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Abstract

Climate model simulations typically exhibit a bias, which can be corrected

using statistical approaches. In this study, a geostatistical approach for bias

correction of daily precipitation at ungauged locations is presented. The

method utilizes a double quantile mapping with dry day correction for future

periods. The transfer function of the bias correction for the ungauged locations

is established using distribution functions estimated by ordinary kriging with

anisotropic variograms. The methodology was applied to the daily precipita-

tion simulations of the entire CORDEX-Africa ensemble for a study region

located in the West African Sudanian Savanna. This ensemble consists of 23

regional climate models (RCM) that were run for three different future scenar-

ios (RCP 2.6, RCP 4.5, and RCP 8.5). The evaluation of the approach for a his-

torical 50-year period (1950–2005) showed that the method can reduce the

inherent strong precipitation bias of RCM simulations, thereby reproducing

the main climatological features of the observed data. Moreover, the bias cor-

rection technique preserves the climate change signal of the uncorrected RCM

simulations. However, the ensemble spread is increased due to an over-

estimation of the rainfall probability of uncorrected RCM simulations. The

application of the bias correction method to the future period (2006–2100) rev-

ealed that annual precipitation increases for most models in the near (2020–

2049) and far future (2070–2099) with a mean increase of up to 165 mm� a� 1

(18%). An analysis of the monthly and daily time series showed a slightly del-

ayed onset and intensification of the rainy season.
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1 | INTRODUCTION

Knowledge of a region's climatology is indispensable for
the management of its water bodies, agriculture, ecosys-
tems, or technical systems. Reliable and long time series
of meteorological variables in a sufficient spatiotemporal
resolution are a prerequisite to analyse the climatology
and event characteristics of the region or system at hand.
Furthermore, such data is required to run impact models
which simulate, for example, the discharge in a catch-
ment or the potential crop yield. For such applications,
daily or higher resolutions are typically required
(e.g., Bruniet al., 2015). Long time series are required so
that management decisions also take extreme events or
accumulated events like dry spells into account. Since the
climate is projected to change worldwide, decisions
makers are also confronted with adapting the manage-
ment strategies to the uncertain future climate.

Physically based climate model simulations constitute
a source for future climate data. General circulation
models (GCMs) simulate the mass and energy fluxes in
the atmosphere in a spatial resolution of currently up to
0.25� (Buizza et al., 2017). However, decision making in
water resources management and many other disciplines
often requires a higher spatiotemporal resolution than
what the GCMs can provide. Moreover, meteorological
variables such as precipitation can be highly variable in
space and time and are often not well reproduced. To
overcome these shortcomings, regional climate models
(RCMs) are applied, which use the GCM simulations as
driving boundary conditions. They are set up for a con-
fined region of interest by nesting these models into the
numerical grid of the GCM with a higher spatiotemporal
resolution (Rummukainen,2009).

Nowadays, ensembles of GCM-RCM model combina-
tions are used to provide a set of scenarios which can
then be utilized to run impact models for different design
studies, for instance in hydrology or agriculture. The
advantage of ensemble simulations is that the impact
studies do not rely on a single simulated time series and
that the uncertainty can be quantified and considered in
the planning. For Africa, an ensemble of daily RCM sce-
narios in a spatial resolution of 0.44� has been provided
by the CORDEX-Africa project (Coordinated Regional
Climate Downscaling Experiment; Nikulin et al., 2012)
for a historical control period (1950–2005) and future
period (2006–2100). For West Africa, a set of high resolu-
tion, ensemble-based regional climate change scenarios
for a historical and two future periods was provided as
part of the WASCAL (West African Science Service Cen-
tre on Climate Change and Adapted Land Use) program
(Dieng et al., 2018; Heinzeller et al., 2018) using high-
resolution RCMs (Klein et al., 2015; Dieng et al., 2017).

