
Redundant Dataflow Applications on Clustered Manycore
Architectures

Christoph Kühbacher, Theo Ungerer, and Sebastian Altmeyer
University of Augsburg
Augsburg, Germany

{kuehbacher,ungerer,altmeyer}@es-augsburg.de

ABSTRACT
Increasing performance requirements in the embedded systems
domain have encouraged a drift from singlecore to multicore pro-
cessors. Cars are an example for complex embedded systems in
which the use of multicores continues to grow. The requirements
of software components running in modern cars are diverse. On
the one hand there are safety-critical tasks like the airbag control,
on the other hand tasks which do not have any safety-related re-
quirements at all, for example those controlling the infotainment
system. Trends like autonomous driving lead to tasks which are
simultaneously safety-critical and computationally complex. To
satisfy the requirements of modern embedded applications we de-
veloped a dataflow-based runtime environment (RTE) for clustered
manycore architectures. The RTE is able to execute dataflow graphs
in various redundancy configurations and with different schedulers.
We implemented our RTE design on the Kalray Bostan Massively
Parallel Processor Array and evaluated all possible configurations
for three common computation tasks. To classify the performance
of our RTE, we compared the non-redundant graph executions with
OpenCL versions of the three applications. The results show that
our RTE can come close or even surpass Kalray’s OpenCL frame-
work, although maximum performance was not the primary goal
of our design.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Interconnection architectures;Multicore architec-
tures;

KEYWORDS
dataflow, runtime environment, software redundancy, NoC-based
architecture, embedded systems

ACM Reference Format:
Christoph Kühbacher, Theo Ungerer, and Sebastian Altmeyer. 2022. Re-
dundant Dataflow Applications on Clustered Manycore Architectures. In
The 37th ACM/SIGAPP Symposium on Applied Computing (SAC ’22), April
25–29, 2022, Virtual Event, . ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3477314.3507272

This is the author's version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in:

SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
https://doi.org/10.1145/3477314.3507272

1 INTRODUCTION
The trend towards increasing performance requirements is no
longer limited to the domain of high performance computing, and
multicore processors are widely used in complex embedded sys-
tems today. Cars are an example for a complex embedded system
consisting of various electronic control units (ECUs) connected via
different kinds of buses. A major reason for the increasing use of
multicore processors in the automotive domain is to consolidate
different software components on one chip and thus reduce the num-
ber of ECUs. Tesla is a pioneer in this field. Back in 2012, theModel S
already utilized only 3–4 ECUs [23]. Since the de facto standard in
the automotive industry, AUTOSAR (AUTomotive Open System
ARchitecture), was originally designed for singlecore processors,
an extension of the software stack was required. First support for
multicore processors was added in version 4.0 of AUTOSAR. How-
ever, the AUTOSAR multicore extensions were only designed for a
simple hardware model in which cores access the main memory and
other peripherals over a shared bus [4]. To meet the requirements of
future automotive applications, there is great interest in extending
the existing multicore capabilities and adding support for additional
hardware architectures like clustered manycores [4, 12, 22].

The software components running on the ECUs of modern cars
are diverse and have different requirements. First, there are safety-
critical tasks like the airbag control, anti-lock braking system, elec-
tronic stability control and emergency brake assist. While such
tasks are not computationally complex, they place high demands
on predictability and fault tolerance. The complete opposite would
be tasks controlling the car’s infotainment system which becomes
more performance demanding as technology evolves, but is not
safety-critical at all so that a best-effort approach is sufficient. In
between lies a broad spectrum of tasks with diverse performance
and safety requirements, for example active suspension or head
light control tasks.

With the continuous expansion of the assistance systems and
the goal of fully autonomous driving, safety-critical software com-
ponents are becoming more and more complex. A common task in
this area is the execution of convolutional neural networks (CNNs)
for detecting pedestrians and objects like lane lines, street signs
and other vehicles from camera images [15, 19]. CNNs are directed
graphs consisting of different types of operation nodes, for example
convolution, Rectified Linear Unit (ReLU) and pooling nodes. Multi-
and manycore processors are well-suited for the execution of CNNs
because of the parallelism within operation nodes and, depending
on the graph, the possibility to execute nodes concurrently.

In embedded systems with high safety requirements, the cor-
rectness of computed results is mandatory. The only way to ensure
the correctness of data is to introduce redundancy to the system.

226

https://doi.org/10.1145/3477314.3507272
https://doi.org/10.1145/3477314.3507272
https://doi.org/10.1145/3477314.3507272

Without redundant computation and storage, it is impossible to
verify whether data is correct or incorrect due to a fault, such as a
bitflip. Typically, data is computed two or three times. Higher levels
of redundancy are uncommon.

To satisfy the varying requirements of complex embedded appli-
cations, we developed a runtime environment (RTE) for clustered
manycore architectures based on a network-on-chip (NoC). With
modern computational tasks such as CNNs in mind, we based our
RTE design on directed acyclic graphs (DAGs) which are executed
in a dataflow fashion. Our approach targets systems with vary-
ing requirements regarding predictability and fault tolerance as
it is able to execute arbitrary DAGs with either offline or online
scheduling in different redundancy configurations. Changing the
redundancy configuration at runtime is also possible. Our execution
model follows a coarse-grain dataflow style, i.e. graph nodes refer
to potentially complex functions and data passed between them is
often a structure or collection of data elements.

The main contributions of this paper are:
• A coarse-grain dataflow execution model based on directed
acyclic graphs with support for redundant execution.
• An RTE design for clustered manycore architectures which
is able to execute graphs with either offline or online sched-
uling in different redundancy configurations.
• A comparison of our bare-metal RTE implementation on
the Kalray architecture with Kalray’s OpenCL framework
regarding their performance on three computing tasks.
• An evaluation of the different redundancy configurations
our RTE supports.

2 HARDWARE ARCHITECTURE OVERVIEW
An overview of the hardware architecture we consider is shown in
Fig. 1. The central component is a network-on-chip (NoC) which
connects an arbitrary number of tiles. Our general RTE design is
not limited to a particular NoC topology. The only requirement is
that the hardware can exchange data freely between tiles. Each tile
consists of a network adapter, a small tile-local memory (TLM) and
multiple cores. For our design, tiles do not need to be homogeneous,
i.e. they may contain differently sized TLMs and a varying number
of cores. Each tiles has its own address space and cores can only
access the respective TLM directly. If data from another TLM is
required, a transfer between the two TLMs must be initiated. We
assume that the hardware provides mechanisms to exchange small
messages on the one hand and transfer large portions of data ef-
ficiently on the other. Our RTE further requires that there is one
tile with direct access to a larger off-chip memory. To differentiate
between this special tile and the remaining tiles, we call it the driver
tile and all other tiles compute tiles.

