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Abstract
Multivariate analysis of variance (MANOVA) is a powerful and versatile method to
infer and quantify main and interaction effects in metric multivariate multi-factor data.
It is, however, neither robust against change in units nor meaningful for ordinal data.
Thus, we propose a novel nonparametric MANOVA. Contrary to existing rank-based
procedures, we infer hypotheses formulated in terms of meaningful Mann–Whitney-
type effects in lieu of distribution functions. The tests are based on a quadratic form in
multivariate rank effect estimators, and critical values are obtained by bootstrap tech-
niques. The newly developed procedures provide asymptotically exact and consistent
inference for general models such as the nonparametric Behrens–Fisher problem and
multivariate one-, two-, and higher-way crossed layouts. Computer simulations in
small samples confirm the reliability of the developed method for ordinal and met-
ric data with covariance heterogeneity. Finally, an analysis of a real data example
illustrates the applicability and correct interpretation of the results.
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1 Motivation and introduction

In many experiments, e.g., in the life sciences or in econometrics, observations are
obtained in elaborate factorial designs with multiple endpoints. Such data are usually
analyzed using MANOVA methods such as Wilk’s �. These procedures, however,
rely on the assumptions of multivariate normality and covariance homogeneity and
usually break down if these prerequisites are not fulfilled. In particular, if the obser-
vations are not even metric, such applications are no longer possible since means
no longer provide adequate effect measures. To this end, several rank-based meth-
ods have been proposed for nonparametric MANOVA and repeated measures designs
which are usually based on Mann–Whitney-type effects: in the context of a nonpara-
metric univariate two-sample problem with independent and continuous observations
Yik ∼ Fi , i = 1, 2, k = 1, . . . , ni , Mann and Whitney (1947) introduced the effect
w = P(Y11 ≤ Y21) = ∫

F1dF2 also known as ordinal effect sizemeasure (Acion et al.
2006). An estimator ofw is easily obtained by replacing the distribution functions with
their empirical counterparts. While this effect has several desirable properties and is
widely accepted in practice (Brumback et al. 2006; Kieser et al. 2013), generalizations
to more than one dimension or higher-way factorial designs are not straightforward.

Concerning the latter, there basically exist two possibilities in the literature to cope
with a ≥ 3 sample groups with independent univariate observations Yik ∼ Fi , i =
1, . . . , a, k = 1, . . . , ni : First, considering only the pairwise effects wi� = P(Yi1 ≤
Y�1), 1 ≤ i �= � ≤ a (as proposed by Rust and Filgner 1984) can lead to paradox
results in the sense of Efron’s Dice. That is, due to the possible situation w12 > 1

2
and w23 > 1

2 the third group appears to be stochastically greater than the first group
even though w31 > 1

2 is possible at the same time. See also Thas et al. (2012) and the
contributed discussions byM. P. Fay andW. Bergsma and colleagues for pros and cons
of the possibly induced intransitivity by certain probabilistic indexmodels.We refer to
Brown and Hettmansperger (2002), Thangavelu and Brunner (2007) or Brunner et al.
(2017) and the references cited therein for further considerations on this issue. Second,
in order to circumvent the problem of intransitive effects, the group-wise distribution
functions Fi may be compared to the same reference distribution. Usually, this is the
pooled distribution function H = 1

N

∑a
i=1 ni Fi (Kruskal 1952; Kruskal and Wallis

1952), resulting in so-called (e.g., Brunner et al. 2017) relative effects ri = ∫
HdFi .

Multivariate generalizations of this approach can be found in Puri and Sen (1971),
Munzel andBrunner (2000) or Brunner et al. (2002); see alsoDeNeve and Thas (2015)
for a related approach. Since these quantities depend on the sample sizes ni , however,
they are no fixed model constants and changing the sample sizes might dramatically
alter the results; see again Brunner et al. (2017) for an example in the univariate
case. For this reason, Brunner and Puri (2001) proposed a different nonparametric
effect pi = ∫

GdFi for univariate factorial designs, where G = 1
a

∑a
i=1 Fi denotes

the unweighted mean of all distribution functions. The same approach has also been
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extended to other settings byGao andAlvo (2005, 2008),Gao et al. (2008) andUmlauft
et al. (2017). Nevertheless, none of them considered null hypotheses formulated in
terms of fixed and meaningful model parameters. For a more intuitive interpretation of
the results, however, it is sensible to formulate and test hypotheses in more vivid effect
sizes. In particular, it is widely accepted in quantitative research that “effect sizes are
themost important outcome of empirical studies” (Lakens 2013). Brunner et al. (2017)
therefore infer null hypotheses stated in terms of the unweighted nonparametric effects
via H p

0 : Hp = 0 for a suitable hypothesis matrix H and the pooled vector p of the
effects pi , see also Konietschke et al. (2012) for the special case of one group repeated
measures.

In the present paper, we strive to generalize their models and methods in several
directions:

1. We examine generalizations to the more involved context of multivariate data
where dependencies between observations from the same unit need to be taken
into account. This multivariate case allows for testing hypotheses on the influence
of several factors on single or several outcome measurements.

2. More general as in repeated measures designs the outcomes in different compo-
nents may bemeasured on different units (such as grams andmeters). In particular,
they actually need not even be elements of metric spaces; totally ordered sets serve
equally well as spaces of outcomes because we develop rank-based methods for
our analyses. Query scores are an example of such ordered data without having a
unit in general. Differences will be tested with the help of a quadratic form in the
rank-based effect estimates.

3. This test statistic is analyzed by means of modern empirical process theory instead
of the more classical and sometimes laborious projection-based approaches for
rank statistics; that is, the proofs of the asymptotic properties becomemuch shorter
with the present technique. Since it is asymptotically non-pivotal, appropriate boot-
strap methods for asymptotically reproducing its correct limit null distribution are
proposed. As resampling entails several good properties when applied to empir-
ical distribution functions and our rank-based estimates offer a representation as
a functional of multiple empirical distribution functions, we obtain reliable infer-
ence methods using bootstrap techniques as shown by simulation results. These
indicate a good control of the type-I error rate even for small sample setups with
ordinal or heteroscedastic metric data.

Our model formulation thereby comprises novel procedures for general multivari-
ate factorial designs with crossed or nested factors and even contains the so-called
nonparametric multivariate Behrens–Fisher problem as a special case. Moreover, the
methodology also allows for subsequent post hoc tests.

The paper is organized as follows: in Sect. 2 we describe the statistical model and
the null hypotheses of interest. Section 3 presents the asymptotic properties of our
estimator and, subsequently, states the asymptotic validity of its bootstrap versions.
Deduced statistical inference procedures for nonparametricMANOVAdesigns are dis-
cussed in Sect. 4 and opposed to Repeated Measures Analyses. The methods’ small
sample behaviors are analyzed in extensive simulation studies in Sect. 5. Section 6
contains the real data analysis of the gender influence on education and annual house-
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hold income of shopping mall customers in the San Francisco Bay Area. We conclude
with some final remarks in Sect. 7. The proofs of all theoretic results are given in
“Appendix A” and the derivation of the asymptotic covariance matrices is the content
of Section 10 in the supplement.

2 Statistical model

Throughout, let (�,A, P) be a probability space on which all random variables will
be defined. We assume a general factorial design with multivariate data, that is, we
consider independent random vectors

Xik = (X i jk)
d
j=1: � −→ R

d , i = 1, . . . , a; k = 1, . . . , ni (1)

of dimension d ∈ N, where X i jk denotes the j th measurement of individual k in group
i . Thus, the total sample size is N = ∑a

i=1 ni . The distribution of Xik is assumed to
be the same within each group with marginals denoted by

X i jk ∼ Fi j , i = 1, . . . , a, k = 1, . . . , ni , j = 1, . . . , d.

