies’ defined RPA project aims such as an improvement of process 
quality, cost savings, or a higher customer satisfaction. Half of the experts considered idea of the return of 
investment as the core of the successive processing. The other half of the experts were in favor of a budget 
limit, as it is common in any project. Further, all experts agreed on the need for an economic efficiency and, 
thus, a way to pre-indicate the potential savings in a reliable manner as there will be a time when the ‘RPA 
hype’ is over but the need is still there. 

Most expert confirmed a variation of the automation potential of processes over time due to internal and 
external changes and indicated that it should be considered for the final solution. In sum, the 
recommendations suggest a standardized step-by-step method to quantify the potential of process tasks 
and their cost-benefit-ratio in relation to budget restrictions. This is in line with the conclusions from the 
case studies in the previous section. 

Method Development for Quantifying RPA Process Selection 

Method Construction 

Based on the above, we have found that RPA projects demand a comprehensive indicator system for process 
selection, a way to evaluate the profitability and advantageousness of process automation, and a 
standardized method that accounts for dynamics in process requirements. As illustrated in Figure 1, our 
method to address this consists of three steps, taking the input from the phase of Process Pre-Selection and 
transferring its result to the phase of Final Process Decision. 

Depending on the scope of an RPA project, our method requires a phase of Process Pre-Selection to identify 
processes of interest first. This ensures that special challenges, for example legal compliance, or defined 
aims such as improving customer satisfaction, are addressed before comparing them in a quantifiable 
manner. The experts mentioned further measures, which we did not include due to complexity and 
restrictions of log data availability (e.g. number of intersections, application stability, or data structure). 

In the first step of our method, the automation potential of every process task is calculated on the basis of 
its properties based on measurable indicators. In the second step, the method enables companies to analyze 
the profitability of process task automation. Therefore, companies can compare the benefits of RPA, such 
as cost reduction or quality increase, with fixed and variable costs imposed by configuring, implementing, 
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and maintaining corresponding robots. Having identified the process tasks that are both automatable and 
profitable, companies must account for their project budget (e.g. 1,000,000 €) or amortization restrictions 
(e.g., 12 months) to determine the scope of an RPA project and to maximize its economic return in the third 
step. The result is a list of recommended process tasks taking into account the above limitations. 

This improves the decision-making in the subsequent phase of Final RPA Decision and consequently, 
increases the likelihood of the RPA project’s success. 

Determining the Automation Potential of Processes 

To acquire a detailed understanding of their process organization, companies must define and 
operationalize indicators that facilitate the separation of promising processes and process tasks from those 
with a disadvantageous ratio of benefits to costs. Despite the growing importance of RPA in research and 
practice (van der Aalst et al. 2018), only little is known about process characteristics that can be used for 
process task selection. In fact, most studies treat process and process task selection as a case-by-case 
challenge that requires situational analysis and adaptation (Asatiani and Penttinen 2016; Lacity et al. 
2015a; Schmitz et al. 2019). Many established approaches define high-level indicators but build upon the 
collection of qualitative data. Because corresponding implications are prone to measurement and 
assessment biases, they lack comparability and reproducibility and hardly can be adopted by companies 
encountering similar challenges in a different context. 

To overcome these limitations, we suggest to analyzing process execution data collected from PAIS. In event 
logs, PAIS store a wide range of process features, including execution and waiting times, handovers of 
work, or executing systems, or users. Further data such as execution frequencies and variances can be 
derived. We analyze the current body of literature and combine implications from research and practice to 
build a system of indicators and to analyze which of the features in event log data can be used for process 
task selection in RPA. To ensure generalizability, we abstract from case-specific observations and translate 
them into high-level requirements that can be adapted to different application scenarios. Table 2 presents 
six process characteristics relevant to process selection in RPA projects. 