The described hardware model was chosen to resemble a com-
mercially available platform, the Kalray Massively Parallel Pro-
cessor Array (both the first generation Andey [9] and the second
generation Bostan [17]). The Kalray processor consists of 16 com-
pute tiles. Each of these tiles contains a 2 MB TLM and 16 freely
programmable cores running at a frequency between 400 MHz and
800 Mhz. Compute tiles are connected by two NoCs, a control NoC
for messages, and a data NoC for larger chunks of data. The lat-
ter supports direct memory access (DMA) transfers, in which the

network adapter itself successively transmits all bytes. In addition
to the compute tiles, the NoCs are also connected to multiple I/O
subsystems. In our bare-metal RTE implementation on the Kalray
architecture, we use one of the I/O subsystems as the driver tile.
I/O subsystems are special tiles with access to an external DDR3
memory and an ethernet controller. In contrast to compute tiles, I/O
subsystems have fewer cores but a wider NoC interface for faster
concurrent transfers between the DDR memory and TLMs.

NoC

Tile 10

Tile 7

Tile 4

Tile 1

Tile 11

Tile 8

Tile 5

Tile 2

Tile 9

Tile 6

Tile 3

Driver
Tile

. . .

Off-Chip
Memory

Core 2

Core 1

Network
Adapter

Tile-
Local

Memory

Core 3

Core 4

.

.

.

Figure 1: Abstract clustered hardware architecture

3 COARSE-GRAIN DATAFLOWMODEL
Our RTE executes programs modeled as directed acyclic graphs
(DAGs). Whenever we use the term “graph” or “dataflow graph”,
we imply that these graphs are DAGs. In our dataflow model, DAGs
are bipartite and consist of actor nodes and data nodes. Actor nodes
(for more conciseness we will refer to them as actors) contain infor-
mation about how data is processed, while data nodes are used to
model memory requirements. Since our dataflow model is coarse-
grain, data nodes usually refer to data collections or structures
rather than single values, and actors represent potentially complex
functions applied to the data. To match the behavior of functions,
actor nodes have exactly one successor. Moreover, it is important
that actors only refer to pure functions, i.e. functions which do not
change the global state, and do not allocate heap memory. There-
fore, all memory requirements (besides runtime stack memory)
appear in the dataflow graph as data nodes, and the RTE is able
to determine whether there is enough memory available on a tile
before an actor is executed. This is one of the reasons for the ex-
plicit representation of data in our model. The second reason is that
explicit data nodes are useful in identifying data across different
TLMs. In shared-memory systems, data can be easily addressed by
its memory address. However, in a clustered architecture where
each tile has its own address space and the same datamay be present
in multiple memories, a different way to identify data is required.
In our RTE, data node IDs are used for this purpose.

Graphs are supposed to be executed multiple times or repeatedly.
To support repeated executions, graphs consist of different types of
data nodes, in particular input, output, constant, and inner nodes.
Input nodes do not have incoming edges and thus their data has
to be specified for each graph execution. Data in constant nodes,
on the other hand, cannot be replaced and thus stays the same
in all dataflow executions. Data inside inner and output nodes is
computed during graph execution. Both types of nodes can have

227

inner node

constant node

output node

input node

actor node

Figure 2: Example dataflow graph

incoming and outgoing edges. The reason for this distinction is that
the data inside of output nodes is kept in memory so that it is still
available when the graph execution is finished, while the content
of an inner node is removed when the data is no longer required.
An example graph with the different types of nodes is shown in
Fig. 2. Circles represent data nodes, while actor nodes are drawn as
white boxes. This graph is actually a DAG representing one of the
benchmark applications we used to determine the performance of
our RTE (see Section 6), more specifically the fast Fourier transform
(FFT) application. It should be noted that we did not use this exact
graph in our experiments since in this graph the input data is
divided into only four parts which is not enough to utilize the
sixteen compute clusters of the evaluation hardware.

Our execution model supports redundancy through actor du-
plication. Actors can be executed up to three times, and results
are verified by special comparison actors. It is not necessary to
manually specify redundancy in a graph. The RTE automatically
constructs redundant actors, comparison actors, and the required
additional data nodes. It is also possible to change the redundancy
of graphs between two graph executions. In this case, the RTE rear-
ranges the structure of the graph as it adds or removes redundant
nodes for each actor as shown in Fig. 3.

4 RTE DESIGN
This sections describes the design of our RTE in a top-down fashion,
beginning with the main procedure. The general steps to execute
a graph are shown in Algorithm 1. Our RTE does not require that

Algorithm 1: Steps to execute a graph
1 𝑔← load DAG;
2 compute schedules for 𝑔;
3 do once, multiple times or repeatedly
4 assign data to 𝑔’s input nodes;
5 execute 𝑔;
6 extract data from 𝑔’s output nodes;
7 end

regular actor

comparison actor

Figure 3: Changing the redundancy of an actor

all graphs are permanently available in the main memory. Instead,
graphs can be loaded from an external source in a graph description
format. Once a graph 𝑔 has been imported, the RTE computes a set
of schedules in such a manner that the graph can be executed in
different redundancy configurations. As soon as each input node
of 𝑔 has been prepared, the graph execution is started. When the
execution is finished, result data is extracted from the output nodes.
All steps besides the actual graph execution involve only the driver
tile. Algorithm 1 only shows one possible sequence. Since the RTE
only provides a set of routines and the main procedure is user-
defined, it is also possible to import multiple graphs and execute
them alternately. Furthermore, result data of a graph execution can
either be processed outside the RTE or used as the input of another
graph execution (either of the same or a different graph).

A graph execution cannot be started while another graph is exe-
cuted. Simultaneous graph execution is only possible by specifying
a DAG consisting of multiple unconnected smaller DAGs. However,
there is no guarantee that the DAGs are actually executed simul-
taneously. Should each DAG offer enough parallelism to utilize all
tiles, the RTE might execute them sequentially.

4.1 Graph Import
As mentioned above, the RTE needs to import DAGs in a graph
description format from an external source. The overall RTE design
does not depend on a specific format. In our RTE implementation
on the Kalray Massively Parallel Processor Array (MPPA), we use
an extended DOT graph description format [10]. The extensions we
introduced are limited to additional node and edge attributes which
allow the RTE to distinguish between different kinds of nodes,
determine memory requirements, and ensure the correct order of
actor inputs. Functions applied by the actors are not imported along
with the graph, but come with the binary. Therefore, RTE users
either have to include the functions for all graphs in the binary or
switch between different binaries at runtime.