Many investigations showed that key atmospheric drivers
of the West African Monsoon (WAM) such as jet streams
(the Tropical and African Easterly Jet) and the south-
west monsoon fluxes can be reproduced by state-of-the
art climate models for this challenging region (Paeth
et al., 2011; Sylla et al., 2013; Klein et al., 2015).
Gbobaniyi et al. (2014) also showed that specific WAM
features such as the occurrence of the WAM jump, the
intensification and northward shift of the Saharan Heat
Low can be simulated by an ensemble of CORDEX RCM
simulations. Moreover, Syllaet al. (2015) and Nikiema
et al. (2017) showed that the CORDEX RCMs can
improve the precipitation simulations for different clima-
tological zones in West Africa in comparison to GCMs.

Nevertheless, an intercomparison of 10 CORDEX-
Africa RCMs by Nikulin et al. (2012) showed that all
models exhibit a significant systematic differences
between observations and simulations (bias) in the rainy
season for West Africa when compared with observa-
tions. Remarkably, ERA-Interim showed a dry bias for
West Africa in this season, but the ERA-Interim driven
RCMs can lead to positive and negative biases. Moreover,
some of the models simulated the onset of the rainy sea-
son too early, while others have problems regarding the
northward extension of the monsoon rain belt. Mascaro
et al. (2015) reported similar findings for the annual pre-
cipitation amount in the Niger River basin using
18 GCM-RCM combinations of the CORDEX-Africa
ensemble. Klutseet al. (2016) illustrated substantial dif-
ferences between CORDEX-Africa RCMs and observa-
tions for daily rainfall characteristics such as intensity,
frequency, and extreme indices.

Bias correction is often applied to climate model sim-
ulations to reduce systematic differences to the real cli-
matology. To this end, a meteorological variable
simulated by an RCM is transformed to a bias corrected
value via a transfer function. There is a strong debate
about the applicability of bias correction in general
(Maraun, 2016) because the variables of the uncorrected
RCM are physically consistent. After the bias correction,
this may no longer be the case and higher aggregated var-
iables can exhibit a stronger bias than before the correc-
tion (Ehret et al., 2012). In practice, however, bias
correction is still widely applied since a biased meteoro-
logical input variable is regarded as very detrimental to
the performance of subsequent impact models. The avail-
able bias correction techniques differ in how transfer
function are built (Maraun, 2016). A frequently used uni-
variate technique that reproduces the observed distribu-
tion functions is quantile mapping (e.g., Chenet al.,
2013) which is closely related to histogram equalization
and local intensity scaling (e.g., Berget al., 2012).
Another problem is that many bias correction approaches
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provide information for observed sites (gauges) or rely on
gridded observations. However, bias correction that pro-
vide point information for ungauged sites are still very
limited but are needed for local impact studies. In some
case studies, only a single output variable of the RCM is
of interest, for example, the daily temperature or precipi-
tation. If several variables need to be bias corrected, the
correction is mostly performed individually for each vari-
able. In recent years, more complex bias correction
methods have been developed such as copula-based bias
correction scheme (Lauxet al., 2011; Mao et al., 2015) to
generate an ensemble of values from the conditional dis-
tribution. In addition, multivariate bias correction have
been proposed (Piani and Haerter,2012; Cannon, 2016;
Vrac, 2018) for a joint correction of meteorological
variables.

The use of bias correction methods for data-scarce
regions such as West Africa are still limited, although these
datasets are in high demand by impact modellers and prac-
titioners in agriculture and other disciplines. For West
Africa, most of these techniques were mainly applied to
correct global seasonal forecasts (Batté and Deéqué,2011;
Feudale and Tompkins,2011; Oettli et al., 2011; Siegmund
et al., 2015; Rauchet al., 2019) or global climate scenarios
(Sultan et al., 2014). Mbayeet al. (2016) is one of the earli-
est studies who bias corrected regional climate scenarios
driven by CMIP3 models for West Africa. Recently, Laux
et al. (2021) used univariate bias correction methods
for precipitation and temperature from selected CORDEX-
Africa RCMs.