We use the features of process execution data to define indicators that enable companies to assess the 
characteristics specified in Table 2 in a reliable and reproducible manner. Therefore, we introduce a formal 
notation, whereby an event log 𝐸 consists of a finite set of processes 𝑃𝑖. Processes are further composed of 
cases 𝐶𝑖𝑗 , which represent process executions. Ultimately, cases describe a stream of activities 𝐴𝑖𝑗𝑘  that 

stand for the tasks of a process. Each activity is associated with an activity type �̅�𝑚. We use indices to refer 
to processes (i), cases (j), or tasks (k). 

Most cases and all experts emphasize the importance of a task’s execution frequency for process selection 
in RPA (Asatiani and Penttinen 2016; Lacity et al. 2015a). Frequently performed tasks offer economies of 
scale and, thus, allow companies to realize significant cost reductions and to leverage the returns of 
automation. Equation 1 operationalizes the feature of execution frequency as an indicator for the 
automation potential of processes. We measure 𝐸𝐹𝑖𝑚 as the count of each activity 𝑚 belonging to the same 
process 𝑖. 

 

Figure 1: Methodology for Process Selection in RPA Projects 
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Table 2: Indicators for the Automation Potential of Processes 

Process 
characteristics 

Low-level properties Example references 

Execution Frequency 
(EF) 

Repetitive process tasks with a high volume of 
transactions, sub-tasks, and frequent interactions 
between different systems or interfaces 

(Asatiani and Penttinen 
2016; Fung 2014) 

Execution Time (ET) Average execution time of a process task Cf. Section ‘Best 
Practices’ 

Standardization (SD) Streamlined process tasks with a-priori 
knowledge of possible events and outcomes of 
process task executions 

(Asatiani and Penttinen 
2016; Willcocks et al. 
2017) 

Stability (ST) Process tasks with a low probability of exception 
and a high predictability of outcomes 

(Anagnoste 2018; 
Lindström et al. 2018) 

Failure Rate (FR) Throwbacks ratio of process tasks, i.e. unusual 
and repetitive (partial) tasks until completion 

Cf. Section ‘Best 
Practices’ 

Automation Rate (AR) Process tasks with a small number of steps that 
are already automated and offer less significant 
economic benefits 

(Geyer-Klingeberg et al. 
2018; Cf. Section ‘Best 
Practices’) 

 𝐸𝐹𝑖𝑚 = ∑ |{𝐴𝑖𝑗𝑘
|𝑃𝑖|
𝑗=1 ∈ 𝐶𝑖𝑗| Aijk ≈ �̅�𝑚}|  (1) 

Similarly, not only activities that are executed frequently provide a high saving potential, but also activities 
that are time consuming. Hence, we consider the average duration of an activity during a process execution, 
formalized in equation 2. 

𝐸𝑇𝑖𝑚 =
∑ ∑ 𝑇(𝐴𝑖𝑗𝑘,�̅�m)

|𝐶𝑖𝑗|

𝑘=1

|𝑃𝑖|

𝑗=1

𝐸𝐹𝑖𝑚
     (2) 

with 𝑇(𝐴𝑖𝑗𝑘 , �̅�𝑚) = {
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐴𝑖𝑗𝑘 𝑖𝑓 𝐴𝑖𝑗𝑘 ≈ �̅�𝑚

0 𝑒𝑙𝑠𝑒
 

Our results further suggest that the automation potential of an activity depends on their degree of 
standardization (Lacity et al. 2015a). In general, standardization describes the act of establishing a best 
practice of how to execute a process and yields several benefits, including higher productivity and output, 
less complex process improvement, and easier onboarding (Asatiani and Penttinen 2016; Fung 2014; 
Willcocks et al. 2015a). Standardization builds upon on a profound understanding of an activity’s 
environment and its goals and requirements. It facilitates the reduction of process variants and structural 
deficiencies (Geyer-Klingeberg et al. 2018; Moffitt et al. 2018). Hence, it enables companies to reduce the 
cost of RPA, as robots must cover fewer variants to support a business case completely. As is more natural 
to measure a lack of standardization in the form of different outcomes, we measure an inverse 
standardization. Equation 3 presents a formalism to measure the inverse of an activity’s degree of 

standardization. 𝑆𝐷𝑖𝑚
−1  analyzes each activity in a given process instance and returns the number of 

different prior and following activities. This gives an indication about the number of different contexts an 
activity is executed in. 