The place graphs are imported from depends on the operation
area. In our evaluation setting, the Kalray MPPA is embedded in
a host system and thus the RTE imports graph from files in the
host filesystem. If the Kalray MPPA is not embedded into a host
system but is instead used standalone, there are other potential ways
to import graphs. One possibility would be through the MPPA’s
ethernet interface. Further, it would be possible to include the graph
description in the application binary. However, since the binary
is loaded into the I/O subsystem’s TLM, this works only for small
graphs.

228

4.2 Scheduling
Because our execution model is based on the dataflow principle,
actor executions are data-driven. However, the RTE has to decide
which actor is executed on which tile and in which order the actors
are executed. There are two kinds of approaches to schedule graphs
depending on the time the scheduling takes place. The actor map-
ping and order can be either determined before (offline) or during
(online) graph execution.

In order to support a broader variety of configurations and to
explore the two different techniques, we examined one scheduling
procedure for each approach. Because our dataflow model does
not restrict the shape of graphs, computing an optimal schedule
offline is NP-hard [21]. However, there are many DAG scheduling
heuristics that cover a variety of hardware architectures and us-
age scenarios. The scheduling heuristic we think is most suitable
for our dataflow approach is Heterogeneous Earliest Finish Time
(HEFT) [20] due to its versatility and efficiency [7]. HEFT belongs to
the category of list scheduling heuristics, which compute a schedule
in two steps. The actors are first placed in a list whose order de-
pends on the respective scheduling heuristic. HEFT uses a property
called upward rank for this. Then, the scheduler iterates over the
list and chooses a processing element for each actor based on a set
of rules which are specific to the respective scheduler. In case of
HEFT, the scheduler aims at minimizing the earliest finish time (EFT)
for each actor. Due to the special driver tile, we had to extend the
standard HEFT heuristic slightly. The exact modification is shown
in Algorithm 2. Additional lines (compared to standard HEFT) are
highlighted. Inside the main loop, a conditional expression checks
whether the currently considered actor node has too many inputs
or processes too much data due to compute tile memory restrictions.
If at least one of the two conditions is true, the actor is mapped to
the driver tile. Although the actor assignment does not depend on
the earliest finish time (EFT) in this case, it must still be computed
since the EFT of an actor depends on the EFT of its predecessors. It
is easy to see that, despite of the modifications, the heuristic still
produces valid schedules because the scheduling list is created and
used like in standard HEFT.

The online scheduling technique we implemented in our RTE
is based on work stealing. In this approach, each tile has its own
double-ended queue. A queue contains all actors that are expected
to be executed on the respective tile. If a queue is not empty, the
tile extracts an actor at the front, executes it and inserts actors
that became ready also at the front. Otherwise, the tile steals an
actor from the back of the queue of another tile. There are mul-
tiple possible ways to determine from which other tile the actor
is stolen. A very common approach and the one we took for our
implementation is to choose the tile randomly [5]. At the beginning
of a graph execution all actors that are ready to be executed are
inserted to random queues. As with the HEFT heuristic, the work
stealing procedure has to be modified so that all actors which have
too many inputs or process too much data are placed in the driver
tile’s queue. Furthermore, compute tiles must not steal from the
driver tile (and vice versa) and, whenever the driver tile executed an
actor, subsequent actors should be inserted into compute tile queues
whenever possible. In such cases, our implementation chooses the
compute tile queues randomly. It should be noted that, since TLMs

Algorithm 2: Modified HEFT scheduling heuristic
1 function HEFT_WITH_DRIVER(𝑔 : 𝑔𝑟𝑎𝑝ℎ)
2 compute mean values for all node and edge weights in 𝑔;
3 compute the upward rank for all nodes in 𝑔;
4 create a sorted list of nodes by nonincreasing order of upward

ranks;
5 while the scheduling list is not empty do
6 let 𝑛 be the first node in the list;
7 remove 𝑛 from the list;
8 if 𝑛 has too many inputs or 𝑛 processes too much data then
9 compute the EFT of 𝑛 on the driver tile;

10 assign 𝑛 to the driver tile;
11 else
12 for each compute tile 𝑡 do
13 compute the EFT of 𝑛 on tile 𝑡 ;
14 end
15 assign 𝑛 to the tile with the lowest EFT;
16 end
17 end
18 end

are small and graphs are therefore only present in the off-chip
memory, the tiles cannot maintain queues themselves. Instead, the
driver manages all queues and executes the stealing procedure for
all tiles.

4.3 Memory Management
Since all graphs and schedules are too large for TLMs, and therefore
stored in the off-chip memory, the driver tile is responsible for the
overall graph execution. For each compute tile, it maintains an
array of data nodes which are present in the tile’s local memory.
To simplify the communication between the driver and compute
tiles, the RTE uses a statically allocated amount of memory on the
compute tiles to store data nodes. When the RTE is started, each
compute tiles sends the address of this portion of memory to the
driver tile. Furthermore, the data node memory is statically divided
into fixed-size slots. This allows the driver to initiate data transfers
to (or from) any slot without a complex communication protocol.
Although a more complex dynamic memory management would
allow the RTE to use the TLMs more efficiently, this would either
require more messages or more computation on the driver (if the
driver runs the allocation routine for all tiles in order to reduce the
number of messages). In our RTE implementation on the Kalray
Bostan MPPA, 1.25 MiB is reserved for data nodes. It is divided into
8 slots so that each slot is 160 KiB in size. The remaining 750 KiB
contain the RTE code, functions for actor executions, and runtime
stacks for the 16 cores on the tile. Since the off-chip memory has to
be able to store larger portions of data, a simple static allocation
similar to the TLMs is not feasible, and thus the driver tile uses a
dynamic memory allocator to manage the off-chip memory.

4.4 Graph Execution, Driver Part
The driver has to fulfill different roles during graph execution. First,
since only the driver has access to the graphs and offline schedules,
it is the only tile that is able to determine whether an actor is ready,

229

i.e. all preceding actors are finished. However, before an actor can
be sent to a compute tile, the driver has to ensure that the required
data nodes are in the corresponding TLM. If this is not the case,
the driver must either transfer the data node itself or tell the tile
in which TLM the data is availabe so that the tile can start a data
transfer between its own and the remote TLM. Besides transferring
data and actors to compute tiles, the driver is responsible for the
execution of actors that require large amounts of memory. It is
possible that the driver has to transfer data from TLMs into the off-
chip memory first. Lastly, the driver periodically checks whether a
network event happened, i.e. whether a data transfer is finished or
there is a message in its message queue. In both cases, the driver
reacts by updating its information about the respective TLM.