Throughout, we understand all Fi j as the so-called normalized distribution func-
tions, i.e. the means of their left- and right-continuous versions (Ruymgaart 1980;
Akritas et al. 1997; Munzel 1999). This allows for a unified treatment of metric and
ordinal data and will later on lead to statistics formulated in terms of mid-ranks. We
denote the single and the pooled samples by

Xi = {Xi1, . . . ,Xini }, i = 1, . . . , a, and X =
a⋃

i=1

Xi ,

respectively. Different to the special case of repeatedmeasurements (Konietschke et al.
2012;Brunner et al. 2017) the components are in general not commensurate. Therefore,
comparisons between the different groups are performed component-wise. To this
end, let G j = 1

a

∑a
i=1 Fi j , j = 1, . . . , d denote the unweighted mean distribution

function for the j th component. We consider G j as a benchmark distribution for
comparisons in the j th component. In particular, denote byY j ∼ G j a randomvariable
that is independent of X and define unweighted nonparametric effects for group i and
component j by

pi j = P(Y j < X i j1) + 1
2 P(Y j = X i j1) =

∫
G jdFi j = 1

a

a∑

�=1

w�i j = w·i j , (2)

where w�i j = ∫
F� jdFi j= P(X� j1 < X i j1) + 1

2 P(X� j1 = X i j1) quantifies the
Mann–Whitney effect for groups � and i in component j . Note that w�i j = 1/2
in case of � = i . This definition naturally extends the univariate effect measure given
in Brunner et al. (2017) to our general multivariate setup. Note that, in contrast to their
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suggestion for an extension to repeated measures designs, comparisons with respect
to the overall mean distribution G = 1

ad

∑a
i=1

∑d
j=1 Fi j are not appropriate here

since we study a more general model that allows for components measured on dif-
ferent units. However, the advantages of an unweighted effect measure as discussed
in Brunner et al. (2017) still apply: the pi j ’s in (2) are fixed model quantities that do
not depend on the sample sizes n1, . . . , na , thus allowing for a transitive ordering.
Moreover, interpretation of these effects is rather simple: an effect pi j smaller than
1/2 means that observations from the distribution Fi j (i.e. from component j in group
i) tend to smaller values than those from the corresponding benchmark distribution
G j .

In this setup, we formulate null hypotheses as H p
0 : Hp = 0 where p =

(p11, p12, . . . , pad)′ denotes the vector of the relative effects pi j , i = 1, . . . , a, j =
1, . . . , d andH is a suitable hypothesis matrix with ad columns. Instead ofH we may
equivalently use the unique projection matrix T = H′(HH′)+H which is idempotent
and symmetric and fulfills Hp = 0 ⇔ Tp = 0; see e.g., Brunner et al. (1997, 2017)
and Brunner and Puri (2001). Henceforth, let Id and Jd denote the d-dimensional
identity matrix and the d ×d matrix of 1’s, respectively, and define by Pd = Id − 1

d Jd
the so-called d-dimensional centering matrix.

In particular, in case of a = 2 our approach includes the nonparametric multivariate
Behrens–Fisher problem

H p
0 (T) : {Tp = 0} = {p1 = p2 = 1d/2}

with T = P2⊗Id = 1
2 (

1 −1
−1 1 )⊗Id and pi = (pi1, . . . , pid)′, i = 1, 2, where ⊗

denotes the Kronecker product. Similarly, one-way layouts are covered by choosing
T = Pa ⊗ Id , leading to the null hypothesis H p

0 (T) : {p1 = · · · = pa}. Moreover,
more complex factorial designs can be treated as well by splitting up the group
index i into sub-indices i1, i2, . . . according to the number of factors considered.
For example, consider a two-way layout with crossed factors A and B with levels
i1 = 1, . . . , a and i2 = 1, . . . , b, respectively. In this case, the random vectors in (1)
become Xi1i2k, i1 = 1, . . . a, i2 = 1, . . . , b, k = 1, . . . , ni1i2 . We thus obtain the
effect vector p = (p′

11, . . . ,p
′
ab)

′, where all vectors pi1i2= (pi1i21, . . . , pi1i2d)
′, i1 =

1, . . . , a, i2 = 1, . . . , b are d-variate and there are ni1i2 > 0 subjects observed at each
factor level combination. Hypotheses of interest in this context are the hypotheses
of no main effects as well as the hypothesis of no interaction effect between the
factors. The hypothesis of no main effect of factor A can be written as H p

0 (TA) :
{TAp = 0} ≡ {(Pa ⊗ 1

bJb ⊗ Id)p = 0}. Similarly, the hypothesis of no effect of factor
B is formulated as H p

0 (TB) : {TBp = 0} ≡ {( 1a Ja⊗Pb⊗Id)p = 0} and the hypothesis
of no interaction effect as H p

0 (TAB) : {TABp = 0} ≡ {(Pa⊗Pb⊗Id)p = 0}. For other
covered factorial designs and corresponding contrast matrices we refer to Section 4
in Konietschke et al. (2015). Equivalent formulations of the above null hypotheses in
terms of the illustrative but notationally more elaborate decomposition into all factor
influences are given in the Supplementary Material of Brunner et al. (2017) for the
univariate case, but directly carry over to the present context.Wenote that in the general
multivariate case, null hypotheses like H p

0 have only been considered in the special
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case of the nonparametric Behrens–Fisher problem (Brunner et al. 2002). Up to now,
multivariate testing procedures for one-, two-, or even higher-way layouts focus on
null hypotheses formulated in terms of distribution functions; see, e.g., Bathke et al.
(2008) and Harrar and Bathke (2008, 2012) and the references given in Sect. 1.

To estimate the vector of effects,we consider the empirical (normalized) distribution
functions F̂i j (x) = 1

ni

∑ni
k=1 c(x−X i jk)where c(u) = 1{u > 0}+ 1

21{u = 0}. Thus,
we obtain estimators for the nonparametric effects pi j by replacing the distribution
functions with their empirical counterparts

p̂i j =
∫

Ĝ jd F̂i j = 1

a

a∑

�=1

ŵ�i j ,

where Ĝ j = 1
a

∑a
�=1 F̂� j and

ŵ�i j =
∫

F̂� jdF̂i j = 1

n�

1

ni

ni∑

k=1

n�∑

r=1

c(X i jk − X� jr ) = 1

n�

(

R
(�i)
i j · − ni + 1

2

)

.

Here, R(�i)
i jk denotes the (mid-)rank of observation X i jk in dimension j among the

(ni + n�) observations in the pooled sample X� j1, . . . , X� jn�
, X i j1, . . . , X i jni and

R
(�i)
i j · = 1

ni

∑ni
k=1 R

(�i)
i jk are the corresponding rank means. We combine all estimated

effect sizes into the ad-dimensional vector p̂ = ( p̂11, p̂12, . . . , p̂ad)′. To detect devi-
ations from null hypotheses of the form H p

0 (T) : {Tp = 0} we propose the following
ANOVA-type test statistic (ATS)

TN = N p̂′Tp̂, (3)

where again N = ∑a
i=1 ni denotes the total sample size in the experiment. The

quadratic form (3) has the advantage that it detects any deviations from the null
hypothesis. In particular, expanding TN = N [(̂p − p) + p]′T[(̂p − p) + p], our
theoretical results from Sect. 3 will prove that TN converges to infinity in probability
under H p

1 (T) : {Tp �= 0} because Np′Tp does not vanish. Moreover, we note that a
more conventional Wald-type statistic involving some generalized inverse of a consis-
tent covariance matrix estimator of p̂ would be questionable. In particular, different
to the special case a = 2 (Brunner et al. 2002) of the multivariate Behrens–Fisher
problem, there might be potential rank jumps for general a, see the discussion on page
9 in Brunner et al. (2017) for the univariate case d = 1.

