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Estimating pregnancy outcome probabilities based on observational co-
horts has to account for both left-truncation, because the time scale is gesta-
tional age, and for competing risks, because, for example, an induced abortion
may be precluded by a spontaneous abortion. The applied aim of this work
was to investigate the impact of statins on pregnancy outcomes using data
from Teratology Information Services. Using the standard Aalen–Johansen
estimator of the cumulative event probabilities suggested the medically unex-
pected finding that statin exposure decreased the probability of induced abor-
tion and led to more live births. The reason was an early induced abortion
in a very small risk set in the control group, leading to unstable estimation
which propagated over the whole time span. We suggest a stabilized Aalen–
Johansen estimator which discards contributions from overly small risk sets.
The decision whether a risk set is considered overly small is controlled by
tuning parameters which we choose using a cross-validated Brier Score. We
show that the new estimator enjoys the same asymptotic properties as the
original Aalen–Johansen estimator. Small sample properties are investigated
in extensive simulations. We also discuss extensions to more general multi-
state models.

1. Introduction. Prenatal development is the most vulnerable phase in human
life. Drug toxicity, but also insufficiently treated maternal conditions may result in
life-long handicaps of the newborn. Lupattelli et al. (2014) reported that around
80% of pregnant women use at least one drug to treat an acute or chronic condi-
tion. Teratology Information Services (TIS) advise both pregnant women and pol-
icy makers on the risk of adverse drug reactions in pregnancy. The societal impact
is relevant: in Germany, for example, an annual number of about 900,000 pregnan-
cies is assumed resulting in approximately 130,000 spontaneous abortions, more
than 100,000 induced abortions, and 660,000 live births [Willand (2011, 2014)].
The aim of TIS counseling is to both reduce the rate of induced abortions based
on irrational overestimation of drug risks and to lead to better and safer medical
treatment in case of maternal disease [Hancock et al. (2007)]. In this context, TIS
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observational cohort data are of outstanding value compared to register and pre-
scription data which are often incomplete and not always reliable [Grzeskowiak,
Gilbert and Morrison (2012)]. In particular, data on spontaneous abortion are not
available from the latter sources and prescription is only a possibly biased proxy
for actual treatment. Typically, pregnant women or their doctors contact TIS once
the pregnancy has been recognized and drug risk assessment is needed. If consent
is provided, and in addition to the individual counseling, TIS will then prospec-
tively follow up pregnancies.

The statin study [Winterfeld et al. (2013)] enrolled pregnant women who—or
whose physicians—contacted a TIS seeking advice on statin exposure during the
first trimester of pregnancy. Follow up was achieved through a telephone interview
or a mailed questionnaire to the woman or her physician after the expected delivery
date. The control group consisted of women seeking advice on drugs known to be
nonteratogenic.

As Meister and Schaefer (2008) pointed out, the statistical analysis of pregnancy
outcomes is often based on standard multinomial estimates, that is, the number of
outcome events divided by the number of pregnant women under study. The issue
is that the natural time scale is gestational age, but women enter the study at dif-
ferent times after conception. The data are therefore left-truncated, that is, subject
to delayed study entry. One consequence is that pregnancies that end in a spon-
taneous abortion before (in that case: hypothetical) study entry will not enter the
cohort. The multinomial estimates do not account for this sampling aspect and,
as Allignol, Schumacher and Beyersmann (2010) showed, will typically under-
estimate cumulative probabilities of both spontaneous and induced abortion. The
reason is that the estimation bias is essentially mediated via underestimation of the
abortion hazards. These are underestimated because ignoring left-truncation will
artificially inflate risk sets.

Survival analysis accounts for left-truncation in that risk sets do not only de-
crease because of observed events or right-censorings, but may also increase be-
cause of delayed study entries. In a recent overview on the epidemiological study
of fecundity and of pregnancy outcomes, Slama et al. (2014) stressed the need to
use survival methodology that accounts for left-truncation. Andersen et al. (2012)
studied the effect of alcohol intake during pregnancy on fetal death using prospec-
tive cohort data and argued that a strength of their investigation was the use of
survival methods.

As again Meister and Schaefer (2008) pointed out, estimating pregnancy out-
come probabilities does not only need to account for left-truncation, but also for
competing risks, that is, different event types at the end of pregnancy. We will
be particularly interested in spontaneous and induced abortions. The standard non-
parametric estimator of the cumulative outcome probability in the presence of both
left-truncation and competing risks is the Aalen–Johansen estimator [Aalen and
Johansen (1978)]. One minus the sum of all the Aalen–Johansen estimators for all
outcome types equals the Kaplan–Meier estimator for pregnancy duration. In the
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absence of left-truncation and right-censoring, the Aalen–Johansen would equal
the standard multinomial estimates.

However, and in contrast to the standard survival situation with only right-
censoring, delayed study entries may lead to early random time intervals with
small risk sets. Observed outcome events during such intervals may lead to unsta-
ble estimates which propagate over the whole time span. This appears to be what
happened in a study on pregnancies exposed to statins [Winterfeld et al. (2013)].
As a consequence, the standard Aalen–Johansen estimator suggested that almost
40% of pregnancies in the control group ended in an induced abortion. This point
estimate was not considered to be plausible, given, for example, the numbers cited
for Germany above. As a further consequence, the point estimate of 40% induced
abortions also implied a decreased risk of induced abortion and an increased pro-
portion of live birth in the group of statin users, which was medically unexpected.

A common ad hoc approach—used by Winterfeld et al. (2013)—is to compute
a conditional Aalen–Johansen estimator, conditional on no event until risk sets are
large enough. However, this approach has drawbacks: First, it is ad hoc (unless the
time point of conditioning has been specified in advance) and changes the inter-
pretation. Second, one may possibly be faced with several disjoint time intervals
of overly small risk sets.

The methodological aim of this work is to develop a stabilized Aalen–Johansen
estimator, which is not ad hoc, and does not change the target quantity and ac-
counts for problematic time intervals with overly small risk sets. The idea is to
discard contributions from overly small risk sets, and traces back to Lai and Ying
(1991) who modified the Kaplan–Meier estimator. We revisit their approach and
show that its core is a modified Nelson–Aalen estimator [Andersen et al. (1993)].
Working with the fundamental Nelson–Aalen estimator allows for a generaliza-
tion to competing risks. Our uniform consistency result complements that of Lai
and Ying in that we do allow for a random number of random time intervals with
overly small risk sets, while the proof of Lai and Ying essentially assumes that
there is only one such early interval. Our weak convergence result allows for the
same formalization of when a risk set is overly small. This is in contrast to Lai and
Ying who imposed more restrictive assumptions for their weak convergence result.
We also note that we use martingale arguments, complemented by the functional
delta method, as in Andersen et al. (1993) throughout, while Lai and Ying used
empirical process arguments for showing consistency. We also use martingale ar-
guments to derive (co-) variance estimators, not derived in the earlier paper. To the
best of our knowledge, our reanalysis of the statin data is one of the first real data
analyses that illustrates the practical relevance of the Lai and Ying approach, now
generalized to competing outcomes.