The objectives of this study are the development of a
bias correction method for providing point information at
ungauged locations and its application using a set of
regional climate scenarios for a data-scarce region. The
double quantile mapping (B�ardossy and Pegram,2011) is
used and extended by geostatistical approaches to estimate
the distribution of daily precipitation at ungauged loca-
tions. The approach is similar to Mamalakiset al. (2017),
but in addition to their study, anisotropic variograms are
applied and point scale statistics are regionalized and not
spatially averaged. In contrast to many other bias correc-
tion methods, this enables the provision of bias-corrected
precipitation time series for ungauged locations,
depending on the regionalized point scale statistics of the
surrounding rainfall network (Gessneret al.,2015).

The methodology is tested for the central Sudanian
Savanna of West Africa. This region is chosen due to the
high importance of the WASCAL program as core
research area (Yiraet al., 2016; Danso et al., 2018;
Bliefernicht et al., 2018; Salacket al., 2019; Bergeret al.,
2019) to provide bias-corrected climate scenarios for local
impact studies. Another reason is the availability of long-
term daily precipitation observations from rainfall gauges

for this region (Bliefernicht et al., 2019). The analysis of
the projected climate change signal is carried out for sev-
eral precipitation characteristics (annual and monthly
precipitation amount and the onset of the rainy season)
for three projections (RCP2.6, RCP4.5, RCP8.5) and two
time periods (2020–2049 and 2070–2099) using the full
CORDEX-Africa ensemble based on 23 GCM-RCM
model combinations. This study is therefore one of the
first that uses the full CORDEX-Africa ensemble
(48 RCM scenarios) for bias correction.

2 | STUDY REGION AND
DATA SETS

The study region is shown in Figure1. It covers regions of
different countries in West Africa, primarily Burkina Faso
in the North, as well as Ghana, Benin, and Togo in the
Southern domain. The spatial grid stems from the
CORDEX-Africa RCM ensemble with a spatial resolution
of 0.44� . The centres of the grid cells are chosen in this
study as ungauged sites to cover the entire region in a
homogeneous way. However, the current methodology
can be also applied for any irregular network. The station
network is relatively dense for West Africa but it is still a
magnitude lower compared with rainfall networks in
Europe or North America. The rainfall sites were chosen
from a novel precipitation database that has been collected
and merged within the BMBF research program WASCAL
from the global, regional and national databases
(Bliefernicht et al., 2021). One hundred and seventy two
stations are located in the proximity of the study region.
Daily precipitation time series have been extracted for the
period 1950–2005 for these sites. Subsets of this precipita-
tion dataset were also used by various studies, for example,
by Dienget al. (2017) for RCM evaluation and Ascottet al.
(2020) for groundwater reconstruction.

F I G U R E 1 Mean annual sum of precipitation of the West
African observation data (1950–2005). The circles correspond to the
rainfall network which was used for the bias correction. [Colour
figure can be viewed atwileyonlinelibrary.com]
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Figure 1 also shows that the observed mean annual
sum of precipitation decreases from South (up to
1418 mm� a� 1) to North (as low as 439 mm� a� 1). Sta-
tions on the same degree of latitude have relatively simi-
lar annual sums which indicates that the statistics are
anisotropic. The rainy season is also very distinct in the
study region and is dominated by the West African Mon-
soon. From February, the southern locations already
receive precipitation (Figure2). Over the course of the
rainy season, the monthly amounts increase until
August. At this time, the maxima occur at the southern
border of Burkina Faso. From September on, the precipi-
tation amounts decrease quickly.