3 Asymptotic properties and resamplingmethods

We now turn to the asymptotic properties of the estimated effect sizes p̂ and pro-
pose bootstrap methods to approximate its unknown limit distribution. For a lucid
presentation of the results, we thereby assume the following sample size condition:
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Condition 1 ni
N → λi ∈ (0, 1) for all groups i = 1, . . . , a as N → ∞.

In other words, no group shall constitute a vanishing fraction of the combined sample.
Due to the Glivenko–Cantelli theorem in combination with the continuous mapping
theorem, the consistency of p̂ for p follows already under the weaker assumption
min1≤i≤a(ni ) → ∞. Asymptotic normality is established in our main theorem below:

Theorem 1 Suppose Condition 1 holds. As N → ∞, we have

√
N (̂p − p)

d−→ Z ∼ Nad(0ad ,�), (4)

where 0ad ∈ R
ad is the zero vector and the covariance matrix � ∈ R

ad×ad is stated
in Section 10 in the supplement.

Note that this theorem immediately implies the asymptotic normality of
√
NTp̂

under H p
0 (T) : {Tp = 0}. Thus, the continuous mapping theorem yields the corre-

sponding convergence in distribution for the quadratic form TN defined in (3):

Corollary 1 SupposeCondition1holds.As N → ∞, wehaveunder H p
0 (T) : {Tp = 0}

TN = N p̂′Tp̂ d−→ Z′TZ d=
ad∑

h=1

νhY
2
h , (5)

where Y1, . . . ,Yad are independent and standard normally distributed and ν1, . . . ,

νad ≥ 0 are the eigenvalues of �1/2T�1/2.

The limit Theorem 1 raises the question how to find adequate critical values for
tests in TN . A first naive idea is the approximation of the right-hand side of (5) by
combining the representation as a weighted sum of independent χ2-variables with
estimators for the involved eigenvalues νh or via estimating the covariance matrix
�. However, such choices usually result in too liberal inference methods as already
observed by Brunner et al. (2017) in the univariate case. Another idea is to generalize
the F-approximation proposed in Brunner et al. (2017) to the present situation. But
since this will in general not lead to asymptotically correct level α tests (even in the
simplest univariate two-sample setting with a = 2 and d = 1, see Brunner et al. 2017),
we instead focus on resampling the test statistic TN . In particular, we think that this
is the only reasonable way to end up with an asymptotically exact testing procedure.
To this end, we study two bootstrap approaches for recovering the unknown limit
distribution of TN under H p

0 : a group-wise as well as a wild bootstrap.
First, a variant of the classical bootstrap (Efron 1979) applied to the present

context is considered: for each group i = 1, . . . , a, draw ni times randomly with
replacement from the d-dimensional data vectorsXi1, . . . ,Xini to obtain the i th boot-
strap sample X∗

i1, . . . ,X
∗
ini

. Denote their marginal empirical distribution functions

as F∗
i j , j = 1, . . . , d. These are the bootstrap counterparts of all F̂i j . We denote by

pi j ∗ and p∗ the bootstrap versions of p̂i j and p̂, respectively. They are based on the
bootstrapped empirical distribution functions. Finally, the bootstrap version of the test
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statistic is T ∗
N = N (p∗ − p̂)′T(p∗ − p̂). The following two limit theorems reveal that

it always approaches the null distribution of TN . The theorems hold under both the
null hypothesis H p

0 (T) : {Tp = 0} and the alternative hypothesis H p
1 (T) : {Tp �= 0}.

Theorem 2 Suppose Condition 1 holds. As N → ∞, we have, conditionally on X ,

√
N (p∗ − p̂)

d−→ Z ∼ Nad(0ad ,�) (6)

in outer probability, where � is as in Theorem 1.

Corollary 2 Suppose Condition 1 holds. As N → ∞, we have, conditionally on X ,

T 	
N = N (p∗ − p̂)′T(p∗ − p̂)

d−→ Z′TZ d=
ad∑

h=1

νhY
2
h (7)

in outer probability, i.e. the same limit distribution as in Corollary 1.

The second proposed resampling procedure is the wild bootstrap which recently
has been proposed for the analysis of nonparametric repeated measures designs
(Friedrich et al. 2017; Umlauft et al. 2019). To transfer it to the present MANOVA
context, we first notice that

√
N (̂p − p) has an asymptotically linear representation

in
√
N ((F̂11, . . . , F̂ad)′ − (F11, . . . , Fad)′). Indeed, if we define φi ( f1, . . . , fa) =∫

( 1a
∑a

�=1 f�)d fi for functions f1, . . . , fa such that the integral is well defined, then

√
N ( p̂i j − pi j ) = √

N (φi (F̂1 j , . . . , F̂aj ) − φi (F1 j , . . . , Faj ))

= √
N

[∫
(Ĝ j − G j )dFi j −

∫
(F̂i j − Fi j )dG j +

∫
(Ĝ j − G j )d(F̂i j − Fi j )

]

= √
N

∫
(Ĝ j − G j )dFi j − √

N
∫

(F̂i j − Fi j )dG j + op(1). (8)

The last equality follows from the functional delta-method applied to φi ; cf. Dobler
and Pauly (2018) for the two-sample case. It is sometimes also called the asymptotic
equivalence theorem (Brunner et al. 2017). Now, in the proposed application of the
wild bootstrap the residuals εi jk(x) = c(x − X i jk) − Fi j (x), k = 1, . . . , ni , in the
above asymptotic expansion are resampled. In particular, the residuals are replaced
with

ε̂i jk(x) = Dik · [c(x − X i jk) − F̂i j (x)], k = 1, . . . , ni .

Here, Dik, i = 1, . . . , a, k = 1, . . . , ni , are so-called wild bootstrap multipliers
which are i.i.d. with zero-mean and unit variance. These resampled residuals are also
centered and their conditional variance can be considered as the empirical counterpart
of var(εi jk(x)) = Fi j (x)(1 − Fi j (x)):

var (̂εi jk(x) | X ) = [c(x − X i jk) − F̂i j (x)]2,
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the expectation of which equals var(εi jk(x)). Lastly, we require that the multipliers
fulfill

∫ ∞
0

√
P(|D11| > x)dx < ∞ which is implied by E |D11|2+η < ∞ for any

η > 0. Hence, it is a weak assumption on the tail heaviness; cf. p. 177 in van der
Vaart and Wellner (1996). Note that, for each i, k, our wild bootstrap implementation
uses the same multiplier Dik for every component j in order to ensure an appropriate
dependence structure across the components.

Additionally, apart from estimating the residuals εi jk by ε̂i jk , the unknown distri-
bution functions F� j in the integrators in (8) need to be estimated by their empirical
counterparts. Denote by F	

i j = 1
ni

∑ni
k=1 ε̂i jk and G	

j = 1
a

∑a
�=1 F

	
� j the wild boot-

strap versions of F̂i j − Fi j and Ĝ j − G j , respectively. We obtain the following wild
bootstrap counterpart of p̂i j − pi j :

p	
i j =

∫
G	

j (x)dF̂i j (x) −
∫

F	
i j (x)dĜ j (x). (9)

A representation of p	
i j in terms ofmid-ranks is given in Section 8 of the supplement.

This is particularly useful for a computationally efficient implementation of the wild
bootstrap procedure. We find the following conditional central limit theorems for
p	 = √

N (p	
11, p

	
12, . . . , p

	
ad)

′ and T 	
N = p	′Tp	, which again hold under both H p

0 (T)

and H p
1 (T):

Theorem 3 Suppose Condition 1 holds. As N → ∞, we have, conditionally on X ,

p	 d−→ Z ∼ Nad(0ad ,�) (10)

in outer probability, where � is as in Theorem 1.