An important practical difficulty when using the suggestions of Lai and Ying
and the present paper is that the concept of an overly small risk set is formalized
as a function of the number of individuals under study and controlled by tuning
parameters. For estimating pregnancy outcomes, we use a cross-validated choice
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of the tuning parameters based on the Brier Score [e.g., Held and Sabanés Bové
(2014)]. Predictions of pregnancy outcome are derived from the stabilized Aalen–
Johansen estimates. The Brier Score is then estimated for updated predictions
given study entry. In order to both train and apply the procedure on the same data
set, this approach is combined with the 632 bootstrap [Gerds and Schumacher
(2007)]. The paper is organized as follows: Section 2 introduces the competing
risks model and the standard nonparametric Nelson–Aalen and Aalen–Johansen
estimators. The modified estimators and their large sample properties are in Sec-
tion 3. Extensive simulation results are reported in Section 4. The analyses of the
statin data are in Section 5 and a discussion is in the final Section 6. The Appendix
contains all proofs and considers (co-) variance estimation. Some discussion of the
classical survival case and further simulation results are included in the supplement
[Friedrich et al. (2017)].

2. The competing risks model. In the following, we will introduce the basic
concepts and notations used in this work.

In a competing risks setting, we consider k ≥ 2 competing absorbing states. For
ease of presentation, we will assume two competing states in the following.

The stochastic process (X(t), t ≥ 0) corresponding to Figure 1 gives the state
occupied by the individual at time t , that is, X(t) = 0 as long as no event has
happened and X(t) = j , if an event of type j, j = 1,2, has occurred in [0, t]. The
event time is defined as

T = inf
{
t : X(t) �= 0

}
,

that is, T denotes the smallest time at which the process is not in the initial state
anymore.

The type of the first event, often called cause of failure, is given by X(T ) ∈
{1,2}, that is, the state the process enters at time T .

Key quantities are the cause-specific hazards α0j (t) for each competing event j ,

α0j (t) = lim
�t↘0

P(T ∈ [t, t + �t),X(T ) = j |T ≥ t)

�t
,(2.1)

which we assume to exist. Furthermore, we presume that
∫ τ

0 α0j (u) du < ∞ for
some time interval [0, τ ], τ < ∞. The cumulative cause-specific hazards are

A0j (t) =
∫ t

0
α0j (u) du, j = 1,2.

FIG. 1. Competing risks model with two competing events and cause-specific hazards α0j , j = 1,2.



844 S. FRIEDRICH ET AL.

The cause-specific hazards can be thought of as momentary forces of transi-
tion, moving along the arrows in Figure 1. It is crucial to note that both cause-
specific hazards completely determine the behavior of the competing risks process
[Andersen et al. (1993), Chapter II.6].

Another quantity of interest is the cumulative incidence function (CIF), which
describes the transition probability from state 0 to state j by time t :

P0j (0, t) = P
(
T ≤ t,X(T ) = j

)
for j = 1,2. More general, the matrix of transition probabilities is given by

P(s, t) = (
Plm(s, t)

)
l,m,

where Plm(s, t) = P(X(t) = m|X(s) = l), l,m ∈ {0,1,2}. The transition proba-
bility matrix may be written as a functional of the cumulative hazards via product
integration [Andersen et al. (1993), Theorem II.6.7]:

P(s, t) = π
(s,t]

(
I + dA(u)

)
,

where A = (Alm)l,m, All(t) = −∑2
m=0,l �=m Alm(t) and I is the identity matrix.

2.1. Nonparametric estimation. Usually, an individual’s event time and cause
of failure will be subject to right-censoring and/or left-truncation. TIS observa-
tional cohort data are typically only left-truncated such that pregnancy outcomes
are observed for every woman under study. Hence, our main focus will be on left-
truncation, similar to Keiding and Gill (1990). For completeness, however, we have
included right-censoring in our theoretical derivations.

Left-truncation arises, if study entry happens at some time point later than time
origin. For the case of pregnancy outcomes time origin would be the last menstrual
period, but women enter the study several weeks after conception. If the pregnancy
ends before a woman enters the study, it will never be observed.

In the presence of both left-truncation times Li and right-censoring times Ci ,
the observable data for individual i consists of (T̃i, δi,X(T̃i)). Here, T̃i = (Ti ∧
Ci) denotes the minimum of event and censoring time with Li < T̃i and δi =
1(Li < Ti ≤ Ci). Recall that for TIS observational cohort data we will typically
have Ci = ∞ for all individuals i under study. The at-risk process and counting
processes may be formulated as follows. For individual i with left-truncation time
Li and observed event time T̃i as well as event type j , we have

N0j ;i(t) = 1
(
Li < T̃i ≤ t,X(T̃i) = j, δi = 1

)
,

Yi(t) = 1(Li < t ≤ T̃i).

Here, N0j ;i(t) counts the number of observed 0 → j transitions for individual i in
[0, t]. Aggregating over all n individuals under study gives

N
(n)
0j (t) =

n∑
i=1

N0j ;i(t),
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as well as the at-risk process

Y (n)(t) =
n∑

i=1

1(Li < t ≤ T̃i).

For ease of presentation, we will drop the superscript n in the following.
The Nelson–Aalen estimators of the cumulative cause-specific hazards

[Andersen et al. (1993), Section IV.1] are given by

Ã0j (t) = ∑
s≤t

�N0j (s)

Y (s)

for j = 1,2 and the sum is over all observed, unique event times s ≤ t .
The cumulative incidence functions may be estimated by the Aalen–Johansen

estimator:

P̃0j (0, t) = ∑
s≤t

S̃(s−)
�N0j (s)

Y (s)
,(2.2)

where

S̃(t) = ∏
s≤t

(
1 − �Ã0·(s)

)
(2.3)

is the Kaplan–Meier estimator, that is, the estimated probability of the waiting time
T in the initial state 0 to exceed time t . The product is taken over all observed,
unique event times s ≤ t .

The connection of the general competing risks framework to the statin study is
presented in detail in the supplemental material [Friedrich et al. (2017)].

3. Modified Nelson–Aalen and Aalen–Johansen estimators for competing
risks. We will now present a modification of the Nelson–Aalen estimator to avoid
the problems caused by small risk sets at the beginning of a study, but possibly also
during intermediate time intervals.

Since for left-truncated data the number of individuals is not known at time 0,
we consider the data as being generated by a larger sample T̃i,Li , i = 1, . . . ,m(n),
where

m(n) = inf

{
m :

m∑
i=1

1(Li < T̃i) = n

}
(3.1)

as in Lai and Ying (1991). Here, n is the number of individuals under study.
To avoid the problems caused by small risk sets, we define the modified Nelson–

Aalen estimator as Â = (Â01, Â02), where

Â0j (t) = ∑
s≤t

�N0j (s)

Y (s)
1
(
Y(s) ≥ cnγ )

(3.2)
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for j = 1,2, c > 0 and γ ∈ (0,1). In the absence of competing risks, the modifi-
cation in (3.2) leads to the Kaplan–Meier-type estimator of Lai and Ying (1991)
using product integration as in Section 3.2 below. Our approach is based on Â first,
because the Kaplan–Meier estimator must not be used for estimating CIFs [Gooley
(1999)].