The CORDEX-Africa ensemble consists of 23 different
GCM-RCM combinations (Table1). The majority of the
models from the CORDEX-Africa ensemble overestimate
the annual sums of precipitation in the presented study
region for the historical period (1950–2005). Annual sums
of more than 2500 mm have been simulated by individ-
ual ensemble members which is a positive bias of more
than 100%. Such an overestimation poses tremendous
problems for subsequent impact models like crop models
because it may be assumed that much more water is
available than in reality. Some regions, especially North-
ern Ghana, have only a few measurement stations which
means that the climatological statistics are unknown for
many locations. This data scarcity of the measurement
stations and the anisotropy of the statistics motivated
a geostatistical approach to estimate the bias transfer
function for ungauged locations.

3 | METHODS

In this study, double quantile mapping (B�ardossy and
Pegram,2011) has been chosen to bias correct the daily

precipitation time series of the CORDEX-Africa ensemble
for historical and future time periods. Gudmundssonet al.
(2012) found that empirical quantile mapping resulted in
the best bias corrected simulations, but this approach
requires complete observation time series for every loca-
tion in the simulation period, which are often not avail-
able. This is also the case for the study region, and
therefore the unknown point scale distribution functions
for each grid cell in the study region were estimated by
interpolating the parameters of the observed distribution
functions to all grid cell centres in the region of interest
using ordinary kriging. Separate statistics were used for
each month of the rainy season. The dry season from
November to February was grouped into a single season to
obtain enough values for a robust estimation of the local
statistics. The estimated distribution was utilized to gener-
ate so called“simulated observations.” A double quantile
mapping with dry day correction was then carried out for
each RCM cell with the estimated CDFs. The full process
of the bias correction method is illustrated in Figure3.

3.1 | Dry day correction

For precipitation a correction of the frequency of wet values is
necessary in most cases because RCM simulations typically
exhibit more time steps with precipitation than is observed.
One cause for an excessive precipitation probability is the driz-
zle effect. RCMs often simulate too many low intensity (high
frequency) precipitation events when compared with observa-
tions (e.g., Sunet al., 2006). The probability that a grid cell is
wet is also scale-dependent as larger cells are more likely to
exhibit precipitation (Argüesoet al., 2013). In practice, it is
often the case that there is a mismatch between the spatial res-
olution of the RCM and the observations. If we assume that
xobs is observed precipitation measured by a gauge, this
information corresponds to a single point in space and
therefore a difference between observed precipitation
probability pw,obs and simulated precipitation probability
pw,sim is to be expected. Furthermore, rain gauges may
miss very light precipitation amounts that are below the
detection limit. Nevertheless, gauge data is commonly
used as reference for bias correction—either because
there is no other data available or because the impact
models are usually calibrated with gauge observations.

An overestimated precipitation probability can be
corrected by setting all values below a chosen threshold�
(e.g., 1:0 mm� d� 1) to zero. This threshold should be cal-
culated individually for each cell so that the frequency of
values above the threshold is equal to the observed pre-
cipitation probability. After calculating pw,obs only the
nsim � pw,obs largest values of the RCM simulations will be
considered as actual precipitation.nsim is the number of
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F I G U R E 2 Hovmöller diagram of mean monthly precipitation
of the observation data used in this study (1950–2005). [Colour
figure can be viewed atwileyonlinelibrary.com]
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days of the RCM time series. The threshold� is thus the
value that satisfies:

nsim � pw,obs= # xsimjxsim� �f g ð1Þ

with xsim the simulated precipitation value of the RCM.
After the threshold has been found, all values below it
are set to zero and the remaining values are shifted
toward zero to allow for the fitting of a parametric distri-
bution function. This approach has been used among
others in Volosciuket al. (2017) and Lafonet al. (2012). A
correction for the rare converse case, that the wet day
probability is higher in the observations than in the simu-
lations, was developed by Themeßlet al. (2010) who

infilled very low intensities until the observed wet day
probability was matched.