Corollary 3 Suppose Condition 1 holds. As N → ∞, we have, conditionally on X ,

T 	
N = p	′Tp	 d−→ Z′TZ d=

ad∑

h=1

νhY
2
h (11)

in outer probability, i.e. the same limit distribution as in Corollary 1.

Each of the conditional central limit theorems (7) and (11) gives a theoretic justi-
fication of the use of the random quantiles of T ∗

N and T 	
N conditional on X . It follows

that these quantiles converge in outer probability to the quantiles of the asymptotic
distribution of the ATS under H p

0 (T), i.e. of
∑ad

h=1 νhY 2
h . For a practical implemen-

tation, such critical values are obtained for given X via Monte-Carlo simulations. To
this end, numerous independent realizations of T ∗

N or T 	
N are realized. Their empirical

quantiles then serve as critical values for the hypothesis tests.
Comparing both proposed resampling procedures, we see that the classical has a

theoretical advantage over the wild bootstrap: the op(1) term in (8) is implicitly resam-
pled as well. In principle, a wild bootstrap counterpart

√
N

∫
F	
i jdG

	
j could also be

added to the definition p	
i j in order to resample the remainder term. However, the mas-

sively increased computational load makes such a modification impractical. Beyond
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these theoretical points, we will evaluate the final comparison of both resampling
schemes in extensive simulations in Sect. 5.

4 Deduced inference procedures

Nonparametric MANOVA The previous considerations directly imply that consistent
and asymptotic level α tests for H p

0 (T) : {Tp = 0} are given by

ϕ	
N = 1{TN > c	(α)} and ϕ∗

N = 1{TN > c∗(α)},

where c∗(α) and c	(α) denote the (1 − α) quantile of the group-wise bootstrap and
wild bootstrap versions of TN given X , i.e. of T 	

N in case of the wild bootstrap. Their
finite sample performance will be studied in Sect. 5. As described in Sect. 2, these tests
can be used to infer various global null hypotheses of interest about (nonparametric)
main and interaction effects of interest which can straightforwardly be inverted to
construct confidence regions for these nonparametric effects.

Moreover, the results derived in Sect. 3 also allow post hoc analyses, i.e. subsequent
multiple comparisons. To exemplify the typical paths of action we consider the one-
way situation with a independent groups and nonparametric effect size vectors pi =
(pi1, . . . , pid)′ in group i, i = 1, . . . , a. If the global null hypothesis

H p
0 (Pa ⊗ Id) : {p1 = · · · = pa}

of equal effect size vectors is rejected, one is usually interested in inferring

(i) the (univariate) endpoints that caused the rejection, as well as
(ii) the groups showing significant differences (all pairs comparisons).

The above questions directly translate to testing the univariate hypotheses

H p
0 j : {p1 j = · · · = paj }, j = 1, . . . , d (12)

in case of (i) and to an all pairs comparison given by multivariate hypotheses

H p
0i� : {pi = p�}, 1 ≤ i < � ≤ a (13)

in case of (ii). Note that our derived methodology allows for testing these hypotheses
in a unified way by performing tests on all univariate endpoints for (12) and by select-
ing pairwise comparison contrast matrices for (13). Therefore, a first naive approach
would be to adjust the individual tests accordingly (e.g. by Bonferroni or Holm cor-
rections) to ensure control of the family-wise error rate. However, note that the effect
size vectors are defined via component-wise comparisons. This implies that the inter-
section of all H p

0 j as well as the intersection of all H
p
0i� is exactly given by the global

null hypothesis H p
0 (Pa ⊗ Id). Moreover, we can even test all subset intersections of

H p
0 j , j = 1, . . . , d (or H p

0i�, 1 ≤ i < � ≤ a) by choosing adequate contrast matri-
ces and performing the corresponding bootstrap procedures. Thus, both questions can
even be treated (separately) by applying the closed testing principle of Marcus et al.
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(1976). This is a major advantage over existing inference procedures that are devel-
oped for testing null hypotheses formulated in terms of distribution functions (Ellis
et al. 2017). In particular, since equality of marginals does not imply equality of mul-
tivariate distributions, the closed testing principle cannot be applied to the latter to
answer question (i).

To ensure a reasonable computation time, the above approach is only applicable for
small or moderate d and a. However, some computation time can be saved by formu-
lating a hierarchy on the questions (either for study-specific reasons or by weighing up
the sizes of a and p). For example, assume that (i) is more important than (ii). In this
case we may start by applying the closed testing algorithm to test hypotheses H p

0 j and
subsequently only infer pairwise comparisons on the significant univariate endpoints
(instead of testing all multivariate H p

0i�). Contrary, assume that d is much larger than
a. Then it may be reasonable to first infer (ii) and subsequently consider (i) for the
significant pairs.

Confidence intervals and regions The bootstrap critical values of the tests ϕ	
N and

ϕ∗
N immediately give rise to confidence regions for contrasts in the effects vector p:

let TN (p0) = N (̂p − p0)′T(̂p − p0) be a test statistic for testing the null hypothesis
{Hp = Hp0} for a given effects vector p0 and a fixed contrast matrix H, where
again T = H′(HH′)+H denotes the corresponding unique projection matrix. Then,
Corollary 3 guarantees that

sup
x

|Pp0(TN (p0) ≤ x) − P(T 	
N ≤ x |X)| → 0

in outer probability, i.e. 1{TN (p0) > c	(α)} is an asymptotic level α wild bootstrap
test for {Hp = Hp0}. Here, Pp0(TN (·) ≤ x) denotes a distribution function of TN (·)
under the assumption that p = p0 holds. Similarly, 1{TN (p0) > c∗(α)} is a group-
wise bootstrap test of asymptotic level α for the same null hypothesis. Inverting these
tests thus leads to the asymptotic (1 − α) confidence ellipsoids

C1−α = {Hp : TN (p) ≤ c(α)} = {Hp : N (̂p − p)′T(̂p − p) ≤ c(α)} (14)

for Hp, where c(α) denotes any of the bootstrap critical values c	(α) or c∗(α). In
case of a contrast vector H′ = h ∈ R

ad , this leads to confidence intervals for linear
contrasts h′p.

Comparison with repeated measures analysis In mean-based MANOVA, classical
profile and repeated measures analyses are already incorporated by choosing ade-
quate hypotheses matrices to test for certain time effects or specific profiles, see, e.g.
Friedrich and Pauly (2018) and the discussion in Bathke et al. (2018). However, in our
nonparametric case, this would not be the best option as our MANOVA approach does
not make use of the repeated measures’ commensurate nature. For the latter, Brun-
ner et al. (2017) already outlined extensions to general repeated measures designs in
Sect. 5 of their paper which have been picked up in more detail by Umlauft et al.
(2019). Here, the effects are not defined as probabilities with respect to a component-
wise mean distribution G j as in (2) but with respect to an overall mean distribution.
The resulting effects are thus more meaningful in a repeated measures analysis but
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also completely meaningless in a general MANOVA setting with non-commensurate
entries.

5 Simulations

In the previous section, we analyzed the large sample properties of the proposed
inference procedures. Here, we additionally analyze their finite sample properties. In
particular, we oppose the type I error rate control of both bootstrap procedures for
several designs, covering

• homo- and heteroscedastic situations with continuous data and
• situations with ordinal data in
• one- and two-factorial MANOVA designs.

In case of the multivariate Behrens–Fisher problem with a = 2, we additionally com-
pared their results with the ANOVA-type testing procedure of Brunner et al. (2002).
This approach is based on approximating the unknown distribution of the test statistic
by an F-distribution with estimated degrees of freedom and thus does not provide
an asymptotically valid procedure. The results of these simulations are therefore only
presented in Section 9 of the supplementary material. In summary, this test provided
a more conservative behavior compared to both bootstrap methods; especially in all
heteroscedastic settings under consideration.