4.5 Graph Execution, Compute Tile Part
The compute tile part of a graph execution is less complex than
the driver part. Compute tiles do not act by themselves, but wait
for messages from the driver tile. There are four different kinds of
messages. A data node message tells the compute tile to update its
data node array in which node properties like the data size and node
ID are stored. The message also contains the information whether
the actual data was already transferred by the driver or has to be
fetched from another TLM. Other possible instructions from the
driver are to clear a memory slot by removing the corresponding
entry in the data node array or to clear the whole data nodememory.
The last kind of message is an actor message. When a compute tile
receives a message of this type, the tile stores the result node’s
meta information in the node metadata array, executes the actor
and sends a notification message to the driver.

4.6 Actor Execution
Since each tile (including the driver tile) contains multiple cores
which are able to access the whole tile-local memory or, in case of
the driver tile, the off-chip memory, actor functions should contain
enough parallelism to utilize all cores on a tile. Parallelism should
be specified in an abstract way, i.e. the RTE user should only define
which parts of the function can be executed in parallel and not on
which exact cores they are executed. Currently, our RTE implemen-
tation on the Kalray MPPA provides a parallel loop function which
is similar to the parallel for-loop from OpenMP for this purpose.
Fig. 4 shows an example. The actor applies a function 𝑓 which
doubles its input to all integers in the data node and the parallel
loop function distributes loop iterations as evenly as possible across
the three cores. This is of course a rather small example, and real
hardware will likely provide more than three cores per tile. In case
of the Kalray MPPA, there are 16 cores per compute tile.

4.7 Additional Remarks
To support a broader range of applications efficiently, our RTE
provides three special types of actors (besides comparison actors)
which are always executed on the driver. There is a special actor to
extract a continuous part of data from a node. Actors of this type
can be used to split a larger data node into smaller ones which fit
into the memory slots on compute tiles. Similarly, there is another
type of actor to collect multiple data nodes and store the data
continuously to create a larger data node. Our RTE implementation

18

8

12

16

24

9

4

6

8

12

𝑓

𝑓

𝑓

𝑓

𝑓

Core 1

Core 2

Core 3

Figure 4: Actor applying 𝑓 (𝑥) = 2𝑥 with three cores

on the Kalray platform optimizes the execution of these special
actors as it only sets the respective pointers accordingly whenever
possible instead of actually copying the data. A third special actor
type is used to reorder the elements in a large data node. We use
this actor in our benchmarks to prepare input data before splitting
it into smaller chunks. In Fig. 2, a graph from our FFT benchmark,
the topmost actor is such an actor. The actor has two inputs, an
input node and a constant node. The purpose of the latter is to
specify how the data elements are reordered.

5 REDUNDANCY
The previous sections described only standard graph executions, but
our RTE also supports redundancy by duplicating actors. Graphs
can be executed in five different configurations in total:

(1) Non-redundant execution
(2) Two redundant actor executions on the same tile
(3) Three redundant actor executions on the same tile
(4) Two redundant actor executions on different tiles
(5) Three redundant actor executions on different tiles

Our RTE is able to execute graphs in all five configurations with
either offline schedules or work stealing. Both the HEFT schedul-
ing heuristic and work stealing mechanism have to be extended
in order to support all five configurations. The reason for this is
configuration 4 and 5, i.e. redundancy across different tiles. In both
configurations, the number of actors in the graphs differs from the
non-redundant case and thus each one requires its own schedule.
Redundant actor execution on the same tile does not require a mod-
ification in the scheduling process since the combination of two or
three consecutive redundant executions and a comparison can be
considered as one execution in the scheduling process. Therefore,
non-redundant schedules and ordinary work stealing can be used.

5.1 Scheduling with Redundant Actors
We first want to focus on offline scheduling with the HEFT al-
gorithm. As described above, the extension only has to consider
redundancy across different tiles. Algorithm 3 shows the general
procedure of our extended HEFT scheduling implementation for
three redundant actor executions. Differences to standard HEFT
are highlighted. The extended variant basically schedules redun-
dant actors consecutively (line 9) and assigns them to different tiles
(line 11). Comparison actors are not considered at all in the sched-
uling process since these actors are treated specially in our RTE
(see Section 5.2). To compute a schedule with only two redundant

230

Algorithm 3: HEFT Scheduling with Redundancy
1 function HEFT_REDUNDANT(𝑔 : 𝑔𝑟𝑎𝑝ℎ)
2 compute mean values for all node and edge weights in 𝑔;
3 compute the upward rank for all nodes in 𝑔;
4 create a sorted list of nodes by nonincreasing order of upward

ranks ignoring all redundant and comparison nodes;
5 while the scheduling list is not empty do
6 let 𝑛 be the first node in the list;
7 remove 𝑛 from the list;
8 let 𝑛′ and 𝑛′′ be the redundant nodes of 𝑛;
9 for 𝑥 in {𝑛,𝑛′, 𝑛′′ } do
10 for each compute tile 𝑡 do
11 if 𝑛, 𝑛′ or 𝑛′′ is assigned to 𝑡 then
12 proceed with next tile;
13 end
14 compute the EFT of 𝑥 on tile 𝑡 ;
15 end
16 assign 𝑥 to the tile with the lowest EFT;
17 end
18 end
19 end

actor executions, removing 𝑛′′ from the set in line 9 is sufficient.
It should also be noted that Algorithm 3 omits actor executions
on the driver tile. Our actual implementation for the Kalray archi-
tecture is a combination of Algorithm 2 and 3. Furthermore, our
RTE currently does not support redundant actor execution on the
driver. Our hardware model currently contains only one driver tile,
and this tile would have to execute all redundant actors which is a
potential bottleneck for the whole graph execution.

Similar to the HEFT scheduling heuristic, work stealing has
to be slightly extended to support redundant actor executions on
different tiles. Both the insertion and stealing have to be modified.
By default, whenever a tile finishes an actor execution, all actors
which became ready are inserted into the tile’s queue. For redundant
actor executions, this would likely lead to redundant actors being
executed on the same tile. We extended the insertion routine so
that the first actor is inserted as usual and the second and possibly
third actor is inserted into a different queue. To choose suitable tiles,
the insertion routine iterates over all data nodes processed by the
actor, and creates a list of those tiles which have computed at least
one of these nodes. The second and third actor are then assigned
to those tiles from this list whose queues have the least amount
of elements. Whenever there are multiple possible candidates, the
routine chooses a random tile. Similarly, it chooses a random tile
out of all available tiles in case the list is empty. As mentioned
above, the stealing routine must also be altered. To ensure that a
tile does not execute duplicate actors, the extended stealing routine
must check whether the tile has not already executed a redundant
actor and that no redundant actor is currently in its queue. Since
the stealing routine only checks the back element of a queue, there
is a chance that the described routine does not find an actor for
stealing even though at least one of the queues contains a suitable
actor. However, in contrast to standard work stealing, tiles do not
only receive work by stealing, but also through the scheduling of
redundant actors where queues with fewer elements are prioritized.