      𝑆𝐷𝑖𝑚
−1 = |⋃ ⋃ { (�̅�𝑚

−1, �̅�𝑚
+1)| 𝐴𝑖𝑗𝑘−1, 𝐴𝑖𝑗𝑘 , 𝐴𝑖𝑗𝑘+1 ∈ 𝐶𝑖𝑗  , 𝐴𝑖𝑗𝑘−1 ≈ �̅�𝑚

−1, 𝐴𝑖𝑗𝑘 ≈ �̅�𝑚, 𝐴𝑖𝑗𝑘+1 ≈ �̅�𝑚
+1} |

|𝐶𝑖𝑗|

𝑘=1

|𝑃𝑖|
𝑗=1  (3) 

We further found that the stability of an activity is an important determinant for process selection in RPA. 
Here, stability refers to a condition in which all causes of variations in an activity’s performance is known, 
so that its outcomes are robust and predictable within certain boundaries. An activity’s stability correlates 
with its automation potential as it prevents companies from encountering unforeseen events that hamper 
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and delay the success of an RPA project. As with standardization, we measure the inverse stability of an 
activity based on the variance of its execution times. We present the underlying formalism in Equation 4. 

Thus, we initially compute the average duration of a process. 𝑆𝑇𝑖𝑚
−1 then returns the sum of the squared 

differences of the execution times of an activity in a process instance and the average duration of that 
activity and normalizes the results based on the number of activity executions. We noticed a strong 
correlation between execution time and execution time variance. Therefore, we normalized the execution 
time variance by the execution time to obtain a variance factor. 

 𝑆𝑇𝑖𝑚
−1 =

∑ ∑ (𝑇(𝐴𝑖𝑗𝑘,�̅�𝑚)−𝐸𝑇𝑖𝑚)
2|𝐶𝑖𝑗|

𝑘=1

|𝑃𝑖|

𝑗=1

𝐸𝐹𝑖𝑚∗ 𝐸𝑇𝑖𝑚
 (4) 

A common assumption that the experts made was that automated process steps are less prone to errors 
than activities done by humans. Therefore, they suggested that activities with a high failure rate are more 
suitable for RPA since the reduced errors can lead to overall savings. Activities that were not performed 
correctly must be repeated to correct this error. Therefore, we estimate the error rate by counting redundant 
activities during the process execution per case. This is equivalent to the execution frequency of the activity 
per case in which the activity is executed. Activities repeated often should be considered for RPA. We 
formalize this in equation 5. 

𝐹𝑅𝑖𝑚 =
𝐸𝐹𝑖𝑚

|{𝐶𝑖𝑗∈𝑃𝑖 | 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝐴𝑖𝑗𝑘∈𝐶𝑖𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴𝑖𝑗𝑘≈�̅�𝑚}|
 (5) 

Ultimately, we found that processes suitable for RPA are characterized by a low automation rate. For 
example, Geyer-Klingeberg et al. (2018) state that the automation of widely manual processes is promising 
especially in the early phases of RPA projects, as they offer opportunities to simultaneously realize quick 
wins and a high impact in various dimensions, including costs, effectiveness, and productivity. Naturally 
we do not consider activities that are already fully automated as stated in equation 6. 

 𝐴𝑅𝑖𝑚 = {
1 
0 

𝑖𝑓 �̅�𝑚 𝑖𝑠 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑒𝑙𝑠𝑒

 (6) 

Analyzing the Profitability of Process Automation 

Having specified a set of indicators to assess the automation potential of processes, we present an integrated 
profitability analysis 𝑃𝐴𝑖  in the subsequent section. In general, we reduce decision making to the two 
components of benefits and costs. Thereby, benefits represent cost reductions as the result of replacing 
human labor by robots. In contrast, costs result from the investment necessary to set up, configure, and 
maintain RPA robots. 