3.1. Large sample properties of the modified Nelson–Aalen estimator. In this
section, we will establish uniform strong consistency of the modified Nelson–
Aalen estimator from (3.2) as well as weak convergence toward a Gaussian mar-
tingale on the space of càdlàg functions D[0, τ ]2 using martingale arguments.

Since the only difference between the Nelson–Aalen estimator and its modi-
fication is the indicator function 1(Y (s) ≥ cnγ ), the argumentation seems to be
straightforward at first sight. For martingale arguments to work, however, we need
1(Y (s) ≥ cnγ ) to be predictable. But since n is random and not known at the be-
ginning of the study, 1(Y (s) ≥ cnγ ) is not predictable with respect to the usual
filtration generated by the past observed data. In order to avoid this problem, we
need to consider a different filtration—proposed by Lai and Ying (1991) for their
weak convergence result—which will be introduced in the following.

Let F(s) be the σ -field generated by

(3.3) Li,1(Li < T̃i),1(Li < u ≤ T̃i),1(Li < T̃i ≤ u), δiX(T̃i)1(Li < T̃i ≤ u)

for u ≤ s and i = 1,2, . . . ,m(n). This means that in addition to the observed past,
left-truncation times and whether or not an individual enters the study are assumed
to be known for all individuals and all time points. Additionally, the at-risk status
and the vital status are known for individuals under study and for all times u >

study entry.
The awkward aspect of this construction is that by assuming all left-truncation

times and all study entry statuses to be known beforehand, we possibly violate
the principle that one shall not condition on the future in an event history analysis
[Andersen and Keiding (2012)]. However, the only practical difference between
using this new filtration F(s) instead of the usual one is the fact that, by condi-
tioning on the study entry statuses 1(Li < T̃i) of all individuals, n is not random
anymore. This implies that m(n) and 1(Y (s) ≥ cnγ ) are both predictable with re-
spect to F(s−) [Lai and Ying (1991), Lemma 5].

ASSUMPTION 3.1. In the following, we will assume that the intensities of
the counting processes have a multiplicative intensity structure w.r.t. F(t) as in
Andersen et al. (1993), Section IV.1.2, such that

M0j (t) = N0j (t) −
∫ t

0
Y(s)α0j (s) ds, j = 1,2,

are martingales w.r.t. F(t), using predictability of 1(Y (s) ≥ cnγ ).
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Practically speaking, we assume that the knowledge of whether or not more
patients will enter the study later does not change the intensity of having an event
for a single individual. In particular, this assumption is fulfilled, if we assume i.i.d.
competing risks data, observation of which is subject to random left-truncation
and right-censoring, which is reasonable for many practical applications. Note,
however, that this assumption is stricter than conditioning on the usual filtration;
see Remark 7.1 in the supplemental material for an example.

The templates for our theorems and proofs are Theorems IV.1.1–2 of Andersen
et al. (1993), but using F(t) because of the modifications in (3.2).

We can now formulate and prove uniform strong consistency and weak conver-
gence for the modified Nelson–Aalen estimator:

THEOREM 3.2 (Strong consistency). Let t ∈ [0, τ ], c > 0 and γ ∈ (0,1) and
assume that, as n → ∞,∫ t

0

1(Y (s) ≥ cnγ )

Y (s)
α0j (s) ds

P→ 0(3.4)

and ∫ t

0

(
1 − 1

(
Y(s) ≥ cnγ ))

α0j (s) ds
P→ 0.(3.5)

Then, as n → ∞,

sup
s∈[0,t]

∣∣Â0j (s) − A0j (s)
∣∣ P→ 0

for j = 1,2.
This implies that

‖Â − A‖ P→ 0 as n → ∞,

where ‖ · ‖ is the max-supremum norm.

PROOF. The proof is deferred to the Appendix. �

THEOREM 3.3 (Weak convergence). Let t ∈ [0, τ ], c > 0, γ ∈ (0,1) and as-
sume that there exist nonnegative functions y(s) such that α0j (s)/y(s) is integrable
on [0, t] for j = 1,2. Let

σ 2
j (t) =

∫ t

0

α0j (s)

y(s)
ds(3.6)

and assume that:

(1) For each s ∈ [0, t] and j = 1,2,

n

∫ s

0

1(Y (u) ≥ cnγ )

Y (u)
α0j (u) du

P→ σ 2
j (s) as n → ∞.
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(2) For j = 1,2 and all ε > 0,

n

∫ t

0

1(Y (u) ≥ cnγ )

Y (u)
α0j (u)1

(∣∣∣∣√n
1(Y (u) ≥ cnγ )

Y (u)

∣∣∣∣ > ε

)
du

P→ 0

as n → ∞.
(3) For j = 1,2,

√
n

∫ t

0

(
1 − 1

(
Y(u) ≥ cnγ ))

α0j (u) du
P→ 0 as n → ∞.

Then
√

n(Â − A)
D→ W = (W1,W2)

in D[0, τ ]2 as n → ∞, where W1, W2 are independent Gaussian martingales with
covariance function:

Cov
(
Wj (s1),Wj (s2)

) = σ 2
j (s1 ∧ s2).

Here, s1 ∧ s2 denotes the minimum of s1 and s2.

PROOF. The proof is in the Appendix. �

Note that the conditions (3.4) and (3.5) are fulfilled, if Y(s)/n is uniformly
bounded away from 0 on [0, τ ] in probability, w.r.t. a probability measure given
study entry; see Example IV.1.7 in Andersen et al. (1993). Sufficient conditions for
this are i.i.d. event times Ti with absolutely continuous distribution function F(t)

such that F(s) < 1 for all s ∈ [0, τ ] and i.i.d. left-truncation times and censoring
times (Li,Ci), independent of the Ti’s. Let G(s) = P(L < s ≤ C) and assume that
G(s) > 0 for all s ∈ [0, τ ] and Li < Ci with probability 1. In this case, Conditions
(1)–(3) of Theorem 3.3 are fulfilled and y(s) is given by

y(s) = 1

p
G(s)

(
1 − F(s)

)
,

where p = P(L < T ). Note that this covariance function of the limiting Gaussian
martingale is the same as for the usual Nelson–Aalen estimator; see Andersen et al.
(1993), Example IV.1.7.

3.2. The modified Aalen–Johansen estimator for competing risks. We can use
the modified Nelson–Aalen estimator for competing risks from (3.2) to define a
modification of the Aalen–Johansen estimator via product integration:

P̂(s, t) = π
(0,t]

(I + dÂ) = ∏
s≤t

(
I + �Â(s)

)
,

where I is the 2 × 2 identity matrix and the product is over all observed, unique
event times s ≤ t . Strong consistency and weak convergence for the modified
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Aalen–Johansen estimator then follow by using the continuous mapping theorem
and the functional delta method, similar to Andersen et al. (1993), Section IV.4.2.
Again, note that the limit distribution is the same as for the classical Aalen–
Johansen estimator and will therefore not be repeated here.

For the estimated cumulative incidence functions, we get the following modifi-
cation:

P̂0j (0, t) = ∑
s≤t

Ŝ(s−)
�N0j (s)

Y (s)
1
(
Y(s) ≥ cnγ )

,(3.7)

where Ŝ(t) is the modified Kaplan–Meier estimator for overall survival due to Lai
and Ying (1991),

Ŝ(t−) = ∏
u<t

(
1 − �N0·(u)

Y (u)
1
(
Y(u) ≥ cnγ ));

see the supplemental material [Friedrich et al. (2017)] for a derivation of the mod-
ified Kaplan–Meier estimator in the classical survival case.