5.2 Redundant Graph Execution
Graph executions with redundant actor executions on the same
tile only differ slightly from non-redundant executions. Compute
tiles receive an actor from the driver, execute it either two or three
times, and compare the results. In case all results differ, the tile
can re-execute the actor on its own without contacting the driver.
However, there is one minor caveat the driver tile must observe.
Before sending an actor to a compute tile, the driver must ensure
that there are enough free slots in the TLM to store the results of
all redundant actor executions.

Redundant actor executions on different tiles, on the other hand,
mainly affect the driver since it executes all comparison actors and
may initiate actor re-executions in this configuration. As described
in the previous section, pre-computed schedules do not contain
comparison actors. Similarly, comparison actors are ignored in
the work stealing process. Instead, whenever redundant actors are
finished, the driver immediately executes the comparison actor.
In order to reduce the amount of data transferred over the NoC
and to reduce the amount of computation on the driver, compute
tiles do not send back all the computed data. Instead, they send a
checksum of the data along with the notification message about a
finished actor. Thus, the driver tile only has to compare two or three
checksums and, depending on the result, tell the compute tiles to
re-compute the data or that the data is correct. An important aspect
of our RTE is that the redundancy mechanism is not speculative.
The driver only sends an actor to a tile after the data from preceding
actors was verified. This ensures that the rollback after a fault is
fast since only one actor has to be re-executed.

It should also be noted that our redundancymechanism currently
focuses mainly on transient faults, i.e. faults that do not occur re-
peatedly. A faulty core which consistently produces wrong results
will cause the system to re-execute actors without progress. The
only exception is the fifth configuration, i.e. three redundant exe-
cutions on different tiles. This configuration can handle one faulty
tile since for each wrong result two correct results are available
and the incorrect data is discarded.

6 EVALUATION
As described in Section 2, the introduced hardware model was
chosen so that we could implement our RTE design on the Kalray
platform. Nonetheless, evaluating the performance of our dataflow
RTE is rather difficult. To the best of our knowledge, there are only
three frameworks for the Kalray MPPA which are similar to our
RTE in the sense that they handle transfers between tiles automati-
cally. These three frameworks are Kalray’s implementation of the
ΣC dataflow language [8], the UpScale SDK originating from the
P-SOCRATES project [16], and Kalray’s OpenCL implementation.
Even though the dataflow concepts of ΣC are similar to our ap-
proach, the framework only supports the first generation of the
Kalray MPPA and is not available for our second generation Kalray
Bostan development board. The Upscale SDK, on the other hand,
is available for the Kalray Bostan MPPA. Furthermore, it has some
similarities to our approach since it is based on graphs and offline
scheduling. However, the project seems to be no longer actively
maintained and not compatible with newer versions of Kalray’s

231

2,000 4,000 6,000

0

20

40

Pr
op

os
ed

R
TE

vs
.O

pe
nC

l,
Ex
ec
ut
io
n
ti
m
es

in
se
co
nd

s OpenCL (400 MHz)
Dataflow RTE, 400 MHz
Dataflow RTE, 500 MHz

Matrix multiplication

220 222 224
0

5

10

FFT

222 224 226
0

20

40

Bitonic sort

2,000 4,000 6,000
0

10

20

Matrix dimensions

O
ff
lin

e
vs
.o
nl
in
e
sc
he

du
lin

g,
Ex
ec
ut
io
n
ti
m
es

in
se
co
nd

s offline
online

220 222 224
0

10

20

30

Input vector size

222 224 226
0

20

40

Input vector size

Figure 5: Execution times of dataflow and OpenCL programs

software development kit. Thus, we chose Kalray’s OpenCL imple-
mentation as a reference for the performance of our RTE, although it
differs the most from our approach and has a different focus. While
Kalray’s OpenCL framework targets high-performance computing,
our RTE focuses on the execution of applications with different
levels of redundancy.

6.1 Benchmarks and Evaluation Preliminary
Another difficulty in the evaluation is that there is, again to the
best of our knowledge, no commonly used benchmark suite for the
Kalray Bostan MPPA. OpenCL benchmarks usually target GPUs
instead of NoC-based architectures like the KalrayMPPA. Therefore,
we implemented three benchmark applications based on algorithms
which are commonly used in the embedded systems domain as
both dataflow graphs and Kalray OpenCL programs. The three
algorithms are integer matrix multiplication, fast Fourier transform
(FFT) and bitonic sort. There are multiple reasons why we chose
these exact algorithms. First, each algorithm focuses on a different
kind of instruction (integer arithmetic, floating point arithmetic
and load/store instructions). Second, the three algorithms differ in
their computational complexity. And third, for better comparability
between the frameworks and configurations, all three algorithms
provide enough parallelism to utilize all cores of the MPPA.

In favor of an easier implementation, we made some restrictions
regarding the inputs of our benchmark applications. The matrix
multiplication benchmark requires two square integer matrices, the
FFT benchmarks an input vector of 2𝑛 double-precision floating
point complex numbers, and the bitonic sort benchmark an input
vector of 2𝑛 integers. Furthermore, to achieve the best performance,
we specified the dataflow graphs for our RTE so that the size of each
data node is as close to the size ofmemory slots as possible. Similarly,

for the OpenCL applications, we arranged the data in a way that
is advantageous for Kalray’s OpenCL paging mechanism. For the
OpenCLmatrixmultiplication benchmark, we enlarged thematrices
slightly (e.g. from 2000 × 2000 to 2048 × 2048) and transposed the
second matrix so that memory pages contain full rows or columns.
The comparison between the matrix multiplication benchmarks is
actually not completely fair since the OpenCL version uses the host
system for the preparation of input matrices, while the dataflow
benchmark prepares the input on the MPPA. In our experiments,
the paging mechanism did not handle the matrix transposition
very well, and we do not want to compare the dataflow matrix
multiplication with a rather slow OpenCL matrix transposition.

When an application binary is transferred to the Kalray MPPA
via the JTAG loader, it is possible to specify the clock frequency at
which the program is executed through a command line option. It
is often stated (for example in [17]) that the Kalray Bostan MPPA
usually operates between 400 MHz and 800 MHz. However, the
development board we used in the evaluation was not able to exe-
cute binaries at frequencies above 550 MHz, and thus we ran our
RTE usually at 500 MHz. The Kalray manual does not explicitly
state at which frequency OpenCL programs are executed (only
that the maximum OpenCL frequency is 600 MHz). We assume
that OpenCl programs are executed at the default frequency, i.e.
400 MHz. Therefore, we also executed the three dataflow bench-
marks in the reference configuration at 400 MHz.