To create a basis for decision support to analyze the profitability of each process activity for its economical 
suitability for automation, it is necessary to calculate the underlying costing rates, which are passed on as 
input variables for the method developed. Both direct and indirect costs must be considered. As individual 
processes activities are examined for their overall cost to compare on, it is of decisive importance to carry 
out a cause-related cost analysis. This follows results from the individual cost rates, such as those between 
companies and external providers, between countries, and tariffs, as well as or between industries and 
internal wages workplaces. 

Therefore, we recommend companies to use the well-established method of activity-based costing to 
calculate these individualities (Hansen et al. 2007). To determine the total cost function to analyze the 
profitability of RPA process automation, the four cost rates summarized in Table 3 must be presumed. 

For human labor, we assume that executing a process yields both fixed and variable costs. Fixed costs are 
execution-independent costs. They are often called ‘overhead cost’ and categorized with indirect costs, such 
as rent or equipment (Hansen et al. 2007). We represented this by the constant 𝐹𝐿𝐶𝑖 (equation 7) as the 
sum of the overhead cost represented by the variable fix labor cost rate 𝐹𝐿𝐶𝑅. 

 𝐹𝐿𝐶𝑖𝑚 = 𝐹𝐿𝐶𝑅 (7) 

By contrast, variable costs of human labor are direct costs of a process. They correlate with its execution 
frequency and the execution time. We summarize the variable cost of human labor with the function 
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𝑉𝐿𝐶𝑖𝑚(𝐸𝐹𝑖𝑚
+ , 𝐸𝑇𝑖𝑚

+ , 𝐴𝑅𝑖𝑚
− ), whereby the total cost is determined by the product of the execution frequency 

𝐸𝐹𝑖𝑚 and the average duration 𝑉𝐿𝐶𝑅. We only consider already non-automated activities in the economical 
selection of the best cost saving (equation 8). 

 𝑉𝐿𝐶𝑖𝑚 = 𝑉𝐿𝐶𝑅 ∗ 𝐸𝐹𝑖𝑚 ∗ 𝐸𝑇𝑖𝑚 ∗ (1 − 𝐴𝑅𝑖𝑚) (8) 

In addition to the costs of human labor, we further account for those imposed by implementing a fully 
automated RPA solution. Analogously, we assume that costs for RPA have a fixed and a variable cost 
component. Fixed cost includes expenses for configuring and maintaining robots and depend on a process’s 
stability and degree of standardization. Less standardized processes are characterized by a larger number 
of process variants, which must be implemented using RPA software. This also applies to unstable processes 
that impose the risk of frequent adaptations subsequent to the deployment of RPA. We capture fixed costs 
of RPA with the function 𝐹𝑅𝐶𝑖𝑚 (𝑆𝐷𝑖𝑚

− , 𝑆𝑇𝑖𝑚
− , 𝐴𝑅𝑖𝑚

− ), which captures the inverse relationship between 
variable costs and a process’s current automation rate, as well as the correlation between costs, process 
variance, and process stability (equation 9). 𝐹𝑅𝐶𝑅 can be considered the equivalent of writing a certain 
amount of lines of code. 

 𝐹𝑅𝐶𝑖𝑚 = 𝐹𝑅𝐶𝑅 ∗ 𝑆𝐷𝑖𝑚
−1 ∗ 𝑆𝑇𝑖𝑚

−1 ∗ (1 − 𝐴𝑅𝑖𝑚) (9) 

We further assume that RPA comes with variable costs that result from executing a process with RPA 
software. Cost rates typically depend on agreements between the implementing company and RPA vendors 
and can vary significantly (Grand View Research 2018). We account for variable costs of RPA with the 

function 𝑉𝑅𝐶𝑖𝑚(𝐸𝐹𝑖𝑚
+, 𝐹𝑅𝑖𝑚

− ), whereby a larger number of process executions yields increases in the 
variable costs of RPA (equation 10). 