3.3. Choice of the tuning parameters c and γ . The modified Aalen–Johansen
estimator is based on tuning parameters c and γ which—in a real data analysis—
need to be chosen properly. We propose to use a cross-validation procedure [e.g.,
Hastie, Tibshirani and Friedman (2009)] combined with a 632 bootstrap approach
[Gerds and Schumacher (2007)] that will be explained in Section 4.3. The aim of
the present subsection is to suggest a measure of prediction error for pregnancy
outcome data which can be used in the cross-validation process.

To this end, recall that survival methods are used because pregnancy cohorts are
left-truncated, but primary interest is in the eventual outcome X(T ). We estimate
P(X(T ) = j) by the right-hand limit P̂0j (0,∞) of the (modified) Aalen–Johansen
estimator. The aim is now to compare the prediction of a type j event for all n

individuals i in the data with the actual event status X(Ti). Because individual i

has left-truncation time Li = li , we use the updated prediction [van Houwelingen
and Putter (2012), pp. 45–46]

(3.8) πi = P̂
(
T ≤ ∞,X(T ) = j |T > li

) = P̂ (T > li, T ≤ ∞,X(T ) = j)

Ŝ(li)
,

i = 1, . . . , n, and consider the estimated Brier Score [e.g., Held and Sabanés Bové
(2014)]:

(3.9) BS = 1

n

n∑
i=1

(
1
(
X(Ti) = j

) − πi

)2

as a measure of prediction error.
Estimating the Brier Score for survival data is typically complicated by right-

censoring, because the event status after censoring is unknown. This has been
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addressed by Inverse Probability of Censoring Weighting for time-to-death data
[Gerds and Schumacher (2006)] and for competing risks [Schoop et al. (2011)]. In
(3.9), we exploit that pregnancy outcomes are observed for all women under study,
which in turn implies that (3.9) estimates the expected Brier Score w.r.t. a proba-
bility measure given study entry. This is common for left-truncated data [Andersen
et al. (1993), Example IV.1.7].

4. Simulation studies. We will now conduct several simulation studies in or-
der to analyze the behavior of our modified Aalen–Johansen estimator in different
scenarios. We begin by describing the simulation setting, which is custom-made
to produce events in early small risk sets, similar to the pregnancy data that will
be analyzed in detail in Section 5. Next, and as suggested by Lai and Ying (1991),
we focus on the choice γ = 1/4 and c = 1 for the tuning parameters and ana-
lyze the small sample behavior in this scenario. Finally, the tuning parameters are
chosen using cross-validation combined with a resampling approach. In addition,
the supplement [Friedrich et al. (2017)] presents results concerning large sample
consistency as well as a second simulation setting with less pronounced truncation.

Results of 10,000 simulation runs are reported as plots of the estimated CIFs,
comparing both the classical Aalen–Johansen estimator and its modified version
to the real CIF. Furthermore, the average number of individuals at risk, the bias,
relative bias and the root mean squared errors (RMSE) for both estimators as well
as the variance estimators are reported in tabular form in Section 9 of the supple-
mental material.

4.1. Simulation setting. Our aim is to simulate competing risks data similar
to the pregnancy data from Section 5. Since our interest lies in what happens at
the beginning of the study, we only simulate two competing states that might be
interpreted as spontaneous and induced abortion. Motivated by the data example
from Section 5, we chose a linearly decreasing cause-specific hazard

α01(t) = −1.7 · 10−4 · t + 0.017

for the event of interest and a Weibull-type cause-specific hazard

α02(t) = 1.4

271.4 · t0.4

for the competing event. Competing risks data were simulated as in Beyersmann
et al. (2009):

1. Survival times T are simulated with all-cause hazard α0·(t) = α01(t)+α02(t)

2. Given a survival time T = t , a binomial experiment is run, which decides on
cause 1 with probability

P
(
X(T ) = 1|T = t

) = α01(t)

α0·(t)
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3. Left-truncation times L are simulated independently of [T ,X(T )].
The truncation times followed a skewed normal distribution with density func-

tion

f (x) = 2

ω
φ

(
x − ξ

ω

)


(
α

[
x − ξ

ω

])
,

where ξ is the location parameter, ω the scale parameter and α the shape pa-
rameter and φ and  are the density and the cumulative distribution function
of a standard normal distribution, respectively. The parameters were chosen as
(ξ,ω,α) = (16,4.3,−8).

We simulated two different scenarios to analyze the behavior in small samples
as well as in large samples (see the supplement [Friedrich et al. (2017)] for details
and results of the latter).

4.2. Small sample behavior. For the small sample scenario, m = 200 individ-
uals were simulated. Since the data are left-truncated, only individuals with L < T

enter the study. Therefore, the number n of people under study was random with
n ≤ m, ranging from 89 to 144. On average, n = 117 people entered the study in
the small sample scenario.

The value of cnγ � was calculated for each data set with the corresponding
number of individuals under study in this data set. In the plots below, the average
value of cnγ � is reported, which is stressed by using, for example, cnγ � ≈ 4 in-
stead of cnγ � = 4. The same notation is used for n. For the simulated data sets, the
Aalen–Johansen estimator for the event of interest and its modified version were
calculated along with 95% complementary log-minus-log transformed confidence
intervals (CI) based on the usual and the modified variance estimator, respectively.
Both variance estimators were of the Greenwood-type and calculated according to
Section A.1 in the Appendix. The complementary log-minus-log transformed con-
fidence interval takes the form [Beyersmann, Allignol and Schumacher (2012)]

1 − (
1 − P̂0j (0, t)

)exp(±z1− α
2
· σ̂AJ(t)

(1−P̂0j (0,t))·log(1−P̂0j (0,t))
)

,(4.1)

where P̂0j (0, t) is the Aalen–Johansen estimator or its modified version, respec-
tively, and σ̂ 2

AJ(t) is the corresponding estimated variance. The transformation
guarantees that the CI is contained in [0,1].

For the plots below, however, we used empirical point-wise 95% confidence
intervals constructed by taking the 2.5% and 97.5% percentile of the simulated
CIFs. Note that we have inserted a small gap between the estimators in all plots
to improve distinguishability, but the estimators were calculated for the same time
points.

Figure 2 shows that both estimators underestimate the true CIF for the event
of interest, but the median bias of the two estimators is comparable. However,
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FIG. 2. Results of 10,000 simulation runs in the small sample scenario: On average, n = 117 out of
200 simulated individuals enter the study. Displayed are the median Aalen–Johansen estimator and
its modified version along with empirical 95% CIs, as well as the true CIF for the event of interest
(gray line). The lower plot shows the average number of individuals at risk over the course of time.

the empirical confidence intervals for the new estimator are smaller than the ones
for the Aalen–Johansen estimator. An explanation can be found by looking at the
mean bias; see Figure 7 in the supplement. Here, we see that the modified Aalen–
Johansen estimator has—on average—a larger absolute bias than the usual Aalen–
Johansen estimator. As we can see in Figure 8 in the supplement, this is due to
the fact that the modified estimator eliminates “outliers.” The light gray lines in
Figure 8 display randomly chosen CIFs, estimated by the original Aalen–Johansen
estimator. We see a large amount of these reaching implausibly high levels at the
plateau, because an event happened early, adding to the variability of the usual
Aalen–Johansen estimator. The modified estimator, in contrast, ignores these “out-
liers,” resulting in a higher absolute bias on average and a smaller variation.