3.2 | Quantile mapping and double
quantile mapping

Quantile mapping inverts the CDF of the observed var-
iable Fobs with the CDF value of the RCM simulations
Fsim xsimð Þto generate a corrected valuexBC. Thus, the
general characteristics of the RCM time series, such as
when the highest values occur, remain the same but
each value is mapped to its corresponding observed
quantile.

T A B L E 1 CORDEX-Africa ensemble members which were used in this study

Institute/research initiative Driving model RCM

CCCma (Canadian Centre for Climate
Modelling and Analysis)

CCCma-CanESM2 CanRCM4 v4

CLMcom (Climate Limited-area
Modelling Community)

CNRM-CERFACS-CNRM-CM5 CCLM4-8-17 v1

CLMcom ICHEC-EC-EARTH CCLM4-8-17 v1

CLMcom MOHC-HadGEM2-ES CCLM4-8-17 v1

CLMcom MPI-ESM CCLM4-8-17 v1

DMI (Danish Meteorological
Institute)

ICHEC-EC-EARTH HIRHAM5 v2

DMI NCC-NorESM1-M HIRHAM5 v1

KNMI (Koninklijk Nederlands
Meteorologisch Instituut)

ICHEC-EC-EARTH RACMO22T v1

KNMI MOHC-HadGEM2-ES RACMO22T v1

MPI-CSC (Max Planck Institute for
Meteorology—Climate Service
Center)

ICHEC-EC-EARTH REMO2009 v1

MPI-CSC MPI-ESM REMO2009 v1

SMHI (Swedish Meteorological and
Hydrological Institute)

CCCma-CanESM2 RCA4 v1

SMHI CNRM-CERFACS-CNRM-CM5 RCA4 v1

SMHI CSIRO-Mk3.6.0 RCA4 v1

SMHI ICHEC-EC-EARTH RCA4 v1

SMHI NOAA-GFDL-GFDL-ESM2M RCA4 v1

SMHI MOHC-HadGEM2-ES RCA4 v1

SMHI IPSL-CM5A-MR RCA4 v1

SMHI MIROC-MIROC5 RCA4 v1

SMHI MPI-ESM RCA4 v1

SMHI NCC-NorESM1-M RCA4 v1

UQAM (Université du Québec à
Montréal)

CCCma-CanESM2 CRCM5 v1

UQAM MPI-ESM CRCM5 v1
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xBC= F � 1
obs Fsim xsimð Þf g ð2Þ

Fobs and Fsim can either be empirical or parametric func-
tion with parameter set � 1,…,� nf g . One problem of
choosing an empirical CDF is that the observed maxi-
mum cannot be exceeded. Also, the time series of obser-
vations should be as long as the RCM time series which
can be circumvented by interpolating between the two
values with a given rank or by sampling from the obser-
vation set until it is as large as the simulation set (Piani
and Haerter,2012). Parametric CDFs are capable of gen-
erating values larger than the observed maximum and
the discrete nature of the measurements (e.g., a resolu-
tion of 0.1 mm of the measurement device) is less appar-
ent in the bias corrected time series. Finding a function
Fsim that fits the skewed precipitation intensities simu-
lated by RCMs can be challenging, as discussed in
Gudmundssonet al. (2012).

For climate change studies,the traditional quantile
mapping cannot be used directly. Fitting a distribution
function Fsim to the future period and inverting the
observed distribution Fobs with the CDF values in the
future, would result in a biascorrected time series with
a distribution function that is identical to the one of the
observations. The only difference would be how the
large and small values tend to cluster in space and time
in the different time periods. The double quantile map-
ping method utilizes the historical CDF to calculate the

CDF values of the future period. A parametric distri-
bution function Fsim,hist is fitted to the historical RCM
time series and the CDF values of the future period are
calculated with this CDF. This way, a change of the
intensity distribution leads to a bias corrected time series
whose distribution is no longer identical to the
observed one.