In all simulation setups, we chose the significance level α = 5%.Moreover, we also
compare the power of the two bootstrap procedures. All simulations were conducted
using the R-computing environment (Core Team 2016), version 3.2.3, each with 5000
simulation runs and 5000 bootstrap iterations.

On the two bootstraps From existing results on both bootstrap procedures in linear
models with metric observations (Wu 1986; Davidson and Flachaire 2008) one would
expect that the wild bootstrap should outperform the group-wise bootstrap; particu-
larly in heteroscedastic settings. However, as discussed in Sect. 3, the approximation
with the wild bootstrap neglects a small oP (1)-term in (8), whereas the group-wise
bootstrap does not. Moreover, we are here dealing with a nonparametric situation with
potentially ordinal data and dependent (mid)ranks. As a result, the wild bootstrap is
faced with a completely different situation, in which the consequences of a possible
heteroscedasticity may be additionally mitigated due to the robust nature of the rank-
based procedures. For these reasons, it is ad hoc not clear which procedure behaves
beneficial in which situation. Our empirical studies belowwill shed some light on this.

5.1 Simulations under the null hypothesis

5.1.1 Continuous data

For the one-way layout, data were generated similarly to the simulation study in
Konietschke et al. (2015). We considered a = 2 treatment groups and d ∈ {4, 8}
endpoints as well as the following covariance settings:
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(S1) Setting 1: V1 = Id + 0.5(Jd − Id) = V2,

(S2) Setting 2: V1 =
(
(0.6)|r−s|)d

r ,s=1
= V2.

Setting 1 represents a compound symmetry structure, while Setting 2 is an autoregres-
sive covariance structure. Data were generated as

Xik = V1/2
i εik, i = 1, 2; k = 1, . . . , ni ,

whereV1/2
i denotes a square root of thematrixVi , i.e.,Vi = V1/2

i ·V1/2
i . The i.i.d. ran-

dom errors εik = (εi1k, . . . , εidk)
′ with mean E(εik) = 0d and Cov(εik) = Id×d

were generated by simulating independent standardized components εi jk = (Yi jk −
E(Yi jk))/(Var(Yi jk))1/2 for various distributions of Yi jk . In particular, we simulated
standard normal and standard lognormal distributed randomvariables.We investigated
balanced as well as unbalanced designs with sample size vectors n(1) = (10, 10) and
n(2) = (10, 20), and increased sample sizes bymultiplying each element of the respec-
tive vector n(h), h = 1, 2, with a factor m ∈ {1, 2, 5}. In this setting, we tested the
null hypothesis of no treatment effect H p

0 : {(Pa ⊗ Id)p = 02d} = {p1 = p2}, where
pi = (pi1, . . . , pid)′, i = 1, 2, and p = (p′

1,p
′
2)

′.
The results for the normal and lognormal distribution are displayed in Table 1.

The group-wise bootstrap approach shows a slightly more liberal behavior across
most scenarios. The wild bootstrap, on the other hand, apparently keeps the nominal
significance levelmuch better. Both tests approach the nominal levelwith an increasing
sample size. In general, we did not find a big impact of the samples’ balanced- or
unbalancedness on their type-I error rates.

5.1.2 A heteroscedastic setting

We simulated a heteroscedastic setting, where H p
0 : Tp = 02d is satisfied. To this end,

we took

Xik ∼ N (0d , σ 2
i Id)

for different choices of σ 2
i ∈ {1, 1.2, 2} as well as sample sizes ni ∈ {10, 20}. In

contrast to the scenario above, we now distinguish between n(2) = (10, 20) and
n(3) = (20, 10), since the heteroscedastic setting is not symmetric anymore (except
for the case σ 2

1 = σ 2
2 , where we again only consider n(2)). Sample sizes were again

increased as described above. The results are displayed in Table2. In this case, we
observe a very conservative behavior of the wild bootstrap across all scenarios, which
improves with growing sample sizes. But even for the sample size factor m = 5, the
simulated type-I error rates for the wild bootstrap-based tests are as small as 2.3–3.7%.
In this heteroscedastic setting, the classical, group-wise bootstrap yields better results
in all scenarios, especially for the higher dimension d = 8. In particular, it maintains
the 5% level very well in this case across varying sample sizes and variances. In fact,
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Table 1 Type-I error results in % for the homoscedastic setting with normal and lognormal distributed data
with d = 4 and d = 8 dimensions, varying sample sizes and different covariance settings

Distr Cov n Wild bootstrap Group-wise bootstrap

m = 1 2 5 1 2 5

d = 4

Normal S1 (10, 10) 5.9 5.5 5.6 7.3 6.4 5.9

(10, 20) 5.6 5.5 5.2 6.6 6.3 5.5

S2 (10, 10) 5.1 5.3 5.6 7.0 6.5 5.9

(10, 20) 5.2 5.0 5.1 6.8 6.3 5.3

Lognormal S1 (10, 10) 7.2 6.3 5.8 7.3 6.7 5.8

(10, 20) 6.8 6.2 5.6 7.4 6.3 5.5

S2 (10, 10) 6.5 6.1 5.6 7.2 6.6 5.7

(10, 20) 6.6 5.9 5.5 7.0 6.5 5.7

d = 8

Normal S1 (10, 10) 6.6 5.7 5.2 7.6 6.2 5.5

(10, 20) 6.1 5.9 5.1 6.9 6.5 5.4

S2 (10, 10) 3.7 3.9 4.2 6.8 6.1 5.3

(10, 20) 3.8 3.9 4.6 6.5 5.7 5.1

Lognormal S1 (10, 10) 7.8 5.9 5.4 8.3 6.2 5.5

(10, 20) 7.7 6.3 5.3 8.1 6.4 5.5

S2 (10, 10) 5.4 4.6 4.7 7.8 6.0 5.5

(10, 20) 5.3 5.2 4.6 7.1 6.2 5.1

in the lower-dimensional case (d = 4) its type-I error control for small sample sizes is
even better than in the homoscedastic setting. Thus, different to bootstrapping in linear
models with metric data, the group-wise bootstrap is preferred to the wild bootstrap
in case of heteroscedasticity.

5.1.3 Ordinal data

We simulated ordinal data using the function ordsample from the R packageGenOrd
(Barbiero and Ferrari 2015; Ferrari and Barbiero 2012). The packageGenOrd allows
for simulation of discrete random variables with a given correlation structure and
given marginal distributions. The latter are linked via a Gaussian copula function
in order to achieve the desired correlation structure on the discrete components. We
simulated uniformmarginal distributions, such that the outcomes in the j th dimension
are uniformly distributed on j+1 categories, 1 ≤ j ≤ d. For the correlation structure,
we used the same underlying covariance matrices as in the homoscedastic setting
above. Again, we considered d ∈ {4, 8} dimensions and the same sample sizes as
in the homoscedastic setting. The results, which are similar to the ones obtained for
continuous data in the homoscedastic setting (Table 1) are displayed in Table 3. We
find that the type-I error control for the wild bootstrap-based test is the best. Only
in some few scenarios with small sample sizes the test is slightly conservative. On
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Table 2 Type-I error results in % for the heteroscedastic setting with d = 4 and d = 8 dimensions and
varying sample sizes