A detailed analysis for the scenario with γ = 0.25 and c = 1 is presented in
Table 9.1 in the supplement. Reported are the average number of individuals at risk
Ȳ (t), the mean and median bias for both the true Aalen–Johansen estimator and
the modified version, the root mean squared errors (RMSE) for both estimators as

well as the variance estimators. The RMSE is computed as
√

(
¯̂
F − F)2 + var(F̂ ),

where F denotes the true CIF for the event of interest and ¯̂
F is the averaged CIF

estimated by either the Aalen–Johansen estimator or the modified estimator.
More extreme choices of c and γ lead to meaningless estimates; see Section 9.1

in the supplemental material. There, we also included the large sample simulations,
which confirm consistency of the new estimator.

In order to analyze the behavior of the new variance estimator, we plotted the
variance estimators for both the Aalen–Johansen and the new estimator as well
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FIG. 3. Results of 10,000 simulation runs in the small sample scenario: On average, n = 117
out of 200 simulated individuals enter the study. Displayed are the mean variance estimators of
the Aalen–Johansen estimator and its modified version, respectively, compared to the corresponding
empirical variance.

as the corresponding empirical variances for γ = 0.25, c = 1 and n = 117. Both
variance estimators are biased downward compared to the empirical variance; see
Figure 3. Such negative bias has also been documented for the Kaplan–Meier esti-
mator [Klein (1991)]. As anticipated, Figure 3 also documents the smaller variation
of the new estimator.

4.3. A cross-validated and resampled choice of c and γ . So far, we considered
ad hoc choices for the tuning parameters c and γ . In order to determine suitable—
data-driven—choices for these parameters we have used cross-validation com-
bined with a resampling approach in order to both train and apply the stabilized
estimator on the same data set. This procedure will be described in detail in the
following.

We restricted our investigation to the small sample simulation setting in the
above scenario, that is, we simulated 10,000 data sets, each with m = 200 individ-
uals out of which on average n = 117 entered the study. For each data set, we used
a cross-validation procedure to choose the tuning parameters, say c0 and γ0, which
were then used for estimation of the cumulative incidence function.

Since a classical cross-validation estimator tends to be positively biased because
it is trained with less information than provided by the full data [Gerds and Schu-
macher (2007)], we have applied a 632 bootstrap procedure. The idea behind this
approach is to balance the upward bias (resulting from using fewer data than in the
full data set) and the downward bias of the so-called apparent error [Efron (1983),
Efron and Tibshirani (1997), Gerds and Schumacher (2007)]. The procedure works
as follows.
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TABLE 1
Choices for c and γ such that

cnγ � ∈ {1, . . . ,10} for n = 117

�cnγ � c γ

1 0.02 0.75
2 0.7 0.1
3 2 0.01
4 1 0.25
5 0.3 0.55
6 0.5 0.5
7 1.5 0.3
8 0.1 0.9
9 6 0.07

10 3.5 0.2

For each simulated data set, we first drew B = 1000 bootstrap samples of size
n with replacement from the data. For each of the b = 1, . . . ,B samples Q∗

b, we
calculated the modified Aalen–Johansen estimator P̂ with parameters (c, γ ) for a
choice of parameters as in Table 1.

Following Section 3.3, we then predicted the pregnancy outcome for each indi-
vidual i not in Q∗

b by

πi = P̂ (T > li, T ≤ ∞,X(T ) = 1)

Ŝ(T > li)
,

where li denotes the left-truncation time of individual i and j = 1 is the event of
interest.

The predicted outcomes were compared to the true outcomes by estimating the
Brier Score for all ñ individuals not in Q∗

b, that is,

Êrrb = 1

ñ

∑
i /∈Q∗

b

(
1
(
X(Ti) = 1

) − πi

)2
.

We then averaged over all bootstrap samples, that is, we calculated

ÊrrB0 = 1

B

B∑
b=1

Êrrb.

Finally, the resulting error is given as

Êrrω = (1 − ω)
1

n

n∑
i=1

(
1
(
X(Ti) = 1

) − πi

)2 + ωÊrrB0,
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FIG. 4. Results of 10,000 simulation runs in the cross-validation study: Displayed are the median
Aalen–Johansen estimator and its modification using (c0, γ0) along with 95% empirical CIs and the
number of individuals at risk over the course of time (lower plot). On average, n = 117 out of 200
simulated individuals enter the study.

with ω = 0.632, which balances the upward bias of ÊrrB0 and the downward bias
of the apparent error 1

n

∑n
i=1(1(X(Ti) = 1) − πi)

2 [see Efron (1983), Efron and
Tibshirani (1997), Gerds and Schumacher (2007) for further details].

These steps were conducted for all parameters (c, γ ) displayed in Table 1. Here,
we chose pairs of parameters such that cnγ � covered the values between 1 and 10
for n = 117, that is, the border for an overly small risk set varied from 1 to 10. The
parameters (c0, γ0) resulting in the smallest Êrrω were used for the calculation
of the results. Combining all 10,000 simulation runs resulted in a median value
of cnγ � ≈ 6. Figure 4 illustrates findings similar to Section 4.2 for the original
choice of γ = 0.25 and c = 1. A plot of the mean estimators is in Section 9.3 of
the supplement.

4.4. Coverage probabilities. Additionally, we calculated the coverage proba-
bilities for the small sample scenario. Therefore, the complementary log-minus-log
transformed confidence intervals were calculated for the classical Aalen–Johansen
estimator as well as for the modified estimator, once with γ = 0.25 and c = 1 and
once with the cross-validated (c0, γ0). The percentage of simulation studies, in
which the estimated CI contained the true value of the CIF is reported in Table 2.
As one can see, the coverage probabilities for all estimators are comparable, but
smaller than 95%.

The implication is threefold: As seen above, the new estimator protects against
the CIs being constructed around implausibly large values. The width of the empir-
ical CIs is smaller compared to the standard method, while coverage probabilities
are similar and do not reach the nominal level.
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TABLE 2
Coverage probabilities (CP) from 10,000 simulation studies in % for the modified and the original
Aalen–Johansen estimator, respectively. Complementary log-minus-log transformed 95% CIs used,
mean n = 117. CP modified: γ = 0.25, c = 1, CP cross-validation: cnγ � ≈ 6. Right column: CP of
the modified estimator in a scenario with less pronounced left-truncation, n ≈ 184, γ = 0.25, c = 1;

see the supplement for details

Small sample scenario Light truncation scenario

Time CP modified CP cross-validation CP original CP modified

2 0.00 0.00 0.00 23.21
4 0.02 0.02 0.11 82.17
6 2.03 0.70 3.62 92.25
8 16.66 9.75 20.25 91.43

10 46.95 41.62 49.14 90.88
12 71.19 68.69 71.31 90.92
14 68.92 66.27 69.38 91.35
16 67.03 64.51 67.97 91.73
18 67.28 64.92 68.39 91.85
20 68.29 66.15 69.56 92.02

For our application, the main interest lies in the behavior at the plateau, that
is, coverage probabilities of only 70% at time 20 are a concern whereas the small
coverage probabilities for early time points (< 5% for t = 6) are not.