F I G U R E 3 Flowchart of the
geostatistical bias correction
method

�������C

C
D

F
 (
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Precipitation (mm•d–1)

F I G U R E 4 Transformation of nonzero future precipitation
amountsxsim,fut simulated by a regional climate model (RCM) using
double quantile mapping to a bias-corrected valuexBC. The value of
the RCM's historical cumulative distribution function (CDF) is used
to invert the observed CDF [Colour figure can be viewed at
wileyonlinelibrary.com]
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xBC= F � 1
obs Fsim,hist xsim,futð Þð Þ ð3Þ

The double quantile mapping is illustrated in Figure4
with artificial data. Since the CDFs of the historical and
future RCM differ, the precipitation amountxsim,fut which
is the 90%-Quantile in the future period attains a larger
CDF valueFsim,hist xsim,futð Þ= 0:95.

3.3 | Estimating distribution parameters
with kriging

Utilizing the closest measurement station for the centre of
each grid cell to estimate the distribution parameters
would lead to high uncertainties for sites that have no
nearby stations. This is especially problematic in regions
with a highly variable local climatology as in mountainous
regions or in this case West Africa where the climatology is
anisotropic and depends strongly on the degree of latitude
(Figures1 and 2). Although there are several spatial inter-
polation methods available for environmental variables
(Li and Heap, 2013) and specifically for precipitation
(Ly et al., 2013), most of these methods perform a spatial
smoothing of the variable of interest leading to an underes-
timation of the observed variability at ungauged sites, espe-
cially for variables with a strongly skewed distribution like
daily precipitation. This is the main reason why instead of
a direct interpolation of daily precipitation, an interpola-
tion of the parameters of distribution functions and a
simultaneous simulation of the daily precipitation amount
is performed. For instance, Mamalakiset al. (2017) interpo-
lated the parameters of a Generalized Pareto distribution
to ungauged locations to perform a bias correction.

The Kriging method is shortly explained for a single
CDF parameter denoted by� . If several parameters are
required to estimate the distribution function at
unmeasured locations, the following procedure has to be
done for each parameter individually. Kriging estimates
the unknown CDF parameter� � as a linear combination
of n observed parameters� i which each have a Kriging
weight � K,i which must fulfil the condition

Pn

i = 1
� K,i = 1.

� � =
Xn

i = 1

� K,i � i ð4Þ

The Kriging weights � K are obtained by solving the
Kriging equation system that minimizes the estimation
uncertainty of the unknown value. The estimation uncer-
tainty is calculated with parametric variogram models
b� hð Þthat estimate the semi-variance of values at a given

spatial separation distanceh. Anisotropic variograms can
be calculated as a linear combination of the directional
variogramsb� x and b� y, so if the variogram value increases
more strongly in one direction, the expected overall semi-
varianceb� between the unknown point and the observa-
tion location will be higher if the two points are mainly
separated along this axis.

b� hð Þ= b� x hxð Þ+ b� y hy
� �

ð5Þ

For instance, in West Africa precipitation pairs on the
same degree of latitude have a lower semi-variance than
pairs on the same degree of longitude because
b� x hð Þ<b� y hð Þ. As Kriging minimizes the estimation uncer-
tainty, a higher Kriging weight is given to neighbouring
gauges that are on the same degree of latitude.

3.4 | Generating simulated observations

With the interpolated precipitation probability pw and distri-
bution parameters� 1,…,� n, a surrogate for the unknown
distribution Fobs of each grid cell centre is provided.
Afterward, stochastic simulations can be performed to
obtain a time series of“simulated observations.” A set of
uniform random numbers usim � U 0,1ð Þis drawn and
inverted via the parametric CDF to obtain realizationsx.
In this study, daily precipitation time series were simu-
lated for the period 1950–2005 for each grid cell centre.

x= F � 1 usimð Þ ð6Þ

In case of precipitation it is necessary to also simulate
zero precipitation amounts with a dry probability of
pd = 1� pw which is not possible with a single parametric
distribution. The overall distribution is constructed as a
mixed discrete-continuous (or truncated) distribution.