6.2 Graph Executions with Offline Schedules
Non-redundant graph executions with pre-computed schedules
represent the baseline for all further evaluation results. Each bench-
mark was executed ten times for each input size, and the curves
show the respective average values. We did not include variances

232

2,000 4,000 6,000
1

1.5

2

R
ed
un

da
nc
y
ov
er

di
ff
er
en
t
ti
le
s,

N
or
m
al
iz
ed

ex
ec
ut
io
n
ti
m
es triple, offline

triple, online
double, offline
double, online

Matrix multiplication

220 222 224

2

4

6

FFT

222 224 226
1

2

3

Bitonic sort

2,000 4,000 6,000
1

1.2

1.4

1.6

Matrix dimensions

In
tr
a-
ti
le
re
du

nd
an

cy
,

N
or
m
al
iz
ed

ex
ec
ut
io
n
ti
m
es

220 222 224

0.9

1

1.1

Input vector size

222 224 226
1

1.5

2

Input vector size

Figure 6: Execution times of redundant dataflow executions normalized to non-redundant executions

in the figure since execution times usually did not vary by a large
amount, both for our RTE and Kalray’s OpenCL framework. In the
vast majority of experiments, the difference between the shortest
and longest execution time we measured was below 5%. Execution
times are shown in Fig. 5. The OpenCL benchmarks outperforms
our dataflow RTE consistently in the FFT benchmark, for small
matrices in the matrix multiplication benchmark, and for large
input vectors in the bitonic sort benchmarks. There are multiple
reasons for these performance differences, often related to our re-
dundancy mechanism. One reason is that data in our execution
model is immutable, and actors always create new data. This is an
essential aspect of our redundancy mechanism and allows the RTE
to re-execute actors in case of a faulty execution. The OpenCL FFT
and bitonic sort benchmark applications, however, work in-place.
Bitonic sort, for example, benefits from an in-place execution as it
compares pairs of elements and only needs to swap themwhen they
are in the wrong order. A second reason is that, in favor of easier
rollbacks, dataflow actors in our model are limited to one output.
This reduces the performance of the dataflow FFT benchmark since
some computation is repeated in order to compute the left and right
elements in the butterfly pattern. Another factor lies in the use of
fixed schedules. Our HEFT implementation estimates execution
times and data transfer times according to user-defined hints and
the amount of processed or transferred data. Especially transfer
times are difficult to predict accurately because the exact timing of
transfers at runtime can vary, and it is thus difficult to determine
offline which transfers will occur in parallel. Section 6.3 shows
that using work stealing can lead to increased performance. In our
opinion the performance drawbacks are not drastic and outweighed
by the redundancy mechanisms our RTE offers.

When comparing the curves for the two different frequencies,
it is noticeable that increasing the frequency by 25% leads to a

reduction in the execution time by roughly 17% for the matrix
multiplication, 13% for FFT and 15% for bitonic sort. The matrix
multiplication benchmark benefits the most from an increased fre-
quency since it is the most expensive algorithm out of the three
with a complexity in 𝑂

(
𝑛3

)
. This higher overall complexity affects

mainly individual actors instead of leading to overly large graphs.
Thus, in comparison to the other algorithms the influence of actual
computation on the overall execution time is higher.

6.3 Graph Executions with Online Scheduling
As described in previous sections, our RTE also supports graph
executions with work stealing. To compare the performance of the
two approaches, all three benchmark applications were additionally
executed in online schedulingmode at a clock frequency of 500MHz.
Results are shown in Fig. 5. For matrix multiplication and bitonic
sort, the execution times are lower when the RTE operates in online
schedulingmode. In case of bitonic sort, the performance of our RTE
is now much closer to the OpenCL benchmark. The FFT algorithm,
however, shows that there are cases where a statically computed
schedule leads to a better performance. Work stealing does not
consider data dependencies and transfers which can have a large
impact on the graph execution time, especiallywhen actors are quite
short like in the FFT benchmark. Furthermore, the number of stolen
actors can also have an influence on the performance because it is
very likely that additional data transfers are required when an actor
is stolen from a random tile. Table 1 shows how many actors are
stolen on average for the three benchmark applications with various
input sizes. The table also puts them in relation with the respective
total number of actors in the graph (excluding the redundant actors
created by the RTE). It is noticeable that the percentage of stolen
actors decreases for larger (wider and deeper) graphs. For the matrix

233

Table 1: Number of stolen actors for the three benchmarks

Input Size Actors in Total Average Stolen Percent

M
at
M
ul

10002 178 10.4 5.8%
20002 1203 31.9 2.7%
30002 3828 48.8 1.3%
40002 8803 65.5 0.7%
50002 16878 82.7 0.5%
60002 28803 91.6 0.3%

FF
T

220 1154 331.8 28.8%
221 2562 459.0 17.9%
222 5634 674.2 12.0%
223 12290 1050.1 8.5%
224 26626 1382.5 5.2%

Bi
to
ni
c

222 4737 1339.5 28.3%
223 11777 1812.3 15.4%
224 28673 2317.6 8.1%
225 68609 2987.7 4.4%
226 161793 4166.8 2.6%

multiplication benchmark, the relative number is the lowest, with
only 0.3% of all actors being stolen for the largest graph, while for
the FFT benchmark it is highest, at 5.2% for the largest graph.

6.4 Redundant Execution on Different Tiles
Execution times for redundant graph executions on different tiles
are shown in Fig. 6. All benchmarks were run at 500 MHz, and
we normalized the measurements to the respective non-redundant
execution. As described in Section 5.1, due to fact that actors on
the driver are not executed redundantly, the execution times can
be lower than twice or three times the baseline execution time.
This can be observed for the matrix multiplication (and FFT with
offline schedules for small input sizes) since the driver tile rear-
ranges the data in this benchmark in order to be able to transfer
contiguous portions of memory via DMAs. For larger input matri-
ces, the normalized execution times are increasing. The reason for
this is that the actions performed by compute tiles have a higher
time complexity on the large scale and thus the influence of driver
actor executions is less significant for larger inputs. Multiplying
two matrices has a cubic time complexity, while rearranging the
data has a linear time complexity. Bitonic sort does not require any
memory rearrangement, and thus it is not surprising that executing
the graph redundantly takes about twice (or three times for triple
execution) the baseline execution time. For FFT with online sched-
uling, execution times are excessively long, most likely because
the work stealing routine performs poorly for actors with short
execution times as it does not try minimize the number of transfers.