 𝑉𝑅𝐶𝑖𝑚 = 𝑉𝑅𝐶𝑅 ∗
𝐸𝐹𝑖𝑚

𝐹𝑅𝑖𝑚
 (10) 

Finally, the individual cost variables must be brought into the overall cost analysis context. By 
operationalizing the equation system, we can define the following linear cost functions for human labor 𝐻𝐿 
and robotic labor 𝑅𝐿 to enable economic comparison (equation 11 and 12): 

 𝐶𝐴𝐻𝐿 = 𝐹𝐿𝐶𝑖𝑚 + 𝑉𝐿𝐶𝑖𝑚 (11) 

 𝐶𝐴𝑅𝐿 = 𝐹𝑅𝐶𝑖𝑚 + 𝑉𝑅𝐶𝑖𝑚 (12) 

Table 3: Indicators for the Profitability of Activities 

Profitability 
indicator 

Low-level properties 
Example 
references 

Fixed Cost of 
Human Labor (FLC) 

Fixed cost rate for each process with execution-
independent costs such as rent or equipment 

(Callahan et al. 2011; 
Hansen et al. 2007) 

Variable Cost of 
Human Labor (VLC) 

Variable cost rate for each process execution with a 
certain degree of human interaction based on the 
relative amount of salary payments 

(Callahan et al. 2011; 
Hansen et al. 2007) 

Fixed Cost of RPA 
(FRC) 

Fixed cost rate to configure and maintain robots, 
depending on process’s stability and degree of 
standardization as well as the cost of writing code 

(Grand View Research 
2018), Practitioner 
talks 

Variable Cost of RPA 
(VRC) 

Variable cost rate for each process step execution 
based on cost agreement(s) with RPA service 
vendor(s) 

(Grand View Research 
2018), Practitioner 
talks 

To clarify the understanding of the economic comparison, Figure 2 illustrates the two cost functions of HL 
and RL in relation to the number of process executions and process variants. 
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Controlling for a process’s automation rate, the left part of Figure 2 illustrates the impact of a process degree 
of standardization on the costs of RPA. More variants increase the costs for implementing and configuring 
a robot and thus diminish the returns of an RPA project. This also applies to the stability of a process, which 
serves as an indicator of the probability of exceptions and predictable outcomes. The negative impact of the 
number of process variants and instability diminishes with higher automation rates. The right part of 
Figure 2 captures the profitability of automating a process as a function of costs for human labor and RPA. 
The cost function of human labor is characterized by lower fixed costs but increases strongly with each 
process execution. By contrast, the costs function of RPA starts out at a higher value that accounts for the 
fixed costs imposed by implementing an RPA robot but has a less significant increase in cost with more 
process executions. Because of 𝑉𝐿𝐶𝑖𝑚 > 𝑉𝑅𝐶𝑖𝑚, process automation becomes economical at the functions’ 
point of intersection, shaping a line of automatability where the variable costs of both alternatives break 
even. The size of the dotted area indicates the overall economic value of automating a process, as a function 
𝑃𝐴𝑖𝑚 of the predefined indicators. 

Maximizing the Economic Value of RPA Projects 

From an economic perspective, we assume that companies act rational and seek to maximize the economic 
return of an RPA project (equation 13), by deciding whether an activity �̅�𝑖𝑚 should be automated (𝑥𝑖𝑚 = 1 
or 𝑥𝑖𝑚 = 0). Thereby, companies typically face three constraints: a budget constraint (equation 14), an 

amortization constraint (equation 15) and a completeness constraint (equation 16). Hereby 𝑃𝐴⃑⃑⃑⃑  ⃑ and 𝐹𝑅𝐶⃑⃑⃑⃑ ⃑⃑ ⃑⃑   
denote row vectors with entries 𝑃𝐴𝑖𝑚 and 𝐹𝑅𝐶𝑖𝑚respectively, whereas 𝑥  is a column vector with entries 𝑥𝑖𝑚. 

max  𝑃𝐴⃑⃑⃑⃑  ⃑ ∗ 𝑥  (13) 

s. t. 𝐹𝑅𝐶⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ∗ 𝑥 ≤ 𝐵  (14) 