For comparison, coverage probabilities of the modified estimator in a scenario
with less pronounced truncation are displayed in the right column of Table 2; see
Section 9.4 in the supplement for details on the simulation setting. As we can see,
coverage probabilities are much closer to the nominal level in this scenario. Fur-
thermore, coverage probabilities were also calculated in a simulation setting with-
out truncation. We found that the nominal level of 95% was always approximately
reached (results not shown). This suggests that the above difficulties in variance
estimation and construction of confidence intervals arise from left-truncation.

Finally, we note that coverage probabilities are slightly worse when using the
cross-validated tuning parameters. However, the difference is minimal, which pro-
vides reassurance about the reliability of the proposed data-driven choice of tuning
values.

5. The statin study: Estimation of pregnancy outcome probabilities. The
statin study aimed at estimating the risk of adverse pregnancy outcomes including
spontaneous abortion associated with exposure to these drugs during pregnancy
[Winterfeld et al. (2013)]. Statins are a class of drugs aiming at reducing choles-
terol levels. Current guidelines advise to stop statin treatment during pregnancy,
but since statins are widely prescribed and there is a trend for women to become
pregnant later in life, an increasing number of women with childbearing potential
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are likely to receive statin therapy, which might in turn increase the incidence of
inadvertent fetal exposure. Details on the study can be found in Winterfeld et al.
(2013).

Pregnancy outcomes of women, who had contacted a TIS on the use of statin
during the first trimester of pregnancy were compared to a control group, which
consisted of women seeking advice on drugs known to be non-teratogenic. Avail-
able for our data analysis were 235 women exposed to statin and 187 controls with
complete information on study entry times and pregnancy outcomes.

The resulting CIFs for spontaneous and induced abortion and live birth of a first
analysis using standard estimation techniques are displayed in Figure 5. Confi-
dence intervals were computed using a Greenwood-type estimator as in (A.5) and
a complementary log-minus-log transformation as in (4.1).

First of all, we notice that statin use during pregnancy increases the absolute
risk of spontaneous abortion. Unexpectedly, however, standard estimation leads
to a CIF of induced abortion of 0.37 at the plateau for the control group, which
is also much higher than in the exposed group. Furthermore, this leads to an in-
creased probability of live birth in the exposed group as compared to the controls,
suggesting statin use to have a protective effect on both induced abortion and live
birth.

As can be seen in the lower plot of Figure 5 this high estimand is due to the fact
that an induced abortion happened in week 4 of the pregnancy when only 3 women
were at risk in the control group, leading to a high variability and questionable
estimates for the probability of induced abortion.

The practical implications of this were two-fold: From a statistical perspective,
the high variability may possibly mask a difference between the curves because of
loss of power. In our collaborative experience, however, discussion centered on the
point estimate of induced abortion, which was considered to be implausible, and,
as a consequence, the beneficial association (in terms of the point estimates) be-
tween use of statin and both induced abortion and live birth, which was medically
unexpected.

A common solution of the problem is to estimate the CIFs conditional on being
event-free up to week 4 of the pregnancy, that is, to estimate P(T ≤ t,X(T ) =
j |t > 4), j = 1,2,3. This was also the approach used by Winterfeld et al. (2013).
However, this conditional estimation is ad hoc in the sense that the time point of 4
weeks is chosen based on the data at hand and not defined a priori. The advantage
of the novel analyses below—using our modified Aalen–Johansen estimator—will
be that it allows for estimating unconditional CIFs. This is relevant for our medical
research question: Statin treatment is usually stopped during pregnancy, and the
main aim of our analysis was to estimate the absolute outcome risks P(X(T )= j),
j = 1,2,3, for a statin user who becomes pregnant. Unlike the ad hoc solution, the
new approach would also apply if further problematic time intervals had occurred
after week 4, but still in the first trimester of pregnancy, in which our main interest
lies.
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FIG. 5. Results of the three analyses: The upper plot displays the CIFs for spontaneous abor-
tion, induced abortion and live birth, estimated by the classical Aalen–Johansen estimator. The sec-
ond plot shows the corresponding CIFs estimated by the modified Aalen–Johansen estimator using
cnγ � = 4. The third plot shows the CIFs estimated by the modified Aalen–Johansen estimator using
the results of the 632 bootstrap procedure, that is, cnγ

c � = 9 in the control group and cnγ
e � = 1

for the exposed. The lowest plot shows the number of women at risk at each time point in the control
group and the exposed group, respectively.
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We start with a first reanalysis in Section 5.1, using γ = 1/4 and c = 1 as sug-
gested by Lai and Ying (1991). Next, in Section 5.2, we cross-validate our choice
of γ and c as in Section 4.3, again combined with a resampling approach in order
to both train and apply the stabilized Aalen–Johansen estimator on the statin data.
Finally, a simple two group comparison following the suggestion of Meister and
Schaefer (2008) is in Section 5.3.

5.1. A first reanalysis with γ = 1/4 and c = 1. A first choice of γ = 1/4
and c = 1 implies a border of cnγ � = 4 for the exposed group (ne = 235) as
well as for the controls (nc = 187). The resulting CIFs are displayed in Figure 5.
Again, complementary log-minus-log transformed confidence intervals based on a
Greenwood-type variance estimator are displayed.

Now, the CIF for induced abortion in the control group runs below the one for
the exposed group and does not reach such an implausibly high plateau anymore.
Moreover, the estimated probability for experiencing a live birth in the control
group is now higher than for the statin users and confidence intervals are much
smaller for both induced abortion and live birth.

These findings suggest that applying the modified Aalen–Johansen estimator
is meaningful in this setting. However, we have seen in the simulation studies,
that the choice of the tuning parameters is crucial for obtaining valid results. We
would therefore like to determine optimal—data-driven—choices of c and γ for
the analysis of this data.

5.2. A cross-validated and resampled reanalysis. In order to choose optimal
parameters γ and c, we apply cross-validation combined with a resampling ap-
proach as in Section 4.3 in order to both train and apply the stabilized Aalen–
Johansen estimator on the statin data. We applied the 632 bootstrap procedure
described in Section 4.3 with B = 10,000 bootstrap runs to the pregnancy data,
analyzing the two treatment groups separately.

We again considered values for the two parameters c and γ such that cnγ � ∈
{1, . . . ,10} for both the control (n = nc = 187) and the exposed (n = ne = 235)
group. Note that the choices of the parameters for both groups coincide in most
cases because sample sizes are comparable in the two groups.

Repeating the 632 bootstrap procedure for all choices of c and γ displayed in
Table 3 and choosing the model with the smallest error Êrrω resulted in cnγ

c � = 9
for the control group and cnγ

e � = 1 for the exposed. The results are displayed in
Figure 5.