6.5 Redundant Execution on the Same Tile
Redundant actor execution on the tile is beneficial for the overall
execution time since the number of transfers is lower compared
to redundancy across different tiles. However, in comparison to
the non-redundant execution, the number of transfers might be
higher in some cases. The reason for this is that a redundant actor
execution on a tile requires multiple memory slots for the results,
and hence more data node displacements are required. The results
shown in Fig. 6 reveal that a significant portion of the execution

time comes from data transfers because execution times are very
low compared to standard graph executions. FFT is an extreme case
where redundant execution increases the execution time only by
15% at most when offline schedules are used. Because almost all
transfers involve the I/O subsystem, it is likely that the preparation
of data and transfers on the I/O cores is a bottleneck. Another possi-
bility is that the I/O subsystem’s NoC interface or the connection to
the DDR memory limits the performance. It seems that transfers do
not only have a large influence on the execution times in our RTE,
but also in OpenCL since otherwise the performance difference
between the two frameworks would be higher. In case of FFT with
online scheduling, the situation is even more extreme as redundant
executions take less time than non-redundant executions for larger
input sizes. In analogy to the results from the previous section,
this hints that the work stealing routine performs poorly for actors
with a short execution time because redundant actors are executed
consecutively.

7 RELATEDWORK
Graph-based program representations and concepts similar to our
approach are used in a variety of frameworks, for example in
dataflow system like the Delaware Adaptive Run-Time System
(DARTS) [18], the Concurrent Collections (CnC) language fam-
ily [6], and ΣC for the Kalray MPPA [8, 13]. Big data and machine
learning frameworks like Apache Spark [25], Apache Flink which
originated from the Stratosphere project [2] or TensorFlow [1]
are based on similar concepts. There is also literature about fault-
tolerant dataflow systems, for example [24], [3] and [14]. Although
it is conceptually similar to our approach and targets a very simi-
lar hardware architecture, the redundancy mechanism described
in [24] is more of a hardware redundancy approach since it re-
lies on special hardware units on the chip. The methods from [3]
and [14] on the other hand mainly target large high-performance
architectures, i.e. workstations or server clusters. However, since
the redundancy mechanisms are software based and similar to our
approach, we briefly highlight them in the following.

The authors of [3] describe a software-based approach for fault-
tolerant dataflow called Dataflow Error Recovery (DFER). Like in
many dataflow fault tolerance approaches, redundancy is estab-
lished by adding redundant nodes to the dataflow graph. Additional
commit nodes are responsible for comparing the results of redun-
dant executions. If the system detects that a computation produced
wrong results, the respective graph node has to be re-executed. The
execution of nodes in DFER is speculative, i.e. subsequent nodes are
executed with possibly uncommitted values. In case of a fault, this
can lead to a domino effect that makes the recovery more difficult.
Since the latency caused by this domino effect might be undesirable
in some areas, DFER provides the possibility to insert additional
edges between a commit node and all nodes that process the cor-
responding data. These additional dependencies cause subsequent
nodes to wait until the required data has been compared.

In [14], two different fault tolerance approaches for the Kernel
for Adaptive, Asynchronous Parallel Interface (KAAPI) [11] are pro-
posed. Dataflow graphs in KAAPI are not static, but instead built
dynamically during their execution. Consequently, KAAPI uses on-
line scheduling in form of work stealing. One of the fault tolerance

234

techniques described in [14] is Systematic Event Logging (SEL). The
idea behind SEL is to log all modifications of the dataflow graph dur-
ing runtime, i.e. all additions and deletions of graph nodes. When a
processor fails, the log is used to rebuild the associated subgraph
from the checkpoint file. Since checkpoints are created on each
graph modification, this approach allows the system to re-execute
single dataflow tasks.

The other fault tolerance technique described in [14] is Theft-
Induced Checkpointing (TIC). In TIC, checkpoints are created pe-
riodically and when a task is stolen. The latter are called forced
checkpoints. Only the (possibly virtual) processor from which a
task was stolen creates such a checkpoint. Normal checkpoints, on
the other hand, are created by all processors periodically. Recovery
in TIC is similar to SEL, but since not every graph modification is
logged there may be more task re-execution required than in SEL.

8 CONCLUSION
This paper presented a dataflow model and matching RTE for NoC-
based manycore architectures. The RTE executes applications in
form of DAGs either following pre-computed schedules or with
work stealing. Regardless of the scheduling method, the graphs can
be executed in five different configurations with varying degrees
of redundancy. Changing the redundancy configuration between
graph executions is also possible. We implemented our RTE design
on the Kalray Bostan MPPA and evaluated all supported redun-
dancy configurations and scheduling methods for three common
computing tasks. Since there is, to the best of our knowledge, no
other framework for the Kalray MPPA following a similar approach
and providing a similar degree of flexibility with regards to re-
dundancy, we compared the performance of our RTE to Kalray’s
OpenCL framework despite of the differences. The experiments
show that, even though the main focus of our design was not on
high performance, our RTE is able to outperform or at least reach
Kalray’s OpenCL framework in two of the three benchmarks.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Ma-
chine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 265–283. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[2] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl,
Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian
Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014. The Strato-
sphere Platform for Big Data Analytics. The VLDB Journal 23, 6 (Dec. 2014),
939–964. https://doi.org/10.1007/s00778-014-0357-y

[3] Tiago A. O. Alves, Sandip Kundu, Leandro A. J. Marzulo, and Felipe M. G. França.
2014. Online Error Detection and Recovery in Dataflow Execution. In 20th
International On-Line Testing Symposium (IOLTS). IEEE Computer Society, 99–
104. https://doi.org/10.1109/IOLTS.2014.6873679

[4] Matthias Becker, Dakshina Dasari, Vincent Nélis, Moris Behnam, Luís Miguel
Pinho, and Thomas Nolte. 2015. Investigation on AUTOSAR-Compliant Solutions
for Many-Core Architectures. In 2015 Euromicro Conference on Digital System
Design. 95–103. https://doi.org/10.1109/DSD.2015.63

[5] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46, 5 (Sept. 1999), 720–748. https:
//doi.org/10.1145/324133.324234

[6] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney,
Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach,

and Sağnak Taşırlar. 2010. Concurrent Collections. Scientific Programmming 18,
3–4 (Aug. 2010), 203–217. https://doi.org/10.3233/SPR-2011-0305