usim xð Þ=
pd + pwF xð Þ if x>0

� pd else

�
ð7Þ

The zero amounts obtain a censored CDF valueusim� pd.
This means thatusim is unknown and can take on any
value between 0 andpd. To invert this truncated distribu-
tion, the random numbers are compared with the dry
probability pd. If a random number usim is below pd, the
simulated value will becomexsim = 0. In the other case,
the CDF value of the nonzero precipitation amounts is
calculated asuw = usim � pd

1� pd
and the CDFF is inverted with

this rescaled value (Equation (8)).
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xsim =
F � 1 usim � pd

1� pd

� �
if u>pd

0 if u� pd

8
<

:
ð8Þ

4 | RESULTS

In this section a description of the results are given. At
first, the outcomes of the calibration of the bias correc-
tion method are shown (Section4.1). Afterward, the
results of the bias correction are shown for the historical
period (Section 4.2) and for the future periods
(Section4.3).

4.1 | Calibration of the bias correction
method

The bias correction model depicted in Figure3 requires a
surrogate of the CDFsFobs for the ungauged locations and
CDFsFsim,hist fitted to the dry day corrected RCM precipi-
tation time series in the historical period 1950–2005. The
historical period stems from the CORDEX-Africa ensem-
ble and was chosen for the observed data. The estimation
of the CDF Fobs of daily precipitation is based on kriging
the parameters of the observed CDF and the precipitation
probability pw to the ungauged locations. The CDF
Fsim,hist was estimated for each cell directly with a kernel
density estimation (KDE, Rosenblatt,1956). The required

steps to calibrate the model are the selection of a
parametric distribution function (Section 4.1.1), the
calculation of variograms of the distribution parameters
(Section 4.1.2) and the fitting of a distribution function
to the RCM simulations and dry day correction
(Section4.1.3).

4.1.1 | Parametric distribution function of
observed precipitation

According to the Bayesian information criterion (BIC;
Schwarz, 1978) values of nine fitted distribution func-
tions, there is no parametric distribution function that
clearly outperforms all other functions as the differences
are rather small. As an example, the BIC values for the
month of August are shown in Figure5. While the BIC
values of some other distributions were slightly lower
and therefore better, the exponential distribution was
chosen to modelFobs for the observed daily precipitation
intensities. The exponential distribution is defined by a
single parameter� exp which is the reciprocal value of the
mean wet day amountxw.

F xð Þ= 1� e� � expx ð9Þ

Even though the exponential distribution did not result
in the minimum BIC values, it was chosen for the follow-
ing reasons:

1. Pianiet al. (2010) argue that a robust transfer function
with few parameters is favourable for climate change
studies.

2. As the rainy season is very pronounced in West
Africa, a subdivision of the year into nine seasons was
made (one season for the dry season November to
February and separate parameters for the other
months). Calculating experimental anisotropic
variograms requires splitting the sample into subsets
which reduces the sample size for the calculation of
the directional variograms. As the estimation of
variograms and the fitting of the distribution parame-
ters require a sound basis of observation data, a distri-
bution function with a single parameter can be fitted
more easily.

3. Quantile–quantile-plots (QQ-Plots) of the simulated
daily intensities against the observed ones showed a
good fit for most locations.

4. Fitting a parametric CDF with more than one param-
eter can result in a high variability of the parameters
between neighbouring locations which leads to
variograms with nearly constant semi-variances.
These cause nearly equal kriging weights and
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F I G U R E 5 Boxplot of Bayesian information criterion (BIC)
values of nine parametric distribution functions (Weibull—Wbl,
Gamma—Gam, exponential—Exp, generalized extreme value—
GEV, generalized Pareto—Gp, log-normal—Logn, logistic, log—
logistic and Rayleigh) fitted to daily precipitation intensities in
August (1950–2005). [Colour figure can be viewed at
wileyonlinelibrary.com]
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