 
−𝐹𝐿𝐶𝑖𝑚+ 𝐹𝑅𝐶𝑖𝑚

𝑉𝐿𝐶𝑖𝑚−𝑉𝑅𝐶𝑖𝑚
∗ 𝑥𝑖𝑚 ≤ 𝑡 for all activities (𝑖,𝑚) (15) 

 𝑥 ∈ {0,1}𝑛 (16)  

Equation 14 implies that RPA is naturally limited by a project budget 𝐵 , which captures the available 
financial resources that can be used for the implementation, configuration, and maintenance of robots. 
Equation 15 implies that the RPA project should amortize at latest after the time 𝑡. In practice, the project 
should typically pay off after 6 to 36 months. We frame the resulting optimization problem for maximizing 
the economic value of RPA as a zero-one knapsack problem (Toth 1980). This entails weighing all relevant 
activities with their potential returns and costs of automation and building a subset of processes that 
maximizes the returns of RPA while remaining within the boundaries of the given restrictions. Although 

 

Figure 2: Profitability Analysis 
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other solutions exist, we recommend employing dynamic programming to solve the optimization problem 
in pseudo-polynomial time. The resulting 𝑥𝑜𝑝𝑡  is a vector that indicates, which processes should be 

considered for automation. 

Application and Evaluation 

This section demonstrates and evaluates our method for process selection in RPA projects. In an ideal 
scenario, the underlying information system is a PAIS and creates a data log for all activities. The experts 
stated, that process logs are a crucial foundation to identify suitable candidates for RPA projects, as it gives 
a ‘much better background and reliability for people to discuss on’. 

In the first step we conducted a technical evaluation to show that the identified key figures can be extracted 
from a variety of process logs. Therefore, we use process execution data from a Dutch financial services 
institute, building permit application logs from different Dutch municipalities and a Dutch hospital, which 
are provided by the 4TU Centre for Research Data1. We demonstrate our approach using the logs from the 
financial institute. More specifically, the dataset contains approximately 45,000 cases and 450,000 events 
stemming from the company’s IT service management processes. In addition to activity names, timestamps, 
and users, the event log provides various features, including the urgency of a service request, its alert status, 
or a case’s open and closing time. Several authors further note that the composition of event logs can vary 
from case to case and depends strongly on the goals of analysis and the capabilities of the underlying 
information system (van der Aalst 2016). For our quantifiable method we only require the common features 
of activity name and timestamp, which mandatory attributes in all process logs we encountered. 

To operationalize the event log for our evaluation example, we must break down the event log into process 
tasks (process discovery). This entails deriving the control flow of a process task based on its time-related 
and structural features without any a-priori knowledge about its composition. Research has proposed 

several methods for process discovery, including the -algorithm, the fuzzy miner, or the heuristic miner 
(van Dongen et al. 2009). Each method has strength and weaknesses, whereby its suitability depends 
strongly on the underlying research problem (Song et al. 2009). In this study, we draw upon the trace 
clustering approach as proposed by (Song et al. 2009). Trace clustering builds upon concepts of text mining 
and interprets cases as strings. It uses similarity metrics and hierarchical agglomerative clustering to group 
event logs into homogenous clusters. Each cluster represents a process, whereby the cases within that 
cluster are defined as executions of that process. Furthermore, we use bi-grams and tri-grams to 
incorporate contextual information of activities and use the Calinski-Harabaz index to determine a suitable 
cluster solution (Caliński and Harabasz 1974). Based on this configuration, trace clustering yields a total of 
29 IT service processes with overall 723 process steps. 

First, we determine the automation potential of process activities, which entails computing the indicators 
introduced in Section 5.2 (cf. ‘Determining the Automation Potential of Processes’). Assessing the indicators 
of execution frequency, standardization, and stability is straightforward. While many BPM systems 
indicate whether a process task was performed manually or automated, this event log did not explicitly flag 
automated tasks. Hence, we assume, that activities that have identical start- and end-times are automated, 
and the rest is performed manually. This leaves us with 530 unautomated activities, that could be 
considered for automation. 