σ 2
i n Wild bootstrap Group-wise bootstrap

m =1 2 5 1 2 5

d = 4

(1, 2) (10, 10) 0.6 1.3 3.1 6.3 5.2 5.5

(10, 20) 0.7 1.7 3.5 5.6 5.2 5.1

(20, 10) 1.3 2.0 3.3 6.5 5.4 5.2

(1, 1) (10, 10) 0.5 1.2 3.2 6.0 5.3 5.3

(10, 20) 0.8 1.7 3.7 5.9 5.8 5.4

(1.2, 1) (10, 10) 0.6 1.2 3.2 6.2 5.3 5.5

(10, 20) 0.9 1.9 3.7 6.2 5.9 5.3

(20, 10) 0.9 1.9 3.5 5.9 5.6 5.2

d = 8

(1, 2) (10, 10) 0.1 0.4 2.5 4.8 4.7 4.6

(10, 20) 0.1 0.9 3.2 4.3 4.3 5.3

(20, 10) 0.2 0.9 3.4 4.3 4.8 5.0

(1, 1) (10, 10) <0.01 0.4 2.5 5.1 4.9 4.6

(10, 20) 0.1 1.1 3.2 4.7 4.4 5.4

(1.2, 1) (10, 10) <0.01 0.3 2.3 4.8 4.9 4.8

(10, 20) 0.2 1.1 3.4 4.9 4.4 5.4

(20, 10) 0.1 0.7 3.4 4.3 4.8 5.6

the other hand, the group-wise bootstrap-based test is too liberal in most situations
with small sample sizes. Moreover, the difference between the number of dimensions
considered is not as pronounced as in the heteroscedastic setup.

5.1.4 A two-way layout

In order to see the performance of the proposed methods in a more complicated setup,
where paradoxical results as mentioned before can actually occur, we have simulated a
2×2-design similar toBrunner et al. (2018).More precisely,we consideredobservation
vectors Xi�k, i = 1, 2, � = 1, 2, k = 1, . . . , ni� following d-variate normal distribu-
tions Nd(μi�1d , σ 2

i�Id). We chose d = 4 and μi� = (μi�1, . . . , μi�d)
′ = (1, 2, 3, 4)′

for i, � = 1, 2, such that the null hypothesis of no interaction between the two
factors is fulfilled. We considered balanced as well as unbalanced settings with
n = (25, 25, 25, 25)′ and n = (10, 20, 20, 50)′, respectively. Furthermore, we dis-
tinguished between a homoscedastic scenario setting σi� = 0.4 and a heteroscedastic
scenario with σ = (σi�)i,�=1,2 = (0.4, 1.2, 1.2, 4)′.

In order to keep the design unbalanced while increasing the sample size, sample
sizes were again multiplied by a factor m. The results are displayed in Table4.

We find that whether the design is homoscedastic or does not have a big impact on
the results. The wild bootstrap shows a quite conservative behavior which, however,
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Table 3 Type-I error rates in%for ordinal datawith different sample sizes anddifferent covariance structures

Cov. setting n Wild bootstrap Group-wise bootstrap

m =1 2 5 1 2 5

d = 4

S1 (10, 10) 6.3 5.5 5.0 8.1 6.6 5.4

(10, 20) 6.7 5.5 5.1 7.7 6.2 5.6

S2 (10, 10) 5.9 5.1 5.2 7.8 6.8 5.5

(10, 20) 6.3 5.2 5.2 7.8 6.4 5.6

d = 8

S1 (10, 10) 6.4 5.6 5.9 7.8 6.4 6.1

(10, 20) 7.2 5.3 5.2 8.2 5.9 5.5

S2 (10, 10) 3.6 3.8 5.1 7.6 6.2 6.2

(10, 20) 4.5 3.8 4.4 7.4 5.6 4.8

Table 4 Type-I error rates in % for the interaction hypothesis in a 2 × 2-design with normally distributed
data for different sample sizes and variances

Cov.setting n Wild bootstrap Group-wise bootstrap

m = 1 2 5 1 2 5

Homoscedastic (25, 25, 25, 25) 2.88 3.92 3.94 5.80 5.36 4.30

Heteroscedastic (25, 25, 25, 25) 2.92 3.84 3.86 5.82 5.46 4.42

Homoscedastic (10, 20, 20, 50) 1.96 3.40 3.66 5.90 5.54 4.92

Heteroscedastic (10, 20, 20, 50) 1.90 3.28 3.82 6.06 5.56 4.94

is not as conservative as in the heteroscedastic setup underlying Table 2 which may
be explained by the larger total sample size N in this 2 × 2 design. The group-wise
bootstrap keeps the pre-assigned level very well in almost all scenarios. We also note
that the wild bootstrap version leads to worse results for unbalanced compared to
balanced designs: it becomes much more conservative in the small sample size case
m = 1.

Finally, we also simulated ordinal data in a 2×2-design.We chose an autoregressive
covariance structure as above and binomially distributed marginals, i.e. , for every
dimension j = 1, . . . , d the marginals were binomially distributed with size j + 2
and success probability 1/( j + 1). Both balanced and unbalanced sample sizes were
chosen as above. The results again show a slight superiority of the wild bootstrap in
terms of type-I error rate control; see Table 5. The group-wise bootstrap appears to be
a bit too liberal for the smallest sample sizes.

5.2 Power simulations

In order to compare the power behavior of the two bootstrap methods, we have con-
sidered a shift alternative, i.e., we simulated data in a two-sample setting as
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Table 5 Type-I error rates in % for the interaction hypothesis in a 2 × 2-design with ordinal data and
balanced as well as unbalanced sample sizes

n Wild bootstrap Group-wise bootstrap

m = 1 2 5 1 2 5

Balanced 5.42 5.10 5.40 6.26 5.36 5.38

Unbalanced 5.26 4.88 4.74 6.62 5.68 4.88

Power (Type−1 error level 5%) for normal and ordinal data, d = 4, n = (20, 10)

Delta Delta

0.2

0.4

0.6

0.8

 : cov S1
 : distr normal

0.5 1.0 1.5 2.0 2.5

 : cov S2
 : distr normal

0.5 1.0 1.5 2.0 2.5

 : cov S1
 : distr ordinal

0.2

0.4

0.6

0.8

 : cov S2
 : distr ordinal

wild bootstrap group−wise bootstrap

Fig. 1 Power simulation results for continuous (normally distributed) and ordinal data with d = 4 dimen-
sions and sample sizes n = (20, 10)′

X̃ik = μi + Xik, i = 1, 2; k = 1, . . . , ni , (15)

whereμ1 = 0d andμ2 = (δ, . . . , δ)′ for δ ∈ {0, 0.5, 1, 1.5, 2, 3} andXik corresponds
to the respective random vectors simulated in the one-way setting as specified in
Sect. 5.1 above. In fact, we first considered a homoscedastic situation with ordinal
or normally distributed random vectors with covariance structure given in Setting 1
respectively 2 in both groups, sample size vector n = (20, 10)′ and dimension d = 4.

The results are shown in Fig. 1. As the group-wise bootstrap was slightly lib-
eral compared to the wild bootstrap method in these situations, its power function
is marginally larger. Moreover, we also investigated the power behavior for a het-
eroscedastic situation (Fig. 2). Simulating data as in (15) with Xik as in Sect. 5.1.2
we again observe that the group-wise bootstrap has slightly larger power than its wild
bootstrap counterpart. This can be explained by the rather conservative behavior of the
wild bootstrap method seen in Table 2. However, all in all the power of both methods
are more or less identical.
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Power (Type−1 error level 5%) for the heteroscedastic setting, d = 4, n = (20, 10)

Delta Delta

0.2

0.4

0.6

0.8

0.5 1.0 1.5 2.0 2.5

 : sig (1, 1)

0.5 1.0 1.5 2.0 2.5

 : sig (1, 2)

0.5 1.0 1.5 2.0 2.5

 : sig (1.2, 2)

wild bootstrap group−wise bootstrap

Fig. 2 Power simulation results for heteroscedastic data with d = 4 dimensions and n = (20, 10)′

5.3 Runtime comparisons

To further investigate the advantages and disadvantages of both bootstrap approaches,
we compared their computational cost in an additional simulation study for a 2 × 2
design. The results, presented in Section 9.3 in the supplement, show a clear advantage
for the wild bootstrap which was most apparent for larger dimensions (d = 8). All
in all, the group-wise bootstrap increased the running time by factors between 1.2
and 5.7 in the considered scenarios. However, these findings only alter its practical
applicability for sample sizes or dimensions larger than the choices considered here,
as the longest observed computation time (in the mean) resulted in 2.25 s based on
5000 bootstrap replications.