[7] Louis-Claude Canon, Emmanuel Jeannot, Rizos Sakellariou, and Wei Zheng. 2008.
Comparative Evaluation Of The Robustness Of DAG Scheduling Heuristics. Springer
US, Boston, MA, 73–84. https://doi.org/10.1007/978-0-387-09457-1_7

[8] Benôıt Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps,
Patrice Couvert, Benôıt Ganne, Pierre Guironnet de Massas, François Jacquet,
Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, and Thierry Strudel.
2013. A clustered manycore processor architecture for embedded and accelerated
applications. In IEEE High Performance Extreme Computing Conference (HPEC).
1–6. https://doi.org/10.1109/HPEC.2013.6670342

[9] Benoît D. de Dinechin, Duco van Amstel, Marc Poulhiès, and Guillaume Lager.
2014. Time-critical computing on a single-chip massively parallel processor. In
Design, Automation Test in Europe Conference Exhibition (DATE). 1–6. https:
//doi.org/10.7873/DATE.2014.110

[10] Emden R. Gansner, Eleftherios Koutsofios, and Stephen North. 2015. Drawing
graphs with dot. https://www.graphviz.org/pdf/dotguide.pdf

[11] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. 2007. KAAPI: A Thread
Scheduling Runtime System for Data Flow Computations on Cluster of Multi-
Processors. In Proceedings of the 2007 International Workshop on Parallel Symbolic
Computation (PASCO ’07). Association for Computing Machinery, New York, NY,
USA, 15–23. https://doi.org/10.1145/1278177.1278182

[12] André Göbel and Denis Claraz. 2018. A Multi-Core Basic Software as Key En-
abler of Application Software Distribution. In ERTS 2018 (9th European Con-
gress on Embedded Real Time Software and Systems). Toulouse, France. https:
//hal.archives-ouvertes.fr/hal-02156255

[13] Thierry Goubier, Renaud Sirdey, Stéphane Louise, and Vincent David. 2011. ΣC:
A Programming Model and Language for Embedded Manycores. In Algorithms
and Architectures for Parallel Processing. Springer, Berlin, Heidelberg, 385–394.

[14] Samir Jafar, Thierry Gautier, Axel Krings, and Jean-Louis Roch. 2005. A Check-
point/Recovery Model for Heterogeneous Dataflow Computations Using Work-
Stealing. In Euro-Par 2005 Parallel Processing, José C. Cunha and Pedro D.Medeiros
(Eds.). Springer Berlin Heidelberg, 675–684. https://doi.org/10.1007/11549468_74

[15] Andre Luckow, Matthew Cook, Nathan Ashcraft, Edwin Weill, Emil Djerekarov,
and Bennie Vorster. 2016. Deep learning in the automotive industry: Applications
and tools. In IEEE International Conference on Big Data (Big Data). 3759–3768.
https://doi.org/10.1109/BigData.2016.7841045

[16] Luis Miguel Pinho, Eduardo Quiñones, Marko Bertogna, Andrea Marongiu,
Jorge Pereira Carlos, Claudio Scordino, andMichele Ramponi. 2014. P-SOCRATES:
A Parallel Software Framework for Time-Critical Many-Core Systems. In 17th
Euromicro Conference on Digital System Design. 214–221. https://doi.org/10.1109/
DSD.2014.94

[17] Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benoît D. de Dinechin.
2015. The shift to multicores in real-time and safety-critical systems. In In-
ternational Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). 220–229. https://doi.org/10.1109/CODESISSS.2015.7331385

[18] Joshua Suettlerlein, Stéphane Zuckerman, and Guang R. Gao. 2013. An Imple-
mentation of the Codelet Model. In Euro-Par 2013 Parallel Processing, Felix Wolf,
Bernd Mohr, and Dieter an Mey (Eds.). Springer Berlin Heidelberg, 633–644.
https://doi.org/10.1007/978-3-642-40047-6_63

[19] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon, Bill
McGee, Benjamin Floering, Ankit Jalote, Christopher Hsiong, Sahil Arora,
Atchyuth Gorti, and Gagandeep S. Sachdev. 2020. Compute Solution for
Tesla’s Full Self-Driving Computer. IEEE Micro 40, 2 (2020), 25–35. https:
//doi.org/10.1109/MM.2020.2975764

[20] Haluk Topcuoglu, SalimHariri, andMin-YouWu. 2002. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems 13, 3 (2002), 260–274. https://doi.org/10.1109/
71.993206

[21] Jeffrey David Ullman. 1975. NP-complete scheduling problems. J. Comput. System
Sci. 10, 3 (1975), 384–393. https://doi.org/10.1016/S0022-0000(75)80008-0

[22] Moisés Urbina and Roman Obermaisser. 2017. Efficient Multi-core AUTOSAR-
Platform Based on an Input/Output Gateway Core. In 2017 25th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Processing (PDP).
157–166. https://doi.org/10.1109/PDP.2017.85

[23] Hrvoje Vdovic, Jurica Babic, and Vedran Podobnik. 2019. Automotive Software
in Connected and Autonomous Electric Vehicles: A Review. IEEE Access 7 (2019),
166365–166379. https://doi.org/10.1109/ACCESS.2019.2953568

[24] SebastianWeis, Arne Garbade, Bernhard Fechner, Avi Mendelson, Roberto Giorgi,
and Theo Ungerer. 2016. Architectural Support for Fault Tolerance in a Teradevice
Dataflow System. International Journal of Parallel Programming 44, 2 (1 April
2016), 208–232. https://doi.org/10.1007/s10766-014-0312-y

[25] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory Cluster
Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, USA, 15–28.

235

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1109/IOLTS.2014.6873679
https://doi.org/10.1109/DSD.2015.63
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.3233/SPR-2011-0305
https://doi.org/10.1007/978-0-387-09457-1_7
https://doi.org/10.1109/HPEC.2013.6670342
https://doi.org/10.7873/DATE.2014.110
https://doi.org/10.7873/DATE.2014.110
https://www.graphviz.org/pdf/dotguide.pdf
https://doi.org/10.1145/1278177.1278182
https://hal.archives-ouvertes.fr/hal-02156255
https://hal.archives-ouvertes.fr/hal-02156255
https://doi.org/10.1007/11549468_74
https://doi.org/10.1109/BigData.2016.7841045
https://doi.org/10.1109/DSD.2014.94
https://doi.org/10.1109/DSD.2014.94
https://doi.org/10.1109/CODESISSS.2015.7331385
https://doi.org/10.1007/978-3-642-40047-6_63
https://doi.org/10.1109/MM.2020.2975764
https://doi.org/10.1109/MM.2020.2975764
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1109/PDP.2017.85
https://doi.org/10.1109/ACCESS.2019.2953568
https://doi.org/10.1007/s10766-014-0312-y

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