As we can see, there is no notable difference between the first reanalysis of the
previous subsection and the present one. This is due to the fact that the risk set
increases pretty fast after the first few weeks and minor changes in the bound cnγ

therefore do not alter the estimation much. However, the 632 bootstrap version is
the preferred method since the choice of the tuning parameters is less arbitrary.
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TABLE 3
Choices for c and γ such that cnγ � ∈ {1, . . . ,10} for nc = 187 and

ne = 235, respectively

Control Exposed
n = nc = 187 n = ne = 235

�cnγ � c γ c γ

1 0.002 0.75 0.002 0.75
2 0.7 0.1 0.7 0.1
3 2 0.01 2 0.01
4 1 0.25 1 0.25
5 0.3 0.55 0.3 0.55
6 0.5 0.5 0.5 0.5
7 1.5 0.3 1.5 0.2
8 0.1 0.73 0.1 0.73
9 6 0.07 6 0.07

10 3.5 0.2 4 0.15

5.3. Two group comparisons. We have furthermore conducted a test in order
to examine whether the probability of spontaneous or induced abortion at time
t = 40 weeks differs between the two treatment groups.

Using the proposed estimator, the estimated cumulative incidence of sponta-
neous abortion by forty weeks was 0.21 (95% CI: [0.13,0.28]) in the exposed
group compared to 0.1 (95% CI: [0.04,0.16]) in the control group. A two-sided
comparison of these probabilities following Meister and Schaefer (2008) led to a
p-value of 0.014 indicating a significant increase in the CIF of spontaneous abor-
tion for the statin users. Using the classical Aalen–Johansen estimator led to the
same results for the exposed group compared to 0.07 (95% CI: [0.00,0.13]) in the
control group and a p-value of 0.003.

For induced abortion, the proposed estimator led to an estimated cumulative
incidence of 0.09 (95% CI: [0.04,0.15]) in the exposed group compared to 0.05
(95% CI: [0.0,0.1]) in the control group with a two-sided p-value of 0.114. Again,
the classical Aalen–Johansen estimator led to the same results for the exposed
group, but resulted in an estimate of 0.37 (95% CI: [−0.14,0.87]) in the control
group with a two-sided p-value of 0.852. While we cannot reject the null hypoth-
esis for induced abortion for neither estimator, the p-value is much higher in the
standard analysis, because the estimated probability in the control group is much
higher with wider confidence intervals when using the classical Aalen–Johansen
estimator. This again shows the high variability of the Aalen–Johansen estimator
as a consequence of an event in an early small risk set.

6. Discussion. We have developed a stabilized Aalen–Johansen estimator for
the cumulative event probability of a competing risk that discards contributions
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from risk sets that are too small to produce reliable estimates. The motivation was
a study on the use of statin during pregnancy. The standard Aalen–Johansen es-
timator does account for delayed study entries of pregnant women, but produced
a medically unexpected finding because of an early induced abortion in an overly
small risk set. This has been remedied by the new approach. We first discuss as-
pects which are more closely linked to the data application and consider more
general aspects afterward.

To begin, we have argued that, in terms of the point estimates, the beneficial
association between use of statin and both induced abortion and live birth was
medically unexpected or even implausible. However, several potential confounders
that could not be controlled for in the analysis may have influenced the induced
abortion of pregnancy rates in the statin-exposed and the control group. Factors
that might have increased the risk in the statin group include concerns of preg-
nant women or their physicians regarding underlying disease as well as inadver-
tent exposure in the beginning of pregnancy and their consequences on pregnancy
outcome. Since women are currently advised to discontinue statin treatment when
planning a pregnancy, there also might have been a higher rate of unplanned preg-
nancies with poorer acceptance in the statin group. In contrast, socio-economic
status might have differed between groups with affluent women potentially taking
more statins while also terminating pregnancies less often.

Next, we have argued that the conditional analysis of Winterfeld et al. (2013)
was meaningful, but ad hoc, because the time point of conditioning had not been
specified in advance. We have also argued that the original research question would
be addressed best by an unconditional analysis. Two remarks are in place: First,
there will be research questions where conditional analyses may be most adequate.
In the current context, one may envisage interest in preterm birth conditional on
survival of the first trimester of pregnancy. Such research might also be more in-
terested in the actual timing of events than our present analysis was. Second, an
analysis based on the stabilized Aalen–Johansen estimator will be ad hoc, too, if
the tuning parameters for formalizing an overly small risk set are chosen ad libi-
tum.

We have used cross-validation for selection of the tuning parameters, combined
with a 632 bootstrap procedure in order to both train and apply our procedure on
one data set. In the process of cross-validation, one has to make a decision as to
which measure of (prediction) error one has to optimize. We have suggested to
use an estimated Brier Score for left-truncated pregnancy outcomes. This involves
some characteristics for the data problem at hand: Major interest lies in the even-
tual outcome type, and there is less interest in its timing. In the cross-validation,
we have used updated prediction given time of study entry. Because once under
study, pregnancy outcomes are observed, there was no need for Inverse Proba-
bility of Censoring Weighting techniques, but the expected Brier Score is w.r.t. a
probability measure given study entry.
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We have made an independent left-truncation assumption as in Andersen et al.
(1993) that assumes that the compensator of the observable counting process coin-
cides with the compensator in the absence of left-truncation save for the modified
at-risk status. A concern is that this may be violated for induced abortion out-
comes. As stated in the Introduction, one aim of TIS counseling is to reduce the
rate of induced abortions based on irrational overestimation of drug risks. On the
other hand, Allignol, Schumacher and Beyersmann (2010) found in a larger study
on the effect of coumarin anticoagulants during pregnancy that study entry may
have an effect on the hazard of induced abortion. The issue is not at all clear: Test-
ing independent left-truncation has mainly been investigated for all-cause survival
outcomes, for example, Tsai (1990). Competing risks complicate the situation. It
is possible that study entry has an effect on the cause-specific hazards for events 2
and 3, but not on their sum, which would be the competing hazard for event 1. The
issue merits further research, possibly using a synthesis model as in Beyersmann
and Schumacher (2008). It will also be worthwhile to study in more detail mod-
eling of dependent left-truncation as in Mackenzie (2012), but in the presence of
competing risks. In either case, delayed study entry must be accounted for and,
therefore, the present approach improves on the commonly used multinomial esti-
mates.

As stated in Section 4.2, the new approach avoids implausibly large point esti-
mates. As a consequence, it tends to display a larger absolute mean bias, but me-
dian biases are comparable between the modified and the standard Aalen–Johansen
estimator. Another consequence is a smaller variation resulting in smaller widths
of the confidence intervals. Because the coverage probabilities are comparable, we
prefer the new procedure. However, the coverage probabilities for both procedures
leave something to be desired and merit future research, possibly using resampling
procedures.

A major extension along the lines of the present work will be to study the Aalen–
Johansen estimator of the transition matrix of a time-inhomogeneous Markov pro-
cess with finite state space. Unlike Lai and Ying, we have chosen to first work
with the multivariate Nelson–Aalen estimator and to subsequently translate results
for probability estimation using product integration. Therefore, the generalization
should be technically straightforward, but we expect it to be also relevant for such
multistate models even in the absence of left-truncation: For instance, in an illness-
death model without recovery, initial state 0, intermediate illness state 1 and ab-
sorbing death state 2, there will be internal left-truncation due to 0 → 1 transitions.
Examples with unstable estimation can be constructed along the lines of Section 4,
even if there are no delayed study entries and all individuals are prospectively
followed-up starting in state 0 at time 0.