Summarizing the results in Figure 3, we suggest that the automation potential of the company’s processes 
varies significantly. While a considerable amount of activities is characterized by a high execution 
frequency, most other processes are performed rarely shaping a long-tailed distribution. The scores in 
Figure 3 are independently sorted to provide an overview. Processes with high indicator values in one 
category do not imply high value in other categories. 

Having assessed the tasks automation potential, we analyze the profitability of task automation. As 
described in Section 5.3 (cf. ‘Analyzing the Profitability of Process Automation’), the profitability analysis 
entails comparing fixed and variable costs of human labor with the costs imposed by implementing and 
maintaining robots as well as determining the execution frequency for which automation becomes 
beneficial. For reasons of clarity, we assume a cost rate for human labor of 25 € (𝑉𝐿𝐶𝑅) per hour and fixed 

                                                             

1 For more information, see https://data.4tu.nl/. 
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costs of 1,000 € (𝐹𝐿𝐶𝑅). Thereby, we consider analyzing the profitability of RPA as a case-by-case challenge 
and recommend companies to perform a thorough analysis of their labor costs to update these placeholder 
values with their cost rates. Process mining be used to conduct a more differentiated cost analysis, for 
example to examine data on the handover of work to identify involved employees as well as the time spent 
on executing activities in a process. We further assume the variable costs of RPA (𝑉𝑅𝐶𝑅) at 0.01 € per 
execution and a cost rate for line of code of 20 € (𝐹𝑅𝐶𝑅) for the implementation, configuration, and 
maintenance of robots. Again, we do so for reasons of simplification but note that companies must conduct 
a detailed analysis of the RPA market and request information from RPA vendors to acquire more accurate 
values. If robots are implemented with fixed capacity, an additional robot must be purchased when the 
capacity is exceeded. This would result in a step cost function making the optimization problem more 
complex. Therefore, our model considers robots to be elastic with near infinite capacity based on cloud 
computing. Fixed costs of RPA further vary with the stability, automation rate, and degree of 
standardization of a process. Based on the assumed cost parameters, we perform our profitability analysis 
and present the results in Table 4. The last column specifies whether it is profitable to automate tasks. 

Because the processes are characterized by different costs for human labor and automation, they also differ 
regarding their suitability for RPA. As shown in Table 4, our results suggest that the tasks 529 and 530 are 
promising candidates for automation while automating processes 1 and 2 takes too long to amortize. The 
third step of our method supports companies in maximizing the economic value of RPA by determining the 
optimal number of tasks to be automated under the constraint of a given budget. Therefore, we solve the 
optimization problem introduced in the previous section, where we assume the RPA budget to be 
1,000,000 €. 

In this case, only tasks with an amortization time of less than three years are considered for optimization. 
The resulting RPA project includes a total of 14 processes and yields a total profit of 1,699,496 € with costs 
at 935,290 € within the next three years. Consequently, the company faces a significant potential for cost 
reduction when engaging with RPA. 

The technical evaluation showed that the process mining approach produces meaningful key figures and 
shows reasonable profitability values. We additionally implemented a demonstrator that we evaluated with 
five experts. The experts stated that the key figure system and profitability optimization yields a good 
addition to the manual selection process for RPA projects. The key figure system gives an objective overview 
on how well activities are suitable for RPA projects and gives a suitable discussion basis for decisions. The 
main critique was the low availability of process logs for most clients, especially for small and medium 
enterprises (SME). Additionally, they mentioned that the key figure system is not exhaustive for every 
application, but could require additional key figures, if the automatization goal is not saving cost. RPA 
projects can have other goals such as customer satisfaction. 