6 Data example

As a data example, we consider the data set ‘marketing’ in the R-package Elem-
StatLearn (Halvorsen 2015). This data set contains information on the annual
household income along with 13 other demographic factors of shopping mall cus-
tomers in the San Francisco Bay Area. Most of the variables in this data set are
measured on an ordinal scale, rendering mean-based approaches unfeasible. For our
example, we consider the influence of sex and language on annual household income
and educational status. The annual household income is categorized in 9 categories
ranging from ‘less than $10,000’ to ‘$75,000 and more’, while education ranges from
‘Grade 8 or less’ to ‘Grad Study’ (6 categories). This two-dimensional outcome is to
be analyzed with respect to the influence factors sex (with levels Male vs. Female)
and language (with levels English, Spanish, and Other).
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The original data set consists of 8993 observations. After removing those observa-
tions with missing values in one of the variables considered here, 8561 observations
remain. Correlation of the two outcome variables was assessed by Kendall’s Tau
(τ = 0.37) and Spearman’s correlation coefficient (ρ = 0.45), both indicating a mod-
erate positive correlation. Figure3 shows the empirical distribution functions for the
two dimensions for male and female participants while the estimated nonparametric
effects are displayed in Table6. The effects suggest main effects of both factors. To
investigate this and a potential nonparametric interaction effect, we have to test the
null hypotheses

H p
0 (TA) : {TAp = 0} ≡ {(Pa ⊗ Jb/b ⊗ Id)p = 0} (No Effect of Sex)

H p
0 (TB) : {TBp = 0} ≡ {(Ja/a ⊗ Pb ⊗ Id)p = 0} (No Effect of Language)

H p
0 (TAB) : {TABp = 0} ≡ {(Pa ⊗ Pb ⊗ Id)p = 0} (No Interaction Effect) .

Here, the a = 2 levels of the factor Sex are 1 (male) and 2 (female), and the
b = 3 levels of the factor Language are 1 (English), 2 (Spanish), and 3 (Others). The
dimension of the measurements is d = 2 (household income and educational status)
and p = (p′

11, . . . ,p
′
23)

′. In fact, the multivariate bootstrap procedures both lead to
highly significant p values (all < 0.0001) for the two main as well as the interaction
effect. Note, that here and in what follows only p values based on the wild bootstrap
approach are reported as both bootstrap approaches yielded the same results.

Since the test for the interaction hypothesis yields a significant result, we continue
by analyzing male and female participants separately. In order to further interpret the
results, we also apply the post hoc comparisons described in Sect. 4. In particular,
since the global null hypotheses {pia1 = pia2 = pia3} = {P3 ⊗ I2(p′

ia1
,p′

ia2
,p′

ia3
)′ =

0}, ia = 1, 2, are rejected in both groups,we continuewith the pairwise comparisons of
the languages by testing the hypotheses {pia ib,1 = pia ib,2} = {P2⊗I2(p′

ia ib,1
,p′

ia ib,2
)′ =

0}, ia = 1, 2, 1 ≤ ib,1 < ib,2 ≤ 3. Since again all results are significant at the 5%
level, we finally consider the univariate outcomes. The results are displayed in Table7.
This reveals some interesting aspects of the data and demonstrates the power of the
multivariate approach. For example, the significant difference between ‘English’ and
‘Other’ in the male group cannot be detected when considering income and education
separately, i.e., a simple univariate analysis would not reveal any difference. This
shows a clear advantage of the multivariate approach, which—additionally to the
effect contributions of each response—also considers their correlation, thus being
able to take advantage of the information added by each response. Furthermore, the
significant difference between ‘Spanish’ vs. ‘Other’ in the female group is driven by
education, while income does not have a significant effect here.

In order tomake thesemethods easily available for users, both bootstrap procedures
have been implemented by Sarah Friedrich in an R package rankMANOVA, which
is available from GitHub (https://github.com/smn74/rankMANOVA).

All analyses discussed in this section can be conducted with rankMANOVA by
splitting the data accordingly. The implementation of a routine for these post hoc
calculations is part of future research.
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Table 6 Estimated
nonparametric effects for the
two dimensions income and
education

Sex Language Income Education

Male English 0.586 0.604

Spanish 0.464 0.405

Other 0.529 0.559

Female English 0.561 0.568

Spanish 0.403 0.366

Other 0.458 0.498

Table 7 p values for pairwise comparisons of the different groups based on the multivariate (first p value
column) and separate univariate (last two columns) approaches

Sex Language p value

Multivariate Income Education

Male Global null hypothesis <0.0001 <0.0001 <0.0001

English versus Spanish <0.0001 <0.0001 <0.0001

English versus Other 0.045 0.059 0.078

Spanish versus Other <0.0001 0.044 <0.0001

Female Global null hypothesis <0.0001 <0.0001 <0.0001

English versus Spanish <0.0001 <0.0001 <0.0001

English versus Other <0.0001 <0.0001 0.015

Spanish versus Other <0.0001 0.076 <0.0001

7 Conclusions and discussion

We have considered an extension of the unweighted treatment effects recently pro-
posed byBrunner et al. (2017) to generalmultivariate data. These effects do not depend
on the sample sizes and allow for transitive ordering. We have rigorously analyzed
the asymptotic behavior of the vector of unweighted treatment effects p̂ and proposed
two bootstrap approaches to derive data-driven critical values for global and multiple
test decisions: a wild and a group-wise bootstrap. We proved their asymptotic validity
using empirical process arguments and analyzed their behavior in a large simula-
tion study, where we considered continuous and ordinal distributions with different
covariance settings and sample sizes. In the special situation of the multivariate non-
parametric Behrens–Fisher problem we additionally compared both methods to the
well-established Brunner et al. (2002) test.

The results were diverse and showed no clear overall preference for any method.
This was even true for the Behrens-Fisher problem: In homoscedastic settings for
metric or ordinal data, the group-wise bootstrap was too liberal for smaller sample
sizes N ≤ 60 while the wild bootstrap and the Brunner et al. (2002) approach showed
better control of the type-I error with a partially too conservative behavior of the
latter. In heteroscedastic settings, however, the group-wise bootstrap showed the best
results while the other two methods were extremely conservative; even for sample
sizes N ∈ {100, 150}. In a more general 2× 2 design our simulations again indicated
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a conservative behavior of the wild bootstrap method for metric data while the group-
wise bootstrap kept the nominal level satisfactory. Only in case of small sample sizes
(N ≤ 30) and ordinal data a slight liberality was observed. Here, the wild bootstrap
method showed better results. Judging from these findings and its slight theoretical
advantage (due to incorporating the op(1)-term in (8) in the resampling approach), the
group-wise bootstrap can be recommended for studies with larger sample sizes (N ≥
100) and heteroscedastic situations. In all others we recommend the wild bootstrap.

In future work we will consider extensions of the present setup to censored mul-
tivariate data as well as address the question “Which resampling method remains
valid and performs preferably?”. Here, a challenge will be the correct treatment of
ties: The wild bootstrap ceases to reproduce the correct limit distribution in case of
right-censored and tied data if it is not adjusted accordingly (Dobler 2017). On the
other hand, Akritas (1986) has verified that Efron’s bootstrap for right-censored data
(Efron 1981) still works in the presence of ties. The planned future paper may also be
considered an extension of the article by Dobler and Pauly (2018) to the multi-sample
and multivariate case.