Three final technical remarks are in place: First, we have used martingale argu-
ments throughout, using Andersen et al. (1993) as a template. This has substan-
tially simplified our proofs compared to Lai and Ying (1991). However, two tech-
nical ideas of Lai and Ying that are not used in the theory of Andersen et al. were
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important in our developments. First, we viewed the actual sample under study of
size n as being generated by a larger sample m(n). This mirrors the common sim-
ulation approach of simulating m(n) individuals, but only treating n, n < m(n),
individuals as being observed; see Section 4. The nice technical consequence is
that one does not have to work with conditional probability measures given study
entry. (An alternative simulation approach would be to simulate study entries and
to subsequently simulate event times.) Second, we did not work with the usual fil-
tration where the past encodes all data observed by the researcher so far, but we
followed the approach of Lai and Ying and enlarged the usual filtration with ad-
ditional knowledge of the study entry times and under study statuses of all m(n)

individuals. Technically, this ensured predictability of the bound cnγ , and hence,
enabled use of martingale methods. Interpretationally, this is potentially awkward
because knowledge of future study entry is unknown in practice. However, for
most applications this can be viewed as a mere technical device that ensures pre-
dictability, but does not compromise practical inference. The assumption is that
the momentary intensity of an individual under study does not depend on future
study entries of other individuals. However, counter examples may be constructed
(see Remark 7.1 in the supplement [Friedrich et al. (2017)]) and, therefore, our
assumptions are more restrictive than those of Andersen et al. (1993).

APPENDIX: TECHNICAL DETAILS AND PROOFS

This Appendix contains the proofs of Theorem 3.2 and Theorem 3.3 as well as
a section on variance estimation.

PROOF OF THEOREM 3.2. Consider the modified estimator:

Â0j (t) =
∫ t

0

1(Y (s) ≥ cnγ )

Y (s)
dN0j (s)

and let

A∗
0j (t) =

∫ t

0
1
(
Y(s) ≥ cnγ )

α0j (s) ds.(A.1)

Then

H(s) = 1(Y (s) ≥ cnγ )

Y (s)
(A.2)

is predictable w.r.t. F(s), since Y(s) and n are known at s−. Introduce the mean-
zero martingale:

Z0j (t) =
∫ t

0
H(s) dM0j (s) = Â0j (t) − A∗

0j (t), j = 1,2(A.3)
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with predictable covariation process given by

〈Z0j ,Z0l〉(t) =
〈∫ t

0
H(s) dM0j (s),

∫ t

0
H(s) dM0l(s)

〉
=

∫ t

0
H 2(s) d〈M0j ,M0l〉(s)

= δj l

∫ t

0
H(s)α0j (s) ds.

Here, δj l denotes the Kronecker delta, that is, δj l = 1 for j = l and 0, otherwise.
The martingales M01 and M02 are orthogonal, since the new filtration—as ex-

plained above—leaves the intensity processes of the martingales unchanged.
With Lenglart’s inequality [Andersen et al. (1993), Section II.5.2.1], we get for

any δ, η > 0:

P
(

sup
s∈[0,t]

∣∣Â0j (s) − A∗
0j (s)

∣∣ > η
)

≤ δ

η2 + P

(∫ t

0

1(Y (s) ≥ cnγ )

Y (s)
α0j (s) ds > δ

)
.

By (3.4), it follows that

sup
s∈[0,t]

∣∣Â0j (s) − A∗
0j (s)

∣∣ P→ 0, n → ∞.

Furthermore,∣∣A∗
0j (s) − A0j (s)

∣∣ =
∫ s

0

(
1 − 1

(
Y(u) ≥ cnγ ))

α0j (u) du
P→ 0

by (3.5) and consistency of the modified estimator follows.
The final conclusion follows directly by applying the max-supremum norm. �

PROOF OF THEOREM 3.3. Recall from (A.3)

Z0j (t) =
∫ t

0
H(s) dM0j (s) = Â0j (t) − A∗

0j (t), j = 1,2,

that is, Rebolledo’s martingale central limit theorem [Andersen et al. (1993), The-
orem II.5.1] applies. By Conditions (1) and (2), it follows immediately that

√
n
(
Â − A∗) D→ W as n → ∞.

Furthermore, Condition (3) assures

sup
s∈[0,t]

√
n
∣∣A∗

0j (s) − A0j (s)
∣∣ P→ 0

as n → ∞ and the conclusion follows. �

A.1. Variance estimation. Lai and Ying (1991) did not provide variance es-
timators. We derive such estimators using martingale theory.
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A.1.1. Nelson–Aalen estimator. The aim is to estimate the variance σ 2
j (t).

Therefore, consider the optional variation process of Â0j − A∗
0j for j = 1,2:

(A.4)

σ̂ 2
j (t) = [

Â0j − A∗
0j

]
(t) = [Z0j ](t)

=
∫ t

0
H 2(s) d[M0j ](s) =

∫ t

0

1(Y (s) ≥ cnγ )

Y 2(s)
dN0j (s)

= ∑
s≤t

�N0j (s)

Y 2(s)
1
(
Y(s) ≥ cnγ )

.

Rebolledo’s martingale central limit theorem now ensures that the covariance
σ 2

j (t) of the Gaussian martingale W from Theorem 3.3 may be consistently es-

timated by n · σ̂ 2
j (t).

A.1.2. Aalen–Johansen estimator. Using the same arguments as in Andersen
et al. (1993), Chapter IV.4, an estimator for the covariance of the modified Aalen–
Johansen estimator is given by

Ĉov
(
P̂(s, t)

) =
∫ t

s
P̂(u, t)� ⊗ P̂(s, u) d

[
Â − A∗]

(u)P̂(u, t) ⊗ P̂(s, u)�,

where P̂(s, t) denotes the modified Aalen–Johansen estimator, [Â−A∗](t) is given
by (A.4) and ⊗ is the Kronecker product of matrices. For competing risks, the
variance of the estimated cumulative incidence function may be estimated by a
Greenwood-type estimator:

(A.5)

v̂ar
(
P̂0j (0, t)

) = ∑
s≤t

(P̂0j (0, t) − P̂0j (0, s))2

Y(s) − �N0·(s)
1
(
Y(s) ≥ cnγ )

�Â0·(s)

+ Ŝ(s−)2

Y(s)3 · 1(
Y(s) ≥ cnγ ) ·

[
Y(s) − �N0j (s)

− 2
(
Y(s) − �N0·(s)

) · P̂0j (0, t) − P̂0j (0, s)

Ŝ(s)

]
�N0j (s),

analogous to Allignol, Schumacher and Beyesmann (2010), equation (6), but using
the modified estimators of Section 3. This is also how the variance estimators in
Sections 4 and 5 have been implemented.

SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric estimation of pregnancy outcome proba-
bilities” (DOI: 10.1214/17-AOAS1020SUPP; .pdf). We discuss the classical sur-
vival case and a modified Kaplan–Meier estimator and provide additional simula-
tion results.

http://dx.doi.org/10.1214/17-AOAS1020SUPP
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