 

Figure 3: Assessing the Automation Potential of Processes’ Activities 
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Table 4: Indicators for Process Profitability Analysis 

Task ID 𝑭𝑳𝑪𝒊 𝑽𝑳𝑪𝒊 𝑭𝑹𝑪𝒊 𝑽𝑹𝑪𝒊 𝑪𝑨𝑯𝑳 𝑪𝑨𝑹𝑳 Return 

1 1,000 2,169,501 2,490,811 34.4 2,170,501 2,490,845 6.21 years 

2 1,000 4,555,255 6,899,536 13.6 4,556,255 6,899,550 4.80 years 

… … … … … … … … 

529 1,000 360,947 101,353 9.8 145,449 100,362 2,91 years 

530 1,000 511,691 33,821 52.4 361,947 33,873 0.53 years 

Conclusion, Limitations, and Future Research Opportunities 

Our goal was to develop a quantifiable method to support companies for process selection in RPA projects. 
We employed DSR, which guided us in analyzing a problem domain and designing as well as evaluating a 
corresponding IT artifact (Hevner et al. 2004; Peffers et al. 2007). 

Based on a literature analysis and practical requirements of RPA case studies, we identified indicators for 
process selection in RPA projects. In two iterations, we improved the method by involving expert 
knowledge. The resulting method is based on a pre-selection of relevant processes and consists of three 
steps: (1) determining the automation potential of processes, (2) analyzing the profitability of process task 
automation, and (3) maximizing the economic value on RPA projects. The method returns a list with 
quantified indicators and recommendations to support the subsequent decision-making. Our theoretical 
contribution is – to the best of our knowledge – the first comprehensive method that uses a software- and 
industry-independent collection of indicators. 

Thereby, our method has immediate practical value and operationalizes techniques from process mining. 
It enables companies to analyze the execution frequency of process tasks, their degree of stability, their 
standardization, their failure rate, their average activity time, as well as their automation rate and thus, to 
assess their automation potential for RPA. A profitability analysis that incorporates both fixed and variable 
costs of human labor and robots helps companies to identify suitable process tasks and determining the 
optimal number of process tasks that can be automated within a given project budget or within a given 
amortization time. We have evaluated our approach based on a real-life event log and demonstrated its 
applicability and usefulness. We have not found any indication that the indicators cannot be transferred to 
other industries than those surveyed as no one of them is industry-specific. Nevertheless, adding industry-
specific indicators for certain industries may enhance the results. 

This research is not without limitations. First, we did not analyze the literature with the goal of building an 
exhaustive collection of indicators on RPA but rather to acquire an understanding of the main challenges 
associated with it. Hence, we cannot eliminate the possibility that we have neglected insights that would 
have offered additional perspectives and requirements. Ultimately, we will have to test the indicators for 
deficit, redundancy, overload, and excess. Furthermore, while RPA is gaining traction in IT consulting, 
mature research on RPA is scarce and long-term profitability can only be estimated. Second, our analysis 
builds common event log configurations. As emphasized by van der Aalst (2016), the composition and 
structure of event logs can vary, which implies that additional features may be available in practice that 
could increase the quality of our results. Third, we analyzed process tasks independent of each other and 
neglected dependencies and reuse of tasks where automation in one process might influence other related 
process tasks. Fourth and last, we limited our analysis to a few determinants and exclusively focused on the 
economic value of RPA. Thereby, we neglected social and organizational implications such as a changing 
nature of work and the need for new skills and competencies. 

Summarizing, we would like to emphasize that more multi-dimensional research is necessary to account 
for the consequences of RPA. Apart from accounting for social, cultural, and organizational perspectives, 
research on RPA should also focus on augmenting selection methods with an additional perspective that 
captures expected costs for change management when analyzing the profitability of RPA. Further, research 
should also consider the cost of fragmentation when parts of a process are being performed by robots while 
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data integration is neglected in favor of front-end automation. Moreover, the results from the expert 
interviews provide a first indication for differences in the perceived importance of the indicators. Future 
research could use this as basis for further exploring weighted indicators to account for this. Ultimately, 
RPA also touches the issue of machine autonomy, which should be considered in the specification and 
implementation of the decision-making abilities of the robots. 
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