Acknowledgements This work was supported by the German Research Foundation (Grant No. PA-2409
4-1).

Appendix

A Proofs

Throughout, let P1,n1 , . . . ,Pa,na be the empirical processes based on the samples
X1, . . . ,Xa , respectively, which are indexed by the class of functions G = F ◦ �,
where

F = {1(−∞,x](·),1(−∞,x)(·) : x ∈ R},

and � = {π j : j = 1, . . . , d} is the class of all canonical coordinate projections
π j : R

d → R, (x1, . . . , xd) �→ x j . Using this indexation, it is easily possible to
derive the normalized empirical distribution functions F̂i j from Pi,ni . In particular,
F̂i j (x) = Pi,ni [ 12 (1(−∞,x](·) + 1(−∞,x)) ◦ π j ], where we used the definition P f =∫
f dP for a suitable function f ∈ G and a probability measure P . We also see

that every group-specific empirical process Pi,ni can be considered as an element of
�∞(G)which contains all bounded sequenceswith indices inG: Based on the definition
Pi,ni ∈ �∞(G) if sup f ∈G |P f | < ∞.

It is important to note that the class G is obtained from the Vapnik–C̆ervonenkis
subgraph class F concatenated with the class of all canonical coordinate projec-
tions �. This conserves the Vapnik–C̆ervonenkis subgraph property as argued in
Lemma 2.6.17(iii) and 2.6.18(vii) of van der Vaart and Wellner (1996). Hence, G
is a Donsker class.

Proof of Theorem 1 Clearly, p̂ is a multivariate version φ of the Wilcoxon functional
φ̃( f , g) = ∫

f (u)dg(u) which is applied to all of the normalized empirical distribu-
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tion functions F̂i j (x) = 1
ni

∑ni
k=1 c(x − X i jk). The Hadamard differentiability of the

Wilcoxon functional φ̃ for normalized distribution functions has been argued in the
proof of Theorem 2.1 inDobler and Pauly (2018), and a similar result for themultivari-
ate φ follows immediately. Hence, asymptotic normality follows from an application
of the functional delta-method (Theorem 3.9.4 in van der Vaart and Wellner, 1996):
it follows that

√
N (̂p − p) is asymptotically equal to φ′

F11,...,Fad
(
√
N (F̂i j − Fi j )i, j ),

where φ′
F11,...,Fad

is a continuous and linear functional. Hence, the Donsker theo-

rem yields that
√
N (F̂i j − Fi j )i, j converges in distribution to a Gaussian process as

N → ∞ and the application of φ′
F11,...,Fad

proves the asymptotic multivariate normal-

ity of
√
N (̂p − p).

The asymptotic covariance structure of the resulting multivariate normal distribu-
tion is derived in detail in Section 10 of in the supplement, where the asymptotic linear
expansion of p̂ in all empirical distribution functions is utilized. ��
Proof of Theorem 2 Similarly, as argued in the proof of Theorem 1, p∗ is obtained
as a Hadamard-differentiable functional of all bootstrapped (normalized) empirical
distribution functions F∗

i j (t) = 1
ni

∑ni
k=1 c(t − X∗

i jk), j = 1, . . . , d, i = 1, . . . , a. As
the conditional central limit theorem holds in outer probability for each bootstrapped
empirical distribution function, i.e. for each

√
ni (F

∗
i j (t) − F̂i j (t)) = 1√

ni

( ni∑

k=1

c(t − X∗
i jk) −

ni∑

k=1

c(t − X i jk)

)

,

cf. Theorem 3.6.1 in van der Vaart and Wellner (1996), the convergence is trans-
ferred to

√
N (p∗ − p̂) by means of the functional delta-method for the bootstrap; cf.

Theorem 3.9.11 in van der Vaart and Wellner (1996). ��
Proof of Theorem 3 First note that, givenX , we have conditional convergence in distri-
bution of F	

N = √
N (F	

11, F
	
12, . . . , F

	
ad)

′ to an (ad)-variate Brownian bridge process
(Ut )t∈R in outer probability: indeed, each F	

i j can be written as

F	
i j (x) = 1

ni

ni∑

k=1

ε̂i jk = 1

ni

ni∑

k=1

Dik · [c(x − X i jk) − F̂i j (x)]

= 1

ni

ni∑

k=1

(Dik − D̄i ·) · c(x − X i jk)

which is due to
∑ni

k=1[c(x − X i jk) − F̂i j (x)] = 0. Here we let D̄i · = 1
ni

∑ni
k=1 Dik .

If we further define δXik to be the Dirac measure in Xik and f j,x = 1
2 (1(−∞,x](·) +

1(−∞,x))◦π j , we see that c(x − X i jk) = δXik f j,x . Consequently, F
	
i j (x) is a marginal

distribution of 1
ni

∑ni
k=1(Dik − D̄i ·) · δXik . This proves that F

	
i j (x) has the required

structure for an application of the conditional Donsker Theorem 3.6.13 in van der
Vaart and Wellner (1996). Finally, Example 3.6.12 shows that this Donsker theorem
still holds for our choice of wild bootstrap multipliers Dik .
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Next, recall the asymptotic linear representation (8) of

√
N ( p̂i j − pi j ) = √

N
∫

(Ĝ j − G j )dFi j − √
N

∫
(F̂i j − Fi j )dG j + op(1)

which followed from the functional delta-method and which motivated the wild boot-
strap version (9). That presentation motivates that the Hadamard-derivative of the
multivariateWilcoxon-type functionalφ which depends on unknown quantities should
be estimated by

φ′
i j;F̂ : (�∞(G))a → R, (P1, . . . ,Pa) �→

∫
⎛

⎝ 1

a

a∑

�=1

F� j

⎞

⎠ dF̂i j −
∫

⎛

⎝ 1

a

a∑

�=1

F̂� j

⎞

⎠ dFi j .

Here eachP� ∈ �∞(G), � = 1, . . . , a, is a distribution onRd withmarginal normalized
distribution functions F� j .

We apply the extended continuous mapping theorem (Theorem 1.11.1 in van der
Vaart andWellner, 1996) to the (random) functionalφ ′̂

F
= (φ′

11;F̂ , φ′
12;F̂ , . . . , φ′

ad;F̂ ) :
�∞(G) → R

ad . Due to the subsequence principle (Lemma 1.9.2 in van der Vaart and
Wellner, 1996) convergence in outer probability is equivalent to outer almost sure
convergence along subsequences given a realization of X .

The actual requirement for an application of the extended continuous mapping
theorem is satisfied as well: note that φ ′̂

F
basically consists of integral mappings of

the form

ψ : D(R) × BV1(R) → R, ( f , g) �→
∫

f (u)dg(u)

where D(R) is the space of right- (or left-)continuous functions onRwith existing left-
(or right-)sided limits and BV1(R) is the subspace of functions with total variation
bounded by 1. Lemma 3.9.17 in van der Vaart and Wellner (1996) states that ψ is
Hadamard-differentiable, hence continuous. We conclude that for all sequences of
functions ( fn)n∈N and (gn)n∈N, which converge to f0 in D(R) and to g0 in BV1(R),
respectively, the sequence of functionals ψn : f �→ ∫

f dgn satisfies ψn( fn) →∫
f0dg0 as n → ∞.
All in all, the extended continuous mapping theorem, combined with the condi-

tional central limit theorem for the wild bootstrapped empirical distribution functions
as stated at the beginning of this proof, concludes this proof: φ ′̂

F
(F	

N ) converges in
distribution to φ(U) for almost every sample X which is the same limit in distribution
as in Theorem 1. Another application of the subsequence principle yields the desired
convergence result in outer probability. ��
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